
Johnny 1.00 – User's Manual 1 / 15

Johnny 1.00
Simulation of a
Simplified von Neumann Computer

Peter Dauscher, 2009-2012

– User's Manual –

BY SA

Johnny 1.00 – User's Manual 2 / 15

Content
1. Remark...3
2. Introduction..3
3. Simplifications..3
4. The Processor ...4

 4.1. Memory (RAM)..5
 4.2. The Arithmetic Logic Unit...5
 4.3. The Control Unit...6

5. The Standard (Macro) Instruction Set..7
6. Simple Program Examples..8

 6.1. Adding numbers...8
 6.2. Multiplying numbers...8

7. The User Interface...9
8. Creating own Macro Instructions..11
9. The BONSAI Mode..12

 9.1. Umschalten in den Bonsai-Modus...12
 9.2. Öffnen und Speichern..12

10. Legal Stuff, Technical Stuff and Acknowledgements...13
 10.1. Legal Stuff ...13
 10.2. Technical Stuff..14
 10.3. Acknowledgements..15

Johnny 1.00 – User's Manual 3 / 15

1. Remark
The author of this manual is not a native English speaker. So if you find spelling errors,
grammatical or other mistakes, please feel encouraged to report them to make this user's
manual better. Thank you very much in advance!
- Peter Dauscher

peter.dauscher@gmail.com

2. Introduction
Most contemporary computers base upon the Von Neumann Architecture. Due to mini-
aturization, most processes in modern computers are hidden to the users and can hardly
be observed. Therefore, simulation is a powerful method to give pupils and students an
overview about what happens in computers.
JOHNNY has been developed especially for educational purposes resulting in some sub-
stantial simplifications compared to real computers.

3. Simplifications
● The simulator can be observed on the level of micro instructions as well as of macro

instructions. The inner structure of the Control Unit can be masked in order to make
things simpler in the beginning.

● Users can program the simulator using an assembler-like language. The respective
macro instructions can be written directly into the memory using a GUI so that syn-
tax errors are ruled out by construction.

● The Arithmetic Logic Unit consist of one single register acting as accumulator.
● The simulator and its GUI use the decimal system. Although this is not very realistic

in a technical sense, it simplifies the usage especially for beginners being too famili -
ar with hexadecimal system: So, in Johnny, 9+8 equals 16 and not 0x11.

● The data range is 0..19999; the address range is 0..999. Overflows are not allowed:
0-1 → 0 and 19999+1 → 19999.

● The instruction set is very small consisting only of 10 macro instructions. All instruc-
tions use absolute addressing (one address per instruction) for the sake of simpli -
city. The OP-Code is given by the tenthousands' place and the thousands' place;
the other places represent the address. (ADD 42, e.g, is represented by 02 042).

Johnny 1.00 – User's Manual 4 / 15

● In real processors, a micro instruction activates, in general, several lines of the con-
trolling bus. Activating more than one line in real processors, however, can easily ef-
fect bus errors if not performed properly. Therefore, a (quite unrealistic) simplifica-
tion has been made: Each micro instruction corresponds to one single push button
that also can be pushed manually by the user.

● A macro instruction is simply a sequence of such micro instructions. In order to
avoid the necessity for simultaneity that the data bus has the ability to store a data
word (which, of course, is not realistic: real buses are simply lines; storage is done
by processor registers).
Transferring a data word from one place to another via the data bus is performed in
two steps: a) the sender copies the word onto the bus; b) the receiver copies the
word from the bus. Bus conflicts are therefore ruled out by construction.

● Micro Code is editable: The user can create his own macro instructions simply by
choosing an appropriate name and then clicking the sequence of micro instructions
with the mouse.

4. The Processor
The processor consists of three parts: the Arithmetic Logic Unit, the Memory (RAM) and
the Control Unit. These Units are interconnected by busses.

In the following each unit shall be considered in detail.

Johnny 1.00 – User's Manual 5 / 15

4.1. Memory (RAM)
The Random Access
Memory (RAM) consists of
1000 locations, each having
the ability to store numbers
in the range 0..19999. Con-
sequently, three decimal di-
gits are sufficient to address
each location.
The 10000s place and
1000s place are separated
a bit from the other places
since they represent the
OP-Code of the macro in-
structions.
Using two push buttons
(triggering the micro instruc-
tions ram->db and

db->ram) data from the ad-
dressed location can be put
onto or taken from the bus,
respectively.

The locations are editable using the GUI; macro instructions can be chosen using a pull-
down menu. In the GUI, two sections of the RAM (which can overlap) are shown. Thus,
the instructions and the data affected can be shown simul-
taneously.

