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ABSTRACT

This documents serves to explain the functionality of the Sparse Grid module of the Toolkit for
Adaptive Stochastic Modeling And Non-Intrusive Approximation (TASMANIAN). The document
covers the three main components, the libtasmaniansparsegrids library, the tasgrid wrapper and
the MATLAB interface.
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1 Introduction

Sparse Grids is a family of algorithms for constructing multidimensional quadrature and interpo-
lation rules from tensor products of one dimensional such rules [8,10,18,19,22]. Given a function
f(x) : Rd → R, a quadrature rule that integrates f(x) over the domain Γ ⊂ Rd with respect to the
weight ρ(x) is defined as by the abscissas {xi}Ni=1 ⊂ Γ and weights {wi}Ni=1 ⊂ R so that∫

Γ

f(x)ρ(x)dx ≈
N∑
i=1

wif(xi). (1.1)

The integration weight ρ(x) is a tensor of one dimensional weight ρ(x) = ρ1(x1)ρ1(x2) · · · ρ1(xd)
and the domain Γ is the tensor of a one dimensional domain Γ = Γ1⊗Γ1⊗· · ·⊗Γ1. An interpolation
rule is defined by abscissas {xi}Ni=1 ⊂ Γ and basis functions {φi(x)}Ni=1 as

f(x) ≈
N∑
i=1

ciφi(x), (1.2)

where the coefficients ci are chosen so that

N∑
i=1

ciφi(xj) = f(xj).

The coefficients ci can be found by solving a system of linear equations, i.e. {ci}Ni=1 are the result
of a linear transformation applied to {f(xi)}Ni=1. In general, the conditioning of this linear map is
of consideration, however, a suitable choice of abscissas xi and functions φi(x) results in a well
conditioned problem. An alternative definition of the interpolant is given by

f(x) ≈
N∑
i=1

hi(x)f(xi),

where the functions {hi(x)}Ni=1 are constructed by applying the dual of the linear transformation
to the vector of basis functions {φi(x)}Ni=1. For a specific point x̃, the approximation becomes

f(x̃) ≈
N∑
i=1

hi(x̃)f(xi) =
N∑
i=1

gif(xi), (1.3)

where gi = hi(x̃) are the interpolation weights.

One dimensional integration and interpolation rules can be transformed from a domain Γ1

to Γa,b1 , where Γa,b1 is the image of Γ1 under a linear map defined by a and b. For example, if
Γ1 = [−1, 1] then an arbitrary interval [a, b] is the image of Γ1 under the linear transformation

y =
b− a

2
x+

b+ a

2
.
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Analogously the integration weight ρ1(x) can be transformed into ρa,b1 (x). Extending the result in
multiple dimensions, it is trivial to define a map for every dimension and have

Γ = Γa1,b11 ⊗ Γa2,b21 ⊗ · · · ⊗ Γad,bd1 ,

and the integration weights
ρ(x) = ρ1(x1)ρ1(x2) · · · ρ1(xd).

For a full list of the transformations supported by this code, see Appendix A.

The goal of Sparse Grids is to select a subset from all possible tensor product abscissas {xi}Ni=1

so that maximum accuracy is achieved for the smallest number of function evaluations {f(xi)}Ni=1.
This is usually achieved by balancing the error in different dimensions. For more information on
the properties of sparse grids see [2–4, 6, 8–10, 12, 13, 15, 16, 18, 19, 22, 26, 27].

The TASMANIAN Sparse Grid code implements a number of different quadrature rules and
function basis. The rules are grouped in three categories:

• Global Grids: suitable for globally smooth functions. Quadrature is based on a number of
available rules (see Appendix A) and interpolation is based on global Lagrange polynomials.

• Local Polynomial Grids: suitable for non-smooth functions with locally sharp behavior.
Interpolation is based on hierarchical piece-wise polynomials with local support and user
specified order. These grids are suitable for local refinement.

• Wavelet Grids: are similar to the local polynomials, however, when coupled with local
refinement, often times wavelet grids provide the same accuracy with fewer abscissas.

For a given grid the code can perform three tasks:

• generate a set of abscissas {xi}Ni=1 and weights {wi}Ni=1 for a quadrature rule of type (1.1).

• generate a set of abscissas {xi}Ni=1 and for the user specified function values {f(xi)}Ni=1,
the code can create an interpolant of type (1.2). The interpolant can be evaluated for any
arbitrary x and it can also be integrated over the domain.

• generate a set of abscissas {xi}Ni=1 and for any arbitrary x it can also generate the interpola-
tion weights {hi(x)}Ni=1 for an approximation of type (1.3).

In addition, local grids support iterative refinement, where additional abscissas are chosen based
on the provided {f(xi)}Ni=1 to improve the approximation of the provided interpolant.

The code consists of three main components:

• libtasmaniansparsegrids.a (for short libtsg) which is a library written in C++ that imple-
ments the TasmanianSparseGrid class. The class provides an interface for manipulation of
the grid. See Section 3.
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• tasgrid which is an executable that provides a command line interface to libtsg. The exe-
cutable reads and writes data to text files and every command generally reads an instance of
TasmanianSparseGrid class from a text file, calls a function from the class and writes the
modified class back to a text file. See Section 4.

• MATLAB Interface (for short tsg.m) which is a series of MATLAB functions that call the
executable tasgrid and read the result into MATLAB matrices. See Section 5.
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2 Compilation

Quick Build

Inside the folder with the source files, type

make

The code doesn’t require any external libraries and uses the simple GNU-Make engine. Hence,
it will most likely compile just fine.

To verify the build you should run

./tasgrid -test

and make sure all the test pass. See Section 4 for more details.

Advanced Build Options

Open the Makefile in an editor and adjust the options.

CC specifies the compiler command. The code was written for the GNU C++ compiler (GCC).
The default command is g++, however, that can be changed to force a specific version of the
compiler or even a different compiler.

OpenMP is used throughout the code for multicore parallelism. It can be optionally enabled by spec-
ifying the COMPILE OPTIONS = -fopenmp or alternatively disabled by removing the op-
tions.

OPTC specifies standard GCC compiler options, refer to the GCC manual for details.

Known Problems

Mac users have reported problems with OpenMP and some versions of GCC. Mac users that want
to use OpenMP should make sure to have the latest available version of GCC, versions 4.7 and
newer tend to resolve most issues.
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3 LIBTASMANIANSPARSEGRIDS (libtsg)

All of the sparse grids functionality is included in the libtsg C++ library. Code that interfaces with
the library should include the TasmanianSparseGrid.hpp, which introduces the TasGrid namespace
and the definition of the TasmanianSparseGrid class.

