

CRASMB

The Lloyd I/0
Macro Cross Assembler

for
FLEX and OS-9

Copyright (c) 1982
by

Lloyd I/O
P.O Box 387

Chehalis, WA 98532
ALL RIGHTS RESERVED

Flex User Group
This document has been createdon behalf of the FLEX User Groupto keep FLEX Alive.Many thanks to the copyright holderof this manual for releasing thecopyright to the Flex User Group.

REGISTER YOUR COPY

 When you purchase CRASMB, you purchase a single user/system license
to use it. The product is supplied AS IS, however you may receive updated
versions for the operating system you use if you have registered your
copy with LLOYD I/O. You will be mailed a notice of changes and new
products which may add to the available CPM'S, and other systems on which
they operate.

 The restriction are that you must send a diskette of the size you
need copied with the copies of the programs to be replaced on it in the
original name and extension. Return postage MUST be included.

 To register fill out the form below and mail to:

 LLOYD I/O
 19535 NE GLISAN STREET
 PORTLAND, OR 97230

cut here ---

NAME.......................... TITLE..........................

COMPANY...

ADDRESS...

CITY STATE ZIP

CRASMB VERSION ()FLEX ()OS9

CPM's ..

DISK SIZE ..

DEALER ...

DATE ...

CRASMB by LLOYD I/O
OS9 and Flex User Manual

--

OS9 VERSION 2 FLEX VERSION 4

JANUARY 1983

COPYRIGHT NOTICE

 This entire manual and the associated software is copyrighted by
LLOYD I/O. The reproduction of this document or associated software for
any reason other than archival or backup purposes for or on the computer
for which the original copy was acquired is strictly prohibited. (FLEX is
a trademark of Technical Systems Consultants, Inc. 111 Providence Road,
Chapel Hill, NC 27514, and OS9 is a trademark of Microware Systems
Corporation, 5835 Grand Avenue, Box 4865, Des Moines, Iowa 50304. Some of
the documentation on the MOD, EMOD, and OS9 directives are copyrighted by
Microware and are reprinted here with the permission of Microware.)

PRODUCT WARRANTEE INFORMATION

 The CRASMB user manual, source code and object code software is
supplied AS IS and without warrantee. Reasonable care has been taken to
insure that the software does function as described in this manual. If
you find a situation where the assembler or a CPU personality module does
not function as the manual describes, then contact LLOYD I/O. An attempt
will be made to correct any errors brought to our attention, however we
make no guarantee to do so.

CUSTOM MODIFICATIONS AND VERSIONS

 Upon request, LLOYD I/O will provide custom designed CPU personality
modules (CPM's) at the rate of $35.00 per hour under contract agreement.
(Notification of any price change will not be made.) Exact details may be
requested.

 Write, LLOYD I/O, 19535 NE GLISAN STREET, PORTLAND, OR 97230.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

--

T A B L E 0 F C 0 N T E N T S

 Introduction 1

 Invoking the assembler 2

 Assembler description 5

 Label field 5
 Operator Field 6
 Operand field 6
 Comment field 6
 Expressions 6
 Numbers 7
 Symbols 8
 Symbol evaluation 8
 Auto fielding 8
 Automatic label generation..... 8
 Object code output 9

 Assembler directives 11

 FCC 11
 FCS 12
 FCB 12
 FDB 12
 SPC 12
 LEN 13
 OPT 13
 PAG, PAGE 14
 ORG 14
 RAM 15
 EQU, SET 15
 END, MON 15
 NAM, TTL 15
 STTL 15
 RMB 16
 ERR 16
 RPT 16
 MACRO 16
 ENDM 17
 EXITM 18
 DUP 18
 ENDM 19
 IF, IFN, IFEQ, IFNE, IFLT, IFLE,
 IFGE, IFGT, IFC, IFNC, IFP1 .. 19
 ELSE 19
 ENDIF, ENDC 20

CRASMB by LLOYD I/O
OS9 and Flex User Manual

--

 WHILE, WHILEN 20
 WELSE 20
 ENDW 20
 LIB, USE 21
 SYM 21
 CRO 21
 MOD 21
 EMOD 23
 OS9 23

 Assembler operation 24

 Customizing 25

 Appending the assembler and a module . 25

 Error messages 26

 Additional features 27

 New CPU Personality Modules 29

 MODULE FILE LISTS ... APPENDIX A .. 40
 SC6809.TXT APPENDIX B .. 42
 SC6809T.TXT (partial).APPENDIX C .. 44
 CPM6809/SC6809APPENDIX D .. 48

CRASMB by LLOYD I/O
OS9 and Flex User Manual

--

 INTRODUCTION

 CRASMB is a fast and versatile (8 bit) macro cross assembler. It
has the necessary elements to support structured construct like WHILE and
FOR etc. These are the ability to define macros with substitutable
parameters, conditional assembly directives, and the ability to change
the value of a label or symbol . In addition, source code may be
assembled in modular form. That is as a series of LIBrary called files.
A short file containing the list of file specifications in standard
assembler source format may call as many library files as desired.
Symbols default to a maximum length of 6 for Flex and 8 for OS9, but may
be edited to a maximum length ranging from 3 to 30 characters. This
manual reflects both FLEX and OS9 versions. Differences will be noted,
and these will be only where I/O (input/Output) is involved with the
system software. Items enclosed within the greater-less than signs ('<',
'>') are required, and items enclosed within brackets ('[', ']') are
optional.

 The assembler achieves CPU mnemonic to object code translation by the
use of CPU personality modules (CPM's). In Flex the assembler handles
the care and feeding of a CPM as it is loaded into memory at the end of
the assembler. The assembler's storage area begins at the new end of the
module. The OS9 assembler lets OS9 load or link the module to the
assembler. The storage area is located to the assembler at run-time and
defaults to about 11K. There are currently modules available for the
6809, 68OO-2, 6801-3, 68O5, 8080-5, Z8O, 1802, and 6502.

 The assembler operates in a position independent manner, and requires
the CPM's to do the same. This requirement allows later versions of the
assembler to be issued which still work with existing CPM'S. The
assembler uses the U (user stack pointer) register to point to all
scratch pad, file control blocks, flags, pointers, CPM subroutine
addresses,... etc. When called from FLEX the end of memory ($CC2B) is
used to allocate this area from the end of memory downwards for the
needed space. The OS9 version will allocate a minimum of about 11K of
memory, which may be anywhere in ram, of which 5K is the symbol table.
All offsets to the scratch area are positive. Very little changes are
made to CPM source code files to make then run under either operating
system.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-1-

 INVOKING THE ASSEMBLER

 The invoking syntax for the assembler is:

FLEX:

CRASMB,<source code file spec..>[,<object code file spec..>]
 [,<CPM file spec.>],SWITCHES,PARAMETERS

OS9:

CRASMB <source path list> [<Q=SWITCHES> <O=Object code path list>
 <C=CPM path list> <P=calling line parameters>]

 For Flex the source code file specification defaults to the
extension of ".TXT". The object code file specification defaults to the
extension of ".BIN" and the name the same as the source code file. The
OS9 version uses the normal path lists and execution directory for the
CPM's. Only one source code file name is allowed, and one object code
file name is allowed, but the assembler directives "LIB" or "USE" may be
used within a source code file to specify another file to assemble. See
the "LIB" directive description for further details. The CPM file spec.
is the name of a CPM file which will be loaded and initialized just
before the source code file is accessed on pass one. The default
extension is ".BIN". (This feature allows assembling existing programs
without having to add the 'CRO' directive.) See the 'CRO' directive for
more information. The Calling line parameters follow the same syntax
as macro parameters. The OS9 calling parameters must be the last item on
the invoking line.

 The OS9 object code file will default to the execution directory,
using the same file name as the source file. It will have its public
read and execute, and other read, write, and execute permission bits
turned on.

 SWITCHES

 There are several option switches that may be switched if they are
specified in the SWITCH list in the assembler invoking line.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-2-

SUMMARY:

Y ... (FLEX ONLY) Automatic object code file deletion. (OFF)
L ... No List option turned on (no assembler output). (LIS)
S ... No Symbol Table list turned on (suppressed). (SYM)
G ... Single line list on FCC, FCS, FDB turned on. (GEN)
B ... (FLEX ONLY) No Object Code saved an disk. (BIN)
P[number] ... PAG option turned on, list starts a page no. (NOP)
N ... Use line numbers. (OFF)
O ... Set to position independent code (OFF)
T ... Start printing comment lines in address field (OFF)

 The OPTion directive has the following restrictions. 'LIS' will not
turn on if it is has been turned off by the invoking switch. 'BIN' will
not turn on if it has been turned off by any switch (NOTE: Object code
files not controllable from the OS9 option switches.) 'NOP' will not turn
off if it has been turned on by any switch.

INVOCATION EXAMPLES

Flex..........
 1. CRASMB TAPE
 2. CRASMB TAPE+YSP1
 3. CRASMB TAPE,TAPE.CMD,I6809+YL
 4. CRASMB TAPE+PGYS
 5. CRASMB PROG+YLS+$0100,$C100
OS9...........(Syntax for the same result as the Flex examples)
 1. CRASMB TAPE O
 2. CRASMB TAPE O Q=SPI
 3- CRASMB TAPE O=TAPE_CMD Q=L C=I6809
 4'. CRASMB TAPE Q=PGS
 5. CRASMB PROG Q=LS P=$0100,$C100

 The major difference in the invocation line is the control of the
output file for the object code. In OS9, it CANNOT be automatically
deleted. OS9 has no file name extensions, and none are generated by the
OS9 version. NOTE: No comma or space is allowed before the '+' sign in
the Flex assembler switch settings.

 Example 1 could assemble the source code file TAPE.TXT. An object
code file by the name of TAPE.BIN would be generated. For Flex, if it
already exists the user will be prompted with "DELETE BINARY OBJECT FILE
(Y-N) ?". A 'Y'es answer will cause the assembler to continue processing
after deleting the object code file. If any other character is typed
then the assembler quits and returns to the disk operating system. The
assembler listing, and the symbol table would be printed an the output
device. All FCC's, FCS's, FCB's, and FDB's would print their full object
code listings.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-3-

 Example two would do the same as example one, however, in Flex, the
object code file would automatically be deleted if need be and the
assembler symbol table not be printed. However, the listing would begin
an page 1. WARNING: The 'P' option followed by a starting page number
will surpress all output including all errors. Therefore, you should
assemble your source code at least once without any page surpression
after any changes are made to that part of the source that would not have
been printed or displayed.

