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ABSTRACT 

The TOUGH2 simulator and its parallel version 

TOUGH2-MP continue to be the industry standards 

for the development of numerical models of 

geothermal systems. Increasing processing power 

enables us to simulate larger, more complex systems, 

while improved data collection and remote sensing 

techniques provide an ever greater suite of 

observations against which to calibrate the model. As 

a consequence, the raw text input files that control 

the simulations grow increasingly cumbersome to 

construct, while post-processing of model output 

becomes more challenging. We use the Python 

scripting language and the PyTOUGH library to 

interact with TOUGH2 in a number of novel ways to 

control simulation tasks accurately and efficiently. In 

this paper several examples of the use of PyTOUGH 

are described. A new method for automatically 

generating geothermal production wells is described 

that allows well information to be stored in concise, 

readable and easily updatable files. Examples are 

given of sequential modification of model geometries 

to represent effects such as eruptions and excavation. 

The generation of atmosphere blocks that vary in 

space and time due to changes in lake levels and 

extreme altitude are presented. Methods for 

controlling sequential simulations with both 

TOUGH2 and TOUGH2-MP are described including 

techniques for dealing with numerical non-

convergence. Finally, PyTOUGH's ability to combine 

and post-process results from multiple simulations 

and different types of output files is discussed. 

INTRODUCTION 

As numerical simulation has become an established 

and widely used tool for planning and managing 

geothermal developments it is increasingly applied to 

more varied and complex problems [Burnell et al., 

2012]. The increase in affordable parallel processing 

power has enabled the simulation of larger, more 

detailed systems. It has also provided a means for

 

 

applying inverse modelling techniques to real-world 

scale problems [Cui et al., 2011; Omagbon & 

O’Sullivan, 2011]. 

 

A significant amount of book-keeping has always 

been required to prepare, run and post-process 

numerical simulations of geothermal systems. 

However, as these new simulations are orders of 

magnitude larger and more complex, this task has 

become increasingly difficult. The PyTOUGH library 

[Croucher, 2011; Wellmann et al., 2012] was 

developed to simplify this process and in the face of 

increasing complexity it has become an essential part 

of our numerical models. This paper describes a 

number of recent developments that use PyTOUGH 

to control key components of a numerical simulation 

so that accurate results can be obtained as efficiently 

as possible. 

PREPARING SIMULATIONS 

Before TOUGH2 simulations can be run several tasks 

must be performed. The main tasks are the generation 

of the simulation grid, calculation of the initial and 

boundary conditions and the preparation of the 

TOUGH2 data file. For complex simulations each 

task can require involved calculations that may often 

need to be carried out many times. As previously 

noted [Croucher, 2011], the PyTOUGH libraries 

provide a flexible framework for creating scripts that 

are able to achieve these tasks multiple times both 

efficiently and accurately. They also form a record of 

the preparation of each simulation in such a way that 

they effectively define the simulation itself. 

 

Examples of complex operations carried out using 

PyTOUGH libraries are given for each of these tasks 

in the following subsections. Brief details of the 

simulation are also given to provide context for the 

particular challenge being addressed. 



 

 
 

Figure 1: Series of grids with increasing refinement 

Grid generation 

Generating grids efficiently and accurately is 

important in simulations of geothermal systems. For 

a standard forward simulation several attempts are 

often required to achieve a satisfactory grid. 

PyTOUGH provides a simple mechanism for not 

only controlling and altering grid dimensions, 

resolution and position but also for fitting topography 

and optimising grid structure. Details can be found in 

the PyTOUGH documentation [Croucher, 2012]. For 

more complex simulations these capabilities are not 

only important but become essential tools for grid 

generation. 

 

Recently we began developing a new model of the 

geothermal system on Lihir Island in Papua New 

Guinea. The objective is to use the current well-

calibrated model [O’Sullivan et al., 2011] as a basis 

for a set of nested models based on the important 

 

 

geological structures. The inverse modelling tool 

PEST [Doherty, 2010] is used to calibrate the new 

model and will eventually be used for uncertainty 

quantification of the models’ predictions. The 

computationally intensive nature of inverse 

modelling makes it expensive to apply to the current 

Lihir model which is comprised of approximately 

80000 blocks. It will be significantly more expensive 

to apply inverse modelling to the new model as it is 

estimated that a grid containing 120,000 blocks is 

required to satisfactorily resolve the important 

geological structures and both the deep and shallow 

zones of the reservoir.  

