
RSC-4x mikroC

Develop your applications quickly and easily with the world's
most intuitive C compiler for Sensory RSC-4x microcontrollers.

Highly sophisticated IDE provides the power you need with the
simplicity of a Windows based point-and-click environment.

With useful implemented tools, many practical code examples,
broad set of built-in routines, and a comprehensive Help, RSC-4x
mikroC makes a fast and reliable tool, which can satisfy needs of
experienced engineers and beginners alike.

C Compiler for Sensory RSC-4x microcontrollers

mikroElektronika
Development tools - Books - Compilers
w w w . m i k r o e l e k t r o n i k a . c o . y u

Us
er

’s
 mm

an
ua
l

M a k i n g i t s i m p l e

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

ii MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

DISCLAIMER:
RSC-4x mikroC and this manual are owned by mikroElektronika and are protected by copy-
right law and international copyright treaty. Therefore, you should treat this manual like any
other copyrighted material (e.g., a book). The manual and the compiler may not be copied,
partially or as a whole without the written consent from the mikroElektronika. The PDF-edition
of the manual can be printed for private or local use, but not for distribution. Modifying the
manual or the compiler is strictly prohibited.

HIGH RISK ACTIVITIES
The mikroC compiler is not fault-tolerant and is not designed, manufactured or intended for
use or resale as on-line control equipment in hazardous environments requiring fail-safe per-
formance, such as in the operation of nuclear facilities, aircraft navigation or communication
systems, air traffic control, direct life support machines, or weapons systems, in which the fail-
ure of the Software could lead directly to death, personal injury, or severe physical or envi-
ronmental damage ("High Risk Activities"). mikroElektronika and its suppliers specifically dis-
claim any express or implied warranty of fitness for High Risk Activities.

LICENSE AGREEMENT:
By using the RSC-4x mikroC compiler, you agree to the terms of this agreement. Only one
person may use licensed version of RSC-4x mikroC compiler at a time.
Copyright © mikroElektronika 2003 - 2006.

This manual covers mikroC version 1.0.0.7 and the related topics. Newer versions may
contain changes without prior notice.

COMPILER BUG REPORTS:
The compiler has been carefully tested and debugged. It is, however, not possible to
guarantee a 100 % error free product. If you would like to report a bug, please contact us at
the address office@mikroe.com. Please include next information in your bug report:

- Your operating system
- Version of RSC-4x mikroC
- Code sample
- Description of a bug

CONTACT US:
mikroElektronika
Voice: + 381 (11) 30 66 377, + 381 (11) 30 66 378
Fax: + 381 (11) 30 66 379
Web: www.mikroe.com
E-mail: office@mikroe.com

Reader’s note

RSC, RSC-4x is a Registered trademark of Sensory company. Windows is a Registered
trademark of Microsoft Corp. All other trade and/or services marks are the
property of the respective owners.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers

Table of Contents

CHAPTER 1 RSC-4x mikroC IDE

CHAPTER 2 Building Applications

CHAPTER 3 RSC-4x mikroC Specifics

CHAPTER 4 RSC-4x mikroC Reference

CHAPTER 5 RSC-4x mikroC Libraries

RRSSCC-44xx mmiikkrrooCC UUsseerr’’ss mmaannuual

CHAPTER 1: RSC-4x mikroC IDE 1

Quick Overview 2
Code Editor 3
Code Explorer 6
Error Window 7
Integrated Tools 8
Keyboard Shortcuts 10

CHAPTER 2: Building Applications 13

Projects 14
Search and Include Paths 16
Source Files 19
Compilation 21
Output Files 22
Error Messages 23

CHAPTER 3: mikroC Specifics 25

Memory Types 26
On-Chip SRAM 26
On-Chip Technology RAM 28
ROM 28
External RAM 29
Memory Models 30
Address Spaces 31
Absolute Memory Locations 32
Language Extension 33
ANSI Compilance 33
Types Specifics 35

Memory Type Specifiers and Modifiers 35
Variables Allocation 36
Pointer Types 37
Qualifier const 37
Pointer Specifics 38
Strings Specifics 38
Specialized Types Conversions 39

Function Specifics 40
Interrupt Handlers 40
Reentrant Functions 42
Indirect Function Calls 43

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

iv MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Startup Functions 43
Monitor Functions 44
Prologue/Epilogue Functions 45

Inline Assembler 46
Implementation Details 48

Compiled Stack 48
Passing Return Value 49

Interrupt Handling 50
MEDIUM and LARGE Memory Models 50

Runtime Library 51
CSTARTUP and SYSLIB Modules 52

Usage of Modules Written in Assembler 53

CHAPTER 4: mikroC RSC-4x Language Reference 55

Lexical Elements Overview 56
Whitespace 56
Whitespace in strings 57
Standard C Comments 58
C++ Style Comments 58
Nested Comments 59
Constants 60
Integer Constants 61
Long and Unsigned Suffixes 61
Decimal 61
Hexadecimal 62
Binary 62
Octal 62
Floating point constants 63
Character constants 64
Disambiguation 66
String Constants 66
Enumeration Constants 68
Pointer Constants 68
Constant Expression 69

Concepts 70
Objects and declarations 70
Scope and Visibility 72
Name Spaces 73
Duration 74

Types 76
Type Categories 77
Arithmetic Types 77
Floating-point Types 78

MikroElektronika: DDevelopment ttools - BBooks - CCompilers v
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Enumerations 79
Anonymous Enum Type 80
Enumeration Scope 81
Void Type 81

Derived Types 82
Arrays 82
Array Initialization 83
Arrays in Expressions 83
Multi-Dimensional Arrays 84

Pointers 85
Pointers Declaration 85
Null Pointers 86
Pointer Arithmetic 87
Pointer Addition 89
Pointer Substraction 90

Structures 91
Structures Initialization and Declaration 91
Working with Structures 93
Structure Member Access 94
Accesing Nested Structures 95
Structure Uniqueness 96

Unions 97
Union Declaration 97

Bitfields 98
Fuction Calls 99
Bit Fields Access 99

Types Conversions 100
Standard Conversions 100
Arithmetic Conversions 101
Pointer Conversions 102
Explicit Types Conversions (Typecasting) 103

Declarations 104
Declarations And Definitions 104
Declarations And Declarators 105
Linkage 106
Storage Classes 107
Type Qualifiers 109
Typedef Specifier 110
Inline Assembler 111
Initialization 112

Functions 113
Function Declaration 113
Function Prototypes 114
Function Definition 115
Function Calls and Argument Conversions 116

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

vi MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Operators 117
Operators Precedence and Associativity 117
Arithmetic Operators 118
Binary Arithmetic Operators 119
Unary Arithmetic Operators 119
Relational Operators 120
Relational Operators in Expressrions 120
Bitwise Operators 121
Bitwise Shift Operators 122
Bitwise vs. Logical 123
Logical Operators 123
Conditional Operator ? 125
Conditional Operator Rules 126
Assigment Operators 126
Sizeof Operators 127

Expressions 128
Comma Expressions 128

Statements 130
Labeled Statements 130
Expression Statements 131
Iteration Statements 134
Jump Statements 137
Break And Continue Statements 137
Compound Statements (Blocks) 140

Preprocessor 140
Preprocessor Directives 141
Line Continuation with Backslash (\) 141
Macros 142
Conditional Compilation 148
Directives #ifdef and #ifndef 149

CHAPTER 5: RSC-4x mikroC Libraries 151

RSC-4x mikroC Libraries 152
C Ctype Library 153
C Math Library 157
C stdio.h Library 163
C Stdlib Library 170
C String Library 175
Built-in Routines 183
Compact Flash Library 186
LCD Library (4-bit interface) 190
Software I2C Library 196
Software SPI Library 203

Concat Us 206

MikroElektronika: DDevelopment ttools - BBooks - CCompilers vii
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

viii MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

CHAPTER

MikroElektronika: DDevelopment ttools - BBooks - CCompilers

1

RSC-4x mikroC IDE

RSC-4x mikroC is a powerful, feature rich development tool for Sensory RSC-4x
micros. It is designed to provide the customer with the easiest possible solution for
developing applications for embedded systems, without compromising perform-
ance or control.

RSC-4x mikroC provides a successful match featuring highly advanced IDE,
ANSI compliant compiler, broad set of hardware libraries, comprehensive docu-
mentation, and plenty of ready-to-run examples.

QUICK OVERVIEW

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

2 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

RSC-4x mikroC allows you to quickly develop and deploy complex applications:

- Write your C source code using the highly advanced Code Editor

- Use the included RSC-4x mikroC libraries to dramatically speed up the develop-
ment: data acquisition, memory, displays, conversions, communications…

- Monitor your program structure, variables, and functions in the Code Explorer.
Generate commented, human-readable assembly, and standard HEX compatible
with all programmers.

- We have provided plenty of examples for you to expand, develop, and use as
building bricks in your projects.

Code
Explorer

Error
Window

Code
Editor

Code
Assistant

Project
Summary

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 3
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

The Code Editor is an advanced text editor fashioned to satisfy the needs of pro-
fessionals. General code editing is same as working with any standard text-editor,
including familiar Copy, Paste, and Undo actions, common for Windows environ-
ment.

Advanced Editor features include:

- Adjustable Syntax Highlighting
- Code Assistant
- Parameter Assistant
- Code Templates (Auto Complete)
- Auto Correct for common typos
- Bookmarks and Goto Line

You can customize these options from the Editor Settings dialog. To access the
settings, choose Tools > Options from the drop-down menu, or click the Tools
icon.

CODE EDITOR

Tools Icon.

Code Assistant [CTRL+SPACE]

If you type a first few letter of a word and then press CTRL+SPACE, all the valid
identifiers matching the letters you typed will be prompted in a floating panel (see
the image). Now you can keep typing to narrow the choice, or you can select one
from the list using the keyboard arrows and Enter.

Parameter Assistant [CTRL+SHIFT+SPACE]

The Parameter Assistant will be automatically invoked when you open a parenthe-
sis "(" or press CTRL+SHIFT+SPACE. If name of a valid function precedes the
parenthesis, then the expected parameters will be prompted in a floating panel. As
you type the actual parameter, the next expected parameter will become bold.

Code Template [CTRL+J]

You can insert the Code Template by typing the name of the template (for
instance, whileb), then press CTRL+J, and the Code Editor will automatically
generate the code. Or you can click a button from the Code toolbar and select a
template from the list.

You can add your own templates to the list. Just select Tools > Options from the
drop-down menu, or click the Tools Icon from Settings Toolbar, and then select
the Auto Complete Tab. Here you can enter the appropriate keyword, description,
and code of your template.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

4 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Auto Correct

The Auto Correct feature corrects common typing mistakes. To access the list of
recognized typos, select Tools > Options from the drop-down menu, or click the
Tools Icon, and then select the Auto Correct Tab. You can also add your own pref-
erences to the list.

Comment/Uncomment

The Code Editor allows you to comment or uncomment selected block of code by
a simple click of a mouse, using the Comment/Uncomment icons from the Code
Toolbar.

Bookmarks

Bookmarks make navigation through large code easier.

CTRL+<number> : Go to a bookmark
CTRL+SHIFT+<number> : Set a bookmark

Goto Line

Goto Line option makes navigation through large code easier. Select Search >
Goto Line from the drop-down menu, or use the shortcut CTRL+G.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 5
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Comment /
Uncomment Icon.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

6 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

The Code Explorer is placed to the left of the main window by default, and gives a
clear view of every declared item in the source code. You can jump to a declara-
tion of any item by clicking it, or by clicking the Find Declaration icon. To expand
or collapse treeview in Code Explorer, use the Collapse/Expand All icon.

Also, two more tabs are available in Code Explorer. QHelp Tab lists all the avail-
able built-in and library functions, for a quick reference. Double-clicking a routine
in QHelp Tab opens the relevant Help topic. Keyboard Tab lists all the available
keyboard shortcuts in RSC-4x mikroC.

CODE EXPLORER

Collapse/Expand
All Icon.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 7
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

The source-level Debugger is not an integral component of RSC-4x mikroC devel-
opment environment. RSC-4x mikroC compiler uses The PDS-SE simulator and
PICE-SE emulator that have the same user interface and the same program devel-
oping and debugging capabilities.

After you have successfully compiled your project, you can simulate and debug
the code in the external PDS-SE Phyton Simulator. To select the Simulator, select
Debugger › Select Tool › External Simulator from the drop-down menu.

Beside external simulator, you can emulate the code.To choose external emulator
from Debugger › Select Tool › External Emulator.

For more info refer to The PDS-SE simulator and PICE-SE emulator help or go to
http://www.phyton.com/

Simulator

Start Debugger

In case that errors were encountered during compiling, the compiler will report
them and won't generate a hex file. The Error Window will be prompted at the
bottom of the main window by default.

The Error Window is located under the message tab, and displays location and
type of errors compiler has encountered. The compiler also reports warnings, but
these do not affect the output; only errors can interefere with generation of hex.

Double click the message line in the Error Window to highlight the line where the
error was encountered.

Consult the Error Messages for more information about errors recognized by the
compiler.

ERROR WINDOW

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

8 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

USART Terminal
RSC-4x mikroC includes the USART (Universal Synchronous Asynchronous
Receiver Transmitter) communication terminal for RS232 communication. You
can launch it from the drop-down menu Tools > Terminal or by clicking the
Terminal icon.

ASCII Chart
The ASCII Chart is a handy tool, particularly useful when working with LCD dis-
play. You can launch it from the drop-down menu Tools > ASCII chart.

INTEGRATED TOOLS

7 Segment Display Decoder
The 7seg Display Decoder is a convenient visual panel which returns decimal/hex
value for any viable combination you would like to display on 7seg. Click on the
parts of 7 segment image to get the desired value in the edit boxes. You can launch
it from the drop-down menu Tools > 7 Segment Display.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 9
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

10 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Below is the complete list of keyboard shortcuts available in RSC-4x mikroC IDE.
You can also view keyboard shortcuts in Code Explorer window, tab Keyboard.

IDE Shortcuts

F1 Help
CTRL+N New Unit
CTRL+O Open
CTRL+F9 Compile
CTRL+F11 Code Explorer on/off
CTRL+SHIFT+F5 View breakpoints

Basic Editor shortcuts

F3 Find, Find Next
CTRL+A Select All
CTRL+C Copy
CTRL+F Find
CTRL+H Replace
CTRL+P Print
CTRL+R Replace
CTRL+S Save unit
CTRL+SHIFT+S Save As
CTRL+V Paste
CTRL+X Cut
CTRL+Y Redo
CTRL+Z Undo

Advanced Editor shortcuts

CTRL+SPACE Code Assistant
CTRL+SHIFT+SPACE Parameters Assistant
CTRL+D Find declaration
CTRL+G Goto line
CTRL+J Insert Code Template
CTRL+<number> Goto bookmark
CTRL+SHIFT+<number> Set bookmark
CTRL+SHIFT+I Indent selection
CTRL+SHIFT+U Unindent selection

KEYBOARD SHORTCUTS

ALT+SELECT Select columns

Debugger Shortcuts

F9 Debug

For other debugger shortcuts refer to the Phyton PDS-SE documentation.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 11
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

12 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

CHAPTER

MikroElektronika: DDevelopment ttools - BBooks - CCompilers

2

Building
Applications

Creating applications in RSC-4x mikroC is easy and intuitive. Project Wizard
allows you to set up your project in just few clicks: name your application, select
chip, set flags, and get going.

RSC-4x mikroC allows you to distribute your projects in as many files as you find
appropriate. You can then share your RSC-4x mikroC compiled Libraries (.mcl
files) with other developers without disclosing the source code.

PROJECTS
RSC-4x mikroC organizes applications into projects which consist of a single
project file, with extension .psc, and one or more added files (C, assembler, and
object/library files, with extensions .c, .mca, .mco/.mcl respectively). You can
compile source files only if they are part of a project.

Before we start managing projects, we should introduce some terms that we’ll be
using throughout the documentation:

Source file
Source file is either C file with extension c or assembler file with the extension
mca. Source files can be compiled/assembled only if they are part of a project. See
Source Files for more information.

Project file
Project file is a file with extension psc which holds all the information regarding
your project. The project file carries the following data:
- project name and optional description,
- project path,
- target device,
- memory model,
- device clock,
- wait states,
- memory address area settings,
- list of project files,
- search paths,
- include paths.

Project folder
Project folder is the folder in which the project file is stored. This folder is auto-
matically added to the project’s search path list.

Project
Project is a collection of all source files (C files, MCA files, header files) and
object/library files (MCO/MCL files) relevant to the project. The project file binds
them all together. Note that project added files have nothing to do with the pre-
processor; see Add/Remove Files from Project below.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

14 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 15
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

New Project

The easiest way to create project is by means of New Project Wizard, drop-down
menu Project > New Project. Just fill the dialog with desired values (project name
and description, location, device, clock, config word) and RSC-4x mikroC will
create the appropriate project file. Also, an empty source file named after the proj-
ect will be created by default.

In the following dialog, enter the project name and optional description.

New Project.

Editing Project

Later, you can change project settings from drop-down menu Project > Edit
Project. You can rename the project, modify its description, change chip, clock,
config word, etc. To delete a project, simply delete the folder in which the project
file is stored.

Add/Remove Files from Project

Project can contain any number of source files (extension .c) or or assembler files
with extension .mca. The list of relevant source files is stored in the project file
(extension .psc). To add source file to your project, select Project > Add to
Project from drop-down menu. Each added source file must be self-contained, i.e.
it must have all the necessary definitions after preprocessing. To remove file(s)
from your project, select Project > Remove from Project from drop-down menu.

Note: For inclusion of header files, use the preprocessor directive #include.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

16 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Edit Project.

Add to Project.

Remove from
Project.

Search and Include Paths

Search paths are absolute or relative paths which tell the compiler where to look
for files added to the project. Search paths are specific for each project and are
stored in the project file.

Include paths are absolute or relative paths which tell the compiler where to look
for header files included by the preprocessor. Include paths are specific for each
project and are stored in the project file.

Do not confuse search paths and include paths. Although both lists are managed
from the same window, they are totally separate categories. Search paths cover all
files in the project, whereas include paths deal only with header files included by
the preprocessor. There is a dropdown menu for choosing between absolute or rel-
ative paths for search and include paths.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 17
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Search Paths

Search paths (paths to source files) are specific for each project and are stored in
the project file (.psc). To manage search paths, open Tools › Options from the
drop-down menu and then select Search Path. The upper box in the dialog con-
tains the list of project’s search paths.

To add search path, click Add and browse to the location of the file that you wish
to add. Click OK and you’ll see your path added to the list. To remove the path,
select it and click Remove.

The default search path is the folder in which the project is stored. Greyed out
items represent invalid paths (i.e. non-existent folders). You can purge invalid
paths with the Purge Invalid Paths button, which is useful when porting your proj-
ects to another computer.

The order of specified paths is important and determines the order in which the
compiler looks for files. It will scan the list of locations from the top, and will stop
as soon as the requested file is found.

Include Paths

Header files are included by means of preprocessor directive #include. Do not
use the preprocessor to include source files other than headers; instead, see
Add/Remove Files from Project.

Include paths tell the compiler where to look for header files, when they are
requested with the preprocessor directive #include. Include paths are specific for
each project and are stored in the project file (.psc). To manage include paths,
open Tools › Options from the drop-down menu and then select Search Path. The
lower box in the dialog contains the list of project’s include paths.

By default, the compiler looks for specified header files in RSC-4x mikroC instal-
lation folder › “include” folder. This is the default include path which cannot be
changed. You can purge invalid paths with the Purge Invalid Paths button, which
is useful when porting your projects to another computer.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

18 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Extended functionality of the Project Files tab

By using the Project Files' new features, you can reach all the output files (.lst,
.asm) by a single click. You can also include in project the library files (.mcl), for
libraries, either your own or compiler default, that are project-specific.

In RSC-4x mikroC, source file is either C file with extension .c or assembler file
with extension .mca. The list of source files relevant to your application is stored
in the project file (extension .psc), along with other project information. A source
file can only be compiled if it’s a part of a project.

Use the preprocessor directive #include to include headers. Do not rely on pre-
processor to include other source files — see Projects for more information.

Managing Source Files

Creating a new source file

To create a new source file, do the following:

Select File > New from drop-down menu, or press CTRL+N, or click the New
File icon. A new tab will open, named “Untitled1”. This is your new source file.
Select File > Save As from drop-down menu to name it the way you want.

If you have used New Project Wizard, an empty source file, named after the proj-
ect with extension .c, is created automatically. RSC-4x mikroC does not require
you to have source file named same as the project, it’s just a matter of conven-
ience.

Opening an Existing File

Select File > Open from drop-down menu, or press CTRL+O, or click the Open
File icon. The Select Input File dialog opens. In the dialog, browse to the location
of the file you want to open and select it. Click the Open button.
The selected file is displayed in its own tab. If the selected file is already open, its
current Editor tab will become active.

Printing an Open File

Make sure that window containing the file you want to print is the active window.
Select File > Print from drop-down menu, or press CTRL+P, or click the Print
icon. In the Print Preview Window, set the desired layout of the document and
click the OK button. The file will be printed on the selected printer.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 19
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

New File.

SOURCE FILES

Open File Icon.

Print File Icon.

Saving File

Make sure that window containing the file you want to save is the active window.
Select File > Save from drop-down menu, or press CTRL+S, or click the Save
icon. The file will be saved under the name on its window.

Saving File Under a Different Name

Make sure that window containing the file you want to save is the active window.
Select File > Save As from drop-down menu, or press SHIFT+CTRL+S. The New
File Name dialog will be displayed. In the dialog, browse to the folder where you
want to save the file. In the File Name field, modify the name of the file you want
to save. Click the Save button.

Closing a File

Make sure that tab containing the file you want to close is the active tab. Select
File > Close from drop-down menu, or right click the tab of the file you want to
close in Code Editor. If the file has been changed since it was last saved, you will
be prompted to save your changes.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

20 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Save File Icon.

Save File As.

Close File.

When you have created the project and written the source code, you will want to
compile it. Select Project > Build from drop-down menu, or click Build Icon, or
simply hit CTRL+F9.

Progress bar will appear to inform you about the status of compiling. If there are
errors, you will be notified in the Error Window. If no errors are encountered,
RSC-4x mikroC will generate output files.

Upon successful compilation, RSC-4x mikroC will generate an assembler file for
each C source file. These output files will be created in the approprate folder
(folder which contains the original C source file).

After compiling your project in RSC-4x mikroC, you can click the View
Assembler icon (View › View Assembler) to review the generated assembly code
in a new tab. The option will display the assembler file (.mca) corresponding to the
currently active C file in IDE. More information can be found in in the list file
(.lst).

Then, the created assembler files and other assembler files you included in the
project will be fed to the external assembler MCA-SE. Upon succesful assem-
bling, an object file (extension .mco) will be created for each assembler file.

These object files together with object/library files you included in the project and
default libraries will be fed to the external MCLINK linker, which will produce
the hex file and the debug MCE file.

See Output Files for more information.

Compilation Options
You should check the compilation options before building your projects. Open
Project › Build from the drop-down menu and then select Cross Tools.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 21
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Compile Icon.

COMPILATION

View Assembly
Icon.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

22 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Filetype Filetype Created By

.cp File containing the preprocessor output. Preprocessor output
files are helpful for debugging complex macros.

Preprocessor

.mca Assembler source file generated from C source code. These
files can be assembled with the MCA-SE assembler.

RSC-4x
mikroC
Compiler

.mco Relocatable object file that contains relocatable object code.
Relocatable object files may be linked to an absolute object
file using the MCLINK linker.

MCA-SE
Assembler

.lst Listing file that contains the source text, generated assembler
code, and all errors and warnings that were produced by the
compiler. Listing file is optional, see Compilation Options.

MCA-SE
Assembler

.mcl Library file generated by the MCLIB Librarian from the relo-
catable object files.

MCLIB
Librarian

.hex Absolute Intel HEX file for CODE and CONST memory. MCLINK
linker

.dat Absolute Intel HEX file for DATA memory. MCLINK
linker

.mce Executable MCE-file in MicroCOSM-ST/Phyton format. This
file contains executable code and debugging information and
can be used for debugging with the Phyton IDE.

MCLINK
linker

Output Files
Output files are summarized in the table below:

Error Messages

- Specifier needed
- Invalid declarator
- Expected '(' or identifier
- Integer const expected
- Array dimension must be greater then 0
- Local objects cannot be extern
- Declarator error
- Bad storage class
- Arguments cannot be of void type
- Specifer/qualifier list expected
- Address must be greater than 0
- Identifier redefined
- case out of switch
- default label out of switch
- switch exp. must evaluate to integral type
- continue outside of loop
- break outside of loop or switch
- void func cannot return values
- Unreachable code
- Illegal expression with void
- Left operand must be pointer
- Function required
- Too many chars
- Undefined struct
- Nonexistent field
- Aggregate init error
- Incompatible types
- Identifier redefined
- Function definition not found
- Signature does not match
- Cannot generate code for expression
- Too many initializers of subaggregate
- Nonexistent subaggregate
- Stack Overflow: func call in complex expression
- Syntax Error: expected %s but %s found
- Array element cannot be function
- Function cannot return array

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 23
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

ERROR MESSAGES

- Inconsistent storage class
- Inconsistent type
- %s tag redefined
- Illegal typecast
- %s is not a valid identifier
- Invalid statement
- Constant expression required
- Internal error %s
- Too many arguments
- Not enough parameters
- Invalid expresion
- Identifier expected, but %s found
- Operator [%s] not applicable to this operands [%s]
- Assigning to non-lvalue [%s]
- Cannot cast [%s] to [%s]
- Cannot assign [%s] to [%s]
- lvalue required
- Pointer required
- Argument is out of range
- Undeclared identifier [%s] in expression
- Too many initializers
- Cannot establish this baud rate at %s MHz clock

Compiler Warning Messages

- Highly inefficent code: func call in complex expression
- Inefficent code: func call in complex expression

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

24 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

CHAPTER

MikroElektronika: DDevelopment ttools - BBooks - CCompilers

3

RSC-4x mikroC
Specifics

RSC-4x mikroC is a powerful, feature rich development tool for Sensory RSC-4x
microcontrollers. It is designed to provide the programmer with the easiest possi-
ble solution for developing applications for embedded systems, without compro-
mising performance or control.