 Example three will do the same as the above, but the object code file
will be "TAPE.CMD" and if it exists, will be automatically deleted. No
assembler listing will be generated, but the symbol table will be listed.
It will use the CPM file 'I6809.BIN' as specified in the command line.
Note, that if the binary file is not given in the command line, then the
command line would be:

 CRASMB TAPE,,I6809+YL
 (CRASMB TAPE Q=L C=I6809)

 The two commas separating the source file name and the CPM file name
must be used in this instance. (For Flex only.)

 In example four, the object file will again default to the source
code file name, but with an extension of ".BIN", and if it exists it will
be automatically deleted. The PAG and NO GEN options are turned on. The
symbol table will not be listed. The assembler list function is defaulted
in the ON state. Listing begins on page zero. The 'P' option may have a
page number immediately following it, which specifies the first page to
start listing. Page numbers range from 0 to 65535.

 Example five shows a file which will be assembled and the binary
file "PROG.BIN" will automatically be deleted, along with no listing or
symbol table listing. However, this example shows the use of the
'calling' line parameters which will be substituted much like macro
parameters. For Flex the second plus sign must be used to tell
CRASMB that the parameters follow. Parameters are always the last item on
 the invocation line. These will be inserted for the '&'- sign which is
immediately followed by the characters 'A' to 'I' for 1 to 9 which are
used in the macro parameter substitution syntax. The characters 'A' to
'I' are used to distinguish between the assembler calling line parameters
and macro calling line parameters.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-4-

 ASSEMBLER DESCRIPTION

 This assembler was written to accept standard assembler free format
source code files. It follows then that the user must be familiar with
assembly language, and more particularly, with the Motorola format.

 The source code file must contain ASCII characters between $20
through $7E. The ASCII character $OD is also allowed as an end of line
marker. (Standard editor format.)

 Each line may be a Maximum of 127 characters followed by a carriage
return ($OD). Four fields are recognized by the assembler as valid code
to process. These consist of (from left to right) the LABEL, the
OPERATOR (mnemonic), the OPERAND, and the COMMENT. Fields are separated
by one or more space characters ($20). Form:

[label] <operator> [operand] [comment]

 There are two types of comment lines allowed. A line which consists
of just a carriage return, and any line which begins with a '*'.
Traditionally comment lines begin to be printed at the same column in
which the label field begins . However, this limits the length of the
comment before it reaches the right side of the paper. This
assembler breaks tradition and allows the printing of comment lines to
start in column eight, the same position as the address or in the
standard position of the start of the label field. The option TAB (TAB,
NOT, -T) is used to select which form. The default is the standard form.
In addition, when a line reaches the maximum line length (defaulted to
80, but may be set by 'LEN'), a new line is issued. For comment lines,
the comment begins the same column again, but a '* ' (asterisk, space) is
inserted. All other lines which reach the maximum line length, issue
another line, and then begin in the column where the field normally
begins.

 The restrictions and option for each field are as follows:

LABEL FIELD

1. The label must begin in column one (1)
2. The label must be unique (except for the SET directive)
3. The label must begin with the letters (A-Z, a-z)
 If the UPS option is on then lower case letters
 are converted to upper case (default).
4. The label must consist of the characters
 'A'-'Z', 'a'-'z', or ' 1' - '9' , or '$' or '.' or '-'
5. The label's first six characters are significant,
 the remainder is ignored, unless changed by SYM.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-5-

6. The label must be followed by a space ($20)

OPERATOR FIELD

1. The operator is one to six characters of the letters 'A' to 'Z', 'a'
to 'z', and '0' to '9', and are followed by a space ($20).

2. Lower case letters are converted to upper case.
3. Mnemonics that use a register specifier may delete the separating

space.

OPERAND FIELD

1. All operands are generally considered an expression
2. The operands are evaluated for the expression value and the addressing

mode used.
3. Some instructions do not require an operand so in that case, this

field is considered the comment field.

COMMENT FIELD

1. This field is optional.
2. The characters in this field may be any ASCII character from $20

through $7F.
 Note that a total line length of 128 characters including the carriage

return is allowed.

EXPRESSIONS

 Expressions consist of combinations of numbers or labels separated by
the operators. The arithmetic is done in 16 bit integers. Eight bit
results are taken from the least significant 8 bits. Expressions must
not contain spaces, and the expression is terminated when a space,
carriage return, or an illegal character is found.

 The arithmetic operators '+', '-', '*', '/'. These do integer
addition, subtraction, multiplication, and division respectively.

 The logical operators are '&', '|', '!', '>>'and '<<'. These do 16
integer AND, OR, NOT, SHIFT RIGHT, and SHIFT LEFT respectively.

 The relational operators are '=', '<', '>', '<>', '<=' and '>='.
These operators may be used in conjunction with the conditional assembly
directives. They yield a true or false result by comparing the expression
on the left with the expression on the right. Their meaning is Equal,
Less than, Greater than, Not equal, Less than or equal, and Greater
than or

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-6-

equal respectively. A true conditions results in all ones, and a false
condition in zero.

 Expressions are evaluated according to the list of operator
precedence. More than one operator of the same type without parenthesis
are evaluated left to right.

 1. Parenthesized expressions
 2. Unary plus and minus (+,-)
 3. Shift operators (>>,<<)
 4. Multiply and divide (*,/)
 5. Addition and subtraction (+.-)
 6. Relational operators (<,>,<=,>=,<>,=)
 7. Logical NOT operator (!)
 8. Logical AND and OR operators (&, |).

NUMBERS

 There are five types of numbers allowed. These are decimal
(default), binary, octal, hexadecimal, and ASCII. This is a summary of
the allowed formats for numbers:

 BASE PREFIX POSTFIX ALLOWED CHARACTERS
Decimal none none 0-9
Binary % not allowed 0-1
Octal @ not allowed 0-7
Hexadecimal $ nor allowed 0-9, A-F, (a-f)
ASCII ' not allowed $20-$7F

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-7-

 type operation operator form
 --

 math add + value+value
 subtract - value-value
 multiply * value*value
 divide / value/value

 logical and & value&value
 or | value|value
 not ! !value
 shift right >> value>>count
 shift left << value<<count

 relational equal = value=value
 less than < value<value
 greater than > value>value
 less than or equal <= value<=value
 greater than or equal >= value>=value
 not equal <> value<>value

 SYMBOLS

 Symbols are names of expression values. They may be an expression
value, the PC value, or the storage counter, all of which may appear in
another expression. The first six (Flex) or eight (OS9) characters are
significant, and the first characters must be in the ASCII range of
(A-Z,a-z). The directive SYM can be used to change the length of
significant characters used for symbols. The current PC value is defined
by the character '*'. The current storage counter is defined by the
character '.' (period). Upper case characters ARE equivalent to lower
case characters when the UPS option is on (default).

 SYMBOL EVALUATION

 This assembler is a two pass assembler, so it follows that a forward
referencing symbol must be defined in the first pass. This means that a
symbol that references a symbol who's value is an expression containing
more forward references, will not evaluate as expected. The 6809 CPM
allows for one byte addresses (taken from the lower byte of the symbolic
value), and if a forward address is specified in pass one and two, an
error would have existed within pass one. If this were the case, an
error is indicated, and the longer addressing mode is used instead.
Generally, symbols are defined on the first appearance of it whether it
is within an expression or in a label field. Several flags are used to
indicate whether or not the symbol has really been defined.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-8-

AUTO FIELDING

 The four fields of the source code are tabulated to an area on the
page so that all four fields line up vertically.

AUTOMATIC LABEL GENERATION

 Labels may automatically be generated and accessed within
expressions. A label generated in this fashion is "Lxxxxx" where 'x' is a
decimal digit (0-9). For example the first use of this function gives
"L00001". Labels generated are always six characters long.

 To create a label use the form...

: <mnemonic>

 Where the colon is followed by at least one space. At assembly time
the colon will be changed to 'L' and the rest of the line moved right
five characters and then the ASCII form of the label counter (after
being incremented by one) will follow.

 To access a label, use the form...

:<decimal offset>

 Where the colon may appear anywhere within an expression as a number
or symbolic name. The decimal offset is optional and may be minus, or
positive (default). Only decimal digits are allowed.

 An example could be:

 BRA :1 BRA LOO482
 FCC "HI",4 FCC "HI",4
 : EQU * LOO482 EQU *

 This function has greater power when used within macros. An example
is the BASIC statement PRINT "HI". A macro would be created as...

 DEFINED EXPANDED

 PRINT MACRO 'PRINT "HI"
 LDX #:l LDX #L00001
 JSR PSTRNG JSR PSTRNG
 BRA :2 BRA L00002
 FCC "&1",4 L0000I FCC "HI",4
 EQU * L00002 EQU *
 ENDM

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-9-

OBJECT CODE FORMAT

 This assembler can generate object code files using one of two
selectable formats. The first is the defaulted Flex binary file format.
The second is the OS9 format or more generally known as straight output.

 The Flex binary file format looks like this:

 Byte 0 Start of record ($02, the ASCII STX)
 Byte 1 Most significant byte of load address
 Byte 2 Least significant byte of load address
 Byte 3 Number of data bytes in the record
 Byte 4-n The binary object code data in the record

 A Flex binary file may also contain an optional transfer address
record. This record is used within Flex as the starting location of the
program. This record looks like this:

 Byte 0 Transfer address indicator ($16, ASCII ACK)
 Byte 1 Most significant byte of the transfer address
 Byte 2 Least significant byte of the transfer address

 The OS9 or 'no record format' is turned on by the option 'NOR' or
when an OS9 module is started. (Using the MOD statement.) The object
code output under this mode doesn't use any sort of record set up.
Therefore, it should only be used with the MOD statement. Object code is
assumed to be one continuous memory block.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-10-

 ASSEMBLER DIRECTIVES

 CRASMB supports the following directives or pseudo operators.