4.2. The Arithmetic Logic Unit
The Arithmetic Logic Unit consists merely of the accumulat-
or. The accumulator can be resetted (acc:=0), incremented
(acc++), decremented (acc--). db->acc

transports a data word from the bus into the accumulator;
acc->db does the opposite.
A value from the bus can be added (plus) or subtracted
(minus).
In the so-called BONSAI Mode (to be explained later in sec-
tion 9) some of these micro instructions are suppressed.

Johnny 1.00 – User's Manual 6 / 15

4.3. The Control Unit
The most complex part of the processor is
the Control Unit. It consists of the instruc-
tion register, the program counter and the
micro code. By db->ins the content of the
bus is transferred to the instruction re-
gister. The address part of the instruction
can be put directly onto the address bus
(ins->ab) or transferred to the program
counter (ins->pc), which is necessary to
implement a JUMP instruction. The pro-
gram counter itself can be copied to the
address bus by pc->ab.

The micro instruction pc++ increments the
counter; =0:pc++ does the same, but only
if the accumulator has zero value.
ins->mc sets the 100s and 10s places of
the micro instruction counter (above the
micro code) to the OP-Code in the In-
struction Register (and resets the 1s place
to zero). The micro instruction mc:=0 resets the micro instruction counter; stopp is not an
instruction in a narrower sense: it only forces the simulator to show a message that the
program is finished.
As mentioned above, the Control Unit can be masked in order to make things simpler.

Johnny 1.00 – User's Manual 7 / 15

5. The Standard (Macro) Instruction Set
Der mitgelieferte Microbefehlsspeicher speichert die Steuerung von 10 Makrobefehlen ab:

● TAKE The value of the location (given by the absolute address) is transported to
the accumulator.

● SAVE The value of the accumulator is transported to the location given by the abso-
lute address.

● ADD The value of a location (given by the absolute address) is added to the value
in the accumulator.

● SUB The value of a location (given by the absolute address) is subtracted from the
value in the accumulator.

● INC The value of the location (given by the absolute address) is incremented.
● DEC The value of the location (given by the absolute address) is decremented.
● NULL The value of the location (given by the absolute address) is set to zero.

● TST If and only if the location (given by the absolute address) has a zero
value, the next macro instruction is leaped over.
(This is a substantial change compared to version 0.98 of the simulator
where directly the value of the accumulator has been tested. The change has been
made for the sake of uniformity.)

● JMP The program is continued at the given location.
● HLT The simulator shows a message that the program is finished.

!

Johnny 1.00 – User's Manual 8 / 15

6. Simple Program Examples

6.1. Adding numbers
The following example program adds the values of locations <10> and <11> and stores
the result in location 12:

001: TAKE 010
002: ADD 011
003: SAVE 012
004: HLT 000

6.2. Multiplying numbers
Multiplication of numbers can be implemented by subsequently adding the one value <10>
to the result location <12> which had set to zero, previously.

000: NULL 012
001: TAKE 012
002: ADD 010
003: SAVE 012
004: DEC 011
005: TST 011
006: JMP 001
007: HLT 000

In each loop the other value of the other location <11> is decremented. The loop is contin-
ued until <11> has reached value 0.

Johnny 1.00 – User's Manual 9 / 15

7. The User Interface
The buttons are arranged in two groups (Macro Code and Micro Code) the latter of which
is only shown if the Control Unit is shown in detail.
The buttons in the Macro Code group mean:

Set RAM completely to Zero (00 000 for each location)

Open a program on HD.

Save a program to HD.

Execute the next macro instruction in the RAM.

Execute the program automatically (where the speed can be controlled by the scroll bar
to the right of the button).

Stop the execution of the program.

Set the program counter and all other processor pegisters to zero.

Show the options window.

If the button is used to show the Control Unit in detail, the following buttons are

shown:

Johnny 1.00 – User's Manual 10 / 15

Open a micro code file on HD.

Save the current micro code to HD.

Execute a single micro instruction.

Record a micro instruction sequence to form a new macro instruction.

If one location of the RAM is clicked, a window appears where the numerical value can be
changed or a macro instruction can be chosen from a pull-down menu. The address can
be entered by using the real or a virtual keyboard. A double click on the address part sets it
to zero.

The location is set to zero.

The change is written into the respective location.

The location keeps unchanged.

By using the right mouse button, a context menu is shown. Using this menu insertions an
deletions in the RAM can be effected.

Johnny 1.00 – User's Manual 11 / 15

With an insertion, the block of the next non-zero-value locations is shifted down by one;
one zero-value-location at the end of the block is deleted. Similarly, with a deletion the
non-zero-value block is shifted up and a zero-value location is inserted below the block.

8. Creating own Macro Instructions
In order to create an own macro instruction (or to change an existing) first an OP-Code
and a Mnemonic must be chosen. The latter can be chosen in the pull-down menu later on
when RAM content is changed.