 

This computational cost can be greatly reduced by 

using simpler, less refined grids for calculation of the 

numerical Jacobians required for the inverse 

modelling process. PyTOUGH has been used to carry 



out the complex task of generating and optimising the 

nested grids. Adjustments to the nested grids have 

been necessary and will continue to be necessary as 

the calibration process continues. The PyTOUGH 

scripts greatly simplify this otherwise cumbersome 

task. Figure 1 shows the four levels of the nested grid 

which is aligned NE-SW along the direction of the 

fault that is considered to be most important for 

controlling upflow in the system. The grids have 

9700, 50000, 96000 and 120000 blocks respectively. 

Grid modification 

In some cases the topography of the geothermal 

system being simulated may change during the 

timeframe considered. Examples where this may 

occur include eruptions, subsidence and excavation. 

PyTOUGH can be used to generate sequential grids 

that represent the changing topography. It can also be 

used to control the sequential simulations as was 

described for the Lihir island simulations in 

O’Sullivan et al. [2011]. 

 

Another example of this procedure is shown in 

Figure (2). In this case the simulation is of the 

Waimangu Valley in New Zealand with topography 

altered by a basaltic dike eruption that destroyed the 

famous Pink and White Terraces in 1886. The 

objective of the project was to use TOUGH2 

simulations to reproduce the surface features 

observed in the valley both before and after the 

eruption in order to better understand volcanic 

perturbation of the sub-surface heat flow and 

permeability. Unlike the Lihir Island simulations this 

catastrophic event took place over a very short period 

of time. In the model this is represented as a step-

change between pre- and post-eruption topographies. 

PyTOUGH was used to generate the initial 

simulation grid using pre-1886 survey maps and then 

to calculate and remove the volume of earth 

necessary to arrive at today’s topography. 

 

As noted previously [O’Sullivan et al., 2011], care 

must be taken to ensure that the internal indexing of 

TOUGH2 data files and initial condition files is 

consistent when using sequential grids with modified 

topography. This can be achieved by the PyTOUGH 

scripts used for running the simulations as described 

below. 

 

Note also that the grid geometry manipulation 

methods in PyTOUGH make use of the MULgraph 

geometry file format for representing geothermal 

model grids [O'Sullivan & Bullivant, 1995].  This 

format can represent arbitrary unstructured horizontal 

grids, projected down through a series of layers.  The 

upper layers can be incomplete, and the surface 

elevations in the top layer can be specified to

              

 
(a) Pre-eruption grid 

 

(b) Post-eruption grid 

 

Figure 2: Pre- and post-eruption Waimangu grids 

 

represent varying topography.  This geometry format 

can be used independently of the MULgraph 

graphical user interface.  Also, users who prefer to 

use other geometry formats for grid generation can 

still use the rest of the PyTOUGH library for 

manipulating TOUGH2 data files, simulation output 

etc. 

Atmosphere Blocks 

Many simulations of geothermal systems extend to 

the surface of the earth and hence contain the 

atmosphere as one of the boundary conditions. In 

simple cases this can be represented easily by 

connecting an atmosphere block with an extremely 

large volume to the top layer of the model and then 

setting the initial conditions for this block to 

atmospheric temperature and pressure. However, for 

more complex simulations the properties of these 

blocks are difficult to determine and may vary with 

time. Two examples are given below of different 

atmospheric conditions and how PyTOUGH is used 

to calculate them. 

 

The first example is from the simulation of a 

geothermal system under a dormant volcano in the 

high Andes on the border between Chile and Bolivia. 

In this case the altitude of the simulated area varies 

from 3900 to 5200m such that both temperature and 

pressure change significantly over the surface of the 

model. PyTOUGH is used to calculate the pressure 

and temperature for each block and assign it in the 

TOUGH2 initial condition file. 

 



The pressure   is calculated using Equation (1) 

[Wikipaedia, 2013]: 
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and the temperature   is given in Celsius 

using: 

 

 

                 (2) 

 

where    is the temperature at sea level in kelvin,  
  is the altitude in meters and the constants are given 

in Table (1). 

