
TravelMatch

Detailed Design Document
Version 1.0

D.J. van den Brand (0772180)
S. He (0810831)

J.M.A.P. van Hoof (0778486)
G.C. Linders (0815449)

M.J.M. Muijsers (0805654)
G.H. Santegoeds (0890429)
L.D. Stooker (0819041)

J.W.J.H. Visser (0828234)

22nd June, 2015

Abstract

This document contains the Detailed Design Document for the TravelMatch application, which is
used to help people find their holiday destination. This application is developed in the Software
Engineering Project at Eindhoven University of Technology. This document complies with the ESA
software engineering standard [1].

TravelMatch Detailed Design Document

Contents

Document Status Sheet 5
General . 5
Document history . 5

Document Change Records 6
General . 6
Changes . 6

1 Introduction 7
1.1 Purpose . 7
1.2 Scope . 7
1.3 Definitions and abbreviations . 7

1.3.1 Definitions . 7
1.3.2 Abbreviations . 8

1.4 References . 9
1.5 Overview . 10

2 Standards and conventions 11
2.1 Design standards . 11
2.2 Documentation standards . 11

2.2.1 General . 11
2.2.2 AngularJS-specific . 12

2.3 Naming conventions . 12
2.3.1 Front end . 12
2.3.2 Back end . 13

2.4 Coding standards . 13
2.4.1 Front end . 13
2.4.2 Back end . 14

2.5 Software development tools . 14
2.5.1 General . 14
2.5.2 Front end . 14
2.5.3 Back end . 14

3 Component descriptions 15
3.1 Front end . 15
3.2 Back end . 17

4 Build procedure 19
4.1 Front end . 19

4.1.1 Prerequisites . 19
4.1.2 Build process . 19

4.2 Back end . 20
4.2.1 Prerequisites . 20
4.2.2 Building server . 20

1

TravelMatch Detailed Design Document

A Front end documentation 21
A.1 Documentation template . 21
A.2 app.about . 21

A.2.1 AboutCtrl . 21
A.2.2 AnalyticsService . 21

A.3 app.config . 22
A.3.1 HttpInterceptor . 22
A.3.2 BACK BUTTON . 23
A.3.3 BASE URL . 23
A.3.4 DEBUG URL . 24
A.3.5 SHOW SWIPE DEBUG . 24
A.3.6 STATE NAMES . 24
A.3.7 USE DEBUG . 24
A.3.8 USE FRONT . 24
A.3.9 AuthService . 24

A.4 app.debug . 25
A.4.1 DebugService . 25

A.5 app.details . 26
A.5.1 DetailCtrl . 26
A.5.2 VacationDetailsService . 27

A.6 app.front . 32
A.6.1 FrontCtrl . 32

A.7 app.hotel.overview . 32
A.7.1 HotelOverviewCtrl . 32
A.7.2 HotelService . 34

A.8 app.login . 37
A.8.1 LoginCtrl . 37
A.8.2 facebookButton . 38
A.8.3 LoginService . 38

A.9 app.module . 39
A.10 app.navigation . 39

A.10.1 MainCtrl . 39
A.10.2 tmHeader . 40
A.10.3 tmLoginTabs . 41
A.10.4 tmMenu . 42
A.10.5 tmMenuButton . 43

A.11 app.registration . 43
A.11.1 RegistrationCtrl . 43
A.11.2 RegistrationService . 43

A.12 app.swipe . 45
A.12.1 SwipeCtrl . 45
A.12.2 tmPhoto . 47
A.12.3 ImageService . 49

A.13 app.user.details . 51
A.13.1 UserDetailCtrl . 51
A.13.2 UserDetailsService . 52

B Back end documentation 54
B.1 Documentation template . 54
B.2 affiliate . 55
B.3 affiliate.affiliate parser . 55

B.3.1 Parser . 55
B.4 affiliate.models . 59

B.4.1 AbstractParserModel . 60

2

TravelMatch Detailed Design Document

B.4.2 AffiliateFeed . 61
B.4.3 AffiliateFeed.Meta . 62
B.4.4 ArkeParserModel . 62
B.4.5 Trip . 63

B.5 affiliate.serializer . 65
B.6 affiliate.tradetracker . 66
B.7 affiliate.tradetracker.arke parser . 66

B.7.1 ArkeParser . 66
B.8 affiliate.views . 67
B.9 ai . 67
B.10 ai.entropy . 67
B.11 ai.models . 71

B.11.1 ImageBlacklistItem . 76
B.11.2 ImageBlacklistItem.Meta . 77
B.11.3 ImageDimension . 77
B.11.4 ImageDimension.Meta . 79
B.11.5 ImageTag . 79
B.11.6 ImageTag.Meta . 81
B.11.7 Location . 81
B.11.8 LocationBlacklistItem . 83
B.11.9 LocationBlacklistItem.Meta . 84
B.11.10LocationTag . 85
B.11.11LocationTag.Meta . 87
B.11.12SwipeImage . 87
B.11.13Tag . 88
B.11.14Tag.Meta . 89
B.11.15TravelDNA . 90
B.11.16TravelDNA.Meta . 93
B.11.17TripOffer . 93
B.11.18TripOffer.Meta . 95
B.11.19VacationTag . 95
B.11.20VacationTag.Meta . 96

B.12 ai.recommender system . 97
B.13 ai.serializers . 100

B.13.1 LocationSerializer . 101
B.13.2 Meta . 101
B.13.3 TripOfferSerializer . 102

B.14 ai.views . 102
B.15 appusers . 102
B.16 appusers.authentication . 103

B.16.1 MyJSONWebTokenAuthenticator . 103
B.17 appusers.mailgun . 104
B.18 appusers.models . 106

B.18.1 AppUser . 108
B.18.2 AppUser.Meta . 110
B.18.3 FBAppUser . 110
B.18.4 GuestAppUser . 111
B.18.5 MailAppUser . 112
B.18.6 PendingActivation . 113
B.18.7 PendingActivation.Meta . 114
B.18.8 SavedLocation . 114
B.18.9 SavedLocation.Meta . 115
B.18.10TripList . 115
B.18.11TripListEntry . 116

3

TravelMatch Detailed Design Document

B.18.12VacationDetail . 117
B.18.13VacationDetail.Meta . 120

B.19 appusers.serializers . 120
B.19.1 FBUserSerializer . 124
B.19.2 GuestAccountSerializer . 124
B.19.3 MailUserSerializer . 125
B.19.4 Meta . 125
B.19.5 UserSerializer . 126
B.19.6 VacationDetailsSerializer . 126

B.20 appusers.views . 126
B.20.1 APIError . 135
B.20.2 APIRecommendation . 136
B.20.3 APIUser . 136
B.20.4 APIUserAuth . 136
B.20.5 APIUserHotel . 137
B.20.6 APIUserLocation . 137
B.20.7 APIUserLogin . 137
B.20.8 APIUserMe . 138
B.20.9 APIUserMyLocation . 138
B.20.10APIUserMyLocationAll . 138
B.20.11APIUserMyLocationAllValues . 139
B.20.12APIUserSwipe . 139
B.20.13APIUserVacationDetails . 139
B.20.14APIUserVacationDetailsAllValues . 140
B.20.15APIUserVacationDetailsLatest . 140
B.20.16JSONResponse . 140

4

TravelMatch Detailed Design Document

Document Status Sheet

General

Document title: Detailed Design Document
Document identifier: TravelMatch.Doc.DDD/1.0
Authors: D.J. van den Brand (0772180)

S. He (0810831)
J.M.A.P. van Hoof (0778486)
G.C. Linders (0815449)
M.J.M. Muijsers (0805654)
G.H. Santegoeds (0890429)
L.D. Stooker (0819041)
J.W.J.H. Visser (0828234)

Document status: Final document

Document history

Version Date Author(s) Reason
0.1 17-06-2015 D.J. van den Brand, S. He,

J.M.A.P. van Hoof, G.C. Linders,
M.J.M. Muijsers

Initial version.

1.0 19-06-2015 D.J. van den Brand, S. He, G.C.
Linders, M.J.M. Muijsers

Final version.

5

TravelMatch Detailed Design Document

Document Change Records

General

Date: 22nd June, 2015
Document title: Detailed Design Document
Document identifier: TravelMatch.Doc.DDD/1.0

Changes

Section Reason

6

TravelMatch Detailed Design Document

Chapter 1

Introduction

1.1 Purpose

This Detailed Design Document (DDD) describes the implementation of the TravelMatch system on
the most detailed level. The implementation of all components of the TravelMatch system, as defined
in the Software Requirements Document[3] and Architecture Design Document[4], is described in this
document.

1.2 Scope

TravelMatch is an application designed for smartphones and tablets, conceived by iLysian B.V. and
developed by the TravelMatch development team. The purpose of the application is to assist users in
planning a vacation by showing them images from various destinations and hotels or other places to
stay. The application employs machine learning to build a profile of the user in order to suggest the
ideal trip.

1.3 Definitions and abbreviations

1.3.1 Definitions

Affiliate Network A network that enables you to receive money from customer redirection [18]

Analytics Data The log of analytics events that is recorded and stored on the database.

Android A popular open-source operating system for embedded devices, including
smartphones and tablets, created by Google.

Angular JS An open-source web application framework maintained by Google.

Cosine similarity A measure of similarity between two vectors of an inner product space that
measures the cosine of the angle between them.

Destination advice The city, and selection of hotels, that is advised to a user after performing
one or more interest analyses.

Destination attributes
or tags

Each destination will have one or more destination attributes
with an associated numerical relative value, those attributes cover the same
preferences as the DNA attribute.

DNA attribute
or tags

These are the attributes that the client wants to use to compose the DNA
of. In the beginning 10 attributes are chosen and each image shall have a
relative numerical value on one or more of the attributes. Attributes can be
added or removed later for new and existing images and DNA.

Google Play Store A public repository of free and paid apps for Android, managed by Google.

Guest user An user that does not provide login details but still uses the TravelMatch
app.

Hotelstars rating A hotel classification with common criteria and procedures in participating
countries to rate a hotel’s quality. See [21].

7

TravelMatch Detailed Design Document

iLysian Short for iLysian B.V., a software engineering company situated in Eind-
hoven, Netherlands. The client for the TravelMatch project.

Interest analysis The action the user will do of judging the images.

iOS A popular closed-source operating system for smartphones and tablets cre-
ated by Apple.

iOS App Store A public repository of free and paid apps for iOS, managed by Apple.

JWT JSON Web Token: a compact URL-safe means of representing claims to be
transferred between two parties, and used in TravelMatch as authentication
token, since it is self-validating.

Relational database
management system
(RDBMS)

A database management system (a piece of computer software that interacts
with users, other applications and a database to capture and analyze data)
based on the relational model (commonly based on the relational database
model)

TCP/IP A computer networking model and set of communication protocols used
on the internet and similar computer networks, including the Transmission
Control Protocol (TCP) and the Internet Protocol (IP)

Tinder A popular dating application for smartphones and tablets featuring a swipe
based interface, where a swipe to the left indicates a dislike and a swipe to
the right indicates a like.

Travel DNA A collection of information about vacation preferences of a specific user or,
more specifically, one vacation of that user. This information is stored on the
server in a table with values representing the respective gain per attribute
for each image the user has swiped.

TravelMatch An application for smartphones and tablets that assists users in planning a
vacation. The subject of this project.

TravelMatch team A team of Computer Science students at Eindhoven University of Technology
who will design and implement the TravelMatch application.

User The user of the app.

Waverunner Waverunner Search Service by Pyton Communication Services; a search ser-
vice that provides vacation offers and prices of participating travel agencies.

1.3.2 Abbreviations

ADD Architecture Design Document
ADT Abstract Data Type
AI Artificial Intelligence
APK Android Application Package
App Application for smartphones and tablets
CMS Content Management System
DDD Detailed Design Document
DOM Document Object Model
ESA European Space Agency
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IPA iOS App Store Package
NPM Node Package Manager
OS Operating System
SRD Software Requirements Document
TU/e Eindhoven University of Technology

8

TravelMatch Detailed Design Document

UML Unified Modeling Language
URD User Requirements Document

1.4 References

[1] ESA PSS-05-0 Issue 2, Software requirements and architecture engineering process, February 1991

[2] TravelMatch team. User Requirement Document. Version 1.2.1. 22 June 2015.

[3] TravelMatch team. Software Requirements Document. Version 1.0. 22 June 2015.

[4] TravelMatch team. Architectural Design Document. Version 1.0. 22 June 2015.

[5] TravelMatch team. Detailed Design Document. Version 1.0. 22 June 2015.

[6] TravelMatch team. Software User Manual. Version 1.0. 22 June 2015.

[7] TravelMatch team. Software Transfer Document. Version 1.0. 22 June 2015.

[8] TravelMatch team. Unit Test Plan. Version 1.0. 22 June 2015.

[9] TravelMatch team. Integration Test Plan. Version 1.0. 22 June 2015.

[10] TravelMatch team. Acceptance Test Plan. Version 1.0.2. 22 June 2015.

[11] TravelMatch team. Software Configuration Management Plan. Version 1.0. 22 June 2015.

[12] TravelMatch team. Software Project Management Plan. Version 1.0. 22 June 2015.

[13] TravelMatch team. Software Quality Assurance Plan. Version 1.0. 22 June 2015.

[14] TravelMatch team. Software Verification and Validation Plan. Version 1.0. 22 June 2015.

[15] Tom Preston-Werner. Semantic Versioning 2.0.0. Retrieved 6 May 2015. http://www.semver.
org/

[16] Coley Consulting. MoSCoW Prioritisation. Retrieved 29 April 2015. http://www.

coleyconsulting.co.uk/moscow.htm

[17] Tinder, Inc. Tinder. Retrieved 29 April 2015. http://www.gotinder.com/

[18] Organized Shopping, LLC. Affiliate Network. Marketing Terms. Retrieved 29 April 2015. http:
//www.marketingterms.com/dictionary/affiliate_network/

[19] Daiycon. About Daisycon. Retrieved 29 April 2015. http://www.daisycon.com/en/about_

daisycon/

[20] Drifty Co. Ionic: Advanced HTML5 Hybrid Mobile App Framework. Retrieved 30 April 2015.
http://ionicframework.com/

[21] Hotelstars Union. Classification criteria 2015-2020. Retrieved 1 May 2015. http://www.

hotelstars.eu/index.php?id=criteria

[22] Django. http://www.django-cms.org/en/

[23] Django administration module. The Django Django admin site. Retrieved 1 June 2015. https:
//docs.djangoproject.com/en/1.8/ref/contrib/admin/

[24] Django Software Foundation. The Web framework for perfectionists with deadlines — Django.
Retrieved 1 June 2015. https://www.djangoproject.com/

9

http://www.semver.org/
http://www.semver.org/
http://www.coleyconsulting.co.uk/moscow.htm
http://www.coleyconsulting.co.uk/moscow.htm
http://www.gotinder.com/
http://www.marketingterms.com/dictionary/affiliate_network/
http://www.marketingterms.com/dictionary/affiliate_network/
http://www.daisycon.com/en/about_daisycon/
http://www.daisycon.com/en/about_daisycon/
http://ionicframework.com/
http://www.hotelstars.eu/index.php?id=criteria
http://www.hotelstars.eu/index.php?id=criteria
http://www.django-cms.org/en/
https://docs.djangoproject.com/en/1.8/ref/contrib/admin/
https://docs.djangoproject.com/en/1.8/ref/contrib/admin/
https://www.djangoproject.com/

TravelMatch Detailed Design Document

[25] Facebook User ID. User IDs and Friends. Retrieved 2 June 2015. https://developers.

facebook.com/docs/apps/upgrading#upgrading_v2_0_user_ids

[26] ImageMagick. ImageMagick: Convert, Edit, Or Compose Bitmap Images. Retrieved 2 June 2015.
http://www.imagemagick.org/

[27] Google. AngularJS - Superheroic JavaScript MVW Framework. Retrieved 1 June 2015. https:
//angularjs.org

[28] Adobe Systems Inc. Phonegap: Home. Retrieved 1 June 2015. http://phonegap.com/

[29] Xamarin Inc. Mobile App Development & App Creation Software - Xamarin. Retrieved 1 June
2015. http://xamarin.com/

[30] Eric Raymond. The Jargon File. Version 4.4.7. Retrieved 17 June 2015. http://www.catb.org/
jargon/html/

[31] Python Software Foundation. Classes. The Python Tutorial. Retrieved 18 June 2015. https:

//docs.python.org/2/tutorial/classes.html

[32] Python Software Foundation. PEP 0008 – Style Guide for Python Code. 1 August 2013. https:
//www.python.org/dev/peps/pep-0008/

[33] Django Software Foundation. Coding style. Retrieved 18 June 2015. https://docs.

djangoproject.com/en/1.8/internals/contributing/writing-code/coding-style/

[34] Django Software Foundation. Writing your first Django app, part 1. Database setup.
Retrieved 18 June 2015. https://docs.djangoproject.com/en/1.8/intro/tutorial01/

#database-setup

[35] Massachusetts Institute of Technology. MIT License. Retrieved 21 June 2015. http://

opensource.org/licenses/MIT

[36] Apache Software Foundation. Apache License, Version 2.0. January 2004. http://www.apache.
org/licenses/LICENSE-2.0

1.5 Overview

The remainder of this document consists of three chapters plus a number of appendices. In chapter 2
of this document we give a description of the standards and conventions used in the implementation of
the TravelMatch system. Section 2.1 describes the standards used in constructing the high-level system
design and model. Sections 2.2, 2.3 and 2.4 discuss the standards used in the implementation of the
TravelMatch system on a source code level. Section 2.5 describes the tools used in the development
of the TravelMatch system.

Then, in chapter 3 of this document we give a general description of the various components of the
TravelMatch system. In chapter 4 of this document, we discuss the procedures to build and deploy the
TravelMatch application and back end server. Finally, in the appendices of this document, we provide
the documentation of the source code in the form of source code listings generated from the source
code files.

10

https://developers.facebook.com/docs/apps/upgrading#upgrading_v2_0_user_ids
https://developers.facebook.com/docs/apps/upgrading#upgrading_v2_0_user_ids
http://www.imagemagick.org/
https://angularjs.org
https://angularjs.org
http://phonegap.com/
http://xamarin.com/
http://www.catb.org/jargon/html/
http://www.catb.org/jargon/html/
https://docs.python.org/2/tutorial/classes.html
https://docs.python.org/2/tutorial/classes.html
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://docs.djangoproject.com/en/1.8/internals/contributing/writing-code/coding-style/
https://docs.djangoproject.com/en/1.8/internals/contributing/writing-code/coding-style/
https://docs.djangoproject.com/en/1.8/intro/tutorial01/#database-setup
https://docs.djangoproject.com/en/1.8/intro/tutorial01/#database-setup
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

TravelMatch Detailed Design Document

Chapter 2

Standards and conventions

2.1 Design standards

For the high-level system design, Unified Modeling Language (UML) is used. Specifically, we use UML
for the class diagrams and sequence diagrams. For the Entity-Relation diagram, we define the meaning
of each diagram component as depicted in figure 2.1.

Figure 2.1: Database ER diagram legend

2.2 Documentation standards

2.2.1 General

Every object, class, method and property in the source code must be properly documented inline.
We use ngdoc notation to document the front end code and Doxygen notation for the back end
code. For this document, we use the documentation template in section A.1 for the front end and the
documentation template in section B.1 for the back end.

For every method a contract must be documented which contains at least the following:

� The name of the method.

� A description of the method’s functionality.

� If the method takes parameters, for each parameter the following must be documented:

– The name of the parameter.

11

TravelMatch Detailed Design Document

– The type of the parameter (e.g. a number, string).

– A description of what the parameter represents.

� If the method returns a value, the following must be documented:

– The return type (e.g. a number, string).

– A description of what the returned value represents.

For every object and class, the following must be documented:

� The name of the object or class.

� A description of the object or class.

For every property, the following must be documented:

� The name of the property.

� A description of the property.

� The type of the property (e.g. a number, string).

2.2.2 AngularJS-specific

For AngularJS code in the front end, additionally the following standards apply:

� For every AngularJS component, it must be documented if the object is a module, controller,
directive or service.

� For every AngularJS directive, an example of the HTML usage must be defined.

� For every AngularJS directive, if it create a new scope, that must be documented.

� For every AngularJS directive, if the directive takes parameters, for each parameter the following
must be documented:

– The name of the parameter.

– The type of the parameter (e.g. a number, string).

– A description of what the parameter represents.

2.3 Naming conventions

2.3.1 Front end

For the front end, the following naming conventions apply.

� File names of AngularJS components must equal the name of that component in lowercase
letters, tokenized by periods.

– For example: HotelService is contained in hotel.service.js.