SUMMARY

 FCC form constant characters
 FCS form constant string
 FCB form constant byte
 FDB form double byte
 SPC insert spaces in the output listing
 LEN set up length of output line for printing
 OPT switch assembler options
 PAG skip to next page
 ORG define a new origin (*)
 RAM define a new storage counter origin (.)
 EQU, SET (re-) assign a value to a symbol
 END, MON signal end of source code
 NAM, TTL specify a name or title
 STTL specify a subtitle
 RMB reserve memory bytes
 ERR print error message
 RPT repeat following line n times.
 MACRO define a macro
 ENDM end a macro definition
 EXITM exit macro being called
 DUP duplicate lines n times up to 'ENDD'
 ENDD end duplication bracket
 IF conditional assembly control
 ELSE complement true-false flag
 ENDIF end conditional assembly clause
 ENDC end conditional assembly clause
 WHILE incremental conditional assembly control
 WELSE complement sense of WHILE test
 ENDW end WHILE clause
 LIB open a library source code file.
 USE same as the library directive.
 CRO Load or link to CPU personality module.
 SYM Define length of significant characters for symbols.
 MOD start an OS9 module
 EMOD end an OS9 module
 OS9 create an OS9 service call

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-11-

FCC

 The function of FCC is to create character strings for messages, or
tables. The character string 'text' is broken down to ASCII, with one
character per byte. The format is:

 label FCC delimiter text same delimiter

 where the delimiter is used to define the starting and ending areas
of the string. A maximum of 256 characters may be defined. There is
another form for this directive. It is for example:

 FCC "THIS IS TEXT",$OD,$OA,4

 This variation allows strings to be set up for printing without
having to use the form FCC,FCB. Commas may be used within the
delimiters. There may be multiple strings as in this example:

 FCC /This is text/,$OD,SOA,"This is another line",4

or

 FCC /This, however is a line with a comma which is legal/,4

 The only expressions recognized are decimal or hexadecimal, or an
expression starting with a symbol.

FCS

 This directive is identical to the FCC directive, however the last
byte generated is modified. The most significant bit is set. This
directive is generally used when you are creating an OS9 module. The OS9
operating system uses this form of strings to save memory space.

FCB

 FCB is used to evaluate an expression and use the results for an
eight bit result. Multiple expressions are separated only by a comma
and may generate up to 256 bytes of object code. The format is:

 label FCB expression l,expression 2,... expression N

FDB

 The directive FDB is the same as the FCB directive, however 16 bit
results are used rather than 8 bit.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-12-

SPC

 The directive SPC will cause a specified number of spaces to be
inserted in the output listing. The format is:

 SPC expression

 If the PAGE mode is on then the outputting of spaces will not go past
the end of the page.

LEN

 The length of a line on your printer or screen may be such that
changing the normally defaulted 80 characters may be an asset. Some
printers allow 132 characters, and using this directive may be an asset.
The format is:

 LEN expression

 Where expression cannot be greater than 255. It should never be set
to less than 56. If any field exceeds the line length, a new line will be
issued, and the printing will begin at the start of the current field
position.

OPT

 The directive OPT is used to activate or deactivate the assembler
options from within the source code. No label is allowed, and no output
is generated. The format is:

 OPT option 1, option 2, option N

 The allowable options are:

 ON OFF OFF

 SYM NOS -S sorted symbol table listing
 GEN NOG -G print all lines of code generated by FCC,FDB,FCS
 LIS NOL -L print the assembled source listing (on=default)
 PAG NOP -P enable page formatting
 BIN NOB -B object code output control
 MAC NOM -M macro calling line print control
 EXP NOE -E macro expansion print control
 CON NOC -C conditional assembly skipped lines print control
 OS9 NCO -O set up storage counter mode
 REC NOR -R output object code using FLEX records (on=default)
 TAB NOT -T start printing comment lines next to line number
 FDB NCF -F set up bytes generated from FDB directive
 UPC NOU -U convert lower case symbol characters to upper case
 XIN NOX -X control machine mnemonic instruction set assembly
 INN NOI -I use local library file line numbers

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-13-

 The last two characters of the ON options don't have to be present,
as the first character is the only significant character. Either the
characters 'NO' or '-' in front of the significant character will turn
the option off.

 EXAMPLES:

 OPT PAG,EXP,REC
 OPT -S,T
 OPT L,P,C,E,M,S,-B

 An explanation is needed here to describe the storage counter mode.
Normally position independent code is set up so that it is not self
modifying and only contains program instructions and constants. This
requires that no RMB's be used within the confines of the first and last
instructions. However if the storage counter mode is turned on, either
from the calling line options, or the option 'OS9', (actually 'O', will
work just fine), any RMB's found will update only the storage counter,
and not the program counter. The directive RAM will only set the storage
 counter. Remember the storage counter can be accessed by the '.'
character in place of a number or symbol, just like the '*' accesses the
program counter. The MOD directive turns the options OS9 on and REC off
(i.e. NOR).

 The last option takes precedence aver contradictions. See the
invoking option switches section for details and precedence of any preset
switches. (Note that if the assembled source listing option is on, then
the source program can have control as to what is actually printed.) When
the PAG Option is on, automatic page formatting and titling (with page
numbers) will occur.

 The FDB option causes the two bytes generated from the FDB
directive to be interchanged. This is a necessary function for the 6502,
 8080, and Z-80 CPM'S. These three CPM's will turn this option on
automatically. The 6502, 8080, and Z-80 use two byte addresses which are
formed as LSB,MSB in start up vectors, etc. The normal mode for the FDB
directive generates MSB,LSB code.

PAG

 If the PAGE mode is on this directive will cause the current page
to eject. This directive causes a form feed character ($0C) to be sent
out to the normal output path or vector.

PAGE

 This directive is just an alternate spelling of the PAG directive.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-14-

ORG

 The ORG directive causes a new origin address (PC) for the subsequent
code that follows. The format is:

 ORG expression

 The default origin is zero (0000). If for any reason the OS9 option
is on, the storage counter is updated, not the program.

RAM

 This directive sets the current storage counter. The storage counter
defaults to zero. Only the directive RMB will update it. If the storage
counter mode is ON, then the directive RMB will only update the storage
counter, and not the program counter. The format is:

 RAM expression

EQU, SET

 The EQU (equate) directive is used to assign an expression to a
label. No code is generated and the label must appear. The SET (reassign)
 directive is used to reset a symbolic value without causing a multiply
defined symbol error.

 label EQU expression

END or MON.

 This directive is used to signal an end of the source code. If an
expression appears, then the 16 bit result is used as a transfer address
for the starting location of the object code being generated if the REC
option is on. The format is:

 END expression

NAM or TTL

 NAM or TTL are used to specify a title which is printed at the top
of each page if the PAGE mode is on. The maximum length of the title is
40 characters, and any characters exceeding that are ignored.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-15-

STTL

 This directive specifies the subtitle which is printed on the line
following the main title. It is limited 40 characters in length. The
remainder at the line is used for the system date. This area starts at
column 42 just under the assembler name and page number.

 The page title area is broken down to four fields. The first line
contains the NAM or TTL string which is limited to 40 characters and then
the last section of the first line contains the assembler title and page
number. The second line contains the STTL string in the first forty
characters, and the system date in the second half of the line.

RMB

 The directive RMB will cause the assembler to add to the current
program counter (PC) the value of the expression. It is used to reserve
space for data. The format is:

 label RMB expression

 If the OS9 option is on, only the storage counter is updated. The
directive MOD will turn the OS9 option on automatically so you need not
be concerned about using the RMB directive within a MOD-EMOD statement.

ERR

 The user may wish to generate an error message of his own definition.
Use of this directive will add 1 (one) to the error counter, and print
three '*' followed by the text of the error message as defined by the
text following the directive. The format is:

 ERR text of error message

RPT

 Single source code lines may be repeated from 1 to 127 times. This
directive will cause next source code line to be repeated. The format
is:

 RPT expression

where the expression is evaluated and if greater than 127 will cause
error number 16 (Illegal expression).

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-16-

MACRO

 To define a macro, use this directive. The source code text lines
following are placed into a reserved area of memory and are referenced by
the name given the macro. The last line of the macro definition must be
an ENDM directive, or the text will continue to be defined into the macro
space. If all user memory is used the macro cannot be defined, and an
error will be displayed. Macros may be defined from within another macro
that is being defined, and the text for each macro is not related. Macros
may call other macros from within other macros. However, the macro
routine uses a stack at the end of user memory and this stack may
over-run the symbol, macro name-text tables. The label is the macro
name.

 The format is:

 name MACRO (up to six significant characters)

 To call the text for a macro, merely use its name as any mnemonic. If
any parameters are to be passed to the macro, then follow the name by a
space, then the expressions. Each expression must be followed by a comma
(,) if more expressions are to be included.

 While macros are being called, parameters will be substituted at
any point in the lines in the macro. Up to nine parameters are
supported, and are referenced by the character '&' followed by a digit of
1 to 9. If no parameters were defined on the macro call the parameter
referencing characters are deleted from the line. Parameters are
referenced on a local level to each macro. That is if a macro is called
from within another macro, the current macro's parameters are pushed on
to a stack. The macro calling line may use the parameter substitution
characters to pass on a parameter to a subsequent macro.

 The assembler calling line parameters are referenced by the '&'
character followed by 'A' to 'I' for parameters 1 to 9 of the assembler
calling line parameter buffer. These are in a sense 'global' in nature,
and may be called at any time (doesn't have to be within a macro).

 Note that parameter substitution is done an a text basis. The same
characters for each parameter are substituted for each

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-17-

reference to it, not the value of any symbol.

 The format is:

 <label> name expression 1,expression 2.... expression 9

 Remember that since macros may be nested it is possible to call one
macro from within the other that calls the first macro. This condition
would eventually cause a 'macro calling stack' over run error. Also
note, that macros may define other macros from within the first macro.
The defining process of the second macro occurs at the same time the
first macro is defined. This is a change from the TSC assembler, where
macros are defined from within other macros when the first one is called
(at expansion time)

ENDM

 This directive is to signal the end of a macro definition. That is
its only purpose. If a macro is not being defined, and this directive is
found, it is ignored. No labels are allowed. If a macro was previously
being defined, then the previous macro definition continues until another
ENDM is found. Internally the first macro will have a split in it where
the text is linked together.

 The format is:

 ENDM

EXITM

 This directive will cause the current macro call to be exited.
Control will be given to the previous macro or to normal assembly. It is
normally used with conditional assembly.