Then the Record button is pressed:

The respective part of the micro code is set to zero at first. By pressing the buttons of the
respective micro instructions, the sequence is recorded. The recording is indicated by a
blinking part of the user interface. Pressing the Record button again stops the recording.
The new micro code can be saved to HD and opened again by

Saving a micro code creates two files. One (.mpc) file contains the micro code itself, the
.nam file the Mnemonics of the instructions.

Johnny 1.00 – User's Manual 12 / 15

9. The BONSAI Mode
In the 1990s Klaus Merkert and Walter Zimmer implemented a similar simulator, BONSAI.
In order to be able to use the BONSAI instruction set (which consists only of five instruc-
tions, namely INC, DEC, TST, JMP and HLT), Johnny can be switched to BONSAI mode.
The pull-down menu is then adapted to these instructions, some micro instructions (unne-
cessary in this mode) are suppressed.

9.1. Umschalten in den Bonsai-Modus
Using

a window is shown which
enables the user to change
the mode.
Attention: Changing the op-
tion deletes the RAM con-
tent completely.

9.2. Öffnen und Speichern
BONSAI machine programs (.bma files) of the original BONSAI simulator can be opened
and written. Therefore, it is possible to create a BONSAI machine program using JOHNNY
and then transfer it to the original simulator (which is more complex but also more
realistic).
Therefore there are three file formats for RAM content:

.ram Standard JOHNNY RAM content

.bma Standard Bonsai-Machine Programs

.bij Bonsai-Programms saved in Standard JOHNNY format

Johnny 1.00 – User's Manual 13 / 15

10. Legal Stuff, Technical Stuff and Acknowledgements

10.1. Legal Stuff

The program is Open Source and licensed under the GNU
GPLv3.
http://www.gnu.org/licenses/gpl-3.0.txt

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL PETER DAUSCHER OR ANY OTHER CONTRIBUTOR BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The documentation itself is licensed under the
Creative Commons License CC-BY-SA
http://creativecommons.org/licenses/by-sa/3.0/de/legalcode BY SA

http://www.gnu.org/licenses/gpl-3.0.txt
http://creativecommons.org/licenses/by-sa/3.0/de/legalcode

Johnny 1.00 – User's Manual 14 / 15

10.2. Technical Stuff
The program has not to be installed in order to work: it can simply be run from any data
storage medium.
The program has been developed using the free IDE Lazarus (Version 0.9.30.4):
http://www.lazarus.freepascal.org

So, at least in theory, the program should be able to be compiled to any operating system
Lazarus can generate executable files for.
All graphics have been created using OpenOffice, LibreOffice, the Gnu Image Manipula-
tion Program (GIMP) and InkScape:

http://de.openoffice.org
http://de.libreoffice.org
http://www.gimp.org
http://www.inkscape.org

http://www.inkscape.org/
http://www.gimp.org/
http://de.libreoffice.org/
http://www.de.openoffice.org/
http://www.lazarus.freepascal.org/

Johnny 1.00 – User's Manual 15 / 15

10.3. Acknowledgements
Thanks to all who have helped to create this simulator indirectly by their activities in the
Open Source projects mentioned above.

Furthermore, I wish to thank to all persons who have given me useful feedback and bug
reports:

• My students at the Gymnasium am Kaiserdom, Speyer.
• My colleagues Jens Fiedler, Ewald Bickelmann, Bernd Fröhlich, Ernst-Lothar Steg-

maier and all colleagues who have tested the program with their students and found
bugs.

• Alexander Güssow and Joachim Brehmer-Moltmann who tested the program ex-
tensively from the students perspective.

• Alexander Domay for the first compilation on a Linux system.
• Klaus Merkert and Tobias Selinger, Martin Oehler, David Meder-Marouelli for useful

comments and the encouragement to make Johnny an Open Source project.
• The responsibles of the imedia and MNU conferences who gave me the possibility

to present Johnny at a larger public.
• Especially those persons I have forgotten in my enumeration.

I wish you all much fun (and productive work) using Johnny.

Any further bug report or suggestion is appreciated. Thanks in advance!

Peter Dauscher, 10.07.2012

peter.dauscher@gmail.com

Tha
nk

s fo
r a

ll, G
uido

!

mailto:peter.dauscher@gmail.com

	1. Remark
	2. Introduction
	3. Simplifications
	4. The Processor
	4.1. Memory (RAM)
	4.2. The Arithmetic Logic Unit
	4.3. The Control Unit

	5. The Standard (Macro) Instruction Set
	6. Simple Program Examples
	6.1. Adding numbers
	6.2. Multiplying numbers

	7. The User Interface
	8. Creating own Macro Instructions
	9. The BONSAI Mode
	9.1. Umschalten in den Bonsai-Modus
	9.2. Öffnen und Speichern

	10. Legal Stuff, Technical Stuff and Acknowledgements
	10.1. Legal Stuff
	10.2. Technical Stuff
	10.3. Acknowledgements