� With the exception of the app.config module, each file belonging to a certain module must be
contained in a folder with the name of that module, with the app. and any non-alphabetical
characters removed and in lowercase letters.

– For example: app.hotel.overview files are contained in the hoteloverview folder.

� Names of AngularJS modules must begin with app. and can contain only lowercase letters and
periods.

12

TravelMatch Detailed Design Document

� Names of AngularJS directives follow camelCase practice where the first letter is not capitalized.

� Names of any other AngularJS components follow CamelCase practice where the first letter is
capitalized.

� Names of AngularJS controllers must end with Ctrl.

� Names of AngularJS services must end with Service.

� All names of methods, functions, properties, variables, fields and parameters follow camelCase
practice where the first letter is not capitalized, with the exception of parameters for AngularJS
directives, which must be entirely lowercase.

2.3.2 Back end

For the back end, the following naming conventions apply.

� All models of an application are written in a file named tmodels.py in that application’s subdi-
rectory.

– For example, the models for ai are stored in the ai/models.py.

� All unit tests of an application are written in a file named test.py in that application’s subdi-
rectory.

– For example, the tests for ai are stored in the ai/test.py.

� Administration modules of an application are written in a file named admin.py in that applica-
tion’s subdirectory.

– For example, the administration modules for ai are stored in the ai/admin.py.

� The interface that examines and validates the input and output of an application is written in a
file named serializer.py in that application’s subdirectory.

� The view controller of an application is written in a file named view.py in that application’s
subdirectory.

� The url routing related codes of an application are written in a file named travelmatch/url.py

in that application’s subdirectory.

� Naming of the classes, functions, methods and variables follows the standard Python naming
conventions.[31]

2.4 Coding standards

Alongside to the above naming standards, the following additional coding standards apply.

2.4.1 Front end

� Use an indenting width of 2 spaces.

� Use spaces, not tabs, for indentation.

� Use the ”One True Brace Style” for indentation.[30]

� DOM manipulation is only allowed in controller and directive methods.

� No HTML may be present in JavaScript source files.

� HTTP requests are only allowed in services.

� Public mutable properties in services are not allowed.

13

TravelMatch Detailed Design Document

2.4.2 Back end

Following coding standards apply for the back end.

� The standard Python coding standards.[32]

� The standard Django coding standards.[33]

2.5 Software development tools

The following software development tool standards apply.

2.5.1 General

� Git is used for version control.

� GitHub is used for hosting the Git repository.

� LaTeX is used for writing documents.

2.5.2 Front end

� Atom is used for writing code.

� NPM is used for managing development dependencies.

� Bower is used for managing app dependencies.

� Cordova is used to build the app for Android and iOS.

� Ionic is used to test the app on a PC browser.

� gulp is used to automate development tasks.

� ngdoc is used to generate source code documentation.

� pandoc is used to convert ngdoc output to LaTeX.

� karma is used to run JavaScript unit tests.

� Jasmine is used to write JavaScript unit tests.

2.5.3 Back end

� PyCharm is used for writing code in Python.

� WinSCP is used for synchronizing the local directory with the remote sever directory.

� PuTTY is used for SSH commands.

� Doxygen is used to export the Python documentation to Latex.

� Django is used to set up the application and to run Python unit tests.

14

TravelMatch Detailed Design Document

Chapter 3

Component descriptions

3.1 Front end

� about
The about module consists of the model, view, controller and service for the about screen,
handling and showing everything available in the screen. This module contains a single, simple
controller that shows the iLysian logo and contact information for iLysian.

� details
The details module consists of the model, view, controller and service for the vacation details
screen. This module contains a controller that shows the input fields for the vacation details.
This includes:

– The date of departure;

– The flexibility of the date of departure;

– The date of return;

– The flexibility of the date of return;

– The budget per person;

– A ”surprise me” button for the budget;

– The number of adults;

– The number of children.

– The submission button.

Furthermore, this module contains a service that manages sending and retrieving vacation details
from the back end API.

� front
The front module consists of the model, view, controller and service for the front screen. This
module contains a controller that shows the buttons on the front screen. This includes:

– Continuing without an account (not implemented);

– Connecting with Facebook;

– Logging into a TravelMatch account;

– Registering a TravelMatch account.

� hotelOverview
The hotelOverview module consists of the model, view, controller and service for the hotel
overview and hotel detail screen. This module contains a controller that displays the controls on
the hotel overview screen. This includes:

– Buttons to switch between the first advice and second advice;

– A button to continue the interest analysis;

– Hotel details for every hotel in the advice.

– A booking button for every hotel in the advice.

15

TravelMatch Detailed Design Document

Furthermore, this module contains a service that manages sending and retrieving recommenda-
tions from the back end API.

� registration
The registration module consists of the model, view, controller and service for the registration
of users. This module contains a controller that shows the input fields of the registration screen.
This includes:

– The e-mail field;

– The password field;

– The repeat password field;

– The submission button;

– The connect with Facebook button.

Furthermore, this module contains a service that manages registering in the back end API.

� main
The main module consists of the authentication service, HTTP interceptor and the constant
values. This module contains a service that manages the user’s session. Furthermore, it contains
a service that intercepts all HTTP requests. Any strings in query parameters are encoded to
prevent data loss. Also, generic HTTP errors are caught and resolved before they reach the
caller. Finally, this module contains a number of global constants for the app.

� language
The language module consists of the language files for each language one. This module contains
a language file for Dutch and English language.

� login
The login module consists of the model, view, controller and service of the login screen for all
authentication providers. This module contains a controller that shows the input fields of the
login screen. This includes:

– The e-mail field;

– The password field;

– The submission button;

– The connect with Facebook button.

Furthermore, this module contains a service that manages logging in in the back end API.
Additionally, this module contains the directive for the Facebook button, which displays a connect
with Facebook button and manages Facebook authentication in the external API.

� navigation
The navigation module consists of the models, views and controller of the header, sidebar and
tabs of the login and registration screen. This module contains a main controller which contains
common functionality that is used in all other controllers of this module. Furthermore, it contains
several directives:

– A directive for the header that displays the state name, back button and menu button;

– A directive for the sidebar menu that displays buttons for every state in the sidebar menu;

– A directive for the menu button in the header;

– A directive for tabs in the login and registration screens, that allow the user to switch
between the two.

16

TravelMatch Detailed Design Document

� swipe
The swipe module consists of the models, views, controller and service of the interest analysis
named after the associated swiping of images. This module contains a photo directive which
displays the photos being shown in the interest analysis, as well as the like/dislike buttons and
progress bar. Furthermore, it contains a service that manages retrieving images and sending
(dis)likes to the back end API. The photo directive is governed by a controller which obtains
images from the service and routes them into the photo directive.

� user
The user module consists of the model, view, controller and service of the user detail screen.
This module contains a controller that displays the input fields of the user profile. This includes:

– The name of the user;

– The gender of the user;

– The birth date of the user;

– The submission button.

Furthermore, this module contains a service that manages retrieving and storing user info in the
back end API.

3.2 Back end

� Affiliate
The Affiliate component pulls data from an affiliate feed and translates it into the TravelMatch
data model. It contains functionality to add, modify and remove feeds and parsers for the feeds.

� AI
The AI component contains the the implementation of the decision making algorithms in Trav-
elMatch. The AI component can calculate which images should be presented next in interest
analysis, and give a holiday recommendation based on Travel DNA.

� Authentication token verification
The Authentication token verification component provides functionality to verify the authenticity
of JSON Web Tokens.

� CMS
The CMS component contains the hooks of the Content Management System, so that it can
trigger the affiliate parser, and allow administrators to change data via a user interface.

� Database
The Database component contains the TravelMatch data model, and stores all data according
to it.

� Facebook authentication
The Facebook authentication component checks with the Facebook servers whether the Facebook
token provided by the client is valid.

� Interest analysis API
The Interest analysis API component holds the API functions for the interest analysis swiping.
It allows functionality to start, query and update vacations, get new images for interest analysis
and record likes and dislikes.

� Recommendation API
The Recommendation API component holds the API functions for the holiday recommendations:
getting a recommendation, getting a location’s trips, and saving, loading and deleting a location
overview.

17

TravelMatch Detailed Design Document

� Registration / login API
The Registration / login API component holds the API functions for user registration and login.
This includes registering and logging in via e-mail or Facebook, activating an e-mail account,
delete accounts, querying and updating user details and creating and deleting guest accounts.

18

TravelMatch Detailed Design Document

Chapter 4

Build procedure

4.1 Front end

The TravelMatch app can be built and deployed by following the below procedure.

4.1.1 Prerequisites

1. The build PC is prepared for building on Android or iOS.

2. NPM is installed.

3. Git is installed.

4.1.2 Build process

1. Clone the TravelMatch Git repository.

2. Open a console window with admin/superuser privileges and go to the src folder:

� cd src

3. Create the output directory:

� mkdir www

4. Use NPM to install gulp, Bower, Cordova and Ionic:

� npm install gulp bower cordova ionic

5. Install karma-cli globally.

� npm install karma-cli -g

6. Install all development dependencies:

� npm install

7. Add Android and/or iOS as Cordova platforms. Note that adding iOS is only possible on PC
running OS X.

� cordova platform add android

� cordova platform add ios

8. Install all app dependencies:

� gulp cook

9. Building the app for either Android or iOS:

� gulp android

� gulp ios

19

TravelMatch Detailed Design Document

4.2 Back end

The TravelMatch server can be built and deployed by following the below procedure.

4.2.1 Prerequisites

1. Ubuntu 14.04 LTS or a compatible version is running on the server.

2. Python 2.7.6 or a compatible version is installed on the server.

4.2.2 Building server

1. Install Django via pip with following command:

� sudo python get-pip.py

� git clone git://github.com/django/django.git django-trunk

� sudo pip install -e django-trunk/

� sudo pip install djangorestframework

2. Install Mailgun.

� sudo pip install -e git://github.com/mailgun/mailgun.py.git#egg=pymailgun

3. Install related Django packages.

� sudo pip install django facebook

4. Make migrations for the database in the ∼/TravelMatch/server/travelmatch folder.

� python manage.py make migrations

5. Set up the database. The database has the SQLite engine as its default configuration. This
configuration can be changed in the settings.py file. The DATABASES variable must be set
according to the Django tutorial.[34] An example of a MySQL configuration may be found below.

DATABASES = {
’ d e f a u l t ’ : {

’ENGINE ’ : ’ d jango . db . backends . mysql ’ ,
’NAME’ : ’DB NAME’ ,
’USER ’ : ’DB USER ’ ,
’PASSWORD’ : ’DB PASSWORD’ ,
’HOST ’ : ’ l o c a l h o s t ’ ,
’PORT’ : ’ 3 3 0 6 ’ ,

}
}

6. Initialize the database.

� python manage.py migrate

7. Start the server.

� python manage.py runserver 0.0.0.0:80

20

TravelMatch Detailed Design Document

Appendix A

Front end documentation

A.1 Documentation template

Each object in the front end documentation is documented with the following template:

Name of object

Description of the object.

Methods (if applicable)

� nameOfMethod(parameterName)

This method is private. (if applicable)

Description of the method.

Parameters

Param Type Details

parameterName Type of the parameter Description of the parameter

Returns (if applicable)

return type Description of the return value

Properties (if applicable)

� nameOfProperty

This property is private. (if applicable)

Description of the property.

Type: type of the property

A.2 app.about

The app.about module contains all templates and controllers that pertain to the about screen of the
app.

A.2.1 AboutCtrl

The AngularJS controller for the about screen.

A.2.2 AnalyticsService

Provides methods for recording events for analytics purposes.

21

TravelMatch Detailed Design Document

Methods

� getDevice()

Gets all device information available

Returns

Object device device information

� sendEvent(eventName, category, data)

Sends the specified event with the specified category to the analytics, with the specified data. If
the user is authenticated, the user info is also sent.

Parameters

Param Type Details

eventName string The name of the event.
category string The name of the category of

the event.
data string The data to send.

A.3 app.config

The app.config module is a special module that contains global settings and configurations for the
entire app. This module exposes a number of constants as well as special services.

A.3.1 HttpInterceptor

A factory that acts as an interceptor for the AngularJS $http service. It extends the $http service with
the following features:

� A Content-Type: application/json HTTP header is automatically added to all HTTP re-
quests.

� If a user is authenticated, their authentication token is automatically added to the Authorization
HTTP header.

� All string parameters for HTTP GET requests are automatically encoded to URL-safe Base64
encoding as per RFC 4648. This is a regular Base64 encoding with the following differences:

– - is used in place of +
– ‘ ’ is used in place of /
– All trailing = are trimmed.

Methods

� encode(s)

This method is private.

Encodes the given string with URL-safe Base64 encoding as per RFC 4648.

Parameters

Param Type Details

s string The string to encode.

22

TravelMatch Detailed Design Document

Returns

string The string encoded with URL-safe Base64
encoding as per RFC 4648.

� encodeAll(obj)

This method is private.

Encodes all properties with type string in the provided object with URL-safe Base64 encoding
as per RFC 4648. Properties that do not have the type string are ignored. Furthermore, this
method does not support recursion; a string in an Object in the provided Object, for instance,
will not be encoded.

This method does not return anything; rather, the provided object is modified in place.

Parameters

Param Type Details

obj Object The object to encode all
strings in.

� request(config)

Modifies the provided HTTP configuration object, applying the features as listed above. This
HTTP configuration object follows the same format as the config parameter in the $http
AngularJS service.

Parameters

Param Type Details

config Object The HTTP configuration
object to modify.

Returns

Object The modified HTTP configuration object.

A.3.2 BACK BUTTON

Defines the behavior of the back button for each routing state. Each property in the object has the
following format:

� key - The internal routing name for the current state.
� value - The internal routing name for the state to transition to when the back button is pressed.

Type: Object

A.3.3 BASE URL

Defines the base URL of the back end REST API. Changes to this constant affect all TravelMatch
back end API calls throughout the entire app. API calls to third party APIs, such as Facebook, are
not affected.

Type: string

23

TravelMatch Detailed Design Document

A.3.4 DEBUG URL

Defines the URL of the debugging server to use. Changes to this constant affect all DebugService
calls.

Type: string

A.3.5 SHOW SWIPE DEBUG

Whether or not to show swipe debug overlay.
Type: boolean

A.3.6 STATE NAMES

Defines the names of each routing state, to be shown in the header and menu. Each property in the
object has the following format:

� key - The internal routing name for the state.
� value - A $translate ID for the name of the state.

Type: Object

A.3.7 USE DEBUG

Whether or not to enable debugging functionality.
Type: boolean

A.3.8 USE FRONT

Whether or not to include the front screen.
Type: boolean

A.3.9 AuthService

Manages user authentication data, including the storage and retrieval of tokens. User info is stored in
local storage as an object with the following properties:

� Identity - The string that represents the user’s identity.
� Token - The authentication token of the user.

Methods

� existsUserInfo()

Checks if user info exists for one or more users.

Returns

boolean true if user info exists and is not null;
otherwise, false.

� getUserInfo()

Retrieves all stored user info.

Returns

Object The user info stored in local storage, or null if
no user info was found.

24

TravelMatch Detailed Design Document

� isAuthenticated(id)

Checks whether a particular user is authenticated.

Parameters

Param Type Details

id string The identity of the user to
compare against.

Returns

boolean true if the given user is authenticated;
otherwise, false.

� logout()

Logs the user out and removes all user info. Internally, this is simply an alias for removeUserInfo().

� removeUserInfo()

Removes all user info.

� setUserInfo(user, token)

Stores the given user info.

Parameters

Param Type Details

user string The string that represents the
identity of the user.

token string The authentication token of
the user.

A.4 app.debug

The app.debug module contains all services that pertain to debugging of the app.

A.4.1 DebugService

Provides methods for remote debugging.

Methods

� debug(log)

Posts the specified object to the debug server, if and only if USE DEBUG is set to true.

Parameters

Param Type Details

log Object The object to log.

Returns

25

TravelMatch Detailed Design Document

HttpPromise A promise of the post. If USE DEBUG is set to
false, this method instead returns a promise
that resolves immediately.

A.5 app.details

The app.details module contains all templates and controllers that pertain to the vacation details
screen of the app.

A.5.1 DetailCtrl

The AngularJS controller for the vacation details screen.

Methods

� checkForm()

This method is private.

Validates the vacation details form to check if all fields are filled in correctly. If this is not the
case, an error pop-up is shown.

Returns

boolean true if all fields are valid; otherwise, false.

� init()

This method is private.

Initializes this controller. Functionality of this method includes:

– Displaying a pop-up with instructions on the first time ever opening this screen.
– Retrieving the vacation details from the back end server.
– Entering the vacation details of the last vacation into the model.
– Checking the “Surprise me!” checkbox if the budget equals 0.
– Showing an error pop-up if retrieval of the vacation details failed.

� showInfo()

Shows a popup with instructions for the user.

� submit()

This method is private.

Validates and posts the vacation details to the back end API. If this is successful, the user is
transferred to the interest analysis screen; otherwise, an error pop-up is shown.

Properties

� vacation

Represents the model of the vacation details input fields.

Object properties:

– start date - The Date of departure for the vacation.
– end date - The Date of return for the vacation.

26

TravelMatch Detailed Design Document

– start date extend - The amount of days that the start date may be off.
– end date extend - The amount of days that the end date may be off.
– persons adults - The number of adults.
– persons children - The number of children.
– vac id - The vacation details ID for the current vacation details.
– noBudget - Whether the user has checked Surprise me!

– budget - The maximum budget of the user. If set to 0, the budget is not be taken into
account.

Type: Object

A.5.2 VacationDetailsService

Provides methods for getting and setting the vacation details from the back end. The last vacation
details received from the back end server are cached until new vacation details are obtained.

Methods

� apiToVac()

This method is private.

Converts an object received from the back end server API to a vacation details object.

� clear()

Clears the cached set of vacation details.

� createVacation(vac)

Creates new vacation details in the back end server with the specified parameters. The promise
returned by this method is resolved if the vacation details were successfully created; otherwise,
it is rejected with the translation ID of the error that occurred.

If the vacation details were created successfully, they are added to the cached set of vacation
details.

Parameters

27

TravelMatch Detailed Design Document

Param Type Details

vac Object The vacation details. This
object has the following
properties:

– name - The name of the
vacation details.

– startDate - The Date

of departure.
– startRange - The

number of days that the
startDate may be off.

– endDate - The Date of
return.

– endRange - The
number of days that the
endDate may be off.

– adults - The number
of adults.

– children - The
number of children.

– budget - The budget
for the vacation. If set
to 0, the budget is not
taken into account.

Returns

Promise A promise of the vacation details creation.

� currentVacations()

Gets the last set of vacation details that were retrieved or sent to the back end server.

Returns

28

TravelMatch Detailed Design Document

Array.<Object> The set of vacation details, or an empty array if
no vacation details are available. Each object
has the following properties:

– id - The ID of the vacation details.
– name - The name of the vacation details.
– swipes - The number of swipes left

before a new recommendation can be
obtained.

– startDate - The Date of departure.
– startRange - The number of days that

the startDate may be off.
– endDate - The Date of return.
– endRange - The number of days that the
endDate may be off.

– adults - The number of adults.
– children - The number of children.
– budget - The budget for the vacation. If

set to 0, the budget is not taken into
account.

� deleteVacation(id)

Deletes the vacation details with the specified ID in the back end server. The promise returned by
this method is resolved if the vacation details were deleted successfully; otherwise, it is rejected
with the translation ID of the error that occurred.

If the vacation details with the specified ID exist in the set of cached vacation details, then they
are deleted from the set.

Parameters

Param Type Details

id number The ID of the vacation details
to delete.

Returns

Promise A promise of the vacation details deletion.

� findVacation(id)

This method is private.

Finds the index of the vacation details with the specified ID in the cached set of vacation details.

Parameters

Param Type Details

id number The ID of the vacation details
to find.

29

TravelMatch Detailed Design Document

Returns

number The index of the vacation details in the cached
set of vacation details, or -1 if the vacation
details were not found.

� getLatestVacation()

Retrieves the ID of the last saved vacation details from the back end server. The promise returned
by this method is resolved if the ID of the last saved vacation details were retrieved successfully;
otherwise, it is rejected with the translation ID of the error that occurred.

Returns

Promise A promise of the last saved vacation details
retrieval.

� getVacations()

Retrieves the set of vacation details of the current user from the back end server. Additionally,
this method also retrieves the latest vacation details that were saved. The promise returned by
this method is resolved if both retrievals succeeded; otherwise, it is rejected with the translation
ID of the error that occurred.

Returns

Promise A promise of the vacation details retrieval.

� latestVacation()

Returns the vacation details that were last saved, or null if the last saved vacation details have
not been retrieved from the back end server yet.