RSC-4x mikroC compiler provides effective access to all RSC-4x chip memory
types except the on-chip technology RAM:

On-chip SRAM. This is the register file consisting of the non-banked area and
several memory banks. The 64 byte “window” is used to access the banked area.
Only a part of the on-chip SRAM is available for the user’s program; the rest is
reserved for the Sensory technology library.
ROM. Read-only or flash memory accessed with the RDR/WRC signals. On the
logical level, ROM can contain executable code (code area) and constant data
(data area). On the physical layer, ROM can be ether all internal or all external,
but not both. The access methods for both external and internal ROM are the
same.
External RAM. RSC-4x chips can be equipped with external memory of various
physical types. Moreover, some applications have no external memory at all. The
compiler distinguishes three types of external memory: non-persistent data memo-
ry (RAM), persistent writeable memory without predefined values (e.g. non-
volatile RAM) and persistent writeable memory (e.g. flash).

On-chip SRAM

The following areas are available for the user’s C program:

0h – 0Bh (Global Register Area);
3Ah – 7Fh (Non-Banked Area);
80h – BFh (Banks 0h, 0Ah, 0Bh).
Other on-chip SRAM memory locations are reserved for using by the Sensory
technology library.

The locations 3Ah – 7Fh and 80h – BFh (Bank 0h) are treated as a contiguous
region used for allocation of C program data: static variables and statically placed
in the compiled stack automatic variables, function parameters and temporaries.

Note that functions written in assembler should always clear the lower four bits of
register BANK before passing control to a C function – either by call or return.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

26 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Memory Types

Banks 0Ah and 0Bh hold the dynamic stack. The dynamic stack is used as a call
stack (i.e. holds return addresses of C functions); also it is used to hold the frames
of previously invoked reentrant functions and contents of temporary registers dur-
ing interrupt handling.

Global Register Area locations are used to pass the return address to the called C
function, to return the function return value to the caller, and serve as temporaries
for expression evaluation.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 27
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

_tempArea ?R11
?R10
?R9
?R8

?R7

_returnAddress ?R6
?R5
?R4

_returnValue ?R3
?R2
?R1
?R0

On-chip Technology RAM

On-chip technology RAM is used by Sensory technology library only. C program
variables can not be allocated in this memory.

ROM
On the logical level, ROM can contain executable code (code area) and constant
data (data area). On the physical layer, ROM can be ether all internal or all exter-
nal, but not both. The access methods for both external and internal ROM are the
same. Application may contain either one 64K ROM page (page 0), or several
64K pages up to 1M.

Static constant variables can be placed in ROM (read-only or flash memory)
accessed with the RDR/WRC signals, i.e. CONST address space. The declaration
of such variables should contain either memory type specifier cdata or qualifier
const with the compilation option “const vars in CDATA area”.

Compiler distinguishes two types of cdata memory:

1. Located on page 0, i.e. in the range 0..0FFFFh
2. Located anywhere in the range 0..0FFFFFh

Memory type modifiers near and far can be used in cdata variable declarations.
The allocation of a cdata variable declared without a memory type modifier will
depend on the memory model. The size of a pointer to near cdata object is 2
bytes and the size of pointer to far cdata object is 3 bytes.

The near cdata objects are accessed by MOVC instruction. The far cdata
objects are accessed by MOVX instruction with setting bits 0..3 of the ExtAddr
register. The bit RW (bit 4 of ExtAddr) should be cleared when any C function is
executed.

Note: The driver functions should restore the initial ExtAddr value upon return.

You can use the compilation option “constant CDATA variables” (Cross Tools)
which will consider each variable declared with cdata memory type specifier to
be const also (i.e. on any attempt to modify it the compiler will generate the error
message).
If the CONST address space represents writeable flash memory, uncheck the
option “constant CDATA variables” to place non-constant objects there.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

28 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

External RAM

RSC-4x chips can be equipped with external memory of various physical types.
Moreover, some applications have no external memory at all.

The compiler distinguishes three types of external memory:

- Non-persistent data memory (RAM) represented by address space DATA.
Variables located in this memory are initialized during C program startup.

- Persistent writeable memory without predefined values (e.g. non-volatile RAM)
represented by address space NDATA. Variables located in this memory are not
initialized at startup; no initializers are allowed with ndata variable declarations.

- Persistent writeable memory with predefined values (e.g. flash) represented by
address space FDATA. Variables located in this memory are not initialized at start-
up, instead, the initial values are put directly into the memory locations for fdata
variables. The linker creates a separate HEX file for address space FDATA.

To allocate a variable in the external memory the user should declare this variable
with one of the memory type specifiers – data, ndata or fdata. Variables declared
with such specifiers are put in the corresponding relocatable segments. Their
address size is 3 bytes.

Since the compiler does not know what specific method should be implemented to
access data/ndata/fdata external memory, three sets of special driver functions
are used to access the external memory locations. Templates of the special driver
functions written in assembler are included in the compiler distribution package.
The user can modify their implementation, if necessary.

If fdata represents memory with no write access then the user should set the
option “fdata variables are read only” in the Edit Project dialog (drop-down menu
Project › Edit Project). In this case, the compiler will treat any fdata variable as
if declared with the type qualifier const, and will generate the error message on
any attempt to modify it. Individual fdata variables can be declared as const
explicitly.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 29
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

The memory model determines the following C program features:

- Maximum code size (and code generated for the function calls).
- Availability of external RAM.

The memory model is specified in the Edit Project dialog (drop-down menu
Project › Edit Project).

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

30 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Memory Models

Memory
model

Code placed
on page 0 only

cdata modifi-
er by default

data / ndata /
fdata allowed

SMALL yes near no

COMPACT yes near yes

MEDIUM no far no

LARGE no far yes

The address range of CODE address space for SMALL and COMPACT memory
models is 0..0FFFFh, for MEDIUM and LARGE memory models is 0..1FFFFh.

By default, DATA address space range is 0..0FFFFFh. You can set the appropriate
address range from the Edit Project dialog (drop-down menu Project › Edit
Project).

If there is no FDATA (or NDATA) memory, this should be specified in the Edit
Project dialog (drop-down menu Project › Edit Project). In this case, the compil-
er will check that there are no fdata (or ndata) variables in the C program.

Otherwise, the user should define the address space FDATA (with allocation data)
and set the appropriate address range, again from the Edit Project dialog. The
same must be done for NDATA when non-volatile RAM is used.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 31
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Address Spaces

Address space Allocation Description

CODE code Instructions

CONST const Constants, string literals and initializers

REG reg Static register variables, compiled stack

DATA data Static data variables

NDATA ndata Static ndata variables

FDATA fdata Static fdata variables

There are built-in definitions for several function-like macros to access absolute
memory locations.

Accessing Absolute Memory Locations

__BYTE_AT__
__WORD_AT__
__DWORD_AT__

These macros allow the developer to access individual bytes, words and double
words in the on-chip SRAM and SFR’s. The main purpose of using these macros
is to provide access to the on-chip SRAM memory locations defined outside the
C-written modules.

These built-in macros can be considered as if the following macros were defined
in the program source text:

#define __BYTE_AT__(addr) (*(volatile unsigned char *)(addr))
#define __WORD_AT__(addr) (*(volatile unsigned int *)(addr))
#define __DWORD_AT__(addr) (*(volatile unsigned long *)(addr))

Note: The volatile keyword prevents the compiler from making any optimizations.

Example:

#define MyByte (__BYTE_AT__(0x49))
#define MyWord (__WORD_AT__(0x4A))
#define MyDword (__DWORD_AT__(0x4C))

int a;

void main(void) { /* some meaningless actions */
/* only for illustration */

a = MyByte * 10;
MyWord = a;
MyDword = a + 1;

}

If the built-in macros __BYTE_AT__, __WORD_AT__ and __DWORD_AT__ are used
inside inline assembler blocks, these macros are directly expanded as the values of
their arguments (the typecast-containing expressions may not be used inside built-
in assembler blocks).

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

32 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Absolute Memory Locations

The following topics provide details of the RSC-4x mikroC language extensions:

ANSI Compliance
Types Specifics
Functions Specifics
Linker Directives
Inline Assembler
Pragma Directives

RSC-4x mikroC compiler was built according to ISO/IEC 9899-1990 and
ANSI/ISO 98991990 standards (except for the extensions and restrictions
described below). These standards are practically identical, therefore the word
“standard” will be used for referencing them both.

The standard defines two forms of conforming compiler implementations:

1. A conforming hosted implementation must correctly compile any program,
which strictly conforms to the language standard.

2. A conforming freestanding implementation must correctly compile any strictly
conforming program, in which the use of the standard C library features is con-
fined to the contents of the standard headers: <float.h>, <limits.h>, <stdarg.h>,
<stddef.h>.

It is impossible to create a strictly conforming library for single-chip microcon-
trollers. For example, it is not possible to implement all file access functions.
Thus, the RSC-4x mikroC is not a conforming hosted implementation.

However, as the standard headers <float.h>, <limits.h>, <stdarg.h>, <stddef.h>
and related library functions are fully implemented in accordance with the stan-
dard, the RSC-4x mikroC is a conforming freestanding implementation with the
exception for a few hardware-specific restrictions.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 33
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Language Extensions

ANSI Compilance

Extensions

The standard extensions implemented in RSC-4x mikroC can be divided in two
groups:

- Hardware-specific extensions. This includes memory type specifiers and modi-
fiers.

- Common extensions, such as integer binary constants and C++ style com-
ments.

Restrictions

RSC-4x mikroC has the following restrictions compared to the standard:

- double and long double types representation;

- Function reentrancy support. Functions are not considered as reentrant, by
default. A function can be declared reentrant (called either by recursion or both
from the main thread and interrupt handler) by the special #pragma reentrant.
Some additional restrictions are applied to functionality of reentrant functions.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

34 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Memory Type Specifiers and Modifiers

The user can select the memory type for placing a variable using a memory type
specifier. Also, memory type specifier can be used in pointer type declaration if the
pointer holds addresses in the specific memory.

Additionally, memory type modifiers can be used to specify the memory range
where cdata variables are to be placed in.

The memory type specifiers and modifiers can be used in variable declarations,
pointer type declarations of variables, pointers and type definitions (with typedef).
Type constructed using a memory type specifier/modifier is called a specialized
type.

Note: The memory type specifiers and modifiers are additional keywords.

Note: For standard type modifiers see Storage Classes and Type Qualifiers.

Specifiers

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 35
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Types Specifics

Specifier Description

data Variables in the external RAM initialized during startup.
Special driver functions are used to access these variables.

ndata Variables in the external RAM not initialized during startup.
Special driver functions are used to access these variables.

fdata

Variables in the external FLASH not initialized during startup.
Instead, the initial values are put in memory locations
“directly” - the linker creates a separate HEX file with ini-
tial values. zero is used. Special driver functions are used to
access these variables.

cdata
Constants placed in ROM. These constants are accessed by the
MOVC or MOVX instructions in accordance with the given memory
type modifier (see below). zero is used.

Modifiers

Variables Allocation

Memory type specifiers can be used in declaration of variables with static storage
duration only. It is not allowed to use specifiers in declaration of automatic vari-
ables, functions, function parameters, structure and union members.

If a static or external variable is declared as const with no explicit memory type
specifier and the compiler option “const vars in CDATA area” (Cross Tools) is
checked, the variable is deemed to have the cdata specifier. Variables without
explicit memory type specifiers are allocated in the on-chip SRAM. Therefore the
register keyword in declaration of an automatic variable or a function parameter is
unnecessary and is ignored.

Memory type modifiers can be used with cdata variables only. The allocation of a
cdata variable declared with the cdata specifier and without any memory type
modifiers will depend on the memory model.

Examples – Using the memory type specifiers:

data int n; /* variable allocated in "data" memory */
ndata char c; /* variable allocated in "ndata" memory */
long k; /* variable allocated in on-chip SRAM */

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

36 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Modifier Description

near A cdata variable that will be placed in the page 0 of ROM; it
has a 16-bit address.

far A cdata variable that will be placed in any ROM page; it has a
20-bit address.

Pointer Types

Memory type specifier can be used in a pointer type declaration. In this case, the
compiler will treat the pointer value as an address in the specific memory and will
generate an appropriate instruction sequence when the pointer needs to be derefer-
enced. A pointer declared without a memory type specifier is treated as the pointer
to the on-chip SRAM. The size of pointer type is determined by the memory type
specifier (or absence of the specifier).

Note the difference between two pointer declarations:

/* variable allocated in the on-chip SRAM and points into "data" */
data int * p;

/* variable allocated in "data" and points into on-chip SRAM */

int * data q;

Qualifier const

If a static or external variable is declared as const with no explicit memory type
specifier and the compiler option “const vars in CDATA area” is checked, the vari-
able is deemed to have the cdata specifier. If this option is unchecked, such vari-
ables are allocated in the on-chip RAM (as variables without explicit memory type
specifiers).

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 37
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Pointer Specifics

This topic is an overview of specialized pointer types, constructed with memory
type specifiers and modifiers. For more details on pointers syntax and usage see
Pointers.

Strings Specifics

By default, the compiler will store string constants (string literals) according to the
destination’s type. See Memory Type Specifiers and Modifiers and Memory
Models.

If the option “store string literals in CDATA area” in Cross Tools (Tools ›
Options) is enabled, all string constants will be linked in the CDATA area.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

38 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Data type Bytes Aligment Comment

* 1 none Pointer to the on-chip SRAM

data * 3 none
Pointer to the external RAM. If
dereferenced the special driver
function call is generated.

fdata * 3 none
Pointer to the external RAM. If
dereferenced the special driver
function call is generated.

ndata * 3 none
Pointer to the external RAM. If
dereferenced the special driver
function call is generated.

near cdata * 2 word Pointer to ROM page 0.

far cdata * 3 word
Pointer to ROM. The third byte con-
tains 4 higher bits of the address.

pointer to
function,
SMALL/COMPACT
memory model

3 word
Pointer to ROM. The third byte con-
tains 4 higher bits of the address;
the highest byte is not used.

pointer to
function,
MEDIUM/LARGE
memory model

4 word
Pointer to ROM. The third byte con-
tains 4 higher bits of the address;
the highest byte is not used.

Specialized Types Conversions
Two specialized types are compatible if their memory type specifiers (and modi-
fiers) are equivalent and they are compatible in terms of ANSI standard.

The implicit conversion from a specialized type to a corresponding non-special-
ized type is always allowed. Backward conversion (from a non-specialized to a
specialized version) is not allowed because only lvalue have the specialized type
(the result of type conversion is rvalue).

Pointers to Specialized Types
The following explicit and implicit conversions of pointers to specialized types are
allowed (if the corresponding conversion of pointers to non-specialized types is
allowed by C standard):

Implicit conversion of pointers to specialized types:

Explicit conversion of pointers to specialized types:

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 39
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Data Type Result Type

fdata * ndata *

ndata * data *

near cdata * far cdata *

Data Type Result Type

fdata * data *

fdata * ndata *

data * fdata *

ndata * fdata *

far cdata * near cdata *

Since any pointer declared without an explicit memory type specifier is considered
to be a pointer into the on-chip SRAM, any explicit or implicit conversion of a
pointer to specialized type into a pointer to non-specialized type is not allowed.
All reverse conversions (from pointer to non-specialized type into pointer to spe-
cialized type) are not allowed as well.

If some implicit conversion is allowed, it can be written in the explicit form also.

The pointer to a function may not be converted to void* and back (neither explic-
itly, nor implicitly).

Following topics cover the implementation specifics of functions:

- Interrupt Handlers
- Reentrant Functions
- Indirect Function Calls
- Startup Functions
- Prologue/Epilogue Functions
- Monitor Functions

Interrupt Handlers
The following directive

#pragma interrupt <interrupt_number> <function_name>

lets the compiler know that the function function_name is an interrupt handler for
the interrupt with interrupt_number.

The interrupt handler must be declared as void, have no parameters, and must be
defined in the same source file where the corresponding #pragma interrupt direc-
tive appears.

The compiler uses a special mechanism to set the interrupt handler vector for the
declared interrupt handler. Also, compiler adds a special prolog and epilog to the
interrupt handler code (the prolog saves the necessary registers on the dynamic
stack, the epilog restores them). See Interrupt Handling for the implementation
details.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

40 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Functions Specifics

Note: Two or more interrupt handlers may not be assigned to one interrupt.
However, a function may be used as a handler for several interrupts.

The function declared as an interrupt handler should not be called in the user’s
program, either directly or indirectly (by a pointer to function). The compiler gen-
erates the warning message if an interrupt handling function is called or its address
is taken.

Example:

#pragma interrupt 00 timer1_isr
...
void timer1_isr(void) {

/* user code */

}

Interrupt numbers and associated vectors:

Note: SFR definition files RSC4xxx.h contain definitions for SFR bits. Thus, the
developer can access particular bits in SFR. For example, to disable Interrupt #1
(Timer 2 overflow) you can write the following:
IMR1 = 0; /* produces code: AND IMR, #0FDh */

You should not clear the bits in the IRQ register using bit names defined in
RSC4xxx.h (the IRQ bits should be cleared by an explicit MOV only rather than
AND). For example, in order to clear the Interrupt #1 request bit, you should write
the following:

IRQ = 0xFD; /* produces code: MOV IRQ, #0FDh */

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 41
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Interrupt # Address Interrupt source
0 04h Timer 1 overflow
1 08h Timer 2 overflow
2 0Ch Positive edge of Filter End Marker
3 10h Positive edge of P00
4 14h Timer 3 overflow
5 18h Block End
6 1Ch Positive edge of P02

Reentrant Functions

The function is reentrant if it may be called either recursively or both from the
main thread and from an interrupt handler. Functions are not considered reentrant,
by default. The function can be declared reentrant with the special #pragma direc-
tive:

#pragma reentrant <func_name>

If the function is reentrant, the corresponding #pragma must be placed in all
source modules where this function is implemented, declared or called (the easiest
is to place #pragma reentrant in the header file containing the function declara-
tion).

The reentrant function call requires additional overhead. Moreover, the support for
reentrant functions results in the following restrictions that violate the C standard:

- Total size of reentrant function parameters must not exceed 4 bytes, since the
_tempArea field of GlobalRegisterArea is used for passing the reentrant function
parameters.
- Reentrant functions with ellipsis (variable number of arguments) are not sup-

ported.
A reentrant function return value cannot have a structure type, i.e. reentrant func-
tion cannot return a structure (but can return a pointer to structure).
- Local objects (automatic variables and actual function parameters) of the previ-

ous invocations of reentrant functions are inaccessible from the current reentrant
function invocation (because they can be overwritten by the current reentrant func-
tion frame, see Compiled Stack for details). Also, only local objects of the last
invocation of reentrant function can be accessed from non-reentrant functions.
Example:

#pragma reentrant func
...
void func(char counter) {

...
if (++counter < 10)
func(counter);
...

}

Note: Local objects of all non-reentrant functions’ previous invocations can be
accessed from both reentrant and non-reentrant function invocations.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

42 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

The linker checks if a function may possibly be activated two or more times
simultaneously in the user's program. If it encounters such a function with a non-
empty frame (the function has automatic variables or parameters) and the function
is not declared as reentrant, the linker generates the error message.

Indirect Function Calls

If the linker encounters an indirect function call (by a pointer to function), it
assumes that any one of the functions, addresses of which were taken anywhere in
the program, can be called at that point. Use the #pragma funcall directive to
instruct the linker which functions can be called indirectly from the current func-
tion:

#pragma funcall <func_name> <called_func>[, <called_func>,...]

A corresponding pragma must be placed in the source module where function
func_name is implemented. This module must also include declarations of all
functions listed in the called_func list.

Note: The #pragma funcall directive can help the linker to optimize function
frame allocation in the compiled stack.

Startup Functions

The user is enabled to execute several custom initialization functions at startup.
These functions are executed after running the service startup code and before
calling the main() function. The order of startup function invocation is based on
the user-defined priorities.

The following special directive:

#pragma startup <priority> <function_name>

can be used to inform the RSC-4x mikroC compiler that the function
function_name must be executed during startup with the specified priority.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 43
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

The function function_name should return no value and have no parameters.
Declaration of the function should be placed before the #pragma startup direc-
tive for that function. External function declaration is allowed.

Priority must be a constant expression ranging from 0 to 255. Smaller values cor-
respond to higher priorities and sooner execution. The value 0 sets the highest pri-
ority level (the earliest execution), the value 255 sets the lowest priority (the latest
execution).

Note: If the same priority value is used in several #pragma startup directives,
the corresponding functions will be executed in an arbitrary order.

Priority levels from 0 to 15 and from 241 to 255 are reserved for using in the
RSC-4x mikroC libraries, so it is not recommended to use them.

Example:

extern void ExtFunc(void); /* an external function declaration */

static void LocalFunc(void);/* a local function prototype declara-
tion */

/* then #pragma startup can be used */
#pragma startup 20 ExtFunc
#pragma startup 21 LocalFunc

/* the local function definition */
static void LocalFunc(void) {

/* function body */
}

Monitor Functions

The following directive:

#pragma monitor <function_name>

declares the function function_name as monitor function. All interrupts are dis-
abled when this function is executed.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

44 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prologue/Epilogue Functions
The #pragma directives

#pragma prolog

#pragma epilog

enable the user to customize prologs and epilogs of the functions in a translation
unit. This is useful primarily for debugging.

#pragma prolog informs RSC-4x mikroC that the function prolog_function
should be called from the prologs of all functions in the file (except any prolog
and epilog functions). Call is performed immediately after saving the return
address on the dynamic stack.

#pragma epilog informs the compiler that the function epilog_function should be
called from the epilogs of all functions in the file (except any prolog and epilog
functions). Call is performed immediately before restoring the return address from
the dynamic stack.

#pragma prolog can appear more than once in a given file. In this case, the order
of the prolog function calls is determined by the arrangement of the #pragma
prolog directives in source file.

Function prolog_function should return no value and have no parameters. The
declaration of the function should be placed before the #pragma prolog directive
for that function. External function declaration is allowed.

The same rules apply to epilog_function and #pragma epilog.

Example:

extern void ExtPrologFunc(void);
#pragma prolog ExtPrologFunc;

int MyFunction(int a) {
/* call to ExtPrologFunc here */
return a + 1;

} /* call to LocalEpilogFunc here */

static void LocalEpilogFunc(void) {
/* function body */

}
#pragma epilog LocalEpilogFunc

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 45
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

According to standard, C should allow embedding assembler in the source code by
means of asm declaration. In addition, RSC-4x mikroC also supports declarations
_asm and __asm which have the same meaning.

Group assembler instructions by the asm keyword (or _asm or __asm):

asm {
block of assembler instructions

}

Assembler one-line comments starting with semicolon are allowed in the embed-
ded assembly code; C/C++ style comments are also allowed.

Embedding assembler with pragma
For the sake of backward compatibility, RSC-4x mikroC compiler supports anoth-
er method for embedding assembler in C source code.

Note: Preferred method is using the asm declaration as described above.

/* Single-line format: */
#pragma asm <machine_instruction0> [; <machine_instruction1>] ...

or:

/* Block format: */
#pragma asm

<machine_instruction0> [; <machine_instruction1>] ...

...
#pragma endasm

In the single-line format, instructions should follow the #pragma asm directive in
the same line. You can specify more than one instruction in one directive.
Instructions should be separated by semicolons.
In the block format, the #pragma asm directive indicates the beginning of assem-
bler block, and #pragma endasm directive indicates the end of the block. You can
write one or more instructions in each line of the block. Multiple instructions in
one line should be separated by semicolons.
You can also use function-like macros in the assembly language blocks and lines.
Inside an assembler block, the preprocessor acts in a regular way and processes
the assembler block properly. Therefore, in the built-in assembler you can use C-
style macros and other preprocessing directives. The # and ## operators may not
be used.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

46 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Inline Assembler

Pragma Directives

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 47
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Data Type Result Type

#pragma asm/endasm Built-in assembler

#pragma funcall Enumerate indirectly called functions

#pragma interrupt Writing interrupt service routines in C

#pragma monitor Declaration of a monitor function

#pragma prolog/epilog Customizing prolog and epilog

#pragma reentrant Declare a reentrant fuction

#pragma startup Execution of a function at startup

Compiled Stack

The RSC-4x architecture has no indexed addressing mode. For this reason, alloca-
tion of C-function arguments and local variables at fixed absolute memory loca-
tions is much more effective than simulation of a runtime stack.

The linker can overlay function parameters and local variables for functions that
cannot be activated simultaneously to extend the amount of available REG address
space. This scheme is called compiled stack.

The size of function frame that consists of the local variable and parameter sec-
tions is evaluated by the compiler. The linker analyzes all direct and indirect func-
tion calls and builds the call graph. Then the linker places the function frames at
fixed addresses in such a way that frames of functions which cannot be activated
simultaneously overlay.

The linker places the frames of non-reentrant functions in the non-banked area and
Bank 0 of on-chip SRAM as it was described above. The frames of reentrant func-
tion are placed by the linker beginning from the same start address in the non-
banked area of on-chip SRAM.

Reentrant function, in its prolog, pushes on the dynamic stack the contents of
memory locations to be used as the frame of that function (locations which hold
locals from the previous invocation of another or the same reentrant function).
Before returning, the reentrant function epilog restores the contents of memory
locations saved in the prolog.

Because all reentrant function frames are allocated starting from the same address
and overlap, the local objects of the previous reentrant functions calls are inacces-
sible in the current reentrant function invocation.

Note: The RSC-4x mikroC compiler does not support automatic variables and
function parameters allocation in ROM or external RAM (see also memory type
specifiers).

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

48 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Implementation Details

In the SMALL and COMPACT memory models, the called function returns con-
trol to the caller by:

JMPR @?R6

in the MEDIUM and LARGE memory models – through a jump to the __RETURN
label:

JMP .LWRD(__RETURN)

where the CB1 bit value of ExtAdd is restored and control returns to the caller by
JMPR instruction in the same way as for the SMALL and COMPACT models.
That code is duplicated in both program memory banks.

Passing Return Value

Value returned by a function is loaded into the _returnValue field of the
GlobalRegisterArea. The number of bytes occupied by the return value depends on
its type.

If a called function returns a value of structure (or union) type, the caller reserves
a memory location in its frame for the structure and passes the pointer to that loca-
tion to the called function as the first parameter (before all explicit parameters).
The called function stores the structure to be returned in the reserved memory
location and returns the pointer to the structure through the _returnValue field.

