
PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering

Stanford University, Stanford, California, February 11-13, 2013

SGP-TR-198

CONTROLLING COMPLEX GEOTHERMAL SIMULATIONS USING PYTOUGH

John O'Sullivan, David Dempsey, Adrian Croucher, Angus Yeh, Mike O'Sullivan

Department of Engineering Science, University of Auckland

Private Bag 92019

Auckland 1142, New Zealand

e-mail: jp.osullivan@auckland.ac.nz

ABSTRACT

The TOUGH2 simulator and its parallel version

TOUGH2-MP continue to be the industry standards

for the development of numerical models of

geothermal systems. Increasing processing power

enables us to simulate larger, more complex systems,

while improved data collection and remote sensing

techniques provide an ever greater suite of

observations against which to calibrate the model. As

a consequence, the raw text input files that control

the simulations grow increasingly cumbersome to

construct, while post-processing of model output

becomes more challenging. We use the Python

scripting language and the PyTOUGH library to

interact with TOUGH2 in a number of novel ways to

control simulation tasks accurately and efficiently. In

this paper several examples of the use of PyTOUGH

are described. A new method for automatically

generating geothermal production wells is described

that allows well information to be stored in concise,

readable and easily updatable files. Examples are

given of sequential modification of model geometries

to represent effects such as eruptions and excavation.

The generation of atmosphere blocks that vary in

space and time due to changes in lake levels and

extreme altitude are presented. Methods for

controlling sequential simulations with both

TOUGH2 and TOUGH2-MP are described including

techniques for dealing with numerical non-

convergence. Finally, PyTOUGH's ability to combine

and post-process results from multiple simulations

and different types of output files is discussed.

INTRODUCTION

As numerical simulation has become an established

and widely used tool for planning and managing

geothermal developments it is increasingly applied to

more varied and complex problems [Burnell et al.,

2012]. The increase in affordable parallel processing

power has enabled the simulation of larger, more

detailed systems. It has also provided a means for

applying inverse modelling techniques to real-world

scale problems [Cui et al., 2011; Omagbon &

O’Sullivan, 2011].

A significant amount of book-keeping has always

been required to prepare, run and post-process

numerical simulations of geothermal systems.

However, as these new simulations are orders of

magnitude larger and more complex, this task has

become increasingly difficult. The PyTOUGH library

[Croucher, 2011; Wellmann et al., 2012] was

developed to simplify this process and in the face of

increasing complexity it has become an essential part

of our numerical models. This paper describes a

number of recent developments that use PyTOUGH

to control key components of a numerical simulation

so that accurate results can be obtained as efficiently

as possible.

PREPARING SIMULATIONS

Before TOUGH2 simulations can be run several tasks

must be performed. The main tasks are the generation

of the simulation grid, calculation of the initial and

boundary conditions and the preparation of the

TOUGH2 data file. For complex simulations each

task can require involved calculations that may often

need to be carried out many times. As previously

noted [Croucher, 2011], the PyTOUGH libraries

provide a flexible framework for creating scripts that

are able to achieve these tasks multiple times both

efficiently and accurately. They also form a record of

the preparation of each simulation in such a way that

they effectively define the simulation itself.

Examples of complex operations carried out using

PyTOUGH libraries are given for each of these tasks

in the following subsections. Brief details of the

simulation are also given to provide context for the

particular challenge being addressed.

Figure 1: Series of grids with increasing refinement

Grid generation

Generating grids efficiently and accurately is

important in simulations of geothermal systems. For

a standard forward simulation several attempts are

often required to achieve a satisfactory grid.

PyTOUGH provides a simple mechanism for not

only controlling and altering grid dimensions,

resolution and position but also for fitting topography

and optimising grid structure. Details can be found in

the PyTOUGH documentation [Croucher, 2012]. For

more complex simulations these capabilities are not

only important but become essential tools for grid

generation.