WARNING: The code performs virtually no sanity check on the validity of input. Wrong input
would most likely result in a crash.

3.1 Constructor TasmanianSparseGrid()

TasmanianSparseGrid();

This is the only class constructor (called by default), makes an empty grid. Before any op-
erations can be performed, a grid has to be made with one of the makeGlobalGrid(), makeLo-
calPolynomialGrid() or makeWaveletGrid() functions or alternatively the grid can be read from a
stream/file using the read() functions (in order to read a grid, it must first be written to the file with
the write() function). The user can also call getVersion() and getLicense() functions at any time.
Calling any other function will result in a Segfault.

3.2 Destructor TasmanianSparseGrid()

˜TasmanianSparseGrid();

This is the destructor that releases any dynamical memory used by the class (this instance of the
class can no longer be used).

3.3 function getVersion()

const char* getVersion() const;

Returns the version of the library, which is a simple hard-coded string.

3.4 function getLicense()

const char* getLicense() const;

Returns a short string indicating the license of the library. This is a simple hard-coded string.
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3.5 function makeGlobalGrid()

void makeGlobalGrid( int dimensions,
int outputs,
int depth,
TypeDepth type,
TypeOneDRule oned,
const int *anisotropic_weights = 0,
const double *alpha_beta = 0 );

This function creates a sparse grid induced by one of the global quadrature and interpolation
rules. See Appendix A for a full list of the rules. The parameters are described as follows:

dimensions is a positive integer specifying the dimension of the grid. There is no hard restriction on how
big the dimension can be, however, for large dimensions, the number of abscissas associated
with a sparse grid grows fast (i.e. the curse of dimensionality) and hence the grid may require
prohibitive amount of memory.

outputs is a non-negative integer specifying the number of outputs for the function that would be
interpolated. If outputs is zero, then the grid can only generate quadrature and interpolation
weights, i.e. problems (1.1) and (1.3). There is no hard restriction on how many outputs
can be handled, however, note that the code requires at least outputs × number of abscissas
storage and hence for large number of outputs memory management may have adverse
effect on performance.

depth is a non-negative (or strictly positive) integer that controls the density of abscissa points. For
grids of type level and type hyperbolic, depth is strictly positive and it corresponds to the
notion of sparse grid “level” (see [18,19,22]). For grids of type basis the depth specifies the
largest total degree polynomial that can be integrated or interpolated exactly. Gauss based
rules imply integration, while non-Gauss rules imply interpolation (see Appendix A). There
is no hard restriction on how big depth can be, however, it has direct effect on the number
of abscissas and hence performance and memory requirements.

type is an enumerated type from type level,type hyperbolic,type basis which guides the tensor
selection to balance the precision in different directions.

– type level: classical Smolyak Sperse Grid selection. The sum of the level indexes over
all of the directions has to be less then depth [18, 19, 22].

– type hyberbolic: hyperbolic cross-section. The product of the level indexes over all of
the directions has to be less then depth [8, 11, 21].

– type basis: takes into consideration the accuracy of the one dimensional rule. Any rule
combined with type basis is guaranteed to integrate or interpolate any polynomial of
total degree no more than depth.
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oned is an enumerated type from any of the global rules in Table A.1. Those are:

rule clenshawcurtis rule chebyshev

rule fejer2 rule gausslegendre

rule gausschebyshev1 rule gausschebyshev2

rule gaussgegenbauer rule gaussjacobi

rule gausslaguerre rule hermite

anisotropic (anisotropic weights) is either NULL or an array of integers of size dimensions. See [18]
for the meaning of the weights. Note that in the literature, the weights are assumed to be real
numbers. The code assumes that the weights are rational numbers and that they add up to
1, thus the anisotropic weights array contains only the numerators of the rational numbers.
This is done so that type level and type basis grids can be constructed using only integer
based arithmetic; type hyperbolic grids still use double precision arithmetic that may be un-
stable (i.e. the number of abscissa may be heavily influenced by rounding error). In addition,
after introducing anisotropic weights, the value of depth still controls the number of abscis-
sas, however, it no longer has the same relationship to “levels” or total degree polynomial
order.

alpha beta is either NULL or an array of one or two doubles. The first entry of the array is α and the
second is β and those values are referenced only if the quadrature rule requires them. One
dimensional rules of type rule gaussgegenbauer, rule gaussjacobi, rule gausslaguerre and
rule gausshermite require an α and in addition rule gaussjacobi requires β (see Table A.1).

3.6 function makeLocalPolynomialGrid()

void makeLocalPolynomialGrid( int dimensions,
int outputs,
int depth,
int order,
TypeOneDRule boundary );

Creates a grid based on local hierarchical piece-wise polynomial function basis. The main
focus of hierarchical grids is the ability to do local iterative refinement to daptively obtain an
interpolant that clusters abscissa in regions of sharp behavior and puts fewer abscissa in regions
of smooth behavior. Local grids can be used for integration, however, in many cases, this would
result in abscissas associated with zero weights.

dimensions same as makeGlobalGrid()

outputs same as makeGlobalGrid(), however, due to the non-trivial form of the coefficients ci, large
number of outputs comes with bigger computational cost in addition to the larger storage
cost of 2 × outputs × number of abscissas.
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depth is a positive integer that specifies the initial number of levels for the grid.

order is an integer bigger than −2, which specifies the largest order of polynomial to be used. For
a one dimensional interpolation rule, a polynomial of order l cannot be used before level
l − 1 (i.e. before depth = l). Thus, if order is larger than depth only lower degree local
polynomials would be used. If order is set to−1, the largest possible order would be selected
automatically “on the fly”.

boundary is an enumerated type with value either rule pwpolynomial or rule pwpolynomial0. The
difference is that the latter type assumes that the interpolated function is zero at the boundary.

