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ABSTRACT

The TOUGH2 simulator and its parallel version
TOUGH2-MP continue to be the industry standards
for the development of numerical models of
geothermal systems. Increasing processing power
enables us to simulate larger, more complex systems,
while improved data collection and remote sensing
techniques provide an ever greater suite of
observations against which to calibrate the model. As
a consequence, the raw text input files that control
the simulations grow increasingly cumbersome to
construct, while post-processing of model output
becomes more challenging. We use the Python
scripting language and the PyTOUGH library to
interact with TOUGH2 in a number of novel ways to
control simulation tasks accurately and efficiently. In
this paper several examples of the use of PyTOUGH
are described. A new method for automatically
generating geothermal production wells is described
that allows well information to be stored in concise,
readable and easily updatable files. Examples are
given of sequential modification of model geometries
to represent effects such as eruptions and excavation.
The generation of atmosphere blocks that vary in
space and time due to changes in lake levels and
extreme altitude are presented. Methods for
controlling  sequential simulations  with  both
TOUGH2 and TOUGH2-MP are described including
techniques for dealing with numerical non-
convergence. Finally, PyTOUGH's ability to combine
and post-process results from multiple simulations
and different types of output files is discussed.

INTRODUCTION

As numerical simulation has become an established
and widely used tool for planning and managing
geothermal developments it is increasingly applied to
more varied and complex problems [Burnell et al.,
2012]. The increase in affordable parallel processing
power has enabled the simulation of larger, more
detailed systems. It has also provided a means for

applying inverse modelling techniques to real-world
scale problems [Cui et al., 2011; Omagbon &
O’Sullivan, 2011].

A significant amount of book-keeping has always
been required to prepare, run and post-process
numerical simulations of geothermal systems.
However, as these new simulations are orders of
magnitude larger and more complex, this task has
become increasingly difficult. The PyTOUGH library
[Croucher, 2011; Wellmann et al.,, 2012] was
developed to simplify this process and in the face of
increasing complexity it has become an essential part
of our numerical models. This paper describes a
number of recent developments that use PyTOUGH
to control key components of a numerical simulation
so that accurate results can be obtained as efficiently
as possible.

PREPARING SIMULATIONS

Before TOUGH?2 simulations can be run several tasks
must be performed. The main tasks are the generation
of the simulation grid, calculation of the initial and
boundary conditions and the preparation of the
TOUGH?2 data file. For complex simulations each
task can require involved calculations that may often
need to be carried out many times. As previously
noted [Croucher, 2011], the PyTOUGH libraries
provide a flexible framework for creating scripts that
are able to achieve these tasks multiple times both
efficiently and accurately. They also form a record of
the preparation of each simulation in such a way that
they effectively define the simulation itself.

Examples of complex operations carried out using
PyTOUGH libraries are given for each of these tasks
in the following subsections. Brief details of the
simulation are also given to provide context for the
particular challenge being addressed.
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Figure 1: Series of grids with increasing refinement

Grid generation

Generating grids efficiently and accurately is
important in simulations of geothermal systems. For
a standard forward simulation several attempts are
often required to achieve a satisfactory grid.
PyTOUGH provides a simple mechanism for not
only controlling and altering grid dimensions,
resolution and position but also for fitting topography
and optimising grid structure. Details can be found in
the PyTOUGH documentation [Croucher, 2012]. For
more complex simulations these capabilities are not
only important but become essential tools for grid
generation.

Recently we began developing a new model of the
geothermal system on Lihir Island in Papua New
Guinea. The objective is to use the current well-
calibrated model [O’Sullivan et al., 2011] as a basis
for a set of nested models based on the important

geological structures. The inverse modelling tool
PEST [Doherty, 2010] is used to calibrate the new
model and will eventually be used for uncertainty
quantification of the models’ predictions. The
computationally intensive  nature of inverse
modelling makes it expensive to apply to the current
Lihir model which is comprised of approximately
80000 blocks. It will be significantly more expensive
to apply inverse modelling to the new model as it is
estimated that a grid containing 120,000 blocks is
required to satisfactorily resolve the important
geological structures and both the deep and shallow
zones of the reservoir.

This computational cost can be greatly reduced by
using simpler, less refined grids for calculation of the
numerical Jacobians required for the inverse
modelling process. PyTOUGH has been used to carry



out the complex task of generating and optimising the
nested grids. Adjustments to the nested grids have
been necessary and will continue to be necessary as
the calibration process continues. The PyTOUGH
scripts greatly simplify this otherwise cumbersome
task. Figure 1 shows the four levels of the nested grid
which is aligned NE-SW along the direction of the
fault that is considered to be most important for
controlling upflow in the system. The grids have
9700, 50000, 96000 and 120000 blocks respectively.