Returns

Object The last saved vacation, with the following
properties, or null:

� setVacations(vacs)

This method is private.

Sets the cached set of vacation details to the specified set of vacation details.

Parameters

Param Type Details

vacs Array.<Object> The set of vacation details.

� updateVacation(id, vac)

Updates the vacation details with the specified ID in the back end server with the specified param-
eters. The promise returned by this method is resolved if the vacation details were successfully
updated; otherwise, it is rejected with the translation ID of the error that occurred.

If the vacation details with the specified ID exist in the set of cached vacation details, then they
are updated in the set.

30

TravelMatch Detailed Design Document

Parameters

Param Type Details

id number The ID of the vacation details
to update.

vac Object The vacation details. This
object has the following
properties:

– name (optional) - The
name of the vacation
details.

– startDate (optional) -
The Date of departure.

– startRange (optional)
- The number of days
that the startDate

may be off.
– endDate (optional) -

The Date of return.
– endRange (optional) -

The number of days
that the endDate may
be off.

– adults (optional) - The
number of adults.

– children (optional) -
The number of children.

– budget (optional) - The
budget for the vacation.
If set to 0, the budget is
not taken into account.

Returns

Promise A promise of the vacation details update.

� vacToApi()

This method is private.

Converts the specified vacation details to the object format requested by the back end server
API.

Properties

� latestVacationId

This property is private. Use latestVacation().vac id.

The ID of the last vacation details that were saved that was last retrieved from the back end
server, or null if the last vacation details were never retrieved.

Type: number

31

TravelMatch Detailed Design Document

� vacations

This property is private. Use currentVacations().

The last set of vacation details retrieved from the back end server.

Type: Array.<Object>

A.6 app.front

The app.front module contains all templates and controllers that pertain to the front screen.

A.6.1 FrontCtrl

The AngularJS controller for the front screen.

Methods

� checkUser()

Checks if user is already logged in, and if so, forwards the user to the vacation details screen.
This method is called upon initialization of the controller.

� continueWithoutAccount()

Sends the device ID to the back end server to continue as guest. If the device ID is undefined,
or guest account authentication failed, an error pop-up is shown. Otherwise, the user obtains a
guest account and is forwarded to the vacation details screen.

� fbLogin()

Performs a Facebook login.

A.7 app.hotel.overview

The app.hotel.overview module contains all templates and controllers that pertain to the hotel
overview screen.

A.7.1 HotelOverviewCtrl

The AngularJS controller for the hotel overview screen.

Methods

� furtherAnalysis()

Redirects the user to the interest analysis screen.

� init()

Initializes this controller. Functionality of this method includes:

– Entering the last retrieved recommendations into the model.
– Retrieving a set of recommendations if no cached recommendations are currently available.
– Showing an error pop-up if retrieval of recommendations failed.

� openInBrowser(link)

Opens the specified link in the device’s standard external browser.

Parameters

32

TravelMatch Detailed Design Document

Param Type Details

link string The link to open.

� showAdvice(index)

Displays the recommendation at the specified index in the model. If this is the first time that
the recommendation is opened, the event is also recorded in the analytics.

Parameters

Param Type Details

index number The index of the
recommendation.

� showDescription(event)

Expands the description of the clicked trip offer, and closes any other open descriptions.

Parameters

Param Type Details

event Event The $event object received
from ngClick.

Properties

� recommendations

The model for the trip offers shown in the hotel overview screen. Each object in the array has
the following properties:

– location - The location of the recommendation, with the following properties:

* city name - The name of the city.
* region name - The name of the region.
* country name - The name of the country.

– offers - The trip offers associated with the recommendation, with the following properties:

* offer id - The ID of the trip offer.
* name - The name of the trip offer.
* description - The description of the trip offer.
* price - The price of the trip offer, in euro cents.
* link - The affiliate link to book the trip offer.
* image - The URL for an image of the trip offer.
* hotel stars - The Hotelstars rating for the trip offer.
* min people - The minimum number of people for the trip offer.
* dept date - The departure date for the trip offer.
* duration days - The duration, in days, for the trip offer.
* user rating - The user rating for the trip offer.

Type: Array.<Object>

� selected

The index of the currently selected recommendation in the recommendations property.

Type: number

33

TravelMatch Detailed Design Document

A.7.2 HotelService

Provides methods for getting and setting the hotel recommendations and hotel info from the back end.
The last recommendations received from the back end server are cached until new recommendations
are obtained.

Methods

� deleteRecommendation(recId)

Deletes the cached recommendation at the specified index in the back end server. The promise
returned by this method is resolved if the deletion was successful; otherwise, it is rejected with
the translation ID of the error that occurred.

Note: If the deletion is successful, the recommendation is also deleted from the cached recom-
mendations. This causes the index of all recommendations that follow it to be updated!

Parameters

Param Type Details

recId number The index of the
recommendation to delete.

Returns

Promise A promise of the recommendation deletion.

� getNewRecommendations(vacId, n)

Gets new recommendations from the back end server and caches them in the hotel service.
The promise returned by this method is resolved if the hotel recommendations were successfully
retrieved; otherwise, it is rejected with the translation ID of the error if the retrieval failed.

Parameters

Param Type Details

vacId number The ID of the vacation details
to take into account.

n number The number of
recommendations to retrieve.

Returns

Promise A promise of the recommendations retrieval.

� lastRecommendations()

Gets the last recommendations that were retrieved from the back end server.

Returns

Array.<Object> The recommendations.

� loadRecommendation(locId, renew)

34

TravelMatch Detailed Design Document

Loads a recommendation for the specified location from the back end server. An optional pa-
rameter renew indicates whether the trip offers should be renewered, or the previous trip offers
should be returned. The promise returned by this object is resolved if the retrieval was successful;
otherwise, it is rejected with the translation ID of the error that occurred.

Parameters

Param Type Details

locId number The ID of the location to get
new trip offers for.

renew boolean Whether to renew the trip
offers.
(default: false)

Returns

Promise A promise of the trip offers retrieval.

� recommendationCount()

Gets the number of recommendations currently cached in the HotelService.

Returns

number The number of recommendations.

� saveRecommendation(recId)

Saves the cached recommendation at the specified index in the back end server. The promise
returned by this object is resolved if the storage was successful; otherwise, it is rejected with the
translation ID of the error that occurred.

Parameters

Param Type Details

recId number The index of the
recommendation to save.

Returns

Promise A promise of the recommendation storage.

� setRecommendations(recs)

This method is private.

Sets the cached recommendations to the specified recommendations and returns a boolean that
indicates whether the storage succeeded or failed.

Parameters

Param Type Details

recs Array.<Object> The recommendations.

35

TravelMatch Detailed Design Document

Returns

boolean true if the storage succeeded; otherwise,
false.

� validateOffers(offers)

This method is private.

Validates the specified trip offers, checking if the trip offers match the specification.

Parameters

Param Type Details

offers Array.<Object> The array of offers.

Returns

boolean true if the offers are valid; otherwise, false.

� validateRecommendations(recs, expectedCount)

This method is private.

Validates the specified recommendations, checking if the recommendations match the specifica-
tion.

Parameters

Param Type Details

recs Array.<Object> The array of
recommendations.

expectedCount number The minimum number of
recommendations expected.
(default: 0)

Returns

boolean true if the recommendations are valid;
otherwise, false.

Properties

� recommendations

This property is private. Use lastRecommendations().

An array of the last recommendations retrieved from the back end server. Each object has the
following properties:

– location - The location of the recommendation, with the following properties:

* city name - The name of the city.
* region name - The name of the region.
* country name - The name of the country.

36

TravelMatch Detailed Design Document

– offers - The trip offers associated with the recommendation, with the following properties:

* offer id - The ID of the trip offer.
* name - The name of the trip offer.
* description - The description of the trip offer.
* price - The price of the trip offer, in euro cents.
* link - The affiliate link to book the trip offer.
* image - The URL for an image of the trip offer.
* hotel stars - The Hotelstars rating for the trip offer.
* min people - The minimum number of people for the trip offer.
* dept date - The departure date for the trip offer.
* duration days - The duration, in days, for the trip offer.
* user rating - The user rating for the trip offer.

Type: Array.<Object>

A.8 app.login

The app.login module contains all templates, controllers and services that pertain to the login screen
of the app.

A.8.1 LoginCtrl

The AngularJS controller for the login screen. The login screen currently supports logging in with
e-mail address and password, or by connecting with Facebook.

Methods

� fbLogin()

Performs a Facebook login.

� init()

This method is private.

Initializes this controller. Functionality of this method includes:

– Setting the value of the e-mail field to the last e-mail address used for successful registration.

� login()

Performs a login with the current values of the e-mail address and password input fields. If the
login fails, an error pop-up is shown; otherwise, a success pop-up is shown and afterwards the
user is transferred to the vacation details screen. This method also clears the password input
field.

Properties

� data

Represents the model of the credentials input fields.

Object properties:

– username - The value of the e-mail address input field.
– password - The value of the password input field.

Type: Object

37

TravelMatch Detailed Design Document

A.8.2 facebookButton

A Facebook login button that can be used to authenticate TravelMatch with Facebook. If clicked, the
user is asked to authorize the TravelMatch app and an account is made in the back end server. After
this, the user is logged in.

Usage

as attribute

<ANY facebook-button>

...

</ANY>

Directive info

� This directive creates new scope.

Methods

� login()

Performs a login via Facebook. If the Facebook SDK has not been loaded, then an error pop-up
is shown instead.

The login function is called in the Facebook SDK, which opens Facebook in a new window. Here,
the user is asked to log in to Facebook if not already logged in, and then is asked to authorize
the TravelMatch app to use their account.

Successful Facebook authorization is followed by an API call to the back end server to create a
new user in the database with the Facebook ID obtained from the Facebook API, and/or obtain
the existing TravelMatch authentication token for that user.

If both Facebook authorization and TravelMatch registration/login are successful, a success pop-
up is shown and afterwards the user is transferred to the vacation details screen. If either failed,
an error pop-up is shown.

This method requests the following Facebook permissions:

– public profile - Included by default in any Facebook app authorization request. Needed
to obtain the app-specific Facebook ID as well as the Facebook authentication token, which
is verified in the back end to confirm the authorization.

Returns

Promise A promise of the Facebook login.

A.8.3 LoginService

Provides methods for logging in to TravelMatch accounts in the back end.

Methods

� loginUser(id, token, use)

Performs a login action in the back end API using the specified authentication provider, with the
specified identity string and token.

Facebook Login with this method is only availabld if the Facebook ID and token are
known beforehand.

38

TravelMatch Detailed Design Document

Parameters

Param Type Details

id string The string that represents the
identity of the user, i.e. the
user’s e-mail address or
Facebook app-specific ID.

token string A token that provides
authentication of the user, i.e.
the user’s password or
Facebook authentication
token.

use string The authentication provider
to use. This parameter can
have the following values:

– email - Use a
combination of e-mail
address and password to
log in.

– facebook - Use a
combination of
Facebook app-specific
ID and authentication
token to log in. This
value is deprecated.

Returns

Promise A promise of the user login action that is
resolved if the login was successful or rejected
with the translation ID of the error if the login
failed.

A.9 app.module

The app.module module contains all templates and controllers that pertain to the vacation details
screen of the app.

A.10 app.navigation

The app.navigation module contains all templates and directives that pertain to the header bar,
menu sidebar and navigation of the app.

A.10.1 MainCtrl

The AngularJS controller for the persistent elements of the app, which includes the header bar and
menu sidebar. This controller adds functions to the scope that allow any element that inherits from it
to open or close the menu sidebar at will.

39

TravelMatch Detailed Design Document

Methods

� goBack()

Sends the user back to the state taken from BACK BUTTON. If the current state has no back
button state, then the user will be sent to the previous state.

� hideMenu()

Hides the menu sidebar, if it is currently open.

� isMenuOpen()

Checks whether the menu sidebar is currently open or closed.

Returns

boolean true if the menu sidebar is currently open;
false if the menu sidebar is currently closed.

� showMenu()

Shows the menu sidebar, if it is currently closed.

� toggleMenu()

Toggles the display of the menu sidebar: the menu sidebar is opened if it is currently closed, or
closed if it is currently open.

A.10.2 tmHeader

A persistent header bar that is shown at the top of every screen in the app. This header shows the
title of the current state of the app, the menu button, and a back button if the current state supports
it. The header bar is hidden upon a transition to a full screen state, and adds a toggle button to open
or close it in such a state.

Usage

as element:

<tm-header>

</tm-header>

Methods

� addStateListeners()

This method is private.

Adds a listener to the $stateChangeStart event in the $rootScope that is fired upon starting
a transition to a different state. This listener prepares the header for the transition to that state.

� getTitle()

Gets the title of the current state. This title is taken from STATE NAMES.

Returns

string The title of the current state.

� init()

40

TravelMatch Detailed Design Document

This method is private.

Initializes this directive. Functionality of this method includes:

– Registering the native back button.
– Adding state listeners.
– Preparing for the current state.

� isFullScreenState()

Checks whether the current state is a full screen state. Only the tm.main.swipe state is a full
screen state, so this method simply compares the name of the current state to that.

Returns

boolean true if the current state is a full screen state;
otherwise, false.

� isHeaderlessState()

Checks whether the current state is a headerless state. Only the tm.front state is a full screen
state, so this method simply compares the name of the current state to that.

Returns

boolean true if the current state is a headerless state;
otherwise, false.

� prepareState(toState)

This method is private.

Prepares the header for a transition to the specified state. If the state is a full screen state, then
the header is hidden and the toggle button displayed. Also, the back button is displayed if the
state has a back button state defined.

Parameters

Param Type Details

toState string The state that the app is
about to transition to.

� registerBackButton()

This method is private.

This method registers the function of the native back button on devices that support it, such
as Android-based devices. If the native back button is pressed, the app transitions to the back
button state as defined in BACK BUTTON. If no back button state has been defined for the
current state, then the back button exits the app.

� toggleHeader()

Toggles the display of the header: hiding it if the header is visible, or showing it if the header is
not visible. Additionally, if the menu sidebar is open, this method also closes it.

A.10.3 tmLoginTabs

The tabs shown at the top of the login and registration screens, that allow the user to switch between
the two screens. This directive provides no further content.

41

TravelMatch Detailed Design Document

Usage

as element:

<tm-login-tabs>

</tm-login-tabs>

A.10.4 tmMenu

A persistent menu sidebar that slides in from the right, with a set of options that can change depending
on whether the user is authenticated or not.

Usage

as element:

<tm-menu>

</tm-menu>

Methods

� isLoggedIn()

Checks whether the user is currently authenticated or not.

Returns

boolean true if the user is authenticated; otherwise,
false.

� logout()

Hides the menu sidebar, removes all authentication data of the current user and shows a pop-up
message notifying the user that they have been logged out. Afterwards, the user is transferred
to the front screen, or to the login screen if USE FRONT is false.

Properties

� states

An array of menu option objects that can be shown in the menu sidebar. The menu options are
shown in the same order that they are defined in this array. Each menu option object has the
following properties:

– state - The state to transition to when this menu option is pressed.

– name - The translation ID for the name to show on the menu option. If this name is
undefined, then the translation ID is taken from STATE NAMES instead.

– needAuth - Controls when the menu option is displayed based on whether the user is
authenticated or not. This property can take one of the following values:

* true - The menu option is only displayed when the user is authenticated.
* false - The menu option is only displayed when the user is not authenticated.
* undefined - The menu option is always displayed, regardless of whether the user is

authenticated or not.

– click - The name of the function to call when the menu option is selected. This function
must be defined in the scope of this directive. If this property is undefined, then the menu
sidebar is hidden when the menu option is selected.

Type: Array.<Object>

42

TravelMatch Detailed Design Document

A.10.5 tmMenuButton

The menu button used in the header bar. This directive provides no further content.

Usage

as element:

<tm-menu-button>

</tm-menu-button>

A.11 app.registration

The app.registration module contains all templates, controllers and services that pertain to the
registration screen of the app.

A.11.1 RegistrationCtrl

The AngularJS controller for the registration screen. The registration screen currently supports regis-
tering with an e-mail address and password.

Methods

� register()

Performs an account registration with the current values of the e-mail address and both password
input fields. If the registration fails, an error pop-up is shown. Otherwise, a success pop-up is
shown telling the user to check their e-mail for the activation link, and afterwards the user is
transferred to the login screen. This method also clears the password input fields.

Properties

� data

Represents the model of the credentials input fields.

Object properties:

– username - The value of the e-mail address input field.
– password - The value of the first password input field.
– password2 - The value of the second password input field.

Type: Object

A.11.2 RegistrationService

Provides methods for registering TravelMatch accounts in the back end.

Methods

� FBRegister(fbuser, fbtoken)

Registers a new user in the back end server with the specified Facebook app-specific ID and Face-
book authentication token. The promise returned by this method is resolved if the registration
was successful, or rejected with the translation ID of the error that occurred if the registration
failed.

Parameters

43

TravelMatch Detailed Design Document

Param Type Details

fbuser string The Facebook app-specific ID
of the user.

fbtoken string The Facebook authentication
token of the user.

Returns

Promise A promise of the registration.

� lastEmail()

Returns the last e-mail address used for successful registration in this app session.

Returns

string The e-mail address, or null if no e-mail
registration succeeded in this session.

� registerUser(email, pw, pw2)

Registers a new user in the back end server with the specified e-mail address and password. The
promise returned by this method is resolved if the registration was successful, or rejected with
the translation ID of the error that occurred if the registration failed. After registration, the user
must click an activation link in their e-mail before they may login.

Parameters

Param Type Details

email string The e-mail address of the
user.

pw string The desired password of the
user.

pw2 string A repeat of the desired
password, for validation
purposes.

Returns

Promise A promise of the registration.

Properties

� email

This property is private. Use email().

The last e-mail address used for successful registration in this session.

Type: string

44

TravelMatch Detailed Design Document

A.12 app.swipe

The app.swipe module contains all templates, controllers, services and directives that pertain to the
interest analysis screen of the app.

A.12.1 SwipeCtrl

The AngularJS controller for the interest analysis screen.

Methods

� checkNeedsMore()

This method is private.

Checks whether the image buffer contains enough images to finish the current interest analysis
without having to retrieve additional images. Additionally, this method updates $scope.needsMore.

Returns

boolean true if more images are needed; otherwise,
false.

� imageError(data)

This method is private.

Displays the specified error message in a pop-up, then transfers the user to the vacation details
screen.

Parameters

Param Type Details

data string The translation ID of the error
message.

� imageSuccess(images)

This method is private.

Receives images from the ImageService and stores them in the image buffer in the model. If no
images are supplied, an error pop-up is shown instead.

Parameters

45

TravelMatch Detailed Design Document

Param Type Details

images Array.<Object> An array of image objects,
with the following properties:

– id - The ID of the
image.

– url - The URL of the
image.

– width - The width of
the image, in pixels.

– height - The height of
the image, in pixels.

� init()

Initializes this controller. Functionality of this method includes:

– Redirecting the user to the vacation details screen if the vacation details are unavailable.
– Retrieving the initial set of images.
– Setting the limit of the current interest analysis.

� onSwipe(imageId, choice)

Posts a (dis)like for the specified image to the back end and retrieves the next image.

Parameters

Param Type Details

imageId number The image ID of the image
that was (dis)liked.

choice boolean true to post a like; false to
post a dislike.

Properties

� currentProgress

The current progress of the interest analysis.

Type: number

� images

An array of image objects to use as the model for the swipeable images, with the following
properties:

– id - The ID of the image.
– url - The URL of the image.
– width - The width of the image, in pixels.
– height - The height of the image, in pixels.

Type: Array.<Object>

� isDone

46

TravelMatch Detailed Design Document

Whether the current interest analysis is done. This property is updated whenever checkNeedsMore
is called.

Type: boolean

� limit

The amount of images shown per interest analysis.

Type: number

� needsMore

Whether the current interest analysis requires more images to be loaded from the server in order
to finish. This property is updated whenever checkNeedsMore is called.

Type: boolean

A.12.2 tmPhoto

A container for the swiping interface in the interest analysis screen. This directive is powered by an
image buffer from which the images to swipe are drawn. The top image in the buffer can be dragged
to the left or right to indicate a dislike or like respectively. This directive also generates buttons on the
bottom that can be used to (dis)like an image. Upon (dis)liking an image, a callback function can be
called.

Usage

as element:

<tm-photo

images="{Array.<Object>}"

onchoice="{expression}"

needsmore="{boolean}"

isdone="{boolean}">

</tm-photo>

Directive info

� This directive creates new scope.

Param Type Details

images Array.<Object> An array of image objects to
use as the model for the
swipeable images, with the
following properties:

� id - The ID of the
image.

� url - The URL of the
image.

� width - The width of
the image, in pixels.