Note: Reentrant function may not return values of structure types.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 49
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Runtime library contains six library modules with code for default interrupt vec-
tors. If there is a C-written interrupt handler for interrupt #N, the compiler will
generate code for such interrupt vector (jump to interrupt handler code). If there is
no C-written interrupt handler for an interrupt then a corresponding default inter-
rupt vector will be linked.

In its prolog, the function declared as an interrupt handler copies the state of the
register ExtAdd to the special location ?ExtAddSav, pushes on the dynamic stack:

contents of GlobalRegisterArea,
variable ?CurRegBank,
variable ?ExtAddSav,
value of register BANK,
variable ?ExtAdd (only for MEDIUM and LARGE memory models);
and then sets the value of ?CurRegBank to 0Bh.

The interrupt handler epilog pops the saved values from the dynamic stack.

MEDIUM and LARGE Memory Models

In the MEDIUM and LARGE memory models the code for functions declared as
interrupt handlers is always placed in bank 0 of the program memory. Thus, if
there is at least one C-written interrupt handler, the interrupt handling dispatcher
will be linked. The dispatcher copies ExtAdd to ?ExtAddSav, sets ExtAdd to 0
(bank 0 of program memory) and transfers control to C-written interrupt handler.
C-written interrupt handler returns control to the dispatcher by JMP instruction, the
dispatcher restores ExtAdd from ?ExtAddSav and returns control by IRET. If there
are no C-written interrupt handlers, the dispatcher module will not be linked.

In the MEDIUM and LARGE memory models, interrupt vectors and interrupt han-
dling dispatcher will be placed in both code pages.

Note: Although the dispatcher contains entry points for all interrupts, if there is no
C-written interrupt handler for an interrupt then the dispatcher will not be used for
that interrupt because the default interrupt vector will be linked.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

50 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Interrupt Handling

This chapter gives an overview of the runtime library functions implementation
details.

The runtime library contains the following code that is implicitly called in code
generated by the compiler:

- Driver functions for external data memory access
- Functions for integer multiplication/division operations
- Floating point library functions
- Code for calling support in MEDIUM and LARGE memory models (see Calling

Convention)
- Functions for dynamic stack operations (return address, GlobalRegisterArea and

reentrant function frame save/restore functions)
- Interrupt handling support

In SMALL and COMPACT memory models, the CALL instruction is used to pass
control to all the runtime library code. In MEDIUM and LARGE memory models,
the control is transferred to driver functions, integer and floating point functions
through the resident code; the code for other functions is placed in both code
pages. The resident code copies the ExtAdd register value to the ?ExtAdd variable
and sets/clears CB bit of ExtAdd to the number of runtime library code page. By
default, the runtime library code is placed in page 0. Change the page number in
startup module to relocate the runtime library code to the other page.

The arguments and return value are passed through the _tempArea and
_returnValue fields of GlobalRegisterArea respectively. The runtime library code
does not modify the 3-byte field _returnAddress of GlobalRegisterArea
(except for the function that restore the return address from the dynamic stack).

Some of the runtime library functions (floating point library, integer multiplica-
tion/division) use up to 8 bytes of temporary variables. Because each of these
functions can be called both from the main thread and an interrupt handler, there
are two copies of temporary registers allocated in banks 0Ah and 0Bh of the on-
chip SRAM.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 51
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Runtime Library

The area in Bank 0Ah is used for main thread, the area in Bank 0Bh – for interrupt
handlers. The 1-byte variable ?CurRegBank is allocated in non-banked area of the
on-chip SRAM, and each of the system functions that use temporary variables sets
the lowest 4 bits of BANK register from ?CurRegBank before executing and clears
the bits before returning. ?CurRegBank is initialized with value 0Ah at startup.
Interrupt handler writes the value 0Bh to ?CurRegBank in its prologue and restores
the original value of ?CurRegBank in its epilogue.

Note: if an interrupt handler invokes a system function that uses temporary vari-
ables (e.g., a floating point function) and then it is interrupted by another interrupt
handler, which, in turn, invokes a system function that also uses temporary vari-
ables, the behavior is undefined.

CSTARTUP and SYSLIB Modules

These modules contain segment declarations (and segment allocation directives for
linker), interrupt vector declarations, special register declarations
(GlobalRegisterArea, service registers for integer and floating point system
libraries, dynamic stack support) and startup code. The C startup code is invoked
when the user application is started. This code includes the following operations:

- Initialization of: dynamic stack, special registers, external memory access
- Initialization of the static variables allocated in the on-chip SRAM and external

RAM
- Invocation of the startup functions in the order based on the priorities;
- Calling the user main() function.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

52 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Usage of Modules Written in Assembler

The functions in modules written in assembler and then linked to a C program can
be called from C functions. These assembler functions must comply with the C
function calling convention. To declare an assembler function that will be included
into the compiled stack, special assembler directives and operators can be used
(check the MCASE documentation).

Note: When an assembler function returns control, the BANK register must contain
the value of Bank 0 and the ExtAdd register value must be retained (ExtAdd must
contain the original value after return from an assembler function).

In assembler modules, you can use the file “include\tmpreg_mikro.inc” which
contains definitions for all symbolic names of GlobalRegisterArea registers.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 53
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

54 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

CHAPTER

MikroElektronika: DDevelopment ttools - BBooks - CCompilers

4

RSC-4x Language
Reference

C offers unmatched power and flexibility in programming microcontrollers. RSC-
4x mikroC adds even more power with an array of libraries, specialized for RSC-
4x modules and communications. This chapter should help you learn or recollect
C syntax, along with the specifics of programming RSC-4x modules. If you are
experienced in C programming, you will probably want to consult mikroC
Specifics first.

Lexical Elements Overview
These topics provide a formal definition of the RSC-4x mikroC lexical elements.
They describe the different categories of word-like units (tokens) recognized by a
language.

In the tokenizing phase of compilation, the source code file is parsed (that is, bro-
ken down) into tokens and whitespace. The tokens in RSC-4x mikroC are derived
from a series of operations performed on your programs by the compiler and its
built-in preprocessor.

C program starts as a sequence of ASCII characters representing the source code,
created by keystrokes using a suitable text editor (such as the RSC-4x mikroC
Code Editor). The basic program unit in RSC-4x mikroC is the file. This usually
corresponds to a named file located in RAM or on disk and having the extension
.c.

Whitespace

Whitespace is the collective name given to spaces (blanks), horizontal and vertical
tabs, newline characters, and comments. Whitespace can serve to indicate where
tokens start and end, but beyond this function, any surplus whitespace is discard-
ed. For example, the two sequences

int i; float f;

and

int
i;

float f;

are lexically equivalent and parse identically to give the six tokens:

int
i
;
float
f
;

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

56 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Whitespace in Strings

The ASCII characters representing whitespace can occur within string literals, in
which case they are protected from the normal parsing process (they remain as
part of the string). For example,

char name[] = "mikro foo";

parses to seven tokens, including the single string literal token:

char
name
[
]
=
"mikro foo" /* just one token here! */

;

Line Splicing with Backslash (\)

A special case occurs if the line ends by a backslash (\). The backslash and new
line character are both discarded, allowing two physical lines of text to be treated
as one unit. So,

"mikroC \

Compiler"

parses as "mikroC Compiler". Refer to String Constants for more information.

Comments

Comments are pieces of text used to annotate a program, and are technically
another form of whitespace. Comments are for the programmer’s use only; they
are stripped from the source text before parsing. There are two ways to delineate
comments: the C method and the C++ method. Both are supported by RSC-4x
mikroC.

You should also follow the guidelines on the use of whitespace and delimiters in
comments discussed later in this topic to avoid other portability problems.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 57
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Standard C comments

A C comment is any sequence of characters placed after the symbol pair /*. The
comment terminates at the first occurrence of the pair */ following the initial /*.
The sequence may span multiple lines. After macro expansion, the entire
sequence, including the four comment-delimiter symbols, is replaced by one
space.

The following code

int /* type */ i /* identifier */;

parses as:

int i;

Note that RSC-4x mikroC does not support the nonportable token pasting strategy
using /**/. For more on token pasting, refer to Preprocessor Operators.

C++ style comments

The RSC-4x mikroC compiler allows C++ style comments – a single-line com-
ment starting with two adjacent slashes (//). The comment can start at any position,
and extends until the beginning of new line.

The following code

int i; // this is a comment

int j;

parses as:

int i;

int j;

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

58 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Nested comments

RSC-4x mikroC as ANSI C doesn’t allow nested comments. The attempt to nest a
comment like this

/* int /* declaration */ i; *

fails, because the scope of the first /* ends at the first */. This gives us

i ; */

which would generate a syntax error.

TokenToken is the smallest element of a C program that is meaningful to the com-
piler. The parser separates tokens from the input stream by creating the longest
token possible using the input characters in a left–to–right scan.

RSC-4x mikroC recognizes following kinds of tokens:

keywords
identifiers
constants
operators
punctuators (also known as separators)
Tokens can be concatenated (pasted) by means of preprocessor operator ##. See
Preprocessor Operators for details.

Token Extraction Example

Here is an example of token extraction. Let’s have the following code sequence:

inter = a+++b;

First, note that inter would be parsed as a single identifier, rather than as the key-
word int followed by the identifier er.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 59
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

The programmer who wrote the code might have intended to write inter = a +
(++b), but it won’t work that way. The compiler would parse it as the following
seven tokens:

inter // variable identifier
= // assignment operator
a // variable identifier
++ // postincrement operator
+ // addition operator
b // variable identifier

; // statement terminator

Note that +++ parses as ++ (the longest token possible) followed by +.

According to the operator precedence rules, our code sequence is actually:

inter (a++)+b;

Constants

Constants or literals are tokens representing fixed numeric or character values.

RSC-4x mikroC supports:

- integer constants
- floating point constants
- character constants
- string constants (strings literals)
- enumeration constants

The data type of a constant is deduced by the compiler using such clues as numer-
ic value and the format used in the source code.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

60 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Integer Constants

Integer constants can be decimal (base 10), hexadecimal (base 16), binary (base
2), or octal (base 8). In the absence of any overriding suffixes, the data type of an
integer constant is derived from its value.

Long and Unsigned Suffixes

The suffix L (or l) attached to any constant forces the constant to be represented
as a long. Similarly, the suffix U (or u) forces the constant to be unsigned. You can
use both L and U suffixes on the same constant in any order or case: ul, Lu, UL,
etc.

In the absence of any suffix (U, u, L, or l), constant is assigned the “smallest”
of the following types that can accommodate its value: short, unsigned short,
int, unsigned int, long int, unsigned long int.

Otherwise:

- If the constant has the U suffix, its data type will be the first of the following that
can accommodate its value: unsigned short, unsigned int, unsigned long
int.
- If the constant has the L suffix, its data type will be the first of the following that

can accommodate its value: long int, unsigned long int.
- If the constant has both L and U suffixes, (LU or UL), its data type will be
unsigned long int.

Decimal

Decimal constants from -2147483648 to 4294967295 are allowed. Constants
exceeding these bounds will produce an “Out of range” error. Decimal constants
must not use an initial zero. An integer constant that has an initial zero is interpret-
ed as an octal constant. Thus,

int i = 10; /* decimal 10 */
int i = 010; /* decimal 8 */

int i = 0; /* decimal 0 = octal 0 */

In the absence of any overriding suffixes, the data type of a decimal constant is
derived from its value, as shown on a next page.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 61
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Hexadecimal
All constants starting with 0x (or 0X) are taken to be hexadecimal. In the absence
of any overriding suffixes, the data type of an hexadecimal constant is derived
from its value, according to the rules presented above. For example, 0xC367 will
be treated as unsigned int.

Binary
The RSC-4x mikroC compiler allows integer binary constants to be used.
All constants starting with 0b (or 0B) are taken to be binary. In the absence of any
overriding suffixes, the data type of an binary constant is derived from its value,
according to the rules presented above. For example, 0b11101 will be treated as
short.

Octal
All constants with an initial zero are taken to be octal. If an octal constant contains
illegal digits 8 or 9, the compiler will report an error. In the absence of any over-
riding suffixes, the data type of an octal constant is derived from its value, accord-
ing to the rules presented above. For example, 0777 will be treated as int.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

62 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Value Assigned to Constant Assumed Type
< -2147483648 Error: Out of range!

-2147483648 – -32769 long

-32768 – -129 int

-128 – 127 short

128 – 255 unsigned short

256 – 32767 int

32768 – 65535 unsigned int

65536 – 2147483647 long

2147483648 – 4294967295 unsigned long

> 4294967295 Error: Out of range!

Floating Point Constants

A floating-point constant consists of:

- Decimal integer
- Decimal point
- Decimal fraction
- e or E and a signed integer exponent (optional)
- Type suffix: f or F or l or L (optional)

You can omit either the decimal integer or the decimal fraction (but not both). You
can omit either the decimal point or the letter e (or E) and the signed integer expo-
nent (but not both). These rules allow for conventional and scientific (exponent)
notations.

Negative floating constants are taken as positive constants with the unary operator
minus (-) prefixed.

RSC-4x mikroC limits floating-point constants to range ±1.17549435082 * 10-38
.. ±6.80564774407 * 1038.

Here are some examples:

0. // = 0.0
-1.23 // = -1.23
23.45e6 // = 23.45 * 10^6
2e-5 // = 2.0 * 10^-5
3E+10 // = 3.0 * 10^10

.09E34 // = 0.09 * 10^34

RSC-4x mikroC floating-point constants are of type double. Note that mikroC’s
implementation of ANSI Standard considers float and double (together with the
long double variant) to be the same type.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 63
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Character Constants

A character constant is one or more characters enclosed in single quotes, such as
'A', '+', or '\n'. In C, single-character constants have data type int. Multi-character
constants are referred to as string constants or string literals. For more information
refer to String Constants.

Escape Sequences

The backslash character (\) is used to introduce an escape sequence, which allows
the visual representation of certain nongraphic characters. One of the most com-
mon escape constants is the newline character (\n).

A backslash is used with octal or hexadecimal numbers to represent the ASCII
symbol or control code corresponding to that value; for example, '\x3F' for the
question mark. You can use any string of up to three octal or any number of hexa-
decimal numbers in an escape sequence, provided that the value is within legal
range for data type char (0 to 0xFF for RSC-4x mikroC). Larger numbers will gen-
erate the compiler error “Out of range”.

For example, the octal number \777 is larger than the maximum value allowed
(\377) and will generate an error. The first nonoctal or nonhexadecimal character
encountered in an octal or hexadecimal escape sequence marks the end of the
sequence.

Note: You must use the sequence \\ to represent an ASCII backslash, as used in
operating system paths.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

64 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

The following table shows the available escape sequences:

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 65
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Sequence Value Char What it does

\a 0x07 BEL Audible bell

\b 0x08 BS Backspace

\f 0x0C FF Formfeed

\n 0x0A LF Newline (Linefeed)

\r 0x0D CR Carriage Return

\t 0x09 HT Tab (horizontal)

\v 0x0B VT Vertical Tab

\\ 0x5C \ Backslash

\' 0x27 ' Single quote (Apostrophe)

\" 0x22 " Double quote

\? 0x3F ? Question mark

\O any O = string of up to 3 octal digits

\xH any H = string of hex digits

\XH any H = string of hex digits

Disambiguation

There are situations when ambiguities might arise when using escape sequences.

Let’s have an example:

Lcd_Out_Cp("\x091.0 Intro");

This is intended to be interpreted as \x09 and "1.0 Intro". However, RSC-4x
mikroC compiles it as the hexadecimal number \x091 and the literal string ".0
Intro". To avoid such problems, we could rewrite the code like this:

Lcd_Out_Cp("\x09" "1.0 Intro");

For more information on the previous line, refer to String Constants.

Ambiguities might also arise if an octal escape sequence is followed by a nonoctal
digit. For example, the following constant:

"\118"

would be interpreted as a two-character constant made up of the characters \11
and 8, because 8 is not a legal octal digit.

String Constants

Note: This topic discusses the syntax of string constants according to ANSI C
Standard; for the implemenatation specifics and storage see Strings Specifics.

String constants, also known as string literals, are a special type of constants
which store fixed sequences of characters. A string literal is a sequence of any
number of characters surrounded by double quotes:

"This is a string."

The null string, or empty string, is written like "". A literal string is stored inter-
nally as the given sequence of characters plus a final null character. A null string is
stored as a single null character.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

66 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

The characters inside the double quotes can include escape sequences. This code,
for example:

"\t\"Name\"\\\tAddress\n\n"

prints like this:

"Name"\ Address

"Name" is preceded by two tabs; Address is preceded by one tab. The line is fol-
lowed by two new lines. The \" provides interior double quotes. The escape char-
acter sequence \\ is translated to \ by the compiler.

Adjacent string literals separated only by whitespace are concatenated during the
parsing phase. For example:

"This is " "just"

" an example."

is equivalent to

"This is just an example."

Line Continuation with Backslash

You can also use the backslash (\) as a continuation character to extend a string
constant across line boundaries:

"This is really \
a one-line string."

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 67
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Enumeration Constants

Enumeration constants are identifiers defined in enum type declarations. The iden-
tifiers are usually chosen as mnemonics to assist legibility. Enumeration constants
are of int type. They can be used in any expression where integer constants are
valid.

For example:

enum weekdays { SUN = 0, MON, TUE, WED, THU, FRI, SAT };

The identifiers (enumerators) used must be unique within the scope of the enum
declaration. Negative initializers are allowed. See Enumerations for details of enum
declarations.

Pointer Constants

A pointer or the pointed-at object can be declared with the const modifier.
Anything declared as a const cannot be have its value changed. It is also illegal to
create a pointer that might violate the nonassignability of a constant object.

Consider the following examples:

int i; // i is an int
int * pi; // pi is a pointer to int (unini-
tialized)
int * const cp = &i; // cp is a constant pointer to int
const int ci = 7; // ci is a constant int
const int * pci; // pci is a pointer to constant
int
const int * const cpc = &ci; // cpc is a constant pointer to a

// constant int

The following assignments are legal:

i = ci; // Assign const-int to int
*cp = ci; // Assign const-int to

// object-pointed-at-by-a-
const-pointer
++pci; // Increment a pointer-to-const
pci = cpc; // Assign a const-pointer-to-a-
const to a

// pointer-to-const

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

68 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

The following assignments are illegal:

ci = 0; // NO--cannot assign to a const-int
ci--; // NO--cannot change a const-int
*pci = 3; // NO--cannot assign to an object

// pointed at by pointer-to-const.
cp = &ci; // NO--cannot assign to a const-pointer,

// even if value would be unchanged.
cpc++; // NO--cannot change const-pointer
pi = pci; // NO--if this assignment were allowed,

// you would be able to assign to *pci

// (a const value) by assigning to *pi.

Similar rules apply to the volatile modifier. Note that const and volatile can
both appear as modifiers to the same identifier.

Constant Expressions

A constant expression is an expression that always evaluates to a constant and
consists only of constants (literals) or symbolic constants. It is evaluated at com-
pile-time and it must evaluate to a constant that is in the range of representable
values for its type. Constant expressions are evaluated just as regular expressions
are.

Constant expressions can consist only of the following:

- literals,
- enumeration constants,
- simple constants (no constant arrays or structures),
- sizeof operators.

Constant expressions cannot contain any of the following operators, unless the
operators are contained within the operand of a sizeof operator: assignment,
comma, decrement, function call, increment.

You can use a constant expression anywhere that a constant is legal.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 69
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

This section covers some basic concepts of the language, essential for understand-
ing how C programs work. First, we need to establish the following terms that will
be used throughout the manual:

- Objects and lvalues
- Scope and Visibility
- Name Spaces
- Duration

Objects
An object is a specific region of memory that can hold a fixed or variable value
(or set of values). To prevent confusion, this use of the word object is different
from the more general term used in object-oriented languages. Our definiton of the
word would encompass functions, variables, symbolic constants, user-defined data
types, and labels.

Each value has an associated name and type (also known as a data type). The
name is used to access the object. This name can be a simple identifier, or it can
be a complex expression that uniquely references the object.

Objects and Declarations

Declarations establish the necessary mapping between identifiers and objects.
Each declaration associates an identifier with a data type.

Associating identifiers with objects requires each identifier to have at least two
attributes: storage class and type (sometimes referred to as data type). The RSC-4x
mikroC compiler deduces these attributes from implicit or explicit declarations in
the source code. Commonly, only the type is explicitly specified and the storage
class specifier assumes automatic value auto.

Generally speaking, an identifier cannot be legally used in a program before its
declaration point in the source code. Legal exceptions to this rule (known as for-
ward references) are labels, calls to undeclared functions, and struct or union tags.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

70 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Concepts

The range of objects that can be declared includes:

- Variables
- Functions
- Types
- Arrays of other types
- Structure, union, and enumeration tags
- Structure members
- Union members
- Enumeration constants
- Statement labels
- Preprocessor macros

The recursive nature of the declarator syntax allows complex declarators. You’ll
probably want to use typedefs to improve legibility if constructing complex
objects.

Lvalues

An lvalue is an object locator: an expression that designates an object. An example
of an lvalue expression is *P, where P is any expression evaluating to a non-null
pointer. A modifiable lvalue is an identifier or expression that relates to an object
that can be accessed and legally changed in memory. A const pointer to a constant,
for example, is not a modifiable lvalue. A pointer to a constant can be changed
(but its dereferenced value cannot).

Historically, the l stood for “left”, meaning that an lvalue could legally stand on
the left (the receiving end) of an assignment statement. Now only modifiable lval-
ues can legally stand to the left of an assignment operator. For example, if a and b
are nonconstant integer identifiers with properly allocated memory storage, they
are both modifiable lvalues, and assignments such as a = 1 and b = a + b are
legal.

Rvalues

The expression a + b is not an lvalue: a + b = a is illegal because the expres-
sion on the left is not related to an object. Such expressions are sometimes called
rvalues (short for right values).

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 71
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Scope and Visibility

Scope

The scope of identifier is the part of the program in which the identifier can be
used to access its object. There are different categories of scope: block (or local),
function, function prototype, and file. These depend on how and where identifiers
are declared.

- Block: The scope of an identifier with block (or local) scope starts at the declara-
tion point and ends at the end of the block containing the declaration (such a block
is known as the enclosing block). Parameter declarations with a function definition
also have block scope, limited to the scope of the function body.

- File: File scope identifiers, also known as globals, are declared outside of all
blocks; their scope is from the point of declaration to the end of the source file.

- Function: The only identifiers having function scope are statement labels. Label
names can be used with goto statements anywhere in the function in which the
label is declared. Labels are declared implicitly by writing label_name: followed
by a statement. Label names must be unique within a function.

- Function prototype: Identifiers declared within the list of parameter declarations
in a function prototype (not part of a function definition) have function prototype
scope. This scope ends at the end of the function prototype.

Visibility

The visibility of an identifier is that region of the program source code from which
legal access can be made to the identifier’s associated object.

Scope and visibility usually coincide, though there are circumstances under which
an object becomes temporarily hidden by the appearance of a duplicate identifier:
the object still exists but the original identifier cannot be used to access it until the
scope of the duplicate identifier is ended.

Technically, visibility cannot exceed scope, but scope can exceed visibility.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

72 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Name Spaces

Name space is the scope within which an identifier must be unique. C uses four
distinct categories of identifiers:

1. goto label names. These must be unique within the function in which they are
declared.

2. Structure, union, and enumeration tags. These must be unique within the block
in which they are defined. Tags declared outside of any function must be
unique.

3. Structure and union member names. These must be unique within the structure
or union in which they are defined. There is no restriction on the type or offset
of members with the same member name in different structures.

4. Variables, typedefs, functions, and enumeration members. These must be unique
within the scope in which they are defined. Externally declared identifiers must
be unique among externally declared variables.

5. Duplicate names are legal for different name spaces regardless of scope rules.

For example:

int blue = 73;

{ // open a block
enum colors { black, red, green, blue, violet, white } c;

/* enumerator blue = 3 now hides outer declaration of int blue */

struct colors { int i, j; }; // ILLEGAL: colors duplicate tag
double red = 2; // ILLEGAL: redefinition of red

}

blue = 37; // back in int blue scope

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 73
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Duration

Duration, closely related to storage class, defines the period during which the
declared identifiers have real, physical objects allocated in memory. We also dis-
tinguish between compile-time and run-time objects. Variables, for instance, unlike
typedefs and types, have real memory allocated during run time. There are two
kinds of duration: static and local.

Static Duration

Memory is allocated to objects with static duration as soon as execution is under-
way; this storage allocation lasts until the program terminates. Static duration
objects usually reside in fixed data segments allocated according to the memory
model in force. All globals have static duration. All functions, wherever defined,
are objects with static duration. Other variables can be given static duration by
using the explicit static or extern storage class specifiers.

In RSC-4x mikroC, static duration objects are not initialized to zero (or null) in
the absence of any explicit initializer.

Don’t confuse static duration with file or global scope. An object can have static
duration and local scope – see the example below.

Local Duration

Local duration objects are also known as automatic objects. They are created on
the stack (or in a register) when the enclosing block or function is entered. They
are deallocated when the program exits that block or function. Local duration
objects must be explicitly initialized; otherwise, their contents are unpredictable.

The storage class specifier auto can be used when declaring local duration vari-
ables, but is usually redundant, because auto is the default for variables declared
within a block.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

74 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

An object with local duration also has local scope, because it does not exist out-
side of its enclosing block. The converse is not true: a local scope object can have
static duration. For example:

void f() {
/* local duration variable; init a upon every call to f */
int a = 1;
/* static duration variable; init b only upon first call to f */
static int b = 1;
/* checkpoint! */
a++;
b++;

}

void main() {
/* At checkpoint, we will have: */
f(); // a=1, b=1, after first call,
f(); // a=1, b=2, after second call,
f(); // a=1, b=3, after third call,

// etc.
}

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 75
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Note: This topic discusses the concept of types and covers standard C types. For
specialized types and implemenation details see Types Specifics.

C is a strictly typed language, which means that every object, function, and
expression need to have a strictly defined type, known in the time of compilation.
Note that C works exclusively with numeric types.

The type serves:

- to determine the correct memory allocation required initially.
- to interpret the bit patterns found in the object during subsequent access.
- in many type-checking situations, to ensure that illegal assignments are trapped.