3.7 function makeWaveletGrid()

void makeWaveletGrid( int dimensions,
int outputs,
int depth,
int order = 1 );

Creates a grid based on local hierarchical wavelet basis. It is very similar to the local poly-
nomial rule, however, local refinement using wavelet functions would sometimes require fewer
function evaluations.

dimensions same as in makeGlobalGrid() and makeLocalPolynomialGrid()

outputs same as in makeLocalPolynomialGrid()

depth same as in makeLocalPolynomialGrid()

order an integer equal to either 1 or 3. The wavelet grids use the corresponding order of wavelet
even for grid with depth = 1. However, a wavelet grid of a given depth would have more
abscissas than a corresponding local polynomial grid.
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3.8 function makeFullTensorGrid()

void makeFullTensorGrid( int dimensions,
int outputs,
int order[],
TypeOneDRule oned,
const double *alpha_beta = 0 );

Full tensor grids are not sparse grids, however, full tensors share many of the properties of
global grids and hence the capability is included into the code (mostly for testing purposes). Note
that in most situations, full tensor grids would require a much larger number of abscissas to achieve
the same accuracy as than a sparse grid.

dimensions same as in makeGlobalGrid()

outputs same as in makeGlobalGrid()

order an array of non-negative integers of size dimensions. The array indicates the level of one
dimensional rule to be used in every direction.

oned same as in makeGlobalGrid()

alpha beta same as in makeGlobalGrid()

3.9 functions recycle***Grid()

void recycleGlobalGrid( int depth,
TypeDepth type,
const int *anisotropic_weights = 0 );

void recycleLocalPolynomialGrid( int depth,
int order = 1 );

void recycleWaveletGrid( int depth,
int order = 1 );

void recycleFullTensorGrid( int order[] );

The recycle functions recreate a new grid with similar properties, but different number of ab-
scissas (and hence different accuracy). The recycle functions modify some of the parameters of
the grids, but keep all the ones that are not specified (i.e. dimensions, outputs, oned, boundary).
Recycle will also try to use any values of f(xi) loaded in the old grid. The code discards values of
f(xi) that are associated with abscissas in the old grid but are not part of the new grid.
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3.10 function write()

void write( std::ofstream &ofs ) const;

Writes out the grid in text format to the ofstream.

3.11 function read()

bool read( std::ifstream &ifs ) const;

Reads a grid that has already been written to the stream. The function returns True if the
reading was successful or False if errors with the file format were encountered. The function will
write error information to the standard output stream.

3.12 function write()

void write( const char* filename ) const;

Opens a file with filename and calls void write( std::ofstream &ofs ) const; with the associated
stream. At the end, the file is closed.

3.13 function read()

bool read( const char* filename );

Opens a file with filename and calls bool read( std::ifstream &ifs ) const; with the associated
stream. At the end, the file is closed.
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3.14 function setTransformAB()

void setTransformAB( const double *a,
const double *b );

By default integration and interpolation are performed on a canonical interval described in
Table A.1. Optionally, the library can transform the canonical interval into a custom one defined
by the a and b parameters for every direction. The transformation is applied as a post-processing
step to the abscissas and weights.

a is an array of real numbers of size getNumDimensions() that defines the a parameter associ-
ated with every dimension.

b is an array of real numbers of size getNumDimensions() that defines the b parameter associ-
ated with every dimension.

3.15 function clearTransformAB()

const char* clearTransformAB() const;

Scales back all abscissas and weights to the canonical interval. Since the transformation is a
post-processing step, the clearTransformAB() function simply removes the values set by setTrans-
formAB(), i.e. the grid is not actually recomputed.

3.16 function getTransformAB()

void getTransformAB( double* &a,
double* &b ) const;

Returns the transform parameters.

a on input it is either a NULL pointer or a non-NULL pointer that will be deleted.
on output returns a pointer to an array of size getNumDimensions() that contains the values
of the a parameter for every direction.

b on input it is either a NULL pointer or a non-NULL pointer that will be deleted.
on output returns a pointer to an array of size getNumDimensions() that contains the values
of the b parameter for every direction.
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3.17 function getNumDimensions()

int getNumDimensions() const;

Returns the value of the dimension parameter used by the make***Glid() function call.

3.18 function getNumOutputs()

int getNumOutputs() const;

Returns the value of the outputs parameter used by the make***Glid() function call.

3.19 function getOneDRule()

TypeOneDRule getOneDRule() const;

For a global grid, returns the value of the oned parameter.

For a local polynomial grid, returns the value of the boundary parameter.

For a wavelet grid, it returns rule wavelet.

3.20 function getOneDRuleDescription()

const char *getOneDRuleDescription() const;

Returns a short string description of the one dimensional rule used.
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3.21 function getNumPoints()

int getNumPoints() const;

Return the total number of abscissas associated with the grid.

3.22 function getPoints()

void getPoints( double* &pnts ) const;

Return the abscissas associated with the grid.

pnts on input it is either NULL or a non-NULL pointer that would be deleted.
on output returns an array of size getNumDimensions()× getNumPoints() of values that rep-
resent the abscissas. The first abscissa is located in the first getNumDimensions() number of
entries, the second abscissa is located in the second getNumDimensions() number of entries,
and so on.

3.23 function getWeights()

void getWeights( double* &weights ) const;

Return the quadrature weights associated with the abscissas, as in equation (1.1).

weights on input it is either NULL or a non-NULL pointer that would be deleted.
on output it is an array of size getNumPoints() of the quadrature weights associated with the
abscissas. The first weight is associated with the first abscissa returned by getPoints(), the
second weight is associated with the second abscissa and so on.
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3.24 function getInterpolantWeights()

void getInterpolantWeights( const double x[],
double* &weights ) const;

Returns the interpolantion weight associated with the abscissa and the point defined by x, as in
equation (1.3).

x is an array of dimension getNumDimensions() representing the point of interest to evaluate
the interpolant.

weights on input it is either NULL or a non-NULL pointer that would be deleted.
on output returns an array of size getNumPoints() of the interpolation weights associated with
the abscissas. The first weight is associated with the first abscissa returned by getPoints(),
the second weight is associated with the second abscissa and so on.

3.25 function getNumNeededPoints()

int getNumNeededPoints() const;

Interpolation described in equation (1.2) requires the user to provide the values of the interpo-
lated function at the abscissa points. This functions returns the number of abscissas that are still
not associated with function values.

3.26 function getNeededPoints()

void getNeededPoints( double* &pnts ) const;

pnts on input it is either NULL or a non-NULL pointer that would be deleted.
on output returns an array of size getNumDimensions() × getNumNeededPoints() of entries
that represent the abscissas that still need to be associated with function values. The first
abscissa is located in the first getNumDimensions() number of entries, the second abscissa is
located in the second getNumDimensions() number of entries, and so on. If getNumNeeded-
Points() returns 0, then pnts is returned NULL.
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3.27 function loadNeededPoints()

void loadNeededPoints( const double vals[] );

Provides the values of the function to be interpolated evaluated at the corresponding abscissas.

vals is an array of size getNumOutputs() × getNumNeededPoints(). The first getNumOutputs()
entries correspond to the outputs of the interpolated function at the first abscissa point. The
second set of getNumOutputs() entries correspond to the second abscissa and so on.

3.28 function evaluate()

void evaluate( const double x[],
double y[] ) const;

Finds the value of the interpolant at the provided point x as defined by equation (1.2). The
result is written into y.

x an array of size getNumDimensions() that indicate the point where the interpolant should be
evaluated.

y an already allocated array of size getNumOutputs(). On exit, the entries of y are overwritten
with the values of the interpolant at the point x.