� height - The height of
the image, in pixels.

47

TravelMatch Detailed Design Document

Param Type Details

onchoice expression The callback expression to
execute in the controller when
the user (dis)likes an image.
This function takes the
following arguments:

� image id - The image
ID of the image that
was (dis)liked.

� choice - true if the
image was liked; false
if the image was
disliked.

needsmore boolean A boolean that indicates
whether more pictures will be
supplied.

isdone boolean A boolean that indicates
whether all pictures have been
displayed.

Parameters

Methods

� finished()

This method is private.

Called when interest analysis is complete. Shows calculating image and text.

� nextImage()

Sets a timer of 300ms to remove the current swipe image from the image buffer and enable the
next one.

� onDrag()

This method is private.

Called on every step of a dragging motion on the swipe image.

� onDragStart()

This method is private.

Initializes a dragging motion on the swipe image.

� onDragStop()

This method is private.

Ends a dragging motion on the swipe image. If the image was dragged beyond 1/4th of the screen
or was dragged at a delta of 1/100th of the screen, it is swiped to the left or right depending on
its direction. If neither event occurred or both occurred in opposite directions, the swipe image
moves back to its initial position.

� refresh()

Refreshes the current swipe image and background image with the first two images currently in
the image buffer.

48

TravelMatch Detailed Design Document

� swipe(choice)

Moves the current swipe image off the screen and retrieves the next image. If onchoice is
defined, it is called with the image ID of the first image in the image buffer and the choice

parameter.

If choice is true then the image is moved to the right; otherwise, it is moved to the left.

Parameters

Param Type Details

choice boolean true to indicate a like; false
to indicate a dislike.

A.12.3 ImageService

Provides methods for receiving images from the back end and recording choices in the back end.

Methods

� acceptImages(data)

This method is private.

Accepts images from the back end server and filters out all invalid images. For every image,
the optimal size for this device’s screen is selected. This method selects the largest size that
is smaller than this device’s resolution; this is calculated by multiplying width by height. If no
suitable size could be found, the smallest possible size is selected instead.

Parameters

Param Type Details

data Array.<Object> An array of image objects with
multiple size objects, obtained
from the back end API.

Returns

Array.<Object> An array of the chosen image objects, with the
following properties:

– id - The ID of the image.
– url - The URL of the chosen image size.
– width - The width of the chosen image

size, in pixels.
– height - The height of the chosen image

size, in pixels.

If no valid images were found, an empty array is
returned.

� get(n)

Retrieves the specified number of images. The promise returned by this method is resolved if
the retrieval was successful or rejected with the translation ID of the error if the retrieval failed.
If the promise resolves, an object with following properties is passed:

49

TravelMatch Detailed Design Document

– id - The ID of the image.
– url - The URL of the chosen image size.
– width - The width of the chosen image size, in pixels.
– height - The height of the chosen image size, in pixels.

Parameters

Param Type Details

n
(optional)

number The amount of images to
retrieve. Must be at least 1
and at most 100. If out of
range, the closest value within
range is chosen instead.
(default: 1)

Returns

Promise A promise of the image retrieval action that

� httpError(deferred, data)

This method is private.

Rejects the provided deferred object with the matching translation ID of an error message based
on the HTTP status code received from the back end.

Parameters

Param Type Details

deferred Object The deferred object received
from the caller.

data Object The data received from the
back end.

� httpSuccess(deferred, data, parser)

This method is private.

Parses the provided data with the provided parser function, then resolves the provided deferred
object with the parsed data.

Parameters

Param Type Details

deferred Object The deferred object received
from the caller.

data Object The data received from the
back end.

parser function The parser function to be
used to parse the data
received from the back end.

� initial()

50

TravelMatch Detailed Design Document

Retrieves the initial set of images for the specified vacation details.

Equivalent to calling get(5).

Returns

Promise A promise of the image retrieval action that is
resolved if the retrieval was successful or
rejected with the translation ID of the error if
the retrieval failed.

� next(imageId, like, isLast)

Posts the (dis)like choice of the current image to the back end and optionally retrieves the new
image. The promise returned by this method is resolved if the action was successful or rejected
with the translation ID of the error if the retrieval failed.

Parameters

Param Type Details

imageId number The ID of the image that was
(dis)liked.

like boolean true if the user liked the
specified image; otherwise,
false.

isLast
(optional)

boolean If true, this method will not
retrieve any new images.
(default: false)

Returns

Promise A promise of the choice post and image
retrieval action.

A.13 app.user.details

The app.user.details module contains all templates, controllers and services that pertain to the
user details screen.

A.13.1 UserDetailCtrl

The AngularJS controller for the user details screen.

Methods

� save()

Posts the current values of the user data input fields to the back end. If the post fails, an error
pop-up is shown; otherwise, a success pop-up is shown and afterwards the user is transferred to
the interest analysis screen.

Properties

� info

51

TravelMatch Detailed Design Document

The model for the user info input fields, with the following properties:

– name - string - The name of the user.
– gender - string - The gender of the user. Can be one of the following values:

* none

* male

* female

– birthday - Date - The birth date of the user.

Type: Object

A.13.2 UserDetailsService

Provides methods for getting and setting the user info from the back end.

Methods

� get()

Gets the user info from the back server. The promise returned by this method is resolved if the
retrieval was successful or rejected with the translation ID of the error if the retrieval failed. If
the promise resolves, an object with the following properties is passed:

– name - string - The name of the user.
– gender - string - The gender of the user. Can be one of the following values:

* none

* male

* female

– birthday - Date - The birth date of the user.

Returns

Promise A promise of the user info get action.

� put(info)

Puts the user data on the back end service. The promise returned by this method is resolved if
the storage was successful or rejected with the translation ID of the error if the storage failed.

Parameters

52

TravelMatch Detailed Design Document

Param Type Details

info Object A user info object with the
following optional properties:

– name - string - The
name of the user.

– gender - string - The
gender of the user. Can
be one of the following
values:

* none

* male

* female

– birthday - Date - The
birth date of the user.

Returns

Promise A promise of the user info put action.

53

TravelMatch Detailed Design Document

Appendix B

Back end documentation

B.1 Documentation template

Each object in the back end documentation is documented with the following template:

Name of class

A description of the class, with an inheritance diagram.

Public Member Functions (if applicable)

� def functionName (self, parameterName)

Description of the function.

Private Member Functions (if applicable)

� def functionName (self, parameterName)

Description of the function.

Private Attributes (if applicable)

� attribute name

Constructor & Destructor Documentation

def init (self) A description of the constructor.

Member Function Documentation (if applicable)

def function name (self, parameter name, optional parameter name = default value

) [private] A description of the function.
Parameters (if applicable)

parameter ←↩

name
A description of the parameter.

<parameter ←↩

name>
The type of the parameter.

optional ←↩

parameter ←↩

name

A description of the optional parameter.

<optional ←↩

parameter ←↩

name>

The type of the parameter.

54

TravelMatch Detailed Design Document

default value A description of the default value. Default: the default value.

Returns (if applicable)

The return type

Member Data Documentation (if applicable)

data name [private] The documentation for this class was generated from the following file:

� directory/file.py

B.2 affiliate

affiliate is a namespace that contains classes, variables and functions that relate to the affiliate
networks components. This namespace mainly acts as a container for several other namespaces, namely
those relating to the affiliate parsers, the models, serializers and views.

Namespaces

� affiliate parser

� models

� serializer

� tradetracker

� views

B.3 affiliate.affiliate parser

affiliate.affiliate parser is a namespace that contains classes, variables and functions that
relate to affiliate network parsers. This namespace contains an abstract parser, which can be extended
to parse feeds from any supported affiliate network. Extenders should define a parser name and set
up an entry mapping in the constructor to adapt the base parser to a specific feed.

Classes

� class Parser

This class represents a parser object in affiliate.

B.3.1 Parser

This class represents a parser object in affiliate.
Inheritance diagram for Parser:

Parser

object

ArkeParser

55

TravelMatch Detailed Design Document

Public Member Functions

� def init (self)

Initialize all required dictionaries and lists.

� def process single (self, feed url)

Processes a single url.

Private Member Functions

� def store entry (self)

Stores all information inside the dictionaries inside the model.

� def find and add all xml attributes (self, xml keys required, entry)

Finds the required xml variables using the xml-attribute syntax in the entry and stores their attribute
them in the dictionary.

� def find and add all xml elements (self, xml keys required, entry)

Finds the required xml variables using the xml-elements syntax in the entry and stores their attribute
them in the dictionary.

� def get root (self, feed url)

Opens a URL and returns the root of its elementTree.

� def add entry

Adds an entry to the dictionaries of this object.

� def check for discard (self)

Checks if the current entry should be discarded.

� def get correct attribute value (self, model field name)

Gets the attribute value corresponding to the given model field name.

� def get correct date format (self, date)

Make the format of the date as Django accepts.

� def is rep ok (self)

Checks if all must have model variables have been initialized.

Private Attributes

� model variables

� must have model variables

� model to attributes

� xml to model

Detailed Description

This class represents a parser object in affiliate.

Constructor & Destructor Documentation

def init (self) Initialize all required dictionaries and lists.

Member Function Documentation

def add entry (self, model field name, xml name, not found value = None) [private]

Adds an entry to the dictionaries of this object.
The variables given in xml name will be sought for in the url and stored in the database at the

given model field variable.

56

TravelMatch Detailed Design Document

Parameters

model field ←↩

name
The name of the model field variable.

<model field←↩

name>
basestring

xml name The EXACT xml name inside the description. Input 'None' if value needs not to
be fetched from the XML feed.

<xml name> basestring
not found ←↩

value
Default value which is stored in the model when not found. Default: None.

Returns

Void

def check for discard (self) [private]

Checks if the current entry should be discarded.
This happens when a must have model variable was None (i.e. not found and no default).

Returns

Boolean whether the entry should be sicarded.

def find and add all xml attributes (self, xml keys required, entry) [private]

Finds the required xml variables using the xml-attribute syntax in the entry and stores their attribute
them in the dictionary.
Parameters

xml keys ←↩

required
All XML keys whereof the attributes needs to be added.

<xml keys ←↩

required>
String[]

entry An entry of the xml file which needs to be checked.
<entry> eTree

def find and add all xml elements (self, xml keys required, entry) [private]

Finds the required xml variables using the xml-elements syntax in the entry and stores their attribute
them in the dictionary.
Parameters

xml keys ←↩

required
All XML keys whereof the attributes needs to be added.

<xml keys ←↩

required>
String[]

entry An entry of the xml file which needs to be checked.
<entry> eTree

Finds all needed xml keys in the XML elements syntax and adds them to

the attributes ADT.

:param xml_keys_required: All XML keys whereof the attributes needs to be added.

:param entry: The entry to be checked.

:return: Void

57

TravelMatch Detailed Design Document

def get correct attribute value (self, model field name) [private]

Gets the attribute value corresponding to the given model field name.
Contains extra input checking for inputs in the wrong format.

Parameters

model field ←↩

name
The variable name of the model field variable.

<model field←↩

name>
basestring

Returns

The corresponding attribute value of the model field name

Gets the attribute value corresponding to the given model_field_name.

:param model_field_name: The name of the model field variable.

:return: The corresponding attribute value.

def get correct date format (self, date) [private]

Make the format of the date as Django accepts.
Parameters

date The date or datetime to be formalized in a correct format.
<date> basestring

Returns

The date in a correct format.

Make the format of the date as Django wants.

:param date: The date (or datetime) to be formalized in a correct format.

:return: Returns date in the correct Django format.

def get root (self, feed url) [private]

Opens a URL and returns the root of its elementTree.
Parameters

feed url The feed url which needs to be opened
<feed url> URL

Returns

Root of the elementtree of the feed url.

Opens a URL and returns the root

def is rep ok (self) [private]

Checks if all must have model variables have been initialized.

def store entry (self) [private]

Stores all information inside the dictionaries inside the model.

Returns

A boolean whether it is was a success or failure.

def process single (self, feed url) Processes a single url.
The required data will be retrieved from the URL and stored in the database.

58

TravelMatch Detailed Design Document

Parameters

feed url The feed url which needs to be parsed.
<feed url> URL

Returns

Void

Processes a single feed and makes a database entry.

:param feed_url: The feed url to be processed.

:return: Void

Member Data Documentation

model to attributes [private]

model variables [private]

must have model variables [private]

xml to model [private]

The documentation for this class was generated from the following file:

� travelmatch/affiliate/affiliate parser.py

B.4 affiliate.models

affiliate.models is a namespace that contains classes, variables and functions that relate to the
affiliate network models. This namespace contains all the models for the retrieval and storage of affiliate
feeds, as well as the feeds and parsers themselves.

Classes

� class AbstractParserModel

The abstract of a parser which can process a URL.

� class AffiliateFeed

A feed consists of the url feed an a parser to process the url.

� class ArkeParserModel

The specific parser for Arke.

� class Trip

Represents a trip users can book.

Functions

� def parse the feed (sender, instance=None, args, kwargs)

This method pass the feed to the parser.

Function Documentation

def affiliate.models.parse the feed (sender, instance = None, args, kwargs) This
method pass the feed to the parser.

59

TravelMatch Detailed Design Document

Parameters

instance The feed that needs to be parsed
<instance> object

sender not used
args not used

kwargs not used

Precondition

instance is not None : instance being parsed

B.4.1 AbstractParserModel

The abstract of a parser which can process a URL.
Inheritance diagram for AbstractParserModel:

AbstractParserModel

Model

ArkeParserModel

Public Member Functions

� def process single (self, url)

Processes the given URL and stores the info inside the URL into the database.

� def unicode (self)

This method make sure the object is stored and retrieved in certain format:

� def name (self)

Returns the name of the parser.

Static Public Attributes

� tuple parser id = models.AutoField(primary key=True)

Private Member Functions

� def get parser (self)

Detailed Description

The abstract of a parser which can process a URL.

Member Function Documentation

def unicode (self) This method make sure the object is stored and retrieved in certain
format:

Returns

object in this format: u'Parser '+str(self.name())

60

TravelMatch Detailed Design Document

def get parser (self) [private]

def name (self) Returns the name of the parser.

Returns

Name of the parser.

def process single (self, url) Processes the given URL and stores the info inside the URL into
the database.
Parameters

url The URL to be processed.
<url> URL

Member Data Documentation

tuple parser id = models.AutoField(primary key=True) [static]

The documentation for this class was generated from the following file:

� travelmatch/affiliate/models.py

B.4.2 AffiliateFeed

A feed consists of the url feed an a parser to process the url.
Inheritance diagram for AffiliateFeed:

AffiliateFeed

Model

Classes

� class Meta

This enforce the combined super keys.

Public Member Functions

� def parse (self)

Processes the contents of the URL and stores it inside the database.

Static Public Attributes

� tuple url = models.URLField(max length=2048)

� tuple parser = models.ForeignKey(ArkeParserModel, null=False)

� tuple unique together = ((”url”, ”parser”),)

Detailed Description

A feed consists of the url feed an a parser to process the url.

61

TravelMatch Detailed Design Document

Member Function Documentation

def parse (self) Processes the contents of the URL and stores it inside the database.

Member Data Documentation

tuple parser = models.ForeignKey(ArkeParserModel, null=False) [static]

tuple unique together = ((”url”, ”parser”),) [static]

tuple url = models.URLField(max length=2048) [static]

The documentation for this class was generated from the following file:

� travelmatch/affiliate/models.py

B.4.3 AffiliateFeed.Meta

This enforce the combined super keys.

Detailed Description

This enforce the combined super keys.
The documentation for this class was generated from the following file:

� travelmatch/affiliate/models.py

B.4.4 ArkeParserModel

The specific parser for Arke.
Inheritance diagram for ArkeParserModel:

ArkeParserModel

AbstractParserModel

Model

Private Member Functions

� def get parser (self)

Additional Inherited Members

Detailed Description

The specific parser for Arke.

Member Function Documentation

def get parser (self) [private]

The documentation for this class was generated from the following file:

� travelmatch/affiliate/models.py

62

TravelMatch Detailed Design Document

B.4.5 Trip

Represents a trip users can book.
Inheritance diagram for Trip:

Trip

Model

Public Member Functions

� def get must fields (self)

Returns the must-have field names as defined by our client.

� def get fields (self)

Returns the field names of the model as a list.

� def convert to trip offer (self)

This function convert an location to an Trip Offer object.

Static Public Attributes

� tuple name = models.CharField(max length=64)

� tuple description = models.TextField()

� tuple city = models.TextField()

� tuple region = models.TextField(null=True)

� tuple country = models.TextField(null=True)

� tuple hotel stars = models.IntegerField(null=True)

� tuple price = models.FloatField()

� tuple link = models.URLField()

� tuple image = models.URLField()

� tuple min nr people = models.IntegerField(null=True)

� tuple departure date = models.DateField()

� tuple duration = models.IntegerField()

� tuple with flight = models.TextField()

� tuple user rating = models.FloatField(null=True)

� tuple created on = models.DateTimeField(auto now add=True)

Detailed Description

Represents a trip users can book.
Parameters

name The name of the accommodation.
<name> String

description A description of the destination.
<description> String

63

TravelMatch Detailed Design Document

city The city of the trip.
<city> String

region The region of the trip.
<region> String

country The country of the trip.
<country> String
hotel stars The amount of stars the accommodation has

<hotel stars> Integer
price The price of the whole trip.

<price> Float
link An affiliate link to book the trip.

<link> URL
image An image of the trip.

<image> Image
min nr people (Minimum) number of people for the trip.

<min nr ←↩

people>
Integer

departure date The date of departure
<departure ←↩

date>
Date

duration The duration of the trip.
<duration> Integer

with flight Whether a flight is included with the trip.
<with flight> Boolean

user rating A user rating of the hotel
<user rating> Float

Member Function Documentation

def convert to trip offer (self) This function convert an location to an Trip Offer object.

Returns

whether the conversion worked or not my offer.save(): The new Trip Offer object saved

def get fields (self) Returns the field names of the model as a list.

Returns

All field names of the model.

def get must fields (self) Returns the must-have field names as defined by our client.

Returns

All must-have field names of the model.

Member Data Documentation

tuple city = models.TextField() [static]

tuple country = models.TextField(null=True) [static]

64

TravelMatch Detailed Design Document

tuple created on = models.DateTimeField(auto now add=True) [static]

tuple departure date = models.DateField() [static]

tuple description = models.TextField() [static]

tuple duration = models.IntegerField() [static]

tuple hotel stars = models.IntegerField(null=True) [static]

tuple image = models.URLField() [static]

tuple link = models.URLField() [static]

tuple min nr people = models.IntegerField(null=True) [static]

tuple name = models.CharField(max length=64) [static]

tuple price = models.FloatField() [static]

tuple region = models.TextField(null=True) [static]

tuple user rating = models.FloatField(null=True) [static]

tuple with flight = models.TextField() [static]

The documentation for this class was generated from the following file:

� travelmatch/affiliate/models.py

B.5 affiliate.serializer

affiliate.serializer is a namespace that contains classes, variables and functions that relate to
the affiliate network serializers. This namespace contains Django serializers, which verify and modify
the input and output of data in the model.

65

TravelMatch Detailed Design Document

B.6 affiliate.tradetracker

affiliate.tradetracker is a namespace that contains classes, variables and functions that relate
to TradeTracker-specific affiliate network parsers. This namespace contains namespaces with classes
that extend the abstract parser in the affiliate.affiliate parser namespace to parse feeds from
TradeTracker.

Namespaces

� arke parser

B.7 affiliate.tradetracker.arke parser

affiliate.tradetracker.arke parser is a namespace that contains classes, variables and func-
tions that relate to ArkeFly-specific affiliate network parsers. This namespace contains the concrete
parser for ArkeFly from the TradeTracker affiliate network that extends the abstract parser in the
affiliate.affiliate parser namespace.

Classes

� class ArkeParser

This is the specific parser for the Arke feed of TradeTracker.

B.7.1 ArkeParser

This is the specific parser for the Arke feed of TradeTracker.
Inheritance diagram for ArkeParser:

ArkeParser

Parser

object

Public Member Functions

� def init (self)

Initializes all variables which needs to be found in the XML files.

Static Public Attributes

� string parser name = ”Arke”

Detailed Description

This is the specific parser for the Arke feed of TradeTracker.

Constructor & Destructor Documentation

def init (self) Initializes all variables which needs to be found in the XML files.
and stored inside the database.

66

TravelMatch Detailed Design Document

Member Data Documentation

string parser name = ”Arke” [static]

The documentation for this class was generated from the following file:

� travelmatch/affiliate/tradetracker/arke parser.py

B.8 affiliate.views

affiliate.views is a namespace that contains classes, variables and functions that relate to the
affiliate network views. This namespace would contain Django view controllers for managing the
affiliate network feeds; however, as no Django view controllers are required, this namespace is left
empty.