DUP

 This directive is used to cause the succeeding lines up to the
directive 'ENDD' to be duplicated n times up to 255. It is allowed only
within macro calls, and cannot be nested. The 'ENDD' is not printed
until the duplicate count is equal to zero.
The format is:

 DUP expression

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-18-

ENDD

 This is the closing bracket for the directive 'DUP'. Its only
purpose is to mark the end of the duplicate lines in the macro. The DUP,
ENDD is similar to a FOR-NEXT loop in BASIC.

IF, IFN, IFxx, IFC, IFNC, IFP1, IFP2, (,SKIP)

 These directives are used to start conditional assembly clauses.
The form 'IF' will set true if the expression is greater than zero. The
form 'IFN' will set true if the expression is equal to zero. The 'N'
refers to the compliment of the test results. The succeeding lines will
either be skipped (false condition) or assembled (true condition) up to
the ENDIF. In either case, if 'ELSE' is found the test condition is
complemented. That is, if it was true, ELSE makes is false or if it was
false, ELSE makes it true. So assembly may be structured with this
conditional.

 The syntax is:

 IF <expression>

or

 IFN <expression>

 IFxx <expression>

 The form "IFxx" has the following forms: IFEQ (if equal to zero),
IFNE (if not equal to zero), IFLT (if less than zero (most significant
bit set)), IFLE (if less than or equal to zero), IFGE (if greater than
or equal to zero), IFGT (if greater than zero). The form "IF" is the
same as "IFNE" and the form "IFN" is the same as "IFEQ". In all cases
the value of the expression is compared to zero and the test is performed
to see if the condition is true or false.

 The forms 'IFC' and 'IFNC' do a string comparison rather than
expression comparison. These forms follow a relation of EQUAL or NOT
EQUAL to set or reset the conditional test flag. The 'string' may be just
a string with no embedded commas or spaces or it may be enclosed in
single or double quotes with embedded spaces or commas.

 The syntax is:

 IFC <string>,<string>

 or

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-19-

 IFNC <string>,<string>

 Example: IFC RESUL,'MINUS'

 In addition to the conditional assembly code there is a form that
allows some number of lines to be skipped as a result of a true condition
of the directive in use. The directives 'EXITM' and 'ENDIF' are not
allowed and will generate 'Unrecognizable Mnemonic' errors if found.
The direction and limit of the skip value are limited to minus 255 or
plus 255. The skip mode is allowed ONLY WITHIN A MACRO. A backwards
skip value must be preceded by a minus sign. The plus sign is optional
for forward skips. The syntax is:

 IF <test equation>,<skip count>

 As an example,

 IF COUNT<20,-3

 If the symbol COUNT is less than 20, then go back three lines.

 The form IFP1 and IFP2 allow for assembly by the either pass one or
pass two. Equate files don't have to be assembled again on pass 2, so
the form:

 IFP1
 LIB FLEXEQUS
 ENDIF

 will assemble the library file FLEXEQUS on pass 1, and skip it on
pass 2. The form 'IFP2' is a complement of the pass one function in that
any code between a IFP2 and ENDIF will be skipped on pass one and
assembled on pass two.

ELSE

 This directive is only recognizable within a conditional clause. It
will reverse or compliment the test condition result flag.

ENDIF or ENDC

 Conditional clauses are ended with this directive. It has no other
function or form. The syntax is:

 ENDIF
 or
 ENDC

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-20-

WHILE, WHILEN

 This directive is a very convenient method of controlling assembly
based upon a symbolic value. Within the network of this clause the
assembler will first check the value of a specified symbol for a true or
false condition before allowing further assembly. Normally the symbol
must be non-zero before a true state is found, however the form WHILEN
will allow zero to be the true state for the test. Once assembly has
been turned off, it is only possible to turn it on again by WELSE or
ENDW. The structure WHILE... ENDW may be nested to any depth as long as
there is room on the assembler stack.

 The syntax is:

 WHILE <symbol name> or WHILEN <symbol name>

WELSE

 The WHILE... ENDW test sense is switched with this directive. This is
useful for turning assembly back on.

ENDW

 The WHILE structure must always have a matching end phrase. ENDW
performs the function just like ENDIF does for IF.

 The BIG thing to remember about the two conditional phrases, IF and
WHILE, is that the IF has first priority, and WHILE has second. Which
means at the first level (outer most) IF clauses may control the WHILE
clauses. An example of the WHILE structure is ...

 WHILE PICK
 ...code.-.
 PICK SET (A<9)|(B<9)
 ... code...
 ENDW

 The above example shows how the SETting of a symbolic value may
control further assembly.

LIB

 The LIBrary directive is used to open a source code file for
assembly. This directive is very useful for large programs. They may be
broken down into many parts, yet only have to be assembled by referencing
one major source code file which contains the list of library files to
assemble. The Flex assembler will allow a maximum of 13 source files to
be open at any time, meaning you can nest the LIB directive up to 12
levels. The main source file counts as the first file.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-21-

The OS9 version may nest this directive up to 11 times, i.e. in OS9, 12
files may be open at any time.

 If the INN option is on, and the calling line option "N" is selected
then the actual line number of the current library file will be printed
as the line number in the listing. Error messages always report the line
number and the name of the file in which the error came from. The format
is:

 LIB <file spec. or path name>

 The default extension is ".TXT".

USE

 This directive is identical to the LIB directive. See the above
documentation on the LIB directive to use it.

 Examples:

 LIB 0.DINEW
 USE FOUUER
 LIB FLEXEQUS
 USE /D0/DEFS/OS9DEFS

CRO

 This directive is used to load or link to a CPU personality module.
 In Flex the module is loaded from the working drive, to the end of the
assembler, and the storage area is adjusted for the difference in size.
The module must be written in PIC (position independent code.) For OS9
the module is linked to first, then if it is not found, it is loaded
from the execution directory and linked again. Under OS9, the assembler
may be loaded anywhere in RAM, and the CPM may be located above or below
it. The CPM is not given any storage area, because it uses the same
storage area as the assembler. Calls to and from the CPM are made by
pointers which are pointed to by offsets from the User stack pointer.
The format is:

 CRO <File spec. or path name (module name)>

 Once a module has been loaded or linked, no more may be loaded or
linked. Under OS9, the module will be UNLINKED when the assembler is
done with it.

SYM

 The SYM directive allows you to define how many characters are to be
used for symbols. Normally, (without defining) only 6 (8 for OS9)
characters are the significant characters stored in the symbol table.
This directive allows you to define the length to any value in the range
of 3 to 30 characters. Longer symbols use more memory, so the larger the
program being assembled, the shorter the symbols need to be. However,
long symbols allow

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-22-

better program self documentation. The syntax is:

 SYM <expression>

where 'expression' must range between 3 and 30. if any symbol is defined
before the SYM statement, you will get an error message, because the
length will have already assumed its default size.

MOD

 This directive is provided to allow you to generate OS9 memory
modules with their associated module headers, parity check value, and CRC
check values. You probably won't use this feature unless you also can
run OS9.

 The MOD directive is used at the beginning of an OS9 module. Its
function is to create a standard module header and to set the assembler's
NOR and OS9 options. It also sets up the CRC check value for the
generation of the CRC check value which is placed at the end of the
module by the EMOD directive.

 MOD uses an operand that is exactly four or exactly six expressions
long, each separated by commas. Each expression corresponds to the
elements of a module header. See the 'OS-9 System Programmer's Manual'
for details.

 The following is a description of the MOD operation:

1. The assembler's program address counter ('*') and data address
counters ('.') are set to zero, and the internal CRC accumulator and
vertical parity generators are initialized. The assembler is put into
the NOR and OS9 option modes.

2. The OS9 sync codes $87 and $CD are generated.

3. The first four expressions in the operand list are evaluated and
generated as object code. They are:

 a. Module size (two bytes)
 b. Module name offset (two bytes)
 C. Type/language byte (one byte)
 d. Attribute/revision byte (one byte)

4. The header parity byte computed from the previous bytes is generated.

5. If the two optional additional operands are present, they are
evaluated and generated. They are:

 e. Execution offset (two bytes)
 f. Permanent storage size (two bytes)

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-23-

 Note that some of the expressions are two bytes long and some are
only one byte long.

 This directive forces the origin of the object code to zero, so all
labels used after this directive are inherently relative to the beginning
of the module. This is perfect for the name and execution offsets. The
code in the body of the module follows the MOD directive. As the
subsequent lines are assembled, the assembler's internal CRC Generator is
updated to keep a running CRC value. The EMOD statement (which has no
operand) is used to terminate the module. It outputs the correct three
byte CRC generated over the entire module. The assembler is left with
the NOR and OS9 options selected.

EXAMPLE:

 MOD <program length>,<name offset>,<type/lang>,<attr/revis.>,
 [<execution offset>,<permanent storage size>]

 type set prgm+objct
 revs set reent+l
 mod pgmlen,name,type,revs,start,memsiz

 temp rmb 1
 buffer rmb 80

 memsiz equ . data storage size is final "." value

 name FCS /testprogram/

 start equ *
 leax buffer,u get address of buffer
 clr temp
 inc temp
 ldd 80
 LOOP clr 0,X+
 SUBD 1
 BNE LOOP
 OS9 F$EXIT return to OS9
 EMOD
 pgmlen equ * program size is address of last byte +1

EMOD

 This directive closes or ends an OS9 memory module. The current CRC
value is output as object code. The assembler must have previously used
the MOD directive to correctly generate an OS9 module.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-24-

OS9

 This directive is used as a convenient way to generate OS9 system
calls. It has an operand which is a byte value to be used as a request
code (function number). The output is equivalent to the instruction
sequence:

 SWI2
 FCB operand

EXAMPLES:

 OS9 I$READ
 OS9 F$EXIT

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-25-

ASSEMBLER OPERATION

Pass 1

Pass one of the assembler is used to build the symbol table. It is
used to resolve forward refewrences in pass two.

Pass 2

Pass two is the main pass of the assembler. The following is a list
of the operation performed.