3.29 function integrate()

void integrate( double y[] ) const;

Integrates the interpolant over the domain and returns the result in y.

y an already allocated array of size getNumOutputs(). On exit, the entries of y are overwritten
with the values of the integral of the interpolant over the domain.

3.30 function printStats()

void printStats();

Prints short description of the sparse grid. The output is written to standard output (i.e. cout).
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3.31 function setRefinement()

void setRefinement( double tolerance, TypeRefinement criteria );

Improves the accuracy of the sparse grid based on the loaded values of the interpolant. After
calling setRefinement(), the needed points are updated and evaluate and integrate will work with
the old interpolant until the new needed values are loaded. If setRefinement() is called twice in
a row without loadNeededValues(), then any data from the first call will be cleared and only the
second refinement would persist.

tolerance is a positive number with the desired tolerance.

criteria is an enumerated type from type classic,type parent first,type direction selective,type fds.
For the three types of local refinement, see [23].

Note that the inputs have different meaning depending on the grid.

• Global Grid will ignore both parameters and will only increase the accuracy isotropically in
every direction by adding the next levels of the one dimensional rule.

• Local Polynomial Grid will compare the relative magnitude of the surpluses ci divided by
the largest provided value f(xi) to the tolerance. The algorithm will refine only in the neigh-
borhood of the abscissas where the ratio is large for at least one of the outputs. The criteria
defines whether or not all direction should be refined and whether or not the “parents” should
be added before the “children”, where the family is described by the hierarchy [23].

• Wavelet Grid will compare the surpluses ci to the tolerance and will refine only in the neigh-
borhood of the abscissas associated with large surpluses. The criteria is ignored (i.e. wavelet
grids currently only implement type classic refinement).

3.32 Examples

The file example.cpp in the Examples/ folder has sample code that demonstrates proper use of the
TasmanianSparseGrid class. In addition, there is also a Makefile that compiles the example.
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4 TASGRID

The tasgrid executable is a command line interface to libtsg. It provides the ability to create
and manipulate sparse grids, save and load them into files and optionally interface with another
program via text files. For the most part, tasgrid reads a grid from a file, calls one or more of the
functions described in the previous section and then saves the resulting grid. In addition, tasgrid
provides a set of basic functionality tests.

4.1 Basic Usage

./tasgrid <command> <option1> <value1> <option2> <value2> ....

The first input to the executable is the command that specifies the action that needs to be taken.
The command is followed by options and values.

Every command is associated with a number of options. If other options are provided, then
they are ignored.

Tasgrid has some basic error checking and if it encounters and error in the input, tasgrid will
print an error message as well as some help for the input.

4.2 Command: -h –help

Prints information about the usage of tasgrid. Note that many commands and options have a long
and short name and the help command will list both. In addition it will also list the available one
dimensional quadrature and interpolation rules.

4.3 Command: -version

Prints the version of the library and executable.

4.4 Command: -test

./tasgrid -test

Performs a series of basic functionality tests. For different grids, different parameters and all
possible quadrature rules, tasgrid will perform a test to make sure that it can integrate or interpolate
appropriate functions to a high degree of precision. The output of the command should be a list of
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the tests and the Pass or Fail result. A failure of a test in an indication that something went wrong
in the build process or there is a bug in the code.

Note that the wavelet tests take a long time and hence they are performed last. Unless one is
interested in using wavelet grids, the wavelet tests can be skipped.

4.5 Command: -makegrid

./tasgrid -makegrid <option1> <value1> <option2> <value2> ....

This command creates a new sparse grid. It uses the following options that can be given in any
order:

-onedim specifies whether to use global, local polynomial or wavelet grids, as well as the underlying
one dimensional quadrature and interpolation rule. The available values for the rules are
summarized in Table A.1.

clenshaw-curtis creates a global grid with Clenshaw-Curtis rule.

chebyshev creates a global grid with Chebyshev rule.

fejer-2 creates a global grid with Fejer type 2 rule.

gauss-legendre creates a global grid with Gauss-Legendre rule.

gauss-chebyshev-1 creates a global grid with Gauss-Chebyshev rule of type 1.

gauss-chebyshev-2 creates a global grid with Gauss-Chebyshev rule of type 2.

gauss-gegenbauer creates a global grid with Gauss-Gegenbauer rule.

gauss-jacobi creates a global grid with Gauss-Jacobi rule.

gauss-laguerre creates a global grid with Gauss-Laguerre rule.

gauss-hermite creates a global grid with Gauss-Hermite rule.

local-polynomial creates a local polynomial grid.

local-polynomial-zero creates a local polynomial grid with zero boundary.

local-wavelet creates a wavelet grid.

-dimensions specifies the dimension of the problem. The value should be a positive integer and it gets
passed directly to make***Grid() (see the previous section).

-outputs specifies the number of outputs of the function that needs to be interpolated. The values
should be a positive integer that gets passed directly to make***Grid() (see the previous
section). To set zero outputs, use the -makequadrature command.

-depth specifies the depth parameter of the make***Grid() function (see the previous section). In
case of a tensor grid and if no anisotropyfile is give, makeFullTensor() will be called with
order array having all entries equal to -depth.
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-type specifies the selection criteria of the sparse grid and it is used only by global and tensor grids.
Available values are

level calls makeGlobalGrid() and it specifies the type level enumerated type.

basis calls makeGlobalGrid() and it specifies the type basis enumerated type.

hyperbolic calls makeGlobalGrid() and it specifies the type hyperbolic enumerated
type.

tensor calls makeFullTensorGrid().

-order specifies the order of the local polynomials or wavelets and is used only with local polyno-
mial and wavelet grids. For polynomials, the value is −1 for automatically using the max-
imum possible order or a non-negative integer that restricts the maximum order. Wavelet
grids accept only orders 1 and 3.

-alpha specifies the α parameter of the one dimensional quadrature rule. The value is a real number
and it is used by gauss-gegenbauer, gauss-jacobi, gauss-hermite and gauss-laguerre rules.

-beta specifies the β parameter of the one dimensional quadrature rule. The value is a real number
and it is used by the gauss-jacobi rule.

-inputfile is an optional matrix file that specifies the transformation from the canonical domain to a
custom domain. The matrix file should have dimensions number of rows and 2 columns.
The first column is the a parameter and the second column is the b parameter and each row
corresponds to one dimension. For detail on the matrix file format see subsection 4.17.

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the abscissas
associated with the grid. The matrix file will have getNumPoints() number of rows and -
dimensions number of columns. The first abscissa will be on the first row, the second on the
second row and so on.

-gridfile is an optional file. The grid can be saved in this file for future use.