RSC-4x mikroC supports many standard (predefined) and user-defined data types,
including signed and unsigned integers in various sizes, floating-point numbers in
various precisions, arrays, structures, and unions. In addition, pointers to most of
these objects can be established and manipulated in memory.

The type determines how much memory is allocated to an object and how the pro-
gram will interpret the bit patterns found in the object’s storage allocation. A given
data type can be viewed as a set of values (often implementation-dependent) that
identifiers of that type can assume, together with a set of operations allowed on
those values. The compile-time operator, sizeof, lets you determine the size in
bytes of any standard or user-defined type.

The RSC-4x mikroC standard libraries and your own program and header files
must provide unambiguous identifiers (or expressions derived from them) and
types so that RSC-4x mikroC can consistently access, interpret, and (possibly)
change the bit patterns in memory corresponding to each active object in your pro-
gram.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

76 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Types

Type Categories
Common way to categorize types is to divide them into:

- fundamental
- derived

The fudamental types represent types that cannot be separated into smaller parts.
They are sometimes referred to as unstructured types. The fundamental types are
void, char, int, float, and double, together with short, long, signed,
and unsigned variants of some of these. For more information on fundamental
types, refer to the topic Fundamental Types.

The derived types are also known as structured types. The derived types
include pointers to other types, arrays of other types, function types, structures,
and unions. For more information on derived types, refer to the topic Derived
Types.

Arithmetic Types

The arithmetic type specifiers are built from the following keywords: void, char,
int, float, and double, together with prefixes short, long, signed, and unsigned.
From these keywords you can build the integral and floating-point types.

Integral Types
Types char and int, together with their variants, are considered integral data
types. Variants are created by using one of the prefix modifiers short, long,
signed, and unsigned.

The table below is the overview of the integral types – keywords in parentheses
can be (and often are) omitted.

The modifiers signed and unsigned can be applied to both char and int. In the
absence of unsigned prefix, signed is automatically assumed for integral types.
The only exception is the char, which is unsigned by default. The keywords
signed and unsigned, when used on their own, mean signed int and unsigned
int, respectively.

The modifiers short and long can be applied only to the int. The keywords
short and long used on their own mean short int and long int, respectively.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 77
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Note: The integral type values are stored in the little-endian byte order.

Floating-point Types

All floating types (float, double, long double) use 32-bit IEEE real format
(ANSI/IEEE 754-1985) of single-precision normalized numbers. The three types
are of the same size and entirely compatible (casting would not produce any code),
though their types are different.

Here is the overview of the floating-point types:

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

78 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Type Size in bytes Range
(unsigned) char 1 0 .. 255

signed char 1 - 128 .. 127
(signed) short (int) 1 - 128 .. 127
unsigned short (int) 1 0 .. 255

(signed) int 2 -32768 .. 32767
unsigned (int) 2 0 .. 65535

(signed) long (int) 4 -2147483648 .. 2147483647
unsigned long (int) 4 0 .. 4294967295

Type Size in bytes Range
float 4 ±1.17549435 * 10-38 .. ±3.40282347 * 10^38
double 4 ±1.17549435 * 10-38 .. ±3.40282347 * 10^38

long double 4 ±1.17549435 * 10-38 .. ±3.40282347 * 10^38

Some features of the double and long double types do not comply with the
standard:

Enumerations

An enumeration data type is used for representing an abstract, discreet set of val-
ues with appropriate symbolic names.

Enumeration Declaration

Enumeration is declared like this:

enum tag {enumeration-list};

Here, tag is an optional name of the enumeration; enumeration-list is a comma-
delimited list of discreet values, enumerators (or enumeration constants). Each
enumerator is assigned a fixed integral value. In the absence of explicit initializers,
the first enumerator is set to zero, and each succeeding enumerator is set to one
more than its predecessor.

Variables of enum type are declared same as variables of any other type. For exam-
ple, the following declaration:

enum colors { black, red, green, blue, violet, white } c;

establishes a unique integral type, enum colors, a variable c of this type, and a set
of enumerators with constant integer values (black = 0, red = 1, ...).

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 79
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Macro defined in
<float.h>

Value in this
implementation ANSI C Standard requirements

DBL_DIG 6 >=10
LDBL_DIG 6 >=10

DBL_EPSILON 1.19209290 * 10-7 <=10-9
LDBL_EPSILON 1.19209290 * 10-7 <=10-9

In C, a variable of an enumerated type can be assigned any value of type int – no
type checking beyond that is enforced. That is:

c = red; // OK
c = 1; // Also OK, means the same

With explicit integral initializers, you can set one or more enumerators to specific
values. The initializer can be any expression yielding a positive or negative integer
value (after possible integer promotions). Any subsequent names without initializ-
ers will then increase by one. These values are usually unique, but duplicates are
legal.

The order of constants can be explicitly re-arranged. For example:

enum colors { black, // value 0
red, // value 1
green, // value 2
blue=6, // value 6
violet, // value 7

white=4 }; // value 4

Initializer expression can include previously declared enumerators. For example,
in the following declaration:

enum memory_sizes { bit = 1, nibble = 4 * bit, byte = 2 * nibble,

kilobyte = 1024 * byte };

nibble would acquire the value 4, byte the value 8, and kilobyte the value 8192.

Anonymous Enum Type

In our previous declaration, the identifier colors is the optional enumeration tag
that can be used in subsequent declarations of enumeration variables of type enum
colors:

enum colors bg, border; /* declare variables bg and border */

As with struct and union declarations, you can omit the tag if no further variables
of this enum type are required:

/* Anonymous enum type: */
enum { black, red, green, blue, violet, white } color;

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

80 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Enumeration Scope

Enumeration tags share the same name space as structure and union tags.
Enumerators share the same name space as ordinary variable identifiers:

int blue = 73;

{ // open a block
enum colors { black, red, green, blue, violet, white } c;

/* enumerator blue = 3 now hides outer declaration of int blue */

struct colors { int i, j; }; // ILLEGAL: colors duplicate tag
double red = 2; // ILLEGAL: redefinition of red

}

blue = 37; // back in int blue scope

Void Type

void is a special type indicating the absence of any value. There are no objects of
void; instead, void is used for deriving more complex types.

Void Functions

Use the void keyword as a function return type if the function does not return a
value.

void print_temp(char temp) {
Lcd_Out_Cp("Temperature:");
Lcd_Out_Cp(temp);
Lcd_Chr_Cp(223); // degree character
Lcd_Chr_Cp('C');

}

Use void as a function heading if the function does not take any parameters.
Alternatively, you can just write empty parentheses:

main(void) { // same as main()
...

}

Generic Pointers
Pointers can be declared as void, meaning that they can point to any type. These
pointers are sometimes called generic.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 81
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

The derived types are also known as structured types. These types are used as ele-
ments in creating more complex user-defined types. The derived types include:

- arrays
- pointers
- structures
- unions

Arrays

Array is the simplest and most commonly used structured type. Variable of array
type is actually an array of objects of the same type. These objects represent ele-
ments of an array and are identified by their position in array. An array consists of
a contiguous region of storage exactly large enough to hold all of its elements.

Array Declaration
Array declaration is similar to variable declaration, with the brackets added after
identifer:

type array_name[constant-expression]

This declares an array named as array_name composed of elements of type. The
type can be scalar type (except void), user-defined type, pointer, enumeration, or
another array. Result of the constant-expression within the brackets determines
the number of elements in array. If an expression is given in an array declarator, it
must evaluate to a positive constant integer. The value is the number of elements
in the array.

Each of the elements of an array is numbered from 0 through the number of ele-
ments minus one. If the number is n, elements of array can be approached as vari-
ables array_name[0] .. array_name[n-1] of type.

Here are a few examples of array declaration:

#define MAX = 50
int vector_one[10]; /* declares an array of 10 integers */
float vector_two[MAX]; /* declares an array of 50 floats */
float vector_three[MAX - 20];/* declares an array of 30 floats */

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

82 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Derived Types

Array Initialization

Array can be initialized in declaration by assigning it a comma-delimited sequence
of values within braces. When initializing an array in declaration, you can omit the
number of elements – it will be automatically determined acording to the number
of elements assigned. For example:

/* Declare an array which holds number of days in each month: */
int days[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

/* This declaration is identical to the previous one */

int days[] = {31,28,31,30,31,30,31,31,30,31,30,31};

If you specify both the length and starting values, the number of starting values
must not exceed the specified length. Vice versa is possible, when the trailing
“excess” elements will be assigned some encountered runtime values from memo-
ry.

In case of array of char, you can use a shorter string literal notation. For example:

/* The two declarations are identical: */
const char msg1[] = {'T', 'e', 's', 't', '\0'};

const char msg2[] = "Test";

For more information on string literals, refer to String Constants.

Arrays in Expressions

When name of the array comes up in expression evaluation (except with operators
& and sizeof), it is implicitly converted to the pointer pointing to array’s first ele-
ment. See Arrays and Pointers for more information.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 83
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Multi-dimensional Arrays

An array is one-dimensional if it is of scalar type. One-dimensional arrays are
sometimes referred to as vectors.

Multidimensional arrays are constructed by declaring arrays of array type. These
arrays are stored in memory in such way that the right most subscript changes
fastest, i.e. arrays are stored “in rows”. Here is a sample 2-dimensional array:

float m[50][20]; /* 2-dimensional array of size 50x20 */

Variable m is an array of 50 elements, which in turn are arrays of 20 floats each.
Thus, we have a matrix of 50x20 elements: the first element is m[0][0], the last
one is m[49][19]. First element of the 5th row would be m[0][5].

If you are not initializing the array in the declaration, you can omit the first dimen-
sion of multi-dimensional array. In that case, array is located elsewhere, e.g. in
another file. This is a commonly used technique when passing arrays as function
parameters:

int a[3][2][4]; /* 3-dimensional array of size 3x2x4 */

void func(int n[][2][4]) { /* we can omit first dimension */
//...
n[2][1][3]++; /* increment the last element*/

}//~

void main() {
//...
func(a);

}//~!

You can initialize a multi-dimensional array with an appropriate set of values
within braces. For example:

int a[3][2] = {{1,2}, {2,6}, {3,7}};

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

84 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Note: This topic discusses the concept and syntax of pointers according to ANSI C
Standard; for the implemenatation specifics and storage see Pointers Specifics.

Pointers are special objects for holding (or “pointing to”) memory addresses. In C,
address of an object in memory can be obtained by means of unary operator &. To
reach the pointed object, we use indirection operator (*) on a pointer.

A pointer of type “pointer to object of type” holds the address of (that is, points
to) an object of type. Since pointers are objects, you can have a pointer pointing to
a pointer (and so on). Other objects commonly pointed at include arrays, struc-
tures, and unions.

A pointer to a function is best thought of as an address, usually in a code segment,
where that function’s executable code is stored; that is, the address to which con-
trol is transferred when that function is called.

Although pointers contain numbers with most of the characteristics of unsigned
integers, they have their own rules and restrictions for declarations, assignments,
conversions, and arithmetic. The examples in the next few sections illustrate these
rules and restrictions.

Pointer Declarations

Pointers are declared same as any other variable, but with * ahead of identifier.
Type at the beginning of declaration specifies the type of a pointed object. A point-
er must be declared as pointing to some particular type, even if that type is void,
which really means a pointer to anything. Pointers to void are often called generic
pointers.

If type is any predefined or user-defined type, including void, the declaration

type *p; /* Uninitialized pointer */

declares p to be of type “pointer to type”. All the scoping, duration, and visibility
rules apply to the p object just declared. You can view the declaration in this way:
if *p is an object of type, then p has to be a pointer to such objects.

Note: You must initialize pointers before using them! Our previously declared
pointer *p is not initialized (i.e. assigned a value), so it cannot be used yet.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 85
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Pointers

Note: In case of multiple pointer declarations, each identifier requires an indirect
operator. For example:

int *pa, *pb, *pc;

/* is same as: */

int *pa;
int *pb;

int *pc;

Once declared, though, a pointer can usually be reassigned so that it points to an
object of another type. mikroC lets you reassign pointers without typecasting, but
the compiler will warn you unless the pointer was originally declared to be point-
ing to void. You can assign a void* pointer to a non-void* pointer – refer to void
for details.

Null Pointers

A null pointer value is an address that is guaranteed to be different from any valid
pointer in use in a program. Assigning the integer constant 0 to a pointer assigns a
null pointer value to it. Instead of zero, the mnemonic NULL (defined in the stan-
dard library header files, such as stdio.h) can be used for legibility. All pointers
can be successfully tested for equality or inequality to NULL.

For example:

int *pn = 0; /* Here's one null pointer */
int *pn = NULL; /* This is an equivalent declaration */

/* We can test the pointer like this: */
if (pn == 0) { ... }

/* .. or like this: */

if (pn == NULL) { ... }

The pointer type “pointer to void” must not be confused with the null pointer. The
declaration

void *vp;

declares that vp is a generic pointer capable of being assigned to by any “pointer
to type” value, including null, without complaint.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

86 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Assignments without proper casting between a “pointer to type1” and a “pointer
to type2”, where type1 and type2 are different types, can invoke a compiler
warning or error. If type1 is a function and type2 isn’t (or vice versa), pointer
assignments are illegal. If type1 is a pointer to void, no cast is needed. If type2 is
a pointer to void, no cast is needed.

Pointer Arithmetic

Pointer arithmetic in C is limited to:

- assigning one pointer to another,
- comparing two pointers,
- comparing pointer to zero (NULL),
- adding/subtracting pointer and an integer value,
- subtracting two pointers.

The internal arithmetic performed on pointers depends on the memory model in
force and the presence of any overriding pointer modifiers. When performing
arithmetic with pointers, it is assumed that the pointer points to an array of
objects.

Arrays and Pointers

Arrays and pointers are not completely independent types in C. When name of the
array comes up in expression evaluation (except with operators & and sizeof), it
is implicitly converted to the pointer pointing to array’s first element. Due to this
fact, arrays are not modifiable lvalues.

Brackets [] indicate array subscripts. The expression

id[exp]

is defined as

*((id) + (exp))

where either:

- id is a pointer and exp is an integer, or
- id is an integer and exp is a pointer.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 87
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

The following is true:

&a[i] = a + i

a[i] = *(a + i)

According to these guidelines, we can write:

pa = &a[4]; // pa points to a[4]
x = *(pa + 3); // x = a[7]

/* .. but: */
y = *pa + 3; // y = a[4] + 3

Also, you need to be careful with operator precedence:

*pa++; // Equal to *(pa++), increments the pointer

(*pa)++; // Increments the pointed object!

Following examples are also valid, but better avoid this syntax as it can make the
code really illegible:

(a + 1)[i] = 3;
// same as: *((a + 1) + i) = 3, i.e. a[i + 1] = 3

(i + 2)[a] = 0;

// same as: *((i + 2) + a) = 0, i.e. a[i + 2] = 0

Assignment and Comparison

You can use a simple assignment operator (=) to assign value of one pointer to
another if they are of the same type. If they are of different types, you must use a
typecast operator. Explicit type conversion is not necessary if one of the pointers is
generic (of void type).

Assigning the integer constant 0 to a pointer assigns a null pointer value to it. The
mnemonic NULL (defined in the standard library header files, such as stdio.h) can
be used for legibility.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

88 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Two pointers pointing into the same array may be compared by using relational
operators ==, !=, <, <=, >, and >=. Results of these operations are same as if
they were used on subscript values of array elements in question:

int *pa = &a[4], *pb = &a[2];

if (pa == pb) {... /* won't be executed as 4 is not equal 2 */ }

if (pa > pb) {... /* will be executed as 4 is greater than 2 */ }

You can also compare pointers to zero value – this tests if pointer actually points
to anything. All pointers can be successfully tested for equality or inequality to
NULL:

if (pa == NULL) { ... }

if (pb != NULL) { ... }

Note: Comparing pointers pointing to different objects/arrays can be performed at
programmer’s responsibility — precise overview of data’s physical storage is
required.

Pointer Addition

You can use operators +, ++, and += to add an integral value to a pointer. The
result of addition is defined only if pointer points to an element of an array and if
the result is a pointer pointing into the same array (or one element beyond it).

If a pointer is declared to point to type, adding an integral value to the pointer
advances the pointer by that number of objects of type. Informally, you can think
of P + n as advancing the pointer P by (n * sizeof(type)) bytes, as long as the
pointer remains within the legal range (first element to one beyond the last ele-
ment). If type has size of 10 bytes, then adding 5 to a pointer to type advances the
pointer 50 bytes in memory. In case of void type, size of the step is one byte.

For example:

int a[10]; /* array a containing 10 elements of type int */
int *pa = &a[0]; /* pa is pointer to int, pointing to a[0] */
*(pa + 3) = 6;
/* pa+3 is a pointer pointing to a[3], so a[3] now equals 6 */
pa++;
/* pa now points to the next element of array a: a[1] */

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 89
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

There is no such element as “one past the last element”, of course, but a pointer is
allowed to assume such a value. C “guarantees” that the result of addition is
defined even when pointing to one element past array. If P points to the last array
element, P + 1 is legal, but P + 2 is undefined.

This allows you to write loops which access the array elements in a sequence by
means of incrementing pointer — in the last iteration you will have a pointer
pointing to one element past an array, which is legal. However, applying the indi-
rection operator (*) to a “pointer to one past the last element” leads to undefined
behavior.

For example:

void f (some_type a[], int n) {
/* function f handles elements of array a; */
/* array a has n elements of type some_type */

int i;
some_type *p=&a[0];

for (i = 0; i < n; i++) {
/* .. here we do something with *p .. */

p++; /* .. and with the last iteration p exceeds
the last element of array a */

}
/* at this point, *p is undefined! */

}

Pointer Subtraction

Similar to addition, you can use operators -, --, and -= to subtract an integral
value from a pointer.

Also, you may subtract two pointers. Difference will equal the distance between
the two pointed addresses, in bytes.

For example:

int a[10];
int *pi1 = &a[0];
int *pi2 = &a[4];
i = pi2 - pi1; /* i equals 8 */
pi2 -= (i >> 1); /* pi2 = pi2 - 4: pi2 now points to a[0] */

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

90 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

A structure is a derived type usually representing a user-defined collection of
named members (or components). The members can be of any type, either funda-
mental or derived (with some restrictions to be noted later), in any sequence. In
addition, a structure member can be a bit field type not allowed elsewhere.

Unlike arrays, structures are considered to be single objects. The RSC-4x mikroC
structure type lets you handle complex data structures almost as easily as single
variables.

Note: RSC-4x mikroC does not support anonymous structures (ANSI divergence).

Structure Declaration and Initialization

Structures are declared using the keyword struct:

struct tag {member-declarator-list};

Here, tag is the name of the structure; member-declarator-list is a list of struc-
ture members, actually a list of variable declarations. Variables of structured type
are declared same as variables of any other type.

The member type cannot be the same as the struct type being currently declared.
However, a member can be a pointer to the structure being declared, as in the fol-
lowing example:

struct mystruct {mystruct s;}; /* illegal! */

struct mystruct {mystruct *ps;}; /* OK */

Also, a structure can contain previously defined structure types when declaring an
instance of a declared structure. Here is an example:

/* Structure defining a dot: */
struct Dot {float x, y;};

/* Structure defining a circle: */
struct Circle {

float r;
struct Dot center;

} o1, o2;
/* declare variables o1 and o2 of Circle */

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 91
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Structures

Note that you can omit structure tag, but then you cannot declare additional
objects of this type elsewhere. For more information, see the “Untagged
Structures” below.

Structure is initialized by assigning it a comma-delimited sequence of values with-
in braces, similar to array. For example:

/* Referring to declarations from the example above: */

/* Declare and initialize dots p and q: */
struct Dot p = {1., 1.}, q = {3.7, -0.5};

/* Declare and initialize circle o1: */
struct Circle o1 = {1., {0., 0.}};

// radius is 1, center is at (0, 0)

Incomplete Declarations

Incomplete declarations are also known as forward declarations. A pointer to a
structure type A can legally appear in the declaration of another structure B before
A has been declared:

struct A; // incomplete
struct B {struct A *pa;};

struct A {struct B *pb;};

The first appearance of A is called incomplete because there is no definition for it
at that point. An incomplete declaration is allowed here, because the definition of
B doesn’t need the size of A.

Untagged Structures and Typedefs

If you omit the structure tag, you get an untagged structure. You can use untagged
structures to declare the identifiers in the comma-delimited member-declarator-
list to be of the given structure type (or derived from it), but you cannot declare
additional objects of this type elsewhere.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

92 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

It is possible to create a typedef while declaring a structure, with or without a tag:

/* With tag: */
typedef struct mystruct { ... } Mystruct;
Mystruct s, *ps, arrs[10]; /* same as struct mystruct s, etc. */

/* Without tag: */
typedef struct { ... } Mystruct;

Mystruct s, *ps, arrs[10];

Usually, you don’t need both tag and typedef: either can be used in structure type
declarations.

Untagged structure and union members are ignored during initialization.

Note: See also Working with structures.

Working with Structures

Structures represent user-defined types. Set of rules governing the application of
structures is strictly defined.

Assignment

Variables of same structured type may be assigned one to another by means of
simple assignment operator (=). This will copy the entire contents of the variable
to destination, regardless of the inner complexitiy of a given structure.

Note that two variables are of same structured type only if they were both defined
by the same instruction or were defined using the same type identifier. For exam-
ple:

/* a and b are of the same type: */
struct {int m1, m2;} a, b;

/* But c and d are _not_ of the same type although
their structure descriptions are identical: */

struct {int m1, m2;} c;

struct {int m1, m2;} d;

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 93
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Size of Structure

You can get size of the structure in memory by means of operator sizeof. Size of
the structure does not necessarily need to be equal to the sum of its members’
sizes. It is often greater due to certain limitations of memory storage.

Structures and Functions

A function can return a structure type or a pointer to a structure type:

mystruct func1(void); /* func1() returns a structure */

mystruct *func2(void); /* func2() returns pointer to structure */

A structure can be passed as an argument to a function in the following ways:

void func1(mystruct s;); /* directly */
void func2(mystruct *sptr;); /* via a pointer */

Structure Member Access

Structure and union members are accessed using the following two selection oper-
ators:

. (period)
-> (right arrow)

The operator . is called the direct member selector and it is used to directly access
one of the structure’s members. Suppose that the object s is of struct type S. Then
if m is a member identifier of type M declared in s, the expression

s.m // direct access to member m

is of type M, and represents the member object m in S.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

94 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

The operator -> is called the indirect (or pointer) member selector. Suppose that
the object s is of struct type S, and ps is a pointer to s. Then if m is a member
identifier of type M declared in s, the expression

ps->m // indirect access to member m;

// identical to (*ps).m

is of type M, and represents the member object m in s. The expression ps->m is a
convenient shorthand for (*ps).m.

For example:

struct mystruct {
int i;
char str[21];
double d;

} s, *sptr = &s;

//...

s.i = 3; // assign to the i member of mystruct s

sptr -> d = 1.23; // assign to the d member of mystruct s

The expression s.m is an lvalue, provided that s is an lvalue and m is not an array
type. The expression sptr->m is an lvalue unless m is an array type.

Accessing Nested Structures

If structure B contains a field whose type is structure A, the members of A can be
accessed by two applications of the member selectors:

struct A {
int j; double x;

};
struct B {

int i; struct A aa; double d;
} s, *sptr;

//...

s.i = 3; // assign 3 to the i member of B
s.aa.j = 2; // assign 2 to the j member of A
sptr->d = 1.23; // assign 1.23 to the d member of B
sptr->aa.x = 3.14; // assign 3.14 to x member of A

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 95
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Structure Uniqueness

Each structure declaration introduces a unique structure type, so that in

struct A {
int i,j; double d;

} aa, aaa;

struct B {
int i,j; double d;

} bb;

the objects aa and aaa are both of type struct A, but the objects aa and bb are of
different structure types. Structures can be assigned only if the source and destina-
tion have the same type:

aa = aaa; /* OK: same type, member by member assignment */
aa = bb; /* ILLEGAL: different types */

/* but you can assign member by member: */
aa.i = bb.i;
aa.j = bb.j;
aa.d = bb.d;

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

96 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Union types are derived types sharing many of the syntactic and functional fea-
tures of structure types. The key difference is that a union allows only one of its
members to be “active” at any given time, the most recently changed member.

Note: RSC-4x mikroC does not support anonymous unions (ANSI divergence).

Union Declaration

Unions are declared same as structures, with the keyword union used instead of
struct:

union tag { member-declarator-list };

Unlike structures’ members, the value of only one of union’s members can be
stored at any time. Let’s have a simple example:

union myunion { // union tag is 'myunion'
int i;
double d;
char ch;

} mu, *pm;

The identifier mu, of type union myunion, can be used to hold a 2-byte int, a 4-
byte double, or a single-byte char, but only one of these at any given time. The
identifier pm is a pointer to union myunion.

Size of Union

The size of a union is the size of its largest member. In our previous example, both
sizeof(union myunion) and sizeof(mu) return 4, but 2 bytes are unused
(padded) when mu holds an int object, and 3 bytes are unused when mu holds a
char.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 97
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Unions

Union Member Access

Union members can be accessed with the structure member selectors (. and ->),
but care is needed:

/* Referring to declarations from the example above: */
pm = μ
mu.d = 4.016;
tmp = mu.d; // OK: mu.d = 4.016
tmp = mu.i; // peculiar result

pm->i = 3;

tmp = mu.i; // OK: mu.i = 3

The third line is legal, since mu.i is an integral type. However, the bit pattern in
mu.i corresponds to parts of the previously assigned double. As such, it won’t
likely provide a useful integer interpretation.

When properly converted, a pointer to a union points to each of its members, and
vice versa.

Bit fields are specified numbers of bits that may or may not have an associated
identifier. Bit fields offer a way of subdividing structures into named parts of user-
defined sizes.

RSC-4x mikroC supports using bitfields in structures. The length of each bitfield
cannot exceed 16 bits. Only unsigned bitfields are supported.

Bit Fields Declaration
Bit fields can be declared only in structures. Declare a structure normally, and
assign individual fields like this (fields need to be unsigned):

struct [tag] {
unsigned bitfield-declarator-list;

}

Here, tag is an optional name of the structure; bitfield-declarator-list is a
list of bit fields. Each component identifer requires a colon and its width in bits to
be explicitly specified.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

98 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Bit Fields

Function Calls

The compiler arranges bitfields within 16-bit words. Bitfields are arranged starting
from the lower bits in the word. Consequent bitfields are placed in the following
higher bits right after the used bits. When there is not enough free bits remaining
in the current word to accommodate next bitfield, the compiler places that bitfield
in the next following word, thus leaving an unused gap between the words. If you
specify an unnamed bitfield, the corresponding bits will also remain unused, sim-
ply serving as a gap between the bitfields.