1. Error messages printed.
2. Assembled source listing printed if LIS flag is on.
3. Object code is generated, if BIN flag is on.
4. Closing subroutine of the CPM is executed.
5. Error and symbol count displayed
6. Warning count if any displayed
7. Phasing error if any difference in the last
 assembled address between pass 1 and 2.
8. LAST ASSEMBLED ADDRESSES if pass 1 and pass 2
 are listed if the 'LIS' option is off.
9. Sorted symbol table printed if SYM flag is on.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-26-

CUSTOMIZING THE ASSEMBLER

 The file 'SCCZERO' is a set of EQUATES that are used by the CPM for
communication with the assembler. See the section on NEW CPU PERSONALITY
MODULES for details on writing new CPM'S.

 There are several things in the assembler which may be changed. They
are all located at the beginning of the program. These include a set of
vectors, title control, page eject control, default options, flag
characters, and the default symbol length. These are defined in the
supplied file named OPTION.TXT, which allows you to set, assemble, and
append these values to the assembler to create a special version. One of
the more useful vectors are the binary object code output vectors which
when changed could allow you to send the object code to a serial port,
cassette tape, an EPROM programmer, or UGH, memory. The assembler's third
title which displays "++++++++ CRASMB V4.0 by LLOYD I/O, All Rights
Reserved ++++++++" can be redefined to reflect your own permanent third
title.

 APPENDING THE ASSEMBLER AND A MODULE

 In Flex any of the modules may be appended to the assembler to
create a special version of the assembler which when called will already
be set up for the CPM needed. This CANNOT be done in OS9.

 Since the CPM's are position independent a special process must be
followed before the new assembler will work correctly. Step one is to use
the following syntax to obtain a map of the assembler.

 MAP CRASMB

 The Flex command MAP.CMD must exist on the system disk and the
assembler (CRASMB.CMD) must exist on the working drive. A loading map of
the assembler will be displayed much like:

 Loads from $0100 to $2A6F
 Transfer address is $0100

 Step two is to get a map of the CPM that is to be appended to the
assembler. (MAP I6809.BIN for example). The MAP.CMD which is supplied
with the assembler will default the file spec extension to CMD. So the
exact CPM file spec must be used, including the extension. The map
could be displayed as:

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-27-

 Loads from $0000 to $065B

 Now add the ending address of the assembler to the ending address of
the CPM. (for example $2A6F + $065B = $30CA.) The assembler must now
assemble a short file containing basically nothing while the CPM to be
appended must be loaded by the assembler. The loading of the CPM must be
done by the assembler to get the CPM loaded at the correct address. (The
syntax: CRASMB <dummy file spec.>,,<CPM file spec.>+BLS can be used to do
that.) When the assembler is done, SAVE the memory from $0100 to the
answer of the addition of the ending addresses of assembler and the CPM,
and give it a transfer address of $0100. (For example SAVE
AS69.CMD,0,30CA,0 will save assembler as a 6809 assembler: note these are
not the actual addresses.)

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-28-

ERROR MESSAGES

The 6809 version of the cross assembler supports 22 error messages which
are always printed BEFORE the offending line. They are as follows:

 0. <user error message pointed to by X>
 1. MULTIPLY DEFINED SYMBOL
 2. UNDEFINED SYMBOL
 3. ILLEGAL CHARACTER(S)
 4. UNRECOGNIZABLE MNEMONIC OR MACRO
 5. MNEMONIC REQUIRES A LABEL
 6. RELATIVE BRANCH TOO LONG
 7. ILLEGAL ADDRESSING MODE
 8. USE <PATH> OR LIB <PATH> NESTING LEVEL TOO DEEP
 9. OUT OF MEMORY WHILE DEFINING A MACRO
 10. OUT OF MEMORY WHILE CALLING A MACRO
 11. ILLEGAL REGISTER SPECIFIED
 12. ABORTING..MEMORY OVERFLOW
 13. MNEMONIC CANNOT HAVE A LABEL
 14. PARAMETER SUBSTITUTION ERROR
 15. ILLEGAL NESTING
 16. ILLEGAL EXPRESSION
 17. ILLEGAL 'CPM' CALL
 18. MULTIPLY DEFINED MACRO
 19. UNBALANCED PARENTHESIS IN EXPRESSION
 20. ILLEGAL LABEL OFFSET SPECIFIED
 21. ILLEGAL SYMBOL CHARACTERS
 22. PHASING ERROR DETECTED
 23-255. <user table of error messages pointed to by X>

 Error code 0 will print the message pointed to by the index register
(X) as a string of characters followed by a $04 (ETX). Error code 23 to
255 will search and print a user defined error code table and messages
which is pointed to by the index register (X). The table follows the
format...<error code number (single byte)> <error message address
(double byte)>... to end of table which is marked by error code zero (0).

 Error messages are printed in the following manner:

*** message IN LINE # xxxx OF "file name.ext"

 The line number is the actual line number of the line which was read
from the current file, even if it is a nested library file. This feature
tells you exactly which line and which file caused the error.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-29-

ADDITIONAL FEATURES

 The 6800 CPM supports the extra mnemonics BHS and BLO, which are the
logical equivalents of BCC and BCS, respectively. The extra mnemonics are
easier to remember and use.

 The 6909 CPM supports the mnemonics:

 ABA --- STA B ,-S;ADD A,S+
 CBA --- STA B ,-S;CMP A,S+
 CLC --- ANDCC $FE
 CLF --- ANDCC $BF
 CLI --- ANOCC $EF
 CLV --- ANDCC $FD
 CLZ --- ANDCC $FB
 CPX --- CMPX
 DES --- LEAS -1,S
 DEX --- LEAX -1,X
 INS --- LEAS 1,S
 INX --- LEAX 1,X
 SBA --- STA B,-S;SUB A,S+
 SEC --- ORCC $01
 SEF --- ORCC $40
 SEI --- ORCC $10
 SEV --- ORCC $02
 SEZ --- ORCC $04
 TAB --- TFR A,B ; TSTA
 TAP --- TFR A,CC
 TBA --- TFR B,A ; TSTA
 TPA --- TFR CC,A
 TSX --- TFR S,X
 TXS --- TFR X,S
 WAI --- CWAI $EF

 SETDP --- SET THE DIRECT PAGE VALUE AND FLAG
 SETDP <EXPRESSION> or SETDP ON or SETDP OFF
 REG --- Set up a symbolic value to the stack push
 pull bits for PC,U,Y,X,DP,B,A,CC (D=A and B)

 Examples of SETDP and REG

 SETDP 0
 SETDP OFF
 SETDP $E8
 SETDP ON

 ALLR REG $FF
 SOMER REG X,Y,D
 SOMES REG CC,A

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-30-

 Extended or direct addressing modes can be forced, but normally the
assembler tries to use direct before extended. This is done by comparing
the upper byte of a 16 bit extended address operand to the SETDP value.
If they are not equal, or the SETDP is OFF, then extended addressing
instructions have to be used. You can force extended addressing modes by
preceding the operand with a '>' greater than sign, or direct addressing
modes by preceding the operand with a '<' less than sign. Examples:

 STA >$80 force extended
 STA <PASS force direct

 In addition, some accumulator opcodes allow for the form for example:

 STA A, STA B, STAA, STAB, STA, and STB. These include ST, OR, and
LD. Also mnemonics that call for a register specification character(s)
may be followed by a space before the register name. These types of
mnemonics usually will have the register name printed where the normal
position of acc. A or B was for the 6800 assembler. Some instructions
require an addressing mode which may be indexed. Most of those are
indicated by the use of a comma (,) within the operand expression. For
example "PCR" will not work for a 0,PCR value, it must be ",PCR".

 The Z-80 CPM has changed the Z-80 'SET' mnemonic to 'BSET' for bit
set, because of a conflict between it and the assembler directive 'SET'.

 Also note that since this assembler supports parenthesized
expressions, any instruction which would have used parentheses must use
brackets '[' and ']'. For example the Z-80 CPM uses [SP],HL instead of
(SP),HL.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-31-

NEW CPU PERSONALITY MODULES

 CRASMB exists because the need for a versatile modular macro
assembler was seen. To that end this documentation is provided to enable
 the user to write his own CPM for the CPU of his choice. It is intended
to be used in conjunction with source code to one of the CPM'S.

 Please note the available CPM's included in this package, and
up-coming in the near future. Currently there exists CPM's for the
6800-2, 6801-3, 6805, 6809, 6502, CDP1802, 8080-8085, and Z80. All
run on 6809 systems. Appendix A lists the file names for assembling each
CPM for Flex and OS9. Appendix 3 lists the main assembly file for the
Flex 6809 CPM. Appendix C is a partial list of some of the library files
used by the 6909 CPM. Appendix D is a listing of the main assembly file
for the OS9 version of the 6809 CPM. The only differences between Flex
and OS9 CPM's are the main assembly file and the library files for the
assembler's storage area, the system date title set up, and the OS9
system definitions call. The library files for the main part of the
modules are identical.

 The assembler directive CRO is used to call a new CPM. It is assumed
the file being specified is a binary program specifically written for
this assembler and is written in POSITION INDEPENDENT code. When loading
in the new CPM in Flex, it is checked for the loading address (which
must be zero ($0000). If the starting load address is anything other
than the expected loading address, an error will be invoked. If the file
specified does not exist, control will be returned back to the disk
operating system. The error will be "ILLEGAL 'CPM' CALL".

 For OS9 the operation of linking or if need be loading-linking is
mostly handled by OS9 system calls. The assembler is given the start of
the module, where-ever it is in memory, and its starting execution
addresses and it stores these in the storage memory (which is common
between the assembler and module both by the direct page register
and the user stack pointer.) If the CPM is found in the memory directory,
it is not loaded from disk, which means that if it is not found in the
memory directory, and attempt will be made to load it from the file
specified in the path list following the CRO directive. Program linkage
between the module and assembler is maintained by run time pointers on
the user stack and direct page registers.