-anisotropyfile is an optional matrix file, however, unlike regular matrix files the entries !must be integers!,
otherwise the behavior of the code becomes unpredictable. The matrix file must have -
dimensions number of rows and only one column. If a global grid is being created, then the
file will specify the anisotropy weights array given to makeGlobalGrid(). If a tensor grid is
being created, then this file will specify the order array given to makeFullTensorGrid().

-print write out the same data as in the -outputfile but to the cout stream.
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4.6 Command: -makequadrature

./tasgrid -makequadrature <option1> <value1> <option2> <value2> ....

This command works the same as -makegrid except for the -outputfile command.

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the quadra-
ture weights and abscissas associated with the grid. The matrix file will have getNumPoints()
number of rows and -dimensions plus one number of columns. The first abscissa will be on
the first row, the second on the second row and so on. On each row, the first column is the
weight and the rest of the columns are the associated abscissa.

4.7 Command: -recycle

./tasgrid -recycle <option1> <value1> <option2> <value2> ....

This command creates a new grid with most of the parameters taken from an existing grid
specified by the -gridfile option. Furthermore, the command will try to use existing values of
the interpolated function, if they have already been loaded. This command calls one of the recy-
cle***Grid() functions. The recycled grid created will use the same number of dimensions and
outputs as well as the same base one dimensional quadrature or interpolation rule (including the
same values for the α and β parameters).

-gridfile on input this is the file with an already created grid. On exit the file will be overwritten with
the new grid.

-depth same as in -makegrid

-type if the loaded grid is a global grid, then the value is one of the strings level, basis or hyperbolic
which has the same meaning as in -makegrid. If the grid file contains a tensor grid, then -type
is ignored.

-order same as in -makegrid

-inputfile same as in -makegrid

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the needed
abscissas, i.e. the ones that are not yet associated with values of the interpolated function.
The matrix file will have getNumPoints() number of rows and getNumDimensions() number
of columns. The first abscissa will be on the first row, the second on the second row ...

-anisotropyfile same as in -makegrid

-print write out the same data as in the -outputfile but to the cout stream.
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4.8 Command: -getquadrature

./tasgrid -getquadrature <option1> <value1> <option2> <value2> ...

Reads a grid from a file, computes the quadrature associated with the grid and writes it to a
matrix file.

-gridfile this is the file with an already created grid.

-outputfile is an optional matrix file. The program will write in the file the quadrature weights and
abscissas associated with the grid. The matrix file will have getNumPoints() number of rows
and getNumDimensions()+1 number of columns. The first abscissa will be on the first row,
the second on the second row and so on. On each row, the first column is the weight and the
rest of the columns are the associated abscissa.

-print write out the same data as in the -outputfile but to the cout stream.

4.9 Command: -getpoints

./tasgrid -getpoints <option1> <value1> <option2> <value2> ....

Reads a grid from a file, extracts the abscissas associated with the grid and writes them out in
a matrix file.

-gridfile this is the file with an already created grid.

-outputfile is an optional matrix file. The program will write in the file the abscissas associated with
the grid. The matrix file will have getNumPoints() number of rows and getNumDimensions()
number of columns. The first abscissa will be on the first row, the second on the second row
and so on.

-print write out the same data as in the -outputfile but to the cout stream.

4.10 Command: -getinterweights

./tasgrid -getinterweights <option1> <value1> <option2> <value2> ....

Reads a grid from a file and a list of points of interest form a matrix file. For each point in
the matrix file, tasgrid computes the corresponding interpolation weights as in equation (1.3). The
result is written to an output matrix file
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-gridfile this is the file with an already created grid and loaded values.

-inputfile is a matrix file with points of interest. The file can have arbitrary number of rows and
getNumDimensions() number of columns. Each row corresponds to one point of interest.

-outputfile is an optional matrix file that is written on exit. The file contains the interpolation weights as-
sociated with the points provided by the -inputfile. The file has the same number of rows and
getNumPoints() number of columns. Each row contains the interpolation weights associated
with the corresponding point of interest.

-print write out the same data as in the -outputfile but to the cout stream.

4.11 Command: -getneededpoints

./tasgrid -getneededpoints <option1> <value1> <option2> <value2> ....

Reads a grid from a file, extracts the abscissas associated with the grid that are not yet associ-
ated with values of the interpolated function. Those abscissas are written to a matrix file.

-gridfile this is the file with an already created grid.

-outputfile is an optional matrix file. The program will write in the file the abscissas associated with the
grid that are not yet associated with values of the interpolated function. The matrix file will
have getNumPoints() number of rows and getNumDimensions() number of columns. The
first abscissa will be on the first row, the second on the second row and so on.

-print write out the same data as in the -outputfile but to the cout stream.

4.12 Command: -loadvalues

./tasgrid -loadvalues <option1> <value1> <option2> <value2> ....

Reads a grid from a file and the values of the interpolated function is read from a matrix file.
The function values are given to the grid via the loadValues() function and the modified grid is
written back to the same input file.

-gridfile this is the file with an already created grid. On exit, it will contain the grid with loaded
values.

-inputfile is a matrix file with getNumNeededPoints() number of rows and getNumOutputs() number
of columns. The first row contains the values of the interpolated function associated with the
first needed abscissa. The second row corresponds to the second abscissa and so on.

23



4.13 Command: -evaluate

./tasgrid -evaluate <option1> <value1> <option2> <value2> ....

Reads a grid from a file and a list of points of interest form a matrix file. The interpolant is
evaluated at all the points and the result is written to a matrix file.

-gridfile this is the file with an already created grid and loaded values.

-inputfile is a matrix file with points of interest. The file can have arbitrary number of rows and
getNumDimensions() number of columns. Each row corresponds to one point of interest.

-outputfile is an optional matrix file that is written on exit. The file contains the values of the inter-
polant at the points provided by the -inputfile. The file has the same number of rows and
getNumOutputs() number of columns. Each row contains the values of the interpolant at the
corresponding point of interest.

-print write out the same data as in the -outputfile but to the cout stream.

4.14 Command: -integrate

./tasgrid -integrate <option1> <value1> <option2> <value2> ....

Reads a grid from a file and integrates the interpolant over the domain. The result is written to
a matrix file.

-gridfile this is the file with an already created grid and loaded values.

-outputfile is an optional matrix file that is written on exit. The file contains the integrals of the inter-
polant over the domain. The file has one row and getNumOutputs() number of columns.

-print write out the same data as in the -outputfile but to the cout stream.
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4.15 Command: -refine

./tasgrid -refine <option1> <value1> <option2> <value2> ....

Reads a grid from a file and improves the interpolant by adding a new set of abscissas. Refer
to setRefinement() for details.