B.9 ai

ai is a namespace that contains classes, variables and functions that relate to the artificial intelligence
components. This namespace mainly acts as a container for several other namespaces, namely those
relating to the entropy calculation, the recommender system, the models, serializers and views.

Namespaces

� entropy

� models

� recommender system

� serializers

� views

B.10 ai.entropy

ai.entropy is a namespace that contains classes, variables and functions that relate to the entropy
calculation. This namespace contains the functions which retrieves the next images based on a self-
defined entropy value of that image. These images are then shown to the user in the interest analysis
to maximize the information gain for the Travel DNA. It also stores a blacklist from the images which
should not be recommended as well as keeps track of the entropy score of the user.

Functions

� def calculate next images (entropy input, number of images to load, vacation)

The function that calclulates the next n recommended images to send to the user from some travel←↩

DNA.

� def initialize vacation tags (vacation)

Initializes all vacation tags to 0.

� def get entropy data (vacation)

Returns the entropy data that is stored inside vacation tag.

� def add to blacklist (image object, vacation)

Adds an image to the blacklist.

� def purge blacklist (vacation)

Removes all elements from the blacklist.

� def get first n random (number of images to load, vacation)

Returns n random images which are not in the blacklist.

67

TravelMatch Detailed Design Document

� def get best tag (user entropy data)

Returns the tag with the lowest score >> the best priority.

� def get best image (tag id, forbidden images)

Returns the best image object with the highest potential score for this tag >> the highest tag val
sum.

� def get best tags on total score (tag dict)

Returns a list of tags with the lowest total potential score.

� def get images sorted on best tag val (given tag id, forbidden images)

Returns a list of images based on the highest value for the given tag id.

� def get best tags on priority (tag id list)

Returns a list of tags with the lowest priority value (= best priority).

� def get best image on max sum values (best images list)

Returns a list of images with the largest sum value for its tags.

Function Documentation

def ai.entropy. add to blacklist (image object, vacation) [private]

Adds an image to the blacklist.
Parameters

image object The image object to add
vacation The vacation id of the vacation

<vacation> int

def ai.entropy. get best image (tag id, forbidden images) [private]

Returns the best image object with the highest potential score for this tag >> the highest tag val
sum.
Parameters

tag id The tag id to try to maximize on
forbidden ←↩

images
the input image lists

Returns

best image The image with the highest entropy potential

def ai.entropy. get best image on max sum values (best images list) [private]

Returns a list of images with the largest sum value for its tags.
Parameters

best images ←↩

list
A list of Image objects to filter upon

Returns

A list of Image objects with the highest sum for their tag values

def ai.entropy. get best tag (user entropy data) [private]

Returns the tag with the lowest score >> the best priority.

68

TravelMatch Detailed Design Document

Parameters

user entropy←↩

data
A dictionary consisting of {img id: img total pot value}

Returns

tag id of the best tag

def ai.entropy. get best tags on priority (tag id list) [private]

Returns a list of tags with the lowest priority value (= best priority).
Parameters

tag id list A list of tag ids

Returns

List of tag ids with the lowest priority value.

def ai.entropy. get best tags on total score (tag dict) [private]

Returns a list of tags with the lowest total potential score.
Parameters

tag dict A dictionary containing {tag id: total potential score} for all tag ids

Returns

Dictionary containing top 1 {tag id: total potential score} with the possible lowest total ←↩

potential score (returns multiple if tied).

def ai.entropy. get entropy data (vacation) [private]

Returns the entropy data that is stored inside vacation tag.
Parameters

vacation The vacation id of the vacation
<vacation> int

Returns

Dictionary with {tag id: total pot value} for all tag id in Tag.objects.all()

def ai.entropy. get images sorted on best tag val (given tag id, forbidden images)
[private]

Returns a list of images based on the highest value for the given tag id.
Parameters

given tag id The tag id to search an image on
forbidden ←↩

images
the input image lists

Returns

List of image objects

def ai.entropy. initialize vacation tags (vacation) [private]

Initializes all vacation tags to 0.

69

TravelMatch Detailed Design Document

Parameters

vacation The vacation id of the vacation
<vacation> int

def ai.entropy. purge blacklist (vacation) [private]

Removes all elements from the blacklist.
Parameters

vacation The vacation id of the vacation
<vacation> int

def ai.entropy.calculate next images (entropy input, number of images to load, vacation
) The function that calclulates the next n recommended images to send to the user from some
travelDNA.

It bases this calculation on the entropy loss for each image. The user input consists of a array of
likings and disliking with the according tagvalues. So it consists of [{'like': True, 0: val0, 1: val1,
2: val2, .., n: valn}, ...] where the 'like' key is a boolean that represents a liking. The 0 to n keys
are the id's of all n active tags in the database with their corresponding values for the image that was
liked/disliked. If no value was given for a tag the value is set to 0.

Precondition

0 <= val <= 100 for all values
1 <= n <= 100
all active tag ids in the database are in the dictonary

Parameters

entropy input [{'like': True, 0: val0, 1: val1, 2: val2, .., n: valn}, ...,]
number of ←↩

images to load
the number of images that are requested

<number of ←↩

images to ←↩

load>

int

vacation the input vacation
<vacation> VacationDetails

Returns

an array of image objects of length n. When it cannot find n images, less (or zero) image objects
can be returned

def ai.entropy.get first n random (number of images to load, vacation) Returns n random
images which are not in the blacklist.
Parameters

number of ←↩

images to load
the number of images that are requested

70

TravelMatch Detailed Design Document

<number of ←↩

images to ←↩

load>

int

vacation The vacation id of the iser
vacation int

Returns

List of 5 random non-duplicate image objects.

B.11 ai.models

ai.models is a namespace that contains classes, variables and functions that relate to the artificial
intelligence models. This namespace contains all Django models related to artificial intelligence, which
includes swipe images and their attributes, locations, all type of tags, Travel DNAs, and data required
for AI calcuation such as the image and location blacklists.

Classes

� class ImageBlacklistItem

This class is for the image blacklist item object.

� class ImageDimension

This represents all the image dimensions database support.

� class ImageTag

This represents the tag for images.

� class Location

The locations the Travelmatch supports.

� class LocationBlacklistItem

This class is for the lovation blacklist item object.

� class LocationTag

This represents the tag for locations.

� class SwipeImage

The images user relieve to swipe.

� class Tag

This class represents the tag object either for images or locations.

� class TravelDNA

This stores the Travel DNA of the user.

� class TripOffer

This represents the offer of trip.

� class VacationTag

This represnts the vacation tag object.

Functions

� def get max abs price (budget)

Does the budget filtering.

� def create

< activation status, for versioning

� def unicode (self)

Returns the SwipeImage object in certain format.

71

TravelMatch Detailed Design Document

� def get file loc (self, image dimension)

Return the file location of this image for each dimension to get the abs path (/var/www/media/swipe←↩

images/test-photo-1 1080x1920.jpg) you use MEDIA ROOT + get file loc().

� def get abs file loc (self, image dimension)

� def get file url (self, image dimension)

� def get all file dimension instaces in folder (self)

This method returns all the instance within the iamge folder.

� def remove all file instances (self)

This method remove all swipe image file in the folder os.remove(file) all the files in the swipe image
folder gets removed.

� def force create file instances (self, image dimensions)

Create all the different versions of an image with the specified image dimensions.

� def update file instances (self, image dimensions)

This method update all the swipe image files and adapt them to the given image dimensions.

� def has all file instances (self, image dimensions)

This method check whether the swipe image was converted to image dimensions or not.

� def create json response (self)

Creates the json response in a python dict as specified in the API (GET: /user/swipe)

� def img html tag (self)

returning a string containing image's resolution and url

� def create missing tags (self, new tags)

Creates any missing tag values.

� def activate image (self)

This function activate the swipe image self.active=True: activation of the swipe image.

� def deactivate image (self)

This function deactivate the swipe image self.active=False: deactivation of the swipe image.

� def update images dimension (sender, instance=None, args, kwargs)

This function adapts the SwipeImage object into the dimensions in the database.

� def create missing tags (sender, instance=None, args, kwargs)

This function creates the needed LocationTags when creating a new location.

Variables

� tuple img id = models.AutoField(primary key=True)

� tuple created = models.DateTimeField(auto now add=True)

< id of the image (primary key) (integer)

� tuple uploaded by = models.ForeignKey(User)

< date image being uploaded (integer)

� tuple original filename = models.ImageField(upload to='swipe images')

< the admin user added the image (admin user id)

� tuple active = models.BooleanField(null=False, default=True)

< the image (ImageField)

Function Documentation

def ai.models. unicode (self) Returns the SwipeImage object in certain format.

Returns

Tag u'Image s: s' % (self.img id, self.original filename)

72

TravelMatch Detailed Design Document

def ai.models.activate image (self) This function activate the swipe image self.active=True:
activation of the swipe image.

def ai.models.create (self, force insert = False, force update = False, using = None,
update fields = None) < activation status, for versioning

creating a new tag tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

IntegrityError if the was precondition violated

Returns

Void new Tag object

def ai.models.create json response (self) Creates the json response in a python dict as specified
in the API (GET: /user/swipe)

Returns

json: json object containing image dimensions and size

def ai.models.create missing tags (self, new tags) Creates any missing tag values.
Parameters

new tags all the Tag objects to create if needed

def ai.models.create missing tags (sender, instance = None, args, kwargs) This
function creates the needed LocationTags when creating a new location.

Precondition

None

Parameters

sender
instance input images

args not used
kwargs not used Location: Location.create missing tags

def ai.models.deactivate image (self) This function deactivate the swipe image self.←↩

active=False: deactivation of the swipe image.

def ai.models.force create file instances (self, image dimensions) Create all the different
versions of an image with the specified image dimensions.

73

TravelMatch Detailed Design Document

Parameters

image ←↩

dimensions
ImageDimensions

Returns

image: image with image dimensions

def ai.models.get abs file loc (self, image dimension)

See also

get file loc

def ai.models.get all file dimension instaces in folder (self) This method returns all the
instance within the iamge folder.

Returns

[SwipeImages]: all swipe images in the image folder

def ai.models.get file loc (self, image dimension) Return the file location of this image
for each dimension to get the abs path (/var/www/media/swipe images/test-photo-1 1080x1920.jpg)
you use MEDIA ROOT + get file loc().

To get the abs url use BASE URL+MEDIA URL + get file loc().

Returns

string: filename + + dimension.to x() + .jpg

def ai.models.get file url (self, image dimension)

See also

get file loc

def ai.models.get max abs price (budget) Does the budget filtering.
Parameters

budget the budget saved in the location details (in cents) (int)

Returns

the budget margin for which offers can be retrieved (in euros)

def ai.models.has all file instances (self, image dimensions) This method check whether
the swipe image was converted to image dimensions or not.
Parameters

image ←↩

dimensions
the image dimensions you wish to check

<image ←↩

dimensions>
[ImageDimension]

Returns

boolean value whether the swipe image was converted to image dimensions or not

74

TravelMatch Detailed Design Document

def ai.models.img html tag (self) returning a string containing image's resolution and url

Returns

string: '' % (url, resolution[0].width, resolution[0].height)

def ai.models.remove all file instances (self) This method remove all swipe image file in the
folder os.remove(file) all the files in the swipe image folder gets removed.

def ai.models.update file instances (self, image dimensions) This method update all the
swipe image files and adapt them to the given image dimensions.
Parameters

image ←↩

dimensions
the image dimensions you wish to have

<image ←↩

dimensions>;
[ImageDimension]

Returns

Boolean whether the images are updated or not SwipeImages updated according to the image
dimensions

def ai.models.update images dimension (sender, instance = None, args, kwargs) This
function adapts the SwipeImage object into the dimensions in the database.

Precondition

None

Parameters

sender
instance input images

args not used
kwargs not used SwipeImage: SwipeImage.update images dimension

Variable Documentation

active = models.BooleanField(null=False, default=True) < the image (ImageField)

tuple created = models.DateTimeField(auto now add=True) < id of the image (primary key)
(integer)

tuple img id = models.AutoField(primary key=True)

tuple original filename = models.ImageField(upload to='swipe images') < the admin user
added the image (admin user id)

tuple uploaded by = models.ForeignKey(User) < date image being uploaded (integer)

75

TravelMatch Detailed Design Document

B.11.1 ImageBlacklistItem

This class is for the image blacklist item object.
Inheritance diagram for ImageBlacklistItem:

ImageBlacklistItem

Model

Classes

� class Meta

< date the tag is added (Datefield)

Public Member Functions

� def create

creating a new tag tuple (not update, just create)

� def remove (self)

This function removes object from the database the BlacklistItem with vac && img is deleted.

Static Public Attributes

� tuple img = models.ForeignKey(SwipeImage, null=False)

� tuple vac = models.ForeignKey('appusers.VacationDetail', null=False)

< the image of the image blacklist object (SwipeImage)

� tuple created on = models.DateTimeField(auto now add=True)

< the vacation of the image blacklist object (VacationDetails)

Detailed Description

This class is for the image blacklist item object.

Member Function Documentation

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) creating a new tag tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

76

TravelMatch Detailed Design Document

IntegrityError if the was precondition violated

Returns

Void new Tag object

def remove (self) This function removes object from the database the BlacklistItem with vac
&& img is deleted.

Member Data Documentation

tuple created on = models.DateTimeField(auto now add=True) [static]

< the vacation of the image blacklist object (VacationDetails)

tuple img = models.ForeignKey(SwipeImage, null=False) [static]

tuple vac = models.ForeignKey('appusers.VacationDetail', null=False) [static]

< the image of the image blacklist object (SwipeImage)
The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.2 ImageBlacklistItem.Meta

< date the tag is added (Datefield)

Static Public Attributes

� tuple unique together = ((”img”, ”vac”),)

Detailed Description

< date the tag is added (Datefield)
This makes (img && vacation) a super key

Member Data Documentation

tuple unique together = ((”img”, ”vac”),) [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.3 ImageDimension

This represents all the image dimensions database support.
Inheritance diagram for ImageDimension:

ImageDimension

Model

77

TravelMatch Detailed Design Document

Classes

� class Meta

< This is the height of the image (int)

Public Member Functions

� def create

creating a new tag tuple (not update, just create)

� def unicode (self)

This returns the ImageDimensions with certain format in a string.

� def to x (self)

This returns the ImageDimensions with certain format in a string.

Static Public Member Functions

� def get all ()

This returns all the ImageDimensions objects in the database.

Static Public Attributes

� tuple width = models.IntegerField(null=False, blank=False)

� tuple height = models.IntegerField(null=False, blank=False)

< This is the width of the image (int)

Detailed Description

This represents all the image dimensions database support.

Member Function Documentation

def unicode (self) This returns the ImageDimensions with certain format in a string.

Returns

string: u''+self.to x()

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) creating a new tag tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

IntegrityError if the was precondition violated

Returns

Void new Tag object

78

TravelMatch Detailed Design Document

def get all () [static]

This returns all the ImageDimensions objects in the database.

Returns

all ImageDimensions objects

def to x (self) This returns the ImageDimensions with certain format in a string.

Returns

string: str(self.width) + ”x” + str(self.height)

Member Data Documentation

tuple height = models.IntegerField(null=False, blank=False) [static]

< This is the width of the image (int)

tuple width = models.IntegerField(null=False, blank=False) [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.4 ImageDimension.Meta

< This is the height of the image (int)

Static Public Attributes

� tuple unique together = ((”width”, ”height”),)

Detailed Description

< This is the height of the image (int)
This makes (width&&height) a super key

Member Data Documentation

tuple unique together = ((”width”, ”height”),) [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.5 ImageTag

This represents the tag for images.
Inheritance diagram for ImageTag:

ImageTag

Model

Classes

� class Meta

< the value of the image tag (int)

79

TravelMatch Detailed Design Document

Public Member Functions

� def create

creating a new tag tuple (not update, just create)

� def save (self, args, kwargs)

This method override the save function from django and ensures that every object is unique.

Public Attributes

� pk

Static Public Attributes

� tuple img = models.ForeignKey(SwipeImage, null=False)

� tuple tag = models.ForeignKey(Tag, null=False)

< the image of the image tag (SwipeImage)

� tuple value = models.IntegerField(null=False, blank=True, default=0)

< the tag of the image tag (Tag)

� tuple unique together = ((”img”, ”tag”),)

Detailed Description

This represents the tag for images.

Member Function Documentation

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) creating a new tag tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

IntegrityError if the was precondition violated

Returns

Void new Tag object

def save (self, args, kwargs) This method override the save function from django and
ensures that every object is unique.

Member Data Documentation

tuple img = models.ForeignKey(SwipeImage, null=False) [static]

pk

80

TravelMatch Detailed Design Document

tuple tag = models.ForeignKey(Tag, null=False) [static]

< the image of the image tag (SwipeImage)

tuple unique together = ((”img”, ”tag”),) [static]

tuple value = models.IntegerField(null=False, blank=True, default=0) [static]

< the tag of the image tag (Tag)
The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.6 ImageTag.Meta

< the value of the image tag (int)

Detailed Description

< the value of the image tag (int)
This makes (img && tag) a super key
The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.7 Location

The locations the Travelmatch supports.
Inheritance diagram for Location:

Location

Model

Public Member Functions

� def create

< versioned or not for versioning purposes (boolean)

� def unicode (self)

This function enforce certain format on object output return object with certain format u'Location
s: s' % (self.loc id, self.city name)

� def generate hotels offer (self, vac)

Generates hotel id's for the location overview.

� def create missing tags (self, tags)

Creates any missing tag values.

� def activate location (self)

This function activate the location self.active=True: activation of the swipe image.

� def deactivate location (self)

This function deactivate the location self.active=False: deactivation of the swipe image.

81

TravelMatch Detailed Design Document

Public Attributes

� active

Static Public Attributes

� tuple loc id = models.AutoField(primary key=True)

� tuple city name = models.CharField(max length=64, null=False, blank=False)

< id(primary key) of the location (integer)

� tuple country name = models.CharField(max length=64, null=False, blank=True, default=””)

< the name of the city of the location (string)

� tuple region name = models.CharField(max length=64, null=False, blank=True, default=””)

< the country of the location (string)

� tuple active = models.BooleanField(null=False, default=True)

< the region of the location (string)

Detailed Description

The locations the Travelmatch supports.

Member Function Documentation

def unicode (self) This function enforce certain format on object output return object with
certain format u'Location s: s' % (self.loc id, self.city name)

def activate location (self) This function activate the location self.active=True: activation of
the swipe image.

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) < versioned or not for versioning purposes (boolean)
creating a new tag tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

IntegrityError if the was precondition violated

Returns

Void new Tag object

def create missing tags (self, tags) Creates any missing tag values.
Parameters

82

TravelMatch Detailed Design Document

tags all the Tag objects to create if needed

def deactivate location (self) This function deactivate the location self.active=False: deacti-
vation of the swipe image.

def generate hotels offer (self, vac) Generates hotel id's for the location overview.
Parameters

vac The vacationdetails for wich the hotel overview must be

Returns

list: an array of hotelOffer instances

Member Data Documentation

tuple active = models.BooleanField(null=False, default=True) [static]

< the region of the location (string)

active

tuple city name = models.CharField(max length=64, null=False, blank=False) [static]

< id(primary key) of the location (integer)

tuple country name = models.CharField(max length=64, null=False, blank=True, default=””)
[static]

< the name of the city of the location (string)

tuple loc id = models.AutoField(primary key=True) [static]

tuple region name = models.CharField(max length=64, null=False, blank=True, default=””)
[static]

< the country of the location (string)
The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.8 LocationBlacklistItem

This class is for the lovation blacklist item object.
Inheritance diagram for LocationBlacklistItem:

LocationBlacklistItem

Model

Classes

� class Meta

< the vacation of the image blacklist object (VacationDetails)

83

TravelMatch Detailed Design Document

Public Member Functions

� def create

creating a new tag tuple (not update, just create)

� def remove (self)

This function removes object from the database the LocationBlacklistItem with vac && img is
deleted.

Static Public Attributes

� tuple loc = models.ForeignKey(Location, null=False)

� tuple vac = models.ForeignKey('appusers.VacationDetail', null=False)

Detailed Description

This class is for the lovation blacklist item object.

Member Function Documentation

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) creating a new tag tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

IntegrityError if the was precondition violated

Returns

Void new object

def remove (self) This function removes object from the database the LocationBlacklistItem
with vac && img is deleted.