 In either case (of Flex or OS9 versions) there are three long branch
 to subroutines which are at the start of the CPM. The assembler
assumes these instructions and will jump to each routine as the call is
needed. After the three CPM vectors are six ASSEMBLER vectors used to
 access subroutines within the assembler.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-32-

 LBRA INTERP Start of subroutine.
 Return equal if mnemonic found and assembled
 Return NOT equal if mnemonic not found
 LBRA INTINT Initialize flags and values.
 Executed when CRO is found and at the
 beginning of pass 1 and 2.
 LBRA CLOSE Process any closing functions.
 For instance report some type
 of message that indicates the
 status of relocatable code, etc.
 must exit with an 'RTS'.
TREES JMP [CPMTRE,U] Search mnemonic table
PERROR JMP [CPMPER,U] Print error by number
OBS JMP [CPMOBS,U] Save byte of object code
SKIP JMP [CPMSKI,U] Skip past spaces in line
OUTLIN JMP [CPMOUT,U] Get the character in line
EXPRES JMP [CPMEXP,U] Evaluate 16 bit expression

 When assembling a new CPM, the main assembly file calls the library
files used to establish the correct assembler storage equates, the
operating system equates and the above listed vectors. It will also
force the starting locations of the CPM to the correct address. All
processing is done through offsets from the user stack pointer (,U). The
file T6800.TXT may be used as an example for proper syntax, which is
partially listed in appendix C. Appendix B contains a typical main
assembly source file for the Flex CPM's and appendix D contains a typical
main assembly source file for the OS9 CPM'S.

 Appendix A lists main disk files for assembling the various CPM'S.
They are short files which call the necessary LIBrary files for the
needed assembling subroutines and mnemonic tables. These are listed so
you may make sure you have the correct source files for the Flex or OS9
CPM's if purchased.

 The following paragraphs describe the three CPM subroutines, and the
six ASSEMBLER subroutines. The PAGEFLEX and PAGEOS9 source files
contain some equates which are used by the ASSEMBLER subroutines which
must be set up properly before calling the routine. They also contain
some equates for storage areas which may be used by the CPM in any way
needed. The addressing mode normally used to access them is also given.

INTERP - Search and process mnemonic

 This is the first vector in the module. The assembler calls this and
the next three vectors which are long branches to the correct
subroutines.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-33-

 This is the main mnemonic processing search and process subroutine.
It handles the mnemonic table lookup, assembler search call, and
multi-way branch to any of several instruction type subroutines. It must
return a NOT-EQUAL condition, if the mnemonic was not found. The
assembler subroutine TREES is used to perform the search, and it returns
an EQUAL condition if the mnemonic was found. Once the mnemonic is found,
a branch to a 'type' subroutine which may handle several instructions of
the same general type, (such as instructions with no operands), may call
some of the other assembler subroutines to process operands, and save
object code. Errors may also be reported.

INTINT - Module initialization

 This routine is called at the start of pass 1 and pass 2. and when a
module is loaded or linked. All of the supplied CPM's set the system
date into the page title area under the page number. The 6809 CPM set up
flags to handle direct page instructions. The 6502, 8080, and Z-80 CPM's
set the OPT FDB option so that FDB-directives will generate interchanged
bytes of code.

CLOSE - Report errors,... etc.

 This subroutine is called by the assembler when both passes are
completed. Currently none of the supplied CPM's do anything, but errors
or other types of information may be displayed. This should occur at the
end of the listing.

TREES - LBSR TREES

 This subroutine is the mnemonic look-up search routine. It performs a
binary tree search or serial search for the mnemonic in the current line
of source code. Upon entry the index register (X) must point to the
start of the table, and accumulator A (items) must contain the count of
mnemonics in the table. The variables 'BNAML' (count of characters to
compare) and 'ITLEG' (byte count of each mnemonic, separator character,
and data table address, which are equal amounts for each mnemonic in the
search table, known as the record length), must be set to the appropriate
 values for the table being searched. If the table contains less than 11
mnemonics a serial search will be done because of the overhead required
in a binary tree search. Variable length mnemonics or directives may be
in the same table, and when jumping to 'TREES' the count of items (acc.
A) must be less than 11.

 The flag 'FCMODE' must be set none zero or else the address found
with a mnemonic will be jumped to as a subroutine. (Note: this may be a
desired function.) Upper and lower case characters in current assembly
line are considered the same, assuming the lookup table to be in all
upper case.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-34-

 When the search is complete it returns with a status of NOT EQUAL if
the mnemonic is NOT found. At this point the CPM should return control
to the assembler, or another table may be searched. If the status of
EQUAL is returned to the CPM, then the mnemonic was found and the index
register contains the offset address of the data table for that mnemonic.
(Note: 'offset address' in the index 'X' register must be adjusted to get
the run time address.) The CASMBMAC.TXT file contains a macro which
should be used to change the index register. (It adds the program counter
to the index register. Check its listing for more information.) The
mnemonic table must follow the format of:

 FCC /??????/,0 or FCC /??????./
 FDB DATA FDB DATA

 In the above example there are six characters per mnemonic. There
may be from one to six characters, the separator character and then the
address of a data table. Above, a period (.) is used as a separator. (A
 separator may be a period or a value of 0 to $1F or greater than $7F.)

 The above syntax is followed for each mnemonic with the same length
until all mnemonics have been defined. The table must be arranged in
alphabetical order, or the binary search routine will not work.

 For each change in mnemonic length, a different search must be
performed with the specified comparison and record lengths on a different
mnemonic table.

 Appendix C contains the first part of the 6809 CPM to give an
example of how to use this routine, and return control to the assembler.

PERROR - LBSR PERROR

 This routine prints an error message by the number in accumulator A.
It also increments the error counter which is printed at the end of
assembly. Error messages are printed in pass 2 and always BEFORE the
offending line. Error numbers from 1 to 22 are assembler errors. Error
number 0 will print the error message pointed to by the index register
(X). Error numbers 23 to 255 will search a user defined table of error
codes. This table is pointed to by the index register (X) when calling
this routine, and the table must follow the format of <error code
number>, <error code message address>. If an error code of zero is found,
it marks the end of the table. The format is:

 FCB 22
 FDB ERR22

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-35-

 FCB 23
 FDB ERR23
 FCB 0 MARK END OF TABLE

OBS - LBSR OBS

 To save any object code information, load accumulator A with the
data, and then use this subroutine. The program counter (PICK) will be
incremented in addition to saving the code.

SKIP - LBSR SKIP

 Sometimes finding the starting point of information in the source
code line is necessary for further processing by a CPM. This routine will
find a space, then skip all spaces to the first non-space character in
the input line. If a space is not found before the end of the line is
found, then SKIP returns in a NOT EQUAL condition. If a space was found
then an EQUAL condition is returned.

OUTLIN - LBSR OUTLIN

 To get the next character from the source code line, the CPM may use
this routine. If the end of the line is found a NOT EQUAL condition is
returned, else an EQUAL condition is returned.

EXPRES - LBSR EXPRES

 This subroutine will resolve an expression. LX must point to the
first character of the expression. If the expression is resolved without
error, the result is returned in the index register with an EQUAL
condition. If an error occurs, such as an undefined symbol or illegal
character for a specified base, a condition of NOT EQUAL is returned
along with the error code. (Error numbers 2 and 16 respectively.)

--

CPMBUF - CPMBUF,U (LEAX CPMBUF,U)

 This is a 64 byte scratch pad area which may be used for any purpose
by the CPM. Its main purpose it to give the current user his own scratch
area.

CPMTIT - CPMTIT,U (LEAX CPMTIT,U)

 This is a 40 character buffer which is used as the second part of a
two part title by the assembler as a header on each page when the PAG
option is turned on. Currently the CPM's get the system date and convert
it to a string such as 'March 18, 1992'. The string is followed by a $04
(eot). A close look at the file 'TIME.TXT' will show how this is done.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-36-

PASS - TST PASS,U

 This is the pass number flag. If it is zero, then pass one is in
operation, but if it is non-zero then pass two is in operation.

BNAML - STA BNAML,U

 This 8 bit register is used for the TREES subroutine to establish the
length of the comparison characters to use. A maximum of six (6) may be
used. It must be set to the appropriate value before using the TREES
routine.

ITLEG - STA ITLEG,U

 This 9 bit register holds the total length of bytes used for each
mnemonic, separator character, and table address. It is referred to as
the record size.

FERS - TST FERS,U

 This flag is used as a general purpose error flag. It is treated as
a local variable only. That means the CPM cannot use it from one call to
another and expect it to retain its previous value.

TYPE - STA TYPE,U

 This variable is treated as global in nature. It is set to the
addressing mode type and expression type from the following table by the
CPM before returning to the assembler.

 0 No code, no expression
 1 No expression used
 2 Expression used
 3 EQU with expression
 4 Accumulator referenced, No expression
 5 Accumulator referenced with expression
 6 FDB, FCB types
 7 Accumulator with indexed expression
 8 Indexed expression
 9 FCC only type
 10 Indexed expression with post byte and offset
 11 Accumulator version of number 10

 The TYPE variable is used by the assembler to determine the how to
print the assembled line. If the value is negative the opcode will be
treated as a 16 bit instruction.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-37-

 The format for printing the opcode is as follows:

 IIII PP DDDD AAAA
 ! ! ! !
 ! ! ! ----- absolute address of a relative instruction
 ! ! ---------- 8 or 16 bits of data
 ! -------------- indexing post byte
 ------------------ 8 or 16 bit instruction

 FCMODE STA FCMODE,U

 This flag is used by the routine TREES to determine if the table
address associated with a mnemonic is an address to execute or an address
of an opcode table. If it is zero, TREES will call that address as a
subroutine.

PICK - LDD PICK,U

 This 16 bit variable is the assembly program counter. It is set by
the directive ORG and incremented any time object code data is saved by
the routine OBS. It may be used by the CPM for such things as determining
addressing distances, etc.

RAMK - LDD RAMK,U

 This is the current storage counter. It is accessed by the '.' as
opposed to the '*' for the program (instruction) counter.

LX - LDX LX,U

 This is the current position in the source code line. It is used by
OUTLIN, SKIP, TREES, and EXPRES. Note that it contains the actual
address of the current position, and is not an offset. The syntax 'LDA
[LX,U]' will get the current character into accumulator A.

GREAT - STA GREAT,U

 This character variable is normally set to a space. It is printed
when the list option is on, after the line number and before the address.
The 6809 CPM sets it to a '>' if short branches could be used for long
branches. Also it is set to a 'W' when extended addressing modes are
used when the OS9 (position independent code) flag is on. It is set to a
'D' for instructions that affect the storage counter, like the RMB or ORG
pseudo directives. You may set it to any printable character between a
space ($20) and a tilde ($7E).

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-38-

RELADD - STX RELADD, U

 The CPM's which use some kind of relative addressing modes display
the absolute value of the address expression after the last byte of the
code field and just before any possible label. The value displayed there
is the value in this 2 byte variable. However the flag PRELAD,U must be
set to a non-zero value to indicate to the assembler that the RELADD,U
value is to be displayed.