-gridfile this is the file with an already created grid and loaded values.

-tolerance is a positive real number that is given to the setRefinement() command.

-refinement is a string specifying the refinement criteria.

classic corresponds to type classic

parents corresponds to type parent first

direction corresponds to type direction selective

fds corresponds to type fds

-outputfile is an optional matrix file. At the end of the program, tasgird will write in the file the needed
abscissas, i.e. the ones that are not yet associated with values of the interpolated function.
The matrix file will have getNumPoints() number of rows and getNumDimensions() number
of columns. The first abscissa will be on the first row, the second on the second row ...

-print write out the same data as in the -outputfile but to the cout stream.

4.16 Command: -summary

./tasgrid -summary -gridfile <filename>

Reads the grid in the provided file and prints short summary about the grid.

-gridfile this is the file with an already created grid.
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4.17 Matrix File Format

A matrix file is a simple text file that describes a two dimensional array of real numbers. The
file contains two integers on the first line indicating the number of rows and columns. Those are
followed by the actual entries of the matrix one row at a time.

The file containing

3 4
1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0
9.0 10.0 11.0 12.0

represents the matrix  1 2 3 4
5 6 7 8
9 10 11 12


A matrix file may contain only one row or column, e.g.

1 2
13.0 14.0

All files used by tasgrid have the above format with the exception of the -gridfile that contains
saved sparse grids and the -anisotropyfile that is a matrix with one column and it should contain
only integers.
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5 MATLAB Interface

The MATLAB interface to tasgrid consists of several functions that call various tasgrid commands
and read and write matrix files. Unlike most MATLAB interfaces, this is code does not use .mex
files, but rather system commands and text files.

Before using the interface you must manually edit the tsgGetPath.m file!

• The MATLAB interface requires that MATLAB is able to call external commands and the
tasgrid executable in particular.

• The MATLAB interface also requires access to a folder where the files can be written.

• Each grid has a user specified name, that is a string which gets appended at the end of the
file name.

• The tsgDeleteGrid(), tsgDeleteGridByName() and tsgListGridsByName() allow for cleaning
the files in the temporary folder.

• Every function comes with help comments that can be accessed by typing

help tsgFunctionName

• Note that it is recommended to add the folder with the MATLAB interface to your MATLAB
path.

5.1 function tsgGetPaths()

[ sFiles, sTasGrid ] = tsgGetPaths()

You must edit the two strings in this file.

sTasGrid is a string containing the path to the tasgrid executable (including the name of the exe-
cutable).

sFiles is the path to a folder where MATLAB has read/write permission. Files will be created and
deleted in this folder.
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5.2 functions tsgReadMatrix() and tsgWriteMatrix()

Those functions are used internally to read from or write to matrix files. The user shouldn’t call
those functions directly.

5.3 function tsgMakeGrid()

[lGrid, points]=tsgMakeGrid( sGridName, dim, out, oned, depth, order, type,
anisotropy, alpha_beta, transformAB )

Calls tasgrid with the -makegrid command. This function creates an lGrid object that can be
used to refer to the grid by other functions.

INPUTS

sGridName a user provided name that will be appended to all the file names associated with this grid. If
a grid with this name already exists, it will be overwritten and the lGrid object associated
with the old grid will be invalid.

dim the dimension of the grid, same as -dimensions.

out the number of outputs of the grid, same as -outputs.

oned the one dimensional integration and interpolation rule, same as -onedim.

depth same as -depth.

order is used by local polynomial and local wavelet grids only. Specifies the order of the polyno-
mial, same as -order.

type is used by global grids only. Specifies the -type option.

anisotropy is either an empty MATLAB matrix [] or a matrix of integers with size dim ×1 that describe
the anisotropic weights (see -anisotropicfile option for tasgrid and const int *anisotropic weights
parameter for libtsg).

alpha beta is either an empty MATLAB matrix [] or a matrix of size 2× 1 with the α and β parameters.
See -alpha and -beta option for tasgrid and const double* alpha beta parameter for libtsg.

transformAB is either an empty MATLAB matrix [] or a matrix of dim rows and 2 columns that contains
the a and b parameters associated with the transformation of the domain. This is the same as
-inputfile given to tasgrid with the -makegrid command. See Table A.1 for the various types
of transformation.
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OUTPUTS

lGrid is an object that saves the grid name and some additional parameters, the object is used by
other functions to access the files associated with the grid.

ponits is an optional output MATLAB matrix that contains the abscissas associated with the sparse
grid. Each abscissa is stored on one row of the matrix.

5.4 function tsgMakeQuadrature()

[ weights, points ] = tsgMakeQuadrature( dim, oned, depth, order, type,
anisotropy, alpha_beta, transformAB )

Calls tasgrid with the -makequadrature command. The grid is not written to a file and only
the abscissas and weights are returned. The inputs are the same as tsgMakeGrid(), however, no
sGridName and out are needed.

INPUTS

Same as tsgMakeGrid() except no sGridName is needed as the grid isn’t stored permanently
and out is assumed to be zero.

OUTPUTS

weights is a MATLAB matrix containing the quadrature weights associated with the points.

ponits is a MATLAB matrix that contains the abscissas associated with the sparse grid. Each ab-
scissa is stored on one row of the matrix.

5.5 function tsgRecycleGrid()

[ newp ] = tsgRecycleGrid( lGrid, depth, order, type, anisotropy )

Calls tasgrid with the -recycle command.

INPUTS

lGrid is an object created by tsgMakeGrid()

depth same as in tsgMakeGrid() and -depth

order same as in tsgMakeGrid() and -order
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type same as in tsgMakeGrid() and -type

anisotropy same as in tsgMakeGrid() and -anisotropy

transformAB same as in tsgMakeGrid() and -inputfile

OUTPUTS

newp is an optional output MATLAB matrix containing the set of abscissas that are not yet asso-
ciated with values from the interpolated function.

5.6 function tsgGetQuadrature()

[ weights, points ] = tsgGetQuadrature( lGrid )

Calls tasgrid with the -getquadrature command.

INPUTS

lGrid is an object created by tsgMakeGrid()

OUTPUTS

weights is a MATLAB matrix containing the quadrature weights associated with the points.

ponits is a MATLAB matrix that contains the abscissas associated with the sparse grid. Each ab-
scissa is stored on one row of the matrix.

5.7 function tsgGetInterpolationWeights()

[ weights ] = tsgGetInterpolationWeights( lGrid, points )

Calls tasgrid with the -getinterweights command.

INPUTS

lGrid is an object created by tsgMakeGrid()

points is a MATLAB matrix with dim number of columns and arbitrary number of rows. Each row
represents one point of interest.