Recently we began developing a new model of the

geothermal system on Lihir Island in Papua New

Guinea. The objective is to use the current well-

calibrated model [O’Sullivan et al., 2011] as a basis

for a set of nested models based on the important

geological structures. The inverse modelling tool

PEST [Doherty, 2010] is used to calibrate the new

model and will eventually be used for uncertainty

quantification of the models’ predictions. The

computationally intensive nature of inverse

modelling makes it expensive to apply to the current

Lihir model which is comprised of approximately

80000 blocks. It will be significantly more expensive

to apply inverse modelling to the new model as it is

estimated that a grid containing 120,000 blocks is

required to satisfactorily resolve the important

geological structures and both the deep and shallow

zones of the reservoir.

This computational cost can be greatly reduced by

using simpler, less refined grids for calculation of the

numerical Jacobians required for the inverse

modelling process. PyTOUGH has been used to carry

out the complex task of generating and optimising the

nested grids. Adjustments to the nested grids have

been necessary and will continue to be necessary as

the calibration process continues. The PyTOUGH

scripts greatly simplify this otherwise cumbersome

task. Figure 1 shows the four levels of the nested grid

which is aligned NE-SW along the direction of the

fault that is considered to be most important for

controlling upflow in the system. The grids have

9700, 50000, 96000 and 120000 blocks respectively.

Grid modification

In some cases the topography of the geothermal

system being simulated may change during the

timeframe considered. Examples where this may

occur include eruptions, subsidence and excavation.

PyTOUGH can be used to generate sequential grids

that represent the changing topography. It can also be

used to control the sequential simulations as was

described for the Lihir island simulations in

O’Sullivan et al. [2011].

Another example of this procedure is shown in

Figure (2). In this case the simulation is of the

Waimangu Valley in New Zealand with topography

altered by a basaltic dike eruption that destroyed the

famous Pink and White Terraces in 1886. The

objective of the project was to use TOUGH2

simulations to reproduce the surface features

observed in the valley both before and after the

eruption in order to better understand volcanic

perturbation of the sub-surface heat flow and

permeability. Unlike the Lihir Island simulations this

catastrophic event took place over a very short period

of time. In the model this is represented as a step-

change between pre- and post-eruption topographies.

PyTOUGH was used to generate the initial

simulation grid using pre-1886 survey maps and then

to calculate and remove the volume of earth

necessary to arrive at today’s topography.

As noted previously [O’Sullivan et al., 2011], care

must be taken to ensure that the internal indexing of

TOUGH2 data files and initial condition files is

consistent when using sequential grids with modified

topography. This can be achieved by the PyTOUGH

scripts used for running the simulations as described

below.

Note also that the grid geometry manipulation

methods in PyTOUGH make use of the MULgraph

geometry file format for representing geothermal

model grids [O'Sullivan & Bullivant, 1995]. This

format can represent arbitrary unstructured horizontal

grids, projected down through a series of layers. The

upper layers can be incomplete, and the surface

elevations in the top layer can be specified to

(a) Pre-eruption grid

(b) Post-eruption grid

Figure 2: Pre- and post-eruption Waimangu grids

represent varying topography. This geometry format

can be used independently of the MULgraph

graphical user interface. Also, users who prefer to

use other geometry formats for grid generation can

still use the rest of the PyTOUGH library for

manipulating TOUGH2 data files, simulation output

etc.

Atmosphere Blocks

Many simulations of geothermal systems extend to

the surface of the earth and hence contain the

atmosphere as one of the boundary conditions. In

simple cases this can be represented easily by

connecting an atmosphere block with an extremely

large volume to the top layer of the model and then

setting the initial conditions for this block to

atmospheric temperature and pressure. However, for

more complex simulations the properties of these

blocks are difficult to determine and may vary with

time. Two examples are given below of different

atmospheric conditions and how PyTOUGH is used

to calculate them.

The first example is from the simulation of a

geothermal system under a dormant volcano in the

high Andes on the border between Chile and Bolivia.

