
 

Big Data Bench 3.0 

User ’ s Manual 



2 
 

Contents 

1 Background ................................................................................................................. 3 
2 Release and Update History ........................................................................................ 3 
3 Introduction ................................................................................................................. 4 

3.1 Our Benchmarking Methodology ..................................................................... 4 
3.2 Chosen Data sets and Workloads ...................................................................... 5 
3.3 Use case ............................................................................................................ 6 

4 Prerequisite Software Packages .................................................................................. 8 
5 Big Data Generator Suite ............................................................................................ 8 

5.1 Text Generator ................................................................................................... 8 
5.2 Graph Generator................................................................................................ 9 
5.3 Table Generator ............................................................................................... 10 

6 Workloads ................................................................................................................. 11 
6.1 Cloud OLTP .................................................................................................... 11 

6.1.1 MicroBenchmarks ................................................................................. 11 
6.2 Offline Analytics ............................................................................................. 15 

6.2.1 MicroBenchmarks ................................................................................. 15 
6.2.2 Analytics Workloads ............................................................................. 18 

6.3 OLAP and Interactive Analytics ..................................................................... 25 
6.3.1 MicroBenchmarks ................................................................................. 25 
6.3.2 Analysitic workloads ............................................................................. 27 

7 Reference .................................................................................................................. 30 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

This document presents information on BigDataBench—— a big data benchmark suite from 
internet services, including a brief introduction and the usage of it. The information and 
specifications contained are for researchers who are interested in big data benchmarking. 
 
Publishing information: 
 Release 3.0 
 Date  22/4/2014 
Contact information: 
Website: http://prof.ict.ac.cn/BigDataBench/ 

1 Background 

As a multi-discipline---e.g., system, architecture, and data management---research effort, 
BigDataBench is a big data benchmark suite (please refer to our summary paper and presentation 
at HPCA 2014). It includes 6 real-world and 2 synthetic data sets, and 32 big data workloads, 
covering micro and application benchmarks from areas of search engine, social networks, 
e-commerce. In generating representative and variety of big data workloads, BigDataBench 
focuses on units of computation frequently appearing in Cloud “OLTP”, OLAP, interactive and 
offline analytics (Please refer to our DASFAA paper). BigDataBench also provides several 
(parallel) big data generation tools–BDGS– to generate scalable big data, e.g. PB scale, from 
small-scale real-world data while preserving their original characteristics. For example, on an 
8-node cluster system, BDGS generates 10 TB data in 5 hours. For the same workloads, different 
implementations are provided. Currently, we and other developers implemented the offline 
analytics workloads using MapReduce, MPI, Spark, DataMPI, interactive analytics and OLAP 
workloads using Shark, Impala, and Hive. 

2 Release and Update History 

========2014.4.22 Version 3.0 Released, Current ======== 
Fix Bugs 
18 OLAP and Interactive Query workloads 
Parallel data generator tools 
 
========2014.1.20 Version 2.2 Released, Current ======== 
Fix Bugs 
 
========2013.11.22 Version 2.1 Released ======== 
Fix Bugs 
Add Big Data Generate Suite 
 
========2013.10.7 Version 2.0 Released ======== 

http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2013/10/Wang_BigDataBench.pdf
http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2013/10/BigOP_CR.pdf
http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2013/10/BDGS_BigDataBench.pdf
http://datampi.org/


4 
 

A big data benchmark suite from internet services. 
New Big Data Generate Tools, and 19 Big Data Workloads with 6 raw data sets 
 
========2013.5.30 Version 1.0 Released======== 
A big data benchmark suite from web search engines. 
 
 

3 Introduction 

3.1 Our Benchmarking Methodology 

 

Data 
complexity 

Function of 
abstractions

BigDataBench
3.0

Scalable data 
sets and 

Workloads

Different 
Implementations

System 
Characteristics

Typical 
application 

domains 

 

Figure 1 big data benchmarking methodology  
 

Figure 1 summarizes the methodology of BigDataBench 3.0. Overall, it includes six steps: 
investigating typical application domains; understanding and constructing (or choosing) 
workloads via function of abstractions and data sets; generating scalable data sets and workloads; 
providing different implementations; system characterization; and finalizing benchmarks. 
At the first step, we consider typical real-world data sets and representative big data analytics 
workloads which include typical internet service scenes such as Search engines, Social network 
and E-commercial. At the second step, we observe and identify a full spectrum of units of 
computation that frequently appear in big data analytics. Such as Projection Filter Aggregation 
Order by Cross Product Union Difference are the basic units of computation in the interactive 
workloads, and other interactive workloads can be presented by different units of computation. At 
the same time, we understand data sets from the perspectives of data natures, data sources, and 
data schema. At the third step, we develop Big Data Generator Suite (in short, BDGS)to generate 
synthetic big data, including text, graph, and table data. At the fourth step, since there are different 
lines of systems, for same workloads, different implementations should be available for 
performing an apples-to-apples comparison of different systems. The fifth step ensures our 
workloads are representative in terms of not only workloads and data characteristics, but also 
system characteristics, you can find more details on the BigDataBench-Lite Item. After five steps, 
finally, we decide our big data analytics benchmarks. 
 