Member Data Documentation

tuple loc = models.ForeignKey(Location, null=False) [static]

tuple vac = models.ForeignKey('appusers.VacationDetail', null=False) [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.9 LocationBlacklistItem.Meta

< the vacation of the image blacklist object (VacationDetails)

Static Public Attributes

� tuple unique together = ((”loc”, ”vac”),)

84

TravelMatch Detailed Design Document

Detailed Description

< the vacation of the image blacklist object (VacationDetails)
This makes (img && vacation) a super key

Member Data Documentation

tuple unique together = ((”loc”, ”vac”),) [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.10 LocationTag

This represents the tag for locations.
Inheritance diagram for LocationTag:

LocationTag

Model

Classes

� class Meta

This makes (tag id && loc id) a super key.

Public Member Functions

� def create

creating a new tag tuple (not update, just create)

� def save (self, args, kwargs)

This method override the save function from django and ensures that every object is unique.

Static Public Member Functions

� def put (tag id, loc id, value, initial value)

This save the new location tag, or upgrade it if it exist.

Public Attributes

� pk
� value

Static Public Attributes

� tuple tag id = models.ForeignKey(Tag, null=False)

� tuple loc id = models.ForeignKey(Location, null=False)

< tag of location tag (Tag)

� tuple value = models.IntegerField(null=False, blank=True, default=0)

< location of location tag (Location)

� tuple initial value = models.IntegerField(null=False, default=0)

< value of the location tag (integer)

85

TravelMatch Detailed Design Document

� tuple last modified by = models.ForeignKey(User, null=True)

� tuple unique together = ((”tag id”, ”loc id”),)

Detailed Description

This represents the tag for locations.

Member Function Documentation

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) creating a new tag tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

IntegrityError if the was precondition violated

Returns

Void new Tag object

def put (tag id, loc id, value, initial value) [static]

This save the new location tag, or upgrade it if it exist.
Parameters

tag id the id of the input tag
<tag id> int

loc id the input id of the location
<loc id> int

value the input value of the tag
<value> int

initial value the initial value of the input tag
<initial ←↩

value>
int

Returns

new tag with the parameters iff. the tag does not exist, else update and return the exist tag new
Tag object

def save (self, args, kwargs) This method override the save function from django and
ensures that every object is unique.

Member Data Documentation

tuple initial value = models.IntegerField(null=False, default=0) [static]

< value of the location tag (integer)

tuple last modified by = models.ForeignKey(User, null=True) [static]

86

TravelMatch Detailed Design Document

tuple loc id = models.ForeignKey(Location, null=False) [static]

< tag of location tag (Tag)

pk

tuple tag id = models.ForeignKey(Tag, null=False) [static]

tuple unique together = ((”tag id”, ”loc id”),) [static]

tuple value = models.IntegerField(null=False, blank=True, default=0) [static]

< location of location tag (Location)

value The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.11 LocationTag.Meta

This makes (tag id && loc id) a super key.

Detailed Description

This makes (tag id && loc id) a super key.
The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.12 SwipeImage

The images user relieve to swipe.
Inheritance diagram for SwipeImage:

SwipeImage

Model

Detailed Description

The images user relieve to swipe.
The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

87

TravelMatch Detailed Design Document

B.11.13 Tag

This class represents the tag object either for images or locations.
Inheritance diagram for Tag:

Tag

Model

Classes

� class Meta

< prioritizeing the tags for undecided cases, lower number has a higher priority (integer)

Public Member Functions

� def unicode (self)

< the index for ordering/sorting tag objects in the database

� def create

creating a new tag tuple (not update, just create)

Static Public Attributes

� tuple tag id = models.AutoField(primary key=True)

� tuple name = models.CharField(max length=256, null=False, blank=False)

< the id(primary key) of the tag (integer)

� tuple created on = models.DateTimeField(auto now add=True)

< the name of the tag (string)

� tuple created by = models.ForeignKey(User)

< date the tag is added (Datefield)

� tuple active = models.BooleanField(null=False, default=False)

< django admin users (integer)

� tuple priority = models.IntegerField(null=False, default=100)

< versioned or not for versioning purposes (boolean)

� string verbose name = ”Tag”

� tuple ordering = ('created on',)

< human readable name

Detailed Description

This class represents the tag object either for images or locations.

Member Function Documentation

def unicode (self) < the index for ordering/sorting tag objects in the database
representation for the Tag object

Returns

Tag object with specific format: ”u'Tag tag id, name, created on”

88

TravelMatch Detailed Design Document

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) creating a new tag tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

IntegrityError if the was precondition violated

Returns

Void new Tag object

Member Data Documentation

tuple active = models.BooleanField(null=False, default=False) [static]

< django admin users (integer)

tuple created by = models.ForeignKey(User) [static]

< date the tag is added (Datefield)

tuple created on = models.DateTimeField(auto now add=True) [static]

< the name of the tag (string)

tuple name = models.CharField(max length=256, null=False, blank=False) [static]

< the id(primary key) of the tag (integer)

tuple ordering = ('created on',) [static]

< human readable name

tuple priority = models.IntegerField(null=False, default=100) [static]

< versioned or not for versioning purposes (boolean)

tuple tag id = models.AutoField(primary key=True) [static]

string verbose name = ”Tag” [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.14 Tag.Meta

< prioritizeing the tags for undecided cases, lower number has a higher priority (integer)

Detailed Description

< prioritizeing the tags for undecided cases, lower number has a higher priority (integer)
Meta specify the human-readable name and ordering of the code
The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

89

TravelMatch Detailed Design Document

B.11.15 TravelDNA

This stores the Travel DNA of the user.
Inheritance diagram for TravelDNA:

TravelDNA

Model

Classes

� class Meta

< boolean value see if the user likes it or not

Public Member Functions

� def create

creating a new tag tuple (not update, just create)

� def display img filename (self)

This is for returning the image file name attribute.

� def user (self)

This is for returning the user of the vacation.

� def display img id (self)

This is for returning the img id of the image.

� def vac id (self)

This is for returning the vac id of the vacation.

� def display vac (self)

This is for calling the display function on the vacation from the Vacation class in AppUser.

� def display user (self)

This is for calling the display function on the vacation from the AppUser class in AppUser.

Static Public Attributes

� tuple img = models.ForeignKey(SwipeImage, null=False)

� tuple vacation = models.ForeignKey('appusers.VacationDetail', null=False)

< the image of the TravelDNA object (SwipeImage)

� tuple like = models.BooleanField(null=False)

< the vacation of the TravelDNA object (VacationDetails)

Detailed Description

This stores the Travel DNA of the user.

Member Function Documentation

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) creating a new tag tuple (not update, just create)

90

TravelMatch Detailed Design Document

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

IntegrityError if the was precondition violated

Returns

Void new Tag object

def display img filename (self) This is for returning the image file name attribute.

Precondition

: None

Postcondition

print the image file name

Returns

the image file name

def display img id (self) This is for returning the img id of the image.

Precondition

None

Postcondition

None

Returns

the img id of the image

def display user (self) This is for calling the display function on the vacation from the AppUser
class in AppUser.

Precondition

None

Postcondition

None

Returns

display() for the user of the vacation of the travelDNA

91

TravelMatch Detailed Design Document

def display vac (self) This is for calling the display function on the vacation from the Vacation
class in AppUser.

Precondition

None

Postcondition

None

Returns

display() for the vacation of the travelDNA

def user (self) This is for returning the user of the vacation.

Precondition

None

Postcondition

None

Returns

user related to the vacation

def vac id (self) This is for returning the vac id of the vacation.

Precondition

None

Postcondition

None

Returns

the vac id of the vacation

Member Data Documentation

tuple img = models.ForeignKey(SwipeImage, null=False) [static]

tuple like = models.BooleanField(null=False) [static]

< the vacation of the TravelDNA object (VacationDetails)

tuple vacation = models.ForeignKey('appusers.VacationDetail', null=False) [static]

< the image of the TravelDNA object (SwipeImage)
The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

92

TravelMatch Detailed Design Document

B.11.16 TravelDNA.Meta

< boolean value see if the user likes it or not

Static Public Attributes

� tuple unique together = ((”img”, ”vacation”),)

Detailed Description

< boolean value see if the user likes it or not
This makes (img && vacation) a super key

Member Data Documentation

tuple unique together = ((”img”, ”vacation”),) [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.17 TripOffer

This represents the offer of trip.
Inheritance diagram for TripOffer:

TripOffer

Model

Classes

� class Meta

This makes a lable for this TripOffer class.

Public Member Functions

� def create

creating a new tag tuple (not update, just create)

� def generate json response (self)

this function generates json response from TripOffSerilaizer return the json response data

Static Public Attributes

� tuple offer id = models.AutoField(primary key=True)

� tuple loc = models.ForeignKey(Location)

� tuple name = models.CharField(max length=64, null=False, blank=False)

� tuple description = models.TextField()

� tuple hotel stars = models.IntegerField(null=True, blank=True, default=None)

� tuple price = models.FloatField(null=False, blank=False)

� tuple link = models.URLField(null=False, blank=False)

� tuple image = models.URLField(null=False, blank=False)

� tuple min people = models.IntegerField(null=True, blank=True, default=None)

93

TravelMatch Detailed Design Document

� tuple dept date = models.DateField(null=False, blank=False)

� tuple duration days = models.IntegerField(null=False, blank=False)

� tuple with flight = models.BooleanField(null=False, blank=False, default=False)

� tuple user rating = models.FloatField(null=True, blank=True, default=None)

� tuple priority = models.IntegerField(null=False, blank=True, default=100)

Detailed Description

This represents the offer of trip.

Member Function Documentation

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) creating a new tag tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

IntegrityError if the was precondition violated

Returns

Void new Tag object

def generate json response (self) this function generates json response from TripOffSerilaizer
return the json response data

Member Data Documentation

tuple dept date = models.DateField(null=False, blank=False) [static]

tuple description = models.TextField() [static]

tuple duration days = models.IntegerField(null=False, blank=False) [static]

tuple hotel stars = models.IntegerField(null=True, blank=True, default=None) [static]

tuple image = models.URLField(null=False, blank=False) [static]

tuple link = models.URLField(null=False, blank=False) [static]

tuple loc = models.ForeignKey(Location) [static]

94

TravelMatch Detailed Design Document

tuple min people = models.IntegerField(null=True, blank=True, default=None) [static]

tuple name = models.CharField(max length=64, null=False, blank=False) [static]

tuple offer id = models.AutoField(primary key=True) [static]

tuple price = models.FloatField(null=False, blank=False) [static]

tuple priority = models.IntegerField(null=False, blank=True, default=100) [static]

tuple user rating = models.FloatField(null=True, blank=True, default=None) [static]

tuple with flight = models.BooleanField(null=False, blank=False, default=False) [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.18 TripOffer.Meta

This makes a lable for this TripOffer class.

Static Public Attributes

� string app label = 'affiliate'

Detailed Description

This makes a lable for this TripOffer class.

Member Data Documentation

string app label = 'affiliate' [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.19 VacationTag

This represnts the vacation tag object.
Inheritance diagram for VacationTag:

VacationTag

Model

95

TravelMatch Detailed Design Document

Classes

� class Meta

This makes (img && vacation) a super key.

Public Member Functions

� def remove (self)

This function removes object from the database the LocationBlacklistItem with vac && img is
deleted.

Static Public Attributes

� tuple vac = models.ForeignKey('appusers.VacationDetail', null=False)

� tuple tag = models.ForeignKey(Tag, null=False)

< the vacation of the image blacklist object (VacationDetails)

� tuple sum value = models.IntegerField(null=False, blank=True, default=0)

Detailed Description

This represnts the vacation tag object.

Member Function Documentation

def remove (self) This function removes object from the database the LocationBlacklistItem
with vac && img is deleted.

Member Data Documentation

tuple sum value = models.IntegerField(null=False, blank=True, default=0) [static]

tuple tag = models.ForeignKey(Tag, null=False) [static]

< the vacation of the image blacklist object (VacationDetails)

tuple vac = models.ForeignKey('appusers.VacationDetail', null=False) [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.11.20 VacationTag.Meta

This makes (img && vacation) a super key.

Static Public Attributes

� tuple unique together = ((”vac”, ”tag”),)

Detailed Description

This makes (img && vacation) a super key.

96

TravelMatch Detailed Design Document

Member Data Documentation

tuple unique together = ((”vac”, ”tag”),) [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/models.py

B.12 ai.recommender system

ai.recommender system is a namespace that contains classes, variables and functions that relate to
the recommender system. This namespace contains functions for recommending locations given an
input set of likes and dislikes from the user. The recommendations are calculated using a Vector Space
Model, where each tag is a dimension in an n-dimensional graph and the similarity is calculated using
the cosine similarity function.

Functions

� def calc recommendations (user input set, n, vacation)

The function that calclulates the n reccomended locations from some travelDNA The user input
consists of a array of likings and disliking with the according tagvalues.

� def calculate travel dna (user input set)

Calculates the travelDNA given a user input set.

� def get user dict (user travel dna)

Returns a dictionary which can be used to get the best match.

� def normalize my tags (tag val list)

Returns a normalized user tag score for the tags.

� def get best match (user travel dna, n, forbidden locations)

Gets the city that is the closest to the user travel dna using the cosine similiarity as measure.

� def get city matrix (forbidden locations)

Normalizes all image values inside the database.

� def normalize function (image value)

Normalization function of the city matrix.

� def cosine similarity (user dict, city dict)

Computes the cosine similarity of the first dicitonary to the second dictionary.

Function Documentation

def ai.recommender system. cosine similarity (user dict, city dict) [private]

Computes the cosine similarity of the first dicitonary to the second dictionary.
Uses an optimized method for increased speed. All values of the tag values should be 0 <= v <=

100
Parameters

user dict A dictionary containing user tag ids with their values.
<user dict> dictionary

city dict A dictionary containing city tag ids with their values.
<city dict> dictionary

Returns

Float with the cosine similarity.

def ai.recommender system. get best match (user travel dna, n, forbidden locations)
[private]

Gets the city that is the closest to the user travel dna using the cosine similiarity as measure.

97

TravelMatch Detailed Design Document

Parameters

user travel dna The TravelDNA of the user
<user travel←↩

dna>
Dictionary

n The number of locations needed
<n> int

forbidden ←↩

locations
the input location lists

<forbidden ←↩

locations>
[Location]

Returns

A list of city ids which are the best match.

def ai.recommender system. get city matrix (forbidden locations) [private]

Normalizes all image values inside the database.

Returns

city matrix dict with normalized values, {city id: {image id: image val}} example: {1: {1: 0.5,
2: 0.7}, 2: {1: 0.9, 2: 0.65}}

def ai.recommender system. get user dict (user travel dna) [private]

Returns a dictionary which can be used to get the best match.
Parameters

user travel dna The TravelDNA of the user
<user travel←↩

dna>
Dictionary

Returns

A dictionary where {tag id: tag val norm}

def ai.recommender system. normalize function (image value) [private]

Normalization function of the city matrix.
Currently 0..100 –> 0..1

Parameters

image value The image value to be normalized
<image ←↩

value>
int

Returns

Returns a normalized float image value from 0..1

def ai.recommender system. normalize my tags (tag val list) [private]

Returns a normalized user tag score for the tags.

98

TravelMatch Detailed Design Document

Parameters

tag val list A list of two items: [current user score, total potential score]
<tag val list> int[]

Returns

Normalized current score / total potential score if v[1] > 0 else 0

def ai.recommender system.calc recommendations (user input set, n, vacation) The
function that calclulates the n reccomended locations from some travelDNA The user input consists
of a array of likings and disliking with the according tagvalues.

So it consists of [{'like': True, 0: val0, 1: val1, 2: val2, .., n: valn}, ...] where the 'like' key is a
boolean that represents a liking. The 0 to n keys are the id's of all n active tags in the database with
their corresponding values for the image that was liked/disliked. If no value was given for a tag the
value is set to 0.

Precondition

0 <= val <= 100 for all values
all tag id's are in the dictonary
n == 1 || n == 2

Postcondition

len(returned) == n || len(returned) == 0

Parameters

user input set [{'like': True, 0: val0, 1: val1, 2: val2, .., n: valn}, ...,]
<user input ←↩

set>
dictionary

n The amount of locations that have to be recommended.
<n> n

vacation the input vacation
<vacation> VacationDetails

Returns

List of loc id of length n or empty array when the AI fails

def ai.recommender system.calculate travel dna (user input set) Calculates the travelDNA
given a user input set.

Precondition

0 <= tag value <= 100

Parameters

user input set [{'like': True, '0': 30, '1': 10}, ..., {'like': False, '4': 0, '33': 100}]
<user input ←↩

set>
dictionary

Returns

The TravelDNA of a user where TravelDNA = ['0': [user val, total val], ..., '33': [user val,
total val]]

99

TravelMatch Detailed Design Document

B.13 ai.serializers

ai.serializer is a namespace that contains classes, variables and functions that relate to the AI
serializers. This namespace contains Django serializers, which verify and modify the input and output
of data in the model.

Classes

� class LocationSerializer

This makes a django serializer object for the Location class.

� class Meta

This creates the serializer with specific model and fields.

� class TripOfferSerializer

This is for trip offer serializer.

Functions

� def validate city name (self, value)

this method returns validated city name

� def validate country name (self, value)

this method returns validated city name

� def validate region name (self, value)

this method returns validated city name

Function Documentation

def ai.serializers.validate city name (self, value) this method returns validated city name
Parameters

value the input city name
<value> string

Precondition

len(value) == 0

Exceptions

ValidationError if precondition is violated

Returns

value: city name.lower(), it is case insensitive

def ai.serializers.validate country name (self, value) this method returns validated city name
Parameters

value the input country name
<value> string

Precondition

len(value) == 0

100

TravelMatch Detailed Design Document

Exceptions

ValidationError if precondition is violated

Returns

value: country name.lower(), it is case insensitive

def ai.serializers.validate region name (self, value) this method returns validated city name
Parameters

value the input region name (string)
<value> string

Precondition

len(value) == 0

Exceptions

ValidationError if precondition is violated

Returns

value: region name.lower(), it is case insensitive

B.13.1 LocationSerializer

This makes a django serializer object for the Location class.
Inheritance diagram for LocationSerializer:

LocationSerializer

ModelSerializer

Detailed Description

This makes a django serializer object for the Location class.
The documentation for this class was generated from the following file:

� travelmatch/ai/serializers.py

B.13.2 Meta

This creates the serializer with specific model and fields.

Static Public Attributes

� model = Location
� list fields = ['loc id', 'city name', 'country name', 'region name']
� tuple fields

Detailed Description

This creates the serializer with specific model and fields.
This create a model and a fields for the serializer.

101

TravelMatch Detailed Design Document

Member Data Documentation

list fields = ['loc id', 'city name', 'country name', 'region name'] [static]

tuple fields [static]

Initial value:

1 = (’offer id’, ’name’, ’description’, ’hotel stars’, ’price’, ’link’,
2 ’image’, ’min people’, ’dept date’, ’duration days’, ’user rating’,)

model = Location [static]

The documentation for this class was generated from the following file:

� travelmatch/ai/serializers.py

B.13.3 TripOfferSerializer

This is for trip offer serializer.
Inheritance diagram for TripOfferSerializer:

TripOfferSerializer

ModelSerializer

Detailed Description

This is for trip offer serializer.
The documentation for this class was generated from the following file:

� travelmatch/ai/serializers.py

B.14 ai.views

ai.views is a namespace that contains classes, variables and functions that relate to the artificial
intelligence views. This namespace would contain Django view controllers for managing the artificial
intelligence data; however, as no Django view controllers are required, this namespace is left empty.

B.15 appusers

appusers is a namespace that contains classes, variables and functions that relate to the user manage-
ment components. This namespace mainly acts as a container for several other namespaces, namely
those relating to authentication, Mailgun integration, the models, serializers and views.

Namespaces

� authentication

� mailgun

� models

� serializers

� views

102

TravelMatch Detailed Design Document

B.16 appusers.authentication

appusers.authentication is a namespace that contains classes, variables and functions that relate to
user authentication. This namespace contains a class that implements the abstract JSONWebTokenAuthentication
class from the JSON Web Token library, to provide a custom authentication function that authenticates
TravelMatch-specific credentials.

Classes

� class MyJSONWebTokenAuthenticator

inherits authentication mechanism from JSONWebTokenAuthentication

Variables

� jwt payload handler = api settings.JWT PAYLOAD HANDLER

� jwt encode handler = api settings.JWT ENCODE HANDLER

� jwt decode handler = api settings.JWT DECODE HANDLER

� jwt get user id from payload = api settings.JWT PAYLOAD GET USER ID HANDLER

Variable Documentation

jwt decode handler = api settings.JWT DECODE HANDLER

jwt encode handler = api settings.JWT ENCODE HANDLER

jwt get user id from payload = api settings.JWT PAYLOAD GET USER ID HANDLER

jwt payload handler = api settings.JWT PAYLOAD HANDLER

B.16.1 MyJSONWebTokenAuthenticator

inherits authentication mechanism from JSONWebTokenAuthentication
Inheritance diagram for MyJSONWebTokenAuthenticator:

MyJSONWebTokenAuthenticator

JSONWebTokenAuthentication

Public Member Functions

� def authenticate credentials (self, payload)

Returns an active user that matches the payload's user id and email.