In this case the altitude of the simulated area varies

from 3900 to 5200m such that both temperature and

pressure change significantly over the surface of the

model. PyTOUGH is used to calculate the pressure

and temperature for each block and assign it in the

TOUGH2 initial condition file.

The pressure is calculated using Equation (1)

[Wikipaedia, 2013]:

 (

)

 ⁄

 (1)

and the temperature is given in Celsius

using:

 (2)

where is the temperature at sea level in kelvin,
 is the altitude in meters and the constants are given

in Table (1).

Table 1: Constants for calculation of high altitude

temperature and pressure

 Pressure at sea level in Pa 101325

 Temperature lapse rate K/m 0.0065

 Gravity m/s
2
 9.80665

 Molar mass of dry air kg/mol 0.0289644

 Universal gas constant J/(mol.K) 8.31447

A contour map of a portion of the simulated area is

shown in plot (a) of Figure (3). The corresponding

pressure and temperature boundary conditions that

were applied for the same area are shown in plot (b).

It can be seen that the temperature varies from 3C to

11C and the pressure from 0.55 bar to 0.65 bar for

the area shown.

The second example shows how PyTOUGH is used

to change the atmospheric conditions during the

timeframe of a simulation. Many simulations of

geothermal systems include bodies of water at the

surface. Examples include Wairakei, adjacent to the

Waikato River, [O’Sullivan & Yeh, 2010], Lihir

Island, adjacent to and beneath the Pacific Ocean,

Rotorua, abutting Lake Rotorua and Waimangu

[Simmons & O’Sullivan, 2010]. The hydrostatic

pressures that these bodies exert on the surface

represent a different set of atmospheric boundary

conditions. In the case of the Orakei-Korako

geothermal system, which spans the Waikato River,

these hydrostatic pressures have changed over

simulation timeframes due to the dam impoundment

and valley flooding.

The objective of this project was to simulate the

natural state of the river valley both before and after

flooding and to calibrate the model using the known

(a) Elevation contours of Andean volcano

(b) Simulation atmosphere boundary conditions

Figure 3: Pressure and temperature in atmosphere

blocks above Andean model.

surface features in both cases. The model can then be

used to predict the possible impact of future changes

to the lake level on the remaining, protected

geothermal expressions.

Pre-flood contour maps were used to determine the

topography and a section of the map is shown in

Figure (4a). For reference the computational grid is

superimposed on the map in blue. The same area is

shown as it is today in plot (b). The average depth of

the pre-flood river was estimated to be 2m and this

was used to calculate the topography beneath the

river. The map was digitised and PyTOUGH was

used to fit the surface of the model to the topography.

PyTOUGH was also used to adjust the topography to

account for a coordinate transformation between two

maps in Figure 4. This difference can be seen as the

skewed representation of the computational grid in

plot (a).

Having created the geometry the pressures of the

atmosphere blocks corresponding to the river were

calculated and the values assigned in the initial

conditions file. To determine the pressures for the

blocks flooded by the damming process PyTOUGH

was used to “fill” the lake to its present level and

calculate the correct values. The corresponding

pressure boundary conditions are shown in plots (c)

and (d) respectively. Once again running sequential

simulations of this nature is achieved efficiently

using PyTOUGH to select the appropriate boundary

conditions based on the simulation time. Initial

simulations have been carried out using a step change

from one state to the next. However, future

simulations in which the flooding of the valley is a

gradual process are planned.

Creating Generators for Geothermal Wells

Automatically

One of the implications of generating several

versions of the same model is that the blocks that

contain the feed zones of geothermal wells may

change between versions. For geothermal fields with

many production wells it becomes a cumbersome

task ensuring that the allocation of a feed zone to a

block for each well is correct.

(a) Pre-dam (b) Post-dam

(c) Pre-dam (d) Post-dam

Figure 4: Pressure in atmosphere blocks before and

after flooding of Orakei-Korako.

Similarly, for a typical reservoir model where the

grid has not changed but the data for a well is

regularly modified or updated, it is easy to neglect to

update the TOUGH2 data file and hence run an

incorrect simulation. One cause of this error may be

that the field data used to update the well information

might have come from one of many different sources

and may be stored in one of a number of files.