PRELAD - STA PRELAD,U

 This is the flag which must be set so that the value in RELADD,U will
be display in its field.

FBBF - STA FBBF,U

 This is the flag, which when set will reverse the order of the two
bytes of code generated from the FDB directive. The 6502, 8080, and Z-80
CPM's set this flag.

ADACC - STA ADACC,U

 This variable is used by a CPM subroutine that checks for a
reference to an accumulator. The routine can clear it first, then check
for the reference type. For example, the 6800 CPM sets it to one for
accumulator A or to two for acc. B.

ADMODE - STA ADMODE,U

 Most CPU types have several addressing modes. The 6800 CPM sets
this variable to one of three values depending on the addressing mode.
They are 1 for immediate, 2 for indexed, and 3 for extended.

 The next four 16 bit variables may be used by the CPM. The supplied
CPM's use these in the following manner.

XX1 - STX XX1,U

 XX1 is used for the storage of the object code table address after
returning from TREES.

XX2 - STX XX2,U

 The results from an expression evaluations are stored here.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-39-

XX3 - STX XX3,U

 The value of a branch instruction is stored here. It is checked for
a branch-to-far condition.

XX4 - STX XX4,U

 The current source code line pointer (LX) is stored here temporarily
while checking for a reference to an accumulator.

WARN - LDD WARN,U

 This is a counter which a CPM may update to reflect any type of
warning messages which have been reported. When pass 2 is complete the
value stored here is checked and if found to be not equal to zero, its
value will be printed as "TOTAL WARNINGS :". The 6809 CPM counts the
warnings generated from using extended addressing modes while the
assembler is in the position independent code generation mode (OPT OS9).

PCTMOY - LDX PCTMOY,U

 This five byte buffer holds the PC (PICK) value and symbol name
address (in symbol table) and a flag that indicates whether or not the
symbol value was set by a assembler directive. PCTMOY+0 is the value,
PCTMOY+2 is the symbol address, and PCTMOY+4 is the flag which is set if
a label is found in a source line, and must be reset if the value at
PCTMOY+O is not to be set into that symbol.

WSYM - LEAX WSYM,U

 This is the mnemonic and symbol name storage area where comparisons
are made. The assembler subroutine TREES uses this buffer for the binary
tree search, but the input line for the serial search. The serial
search is used to find difficult mnemonics and operands. The source
code the Z80 CPM shows extensive use of the TREES search routine.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-40-

 The following is an outline of the steps used to write a CPM.

I. Study the CPU instruction set.

 A. Determine all address modes.
 B. Determine like instructions.
 C. Classify instructions of equal length mnemonics
 1. There will be only a few different
 subroutines to handle all instruction
 types.
 2. Form a map of the instructions.
 a. Address modes Vertically.
 b. Like instructions horizontally.

II. Build or Edit the mnemonic tables.

 A. Build the mnemonic records in alphabetical order.
 1. The spelling.
 2. The separator character.
 3. The mnemonic op-code table address.
 B. Build the op-code tables for each mnemonic.
 1. Like instructions have like structure
 so the same CPM subroutine may
 handle them.
 2. The following general structure is
 recommended
 a. Interpreter subroutine address.
 b. Instruction op-codes.
 3. See the source code for one of the CPM'S.

III. Write or encode the subroutines to handle each type of instruction.

 A. The 6800 CPM has 9 routines.
 B. The 6502 CPM has 11 routines.
 C. The 6805 CPM has 7 routines.
 D. The 68O9 CPM has 20 routines.
 E. The 1802 CPM has 5 routines.
 F. The 8080 CPM has 11 routines.
 G. The Z-80 CPM has 19 routines.

IV. Write or encode the main CP-M as follows.

 A. Set FCMCDE as not equal.
 B. Set BNAML to the length of the mnemonics.
 C. Set ITLEG to BNAML plus one for the
 separator character and plus two for the
 op-code table address. Set to 6 for
 three character mnemonics.
 D. Set the index register (X) to the address

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-41-

 of the alphabetized mnemonic table.
 E. Set accumulator A to the number of
 mnemonics in the table.
 F. Jump to subroutine TREES.
 G. If NOT EQUAL condition returned then EXIT.
 H. If EQUAL condition returned then do this.
 1. Save the index register in XX1.
 2. Clear TYPE.
 3. Clear ADACC.
 4. Load the index register with the
 first two bytes (instruction handler address)
 of the opcode table. (LDX 0,X)
 5. Then jump to the address in the
 index register. (JMP 0,X)
 I. The instruction handler subroutine will
 now execute and translate the instruction
 in accordance with the addressing mode
 found.

V. When the instruction is assembled the instruction handler must return
control back to the assembler with the following instructions.

 A. CLR A (Set EQUAL CONDITION)
 B. RTS (Return from subroutine)

 The reason an EQUAL condition must be returned is that if not the
assembler will assume that the mnemonic was not found by a call to the
CPM.

 A close study of the source code for the CPM's purchased with this
product will answer many questions the programmer may have concerning
writing the CPM.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-42-

 APPENDIX A

FILE
 FLEX OS9 DESCRIPTION
 (from device
 directory)

COMMON
 SCCMACRO.TXF CPMS/SCCMACRO (macro definitions)
 SCCZERO.TXT CPMS/SCCZERO (assembler storage)
 SCCITIME.TXT CPMS/SCCOTIME (Date (time) title setup)

6800
 SC6800.TXT CPM6800/SC6800 MAIN ASSEMBLY FILE
 SC6800T.TXT CPM6800/SC6800T LIBRARY FILE
 SC6800B.TXT CPMS/SCBRANCH (Relative branch routines)
 SC6800M.TXT CPM6800/SC6800M LIBRARY FILE

6801
 SC680l.TXT CPM6801/SC6801 MAIN ASSEMBLY FILE
 SC6801T.TXT CPM6801/SC6801T LIBRARY FILE
 SC6801B.TXT CPMS/SCBRANCH (Relative branch routines)
 SC6801M.TXT CPM6801/SC6801M LIBRARY FILE

6805
 SC6805.TXT CPM6805/SC6805 MAIN ASSEMBLY FILE
 SC6805T.TXT CPM6805/SC6805T LIBRARY FILE
 SC6805B.TXT CPMS/SCBRANCH (Relative branch routines)
 SC6805M.TXT CPM6805/SC6805M LIBRARY FILE

6809
 SC6809.TXT CPM6809/SC6809 MAIN ASSEMBLY FILE
 SC6809T.TXT CPM6809/SC6809T LIBRARY FILE
 SC6809S.TXT CPM6809/SC6809S LIBRARY FILE
 SC6809U.TXT CPM6809/SC6809U LIBRARY FILE
 SC6809B.TXT CPM6809/SC6809B LIBRARY FILE
 SC6809M.TXT CPM6809/SCS809M LIBRARY FILE

6502
 SC6502.TXT CPM6502/SC6502 MAIN ASSEMBLY FILE
 SC6502T.TXT CPM6502/SC6502T LIBRARY FILE
 SCS502B.TXT CPMS/SCBRANCH (Relative branch routines)
 SC6502M.TXT CPM6502/SC6502M LIBRARY FILE

1802
 SC1802.TXT CPM1802/SC1802 MAIN ASSEMBLY FILE
 SC1802T.TXT' CPM1802/SC1802T LIBRARY FILE
 SC1802M.TXT CPM1802/SC1802M LIBRARY FILE

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-43-

8080
 SC8080.TXT CPM8080/SC8080 MAIN ASSEMBLY FILE
 SC8080T.TXT CPM8080/SC8080T LIBRARY FILE
 SC8080M.TXT CPM8080/SC8080M LIBRARY FILE

Z80
 SCZ80.TXT CPMZ80/SCZ80 MAIN ASSEMBLY FILE
 SCZ80T.TXT CPMZ80/SCZ80T LIBRARY FILP
 SCZ80L.TXT CPMZ80/SCZ80L LIBRARY FILE
 SCZ80U.TXT CPMZ80/SCZ80U LIBRARY FILE
 SCZ80M.TXT CPMZ80/SCZ80M LIBRARY FILE

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-44-

APPENDIX B

 NAM 6809 CPM MODULE for FLEX
 STTL VERSION 4.0 (c) 1983 By LLOYD I/O
 OPT PAG,EXP
 PAG

* (C) COPYRIGHT 1983, BY LLOYD I/O

* 6809 CPM MODULE FOR CRASMB
* FOR CRASMB VERSIONS 4.X

* WRITTEN BY

* FRANK L. HOFFMAN
* COPYRIGHT 1983
*
* LLOYD I/O
* 19535 NE GLISAN
* PORTLAND, OR 97230

 SETDP 0 DIRECT PAGE = ZERO

FRANK EQU 1 FLEX VERSION FLAG

 LIB SCCMACRO
 LIB SCCZERO

* ++
* +
* START OF PROGRAM 'I6809' +
* +
* ++

 ORG 0

START FDB USER

 LBRA INTERP PROCESS MNEMONICS
 LBRA INTINT INITIALIZE
 LBRA CLOSE WRAP UP

TREES JMP [CPMTRE,U] DO MNEMONIC SEARCH
PERROR JMP [CPMPER,U] PRINT ERROR BY NUMBER
OBS JMP [CPMOBS,U] SAVE OBJECT CODE
SKIP JMP [CPMSKI,U] SKIP PAST SPACES
OUTLIN JMP [CPMOUT,U] GET NEXT CHARACTER
EXPRES JMP [CPMEXP,U] EVALUATE AN EXPRESSION

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-45-

NAMEO FCC /FLH/ INITIALS

 LIB SC6809T
 LIB SC6809S
 LIB SC6809U
 LIB SC6809B
 LIB SCCITIME
 LIB SC6809M

USER EQU *
 END

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-46-

APPENDIX C

* FILE NAME 'T6809'

* THIS IS THE 6809
* MNEMONIC INTERPETER

* IT GENERATES THE
* OBJECT CODE IN 6809
* MACHINE CODE FROM
* THE STANDARD 6809
* MNEMONIC SET.