OUTPUTS

weights is a MATLAB matrix of getNumPoitns() number of columns and the same number of rows as
points. The weights contain the interpolation weights associated with each point of interest
in points.
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5.8 function tsgGetNeededPoints()

[ newp ] = tsgGetNeededPoints( lGrid )

Calls tasgrid with the -getneededpoints command.

INPUTS

lGrid is an object created by tsgMakeGrid()

OUTPUTS

newp is a MATLAB matrix of getNumNeededPoitns() number of rows and out number of columns.
Each rows is an abscissa that is not yet associated with a value of the interpolated function.

5.9 function tsgLoadValues()

tsgLoadValues( lGrid, values )

Calls tasgrid with the -loadvalues command.

INPUTS

lGrid is an object created by tsgMakeGrid()

values is a MATLAB matrix with getNumNeededPoitns() number of rows and out number of columns.
Each row represents the values of the function at one point.

OUTPUTS

there are no output variables, however, the files associated with the grid are modified.

5.10 function tsgEvaluate()

[ result ] = tsgEvaluate( lGrid, points )

Calls tasgrid with the -evaluate option.

INPUTS

lGrid is an object created by tsgMakeGrid()
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points is a MATLAB matrix with rows representing points of interest.

OUTPUTS

result is a MATLAB matrix with rows representing the values of the interpolant at the point of
interest.

5.11 function tsgIntegrate()

[ result ] = tsgIntegrate( lGrid )

Calls tasgrid with the -integrate option.

INPUTS

lGrid is an object created by tsgMakeGrid()

OUTPUTS

result is a MATLAB matrix with one row that represents the integral of the interpolant over the
canonical domain associated with the quadrature rule (i.e. oned).

5.12 function tsgRefineGrid()

[ newp ] = tsgRefineGrid( lGrid, tolerance, criteria )

Calls tasgrid with the -refine option.

INPUTS

lGrid is an object created by tsgMakeGrid()

tolerance the tolerance for the refinement, same as -tolerance

criteria the type of refinement, same as -refinement

OUTPUTS

newp is a MATLAB matrix of getNumNeededPoitns() number of rows and out number of columns.
Each rows is an abscissa that is not yet associated with a value of the interpolated function.
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5.13 function tsgPrintStats()

tsgPrintStats( lGrid )

Calls tasgrid with the -summary option.

5.14 function tsgDeleteGrid()

tsgDeleteGrid( lGrid )

Delete all files associated with the grid. The lGrid object is no longer valid for further reference.

INPUTS

lGrid is an object created by tsgMakeGrid()

OUTPUTS

deletes all the files associated with the grid and the lGrid object is no longer valid.

5.15 function tsgDeleteGridByName()

tsgDeleteGrid( sGridName )

Delete all files associated with the grid with the name sGridName. This function should be
called whenever the lGrid object has been lost (similar to a memory leak).

INPUTS

sGridName the name of the grid to be deleted.

OUTPUTS

deletes all the files associated with the grid.

5.16 function tsgListGridsByName()

tsgListGridsByName()

Reads the temp folder and finds all the grids regardless whether or not they are associated with
grid objects.
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5.17 function tsgExample()

tsgExample()

This function contains sample code that replicated the C++ example. This is a demonstration
on the proper way to call the MATLAB functions.

5.18 Saving a Grid

You can save the lGrid object just like any other MATLAB object. However, a saved grid has
two components, the lGrid object and the files associated with the grid that are stored in the folder
specified by tsgGetPath(). The files in the temporary folder will be persistent until either tsgDelete-
Grid() is called or the files are manually deleted. The only exception is that the tsgExample()
function will overwrite any grids with names tsgExample2 or tsgExample5. Note that modifying
tsgGetPath() may result in the code not being able to find the needed files and hence the grid object
may be invalidated.

5.19 Avoiding Some Problems

• Make sure to call tsgDeleteGrid() as soon as you are done with a grid, this will avoid clutter
in the temporary folder.

• If you clear an lGrid object without calling tsgDeleteGrid() (i.e. you exit MATLAB without
saving), then make sure to use tsgListGridsByName() and tsgDeleteGridByName() to safely
delete the “lost” grids.

• Working with the MATLAB interface is very similar to working with dynamical memory,
where the data is stored on the disk as opposed to the RAM and the lGrid object is the
pointer. Also, the grids are associated by name as opposed to a memory address.

• If multiple users are sharing the same temporary folder, then it would be useful if they come
up with a naming convention that prevents two users from using the same grid name. For
example, instead of both users creating a grid named mygrid1, the users should name their
grids johngrid1 and janegrid1.

• All of the grid data for all of the grids is stored in the same folder. Anyone with access to the
temporary folder has full access to all of the sparse grid data, which is a potential security
issue.

• If two users have separate copied of tsgGetPaths(), then they can use separate storage folders
without any of the multi-user considerations. This is true even if all other files are shared,
including the tasgrid executable and libtsg library.
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A Types of One Dimensional Rules

A.1 Global Grids

All global grids use Lagrange polynomial for interpolation. Gauss rules are most suitable for
optimal integration with respect to a given weight. The non-Gauss rules are more suitable for
interpolation. However, depending on the structure of f(x), it is perfectly possible for a non-Gauss
rule to produce a more accurate integral or for a Gauss rule to produce a more accurate interpolant.
For more details on the various quadrature rules and their properties see [1, 5, 7, 14, 17, 24].

Clenshaw-Curtis

Also known as nested Chebyshev. It uses nested Chebyshev points and integration weights on
Γ1 = [−1, 1]. The rule is known to produce heavy bias on the main axis. When used with the
basis type, the axis growth is slowed, which is equivalent to [20]. A basis type grid is guaranteed
to interpolate exactly any polynomial of degree no more than the depth property, the rule will also
interpolate some higher order polynomials depending on the depth and dimension.

Chebyshev

The Chebyshev rule on Γ1 = [−1, 1] with non-nested points that grow one point at a level. This
is the only rule where level and basis types grids are identical. A basis type grid is guaranteed to
interpolate exactly any polynomial of degree no more than the depth property.

Chebyshev two point growth

The Clenshaw-Curtis rule on Γ1 = [−1, 1] is split into more levels so that every level adds ex-
actly two points to the previous one. A basis type grid is guaranteed to interpolate exactly any
polynomial of degree no more than the depth property.

Note: this is not a stable rule and it should be used with great caution.