 

Table 1: Constants for calculation of high altitude 

temperature and pressure 

 

   Pressure at sea level in Pa 101325 

  Temperature lapse rate K/m 0.0065 

  Gravity m/s
2
 9.80665 

  Molar mass of dry air kg/mol 0.0289644 

  Universal gas constant J/(mol.K) 8.31447 

 

A contour map of a portion of the simulated area is 

shown in plot (a) of Figure (3). The corresponding 

pressure and temperature boundary conditions that 

were applied for the same area are shown in plot (b). 

It can be seen that the temperature varies from 3C to 

11C and the pressure from 0.55 bar to 0.65 bar for 

the area shown. 

 

The second example shows how PyTOUGH is used 

to change the atmospheric conditions during the 

timeframe of a simulation. Many simulations of 

geothermal systems include bodies of water at the 

surface. Examples include Wairakei, adjacent to the 

Waikato River, [O’Sullivan & Yeh, 2010], Lihir 

Island, adjacent to and beneath the Pacific Ocean, 

Rotorua, abutting Lake Rotorua and Waimangu 

[Simmons & O’Sullivan, 2010]. The hydrostatic 

pressures that these bodies exert on the surface 

represent a different set of atmospheric boundary 

conditions. In the case of the Orakei-Korako 

geothermal system, which spans the Waikato River, 

these hydrostatic pressures have changed over 

simulation timeframes due to the dam impoundment 

and valley flooding. 

 

The objective of this project was to simulate the 

natural state of the river valley both before and after 

flooding and to calibrate the model using the known

           
(a) Elevation contours of Andean volcano 

 

 
(b) Simulation atmosphere boundary conditions 

 

Figure 3: Pressure and temperature in atmosphere 

blocks above Andean model. 

 

surface features in both cases. The model can then be 

used to predict the possible impact of future changes 

to the lake level on the remaining, protected 

geothermal expressions. 

 

Pre-flood contour maps were used to determine the 

topography and a section of the map is shown in 

Figure (4a). For reference the computational grid is 

superimposed on the map in blue. The same area is 

shown as it is today in plot (b). The average depth of 

the pre-flood river was estimated to be 2m and this 

was used to calculate the topography beneath the 

river. The map was digitised and PyTOUGH was 

used to fit the surface of the model to the topography. 

PyTOUGH was also used to adjust the topography to 

account for a coordinate transformation between two 

maps in Figure 4. This difference can be seen as the 

skewed representation of the computational grid in 

plot (a). 

 

Having created the geometry the pressures of the 

atmosphere blocks corresponding to the river were 

calculated and the values assigned in the initial 

conditions file. To determine the pressures for the 



blocks flooded by the damming process PyTOUGH 

was used to “fill” the lake to its present level and 

calculate the correct values. The corresponding 

pressure boundary conditions are shown in plots (c) 

and (d) respectively. Once again running sequential 

simulations of this nature is achieved efficiently 

using PyTOUGH to select the appropriate boundary 

conditions based on the simulation time. Initial 

simulations have been carried out using a step change 

from one state to the next. However, future 

simulations in which the flooding of the valley is a 

gradual process are planned. 

Creating Generators for Geothermal Wells 

Automatically 

One of the implications of generating several 

versions of the same model is that the blocks that 

contain the feed zones of geothermal wells may 

change between versions. For geothermal fields with 

many production wells it becomes a cumbersome 

task ensuring that the allocation of a feed zone to a 

block for each well is correct.  

 

 

      
(a) Pre-dam                   (b) Post-dam 

 

    

 
(c) Pre-dam                     (d) Post-dam 

 

Figure 4: Pressure in atmosphere blocks before and 

after flooding of Orakei-Korako. 

Similarly, for a typical reservoir model where the 

grid has not changed but the data for a well is 

regularly modified or updated, it is easy to neglect to 

update the TOUGH2 data file and hence run an 

incorrect simulation. One cause of this error may be 

that the field data used to update the well information 

might have come from one of many different sources 

and may be stored in one of a number of files. 

 

To overcome these issues we have used PyTOUGH 

to develop a script which automatically generates 

each geothermal well at the start of a simulation and 

writes the appropriate generator entry in the 

TOUGH2 data file. This has several advantages. The 

first is that because all of the generators for the 

geothermal wells are cleared and reproduced before a 

simulation is started, the most up to date well 

information is used every time. Second, all of the 

information for each well is stored in a single file. 