To overcome these issues we have used PyTOUGH

to develop a script which automatically generates

each geothermal well at the start of a simulation and

writes the appropriate generator entry in the

TOUGH2 data file. This has several advantages. The

first is that because all of the generators for the

geothermal wells are cleared and reproduced before a

simulation is started, the most up to date well

information is used every time. Second, all of the

information for each well is stored in a single file.

This file then acts as a master record for the well and

can be updated and referred to easily.

The format of the well file is a follows:

 #Well Name

 GW017

 #Feed zones

 #From(mRL) To(mRL) Prop Delv

 402 373 0.2 1e-13

 142 104 0.2 2e-13

 -14 -148 0.6 1e-12

 #Well Track

 8832.10 5011.60 1099.50

 8831.80 5011.60 979.50

 8830.90 5011.30 859.50

 …

 9646.40 4677.90 -162.80

 9652.40 4677.70 -168.10

 #Downhole Temperature

 #mRL Temp

1092.65 39.40 #from spread.xlsx

1083.15 42.50

1074.05 41.60

…

420.02 264.20

#Mass Flow

#kg/s Date

2003.00 1.051084E+00

2003.08 1.259917E+00

2003.16 1.251020E+01

#Enthalpy

#kJ/kg Date

2003.00 1246.93

2003.08 1394.46

2003.16 1201.85

The well file is easy to read, concise and can contain

comments which note where information has been

obtained (eg. from spread.xlsx). It is also easy to

update by simply appending sections when new field

measurements for mass flows, enthalpy etc. are

obtained.

In the PyTOUGH script that sets up and controls the

TOUGH2 simulation the geothermal wells are

created simply by calling a library function which

indicates the type of behaviour required:

 add_well(‘GW017’, ‘MASS’)

This function performs several tasks. First it updates

the geometry file to include the well track

information for the well. Second it interpolates

between many points along the well track within each

feed zone. PyTOUGH functions are used to

determine which simulation blocks contain these

points hence determining the model blocks

containing the feed zones. A threshold parameter is

used to exclude blocks which only contain a small

proportion of the feed zone. Next a generator is

written to the TOUGH2 data file for each block

containing a feed zone. Depending on the type of

behaviour required the generator will either create a

table of times and mass flows using the mass flow

data and feed-zone proportions from the well file.

Alternatively it can create a deliverability type well

using the productivity information in the feed zone

section. Note that switching from mass-flow type

behaviour for history matching to deliverability type

behaviour for future scenarios can be controlled by

the PyTOUGH simulation script. Figure (5) shows

the same group of wells generated for two grids of

different resolution and orientation.

Finally, post-processing PyTOUGH scripts can

access the well file to plot time history and downhole

data thus ensuring that the same information is used

in both the simulation and the visualisation of results.

RUNNING SIMULATIONS

Controlling complex simulations using PyTOUGH

has been discussed in detail previously [Croucher,

2011; O’Sullivan et al., 2011]. This section will only

discuss additional work that has been carried out.

One area of research has been to develop scripts that

can control TOUGH-MP simulations. Because

TOUGH-MP uses a fixed file naming convention,

directory structures are used for each year of a

sequential simulation. Files are prepared and the file

structure organised using Python and PyTOUGH.

Care must be taken to ensure that the working files

are cleared for each simulation to ensure the results

are correct.

(a) Coarse rotated grid

(b) Fine NS aligned grid

Figure 5: Plot of the same well tracks in grids of

different resolution and orientation.

The flexibility of PyTOUGH is such that the same

script can be used for both TOUGH2 and TOUGH-

MP simulations by simply changing the executable

call that is made. PyTOUGH handles the small

variations in the data files and listing files

automatically.

Improvements have been made in the scripts that run

the simulations, greatly increasing their efficiency.