Here’s an example:

struct { /* the structure occupies two words */
unsigned type : 7;/* occupies [0...6] bits of the first word */
unsigned : 4;/* bits [7...10] of the first word are free*/
unsigned index : 4;/* occupies [10...13] bits of the first word

*/
/* [14...15] bits of the first word are free */

unsigned value : 7;/* occupies [0...6] bits of the second word
*/

unsigned exp : 5; /* occupies [7...11] bits of the second
word */

unsigned flag : 1; /* occupies bit 12 of the second word
*/

/* [13...15] bits of the second word are free */

} S;

Bit Fields Access

Bit fields can be accessed in same way as the structure members. Use direct and
indirect member selector (. and ->).

Performance

Bitfield operations are much more time-consuming for processor than operations
with object of base types (int, char). Moreover, bitfield operations result in
enlarged code size, therefore and it is not recommended to use bitfields unless
RAM size is not enough to accommodate modifiable objects.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 99
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

C is strictly typed language, with each operator, statement and function demanding
appropriately typed operands/arguments. However, we often have to use objects of
“mismatching” types in expressions. In that case, type conversion is needed.

Conversion of object of one type is changing it to the same object of another type
(i.e. applying another type to a given object). C defines a set of standard conver-
sions for built-in types, provided by compiler when necessary. For more informa-
tion, refer to Standard Conversions.

Conversion is required in following situations:

- if statement requires an expression of particular type (according to language defi
nition), and we use an expression of different type,

- if operator requires an operand of particular type, and we use an operand of dif
ferent type,

- if a function requires a formal parameter of particular type, and we pass it an
object of different type,

- if an expression following the keyword return does not match the declared func
tion return type,

- if intializing an object (in declaration) with an object of different type.

In these situations, compiler will provide an automatic implicit conversion of
types, without any user interference. Also, user can demand conversion explicitly
by means of typecast operator. For more information, refer to Explicit
Typecasting.

See also Specialized Types Conversions.

Standard Conversions

Standard conversions are built in C. These conversions are performed automatical-
ly, whenever required in the program. They can be also explicitly required by
means of typecast operator (refer to Explicit Typecasting).

The basic rule of automatic (implicit) conversion is that the operand of simpler
type is converted (promoted) to the type of more complex operand. Then, type of
the result is that of more complex operand.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

100 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Types Conversion

Arithmetic Conversions

When you use an arithmetic expression, such as a + b, where a and b are of dif-
ferent arithmetic types, RSC-4x mikroC performs implicit type conversions before
the expression is evaluated. These standard conversions include promotions of
“lower” types to “higher” types in the interests of accuracy and consistency.

Assigning a signed character object (such as a variable) to an integral object
results in automatic sign extension. Objects of type signed char always use sign
extension; objects of type unsigned char always set the high byte to zero when
converted to int.

Converting a longer integral type to a shorter type truncates the higher order bits
and leaves low-order bits unchanged. Converting a shorter integral type to a longer
type either sign-extends or zero-fills the extra bits of the new value, depending on
whether the shorter type is signed or unsigned, respectively.

When a value of floating type is converted to integral type, the fractional part is
discarded, in accordance with the standard. If the value of the integral part cannot
be represented by the integral type, the result is the maximum valid value of the
required integral type.

When a value of integral type is converted to a floating type, if the value being
converted is in the range of values that can be represented but cannot be represent-
ed exactly, the result is the nearest lower value, also in accordance with the stan-
dard.

In details:

Here are the steps RSC-4x mikroC uses to convert the operands in an arithmetic
expression:

First, any small integral types are converted according to the following rules:

1. unsigned char converts to int
2. signed char converts to int, with the same value
3. short converts to int, with the same value, sign-extended
4. unsigned short converts to unsigned int, with the same value, zero-filled
5. enum converts to int, with the same value

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 101
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

After this, any two values associated with an operator are either int (including the
long and unsigned modifiers), or they are float (equivalent with double and
long double in RSC-4x mikroC).

1. If either operand is float, the other operand is converted to float.
2. Otherwise, if either operand is unsigned long, the other operand is converted

to unsigned long.
3. Otherwise, if either operand is long, then the other operand is converted to

long.
4. Otherwise, if either operand is unsigned, then the other operand is converted to

unsigned.
5. Otherwise, both operands are int.

The result of the expression is the same type as that of the two operands.

Here are several examples of implicit conversion:

2 + 3.1 /* -> 2. + 3.1 -> 5.1 */
5 / 4 * 3. /* -> (5/4)*3. -> 1*3. -> 1.*3. -> 3. */

3. * 5 / 4 /*->(3.*5)/4->(3.*5.)/4->15./4->15./4.->3.75 */

Pointer Conversions

Pointer types can be converted to other pointer types using the typecasting mecha-
nism:

char *str;
int *ip;

str = (char *)ip;

More generally, the cast type* will convert a pointer to type “pointer to type”.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

102 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Explicit Types Conversions (Typecasting)

In most situations, compiler will provide an automatic implicit conversion of types
where needed, without any user interference. Also, you can explicitly convert an
operand to another type using the prefix unary typecast operator:

(type) object

This will convert object to a specified type. Parentheses are mandatory.

For example:

/* Let's have two variables of char type: */
char a, b;

/* Following line will coerce a to unsigned int: */
(unsigned int) a;

/* Following line will coerce a to double,
then coerce b to double automatically,
resulting in double type value: */

(double) a + b; // equivalent to ((double) a) + b;

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 103
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Declaration introduces one or several names to a program – it informs the compil-
er what the name represents, what is its type, what are allowed operations with it,
etc. This section reviews concepts related to declarations: declarations, definitions,
declaration specifiers, and initialization.

The range of objects that can be declared includes:

- Variables
- Constants
- Functions
- Types
- Structure, union, and enumeration tags
- Structure members
- Union members
- Arrays of other types
- Statement labels
- Preprocessor macros

Declarations and Definitions

Defining declarations, also known as definitions, beside introducing the name of
an object, also establish the creation (where and when) of the object; that is, the
allocation of physical memory and its possible initialization. Referencing declara-
tions, or just declarations, simply make their identifiers and types known to the
compiler.

Here is an overview. Declaration is also a definition, except if:

- it declares a function without specifying its body
- it has an extern specifier, and has no initializator or body (in case of func.)
- it is a typedef declaration

There can be many referencing declarations for the same identifier, especially in a
multifile program, but only one defining declaration for that identifier is allowed.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

104 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Declarations

For example:

/* Here is a nondefining declaration of function max; */
/* it merely informs compiler that max is a function */
int max();
/* Here is a definition of function max: */
int max(int x, int y) {

return (x >= y) ? x : y;
}
/* Definition of variable i: */
int i;
/* Following line is an error, i is already defined! */

int i;

Declarations and Declarators

A declaration is a list of names. The names are sometimes referred to as declara-
tors or identifiers. The declaration begins with optional storage class specifiers,
type specifiers, and other modifiers. The identifiers are separated by commas and
the list is terminated by a semicolon.

Declarations of variable identifiers have the following pattern:

storage-class [type-qualifier] type var1 [=init1], var2 [=init2],

... ;

where var1, var2,... are any sequence of distinct identifiers with optional initial-
izers. Each of the variables is declared to be of type; if omitted, type defaults to
int. Specifier storage-class can take values extern, static, register, or the
default auto. Optional type-qualifier can take values const or volatile. For
more details, refer to Storage Classes and Type Qualifiers.

For example:

/* Create 3 integer variables called x, y, and z
and initialize x and y to the values 1 and 2, respectively: */

int x = 1, y = 2, z; // z remains uninitialized

/* Create a floating-point variable q with static modifier,
and initialize it to 0.25: */

static float q = .25;

These are all defining declarations; storage is allocated and any optional initializ-
ers are applied.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 105
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Linkage

An executable program is usually created by compiling several independent trans-
lation units, then linking the resulting object files with preexisting libraries. The
term translation unit refers to a source code file together with any included files,
but less any source lines omitted by conditional preprocessor directives. A problem
arises when the same identifier is declared in different scopes (for example, in dif-
ferent files), or declared more than once in the same scope.

Linkage is the process that allows each instance of an identifier to be associated
correctly with one particular object or function. All identifiers have one of two
linkage attributes, closely related to their scope: external linkage or internal link-
age. These attributes are determined by the placement and format of your declara-
tions, together with the explicit (or implicit by default) use of the storage class
specifier static or extern.

Each instance of a particular identifier with external linkage represents the same
object or function throughout the entire set of files and libraries making up the
program. Each instance of a particular identifier with internal linkage represents
the same object or function within one file only.

Linkage Rules

Local names have internal linkage; same identifier can be used in different files to
signify different objects. Global names have external linkage; identifier signifies
the same object throughout all program files.

If the same identifier appears with both internal and external linkage within the
same file, the identifier will have internal linkage.

Internal Linkage Rules

1. names having file scope, explicitly declared as static, have internal linkage
2. names having file scope, explicitly declared as const and not explicitly

declared as extern, have internal linkage
3. typedef names have internal linkage
4. enumeration constants have internal linkage

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

106 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

External Linkage Rules

1. names having file scope, that do not comply to any of previously stated internal
linkage rules, have external linkage.

The storage class specifiers auto and register cannot appear in an external dec-
laration. For each identifier in a translation unit declared with internal linkage, no
more than one external definition can be given. An external definition is an exter-
nal declaration that also defines an object or function; that is, it also allocates stor-
age. If an identifier declared with external linkage is used in an expression (other
than as part of the operand of sizeof), then exactly one external definition of that
identifier must be somewhere in the entire program.

Storage Classes

Associating identifiers with objects requires each identifier to have at least two
attributes: storage class and type (sometimes referred to as data type). The RSC-4x
mikroC compiler deduces these attributes from implicit or explicit declarations in
the source code.

Storage class dictates the location (data segment, register, heap, or stack) of the
object and its duration or lifetime (the entire running time of the program, or dur-
ing execution of some blocks of code). Storage class can be established by the
syntax of the declaration, by its placement in the source code, or by both of these
factors:

storage-class type identifier

The storage class specifiers in RSC-4x mikroC are:

- auto
- register
- static
- extern

Auto

Use the auto modifer to define a local variable as having a local duration. This is
the default for local variables and is rarely used. You cannot use auto with globals.
See also Functions.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 107
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Register

By default, RSC-4x mikroC stores variables within internal microcontroller mem-
ory. Thus, modifier register technically has no special meaning. RSC-4x mikroC
compiler simply ignores requests for register allocation.

Static

Global name declared with static specifier has internal linkage,
meaning that it is local for a given file. See Linkage for more
information.

Local name declared with static specifier has static duration. Use static with a
local variable to preserve the last value between successive calls to that function.
See Duration for more information.

Extern

Name declared with extern specifier has external linkage, unless it has been pre-
viously declared as having internal linkage. Declaration is not a definition if it has
extern specifier and is not initialized. The keyword extern is optional for a func-
tion prototype.

Use the extern modifier to indicate that the actual storage and initial value of a
variable, or body of a function, is defined in a separate source code module.
Functions declared with extern are visible throughout all source files in a pro-
gram, unless you redefine the function as static.

See Linkage for more information.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

108 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Type Qualifiers

Type qualifiers const and volatile are optional in declarations and do not actual-
ly affect the type of declared object.

Qualifier const

Qualifier const implies that the declared object will not change its value during
runtime. In declarations with const qualifier, you need to initialize all the objects
in the declaration.

Effectively, RSC-4x mikroC treats objects declared with const qualifier same as
literals or preprocessor constants. Compiler will report an error if trying to change
an object declared with const qualifier.

For example:

const double PI = 3.14159;

Qualifier volatile

Qualifier volatile implies that variable may change its value during runtime
indepent from the program. Use the volatile modifier to indicate that a variable
can be changed by a background routine, an interrupt routine, or an I/O port.
Declaring an object to be volatile warns the compiler not to make assumptions
concerning the value of the object while evaluating expressions in which it occurs
because the value could change at any moment.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 109
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Typedef Specifier

Specifier typedef introduces a synonym for a specified type. You can use type-
def declarations to construct shorter or more meaningful names for types already
defined by the language or for types that you have declared. You cannot use the
typedef specifier inside a function definition.

The specifier typedef stands first in the declaration:

typedef <type_definition> synonym;

The typedef keyword assigns the synonym to the <type_definition>. The syn-
onym needs to be a valid identifier.

Declaration starting with the typedef specifier does not introduce an object or
function of a given type, but rather a new name for a given type. That is, the
typedef declaration is identical to “normal” declaration, but instead of objects, it
declares types. It is a common practice to name custom type identifiers with start-
ing capital letter — this is not required by C.

For example:

/* Let's declare a synonym for "unsigned long int" */
typedef unsigned long int Distance;

/* Now, synonym "Distance" can be used as type identifier: */

Distance i; // declare variable i of unsigned long int

In typedef declaration, as in any declaration, you can declare several types at once.
For example:

typedef int *Pti, Array[10];

Here, Pti is synonym for type “pointer to int”, and Array is synonym for type
“array of 10 int elements”.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

110 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Inline Assembler
According to standard, C should allow embedding assembler in the source code by
means of asm declaration. In addition, RSC-4x mikroC also supports declarations
_asm and __asm which have the same meaning.

Group assembler instructions by the asm keyword (or _asm or __asm):

asm {
block of assembler instructions

}

Assembler one-line comments starting with semicolon are allowed in the embed-
ded assembly code; C/C++ style comments are also allowed.

Embedding assembler with pragma
For the sake of backward compatibility, RSC-4x mikroC compiler supports anoth-
er method for embedding assembler in C source code.

Note: Preferred method is using the asm declaration as described above.
/* Single-line format: */
#pragma asm <machine_instruction0> [; <machine_instruction1>] ...

or:

/* Block format: */
#pragma asm
<machine_instruction0> [; <machine_instruction1>] ...
...

#pragma endasm

In the single-line format, instructions should follow the #pragma asm directive in
the same line. You can specify more than one instruction in one directive.
Instructions should be separated by semicolons.

In the block format, the #pragma asm directive indicates the beginning of assem-
bler block, and #pragma endasm directive indicates the end of the block. You can
write one or more instructions in each line of the block. Multiple instructions in
one line should be separated by semicolons.
You can also use function-like macros in the assembly language blocks and lines.
Inside an assembler block, the preprocessor acts in a regular way and processes
the assembler block properly. Therefore, in the built-in assembler you can use C-
style macros and other preprocessing directives. The # and ## operators may not
be used.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 111
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Initialization

At the time of declaration, you can set the initial value of a declared object, i.e.
initialize it. Part of the declaration which specifies the initialization is called the
initializer.

Initializers for globals and static objects must be constants or constant expres-
sions. The initializer for an automatic object can be any legal expression that eval-
uates to an assignment-compatible value for the type of the variable involved.

Scalar types are initialized with a single expression, which can optionally be
enclosed in braces. The initial value of the object is that of the expression; the
same constraints for type and conversions apply as for simple assignments.

For example:

int i = 1;
char *s = "hello";
struct complex c = {0.1, -0.2};

// where 'complex' is a structure (float, float)

For structures or unions with automatic storage duration, the initializer must be
one of the following:

- An initializer list.
- A single expression with compatible union or structure type. In this case, the ini-
tial value of the object is that of the expression.
For example:

struct dot {int x; int y; } m = {30, 40};

For more information, refer to Structures and Unions.

Also, you can initialize arrays of character type with a literal string, optionally
enclosed in braces. Each character in the string, including the null terminator, ini-
tializes successive elements in the array. For more information, refer to Arrays.

Automatic Initialization

RSC-4x mikroC does not provide automatic initialization for objects. Uninitialized
globals and objects with static duration will take random values from memory.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

112 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Note: This topic discusses the syntax and usage of functions. For specialized func-
tions and implemenation details see Functions Specifics.

Functions are central to C programming. Functions are usually defined as subpro-
grams which return a value based on a number of input parameters. Return value
of a function can be used in expressions – technically, function call is considered
to be an expression like any other.

C allows a function to create results other than its return value, referred to as side
effects. Often, function return value is not used at all, depending on the side
effects. These functions are equivalent to procedures of other programming lan-
guages, such as Pascal. C does not distinguish between procedure and function –
functions play both roles.

Each program must have a single external function named main marking the entry
point of the program. Functions are usually declared as prototypes in standard or
user-supplied header files, or within program files. Functions have external linkage
by default and are normally accessible from any file in the program. This can be
restricted by using the static storage class specifier in function declaration (see
Storage Classes and Linkage).

Note: Check the ANSI Compliance section for more info on functions’ limitations
on RSC-4x.

Function Declaration

Functions are declared in your source files or made available by linking precom-
piled libraries. Declaration syntax of a function is:

type function_name(parameter-declarator-list);

The function_name must be a valid identifier. This name is used to call the func-
tion; see Function Calls for more information.

The type represents the type of function result, and can be any standard or user-
defined type. For functions that do not return value, you should use void type. The
type can be omitted in global function declarations, and function will assume int
type by default.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 113
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Functions

Function type can also be a pointer. For example, float* means that the function
result is a pointer to float. Generic pointer, void* is also allowed.

Function cannot return an array or another function.

Within parentheses, parameter-declarator-list is a list of formal arguments
that function takes. These declarators specify the type of each function parameter.
The compiler uses this information to check function calls for validity. If the list is
empty, function does not take any arguments. Also, if the list is void, function also
does not take any arguments; note that this is the only case when void can be used
as an argument’s type.

Unlike with variable declaration, each argument in the list needs its own type
specifier and a possible qualifier const or volatile.

Function Prototypes

A given function can be defined only once in a program, but can be declared sev-
eral times, provided the declarations are compatible. If you write a nondefining
declaration of a function, i.e. without the function body, you do not have to specify
the formal arguments.

This kind of declaration, commonly known as the function prototype, allows better
control over argument number and type checking, and type conversions. Name of
the parameter in function prototype has its scope limited to the prototype. This
allows different parameter names in different declarations of the same function:

/* Here are two prototypes of the same function: */
int test(const char*) /* declares function test */
int test(const char*p) /* declares the same function test */

Function prototypes greatly aid in documenting code. For example, the function
Cf_Init takes two parameters: Control Port and Data Port. The question is, which
is which? The function prototype

void Cf_Init(char *ctrlport, char *dataport);

makes it clear. If a header file contains function prototypes, you can that file to get
the information you need for writing programs that call those functions. If you
include an identifier in a prototype parameter, it is used only for any later error
messages involving that parameter; it has no other effect.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

114 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Function Definition

Function definition consists of its declaration and a function body. The function
body is technically a block – a sequence of local definitions and statements
enclosed within braces {}. All variables declared within function body are local to
the function, i.e. they have function scope.

The function itself can be defined only within the file scope. This means that func-
tion declarations cannot be nested.

To return the function result, use the return statement. Statement return in func-
tions of void type cannot have a parameter – in fact, you can omit the return state-
ment altogether if it is the last statement in the function body.

Here is a sample function definition:

/* function max returns greater one of its 2 arguments: */

int max(int x, int y) {
return (x>=y) ? x : y;

}

Here is a sample function which depends on side effects rather than return value:

/*function converts Descartes coordinates (x,y) to polar (r,fi): */

#include <math.h>

void polar(double x, double y, double *r, double *fi) {
*r = sqrt(x * x + y * y);
*fi = (x == 0 && y == 0) ? 0 : atan2(y, x);
return; /* this line can be omitted */

}

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 115
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Function Calls and Argument Conversions

Function Calls
A function is called with actual arguments placed in the same sequence as their
matching formal parameters. Use the function-call operator ():

function_name(expression_1, ... , expression_n)

Each expression in the function call is an actual argument. Number and types of
actual arguments should match those of formal function parameters. If types dis-
agree, implicit type conversions rules apply. Actual arguments can be of any com-
plexity, but you should not depend on their order of evaluation, because it is not
specified.

Upon function call, all formal parameters are created as local objects initialized by
values of actual arguments. Upon return from a function, temporary object is cre-
ated in the place of the call, and it is initialized by the expression of return state-
ment. This means that function call as an operand in complex expression is treated
as the function result.

If the function is without result (type void) or you don’t need the result, you can
write the function call as a self-contained expression.

In C, scalar parameters are always passed to function by value. A function can
modify the values of its formal parameters, but this has no effect on the actual
arguments in the calling routine. You can pass scalar object by the address by
declaring a formal parameter to be a pointer. Then, use the indirection operator *
to access the pointed object.

// For example, Lcd_Init takes the address of PORT,
// so it can change the value of an actual argument:
Lcd_Init(&PORTB);

// This would be wrong; you would pass the value
// of PORT to the function:
Lcd_Init(PORTB);

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

116 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Operators Precedence and Associativity

There are 15 precedence categories, some of which contain only one operator.
Operators in the same category have equal precedence with each other.

Where duplicates of operators appear in the table, the first occurrence is unary, the
second binary. Each category has an associativity rule: left-to-right (?), or right-to-
left (?). In the absence of parentheses, these rules resolve the grouping of expres-
sions with operators of equal precedence.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 117
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Operators

Precedence Operands Operators Associativity

15 2 () [] . -> ->

14 1
! ~ ++ -- + - * &

(type) sizeof
<-

13 2 * / % ->

12 2 + - ->

11 2 << >> ->

10 2 < <= > >= ->

9 2 == != ->

8 2 & ->

7 2 ^ ->

6 2 | ->

5 2 && ->

4 2 || ->

3 3 ?: <-

2 2 = *= /= %= += -= &=
^= |= <<= >>=

<-

1 2 , ->

Arithmetic Operators
Arithmetic operators are used to perform mathematical computations. They have
numerical operands and return numerical results. Type char technically represents
small integers, so char variables can used as operands in arithmetic operations.
All of arithmetic operators associate from left to right.

Note: Operator * is context sensitive and can also represent the pointer reference
operator.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

118 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Operator Operation Precedence

Binary Operators
+ addition 12

- subtraction 12

* multiplication 13

/ division 13

%

modulus operator returns
the remainder of inte-
ger division (cannot be
used with floating
points)

13

Unary Operators

+
unary plus does not
affect the operand

14

-
unary minus changes the
sign of operand

14

++

increment adds one to
the value of the
operand. Postincrement
adds one to the value
of the operand after it
evaluates; while prein-
crement adds one before
it evaluates

14

--

decrement subtracts one
from the value of the
operand. Postdecrement
subtracts one from the
value of the operand
after it evaluates;
while predecrement sub-
tracts one before it
evaluates

14

Binary Arithmetic Operators
Division of two integers returns an integer, while remainder is simply truncated:

/* for example: */
7 / 4; /* equals 1 */
7 * 3 / 4; /* equals 5 */

/* but: */

7. * 3. / 4.; /* equals 5.25 because we are working with floats */

Remainder operand % works only with integers; sign of result is equal to the sign
of first operand:

/* for example: */
9 % 3; /* equals 0 */
7 % 3; /* equals 1 */
-7 % 3; /* equals -1 */

We can use arithmetic operators for manipulating characters:

'A' + 32; /* equals 'a' (ASCII only) */
'G' - 'A' + 'a'; /* equals 'g' (both ASCII and EBCDIC) */

Unary Arithmetic Operators

Unary operators ++ and -- are the only operators in C which can be either prefix
(e.g. ++k, --k) or postfix (e.g. k++, k--).

When used as prefix, operators ++ and -- (preincrement and predecrement) add or
subtract one from the value of operand before the evaluation. When used as suffix,
operators ++ and -- (postincrement and postdecrement) add or subtract one from
the value of operand after the evaluation.

For example:

int j = 5;
j = ++k; /* k = k + 1, j = k, which gives us j = 6, k = 6 */

but:

int j = 5;
j = k++; /* j = k, k = k + 1, which gives us j = 5, k = 6 */

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 119
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Relational Operators

Use relational operators to test equality or inequality of expressions. If the expres-
sion evaluates to be true, it returns 1; otherwise it returns 0.

All relational operators associate from left to right.

Relational Operators Overview

Relational Operators in Expressions

Precedence of arithmetic and relational operators was designated in such a way to
allow complex expressions without parentheses to have expected meaning:

a + 5 >= c - 1.0 / e /* -> (a + 5) >= (c - (1.0 / e)) */

Always bear in mind that relational operators return either 0 or 1. Consider the fol-
lowing examples:

/* ok: */
5 > 7 /* returns 0 */
10 <= 20 /* returns 1 */

/* this can be tricky: */
8 == 13 > 5 /* returns 0, as: 8 == (13 > 5) -> 8 == 1 -> 0 */
14 > 5 < 3 /* returns 1, as: (14 > 5) < 3 -> 1 < 3 -> 1 */
a < b < 5 /* returns 1, as: (a < b) < 5 -> (0 or 1) < 5 -> 1*/

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

120 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Operator Operation Precedence

== equal 9

!= not equal 9

> greater then 10

< less than 10

>= greater than or equal 10

<= less than or equal 10

Bitwise Operators

Use the bitwise operators to modify the individual bits of numerical operands.

Bitwise operators associate from left to right. The only exception is the bitwise
complement operator ~ which associates from right to left.

Logical Operations on Bit Level

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 121
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Operator Operation Precedence

&
bitwise AND; compares pairs of bits and
returns 1 if both bits are 1, otherwise
returns 0

8

|
bitwise (inclusive) OR; compares pairs of bits
and returns 1 if either or both bits are 1,
otherwise returns 0

6

^
bitwise exclusive OR (XOR); compares pairs of
bits and returns 1 if the bits are complemen-
tary, otherwise returns 0

7

~ bitwise complement (unary); inverts each bit 14

<<
bitwise shift left; moves the bits to the
left, discards the far left bit and assigns 0
to the right most bit.

11

>>

bitwise shift right; moves the bits to the
right, discards the far right bit and if
unsigned assigns 0 to the left most bit, oth-
erwise sign extends

11

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

Bitwise operators &, |, and ^ perform logical operations
on appropriate pairs of bits of their operands. Operator ~

complements each bit of its operand.

For example:

0x1234 & 0x5678 /* equals 0x1230 */

/* because ..