This file then acts as a master record for the well and 

can be updated and referred to easily.  

 

The format of the well file is a follows: 

 
 #Well Name 

 GW017 

 

 #Feed zones 

 #From(mRL) To(mRL) Prop Delv 

 402        373     0.2 1e-13 

   142        104     0.2 2e-13 

   -14        -148    0.6 1e-12 

 

   #Well Track 

 8832.10   5011.60   1099.50 

 8831.80   5011.60    979.50 

 8830.90   5011.30    859.50 

 … 

 9646.40   4677.90   -162.80 

 9652.40   4677.70   -168.10 

 

 #Downhole Temperature 

 #mRL   Temp 

1092.65 39.40 #from spread.xlsx 

1083.15 42.50 

1074.05 41.60 

… 

420.02 264.20 

 

#Mass Flow 

#kg/s  Date 

2003.00 1.051084E+00 

2003.08 1.259917E+00 

2003.16 1.251020E+01 

 

#Enthalpy 

#kJ/kg  Date 

2003.00 1246.93 

2003.08 1394.46 

2003.16 1201.85  

 

The well file is easy to read, concise and can contain 

comments which note where information has been 

obtained (eg. from spread.xlsx). It is also easy to 

update by simply appending sections when new field 



measurements for mass flows, enthalpy etc. are 

obtained.  

 

In the PyTOUGH script that sets up and controls the 

TOUGH2 simulation the geothermal wells are 

created simply by calling a library function which 

indicates the type of behaviour required: 

 
 add_well(‘GW017’, ‘MASS’) 

 

This function performs several tasks. First it updates 

the geometry file to include the well track 

information for the well. Second it interpolates 

between many points along the well track within each 

feed zone. PyTOUGH functions are used to 

determine which simulation blocks contain these 

points hence determining the model blocks 

containing the feed zones. A threshold parameter is 

used to exclude blocks which only contain a small 

proportion of the feed zone. Next a generator is 

written to the TOUGH2 data file for each block 

containing a feed zone. Depending on the type of 

behaviour required the generator will either create a 

table of times and mass flows using the mass flow 

data and feed-zone proportions from the well file. 

Alternatively it can create a deliverability type well 

using the productivity information in the feed zone 

section. Note that switching from mass-flow type 

behaviour for history matching to deliverability type 

behaviour for future scenarios can be controlled by 

the PyTOUGH simulation script. Figure (5) shows 

the same group of wells generated for two grids of 

different resolution and orientation. 

 

Finally, post-processing PyTOUGH scripts can 

access the well file to plot time history and downhole 

data thus ensuring that the same information is used 

in both the simulation and the visualisation of results. 

RUNNING SIMULATIONS 

Controlling complex simulations using PyTOUGH 

has been discussed in detail previously [Croucher, 

2011; O’Sullivan et al., 2011]. This section will only 

discuss additional work that has been carried out. 

One area of research has been to develop scripts that 

can control TOUGH-MP simulations. Because 

TOUGH-MP uses a fixed file naming convention, 

directory structures are used for each year of a 

sequential simulation. Files are prepared and the file 

structure organised using Python and PyTOUGH. 

Care must be taken to ensure that the working files 

are cleared for each simulation to ensure the results 

are correct. 

 

 

 
(a) Coarse rotated grid

 
(b) Fine NS aligned grid 

 

Figure 5: Plot of the same well tracks in grids of 

different resolution and orientation. 

 

The flexibility of PyTOUGH is such that the same 

script can be used for both TOUGH2 and TOUGH-

MP simulations by simply changing the executable 

call that is made. PyTOUGH handles the small 

variations in the data files and listing files 

automatically. 

 

Improvements have been made in the scripts that run 

the simulations, greatly increasing their efficiency. 

For example when calculating which blocks need to 

be added and which need to be removed due to 

topography changes, Python's efficient 'set' data 

structures are now used for comparing lists of blocks. 