Grid modification

In some cases the topography of the geothermal
system being simulated may change during the
timeframe considered. Examples where this may
occur include eruptions, subsidence and excavation.
PyTOUGH can be used to generate sequential grids
that represent the changing topography. It can also be
used to control the sequential simulations as was
described for the Lihir island simulations in
O’Sullivan et al. [2011].

Another example of this procedure is shown in
Figure (2). In this case the simulation is of the
Waimangu Valley in New Zealand with topography
altered by a basaltic dike eruption that destroyed the
famous Pink and White Terraces in 1886. The
objective of the project was to use TOUGH2
simulations to reproduce the surface features
observed in the valley both before and after the
eruption in order to better understand volcanic
perturbation of the sub-surface heat flow and
permeability. Unlike the Lihir Island simulations this
catastrophic event took place over a very short period
of time. In the model this is represented as a step-
change between pre- and post-eruption topographies.
PyTOUGH was used to generate the initial
simulation grid using pre-1886 survey maps and then
to calculate and remove the volume of earth
necessary to arrive at today’s topography.

As noted previously [O’Sullivan et al., 2011], care
must be taken to ensure that the internal indexing of
TOUGH?2 data files and initial condition files is
consistent when using sequential grids with modified
topography. This can be achieved by the PyTOUGH
scripts used for running the simulations as described
below.

Note also that the grid geometry manipulation
methods in PyTOUGH make use of the MULgraph
geometry file format for representing geothermal
model grids [O'Sullivan & Bullivant, 1995]. This
format can represent arbitrary unstructured horizontal
grids, projected down through a series of layers. The
upper layers can be incomplete, and the surface
elevations in the top layer can be specified to
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Figure 2: Pre- and post-eruption Waimangu grids

represent varying topography. This geometry format
can be used independently of the MULgraph
graphical user interface. Also, users who prefer to
use other geometry formats for grid generation can
still use the rest of the PyTOUGH library for
manipulating TOUGH2 data files, simulation output
etc.

Atmosphere Blocks

Many simulations of geothermal systems extend to
the surface of the earth and hence contain the
atmosphere as one of the boundary conditions. In
simple cases this can be represented easily by
connecting an atmosphere block with an extremely
large volume to the top layer of the model and then
setting the initial conditions for this block to
atmospheric temperature and pressure. However, for
more complex simulations the properties of these
blocks are difficult to determine and may vary with
time. Two examples are given below of different
atmospheric conditions and how PyTOUGH is used
to calculate them.

The first example is from the simulation of a
geothermal system under a dormant volcano in the
high Andes on the border between Chile and Bolivia.
In this case the altitude of the simulated area varies
from 3900 to 5200m such that both temperature and
pressure change significantly over the surface of the
model. PyTOUGH is used to calculate the pressure
and temperature for each block and assign it in the
TOUGH?2 initial condition file.



The pressure p is calculated using Equation (1)
[Wikipaedia, 2013]:

M
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and the temperature T is given in Celsius
using:

T = T, — Lh — 273.15, )

where T, is the temperature at sea level in kelvin,
h is the altitude in meters and the constants are given
in Table (1).

Table 1:  Constants for calculation of high altitude
temperature and pressure
Do | Pressure at sea level in Pa 101325
L | Temperature lapse rate K/m 0.0065
g | Gravity m/s® 9.80665
M | Molar mass of dry air kg/mol 0.0289644
R | Universal gas constant J/(mol.K) | 8.31447

A contour map of a portion of the simulated area is
shown in plot (a) of Figure (3). The corresponding
pressure and temperature boundary conditions that
were applied for the same area are shown in plot (b).
It can be seen that the temperature varies from 3°C to
11°C and the pressure from 0.55 bar to 0.65 bar for
the area shown.

The second example shows how PyTOUGH is used
to change the atmospheric conditions during the
timeframe of a simulation. Many simulations of
geothermal systems include bodies of water at the
surface. Examples include Wairakei, adjacent to the
Waikato River, [O’Sullivan & Yeh, 2010], Lihir
Island, adjacent to and beneath the Pacific Ocean,
Rotorua, abutting Lake Rotorua and Waimangu
[Simmons & O’Sullivan, 2010]. The hydrostatic
pressures that these bodies exert on the surface
represent a different set of atmospheric boundary
conditions. In the case of the Orakei-Korako
geothermal system, which spans the Waikato River,
these hydrostatic pressures have changed over
simulation timeframes due to the dam impoundment
and valley flooding.

The objective of this project was to simulate the
natural state of the river valley both before and after
flooding and to calibrate the model using the known

(a) Elevation contours of Andean volcano

(b) Simulation atmosphere boundary conditions

Figure 3: Pressure and temperature in atmosphere
blocks above Andean model.

surface features in both cases. The model can then be
used to predict the possible impact of future changes
to the lake level on the remaining, protected
geothermal expressions.