0x1234 : 0001 0010 0011 0100
0x5678 : 0101 0110 0111 1000

& : 0001 0010 0011 0000

.. that is, 0x1230 */

/* Similarly: */

0x1234 | 0x5678; /* equals 0x567C */
0x1234 ^ 0x5678; /* equals 0x444C */

~ 0x1234; /* equals 0xEDCB */

Note: Operator & can also be the pointer reference operator. Refer to Pointers for
more information.

Bitwise Shift Operators

Binary operators << and >> move the bits of the left operand for a number of posi-
tions specified by the right operand, to the left or right, respectively. Right operand
has to be positive.

With shift left (<<), left most bits are discarded, and “new” bytes on the right are
assigned zeros. Thus, shifting unsigned operand to the left by n positions is equiv-
alent to multiplying it by 2n if all the discarded bits are zero. This is also true for
signed operands if all the discarded bits are equal to sign bit.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

122 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

~ 0 1

1 0

000001 << 5; /* equals 000040 */

0x3801 << 4; /* equals 0x8010, overflow! */

With shift right (>>), right most bits are discarded, and the “freed” bytes on the
left are assigned zeros (in case of unsigned operand) or the value of the sign bit
zeros (in case of signed operand). Shifting operand to the right by n positions is
equivalent to dividing it by 2n.

0xFF56 >> 4; /* equals 0xFFF5 */

0xFF56u >> 4; /* equals 0x0FF5 */

Bitwise vs. Logical

Be aware of the principle difference between how bitwise and logical operators
work. For example:

0222222 & 0555555; /* equals 000000 */
0222222 && 0555555; /* equals 1 */

~ 0x1234; /* equals 0xEDCB */
! 0x1234; /* equals 0 */

Logical Operators

Operands of logical operations are considered true or false, that is non-zero or
zero. Logical operators always return 1 or 0. Operands in a logical expression
must be of scalar type.

Logical operators && and || associate from left to right. Logical negation operator
! associates from right to left.

Logical Operators Overview

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 123
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Operator Operation Precedence

&& logical AND 5

|| logical OR 4

! logical negation 14

Precedence of logical, relational, and arithmetic operators was designated in such
a way to allow complex expressions without parentheses to have expected mean-
ing:

c >= '0' && c <= '9'; /* reads as: (c >= '0') && (c <= '9') */
a + 1 == b || ! f(x); /* reads as: ((a + 1) == b) || (! (f(x))) */

Logical AND && returns 1 only if both expressions evaluate to be nonzero, other-
wise returns 0. If the first expression evaluates to false, the second expression is
not evaluated. For example:

a > b && c < d; /* reads as (a > b) && (c < d) */

/* if (a > b) is false (0), (c < d) will not be evaluated */

Logical OR || returns 1 if either of the expressions evaluate to be nonzero, other-
wise returns 0. If the first expression evaluates to true, the second expression is
not evaluated. For example:

a && b || c && d; /* reads as: (a && b) || (c && d) */

/* if (a && b) is true (1), (c && d) will not be evaluated */

Logical Expressions and Side Effects

General rule with complex logical expressions is that the evaluation of consecutive
logical operands stops the very moment the final result is known. For example, if
we have an expression a && b && c where a is false (0), then operands b and c
will not be evaluated. This is very important if b and c are expressions, as their
possible side effects will not take place!

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

124 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

&& 0 x

0 0 0

x 0 1

| | 0 x

0 0 1

x 1 1

! 0 x

0 1

Logical vs. Bitwise

Be aware of the principle difference between how bitwise and logical operators
work. For example:

0222222 & 0555555 /* equals 000000 */
0222222 && 0555555 /* equals 1 */

~ 0x1234 /* equals 0xEDCB */
! 0x1234 /* equals 0 */

Conditional Operator ?

The conditional operator ? : is the only ternary operator in C. Syntax of the condi-
tional operator is:

expression1 ? expression2 : expression3

The expression1 is evaluated first. If its value is true, then expression2 evalu-
ates and expression3 is ignored. If expression1 evaluates to false, then expres-
sion3 evaluates and expression2 is ignored. The result will be the value of either
expression2 or expression3 depending upon which evaluates. The fact that only
one of these two expressions evaluates is very important if you expect them to
produce side effects!

Conditional operator associates from right to left.

Here are a couple of practical examples:

/* Find max(a, b): */
max = (a > b) ? a : b;

/* Convert small letter to capital: */
/* (no parentheses are actually necessary) */
c = (c >= 'a' && c <= 'z') ? (c - 32) : c;

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 125
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Conditional Operator Rules

Expression1 must be a scalar expression; expression2 and expression3 must
obey one of the following rules:

1. Both of arithmetic type. expression2 and expression3 are subject to the usual
arithmetic conversions, which determines the resulting type.

2. Both of compatible struct or union types. The resulting type is the structure or
union type of expression2 and expression3.

3. Both of void type. The resulting type is void.
4. Both of type pointer to qualified or unqualified versions of compatible types.

The resulting type is a pointer to a type qualified with all the type qualifiers of
the types pointed to by both operands.

5. One operand is a pointer, and the other is a null pointer constant. The resulting
type is a pointer to a type qualified with all the type qualifiers of the types
pointed to by both operands.

6. One operand is a pointer to an object or incomplete type, and the other is a
pointer to a qualified or unqualified version of void. The resulting type is that
of the non-pointer-to-void operand.

Assignment Operators

Unlike many other programming languages, C treats value assignment as opera-
tion (represented by an operator) rather than instruction.

Simple Assignment Operator
For a common value assignment, we use a simple assignment operator (=) :

expression1 = expression2

The expression1 is an object (memory location) to which we assign value of
expression2. Operand expression1 has to be a lvalue, and expression2 can be
any expression. The assignment expression itself is not an lvalue.

If expression1 and expression2 are of different types, result of the expression2
will be converted to the type of expression1, if necessary. Refer to Type
Conversions for more information.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

126 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Sizeof Operator

Prefix unary operator sizeof returns an integer constant that gives the size in
bytes of how much memory space is used by its operand (determined by its type,
with some exceptions).

Operator sizeof can take either a type identifier or an unary expression as an
operand. You cannot use sizeof with expressions of function type, incomplete
types, parenthesized names of such types, or with an lvalue that designates a bit
field object.

Sizeof Applied to Expression
If applied to expression, size of the operand is determined without evaluating the
expression (and therefore without side effects). Result of the operation will be the
size of the type of the expression’s result.

Sizeof Applied to Type
If applied to a type identifier, sizeof returns the size of the specified type. Unit
for type size is the sizeof(char) which is equivalent to one byte. Operation
sizeof(char) gives the result 1, whether the char is signed or unsigned.

sizeof(char) /* returns 1 */
sizeof(int) /* returns 2 */
sizeof(unsigned long) /* returns 4 */
sizeof(float) /* returns 4 */

When the operand is a non-parameter of array type, the result is the total number
of bytes in the array (in other words, an array name is not converted to a pointer
type):

int i, j, a[10];
//...
j = sizeof(a[1]); /* j = sizeof(int) = 2 */
i = sizeof(a); /* i = 10*sizeof(int) = 20 */
/* To get the number of elements in an array: */

int num_elem = i/j;

If the operand is a parameter declared as array type or function type, sizeof gives
the size of the pointer. When applied to structures and unions, sizeof gives the
total number of bytes, including any padding. Operator sizeof cannot be applied
to a function.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 127
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

An expression is a sequence of operators, operands, and punctuators that specifies
a computation. Formally, expressions are defined recursively: subexpressions can
be nested without formal limit. However, the compiler will report an out-of-mem-
ory error if it can’t compile an expression that is too complex.

In ANSI C, the primary expressions are: constant (also referred to as literal), iden-
tifier, and (expression), defined recursively.

Expressions are evaluated according to certain conversion, grouping, associativity,
and precedence rules that depend on the operators used, the presence of parenthe-
ses, and the data types of the operands. The precedence and associativity of the
operators are summarized in Operator Precedence and Associativity. The way
operands and subexpressions are grouped does not necessarily specify the actual
order in which they are evaluated by RSC-4x mikroC.

Expressions can produce an lvalue, an rvalue, or no value. Expressions might
cause side effects whether they produce a value or not.

Comma Expressions

One of the specifics of C is that it allows you to use comma as a sequence opera-
tor to form the so-called comma expressions or sequences. Comma expression is
a comma-delimited list of expressions – it is formally treated as a single expres-
sion so it can be used in places where an expression is expected. The following
sequence:

expression_1, expression_2;

results in the left-to-right evaluation of each expression, with the value and type
of expression_2 giving the result of the whole expression. Result of expres-
sion_1 is discarded.

Binary operator comma (,) has the lowest precedence and associates from left to
right, so that a, b, c is same as (a, b), c. This allows us to write sequences
with any number of expressions:

expression_1, expression_2, ... expression_n;

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

128 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Expressions

results in the left-to-right evaluation of each expression, with the value and type
of expression_2 giving the result of the whole expression. Result of expres-
sion_1 is discarded.

Binary operator comma (,) has the lowest precedence and associates from left to
right, so that a, b, c is same as (a, b), c. This allows us to write sequences
with any number of expressions:

expression_1, expression_2, ... expression_n;

this results in the left-to-right evaluation of each expression, with the value and
type of expression_n giving the result of the whole expression. Results of other
expressions are discarded, but their (possible) side-effect do occur.

For example:

result = (a = 5, b /= 2, c++);
/* returns preincremented value of variable c,

but also intializes a, divides b by 2, and increments c */

result = (x = 10, y = x + 3, x--, z -= x * 3 - --y);
/* returns computed value of variable z,

and also computes x and y */

Note

Do not confuse comma operator (sequence operator) with the comma punctuator
which separates elements in a function argument list and initializator lists. Mixing
the two uses of comma is legal, but you must use parentheses to distinguish them.

To avoid ambiguity with the commas in function argument and initializer lists, use
parentheses. For example,

func(i, (j = 1, j + 4), k);

calls function func with three arguments (i, 5, k), not four.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 129
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Statements specify the flow of control as a program executes. In the absence of
specific jump and selection statements, statements are executed sequentially in the
order of appearance in the source code.

Statements can be roughly divided into:

- Labeled Statements
- Expression Statements
- Selection Statements
- Iteration Statements (Loops)
- Jump Statements
- Compound Statements (Blocks)

Labeled Statements

Every statement in program can be labeled. Label is an identifier added before the
statement like this:

label_identifier: statement;

There is no special declaration of a label – it just “tags” the statement.
Label_identifier has a function scope and label cannot be redefined within the
same function.

Labels have their own namespace: label identifier can match any other identifier in
the program.

A statement can be labeled for two reasons:

- The label identifier serves as a target for the unconditional goto statement,

- The label identifier serves as a target for the switch statement. For this purpose,
only case and default labeled statements are used:

case constant-expression : statement
default : statement

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

130 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Statements

Expression Statements

Any expression followed by a semicolon forms an expression statement:

expression;

RSC-4x mikroC executes an expression statement by evaluating the expression.
All side effects from this evaluation are completed before the next statement is
executed. Most expression statements are assignment statements or function calls.

The null statement is a special case, consisting of a single semicolon (;). The null
statement does nothing, and is therefore useful in situations where the C syntax
expects a statement but your program does not need one. For example, null state-
ment is commonly used in “empty” loops:

for (; *q++ = *p++ ;);
/* body of this loop is a null statement */

Selection Statements

Selection or flow-control statements select from alternative courses of action by
testing certain values. There are two types of selection statements:

- if
- switch

If Statement

Use the if statement to implement a conditional statement. Syntax of the if state-
ment is:

if (expression) statement1 [else statement2]

When expression evaluates to true, statement1 executes. If expression is false,
statement2 executes. The expression must evaluate to an integral value; other-
wise, the condition is ill-formed. Parentheses around the expression are mandato-
ry.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 131
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

The else keyword is optional, but no statements can come between the if and the
else.

Nested If statements

Nested if statements require additional attention. General rule is that the nested
conditionals are parsed starting from the innermost conditional, with each else
bound to the nearest available if on its left:

if (expression1) statement1
else if (expression2)

if (expression3) statement2
else statement3 /* this belongs to: if (expression3) */

else statement4 /* this belongs to: if (expression2) */

Note
The #if and #else preprocessor statements (directives) look similar to the if and
else statements, but have very different effects. They control which source file
lines are compiled and which are ignored.

Switch Statement

Use the switch statement to pass control to a specific program branch, based on a
certain condition. Syntax of switch statement is:

switch (expression) {
case constant-expression_1 : statement_1;

.

.

.
case constant-expression_n : statement_n;
[default : statement;]

}

First, the expression (condition) is evaluated. The switch statement then com-
pares it to all the available constant-expressions following the keyword case.
If the match is found, switch passes control to that matching case, at which point
the statement following the match evaluates. Note that constant-expressions
must evaluate to integer. There cannot be two same constant expressions evaluat-
ing to same value.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

132 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Parentheses around expression are mandatory.

Upon finding a match, program flow continues normally: following instructions
will be executed in natural order regardless of the possible case label. If no case
satisfies the condition, the default case evaluates (if the label default is speci-
fied).

For example, if variable i has value between 1 and 3, following switch would
always return it as 4:

switch (i) {
case 1: i++;
case 2: i++;
case 3: i++;

}

To avoid evaluating any other cases and relinquish control from the switch, termi-
nate each case with break.

Here is a simple example with switch. Let’s assume we have a variable phase
with only 3 different states (0, 1, or 2) and a corresponding function (event) for
each of these states. This is how we could switch the code to the appopriate rou-
tine:

switch (phase) {
case 0: Lo(); break;
case 1: Mid(); break;
case 2: Hi(); break;
default: Message("Invalid state!");

}

Nested switch

Conditional switch statements can be nested – labels case and default are then
assigned to the innermost enclosing switch statement.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 133
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Iteration Statements

Iteration statements let you loop a set of statements. There are three forms of itera-
tion statements in RSC-4x mikroC:

- while
- do
- for

While Statement

Use the while keyword to conditionally iterate a statement. Syntax of while state-
ment is:

while (expression) statement

The statement executes repeatedly until the value of expression is false. The
test takes place before statement executes. Thus, if expression evaluates to false
on the first pass, the loop does not execute. Note that parentheses around expres-
sion are mandatory.

Here is an example of calculating scalar product of two vectors, using the while
statement:

int s = 0, i = 0;
while (i < n) {

s += a[i] * b[i];
i++;

}

Note that body of a loop can be a null statement. For example:

while (*q++ = *p++);

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

134 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Do Statement

The do statement executes until the condition becomes false. Syntax of do state-
ment is:

do statement while (expression);

The statement is executed repeatedly as long as the value of expression remains
non-zero. The expression is evaluated after each iteration, so the loop will exe-
cute statement at least once.

Parentheses around expression are mandatory.

Note that do is the only control structure in C which explicitly ends with semi-
colon (;). Other control structures end with statement which means that they
implicitly include a semicolon or a closing brace.

Here is an example of calculating scalar product of two vectors, using the do state-
ment:

s = 0; i = 0;
do {

s += a[i] * b[i];
i++;

} while (i < n);

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 135
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

For Statement

The for statement implements an iterative loop. Syntax of for statement is:

for ([init-expression]; [condition-expression]; [increment-expres-

sion]) statement

Before the first iteration of the loop, init-expression sets the starting variables
for the loop. You cannot pass declarations in init-expression.

condition-expression is checked before the first entry into the block; state-
ment is executed repeatedly until the value of condition-expression is false. After
each iteration of the loop, increment-expression increments a loop counter.
Consequently, i++ is functionally the same as ++i.

All the expressions are optional. If condition-expression is left out, it is
assumed to be always true. Thus, “empty” for statement is commonly used to cre-
ate an endless loop in C:

for (; ;) statement

The only way to break out of this loop is by means of break statement.

Here is an example of calculating scalar product of two vectors, using the for
statement:

for (s = 0, i = 0; i < n; i++) s += a[i] * b[i];

You can also do it like this:

for (s = 0, i = 0; i < n; s += a[i] * b[i], i++); /* valid, but

ugly */

but this is considered a bad programming style. Although legal, calculating the
sum should not be a part of the incrementing expression, because it is not in the
service of loop routine. Note that we used a null statement (;) for a loop body.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

136 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Jump Statements

A jump statement, when executed, transfers control unconditionally. There are four
such statements in RSC-4x mikroC:

- break
- continue
- goto
- return

Break and Continue Statements

Break Statement

Sometimes, you might need to stop the loop from within its body. Use the break
statement within loops to pass control to the first statement following the inner-
most switch, for, while, or do block.

Break is commonly used in switch statements to stop its execution upon the first
positive match. For example:

switch (state) {
case 0: Lo(); break;
case 1: Mid(); break;
case 2: Hi(); break;
default: Message("Invalid state!");

}

Continue Statement

You can use the continue statement within loops to “skip the cycle”. It passes
control to the end of the innermost enclosing end brace belonging to a looping
construct. At that point the loop continuation condition is re-evaluated. This means
that continue demands the next iteration if loop continuation condition is true.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 137
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Specifically, continue statement within the loop will jump to the marked position
as you can see below:

while (..) {
.
.
.

// continue jumps here

}do {
.
.
.
// continue jumps here

while (..);

for (..;..;..;) {
.
.
.
// continue jumps here
}

Goto Statement

Use the goto statement to unconditionally jump to a local label — for more infor-
mation on labels, refer to Labeled Statements. Syntax of goto statement is:

goto label_identifier ;

This will transfer control to the location of a local label specified by label_iden-
tifier. The label_identifier has to be a name of the label within the same
function in which the goto statement is. The goto line can come before or after
the label.

You can use goto to break out from any level of nested control structures. But,
goto cannot be used to jump into block while skipping that block’s initializations
– for example, jumping into loop’s body, etc.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

138 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Use of goto statement is generally discouraged as practically every algorithm can
be realized without it, resulting in legible structured programs. One possible appli-
cation of goto statement is breaking out from deeply nested control structures:

for (...) {
for (...) {
...

if (disaster) goto Error;
...
}

}
.
.
.

Error: /* error handling code */

Return Statement

Use the return statement to exit from the current function back to the calling rou-
tine, optionally returning a value. Syntax is:

return [expression];

This will evaluate the expression and return the result. Returned value will be
automatically converted to the expected function type, if needed. The expression
is optional; if omitted, function will return a random value from memory.

Note: Statement return in functions of void type cannot have an expression – in
fact, you can omit the return statement altogether if it is the last statement in the
function body.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 139
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Compound Statements (Blocks)

A compound statement, or block, is a list (possibly empty) of statements enclosed
in matching braces { }. Syntactically, a block can be considered to be a single
statement, but it also plays a role in the scoping of identifiers. An identifier
declared within a block has a scope starting at the point of declaration and ending
at the closing brace. Blocks can be nested to any depth up to the limits of memory.

For example, for loop expects one statement in its body, so we can pass it a com-
pound statement:

for (i = 0; i < n; i++) {
int temp = a[i];
a[i] = b[i];
b[i] = temp;

}

Note that, unlike other statements, compound statements do not end with semi-
colon (;), i.e. there is never a semicolon following the closing brace.

Preprocessor is an integrated text processor which prepares the source code for
compiling. Preprocessor allows:

- inserting text from a specifed file to a certain point in code (see File Inclusion),
- replacing specific lexical symbols with other symbols (see Macros),
- conditional compiling which conditionally includes or omits parts of code (see

Conditional Compilation).

Note that preprocessor analyzes text at token level, not at individual character
level. Preprocessor is controled by means of preprocessor directives and pre-
processor operators.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

140 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Preprocessor

Preprocessor Directives

Any line in source code with a leading # is taken as a preprocessing directive
(or control line), unless the # is within a string literal, in a character constant,
or embedded in a comment. The initial # can be preceded or followed by white-
space (excluding new lines).

The null directive consists of a line containing the single character #. This line is
always ignored.

Preprocessor directives are usually placed at the beginning of the source code, but
they can legally appear at any point in a program. The RSC-4x mikroC preproces-
sor detects preprocessor directives and parses the tokens embedded in them.
Directive is in effect from its declaration to the end of the program file.

Here is one commonly used directive:

#include <math.h>

For more information on including files with #include directive, refer to File
Inclusion.

RSC-4x mikroC supports standard preprocessor directives:

(null directive) #if
#define #ifdef
#elif #ifndef
#else #include
#endif #line

#error #undef

For the list of pragma directives see Pragma Directives.

Line Continuation with Backslash (\)

If you need to break directive into multiple lines, you can do it by ending the line
with a backslash (\):

#define MACRO This directive continues to \
the following line.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 141
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Macros

Macros provide a mechanism for token replacement, prior to compilation, with or
without a set of formal, function-like parameters.

Defining Macros and Macro Expansions
The #define directive defines a macro:

#define macro_identifier <token_sequence>

Each occurrence of macro_identifier in the source code following this control
line will be replaced in the original position with the possibly empty
token_sequence (there are some exceptions, which are noted later). Such replace-
ments are known as macro expansions. The token_sequence is sometimes called
the body of the macro. An empty token sequence results in the removal of each
affected macro identifier from the source code.

No semicolon (;) is needed to terminate a preprocessor directive. Any character
found in the token sequence, including semicolons, will appear in the macro
expansion. The token_sequence terminates at the first non-backslashed new line
encountered. Any sequence of whitespace, including comments in the token
sequence, is replaced with a single-space character.

After each individual macro expansion, a further scan is made of the newly
expanded text. This allows for the possibility of nested macros: The expanded text
can contain macro identifiers that are subject to replacement. However, if the
macro expands into what looks like a preprocessing directive, such a directive will
not be recognized by the preprocessor. Any occurrences of the macro identifier
found within literal strings, character constants, or comments in the source code
are not expanded.

A macro won’t be expanded during its own expansion (so #define MACRO MACRO

won’t expand indefinitely).

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

142 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Let’s have an example:

/* Here are some simple macros: */
#define ERR_MSG "Out of range!"
#define EVERLOOP for(; ;)

/* which we could use like this: */

main() {
EVERLOOP {

...
if (error) { Lcd_Out_Cp(ERR_MSG); break; }
...

}

}

Attempting to redefine an already defined macro identifier will result in a warning
unless the new definition is exactly the same token-by-token definition as the
existing one. The preferred strategy where definitions might exist in other header
files is as follows:

#ifndef BLOCK_SIZE
#define BLOCK_SIZE 512

#endif

The middle line is bypassed if BLOCK_SIZE is currently defined; if BLOCK_SIZE is
not currently defined, the middle line is invoked to define it.

Macros with Parameters

The following syntax is used to define a macro with parameters:

#define macro_identifier(<arg_list>) <token_sequence>

Note there can be no whitespace between the macro_identifier and the “(”. The
optional arg_list is a sequence of identifiers separated by commas, not unlike
the argument list of a C function. Each comma-delimited identifier plays the role
of a formal argument or placeholder.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 143
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Such macros are called by writing

macro_identifier(<actual_arg_list>)

in the subsequent source code. The syntax is identical to that of a function call;
indeed, many standard library C “functions” are implemented as macros.
However, there are some important semantic differences.

The optional actual_arg_list must contain the same number of comma-delimit-
ed token sequences, known as actual arguments, as found in the formal arg_list of
the #define line – there must be an actual argument for each formal argument. An
error will be reported if the number of arguments in the two lists is different.

A macro call results in two sets of replacements. First, the macro identifier and the
parenthesis-enclosed arguments are replaced by the token sequence. Next, any for-
mal arguments occurring in the token sequence are replaced by the corresponding
real arguments appearing in the actual_arg_list. As with simple macro defini-
tions, rescanning occurs to detect any embedded macro identifiers eligible for
expansion.

Here is a simple example:

/* A simple macro which returns greater of its 2 arguments: */
#define _MAX(A, B) ((A) > (B)) ? (A) : (B)

/* Let's call it: */
x = _MAX(a + b, c + d);

/* Preprocessor will transform the previous line into:

x = ((a + b) > (c + d)) ? (a + b) : (c + d) */

It is highly recommended to put parentheses around each of the arguments in
macro body – this will avoid possible problems with operator precedence.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

144 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Undefining Macros

You can undefine a macro using the #undef directive.

#undef macro_identifier

Directive #undef detaches any previous token sequence from the macro_identi-
fier; the macro definition has been forgotten, and the macro_identifier is unde-
fined. No macro expansion occurs within #undef lines.

The state of being defined or undefined is an important property of an identifier,
regardless of the actual definition. The #ifdef and #ifndef conditional direc-
tives, used to test whether any identifier is currently defined or not, offer a flexible
mechanism for controlling many aspects of a compilation.

After a macro identifier has been undefined, it can be redefined with #define,
using the same or a different token sequence.

File Inclusion

The preprocessor directive #include pulls in header files (extension .h) into the
source code. Do not rely on preprocessor to include source files (extension .c) —
see Add/Remove Files from Project for more information.

The syntax of #include directive has two formats:

#include <header_name>

#include "header_name"

The preprocessor removes the #include line and replaces it with the entire text of
the header file at that point in the source code. The placement of the #include can
therefore influence the scope and duration of any identifiers in the included file.

The difference between the two formats lies in the searching algorithm employed
in trying to locate the include file.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 145
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

If #include directive was used with the <header_name> version, the search is
made successively in each of the following locations, in this particular order:

1. RSC-4x mikroC installation folder › “include” folder
2. your custom include paths

The "header_name" version specifies a user-supplied include file; RSC-4x mikroC
will look for the header file in following locations, in this particular order:

1. the project folder (folder which contains the project file .psc)
2. RSC-4x mikroC installation folder › “include” folder
3. your custom include paths

Explicit Path

If you place an explicit path in the header_name, only that directory will be
searched. For example:

#include "C:\headers\my.h"

Note
There is also a third version of #include directive, rarely used, which assumes
that neither < nor " appears as the first non-whitespace character following
#include:

#include macro_identifier

It assumes a macro definition exists that will expand the macro identifier into a
valid delimited header name with either of the <header_name> or "header_name"
formats.

Preprocessor Operators

The # (pound sign) is a preprocessor directive when it occurs as the first non-
whitespace character on a line. Also, # and ## perform operator replacement and
merging during the preprocessor scanning phase.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

146 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Operator #

In C preprocessor, character sequence enclosed by quotes is considered a token
and its content is not analyzed. This means that macro names within quotes are not
expanded.