Fejer type 2

The Fejer type 2 rule on Γ1 = [−1, 1] that is nested and uses Chebyshev points and weights. Unlike
the Clenshaw-Curtis rule, Fejer type 2 assumes that f(x) vanishes at the two end points. A basis
type grid is guaranteed to interpolate exactly any polynomial of degree no more than the depth
property, so long as the polynomial vanishes at the boundary of the domain.
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Gauss-Legendre

Optimal integration rule for functions on a bounded domain and constant weight:∫ 1

−1

f(x)dx.

A basis type grid is guaranteed to integrate exactly any polynomial of degree no more than the
value of the depth property.

Gauss-Chebyshev Type 1

Optimal integration rule for functions on a bounded domain and weight ρ1(x) = (1− x2)−0.5:∫ 1

−1

f(x)ρ1(x)dx =

∫ 1

−1

f(x)(1− x2)−0.5dx.

A basis type grid is guaranteed to integrate exactly any polynomial of degree no more than the
value of the depth property.

Gauss-Chebyshev Type 2

Optimal integration rule for functions on a bounded domain and weight ρ1(x) = (1− x2)+0.5:∫ 1

−1

f(x)ρ1(x)dx =

∫ 1

−1

f(x)(1− x2)+0.5dx.

A basis type grid is guaranteed to integrate exactly any polynomial of degree no more than the
value of the depth property.

Gauss-Gegenbauer

Generalized Gauss-Chebyshev rule. Optimal integration rule for functions on a bounded domain
and weight ρ1(x) = (1− x2)α:∫ 1

−1

f(x)ρ1(x)dx =

∫ 1

−1

f(x)(1− x2)αdx.

A basis type grid is guaranteed to integrate exactly any polynomial of degree no more than the
value of the depth property.
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Gauss-Jacobi

Generalized Gauss-Gegenbauer rule. Optimal integration rule for functions on a bounded domain
and weight ρ1(x) = (1− x)α(1 + x)β:∫ 1

−1

f(x)ρ1(x)dx =

∫ 1

−1

f(x)(1− x)α(1 + x)βdx.

A basis type grid is guaranteed to integrate exactly any polynomial of degree no more than the
value of the depth property.

Gauss-Laguerre

This is the generalized Gauss-Laguerre quadrature. Optimal integration rule for functions on a
bounded domain and weight ρ1(x) = xαe−x:∫ ∞

0

f(x)ρ1(x)dx =

∫ ∞
0

f(x)xαe−xdx.

A basis type grid is guaranteed to integrate exactly any polynomial of degree no more than the
value of the depth property.

Note: Interpolation with this rule is extremely unstable due to the infinite range of the domain.

Gauss-Hermite

This is the generalized Gauss-Hermite quadrature. Optimal integration rule for functions on a
bounded domain and weight ρ1(x) = |x|αe−x2:∫ ∞

−∞
f(x)ρ1(x)dx =

∫ ∞
−∞

f(x)|x|αe−x2dx.

A basis type grid is guaranteed to integrate exactly any polynomial of degree no more than the
value of the depth property.

Note: Interpolation with this rule is extremely unstable due to the infinite range of the domain.

A.2 Local Polynomials

The local polynomial rules are best for interpolation of a function with locally sharp gradients.
The domain of interpolation is Γ1 = [−1, 1]. Local polynomial grids allow for different types of
local adaptivity. The maximum degree of the polynomials is specified by the order property. Note
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Canonical Generalized Domain of Canonical Additional Nested
Integral Integral Interpolation Assumptions

Clenshaw-Curtis: rule clenshawcurtis, clenshaw-curtis∫ 1

−1 f(x)dx
∫ b
a
f(x)dx [−1, 1] N/A Yes

Chebyshev: rule chebyshev, chebyshev∫ 1

−1 f(x)dx
∫ b
a
f(x)dx [−1, 1] N/A No

Fejer type 2: rule fejer2, fejer-2∫ 1

−1 f(x)dx
∫ b
a
f(x)dx [−1, 1] f(−1) = f(1) = 0 Yes

Gauss-Legendre: rule gausslegendre, gauss-legendre∫ 1

−1 f(x)dx
∫ b
a
f(x)dx [−1, 1] N/A No

Gauss-Chebyshev type 1: rule gausschebyshev1, gauss-chebyshev-1∫ 1

−1 f(x)(1− x
2)−0.5dx

∫ b
a
f(x)(b− x)−0.5(x− a)−0.5dx [−1, 1] N/A No

Gauss-Chebyshev type 2: rule gausschebyshev2, gauss-chebyshev-2∫ 1

−1 f(x)(1− x
2)0.5dx

∫ b
a
f(x)(b− x)0.5(x− a)0.5dx [−1, 1] N/A No

Gauss-Gegenbauer: rule gaussgegenbauer, gauss-gegenbauer∫ 1

−1 f(x)(1− x
2)αdx

∫ b
a
f(x)(b− x)α(x− a)αdx [−1, 1] Must specify α No

Gauss-Jacobi: rule gaussjacobi, gauss-jacobi∫ 1

−1 f(x)(1− x)
α(1 + x)βdx

∫ b
a
f(x)(b− x)α(x− a)βdx [−1, 1] Must specify α, β No

Gauss-Laguerre: rule gausslaguerre, gauss-laguerre∫∞
0
f(x)xαe−xdx

∫∞
a
f(x)(x− a)αe−b(x−a)dx [0,∞] Must specify α No

Gauss-Hermite: rule gausshermite, gauss-hermite∫∞
−∞ f(x)xαe−x

2

dx
∫∞
−∞ f(x)(x− a)αe−b(x−a)2dx [−∞,∞] Must specify α No

Local Polynomials: rule pwpolynomial, local-polynomial∫ 1

−1 f(x)dx
∫ b
a
f(x)dx [−1, 1] N/A Yes

Local Polynomials with Zero Boundary: rule pwpolynomial0, local-polynomial-zero∫ 1

−1 f(x)dx
∫ b
a
f(x)dx [−1, 1] f(−1) = f(1) = 0 Yes

Local Wavelets: rule wavelet, local-wavelet∫ 1

−1 f(x)dx
∫ b
a
f(x)dx [−1, 1] N/A Yes

Table A.1: Summary of the available quadrature rules. For each rule, we have the enumerated type
as rule *** followed by the string given to the tasgrid and MATLAB interfaces.

that at a given depth we can only use a polynomial of the same order. There are two variations of
the local polynomial rule that assume zero and non-zero boundary. Also note that quadrature rules
based on local polynomials may have abscissas associated with zero weights. For more details on
the local polynomials see [10, 15, 16]

A.3 Wavelet Grid

Same as local polynomials, however, it assumes that order is either 1 or 3. The boundary is not
assumed to be zero and only one type of local refinement is possible. Functionality would be
expanded in the future. For more details on the wavelet grid see [10, 13, 25]
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