Correcting numerical non-convergence 

A significant development in the scripts used to run 

simulations is the addition of a check for numerical 

non-convergence. Numerical non-convergence can 

occur in Air-Water and CO2-Water models in blocks 

where phase transitions are taking place. When this 

problem occurs the block in question switches 

between single-phase and two-phase at each Newton 

iteration causing TOUGH2 to reduce the time step 

dramatically. The plots in Figure (6) show the total 

time and the time step size for two very similar 

simulations, one which experiences numerical non-

convergence and the other which does not.  

 



 
(a) Total time (-) simulation converges  

(-) non-convergence occurs

 
(b) Time step size (-) simulation converges  

(-) non-convergence occurs 

 

Figure 6: Plots of total time and time step size for 

two simulations. One which converges the 

other which does not. 

 

The solution of this numerical issue is an area of 

current research. Previously the most effective 

approach was to manually stop the simulation, 

inspect the block in question, intervene and restart the 

simulation. This approach is extremely inefficient 

especially as the block affected may change 

throughout the simulation. 

 

By using PyTOUGH scripts this process has been 

automated so that no manual intervention is required 

to implement the workaround. The algorithm for the 

process is shown in Figure (7). 

 

The parameters m and n can be changed to enforce 

less or more rigorous checking. The script also tracks 

and records which blocks have been changed. This 

checking process improves the efficiency of 

simulations particularly in dynamic situations where 

the steam zone may be moving or evolving. 

POST-PROCESSING SIMULATIONS 

Once simulations have been completed post 

processing the results can be a challenging task. As 

discussed in O’Sullivan et.al [2011] the results from 

sequential simulations must be gathered together in 

the correct sequence and presented in a meaningful 

way. For TOUGH2 simulations this task involves 

extracting time-dependent information from listing 

files for each block, generator or connection and 

storing it in a data file. The same information is

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Algorithm for correcting numerical non-

convergence. 

 

 

extracted from each subsequent listing file and is 

appended to the data file. 

 

For TOUGH-MP the process is significantly more 

complicated. TOUGH-MP stores time-dependent 

information about individual blocks in data files 

known as FOFT files. At present the standard version 

of TOUGH-MP does not properly record time-

dependent information for generators or connections. 

We have corrected this problem so that valuable 

time-dependent generator information is stored in 

GOFT files during the simulation. However, separate 

FOFT and GOFT files are created for each processor 

during the simulation. This means the PyTOUGH 

script must reconcile many of these files to correctly 

collate the time-dependent data for wells and blocks. 

This is further complicated by the algorithm 

preventing numerical non-convergence as this 

effectively requires that each sub-simulation is 

broken up into a third tier of sub-sub-simulations 

each with a FOFT and GOFT file for each processor. 

The end result can be many thousands of files that 

must be reconciled. Python scripts and in particular 

the PyTOUGH libraries make this difficult task 

relatively simple and easily repeatable. 

Stop the simulation every n time steps 

Inspect blocks that cause time step reduction in listing file 

Does a single block appear more than m times? 

Continue simulation 

Is the block near the saturation line? 

Continue simulation 

Inspect neighbouring blocks and move block across 

saturation line if required by changing the incon file 

Continue simulation 

No 

 

 

Yes 

No 

 

Yes 



 
(a) Plots for totals calculated for a simulation spanning 10 years 

 

  
(b) Plots for an individual well calculated for a simulation spanning 10 years 

 

Figure 8: Results from a TOUGH-MP simulation 

 

 

The plots in Figure (8) show examples of the types of 

plots produced from large, parallel, sequential 

TOUGH-MP simulations. Both field-wide totals and 

individual well totals are shown. 

CONCLUSIONS 

A number of novel approaches have been presented 

that use PyTOUGH libraries to control complex 

simulations of geothermal systems. Methods that can 

be used to automatically generate nested grids, 

calculate and apply boundary conditions and prepare 

wells have been shown to be important tools for 

maintaining accuracy and efficiency as simulations 

are carried out. They show particular promise as 

inverse modelling techniques are applied to real-

world scale geothermal systems. PyTOUGH tools for 

controlling sequential simulations and post-

processing data from large, parallel simulations have 

also been discussed and examples of their use given. 

As numerical models of geothermal systems become 

increasingly complex and address wider ranges of 

problems the capability of the PyTOUGH libraries to 

interact with, control and organise TOUGH2 and 

TOUGH-MP simulations will become increasingly 

important. 
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