If you need an actual argument (the exact sequence of characters within quotes) as
result of preprocessing, you can use the # operator in macro body. It can be placed
in front of a formal macro argument in definition in order to convert the actual
argument to a string after replacement.

For example, let’s have macro LCD_PRINT for printing variable name and value on
LCD:

#define LCD_PRINT(val) Lcd_Out_Cp(#val ": "); \

Lcd_Out_Cp(IntToStr(val));

Now, the following code,

LCD_PRINT(temp)

will be preprocessed to this:

Lcd_Out_Cp("temp" ": "); Lcd_Out_Cp(IntToStr(temp));

Operator ##

Operator ## is used for token pasting: you can paste (or merge) two tokens togeth-
er by placing ## in between them (plus optional whitespace on either side). The
preprocessor removes the whitespace and the ##, combining the separate tokens
into one new token. This is commonly used for constructing identifiers.

For example, we could define macro SPLICE for pasting two tokens into one iden-
tifier:

#define SPLICE(x,y) x ## _ ## y

Now, the call SPLICE(cnt, 2) would expand to identifier cnt_2.

Note
RSC-4x mikroC does not support the older nonportable method of token pasting
using (l/**/r).

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 147
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Conditional Compilation

Conditional compilation directives are typically used to make source programs
easy to change and easy to compile in different execution environments. RSC-4x
mikroC supports conditional compilation by replacing the appropriate source-code
lines with a blank line.

All conditional compilation directives must be completed in the source or include
file in which they are begun.

Directives #if, #elif, #else, and #endif

The conditional directives #if, #elif, #else, and #endif work very similar to
the common C conditional statements. If the expression you write after the #if has
a nonzero value, the line group immediately following the #if directive is retained
in the translation unit.

Syntax is:

#if constant_expression_1
<section_1>

[#elif constant_expression_2
<section_2>]

...
[#elif constant_expression_n
<section_n>]

[#else
<final_section>]

#endif

Each #if directive in a source file must be matched by a closing #endif directive.
Any number of #elif directives can appear between the #if and #endif direc-
tives, but at most one #else directive is allowed. The #else directive, if present,
must be the last directive before #endif.

The sections can be any program text that has meaning to the compiler or the
preprocessor. The preprocessor selects a single section by evaluating the con-
stant_expression following each #if or #elif directive until it finds a true
(nonzero) constant expression. The constant expressions are subject to macro
expansion.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

148 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

If all occurrences of constant-expression are false, or if no #elif directives
appear, the preprocessor selects the text block after the #else clause. If the #else
clause is omitted and all instances of constant_expression in the #if block are
false, no section is selected for further processing.

Any processed section can contain further conditional clauses, nested to any depth.
Each nested #else, #elif, or #endif directive belongs to the closest preceding
#if directive.

The net result of the preceding scenario is that only one code section (possibly
empty) will be compiled.

Directives #ifdef and #ifndef

You can use the #ifdef and #ifndef directives anywhere #if can be used. The
#ifdef and #ifndef conditional directives let you test whether an identifier is
currently defined or not. The line

#ifdef identifier

has exactly the same effect as #if 1 if identifier is currently defined, and the
same effect as #if 0 if identifier is currently undefined. The other directive,
#ifndef, tests true for the “not-defined” condition, producing the opposite results.

The syntax thereafter follows that of the #if, #elif, #else, and #endif.

An identifier defined as NULL is considered to be defined.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 149
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

150 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

CHAPTER

MikroElektronika: DDevelopment ttools - BBooks - CCompilers

5

RSC-4x mikroC
Libraries

RSC-4x mikroC provides a number of built-in and library routines which help you
develop your application faster and easier. Libraries for Character Handling
Mathematics, Input/Output, General Utilities, String Handling, Compact Flash
Library, LCD Library, Software I2C Library, Software SPI Library and many other
are included along with practical, ready-to-use code examples.

To use any of the following libraries include the appropriate header file in your
source code.

C Standard Library

Character Handling (ctype.h)
Mathematics (math.h)
Input/Output (stdio.h)
General Utilities (stdlib.h)
String Handling

Additional Libraries

Compact Flash Library (cf.h)
LCD Library (lcd.h)
Software I2C Library (soft_i2c.h)
Software SPI Library (soft_spi.h)
See also Built-in Routines.

Note: All library functions have been compiled with the option “store const vars in
CDATA area” disabled; i.e., library functions take only pointers to SRAM, which
means that you should pay additional attention if enabling this option. (The only
exception is the function sprintf.)

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

152 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

RSC-4x mikroC Libraries

Header file ctype.h contains functions used to classify characters by their types or
to convert between upper and lower case in a way that is independent of the used
character set.

isalnum
isalpha
iscntrl
isdigit
isgraph
islower
ispunct
isspace
isupper
isxdigit
toupper
tolower

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 153
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

C Ctype Library

Library Routines

Prototype unsigned char isalnum(unsigned char character);

Description Function returns 1 if the character is alphanumeric (A-Z, a-z, 0-9), otherwise returns
zero.

isalnum

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

154 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype unsigned char iscntrl(unsigned char character);

Description Function returns 1 if the character is a control character or delete (decimal 0-31 and
127), otherwise returns zero.

iscntrl

Prototype unsigned char isdigit(unsigned char character);

Description Function returns 1 if the character is a digit (0-9), otherwise returns zero.

isdigit

Prototype unsigned char isgraph(unsigned char character);

Description Function returns 1 if the character is a printable character, excluding the space (deci-
mal 32), otherwise returns zero.

isgraph

Prototype unsigned char isalpha(unsigned char character);

Description Function returns 1 if the character is alphabetic (A-Z, a-z), otherwise returns zero.

isalpha

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 155
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype unsigned char isprint(unsigned char character);

Description Function returns 1 if the character is printable (decimal 32-126), otherwise returns
zero.

isprint

Prototype unsigned char ispunct(unsigned char character);

Description Function returns 1 if the character is punctuation (decimal 32-47, 58-63, 91-96, 123-
126), otherwise returns zero.

ispunct

Prototype unsigned char isspace(unsigned char character);

Description Function returns 1 if the character is white space (space, CR, HT, VT, NL, FF), other-
wise returns zero.

isspace

Prototype unsigned char islower(unsigned char character);

Description Function returns 1 if the character is a lowercase letter (a-z), otherwise returns zero.

islower

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

156 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype unsigned char isxdigit(unsigned char character);

Description Function returns 1 if the character is a hex digit (0-9, A-F, a-f), otherwise returns
zero.

isxdigit

Prototype unsigned char toupper(unsigned char character);

Description If the character is a lowercase letter (a-z), function returns an uppercase letter.
Otherwise, function returns an unchanged input parameter.

toupper

Prototype unsigned char tolower(unsigned char character);

Description If the character is an uppercase letter (A-Z), function returns a lowercase letter.
Otherwise, function returns an unchanged input parameter.

tolower

Prototype unsigned char isupper(unsigned char character);

Description Function returns 1 if the character is an uppercase letter (A-Z), otherwise returns 0.

isupper

Header file math.h contains declarations of common mathematical functions.

acos
asin
atan
atan2
ceil
cos
cosh
exp
fabs
floor
frexp
ldexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 157
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

C Math Library

Library Routines

Prototype double acos(double x);

Description Function returns the arc cosine of parameter x; that is, the value whose cosine is x.
Input parameter x must be between -1 and 1 (inclusive). The return value is in radians,
between 0 and pi (inclusive).

acos

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

158 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype double asin(double x);

Description Function returns the arc sine of parameter x; that is, the value whose sine is x. Input
parameter x must be between -1 and 1 (inclusive). The return value is in radians,
between -pi/2 and pi/2 (inclusive).

asin

Prototype double atan(double x);

Description Function computes the arc tangent of parameter x; that is, the value whose tangent is x.
The return value is in radians, between -pi/2 and pi/2 (inclusive).

atan

Prototype double atan2(double x, double y);

Description This is the two argument arc tangent function. It is similar to computing the arc tangent
of y/x, except that the signs of both arguments are used to determine the quadrant of
the result, and x is permitted to be zero. The return value is in radians, between -pi and
pi (inclusive).

atan2

Prototype double ceil(double num);

Description Function returns value of parameter num rounded up to the next whole number.

ceil

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 159
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype double cos(double x);

Description Function returns the cosine of x in radians. The return value is from -1 to 1.

cos

Prototype double cosh(double x);

Description Function returns the hyperbolic cosine of x, defined mathematically as (ex+e-x)/2. If
the value of x is too large (if overflow occurs), the function fails.

cosh

Prototype double exp(double x);

Description Function returns the value of e — the base of natural logarithms — raised to the power
of x (i.e. ex).

exp

Prototype double fabs(double num);

Description Function returns the absolute (i.e. positive) value of num.

fabs

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

160 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype double floor(double num);

Description Function returns value of parameter num rounded down to the nearest integer.

floor

Prototype double frexp(double num, int *n);

Description Function splits a floating-point value num into a normalized fraction and an integral
power of 2. Return value is the normalized fraction, and the integer exponent is stored
in the object pointed to by n.

frexp

Prototype double ldexp(double num, int n);

Description Function returns the result of multiplying the floating-point number num by 2 raised to
the power exp (i.e. returns x*2n).

ldexp

Prototype double log(double x);

Description Function returns the natural logarithm of x (i.e. loge(x)).

log

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 161
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype double log10(double x);

Description Function returns the base-10 logarithm of x (i.e. log10(x)).

log10

Prototype double modf(double num, double *whole);

Description Function returns the signed fractional component of num, placing its whole number
component into the variable pointed to by whole.

modf

Prototype double pow(double x, double y);

Description Function returns the value of x raised to the power of y (i.e. xy). If the x is negative,
function will automatically cast the y into unsigned long.

pow

Prototype double sin(double x);

Description Function returns the sine of x in radians. The return value is from -1 to 1.

sin

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

162 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype double sinh(double x);

Description Function returns the hyperbolic sine of x, defined mathematically as (ex-e-x)/2. If the
value of x is too large (if overflow occurs), the function fails.

sinh

Prototype double sqrt(double num);

Description Function returns the non negative square root of num.

sqrt

Prototype double tan(double x);

Description Function returns the tangent of x in radians. The return value spans the allowed range of
floating point in mikroC.

tan

Prototype double tanh(double x);

Description Function returns the hyperbolic tangent of x, defined mathematically as
sinh(x)/cosh(x).

tanh

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 163
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Header file stdio.h provides basic input and output capabilities of RSC-4x mikroC.

sprintf
sscanf

Function formats a series of strings and numeric values and stores the resulting
string in buffer.

Note: format string must be in the CDATA area because sprintf parameter is of
cdata type.

The fmtstr argument is a format string and may be composed of characters, escape
sequences, and format specifications. Ordinary characters and escape sequences
are copied to the buffer in the order in which they are interpreted. Format specifi-
cations always begin with a percent sign (%) and require additional arguments to
be included in the function call.

The format string is read from left to right. The first format specification encoun-
tered references the first argument after fmtstr and converts and outputs it using
the format specification. The second format specification accesses the second
argument after fmtstr, and so on. If there are more arguments than format specifi-
cations, the extra arguments are ignored. Results are unpredictable if there are not
enough arguments for the format specifications. Format specifications have the
following format:

% [flags] [width] [.precision] [{ h | l | L }] conversion_type

Each field in the format specification can be a single character or a number which
specifies a particular format option. The conversion_type field is where a single
character specifies that the argument is interpreted as a character, a string, a num-
ber, or a pointer, as shown in the following table.

C stdio.h Library

Library Routines

sprintf

Description:

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

164 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Conversion Type Argument Type Output Format

d int Signed decimal number

u unsigned int Unsigned decimal number

o unsigned int Unsigned octal number

x unsigned int Unsigned hexadecimal number using
0123456789ABCEDF

X double Floating-point number using the format [-
]dddd.dddd

e double Floating-point number using the format [-
]d.dddde[-]dd

E double Floating-point number using the format [-
]d.ddddE[-]dd

g double Floating-point number using either e or f
format, whichever is more compact for the
specified value and precision

c int The int is converted to an unsigned char, and
the resulting character is written

s char * String with a terminating null character

p void * Pointer value, the X format is used

% none A % is written. No argument is converted. The
complete conversion specification shall be
%%.

The flags field is where a single character is used to justify the output and to print
+/- signs and blanks, decimal points, and octal and hexadecimal prefixes, as shown
in the following table.

The width field is a non-negative number that specifies the minimum number of
characters printed. If the number of characters in the output value is less than
width, blanks are added on the left or right (when the - flag is specified) to pad to
the minimum width. If width is prefixed with a 0, zeros are padded instead of
blanks. The width field never truncates a field. If the length of the output value
exceeds the specified width, all characters are output.

The precision field is a non-negative number that specifies the number of charac-
ters to print, the number of significant digits, or the number of decimal places. The
precision field can cause truncation or rounding of the output value in the case of
a floating-point number as specified in the following table.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 165
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Flags Meaning

- Left justify the output in the specified field width.

+ Prefix the output value with a + or - sign if the output is a signed type.

space (' ') Prefix the output value with a blank if it is a signed positive value.
Otherwise, no blank is prefixed

Prefixes a non-zero output value with 0, 0x, or 0X when used with o, x,
and X field types, respectively. When used with the e, E, f, g, and G
field types, the # flag forces the output value to include a decimal point.
The # flag is ignored in all other cases.

* Ignore format specifier.

The optional characters h and l or L may immediately precede the conversion_type
to respectively specify short or long versions of the integer types d, i, u, o, x, and
X.

You must ensure that the argument type matches that of the format specification.
You can use type casts to ensure that the proper type is passed to sprintf.

Prototype:

int sprintf (
char *buffer, /* storage buffer */
const cdata char *fmtstr, /* format string */
...); /* additional arguments */

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

166 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Flags Meaning of precision field

d, u, o, x, X The precision field is where you specify the minimum number of digits
that will be included in the output value. Digits are not truncated if the
number of digits in the argument exceeds that defined in the precision
field. If the number of digits in the argument is less than the precision
field, the output value is padded on the left with zeros.

f The precision field is where you specify the number of digits to the right
of the decimal point. The last digit is rounded.

e, E The precision field is where you specify the number of digits to the right
of the decimal point. The last digit is rounded.

g The precision field is where you specify the maximum number of signif-
icant digits in the output value.

c, C The precision field has no effect on these field types.

s The precision field is where you specify the maximum number of char-
acters in the output value. Excess characters are not output.

Function returns the number of input fields that were successfully converted. An
EOF is returned if an error is encountered before any conversion.

Function reads data from the string buffer. Data input are stored in the locations
specified by argument according to the format string fmtstr. Each argument must
be a pointer to a variable that corresponds to the type defined in fmtstr which
controls the interpretation of the input data.

The fmtstr argument is composed of one or more whitespace characters, non-
whitespace characters, and format specifications as defined below.

Whitespace characters cause sscanf to skip whitespace characters in the buffer.
Whitespace characters are such ones for which the isspace function returns non-
zero value. Note that a single whitespace character in the format string matches 0
or more whitespace characters in the buffer.

Non-whitespace characters, with the exception of the percent sign (%), cause
sscanf to read but not store a matching character from the buffer. The sscanf
function terminates if the next character in the buffer does not match the specified
non-whitespace character.

Format specifications begin with a percent sign (%) and cause sscanf to read and
convert characters from the buffer to the specified type values. The converted
value is stored to an argument in the parameter list. Characters following a percent
sign that are not recognized as a format specification are treated as an ordinary
character. For example, %% matches a single percent sign in the buffer.

The format string is read from left to right. Characters that are not part of the for-
mat specifications must match characters in the buffer. These characters are read
from the buffer but are discarded and not stored. If a character in the buffer con-
flicts with the format string, sscanf terminates. Any conflicting characters remain
in the buffer.

The first format specification encountered in the format string references the first
argument after fmtstr and converts input characters and stores the value using the
format specification. The second format specification accesses the second argu-
ment after fmtstr, and so on. If there are more arguments than format specifica-
tions, the extra arguments are ignored. Results are unpredictable if there are not
enough arguments for the format specifications.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 167
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

sscanf

Description:

Values in the buffer are called input fields and are delimited by whitespace char-
acters. When converting input fields, sscanf ends a conversion for an argument
when a whitespace character is encountered. Additionally, any unrecognized char-
acter for the current format specification ends a field conversion. Format specifica-
tions have the following format:

% * width { b | h | l } type

Each field in the format specification can be a single character or a number which
specifies a particular format option.

The type field is where a single character specifies whether input characters are
interpreted as a character, string, or number. This field can be any one of the char-
acters in the following table.

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

168 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Character Argument Type Input Format

d int * Signed decimal number

i int * Signed decimal, hexadecimal, or octal
integer

u unsigned int * Unsigned decimal number

o unsigned int * Unsigned octal number

x, X unsigned int * Unsigned hex number

c char * A single character

s char * A string of characters terminated by
whitespace

An asterisk (*) as the first character of a format specification causes the input field
to be scanned but not stored. The asterisk suppresses assignment of the format
specification.

The width field is a non-negative number that specifies the maximum number of
characters read from the buffer. No more than width characters will be read from
the buffer and converted for the corresponding argument. However, fewer than
width characters may be read if a whitespace character or an unrecognized charac-
ter is encountered first.

The optional characters h and l or L may immediately precede the type character
to respectively specify short, or long versions of the integer types d, i, u, o,
and x.

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 169
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Header file stdlib.h contains functions for performing a variety of operations,
including conversion, pseudo-random numbers, memory allocation, process con-
trol, and sorting.

abs
atof
atoi
atol
div
ldiv
labs
max
min
rand
srand
strtod
strtol
xtoi

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

170 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

C Stdlib Library

Library Routines

Prototype int abs(int num);

Description Function returns the absolute (i.e. positive) value of num.

abs

Prototype double atof(char *s)

Description Function converts the input string s into a double precision value, and returns the value.
Input string s should conform to the floating point literal format, with an optional white-
space at the beginning. The string will be processed one character at a time, until the
function reaches a character which it doesn’t recognize (this includes a null character).

atof

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 171
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype int atoi(char *s);

Description Function converts the input string s into an integer value, and returns the value. Input
string s should consist exclusively of decimal digits, with an optional whitespace and a
sign at the beginning. The string will be processed one character at a time, until the
function reaches a character which it doesn’t recognize (this includes a null character).

atoi

Prototype long atol(char *s)

Description Function converts the input string s into a long integer value, and returns the value.
Input string s should consist exclusively of decimal digits, with an optional whitespace
and a sign at the beginning. The string will be processed one character at a time, until
the function reaches a character which it doesn’t recognize (this includes a null charac-
ter).

atol

Prototype div_t div(int numer, int denom);

Description Function computes the result of the division of the numerator numer by the denominator
denom; function returns a structure of type div_t comprising quotient (quot) and
remainder (rem).

div

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

172 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype ldiv_t ldiv(long numer, long denom);

Description Function is similar to the div function, except that the arguments and the result struc-
ture members all have type long.

Function computes the result of the division of the numerator numer by the denominator
denom; function returns a structure of type div_t comprising quotient (quot) and
remainder (rem).

ldiv

Prototype long labs(long num);

Description Function returns the absolute (i.e. positive) value of a long integer num.

labs

Prototype int max(int a, int b);

Description Function returns greater of the two integers, a and b.

max

Prototype int min(int a, int b);

Description Function returns lower of the two integers, a and b.

min

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 173
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype int rand(void);

Description Function returns a sequence of pseudo-random numbers between 0 and 32767. Function
will always produce the same sequence of numbers unless srand() is called to seed the
starting point.

rand

Prototype void srand(unsigned seed);

Description Function uses the seed as a starting point for a new sequence of pseudo-random num-
bers to be returned by subsequent calls to rand(). No values are returned by this func-
tion.

srand

Prototype double strtod (
const char * s, /* string to be converted */
char ** sret); /* ptr to final string */

Returns Function returns the converted value, if any. If no conversion performed, zero is
returned. If the correct value is outside the range of representable values, plus or minus
HUGE_VAL is returned (according to the sign of value).

Description Function converts the initial portion of the string pointed to by s to double representa-
tion. First, it decomposes the input string into three parts: an initial, possibly empty,
sequence of white-space characters, a subject sequence resembling floating point con-
stant; and a final string of one or more unrecognized characters. Then, it attempts to
convert the subject sequence to a floating point number, and returns the result. A pointer
to the final string is stored in the object pointed to by sret, provided that sret is not a
null pointer.

strtod

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

174 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype int xtoi(char *s);

Description Function converts the input string s consisting of hexadecimal digits into an integer
value. Input parametes s should consist exclusively of hexadecimal digits, with an
optional whitespace and a sign at the beginning. The string will be processed one char-
acter at a time, until the function reaches a character which it doesn’t recognize (this
includes a null character).

xtoi

Prototype long int strtol (
const char * s, /* string to be converted */
char ** sret, /* ptr to the final string */
int base); /* radix base */

Returns Function returns the converted value, if any. If no conversion performed, zero is
returned. If the correct value is outside the range of representable values, LONG_MAX or
LONG_MIN is returned (according to the sign of value).

Description Function converts the initial portion of the string pointed to by s to long int represen-
tation. First, it decomposes the input string into three parts: an initial, possibly empty,
sequence of white-space characters, a subject sequence resembling an integer represent-
ed in some radix determined by the value of base, and a final string of one or more
unrecognized characters. Then, it attempts to convert the subject sequence to an integer,
and returns the result. A pointer to the final string is stored in the object pointed to by
sret, provided that sret is not a null pointer.

strtol

Header file string.h contains various functions for string handling.

memchr
memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcpy
strcspn
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtok

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 175
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

C String Library

Library Routines

Prototype void *memchr(
const void *s, /* buffer to search */
int c, /* byte to find */
size_t n); /* maximum buffer length */

Returns Function returns a pointer to the located character or a null pointer if the character was
not found.

Description Function compares the first n characters of objects pointed to by s1 and s2, and returns
zero if the objects are equal, or returns a difference between the first differing characters
(in a left-to-right evaluation). Accordingly, the result is greater than zero if the object
pointed to by s1 is greater than the object pointed to by s2, and vice versa.

memchr

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

176 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype int memcmp (
const void *buf1, /* first buffer */
const void *buf2, /* second buffer */
size_t len);

Returns Function returns a positive, negative, or zero value indicating the relationship of first
len bytes of buf1 and buf2.

Description The memcmp function compares two objects buf1 and buf2 for len bytes and returns a
value indicating their relationship as follows:

Value Meaning
< 0 buf1 less than buf2
= 0 buf1 equal to buf2

> 0 buf1 greater than buf2

In other words, the sign of nonzero value returned by function is determined by the sign
of the difference between the values of the first pair of bytes (both interpreted as
unsigned char) that differ in the objects being compared.

memcmp

Prototype void *memcpy (
void *dest, /* destination buffer */
const void *src, /* source buffer */
size_t len); /* bytes to copy */

Returns Function returns dest.

Description Function copies len bytes from src to dest. If these memory buffers overlap, the mem-
cpy function cannot guarantee that bytes in src are copied to dest before being over-
written. If these buffers do overlap, use the memmove function.

memcpy

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 177
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype void *memmove (
void *dest, /* destination buffer */
const void *src, /* source buffer */
int len); /* maximum bytes to move */

Returns Function returns dest.

Description Function copies len bytes from src to dest. If these memory buffers overlap, the mem-
move function ensures that bytes in src are copied to dest before being overwritten.

memmove

Prototype void *memset (
void *s, /* buffer to initialize */
int c, /* byte value to set */
size_t len); /* buffer length */

Returns Function returns the value of s.

Description Function sets the first len bytes in object pointed to by s to c (converted to an
unsigned char).

memset

Prototype char *strcat (
char *dest, /* destination string */
const char *src); /* source string */

Returns Function returns dest.

Description Function concatenates or appends src to dest and terminates dest with a null character.

strcat

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

178 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype char *strcat (
char *dest, /* destination string */
const char *src); /* source string */

Returns Function returns dest.

Description Function concatenates or appends src to dest and terminates dest with a null charac-
ter.

strcat

Prototype char *strchr (
const char *string, /* string to search */
char c);

Returns Function returns a pointer to the character c found in string or a null pointer if no
matching character was found.

Description Function searches string for the first occurrence of c. The null character terminating
string is included in the search.

strchr

Prototype char strcmp (
char *string1, /* first string */
char *string2); /* second string */

Returns Function returns the following values to indicate the relationship of string1 to string2:

Value Meaning
< 0 string1 less than string2
= 0 string1 equal to string2
> 0 string1 greater than string2

Description Function lexicographically compares the contents of string1 and string2 and returns a
value indicating their relationship.

strcmp

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 179
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype char *strcpy (
char *dest, /* destination string */
const char *src); /* source string */

Returns Function returns dest.

Description PFunction copies src to dest and appends a null character to the end of dest.

strcpy

Prototype size_t strcspn (
const char *src, /* source string */
const char *set); /* characters to find */

Returns Function returns the index of the first character located in src that matches any charac-
ter in set. If the first character in src matches a character in set, a value of 0 is
returned. If there are no matching characters in src, the length of the string is returned
(not including the terminating null character).

Description Function searches the src string for any of the characters in the set string.

strcspn

Prototype int strlen (
char *src); /* source string */

Returns Function returns the length of src.

Description Function calculates the length, in bytes, of src. This calculation does not include the
null terminating character.

strlen

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

180 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype char strncmp (
const char *string1, /* first string */
const char *string2, /* second string */
size_t len); /* maximum characters to compare */

Returns Function returns dest.

Description Function appends at most len characters from src to dest and terminates dest with a
null character. If src is shorter than len characters, src is copied up to and including
the null terminating character.

strncat

Prototype char strncmp (
const char *string1, /* first string */
const char *string2, /* second string */
size_t len); /* maximum characters to compare */

Returns Function returns the following values to indicate the relationship of string1 to
string2:

Value Meaning
< 0 string1 less than string2
= 0 string1 equal to string2
> 0 string1 greater than string2

Description Function lexicographically compares the first len bytes of string1 and string2 and
returns a value indicating their relationship.

strncmp

Prototype char *strncpy (
char *dest, /* destination string */
const char *src, /* source string */
size_t len); /* maximum characters to copy */

Returns Function returns dest.