Detailed Description

inherits authentication mechanism from JSONWebTokenAuthentication

Member Function Documentation

def authenticate credentials (self, payload) Returns an active user that matches the
payload's user id and email.

103

TravelMatch Detailed Design Document

Parameters

payload The input user
<payload> object

Precondition

payload is a valid user with valid content

Returns

user: The correlated user object

Exceptions

AuthenticationFailed if the precondition failed

The documentation for this class was generated from the following file:

� travelmatch/appusers/authentication.py

B.17 appusers.mailgun

appusers.mailgun is a namespace that contains classes, variables and functions that relate to Mailgun
integration. This namespace contains function to send e-mails to TravelMatch users on behalf of
TravelMatch, via Mailgun. A built-in function is also provided to send confirmation e-mails for newly
registered users.

Functions

� def send to mailgun (sender, to, subject, htmltext, plaintext)

The actual sending of the message with desired variables.

� def create htmltext (to, userid, key)

Creating the email in html.

� def create plaintext (to, userid, key)

Creating the email in plaintext.

� def send confirmation message (to, userid, key)

This function can be called from anywhere else in the server to have an email created on and sent
with:

Variables

� string sender = ”noreply@gotravelmatch.com”

� string subject = ”Confirm your new TravelMatch account”

� string mailgun api base url = ”https://api.mailgun.net/v3/gotravelmatch.com/messages”

� string mailgun api key = ”key-07bd4dbc95e6f5d62192e1d4d6a7ace5”

� string AUTH LINK PATTERN = BASE URL+API URL+”/user/auth?userid={!s}&key={!s}”

Function Documentation

def appusers.mailgun.create htmltext (to, userid, key) Creating the email in html.

104

TravelMatch Detailed Design Document

Parameters

to the receivers' email address
<to> [email]
userid the userid generated on the server for that new user

<userid> int
key key generated to verify that the user indeed received the email on the specified

address
<key> string

Returns

plaintext: the html text email with correct address, receivers and content

def appusers.mailgun.create plaintext (to, userid, key) Creating the email in plaintext.
Parameters

to the receivers' email address
<to> [email]
userid the userid generated on the server for that new user

<userid> int
key key generated to verify that the user indeed received the email on the specified

address
<key> string

Returns

plaintext: the plain text email with correct address, receivers and content

def appusers.mailgun.send confirmation message (to, userid, key) This function can be
called from anywhere else in the server to have an email created on and sent with:
Parameters

to the receivers' email address
<to> [email]
userid the userid generated on the server for that new user

<userid> int
key key generated to verify that the user indeed received the email on the specified

address
<key> string : the email address specified by the user to which the email is sent

def appusers.mailgun.send to mailgun (sender, to, subject, htmltext, plaintext)
The actual sending of the message with desired variables.
Parameters

sender email of the sender
<sender> string

to email of the receiver
<to> string

105

TravelMatch Detailed Design Document

htmltext the htmltext to be sent
<htmltext> string

plaintext the plain text to be sent
<plaintext> string

subject subject of the email
<subject> string : email sent with input parameters

Variable Documentation

string AUTH LINK PATTERN = BASE URL+API URL+”/user/auth?userid={!s}&key={!s}”

string mailgun api base url = ”https://api.mailgun.net/v3/gotravelmatch.com/messages”

string mailgun api key = ”key-07bd4dbc95e6f5d62192e1d4d6a7ace5”

string sender = ”noreply@gotravelmatch.com”

string subject = ”Confirm your new TravelMatch account”

B.18 appusers.models

appusers.models is a namespace that contains classes, variables and functions that relate to the
artificial intelligence models. This namespace contains all Django models related to TravelMatch
users, including various types of user credentials, vacation details, pending activations, and saved trip
offers.

Classes

� class AppUser

This is the class represents the application user of the application.

� class FBAppUser

This represents the facebook users of the application users.

� class GuestAppUser

This represents the guest user of the application.

� class MailAppUser

This represents the mail user of the application user.

� class PendingActivation

This represents the mail users yet to be activated.

� class SavedLocation

This is the model for the trip saved locations.

� class TripList

This model represents the list of trips the users have.

� class TripListEntry

This is the model for the trip list entries.

� class VacationDetail

This represents the detail of a certain vacation.

106

TravelMatch Detailed Design Document

Functions

� def encode

This function encode wit pbkdf2 method the password.

� def verify (entered, encoded)

This function compares entered password with encoded password.

� def default start date ()

This function sets the default start date return now()+timedelta(days=5): the 5 days after current
day.

� def default end date ()

This function sets the default end date return now() + timedelta(days=5+7): the 5+7 days after
current day.

Function Documentation

def appusers.models.default end date () This function sets the default end date return now()
+ timedelta(days=5+7): the 5+7 days after current day.

def appusers.models.default start date () This function sets the default start date return
now()+timedelta(days=5): the 5 days after current day.

def appusers.models.encode (password, salt = None, iterations = 10000) This function
encode wit pbkdf2 method the password.
Parameters

password the input password
<password> string

salt the salt of the pbkdf2
<salt> string

iterations iterations of pbkdf2
<iterations> int

Precondition

None encode the password

Returns

hashed passowrd

def appusers.models.verify (entered, encoded) This function compares entered password
with encoded password.
Parameters

entered entered password
<entered> string

encoded encoded password
<entered> string

Returns

True if encode(entered)==encoded

107

TravelMatch Detailed Design Document

B.18.1 AppUser

This is the class represents the application user of the application.
Inheritance diagram for AppUser:

AppUser

Model

FBAppUser GuestAppUser MailAppUser

Classes

� class Meta

This makes the humam-readable name of the table, and the means to sort it.

Public Member Functions

� def is authenticated (self)

this set the authenticated to true

� def unicode (self)

This returns the AppUser object in certain format in a string.

� def display (self)

This display the user and it's user id.

� def create

creating a new tuple (not update, just create)

� def latest vac (self)

This returns the latest vacation of the app user.

Static Public Attributes

� tuple user id = models.AutoField(primary key=True)

� tuple name = models.CharField(max length=500, null=False, default=””)

� tuple gender = models.CharField(max length=20, null=False, default=”none”)

� tuple birthday = models.DateField(null=False, default=date(1, 1, 1))

� tuple activation = models.BooleanField(default=True)

Detailed Description

This is the class represents the application user of the application.

Member Function Documentation

def unicode (self) This returns the AppUser object in certain format in a string.

Returns

string: u's s' % (self.user id, self.name)

108

TravelMatch Detailed Design Document

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) creating a new tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

Exceptions

IntegrityError if the was precondition violated

Returns

Void new Tag object

def display (self) This display the user and it's user id.

Returns

string: ”AppUser ”+str(self.user id)

def is authenticated (self) this set the authenticated to true

Returns

True

def latest vac (self) This returns the latest vacation of the app user.

Precondition

vacs.last() exist

Returns

vacs.last(): the latest vacation from the query

Exceptions

error if the precondition is violated

Member Data Documentation

tuple activation = models.BooleanField(default=True) [static]

tuple birthday = models.DateField(null=False, default=date(1, 1, 1)) [static]

tuple gender = models.CharField(max length=20, null=False, default=”none”) [static]

tuple name = models.CharField(max length=500, null=False, default=””) [static]

109

TravelMatch Detailed Design Document

tuple user id = models.AutoField(primary key=True) [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.2 AppUser.Meta

This makes the humam-readable name of the table, and the means to sort it.

Static Public Attributes

� string verbose name = ”App User”

� tuple ordering = ('user id',)

< the human readable name is ”App User”

Detailed Description

This makes the humam-readable name of the table, and the means to sort it.

Member Data Documentation

tuple ordering = ('user id',) [static]

< the human readable name is ”App User”

string verbose name = ”App User” [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.3 FBAppUser

This represents the facebook users of the application users.
Inheritance diagram for FBAppUser:

FBAppUser

AppUser

Model

Public Member Functions

� def display (self)

Returns the facebook user with certain format in a string ”@return FBUser ”+str(self.user id)+”
”+str(self.fbid)

Static Public Attributes

� tuple fbid = models.CharField(max length=256, blank=False)

Detailed Description

This represents the facebook users of the application users.

110

TravelMatch Detailed Design Document

Member Function Documentation

def display (self) Returns the facebook user with certain format in a string ”@return FBUser
”+str(self.user id)+” ”+str(self.fbid)

Member Data Documentation

tuple fbid = models.CharField(max length=256, blank=False) [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.4 GuestAppUser

This represents the guest user of the application.
Inheritance diagram for GuestAppUser:

GuestAppUser

AppUser

Model

Public Member Functions

� def display (self)

Returns the guest user with certain format in a string ”@return ”GuestAppUser ”+str(self.user id)+”
”+str(self.timestamp)

Static Public Attributes

� tuple device id = models.CharField(max length=250, blank=False, primary key=True)

� tuple timestamp = models.DateTimeField(auto now=True)

Detailed Description

This represents the guest user of the application.

Member Function Documentation

def display (self) Returns the guest user with certain format in a string ”@return ”GuestAppUser
”+str(self.user id)+” ”+str(self.timestamp)

Member Data Documentation

tuple device id = models.CharField(max length=250, blank=False, primary key=True) [static]

tuple timestamp = models.DateTimeField(auto now=True) [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

111

TravelMatch Detailed Design Document

B.18.5 MailAppUser

This represents the mail user of the application user.
Inheritance diagram for MailAppUser:

MailAppUser

AppUser

Model

Public Member Functions

� def send activation (self)

< email of the user (string)

� def display (self)

Return the Mail user in certain format.

Public Attributes

� activation

Static Public Attributes

� tuple password = models.CharField(max length=256, blank=False)

� tuple email = models.CharField(max length=256, blank=False)

< hashed password of the user (string)

Detailed Description

This represents the mail user of the application user.

Member Function Documentation

def display (self) Return the Mail user in certain format.

Returns

”MailUser ”+str(self.user id)+” ”+str(self.email)

def send activation (self) < email of the user (string)
This function send the activation key to the mail user and removes old pending activations

Precondition

None

Postcondition

sent the email

Returns

Void

112

TravelMatch Detailed Design Document

Member Data Documentation

activation

tuple email = models.CharField(max length=256, blank=False) [static]

< hashed password of the user (string)

tuple password = models.CharField(max length=256, blank=False) [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.6 PendingActivation

This represents the mail users yet to be activated.
Inheritance diagram for PendingActivation:

PendingActivation

Model

Classes

� class Meta

This set the default ordering of PendingActivations to DESC timestemp.

Public Member Functions

� def unicode (self)

Returns the PendingActivation with certain format in a string.

Static Public Member Functions

� def id generator

This method generates the id.

Static Public Attributes

� tuple user = models.ForeignKey(MailAppUser)

� tuple timestamp = models.DateTimeField(auto now add=True)

� tuple key = models.CharField(max length=255, null=False)

Detailed Description

This represents the mail users yet to be activated.

Member Function Documentation

def unicode (self) Returns the PendingActivation with certain format in a string.

Returns

: u's: user s -> s' % (self.timestamp, self.user, self.key)

113

TravelMatch Detailed Design Document

def id generator (size = 20, chars = string.ascii uppercase + string.digits)
[static]

This method generates the id.
Parameters

size the size of the id. default value is 20 (int)
<size> int

chars the id will be generated using the characters from this, default all cases letters (list)
<chars> list

Returns

string: ''.join(random.choice(chars) for in range(size))

Member Data Documentation

tuple key = models.CharField(max length=255, null=False) [static]

tuple timestamp = models.DateTimeField(auto now add=True) [static]

tuple user = models.ForeignKey(MailAppUser) [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.7 PendingActivation.Meta

This set the default ordering of PendingActivations to DESC timestemp.

Static Public Attributes

� tuple ordering = ('-timestamp',)

Detailed Description

This set the default ordering of PendingActivations to DESC timestemp.

Member Data Documentation

tuple ordering = ('-timestamp',) [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.8 SavedLocation

This is the model for the trip saved locations.
Inheritance diagram for SavedLocation:

SavedLocation

Model

114

TravelMatch Detailed Design Document

Classes

� class Meta

This class enforce loc list&&user as a super key.

Static Public Attributes

� tuple loc = models.ForeignKey('ai.Location')
� tuple user = models.ForeignKey(AppUser)
� tuple loc list = models.ForeignKey(TripList)

Detailed Description

This is the model for the trip saved locations.

Member Data Documentation

tuple loc = models.ForeignKey('ai.Location') [static]

tuple loc list = models.ForeignKey(TripList) [static]

tuple user = models.ForeignKey(AppUser) [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.9 SavedLocation.Meta

This class enforce loc list&&user as a super key.

Static Public Attributes

� tuple unique together = ((”loc list”, ”user”),)

Detailed Description

This class enforce loc list&&user as a super key.

Member Data Documentation

tuple unique together = ((”loc list”, ”user”),) [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.10 TripList

This model represents the list of trips the users have.
Inheritance diagram for TripList:

TripList

Model

115

TravelMatch Detailed Design Document

Static Public Member Functions

� def create trip list (offer ids)

Static Public Attributes

� tuple trip list id = models.AutoField(primary key=True)

Detailed Description

This model represents the list of trips the users have.

Member Function Documentation

def create trip list (offer ids) [static]

Exceptions

ObjectDoesNotExist is one of the loc ids doesn't exists anymore

Returns

a new TripList instance from the db

Member Data Documentation

tuple trip list id = models.AutoField(primary key=True) [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.11 TripListEntry

This is the model for the trip list entries.
Inheritance diagram for TripListEntry:

TripListEntry

Model

Public Member Functions

� def generate api response (self)

< this is no foreign key to keep it even if the hotels disappear

Static Public Attributes

� tuple trip list = models.ForeignKey(TripList, null=False)

� tuple cached name = models.CharField(null=False, max length=64)

< list of trips

� tuple trip offer id = models.IntegerField(null=True)

< see TripOffer.name

116

TravelMatch Detailed Design Document

Detailed Description

This is the model for the trip list entries.

Member Function Documentation

def generate api response (self) < this is no foreign key to keep it even if the hotels disappear
This function returns a trip list as an api response

Returns

ser.data: the serialized TripOffer object

Member Data Documentation

tuple cached name = models.CharField(null=False, max length=64) [static]

< list of trips

tuple trip list = models.ForeignKey(TripList, null=False) [static]

tuple trip offer id = models.IntegerField(null=True) [static]

< see TripOffer.name
The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.12 VacationDetail

This represents the detail of a certain vacation.
Inheritance diagram for VacationDetail:

VacationDetail

Model

Classes

� class Meta

< timestamp of the last added TravelDNA (datetime)

Public Member Functions

� def unicode (self)

this method returns the VacationDetail object in a string whenever we need to return a VacationDetail
object

� def create

creating a new tag tuple (not update, just create)

� def display user (self)

display the user

� def display (self)

display the user

� def persons total (self)

The total persons.

117

TravelMatch Detailed Design Document

Static Public Attributes

� tuple internal id = models.AutoField(primary key=True)

� tuple user = models.ForeignKey(AppUser, null=False)

< This offers the internal id of the model (int) not in the db desigh

� tuple vac id = models.PositiveSmallIntegerField(null=False, default=0)

< The user involved in the vacation (user)

� tuple vac name = models.CharField(max length=256, null=False, blank=True, default=””)

< id of the vacation(int) the default vacation has id 0

� tuple start date = models.DateField(null=False, blank=False, default=default start date())

< name of the vation, (string) ”” means the default vacation

� tuple start date extend = models.SmallIntegerField(null=False, default=0)

< date vacation starts (date)

� tuple end date = models.DateField(null=False, blank=False, default=default end date())

< the extend margin of the start date (int)

� tuple end date extend = models.SmallIntegerField(null=False, default=0)

< date vacation ends (date)

� tuple persons adults = models.PositiveSmallIntegerField(null=False, blank=False, default=1)

< extend margin of the end date (int)

� tuple persons children = models.PositiveSmallIntegerField(null=False, default=0)

< number of adult persons involved (int)

� tuple budget = models.PositiveIntegerField(null=False, default=0)

< number of children involved (int)

� tuple last modified = models.DateTimeField(null=False, blank=False, auto now=True)

< buget of the vacation, in cents (int)

� tuple unique together = ((”user”, ”vac id”),)

Detailed Description

This represents the detail of a certain vacation.

Member Function Documentation

def unicode (self) this method returns the VacationDetail object in a string whenever we
need to return a VacationDetail object

Returns

u's: s'%(self.user, self.vac name) out put string with certain format

def create (self, force insert = False, force update = False, using = None, update←↩

fields = None) creating a new tag tuple (not update, just create)

Precondition

the tuple does not exist int e database

Postcondition

tuple updated

118

TravelMatch Detailed Design Document

Exceptions

IntegrityError if the was precondition violated

Returns

Void new Tag object

def display (self) display the user

Precondition

user.vac name == vac name

Returns

name of the vacation if it exist, else return ”Niet gedefineerd”

def display user (self) display the user

Returns

name (name of the user)

def persons total (self) The total persons.

Returns

persons adults + persons children

Member Data Documentation

tuple budget = models.PositiveIntegerField(null=False, default=0) [static]

< number of children involved (int)

tuple end date = models.DateField(null=False, blank=False, default=default end date())
[static]

< the extend margin of the start date (int)

tuple end date extend = models.SmallIntegerField(null=False, default=0) [static]

< date vacation ends (date)

tuple internal id = models.AutoField(primary key=True) [static]

tuple last modified = models.DateTimeField(null=False, blank=False, auto now=True) [static]

< buget of the vacation, in cents (int)

tuple persons adults = models.PositiveSmallIntegerField(null=False, blank=False, default=1)
[static]

< extend margin of the end date (int)

tuple persons children = models.PositiveSmallIntegerField(null=False, default=0) [static]

< number of adult persons involved (int)

119

TravelMatch Detailed Design Document

tuple start date = models.DateField(null=False, blank=False, default=default start date())
[static]

< name of the vation, (string) ”” means the default vacation

tuple start date extend = models.SmallIntegerField(null=False, default=0) [static]

< date vacation starts (date)

tuple unique together = ((”user”, ”vac id”),) [static]

tuple user = models.ForeignKey(AppUser, null=False) [static]

< This offers the internal id of the model (int) not in the db desigh

tuple vac id = models.PositiveSmallIntegerField(null=False, default=0) [static]

< The user involved in the vacation (user)

tuple vac name = models.CharField(max length=256, null=False, blank=True, default=””)
[static]

< id of the vacation(int) the default vacation has id 0
The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.18.13 VacationDetail.Meta

< timestamp of the last added TravelDNA (datetime)

Detailed Description

< timestamp of the last added TravelDNA (datetime)
This makes (user && vac id) a super key
The documentation for this class was generated from the following file:

� travelmatch/appusers/models.py

B.19 appusers.serializers

appusers.serializer is a namespace that contains classes, variables and functions that relate to
the AI serializers. This namespace contains Django serializers, which verify and modify the input and
output of data in the model.

Classes

� class FBUserSerializer

This makes a django serializer object for the FBAppUser class.

� class GuestAccountSerializer

This makes a django serializer object for the GuestAppUser class.

� class MailUserSerializer

This makes a django serializer object for the MailUser class.

� class Meta

This creates the serializer with specific model and fields.

� class UserSerializer

120

TravelMatch Detailed Design Document

This makes a django serializer object for the AppUser class.

� class VacationDetailsSerializer

This makes a django serializer object for the VacationDetail class.