For example when calculating which blocks need to

be added and which need to be removed due to

topography changes, Python's efficient 'set' data

structures are now used for comparing lists of blocks.

Correcting numerical non-convergence

A significant development in the scripts used to run

simulations is the addition of a check for numerical

non-convergence. Numerical non-convergence can

occur in Air-Water and CO2-Water models in blocks

where phase transitions are taking place. When this

problem occurs the block in question switches

between single-phase and two-phase at each Newton

iteration causing TOUGH2 to reduce the time step

dramatically. The plots in Figure (6) show the total

time and the time step size for two very similar

simulations, one which experiences numerical non-

convergence and the other which does not.

(a) Total time (-) simulation converges

(-) non-convergence occurs

(b) Time step size (-) simulation converges

(-) non-convergence occurs

Figure 6: Plots of total time and time step size for

two simulations. One which converges the

other which does not.

The solution of this numerical issue is an area of

current research. Previously the most effective

approach was to manually stop the simulation,

inspect the block in question, intervene and restart the

simulation. This approach is extremely inefficient

especially as the block affected may change

throughout the simulation.

By using PyTOUGH scripts this process has been

automated so that no manual intervention is required

to implement the workaround. The algorithm for the

process is shown in Figure (7).

The parameters m and n can be changed to enforce

less or more rigorous checking. The script also tracks

and records which blocks have been changed. This

checking process improves the efficiency of

simulations particularly in dynamic situations where

the steam zone may be moving or evolving.

POST-PROCESSING SIMULATIONS

Once simulations have been completed post

processing the results can be a challenging task. As

discussed in O’Sullivan et.al [2011] the results from

sequential simulations must be gathered together in

the correct sequence and presented in a meaningful

way. For TOUGH2 simulations this task involves

extracting time-dependent information from listing

files for each block, generator or connection and

storing it in a data file. The same information is

Figure 7: Algorithm for correcting numerical non-

convergence.

extracted from each subsequent listing file and is

appended to the data file.

For TOUGH-MP the process is significantly more

complicated. TOUGH-MP stores time-dependent

information about individual blocks in data files

known as FOFT files. At present the standard version

of TOUGH-MP does not properly record time-

dependent information for generators or connections.

We have corrected this problem so that valuable

time-dependent generator information is stored in

GOFT files during the simulation. However, separate

FOFT and GOFT files are created for each processor

during the simulation. This means the PyTOUGH

script must reconcile many of these files to correctly

collate the time-dependent data for wells and blocks.

This is further complicated by the algorithm

preventing numerical non-convergence as this

effectively requires that each sub-simulation is

broken up into a third tier of sub-sub-simulations

each with a FOFT and GOFT file for each processor.

The end result can be many thousands of files that

must be reconciled. Python scripts and in particular

the PyTOUGH libraries make this difficult task

relatively simple and easily repeatable.

Stop the simulation every n time steps

Inspect blocks that cause time step reduction in listing file

Does a single block appear more than m times?

Continue simulation

Is the block near the saturation line?

Continue simulation

Inspect neighbouring blocks and move block across

saturation line if required by changing the incon file

Continue simulation

No

Yes

No

Yes

(a) Plots for totals calculated for a simulation spanning 10 years

(b) Plots for an individual well calculated for a simulation spanning 10 years

Figure 8: Results from a TOUGH-MP simulation

The plots in Figure (8) show examples of the types of

plots produced from large, parallel, sequential

TOUGH-MP simulations. Both field-wide totals and

individual well totals are shown.

CONCLUSIONS

A number of novel approaches have been presented

that use PyTOUGH libraries to control complex

simulations of geothermal systems. Methods that can

be used to automatically generate nested grids,

calculate and apply boundary conditions and prepare

wells have been shown to be important tools for

maintaining accuracy and efficiency as simulations

are carried out. They show particular promise as

inverse modelling techniques are applied to real-

world scale geothermal systems. PyTOUGH tools for

controlling sequential simulations and post-

processing data from large, parallel simulations have

also been discussed and examples of their use given.