Pre-flood contour maps were used to determine the
topography and a section of the map is shown in
Figure (4a). For reference the computational grid is
superimposed on the map in blue. The same area is
shown as it is today in plot (b). The average depth of
the pre-flood river was estimated to be 2m and this
was used to calculate the topography beneath the
river. The map was digitised and PyTOUGH was
used to fit the surface of the model to the topography.
PyTOUGH was also used to adjust the topography to
account for a coordinate transformation between two
maps in Figure 4. This difference can be seen as the
skewed representation of the computational grid in

plot (a).

Having created the geometry the pressures of the
atmosphere blocks corresponding to the river were
calculated and the values assigned in the initial
conditions file. To determine the pressures for the



blocks flooded by the damming process PyTOUGH
was used to “fill” the lake to its present level and
calculate the correct values. The corresponding
pressure boundary conditions are shown in plots (c)
and (d) respectively. Once again running sequential
simulations of this nature is achieved efficiently
using PyTOUGH to select the appropriate boundary
conditions based on the simulation time. Initial
simulations have been carried out using a step change
from one state to the next. However, future
simulations in which the flooding of the valley is a
gradual process are planned.

Creating _Generators _for Geothermal Wells
Automatically

One of the implications of generating several
versions of the same model is that the blocks that
contain the feed zones of geothermal wells may
change between versions. For geothermal fields with
many production wells it becomes a cumbersome
task ensuring that the allocation of a feed zone to a
block for each well is correct.
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Figure 4: Pressure in atmosphere blocks before and
after flooding of Orakei-Korako.

Similarly, for a typical reservoir model where the
grid has not changed but the data for a well is
regularly modified or updated, it is easy to neglect to
update the TOUGH2 data file and hence run an
incorrect simulation. One cause of this error may be
that the field data used to update the well information
might have come from one of many different sources
and may be stored in one of a number of files.

To overcome these issues we have used PyTOUGH
to develop a script which automatically generates
each geothermal well at the start of a simulation and
writes the appropriate generator entry in the
TOUGH?2 data file. This has several advantages. The
first is that because all of the generators for the
geothermal wells are cleared and reproduced before a
simulation is started, the most up to date well
information is used every time. Second, all of the
information for each well is stored in a single file.
This file then acts as a master record for the well and
can be updated and referred to easily.

The format of the well file is a follows:

#Well Name
GW017

#Feed zones

#From (mRL) To (mRL) Prop Delv
402 373 0.2 le-13
142 104 0.2 2e-13
-14 -148 0.6 le-12

#Well Track

8832.10 5011.60 1099.50
8831.80 5011.60 979.50
8830.90 5011.30 859.50
9646.40 4677.90 -162.80
9652.40 4677.70 -168.10

#Downhole Temperature

#mRL Temp

1092.65 39.40 #from spread.xlsx
1083.15 42.50
1074.05 41.60

420.02 264.20

#Mass Flow

#kg/s Date

2003.00 1.051084E+00
2003.08 1.259917E+00
2003.16 1.251020E+01
#Enthalpy

#kJ/kg Date

2003.00 1246.93
2003.08 1394.4¢6
2003.16 1201.85

The well file is easy to read, concise and can contain
comments which note where information has been
obtained (eg. from spread.xlsx). It is also easy to
update by simply appending sections when new field



measurements for mass flows, enthalpy etc. are
obtained.

In the PyTOUGH script that sets up and controls the
TOUGH2 simulation the geothermal wells are
created simply by calling a library function which
indicates the type of behaviour required:

add well (‘GWO17’, ‘MASS’)

This function performs several tasks. First it updates
the geometry file to include the well track
information for the well. Second it interpolates
between many points along the well track within each
feed zone. PyTOUGH functions are wused to
determine which simulation blocks contain these
points hence determining the model blocks
containing the feed zones. A threshold parameter is
used to exclude blocks which only contain a small
proportion of the feed zone. Next a generator is
written to the TOUGH2 data file for each block
containing a feed zone. Depending on the type of
behaviour required the generator will either create a
table of times and mass flows using the mass flow
data and feed-zone proportions from the well file.
Alternatively it can create a deliverability type well
using the productivity information in the feed zone
section. Note that switching from mass-flow type
behaviour for history matching to deliverability type
behaviour for future scenarios can be controlled by
the PyTOUGH simulation script. Figure (5) shows
the same group of wells generated for two grids of
different resolution and orientation.

Finally, post-processing PyTOUGH scripts can
access the well file to plot time history and downhole
data thus ensuring that the same information is used
in both the simulation and the visualisation of results.