Functions

� def validate email (self, value)

this method returns validated email

� def validate password (self, value)

this method returns validated password

� def validate fbid (self, value)

this method returns validated fbid

� def validate device id (self, value)

this method returns validated device id

� def validate user (self, value)

this method returns validated user

� def validate vac id (self, value)

this method returns validated vac id

� def validate start date (self, value)

this method returns validated

� def validate end date (self, value)

this method returns validated end date

� def validate persons adults (self, value)

this method returns validated persons

� def validate vac name (self, value)

this method returns validated vac name

� def validate budget (self, value)

this method returns validated budget

Variables

� list VAC FIELDS

Function Documentation

def appusers.serializers.validate budget (self, value) this method returns validated budget
Parameters

value the input budget
<value> int

Precondition

value < 0

Exceptions

121

TravelMatch Detailed Design Document

ValidationError if precondition is violated

Returns

value: validated budget

def appusers.serializers.validate device id (self, value) this method returns validated
device id
Parameters

value the input device id
<value> string

Returns

fbid: facebook id and it is validated

def appusers.serializers.validate email (self, value) this method returns validated email
Parameters

value the input city name
<value> string

Precondition

len(value) == 0

Exceptions

ValidationError if precondition is violated

Returns

value: mail.lower(), it is case insensitive

def appusers.serializers.validate end date (self, value) this method returns validated
end date
Parameters

value the input end date (date)
<value> DateField

Returns

end date and it is validated

def appusers.serializers.validate fbid (self, value) this method returns validated fbid
Parameters

value the input fbid
<value> string

Returns

fbid: facebook id and it is validated

def appusers.serializers.validate password (self, value) this method returns validated
password

122

TravelMatch Detailed Design Document

Parameters

value the input password
<value> string

Precondition

len(value) == 0

Exceptions

ValidationError if precondition is violated

Returns

value: password and it is validated

def appusers.serializers.validate persons adults (self, value) this method returns validated
persons
Parameters

value the personsNI
<value> int

Returns

value: persons and it is validated

def appusers.serializers.validate start date (self, value) this method returns validated
Parameters

value the input start date
<value> DateField

Returns

value: start date and it is validated

def appusers.serializers.validate user (self, value) this method returns validated user
Parameters

value the input user (User object)
<value> AppUser

Returns

user and it is validated

def appusers.serializers.validate vac id (self, value) this method returns validated vac id
Parameters

value the input vac id
<value> VacationDetail

Returns

value: vac id and it is validated

def appusers.serializers.validate vac name (self, value) this method returns validated
vac name

123

TravelMatch Detailed Design Document

Parameters

value the input vac name
<value> string

Precondition

value != null

Exceptions

ValidateError if precondition is violated

Returns

value: validated vacation name

Variable Documentation

list VAC FIELDS Initial value:

1 = [’user’, ’vac id’, ’vac name’, ’start date’, ’start date extend’, ’end date’, ’end date extend’,
2 ’persons adults’, ’persons children’, ’budget’]

B.19.1 FBUserSerializer

This makes a django serializer object for the FBAppUser class.
Inheritance diagram for FBUserSerializer:

FBUserSerializer

ModelSerializer

Detailed Description

This makes a django serializer object for the FBAppUser class.
The documentation for this class was generated from the following file:

� travelmatch/appusers/serializers.py

B.19.2 GuestAccountSerializer

This makes a django serializer object for the GuestAppUser class.
Inheritance diagram for GuestAccountSerializer:

GuestAccountSerializer

ModelSerializer

Detailed Description

This makes a django serializer object for the GuestAppUser class.
The documentation for this class was generated from the following file:

� travelmatch/appusers/serializers.py

124

TravelMatch Detailed Design Document

B.19.3 MailUserSerializer

This makes a django serializer object for the MailUser class.
Inheritance diagram for MailUserSerializer:

MailUserSerializer

ModelSerializer

Detailed Description

This makes a django serializer object for the MailUser class.
The documentation for this class was generated from the following file:

� travelmatch/appusers/serializers.py

B.19.4 Meta

This creates the serializer with specific model and fields.

Static Public Attributes

� model = AppUser

� tuple fields = ('name', 'gender', 'birthday')

� list fields = ['email', 'password']

� fields = VAC FIELDS

Detailed Description

This creates the serializer with specific model and fields.

Member Data Documentation

tuple fields = ('name', 'gender', 'birthday') [static]

list fields = ['email', 'password'] [static]

fields = VAC FIELDS [static]

model = AppUser [static]

The documentation for this class was generated from the following file:

� travelmatch/appusers/serializers.py

125

TravelMatch Detailed Design Document

B.19.5 UserSerializer

This makes a django serializer object for the AppUser class.
Inheritance diagram for UserSerializer:

UserSerializer

ModelSerializer

Detailed Description

This makes a django serializer object for the AppUser class.
The documentation for this class was generated from the following file:

� travelmatch/appusers/serializers.py

B.19.6 VacationDetailsSerializer

This makes a django serializer object for the VacationDetail class.
Inheritance diagram for VacationDetailsSerializer:

VacationDetailsSerializer

ModelSerializer

Detailed Description

This makes a django serializer object for the VacationDetail class.
The documentation for this class was generated from the following file:

� travelmatch/appusers/serializers.py

B.20 appusers.views

appusers.views is a namespace that contains classes, variables and functions that relate to the
artificial intelligence views. This namespace contain Django controllers for the TravelMatch API, as
well as mappings from REST endpoints to Django functions.

Classes

� class APIError

default class that just returns an error

� class APIRecommendation

This class queries existing VacationDetail to see its recommendation.

� class APIUser

API for log in related issues, this class is used whenever a url(api pattern.format('/user') is called.

� class APIUserAuth

API for MailUser authentication, when url(api pattern.format('/user/auth'), APIUserAuth.as view())
is called.

126

TravelMatch Detailed Design Document

� class APIUserHotel

This class gets the hotel user use for certain trip offer.

� class APIUserLocation

This is for get and post SaveLocation from AppUser.

� class APIUserLogin

API for log in, when url(api pattern.format('/user/login'), APIUserLogin.as view()), is called.

� class APIUserMe

API for retrieve and modify ones profile.

� class APIUserMyLocation

This is the api for the location of an user.

� class APIUserMyLocationAll

API for getting all of user's locations.

� class APIUserMyLocationAllValues

This is the API to get all the value from a user's locations.

� class APIUserSwipe

The API for the swipe operations carried out by users.

� class APIUserVacationDetails

API for user's vacation details.

� class APIUserVacationDetailsAllValues

This is the API for query all the VacationDetail object from a certain user.

� class APIUserVacationDetailsLatest

This is the API for query all the VacationDetail object from a certain user.

� class JSONResponse

An HttpResponse that renders its content into JSON.

Functions

� def init (self, data, kwargs)

Initializing the data.

� def create token response data (user)

This method is for creating a Json Web Token for the user.

� def decode string (encoded)

Decoding the data from b64.

� def encode string (s)

Encoding the data into b64.

� def create encoding err resp (field)

This is for creating a http response if the field is not properly encoded.

� def post

< The permission of the /user: is allowed by everyone

� def delete (self, request)

This method delet a user.

� def get (self, request)

< The permission of the /user: is allowed by everyone

� def post (self, request)

< The permission of the /user: is allowed by everyone

� def update field (key, data, obj)

This is the method to update the fields in an object.

127

TravelMatch Detailed Design Document

� def put (self, request)

This method update the field requested to be updated.

� def create vacation response data (vac)

This function create a response for VacationDetail object.

� def is unique vac name (vac name, vac id, vacs)

This method checks if certain vacation exist in the given list of vacations and its uniqueness.

� def update vacation (vac, data)

Function that update and maintains the VactionDetail object if it exist.

� def record swipe (vacation, img, like)

This method record a swipe operation carried out by user.

� def create new images response (n, user, vac)

This is the method that calls the AI to get a new set of images based on the entropy calculation.

Variables

� tuple logger = logging.getLogger(name)

� string DEFAULT VACATION NAME = ”Vakantie”

� tuple permission classes = (AllowAny,)

Function Documentation

def appusers.views. init (self, data, kwargs) Initializing the data.

An HttpResponse that renders its content into JSON.

Precondition

None

Postcondition

None

Returns

None

def appusers.views.create encoding err resp (field) This is for creating a http response if the
field is not properly encoded.
Parameters

field the field
<field> field, django field

Precondition

field is not encoded

Returns

http response with the field, message that it is not encoded, and 400 http statues code

def appusers.views.create new images response (n, user, vac) This is the method that
calls the AI to get a new set of images based on the entropy calculation.

128

TravelMatch Detailed Design Document

Parameters

n amount of SwipeImages needed
<n> int
user the AppUser that needs SwipeImages

<user> AppUser
vac input vacation details

<vac> VacationDetails

Precondition

n lager than 0

Returns

a list of SwipeImages

def appusers.views.create token response data (user) This method is for creating a Json
Web Token for the user.
Parameters

user the user you need to create token for
<user> AppUser

Precondition

None

Postcondition

None

Returns

response data the JWT containing the user information

def appusers.views.create vacation response data (vac) This function create a response for
VacationDetail object.
Parameters

vac the input VacationDetail object
<vac> VacationDetail

Precondition

the input is a VacationDetail object

Returns

response data with the vac as http response, but without vac.user

def appusers.views.decode string (encoded) Decoding the data from b64.

129

TravelMatch Detailed Design Document

Parameters

encoded the string you wish to decode
<encoded> string

Precondition

None

Postcondition

None

Returns

decoded string from encoded

def delete (self, request) This method delet a user.
This method deletes a location.
This is the method for deleting VacationDetail objects.

Parameters

request html request
<request> html request

Returns

Response: response with corresponding http status code : request.user.delete(): if user exist,
remove the user from the database

Parameters

request the incoming http request
<request> HttpRequest

Precondition

None

Returns

response and http status code

Parameters

request the incoming http request
<request> HttpRequest

Precondition

the vacation exist, the loc id exist

Returns

Response: string message with whether get operations is successful with http status code

def appusers.views.encode string (s) Encoding the data into b64.

130

TravelMatch Detailed Design Document

Parameters

s the sting you wish to encode
<s> string

Precondition

None

Postcondition

None

Returns

encoded string from s

def get (self, request) < The permission of the /user: is allowed by everyone
This method returns all the hotels and its id for a TripOffer.
This method queries for Locations.
This method queries for Location.
This method queries for Savelocation.
This method queries for recommendation.
This method queries for n images for certain vacation.
This is the function that query all the VacationDetail object from a certain user.
This is the method for querying and returning VacationDetail object.
This methods fetch and returns the user data.
This is the function that sends the authentication token

Parameters

request the incoming http request
<request> HttpRequest

Precondition

it is from a MailUser and the information is correct None

Returns

response with authenticity token

Exceptions

def appusers.views.is unique vac name (vac name, vac id, vacs) This method checks if
certain vacation exist in the given list of vacations and its uniqueness.
Parameters

vac name name of the vacation
<vac name> string

131

TravelMatch Detailed Design Document

vac id id of the vacation
<vac id> int

vacs the list of vacation to be checked
<vacs> [VacationDetails]

Returns

True if vacation in vac and it is unique, False otherwise

def appusers.views.post (self, request, format = None) < The permission of the /user:
is allowed by everyone

This methods post the data from the request check it and stores them in the database
Parameters

request the incoming http request
<request> HttpRequest

format the format
<format> format

Precondition

the user information sent via request is either a MailUser or a FB user

Returns

access token

Exceptions

error if precondition is violated

def post (self, request) < The permission of the /user: is allowed by everyone
This method storing for location.
This method records a swipe and then provide a new image to swipe.
This method creates a new VacationDetail Object from.
This returns an access token for log in

Parameters

request the incoming http request
<request> HttpRequest

Precondition

the request is a valid request with correct criteria for a FBUser or a MailUser

Postcondition

None

Returns

response with access token

132

TravelMatch Detailed Design Document

Exceptions

error and corresponding http status code if the precondition is violated

Parameters

request the incoming http request
<request> HttpRequest

Precondition

None

Postcondition

the VacationDetail updated if it exist beforehand

Returns

http response with the updated data if it exist beforehand, message with http status code oth-
erwise

Parameters

request the incoming http request
<request> HttpRequest

Precondition

request.data.image and the like exist, and there are more than 'n' images in the request.data to
swipe, image exist : new swipe recorded

Returns

Response: string message with whether input satisfy the preconditions, the response with http
status code

Parameters

request the incoming http request
<request> HttpRequest

Precondition

request.data['loc id'] exist along with the request.data['user'] : new SaveLocation saved

Returns

Response: serialized message with SaveLocation object if it exist, and the response with http
status code

def put (self, request) This method update the field requested to be updated.
This function puts the requested data JSONResponse and returns it.

133

TravelMatch Detailed Design Document

Parameters

request the incoming http request
<request> HttpRequest

Precondition

None

Postcondition

None : the data that needs to be modified, if it exist

Returns

response with corresponding http status code

Parameters

request http request
<request> http request

Returns

JSONResponse with corresponding http status code

def appusers.views.record swipe (vacation, img, like) This method record a swipe
operation carried out by user.
Parameters

vacation the vacation that being recorded
<vacation> VacationDetail

img the swipe image involved
 SwipeImage

like whether user liked the image or not
<like> boolean

img the input swipe image
 SwipeImage

Precondition

there are no more than 1 TravelDNA with the same vacation && img the new swipe stored

Exceptions

IntegrityError if precondition is violated

Returns

swipe: the input swipe with vaction, img, and like

def appusers.views.update field (key, data, obj) This is the method to update the fields
in an object.

134

TravelMatch Detailed Design Document

Parameters

key the keys with update of the object
<key> abstract data type

data the input data
<data> data

obj the object
<obj> object

Precondition

None

Returns

modified the updated data

def appusers.views.update vacation (vac, data) Function that update and maintains the
VactionDetail object if it exist.
Parameters

vac the VacationDetail object that needs to be updated
<vac> VacationDetail

data the new data for the update
<data> data

Precondition

the related VacationDetail exists

Postcondition

the VacationDetail object up to date

Returns

response with up to date vac, or an error message with http status code

Variable Documentation

string DEFAULT VACATION NAME = ”Vakantie”

tuple logger = logging.getLogger(name)

tuple permission classes = (AllowAny,)

B.20.1 APIError

default class that just returns an error
Inheritance diagram for APIError:

APIError

APIView

135

TravelMatch Detailed Design Document

Detailed Description

default class that just returns an error
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.2 APIRecommendation

This class queries existing VacationDetail to see its recommendation.
Inheritance diagram for APIRecommendation:

APIRecommendation

APIView

Detailed Description

This class queries existing VacationDetail to see its recommendation.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.3 APIUser

API for log in related issues, this class is used whenever a url(api pattern.format('/user') is called.
Inheritance diagram for APIUser:

APIUser

APIView

Detailed Description

API for log in related issues, this class is used whenever a url(api pattern.format('/user') is called.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.4 APIUserAuth

API for MailUser authentication, when url(api pattern.format('/user/auth'), APIUserAuth.as view())
is called.

Inheritance diagram for APIUserAuth:

APIUserAuth

APIView

136

TravelMatch Detailed Design Document

Detailed Description

API for MailUser authentication, when url(api pattern.format('/user/auth'), APIUserAuth.as view())
is called.

The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.5 APIUserHotel

This class gets the hotel user use for certain trip offer.
Inheritance diagram for APIUserHotel:

APIUserHotel

APIView

Detailed Description

This class gets the hotel user use for certain trip offer.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.6 APIUserLocation

This is for get and post SaveLocation from AppUser.
Inheritance diagram for APIUserLocation:

APIUserLocation

APIView

Detailed Description

This is for get and post SaveLocation from AppUser.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.7 APIUserLogin

API for log in, when url(api pattern.format('/user/login'), APIUserLogin.as view()), is called.
Inheritance diagram for APIUserLogin:

APIUserLogin

APIView

137

TravelMatch Detailed Design Document

Detailed Description

API for log in, when url(api pattern.format('/user/login'), APIUserLogin.as view()), is called.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.8 APIUserMe

API for retrieve and modify ones profile.
Inheritance diagram for APIUserMe:

APIUserMe

APIView

Detailed Description

API for retrieve and modify ones profile.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.9 APIUserMyLocation

This is the api for the location of an user.
Inheritance diagram for APIUserMyLocation:

APIUserMyLocation

APIView

Detailed Description

This is the api for the location of an user.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.10 APIUserMyLocationAll

API for getting all of user's locations.
Inheritance diagram for APIUserMyLocationAll:

APIUserMyLocationAll

APIView

138

TravelMatch Detailed Design Document

Detailed Description

API for getting all of user's locations.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.11 APIUserMyLocationAllValues

This is the API to get all the value from a user's locations.
Inheritance diagram for APIUserMyLocationAllValues:

APIUserMyLocationAllValues

APIView

Detailed Description

This is the API to get all the value from a user's locations.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.12 APIUserSwipe

The API for the swipe operations carried out by users.
Inheritance diagram for APIUserSwipe:

APIUserSwipe

APIView

Detailed Description

The API for the swipe operations carried out by users.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.13 APIUserVacationDetails

API for user's vacation details.
Inheritance diagram for APIUserVacationDetails:

APIUserVacationDetails

APIView

139

TravelMatch Detailed Design Document

Detailed Description

API for user's vacation details.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.14 APIUserVacationDetailsAllValues

This is the API for query all the VacationDetail object from a certain user.
Inheritance diagram for APIUserVacationDetailsAllValues:

APIUserVacationDetailsAllValues

APIView

Detailed Description

This is the API for query all the VacationDetail object from a certain user.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.15 APIUserVacationDetailsLatest

This is the API for query all the VacationDetail object from a certain user.
Inheritance diagram for APIUserVacationDetailsLatest:

APIUserVacationDetailsLatest

APIView

Detailed Description

This is the API for query all the VacationDetail object from a certain user.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

B.20.16 JSONResponse

An HttpResponse that renders its content into JSON.
Inheritance diagram for JSONResponse:

JSONResponse

HttpResponse

140

TravelMatch Detailed Design Document

Detailed Description

An HttpResponse that renders its content into JSON.
The documentation for this class was generated from the following file:

� travelmatch/appusers/views.py

141

	Document Status Sheet
	General
	Document history

	Document Change Records
	General
	Changes

	Introduction
	Purpose
	Scope
	Definitions and abbreviations
	Definitions
	Abbreviations

	References
	Overview

	Standards and conventions
	Design standards
	Documentation standards
	General
	AngularJS-specific

	Naming conventions
	Front end
	Back end

	Coding standards
	Front end
	Back end

	Software development tools
	General
	Front end
	Back end

	Component descriptions
	Front end
	Back end

	Build procedure
	Front end
	Prerequisites
	Build process

	Back end
	Prerequisites
	Building server

	Front end documentation
	Documentation template
	app.about
	AboutCtrl
	AnalyticsService

	app.config
	HttpInterceptor
	BACK_BUTTON
	BASE_URL
	DEBUG_URL
	SHOW_SWIPE_DEBUG
	STATE_NAMES
	USE_DEBUG
	USE_FRONT
	AuthService

	app.debug
	DebugService

	app.details
	DetailCtrl
	VacationDetailsService

	app.front
	FrontCtrl

	app.hotel.overview
	HotelOverviewCtrl
	HotelService

	app.login
	LoginCtrl
	facebookButton
	LoginService

	app.module
	app.navigation
	MainCtrl
	tmHeader
	tmLoginTabs
	tmMenu
	tmMenuButton

	app.registration
	RegistrationCtrl
	RegistrationService

	app.swipe
	SwipeCtrl
	tmPhoto
	ImageService

	app.user.details
	UserDetailCtrl
	UserDetailsService

	Back end documentation
	Documentation template
	affiliate
	affiliate.affiliate_parser
	Parser

	affiliate.models
	AbstractParserModel
	AffiliateFeed
	AffiliateFeed.Meta
	ArkeParserModel
	Trip

	affiliate.serializer
	affiliate.tradetracker
	affiliate.tradetracker.arke_parser
	ArkeParser

	affiliate.views
	ai
	ai.entropy
	ai.models
	ImageBlacklistItem
	ImageBlacklistItem.Meta
	ImageDimension
	ImageDimension.Meta
	ImageTag
	ImageTag.Meta
	Location
	LocationBlacklistItem
	LocationBlacklistItem.Meta
	LocationTag
	LocationTag.Meta
	SwipeImage
	Tag
	Tag.Meta
	TravelDNA
	TravelDNA.Meta
	TripOffer
	TripOffer.Meta
	VacationTag
	VacationTag.Meta

	ai.recommender_system
	ai.serializers
	LocationSerializer
	Meta
	TripOfferSerializer

	ai.views
	appusers
	appusers.authentication
	MyJSONWebTokenAuthenticator

	appusers.mailgun
	appusers.models
	AppUser
	AppUser.Meta
	FBAppUser
	GuestAppUser
	MailAppUser
	PendingActivation
	PendingActivation.Meta
	SavedLocation
	SavedLocation.Meta
	TripList
	TripListEntry
	VacationDetail
	VacationDetail.Meta

	appusers.serializers
	FBUserSerializer
	GuestAccountSerializer
	MailUserSerializer
	Meta
	UserSerializer
	VacationDetailsSerializer

	appusers.views
	APIError
	APIRecommendation
	APIUser
	APIUserAuth
	APIUserHotel
	APIUserLocation
	APIUserLogin
	APIUserMe
	APIUserMyLocation
	APIUserMyLocationAll
	APIUserMyLocationAllValues
	APIUserSwipe
	APIUserVacationDetails
	APIUserVacationDetailsAllValues
	APIUserVacationDetailsLatest
	JSONResponse