As numerical models of geothermal systems become

increasingly complex and address wider ranges of

problems the capability of the PyTOUGH libraries to

interact with, control and organise TOUGH2 and

TOUGH-MP simulations will become increasingly

important.

REFERENCES

Burnell, J., Clearwater, E., Croucher, A., Kissling,

W., O’Sullivan, J.P., O’Sullivan, M.J. & Yeh, A.

(2012), “Future directions in geothermal

modelling,” Proceedings (electronic) 34rd New

Zealand Geothermal Workshop, University of

Auckland, Auckland, New Zealand, 19-21

November, 2012.

Croucher, A. E. (2012), “PyTOUGH User’s Guide,”

University of Auckland, Auckland, New Zealand,

github.com/acroucher/PyTOUGH.

Croucher, A. E. (2011), “PyTOUGH: a Python

scripting library for automating TOUGH2

simulations,” Proceedings (electronic) 33rd New

Zealand Geothermal Workshop, University of

Auckland, Auckland, New Zealand, 21-23

November, 2011.

Cui, T., Fox, C., & O'Sullivan, M.J. (2011),

“Bayesian calibration of a large-scale geothermal

reservoir model by a new adaptive delayed

acceptance Metropolis Hastings algorithm,”

Water Resources Research, 47 (10), W10521,

doi:10.1029/2010WR010352.

Doherty, J. (2010), “PEST: model-independent

parameter estimation. User manual, 5th edition.”

Watermark Numerical Computing, Corinda,

Australia, http://www.sspa.com/pest.

Omagbon, J.B. & O’Sullivan, M.J. (2011), “Use of

an heuristic method and PEST for calibration of

geothermal models,” Proceedings (electronic)

33rd New Zealand Geothermal Workshop,

University of Auckland, Auckland, New Zealand,

21-23 November, 2011.

O’Sullivan, J.P., Croucher, A.E., O’Sullivan, M.J.

Stevens, L. & Esberto, M. (2011), “Modelling the

evolution of a mine pit in a geothermal field at

Lihir Island, Papua, New Guinea,” Proceedings

(electronic) 33rd New Zealand Geothermal

Workshop, University of Auckland, Auckland,

New Zealand, 21-23 November, 2011.

O’Sullivan, M.J. & Bullivant, D. (1995), “A

graphical interface for the TOUGH2 family of

flow simulators,” Proceedings of the TOUGH

workshop, Lawrence Berkeley National

Laboratory, University of California, Berkeley,

1995.

O'Sullivan, M.J. & Yeh, A. (2010). “Wairakei-

Tauhara modeling report.” Report to Contact

Energy, Uniservices and Department of

Engineering Science, University of Auckland,

Auckland, New Zealand, 1-280,

www.contactenergy.co.nz/web/pdf/environmental

/P4ReservoirModellingReport.pdf.

Pruess, K., Oldenburg, K. & Moridis, G. (1999),

“TOUGH2 user’s guide, version 2.0,” Lawrence

Berkeley National Laboratory, University of

California, Berkeley.

Simmons, S. & O’Sullivan, M.J. (2010), “Numerical

Model of the Changes in Geothermal Activity in

the Rotomahana-Waimangu System Due to the

1886 Eruption of Mt Tarawera,” Proceedings of

the World Geothermal Congress, Bali, Indonesia,

25-30 April, 2010.

Wellmann, J.F., Croucher, A., & Regenauer-Lieb, K.

(2012), “Python scripting libraries for subsurface

fluid and heat flow simulations with TOUGH2

and SHEMAT,” Computers and Geosciences, 43,

197-206, doi:10.1016/j.cageo.2011.10.011.

Wikipedia contributors (2013), "Atmospheric

pressure." Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, Web.

Zhang, K., Wu, Y.-S. & Pruess, K. (2008), “User’s

guide for TOUGH2-MP - a massively parallel

version of the TOUGH2 code,” Lawrence

Berkeley National Laboratory, University of

California, Berkeley.