RUNNING SIMULATIONS

Controlling complex simulations using PyTOUGH
has been discussed in detail previously [Croucher,
2011; O’Sullivan et al., 2011]. This section will only
discuss additional work that has been carried out.
One area of research has been to develop scripts that
can control TOUGH-MP simulations. Because
TOUGH-MP uses a fixed file naming convention,
directory structures are used for each year of a
sequential simulation. Files are prepared and the file
structure organised using Python and PyTOUGH.
Care must be taken to ensure that the working files
are cleared for each simulation to ensure the results
are correct.
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Figure 5: Plot of the same well tracks in grids of
different resolution and orientation.

The flexibility of PyTOUGH is such that the same
script can be used for both TOUGH2 and TOUGH-
MP simulations by simply changing the executable
call that is made. PyTOUGH handles the small
variations in the data files and listing files
automatically.

Improvements have been made in the scripts that run
the simulations, greatly increasing their efficiency.
For example when calculating which blocks need to
be added and which need to be removed due to
topography changes, Python's efficient 'set' data
structures are now used for comparing lists of blocks.

Correcting numerical non-convergence

A significant development in the scripts used to run
simulations is the addition of a check for numerical
non-convergence. Numerical non-convergence can
occur in Air-Water and CO,-Water models in blocks
where phase transitions are taking place. When this
problem occurs the block in question switches
between single-phase and two-phase at each Newton
iteration causing TOUGH2 to reduce the time step
dramatically. The plots in Figure (6) show the total
time and the time step size for two very similar
simulations, one which experiences numerical non-
convergence and the other which does not.
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Figure 6: Plots of total time and time step size for
two simulations. One which converges the
other which does not.

The solution of this numerical issue is an area of
current research. Previously the most effective
approach was to manually stop the simulation,
inspect the block in question, intervene and restart the
simulation. This approach is extremely inefficient
especially as the block affected may change
throughout the simulation.

By using PyTOUGH scripts this process has been
automated so that no manual intervention is required
to implement the workaround. The algorithm for the
process is shown in Figure (7).

The parameters m and n can be changed to enforce
less or more rigorous checking. The script also tracks
and records which blocks have been changed. This
checking process improves the efficiency of
simulations particularly in dynamic situations where
the steam zone may be moving or evolving.

POST-PROCESSING SIMULATIONS

Once simulations have been completed post
processing the results can be a challenging task. As
discussed in O’Sullivan et.al [2011] the results from
sequential simulations must be gathered together in
the correct sequence and presented in a meaningful
way. For TOUGH2 simulations this task involves
extracting time-dependent information from listing
files for each block, generator or connection and
storing it in a data file. The same information is

Stop the simulation every n time steps

- =

Inspect blocks that cause time step reduction in listing file

e

Does a single block appear more than m times?

N

Is the block near the saturation line?

N

Inspect neighbouring blocks and move block across
saturation line if required by changing the incon file

- =

Figure 7: Algorithm for correcting numerical non-
convergence.

extracted from each subsequent listing file and is
appended to the data file.

For TOUGH-MP the process is significantly more
complicated. TOUGH-MP stores time-dependent
information about individual blocks in data files
known as FOFT files. At present the standard version
of TOUGH-MP does not properly record time-
dependent information for generators or connections.
We have corrected this problem so that valuable
time-dependent generator information is stored in
GOFT files during the simulation. However, separate
FOFT and GOFT files are created for each processor
during the simulation. This means the PyTOUGH
script must reconcile many of these files to correctly
collate the time-dependent data for wells and blocks.
This is further complicated by the algorithm
preventing numerical non-convergence as this
effectively requires that each sub-simulation is
broken up into a third tier of sub-sub-simulations
each with a FOFT and GOFT file for each processor.
The end result can be many thousands of files that
must be reconciled. Python scripts and in particular
the PyTOUGH libraries make this difficult task
relatively simple and easily repeatable.
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Figure 8: Results from a TOUGH-MP simulation

The plots in Figure (8) show examples of the types of
plots produced from large, parallel, sequential
TOUGH-MP simulations. Both field-wide totals and
individual well totals are shown.

CONCLUSIONS

A number of novel approaches have been presented
that use PyTOUGH libraries to control complex
simulations of geothermal systems. Methods that can
be used to automatically generate nested grids,
calculate and apply boundary conditions and prepare
wells have been shown to be important tools for
maintaining accuracy and efficiency as simulations
are carried out. They show particular promise as
inverse modelling techniques are applied to real-
world scale geothermal systems. PyTOUGH tools for
controlling  sequential simulations and post-
processing data from large, parallel simulations have
also been discussed and examples of their use given.
As numerical models of geothermal systems become
increasingly complex and address wider ranges of
problems the capability of the PyTOUGH libraries to
interact with, control and organise TOUGH2 and
TOUGH-MP simulations will become increasingly
important.
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