DPR EQU CPMSUF+0 DIRECT PAGE VALUE
DPF EQU CPMBUF+2 DIRECT PAGE INUSE FLAG
POST EQU CPMBUF+3 POST BYTE INSTRUCTION
INDF EQU CPMBUF+4 INDIRECT FLAG
NEGF EQU CPMBUF+5 NEGATIVE FLAG
BITF EQU CPMBUF+6 8 BIT OK IF EQUAL TO ZERO
STAF EQU CPMBUF+7 STORE OR LOAD FLAG FOR MNEMONICS
PCRF EQU CPMBUF+8 PROGRAM RELATIVE FLAG
COMF EQU CPMBUF+9 COMMA, 'A' OR 'B' FOLLOWS FLAG
CCUF EQU CPMBUF+10 USE 'ORCC' OR 'ANDCC'
HIF EQU CPMBUF+11 LONG BRANCH FLAG
BRATST EQU CPMBUF+12 BRANCH ERROR STATUS
FORCE EQU CPMBUF+14 FORCED EXTENDED OR DIRECT ADDRESSING

INTERP EQU
 LDA SFF
 STA FCMODE,U MNEMONIC MODE
 STA CCUF,U SET NO 'CC' ('OR' OR 'AND')
 LEAX MNEM2,PCR GET TABLE
 LBSR EXEC BINARY TREE SEARCH
 BEQ INT1 FOUND, SO PROCESS
 LEAX MNEM3,PCR
 LBSR EXEC
 BEQ INT1
 LEAX MNEM4,PCR
 LBSR EXEC
 BEQ INT1
 CLR A SET TO NON-ORGANIZED TABLES
 LEAX MSETDP,PCR 'SETDP' or 'REG'
 LBSR TREES DO SERIAL SEARCH
 BNE INT2
 ADJUST START GET REAL ADDRESS
 JSR O,X GO PROCESS IT
 CLR A

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-47-

INT2 EQU
 RTS
INT1 EQU *
 CLR TYPE,U SET NO TYPE
 CLR ADACC,U NO ACCUMULATOR OPERATION
 ADJUST START GET REAL ADDRESS
 STX XX1,U SAVE ACTUAL ADDRESS
 LDX O,X GET ROUTINE ADDRESS
 ADJUST START GET REAL ADDRESS
 JSR 0,X EXECUTE IT
 CLRA
 RTS

EXEC EQU EXECUTE SEARCH
 LDB O,X+ GET RECORD LENGTH
 STB ITLEG,U
 SUB B 3 CALCULATE MNEMONIC LENGTH
 STB BNAML,U
 LDA 0,X+ GET MNEMONIC COUNT
 LBRA TREES DO SEARCH

* INITIALIZE

INTINT EQU
 LDA $FF
 STA DPF,U SET DIRECT PAGE OFF
 LDX 0
 STX DPR,U SET ZERO DIRECT PAGE
 LBRA TIME

CLOSE EQU*
 RTS

*============================= *
.
.
.

* FILE NAME 'M6809'

* M6809 MNEMONIC LOOK-UP
* TABLES

* -------------------------

* INSTRUCTION TYPE ASSIGNMENT

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-48-

* TYPE DESCRIPTION
*
* 1 INHERENT ONLY (1 BYTE)
* 2 BRANCH RELATIVE (2 BYTE)
* 3 LONG BRANCH RELATIVE (4 BYTE)
* 4 A or B by I,D,X,E
* 5 A, B, or D by I,D,X,E
* 6 A, B, or CC by I,D,X,E (CC by I only)
* 7 A, B, or M by D,X,E (A or B inherent only)
* 8 All Registers by I,D,X,E (except CC)
* 9 Register to Register (8 bit to 8 bit, 16 to 16 bit)
* 10 JSR, JMP D,X,E
* 11 ST BY D.E,X
* 12 CPX D,E,I,X
* 13 LD BY D,E,I,X
* 14 Indexed only (LEA)
* 15 STACK S OR U PUSH, OR PULL
* 16 SOFTWARE INTERRUPTS
* 17 DES,DEX,INX,INS
* 18 6800 TRANSFERS (TAB,TBA.... etc.)
* 19 CWAI ONLY (IMMEDIATE ADDRESSING MODE ONLY)
* 20 SAVE BYTES (1-255 BYTES) (TYPE 6)
*
* -------------------------

* 2 CHARACTER MNEMONICS

MNEM2 EQU * 3
 FCB 5 RECORD LENGTH
 FCB 3 RECORD COUNT
 FCC /LD./
 FDB CLD-START
 FCC /OR./
 FDB COR-START
 FCC /ST./
 FDB CST-START
 FCB 0 END MARKER

* 3 CHARACTER MNEMONICS

MNEM3 EQU
 FCB 6 RECORD LENGTH
 FCB 79 RECORD COUNT
 FCC /ABA./
 FDB CABA-START
 FCC /ABX./
 FDB CABX-START
 FCC /ADC./
 FDB CADC-START
 FCC /ADD./
 FDB CADD-START

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-49-

 FCC /AND./
 FDB CAND-START
 FCC /ASL./
 FDB CASL-START
.
.
.
.
.
.
.
.
.
* OP CODES

CABX FDB T1-START
 FCB $3A

CADC FDB T4-START
 FCB $99,$B9,$89,$A9
 FCB $D9,$F9,$C9,$E9

CADD FDB T5-START
 FCB $99,$99,$8B,$AB
 FCB $DB,$FB,$CB,$EB
 FCB $03,$F3,$C3,$E3

CAND FDB T6-START
 FCB $94,$B4,$84,$A4
 FCB $04,$F4,$C4,$E4
 FCB $1C

CASL FDB T7-START
 FCB $48,$58,$08,78,$68

CASR FDB T7-START
 FCB $47,$57,$07,$77,$67

CBCC FD9 BRANCH-START
 FCB $24

CBCS FDB BRANCH-START
 FCB $25

CBEQ FDB BRANCH-START
 FCB $27

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-50-

APPENDIX D

 NAM 6809 CPM MODULE for OS9
 STTL VERSION 2.0 (c) 1983 By LLOYD I/O
 OPT PAG,EXP
 PAG

* This program ust be assembled by CRASMB or OSM.

* (C) COPYRIGHT 1983, BY LLOYD I/O

* 6809 CPM MODULE FOR CRASMB

* WRITTEN BY

* FRANK L. HCFFMAN
* COPYRIGHT 1983
*
* LLOYD I/O
* 19535 NE GLISAN STREET
* PORTLAND, OR 97230

 SETDP 0 DIRECT PAGE = ZERO

 OPT OS9

 USE CPMS/SCCMACRO
 USE CPMS/SCCZERO

*+++++++++++++++++++++++++++++++++++++++
* +
* START OF PROGRAM 'I6809' +
* +
*+++++++++++++++++++++++++++++++++++++++

 MOD PGMLEN,NAMEO,$21,$81,START,0

START EQU *
 LBRA INTERP PROCESS MNEMONICS
 LBRA INTINT INITIALIZE
 LBRA CLOSE WRAP UP

TREES JMP [CPMTRE,U] DO MNEMONIC SEARCH
PERROR JMP [CPMPER,U] PRINT ERROR BY NUMBER
OBS JMP [CPMOBS,U] SAVE OBJECT CODE
SKIP JMP [CPMSKI,U] SKIP PAST SPACES
CUTLIN JMP [CPMOUT,U] GET NEXT CHARACTER
EXPRES JMP [CPMEXP,U] EVALUATE AN EXPRESSION

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-51-

NAMEO FCS /I6809/ PROGRAM NAME

 USE CPM6809/SC6809T
 USE CPM6809/SC6809S
 USE CPM6809/SC6809U
 USE CPM6809/SC6809B
 USE CPMS/SCCOTIME
 USE CPM6809/SC68098M

 EMOD

PGMLEN EQU *

 END

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-52-

UPDATE NOTES
for

CRASMB (version 5.0)

NEW DIRECTIVES AND FUNCTIONS

SLL
 Meaning: To start a chain of local labels which are keyed off a
standard or global label. Local labels are any legal symbol or label but
begin with a question mark ("?"). They are very useful within macros and
library files. The syntax is:

 label SLL

 where 'label' is any global label. Local labels of the same name may
be used within another bracketed local label area. They actually take up
two different areas in memory when the program is being assembled. The
SLL-ELL pair may appear any number of times in a program, but may only be
nested up to 100 deep.

Examples:
 ESUE SLL
 ... code ...
 ?SAY EQU * DEFINE A LOCAL LABEL AREA AS THE 'PC
 ... code ...
 BNE ?SAY access a local label in the operand
 BRA ?DONE AGAIN
 ... code ...
 ?DONE EQU *
 ELL

ELL
 Meaning: This is the closing bracket for the current level of local
labels in use. It must have a matching SLL directive. See the above
example.

INI
 Meaning: This directive will output the byte value of the expressions
which follow it directly to the output device.

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-53-

 The syntax is:
 INI expression 1, [expression 2, expression 3.....]

Examples:
 INI 30 Turn compressed on for a Microline u83A
 INI 29,0,0 Turn compressed off and send two nulls

Macro parameter length and substring function.

 The length function (Syntax: &¯o number) replaces the three
characters of the call with the decimal value of the actual length of the
parameter specified. Either the current macro's parameters or the
assembler command line parameters may be used.

 The sub-string, mid-string function (syntax: &&[macro number, start
expression,length expression]) returns a part of the parameter specified
which may be the command line parameters or macro parameters. The two
ampersands and opening and closing brackets are a part of the syntax.
Both expressions are any legal expression, even containing a call to the
length function.

Examples:
 FCB &&(1,1,1) return the first character of parameter 1
 FCC '&&1' form constant string of the length digits
 FCC "&&[3,&&3-2,3] string of the last 3 characters

 Both of these functions are very handy for breaking down parameters
into the parts needed without having to use two parameters to do the same
thing. It is possible to write cross-assembly macros which use the exact
manufacture's mnemonic set and addressing mode syntax.

FLEX --- CONTROL Q.QUIT

 The Flex version supports the 'quit and return to DOS' function.
Typing 'Control Q' during Pass 1 or Pass 2 will make the assembler return
to Flex. This is a built in function to OS9 and is not a part of the OS9
version since it is already supported.

Copyright (c) 1983 by LLOYD I/O, All rights reserved

CRASMB by LLOYD I/O
OS9 and Flex User Manual

-54-