Description Function copies at most len characters from src to dest. If src contains fewer char-
acters than len, dest is padded out with null characters to len characters.

strncat

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 181
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype char *strpbrk (
const char *string, /* string to search */
const char *set); /* characters to find */

Returns Function returns a pointer to the matching character in string. If string contains no
characters from set, a null pointer is returned.

Description Function searches string for the first occurrence of any character from set. The null
terminator is not included in the search.

strpbrk

Prototype char *strrchr (
const char *string, /* string to search */
int c); /* character to find */

Returns Function returns a pointer to the last character c found in string or a null pointer if no
matching character was found.

Description Function searches string for the last occurrence of c. The null character terminating
string is included in the search.

strrchr

Prototype size_t strspn (
const char *string, /* string to search */
const char *set); /* characters that not allowed */

Returns Function returns the index of first character located in string that does not match a
character in set. If the first character in string does not match a character in set, a
value of 0 is returned. If all characters in string are found in set, the length of
string is returned (not including the terminating null character).

Description Function searches string for characters not found in the set string.

strspn

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

182 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype char * strstr (
const char * s, /* string to search */
const char * find); /* string to be found */

Returns Function returns a pointer to the located string, or a null pointer if the string is not
found. If find points to a string with zero length, the function returns s.

Description Function locates the first occurrence in the string pointed to by s of the sequence of
characters (excluding the terminating null character) in the string pointed to by find.

strstr

Prototype char * strtok (
char * s, /* string to be broken into tokens */
const char * delim); /* separator-string */

Returns Function returns a pointer to the first character of token, or a null pointer if there is no
token.

Description A sequence of calls to the strtok function breaks the string pointed to by s into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by delim. The first call in the sequence has s as its first argument, and is followed by
calls with a null pointer as their first argument. The separator string pointed to by delim
may be different from call to call.

The first call in the sequence searches the string pointed to by s for the first character
that is not contained in the current separator string pointed to by delim. If no such char-
acter is found, then there are no tokens in the string pointed to by s and the strtok
function returns a null pointer.

The strtok function then searches from there for a character that is contained in the
current separator string. If no such character is found, the current token extends to the
end of the string pointed to by s, and subsequent searches for a token will return a null
pointer. If such a character is found, it is overwritten by a null character, which termi-
nates the current token. The strtok function saves a pointer to the following character,
from which the next search for token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts search-
ing from the saved pointer and behaves as described above.

strstr

The RSC-4x mikroC compiler provides a set of useful built-in utility functions.
Built-in functions do not require any header files to be included; you can use them
in any part of your project.

Delay_us
Delay_ms

Clock_Khz
Clock_Mhz

cli
sti
nop
wdc

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 183
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Built-in Routines

Prototype void Delay_us(const time_in_us);

Description Creates a software delay in duration of time_in_us microseconds (a constant). Range
of applicable constants depends on the oscillator frequency. This is an “inline” routine;
code is generated in the place of the call.

Example Delay_us(10); /* Ten microseconds pause */

Delay_us

Prototype void Delay_ms(const time_in_ms);

Description Creates a software delay in duration of time_in_ms milliseconds (a constant). Range of
applicable constants depends on the oscillator frequency. This is an “inline” routine;
code is generated in the place of the call.

Example Delay_ms(1000); /* One second pause */

Delay_ms

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

184 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype unsigned Clock_Khz(void);

Returns Device clock in KHz, rounded to the nearest integer.

Description Returns device clock in KHz, rounded to the nearest integer.
This is an “in-line” routine; code is generated in the place of the call.

Example clk = Clock_Khz();

Clock_Khz

Prototype unsigned Clock_Mhz(void);

Returns Device clock in MHz, rounded to the nearest integer.

Description Returns device clock in MHz, rounded to the nearest integer.
This is an “in-line” routine; code is generated in the place of the call.

Example clk = Clock_Mhz();

Clock_Mhz

Prototype void _cli_ (void);

Returns Nothing.

Description Function executes the CLI instruction.

This is an “in-line” routine; code is generated in the place of the call.

cli

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 185
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype void _nop_ (void);

Returns Nothing.

Description Function executes the NOP instruction.

This is an “in-line” routine; code is generated in the place of the call.

nop

Prototype void _wdc_ (void);

Returns Nothing.

Description Function executes the WDC instruction.

This is an “in-line” routine; code is generated in the place of the call.

wdc

Compact Flash Library provides routines for accessing data on Compact Flash
card (abbrev. CF further in text). CF cards are widely used memory elements,
commonly found in digital cameras. Great capacity (8MB ~ 2GB, and more) and
excellent access time of typically few microseconds make them very attractive for
microcontroller applications.

In CF card, data is divided into sectors, one sector usually comprising 512 bytes
(few older models have sectors of 256B). Read and write operations are not per-
formed directly, but successively through 512B buffer. These routines can be used
for CF with the FAT16 and the FAT32 file system. Note that routines for file han-
dling can be used only with the FAT16 file system.

To use the CF Library, include the header file cf.h in your source code.

Important! File accessing routines can write file. File names must be exactly 8
characters long and written in uppercase. User must ensure different names for
each file, as CF routines will not check for possible match.

Important! Before write operation, make sure you don’t overwrite boot or FAT
sector as it could make your card on PC or digital cam unreadable. Drive mapping
tools, such as Winhex, can be of a great assistance.

Cf_Init
Cf_Detect
Cf_Read_Init
Cf_Read_Byte
Cf_Write_Init
Cf_Write_Byte

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

186 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Compact Flash Library

Library Routines

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 187
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype void Cf_Init(char *ctrlport, char *dataport);

Description Initializes ports appropriately for communication with CF card. Specify two different
ports: ctrlport and dataport. The function uses all 8 pins on dataport and 5 pins on
ctrlport, as given in the CF library header file (Cf_Lib.h).

Example Cf_Init(&p2out, &p1out);

Cf_Init

Prototype unsigned short Cf_Detect(void);

Returns Returns 1 if CF is present, otherwise returns 0.

Requires Control port (ctrlport) must be initialized. See Cf_Init.

Description Checks for presence of CF card on ctrlport.

Example // Wait until CF card is inserted:
do nop; while (Cf_Detect() == 0);

Cf_Detect

Prototype void Cf_Read_Init(unsigned long address, unsigned short sectcnt);

Description Initializes CF card for reading. Parameter address specifies sector address from where
data will be read, and sectcnt is the number of sectors prepared for reading operation.

Requires Ports must be initialized. See Cf_Init.

Example Cf_Read_Init(590, 1);

Cf_Read_Init

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

188 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype unsigned short Cf_Read_Byte(void);

Returns Returns byte from CF.

Description Reads one byte from CF.

Requires Ports must be initialized. See Cf_Init.
CF must be initialized for read operation. See Cf_Read_Init.

Example Read byte and display it on port0:

p0out = Cf_Read_Byte();

Cf_Read_Byte

Prototype void Cf_Write_Init(unsigned long address, unsigned short sectc-
nt);

Description Initializes CF card for writing. Parameter address specifies sector address where data
will be stored, and sectcnt is total number of sectors prepared for write operation.

Requires Ports must be initialized. See Cf_Init.

Example Cf_Write_Init(590, 1);

Cf_Write_Init

Prototype void Cf_Write_Byte(unsigned short data);

Description Writes one byte (data) to CF. All 512 bytes are transferred to a buffer.

Requires CF must be initialized for write operation. See Cf_Write_Init.
CF must be initialized for write operation. See Cf_Write_Init.

Example int i = 20;
Cf_Write_Byte(100);
Cf_Write_Byte(i);

Cf_Write_Byte

The following example writes 512 bytes at sector no.595, and then reads the data
and prints on port0 for a visual check.

#include <rsc4128.h>
#include <cf.h>

void main() {
unsigned i;

//--- init rscxxx - all pins digital I/O
cmpCtl |= 0x07;
p0ctla = 255;
p0ctlb = 255;
//--- init CF
Cf_Init(&p2out, &p1out);
//--- wait until CF card is inserted
while (!Cf_Detect()) ;
//--- stabilize
Delay_us(500);
//--- init CF for write
Cf_Write_Init(595, 1);
//--- write 512 bytes to sector (595)
for (i = 0; i < 512; i++)

Cf_Write_Byte(i);
//--- init CF for read
Cf_Read_Init(595, 1);
//--- read 512 bytes from sector (595)
for (i = 0; i < 512; i++) {

p0out = Cf_Read_Byte();
Delay_ms(500);

}

}//~!

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 189
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Library Example

RSC-4x mikroC provides a library for communicating with commonly used LCD
(4-bit interface).

Note: Be sure to designate port with LCD as output, before using any of the fol-
lowing library functions.

Lcd_Config
Lcd_Init
Lcd_Out
Lcd_Out_Cp
Lcd_Chr
Lcd_Chr_Cp
Lcd_Cmd

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

190 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

LCD Library (4-bit interface)

Library Routines

Prototype void Lcd_Config(char * data_port, char db3, char db2, char db1,
char db0, char * ctrl_port, char rs, char rw, char enable);

Description Initializes LCD with data lines at data_port and control lines at ctrl_port, with pin
settings you specify: parameters rs, enable, rw, db3 .. db0 need to be a combi-
nation of values 0–7 (e.g. 3,6,0,7,2,1,4).

Example Lcd_Config(&p0out,4,5,6, &p1out,4,5,6,7);

Lcd_Config

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 191
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype void Lcd_Init(unsigned short * data_port, unsigned short *
ctrl_port);

Description Initializes LCD at port with default pin settings (see the connection scheme at the end
of the chapter):

D7 -> PORT.7,
D6 -> PORT.6,
D5 -> PORT.5,
D4 -> PORT.4,
E -> PORT.3,
RS -> PORT.2.

Example Lcd_Init(&p1out, &p0out);

Lcd_Init

Prototype void Lcd_Out(unsigned short row, unsigned short col, char *text);

Description Prints text on LCD at specified row and column (parameter row and col). Both string
variables and literals can be passed as text.

Requires Port with LCD must be initialized. See Lcd_Config or Lcd_Init.

Example Lcd_Out(1, 3, "Hello!"); // Print "Hello!" at line 1, char 3

Lcd_Out

Prototype void Lcd_Out_Cp(char *text);

Description Prints text on LCD at current cursor position. Both string variables and literals can be
passed as text.

Requires Port with LCD must be initialized. See Lcd_Config or Lcd_Init.

Example Lcd_Out_Cp("Here!"); // Print "Here!" at current cursor position

Lcd_Out_Cp

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

192 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype void Lcd_Chr(unsigned short row, unsigned short col, char charac-
ter);

Description Prints character on LCD at specified row and column (parameters row and col).
Both variables and literals can be passed as character.

Requires Port with LCD must be initialized. See Lcd_Config or Lcd_Init.

Example Lcd_Out(2, 3, 'i'); // Print 'i' at line 2, char 3

Lcd_Chr

Prototype void Lcd_Chr_Cp(char character);

Description Prints character on LCD at current cursor position. Both variables and literals can be
passed as character.

Requires Port with LCD must be initialized. See Lcd_Config or Lcd_Init.

Example Lcd_Out_Cp('e'); // Print 'e' at current cursor position

Lcd_Chr_Cp

Prototype void Lcd_Cmd(unsigned short command);

Description Sends command to LCD. You can pass one of the predefined constants to the function.
The complete list of available commands is shown on the following page.

Requires Port with LCD must be initialized. See Lcd_Config or Lcd_Init.

Example Lcd_Cmd(Lcd_Clear); // Clear LCD display

Lcd_Cmd

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 193
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

LCD Commands

LCD Command Purpose

LCD_FIRST_ROW Move cursor to 1st row

LCD_SECOND_ROW Move cursor to 2nd row

LCD_THIRD_ROW Move cursor to 3rd row

LCD_FOURTH_ROW Move cursor to 4th row

LCD_CLEAR Clear display

LCD_RETURN_HOME
Return cursor to home position, returns a shifted display to original posi-
tion. Display data RAM is unaffected.

LCD_CURSOR_OFF Turn off cursor

LCD_UNDERLINE_ON Underline cursor on

LCD_BLINK_CURSOR_ON Blink cursor on

LCD_MOVE_CURSOR_LEFT Move cursor left without changing display data RAM

LCD_MOVE_CURSOR_RIGHT Move cursor right without changing display data RAM

LCD_TURN_ON Turn LCD display on

LCD_TURN_OFF Turn LCD display off

LCD_SHIFT_LEFT Shift display left without changing display data RAM

LCD_SHIFT_RIGHT Shift display right without changing display data RAM

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 195
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Library Example

Here’s a simple test for LCD Library; the example should print a text message on the LCD con-
nected to port1 (data port) and port0 (ctrl port).

#include <rsc4128.h>
#include <lcd.h>

char *text = "mikroElektronika";

void main() {
//--- init rscxxx - all pins digital I/O
cmpCtl |= 0x07;
p0ctla = 255;
p0ctlb = 255;
p1ctla = 255;
p1ctlb = 255;
//--- Configure LCD connections
Lcd_Config(&p1out, 7, 6, 5, 4, &p0out, 4, 5, 6);
Lcd_Cmd(LCD_CURSOR_OFF); // Turn off cursor
Lcd_Out(1, 1, text); // Print text at LCD

}//~!

RSC-4x mikroC provides routines which implement software I²C. These routines
are hardware independent and can be used with any MCU. Software I2C enables
you to use MCU as Master in I2C communication. Multi-master mode is not sup-
ported.

Note: This library implements time-based activities, so interrupts need to be dis-
abled when using Soft I²C.

Soft_I2C_Config
Soft_I2C_Start
Soft_I2C_Read
Soft_I2C_Write
Soft_I2C_Stop

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

196 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Software I2C Library

Library Routines

Prototype void Soft_I2C_Config(unsigned short *portOut, char SDI, char SD0,
char SCK);

Description Configures software I²C. Parameter port specifies port of MCU on which SDA and SCL
pins are located. Parameters SCL and SDA need to be in range 0–7 and cannot point at
the same pin.

Soft_I2C_Config needs to be called before using other functions from Soft I2C
Library.

Example Soft_I2C_Config(&p0Out, 1, 2);

Soft_I2C_Config

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 197
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Prototype void Soft_I2C_Start(void);

Description Issues START signal. Needs to be called prior to sending and receiving data.

Requires Soft I²C must be configured before using this function. See Soft_I2C_Config.

Example Soft_I2C_Start();

Soft_I2C_Start

Prototype unsigned short Soft_I2C_Read(unsigned short ack);

Returns Returns one byte from the slave.

Description Reads one byte from the slave, and sends not acknowledge signal if parameter ack is 0,
otherwise it sends acknowledge.

Requires START signal needs to be issued in order to use this function. See Soft_I2C_Start.

Example Read data and send not acknowledge signal:
short take;
...
take = Soft_I2C_Read(0);

Soft_I2C_Read

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

198 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype unsigned short Soft_I2C_Write(unsigned short data);

Returns Returns 0 if there were no errors.

Description Sends data byte (parameter data) via I²C bus.

Requires START signal needs to be issued in order to use this function. See Soft_I2C_Start.

Example Soft_I2C_Write(0xA3);

Soft_I2C_Write

Prototype void Soft_I2C_Stop(void);

Description Issues STOP signal.

Requires START signal needs to be issued in order to use this function. See Soft_I2C_Start.

Example Soft_I2C_Stop();

Soft_I2C_Stop

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 199
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Library Example

The following example is a simple demonstration how to read date and time from PCF8583 RTC
(real-time clock). Date and time are read from the RTC every second and printed on LCD.

#include <rsc4128.h>
#include <soft_i2c.h>
#include <lcd.h>

void Delay_ms(unsigned int time_ms);

unsigned char sec, mnt, hr, day, mn, year;
char *txt, tnum[4];

char *R_Trim(char *str1){
while (*str1 == ' ')

str1++;
return str1;

}//~

void Zero_Fill(char *value) { // fill text repesentation
if (value[1] == 0) { // with leading zero

value[1] = value[0];
value[0] = 48;
value[2] = 0;

}
}//~

//--------------------- Reads time and date information from RTC (PCF8583)
void Read_Time(char *sec, char *mnt, char *hr, char *day, char *mn, char *year)
{

Soft_I2C_Start();
Soft_I2C_Write(0xA0);
Soft_I2C_Write(2);
Soft_I2C_Start();
Soft_I2C_Write(0xA1);
*sec = Soft_I2C_Read(1);
*mnt = Soft_I2C_Read(1);
*hr = Soft_I2C_Read(1);
*day = Soft_I2C_Read(1);
*mn = Soft_I2C_Read(0);
Soft_I2C_Stop();

}//~

//continues ...

//-------------------- Formats date and time
void Transform_Time(char *sec, char *mnt, char *hr, char *day,
char *mn, char *year) {

*sec = ((*sec & 0xF0) >> 4)*10 + (*sec & 0x0F);
*mnt = ((*mnt & 0xF0) >> 4)*10 + (*mnt & 0x0F);
*hr = ((*hr & 0xF0) >> 4)*10 + (*hr & 0x0F);
*year = (*day & 0xC0) >> 6;
*day = ((*day & 0x30) >> 4)*10 + (*day & 0x0F);
*mn = ((*mn & 0x10) >> 4)*10 + (*mn & 0x0F);

}//~

//-------------- Converts unsigned short number to string
char * ByteToStr(unsigned short inByte, char *outStr) {

char *strCnv;
unsigned short tmpV;

strCnv = outStr + 4;
*strCnv-- = 0; //termination
tmpV = inByte;

while (tmpV != 0) {
*strCnv-- = (tmpV % 10) + 48; //ASCII value
tmpV /= 10;

}

while (strCnv >= outStr)
*strCnv-- = 32; //SPACE

return outStr;
}//~

//continues ...

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

200 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

//-------------------- Output values to LCD
void Display_Time(char sec, char mnt, char hr, char day, char mn,
char year) {

char *tc;

ByteToStr(day, tnum); // day
tc = R_Trim(tnum);
Zero_Fill(tc);
Lcd_Out(1,6, tc);
ByteToStr(mn, tnum); // month
tc = R_Trim(tnum);
Zero_Fill(tc);
Lcd_Out(1,9, tc);
Lcd_Chr(1,15,52+year); // year
ByteToStr(hr,tnum); // hour
tc = R_Trim(tnum);
Zero_Fill(tc);
Lcd_Out(2,6,tc);
ByteToStr(mnt,tnum); // minute
tc = R_Trim(tnum);
Zero_Fill(tc);
Lcd_Out(2,9,tc);
ByteToStr(sec,tnum); // second
tc = R_Trim(tnum);
Zero_Fill(tc);
Lcd_Out(2,12,tc);

}//~

//------------------ Performs project-wide init
void Init_Main() {

//--- init rscxxx - all pins digital I/O
cmpCtl |= 0x07;
p0ctla = 255;
p0ctlb = 255;
Lcd_Config(&p1out,7,6,5,4, &p0out,4,5,6);
Soft_I2C_Init(&p0out, 2, 7); // Initialize I2C
txt = "Date:"; // Prepare and output static text on LCD
Lcd_Out(1,1,txt);
Lcd_Chr(1,8,':');
Lcd_Chr(1,11,':');
txt = "Time:";
Lcd_Out(2,1,txt);
Lcd_Chr(2,8,':');
Lcd_Chr(2,11,':');
txt = "200";
Lcd_Out(1,12,txt);
Lcd_Cmd(LCD_CURSOR_OFF); // Cursor off

}//~

//continues ...

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 201
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

//----------------- Main function
void main() {

Init_Main(); // Perform initialization
while (1) {

Read_Time(&sec,&mnt,&hr,&day,&mn,&year);
// Read time from RTC(PCF8583)

Transform_Time(&sec,&mnt,&hr,&day,&mn,&year);
// Format date and time

Display_Time(sec, mnt, hr, day, mn, year);
// Prepare and display on LCD

Delay_ms(1000);
// Wait 1s

}
}//~!

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

202 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

RSC-4x mikroC provides library which implement software SPI. These routines
are hardware independent and can be used with any MCU. You can easily commu-
nicate with other devices via SPI: A/D converters, D/A converters, MAX7219,
LTC1290, etc.

The library configures SPI to master mode, clock = 50kHz, data sampled at the
middle of interval, clock idle state low and data transmitted at low to high edge.

Note: These functions implement time-based activities, so interrupts need to be
disabled when using the library.

Soft_Spi_Config
Soft_Spi_Read
Soft_Spi_Write

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 203
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Software SPI Library

Library Routines

Prototype void Soft_Spi_Init(unsigned short *portOut, const unsigned short
rx, const unsigned short tx, const unsigned short clk);

Description Configures and initializes software SPI. Parameter portOut specifies port of MCU on
which SDI (rx), SDO (tx), and SCK (clk) pins will be located. Parameters SDI, SDO,
and SCK need to be in range 0–7 and cannot point at the same pin.

Soft_Spi_Init needs to be called before using other functions from Soft SPI Library.

Example This will set SPI to master mode, clock = 50kHz, data sampled at the middle of interval,
clock idle state low and data transmitted at low to high edge. SDI (rx) pin is p0.5, SDO
(tx) pin is p0.6 and SCK (clk) pin is p0.4:

Soft_Spi_Init(&p0Out, 5,6,4);

Soft_Spi_Config

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

204 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

Prototype unsigned short Soft_Spi_Read(unsigned short buffer);

Returns Returns the received data.

Description Provides clock by sending buffer and receives data.

Requires Soft SPI must be initialized and communication established before using this function.
See Soft_Spi_Config.

Example short take, buffer;
...
take = Soft_Spi_Read(buffer);

Soft_Spi_Read

Prototype void Soft_Spi_Write(unsigned short data);

Description Immediately transmits data.

Requires Soft SPI must be initialized and communication established before using this function.
See Soft_Spi_Config.

Example Soft_Spi_Write(1);

Soft_Spi_Write

MikroElektronika: DDevelopment ttools - BBooks - CCompilers 205
page

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

Library Example

This code demonstrates using library routines for SPI communication. Also, this example demonstrates
working with max7219. Eight 7 segment displays are connected to MAX7219. MAX7219 is connected
to port2 and SDO, SDI, SCK pins are connected accordingly.

#define CHIP_SELECT 2
#define N_CHIP_SELECT 253

#include <rsc4128.h>
#include <soft_spi.h>

unsigned char i;

void Max7219_Init() {
p2out &= N_CHIP_SELECT; // SELECT MAX
Soft_Spi_Write(0x09); // BCD mode for digit decoding
Soft_Spi_Write(0xFF);
p2out |= CHIP_SELECT; // DESELECT MAX
p2out &= N_CHIP_SELECT; // SELECT MAX
Soft_Spi_Write(0x0A);
Soft_Spi_Write(0x0F); // Segment luminosity intensity
p2out |= CHIP_SELECT; // DESELECT MAX
p2out &= N_CHIP_SELECT; // SELECT MAX
Soft_Spi_Write(0x0B);
Soft_Spi_Write(0x07); // Display refresh
p2out |= CHIP_SELECT; // DESELECT MAX
p2out &= N_CHIP_SELECT; // SELECT MAX
Soft_Spi_Write(0x0C);
Soft_Spi_Write(0x01); // Turn on the display
p2out |= CHIP_SELECT; // DESELECT MAX
p2out &= N_CHIP_SELECT; // SELECT MAX
Soft_Spi_Write(0x00);
Soft_Spi_Write(0xFF); // No test
p2out |= CHIP_SELECT; // DESELECT MAX

}//~
void main() {

//--- init rscxxx - all pins digital I/O
cmpCtl |= 0x07;
p2ctla = 255;
p2ctlb = 255;
Soft_Spi_Init(&p2out,4,5,3); // Configure SPI
Max7219_Init(); // Initialize max7219
for (i = 1; i <= 8u; i++) {

p2out &= N_CHIP_SELECT; // Select max7219
Soft_Spi_Write(i); // Send i to max7219 (digit place)
Soft_Spi_Write(10-i); // Send i to max7219 (digit)
p2out |= CHIP_SELECT; // Deselect max7219 }}//~!

mikroC - C Compiler for Sensory RSC-4x microcontrollers

RSC-4x mikroC
making it simple...

206 MikroElektronika: DDevelopment ttools - BBooks - CCompilers

page

If you are experiencing problems with any of our products or you just want addi-
tional information, please let us know.

Technical Support for compiler

If you are experiencing any trouble with mikroC, please do not hesitate to con-
tact us - it is in our mutual interest to solve these issues.

Discount for schools and universities

mikroElektronika offers a special discount for educational institutions. If you
would like to purchase RSC-4x mikroC for purely educational purposes, please
contact us.

Problems with transport or delivery

If you want to report a delay in delivery or any other problem concerning distri-
bution of our products, please use the link given below.

Would you like to become mikroElektronika's distributor?

We in mikroElektronika are looking forward to new partnerships. If you would
like to help us by becoming distributor of our products, please let us know.

Other

If you have any other question, comment or a business proposal, please contact
us:

mikroElektronika
Admirala Geprata 1B
11000 Belgrade
EUROPE

Phone: + 381 (11) 30 66 377, + 381 (11) 30 66 378
Fax: + 381 (11) 30 66 379
E-mail: office@mikroe.com
Website: www.mikroe.com

Contact us:

	RSC-4x mikroC manual
	Reader's Note
	Table of Contents
	RSC-4x mikroC IDE
	Code Editor
	Code Explorer
	Error Window
	Integrated Tools
	Keyboard Shortcuts

	Building Applications
	Projects
	Search and Include Paths
	Source Files
	Compilation
	Error Messages

	RSC-4x mikroC Specifics
	Memory Types
	Memory Models
	Address Spaces
	Absolute Memory Locations
	Language Extensions
	Types Specifics
	Function Specifics
	Inline Assembler
	Implementation Details
	Interrupt Handling
	Runtime Library

	RSC-4x Language Reference
	Lexical Elements Overview
	Concepts
	Types
	Derived Types
	Pointers
	Structures
	Unions
	Bitfields
	Types Conversion
	Declarations
	Functions
	Operators
	Expressions
	Statements
	Preprocessor

	RSC-4x mikroC libraries
	List of libraries
	C Ctype Library
	C Math Library
	C stdio.h Library
	S Stdlib Library
	C String Library
	Built-in Routines
	Compact Flash Library
	LCD Library (4-bit interface)
	Software I2C Library
	Software SPI Library

	Contact Us