5 
 

3.2 Chosen Data sets and Workloads 

Covering three application scenarios, BigDataBench3.0 includes six real-world data sets, two 
synthetic data sets and 32 big data workloads. 

Table 1: The Summary of Data Sets 

No. data sets  data size 

1 Wikipedia Entries 4,300,000 English articles 

2 Amazon Movie Reviews 7,911,684 reviews 

3 Google Web Graph 875713 nodes, 5105039 edges 

4 Facebook Social Network 4039 nodes, 88234 edges 

5 E-commerce Transaction Data table1: 4 columns, 38658 

rows.table2: 6 columns, 242735 

rows 

6 ProfSearch Person Resumes 278956 resumes 

7 CALDA Table Data(synthetic data) 

https://issues.apache.org/jira/i#browse/HIV

E-396 

table1: 3 columns, table2:9 

columns. 

8 TPC-DS WebTable Data(synthetic data) 

http://www.tpc.org/tpcds/ 

26 tables 

 
Table 2: The Summary of BigDataBench 

Application 

Scenarios 

Application Type Workloads Data Sets Software Stacks 

 

Cloud OLTP 

 

Micro Benchmarks 

Read Semi-structured 

Table 

HBase, Mysql 

Write 

Scan 

Applications Search Server Semi-structured 

Table 

HBase, Nutch 

 

 

 

 

 

 

 

Micro Benchmarks 

Sort Unstructured Text MPI, Spark, 

Hadoop Grep 

WordCount 

BFS Unstructured 

Graph 

MPI 

 

 

 

Index Unstructured Text  

 

 

PageRank Unstructured 

Graph 

Kmeans  

Unstructured 
Connected 

Components 

http://prof.ict.ac.cn/
http://www.tpc.org/tpcds/


6 
 

 

Offline Analytics 

Analytics 

Workloads 

Graph MPI, Spark, 

Hadoop Collaborative 

Filtering 

Semi-structured 

Text 

Naive Bayes 

OLAP and 

Interactive 

Analytics 

 

Micro Benchmarks 

Project  

 

structured Table 

Mysql, Hive, 

Shark, Impala Filter 

OrderBy 

Cross Product 

Union 

Difference 

Aggregation 

 

Analytics 

Workloads 

Join Query 

Select Query 

Aggregation 

Query 

Eight TPC-DS 

Web Queries 
 

3.3 Use case 

This subsection will describe the application example of BigDataBench. 
 
General procedures of using BigDataBench are as follows: 
1. Choose the proper workloads. Select workloads with the specified purpose, for example basic 
operations in Hadoop environment or typical search engine workloads. 
 
2. Prepare the environment for the corresponding workloads. Before running the experiments, the 
environment should be prepared first for example the Hadoop environment. 
 
3. Prepare the needed data for workloads. Generally, it's necessary to generate data for the 
experiments with the data generation tools. 
 
4. Run the corresponding applications. With all preparations done, it's needed to start the workload 
applications and/or performance monitoring tools in this step. 
 
5. Collect results of the experiments. 
 
Here we provide two usage case to show how to use our benchmark to achieve different 
evaluating task. 
Case one: from the perspective of choosing suitable big data system  
If the data center administrator of an e-commerce company wants to choose a suitable big data 
management system to conduct business intelligence analysis and decision support, and they aim 



7 
 

to find big data system with shorter response time. The application scenarios mainly include two 
types: interactive analytics queries and OLAP queries, and the data scale is known according to 
their application characteristics. First he should choose the suitable workloads: the micro 
benchmarks which include basic operations in interactive data analytics, the three interactive 
analytics workloads (include select query, aggregation query and join query), and the OLAP 
workloads including 8 TPC-DS queries. Next, he should prepare the data sets of different data 
sizes using BDGS(Big Data Generator Suite) provided in BigDataBench, and choose the 
execution model according to the hardware configuration (tables-in-memory query or 
tables-on-disk query). Finally, he can run the selected workloads and make decision according to 
evaluation results. 
 
Case two: from the perspective of architecture 
Suppose that someone is planning to design a new machine for common big data usage. It is not 
enough to run subset of the workloads, since he doesn't know what special application scene and 
soft stack the new machine is used for. The comprehensive evaluation is needed, so that he should 
run every workload to reflect the performance of different application scene, program framework, 
data warehouse, and NoSQL database. Only in this way, he can say his new design is indeed 
beneficial for big data usage. 
 
Other use cases of BigDataBench include: 
 
Data Analysis workload’s feature: 
Another kind of use case is to observe the typical data analysis workloads’(for example PageRank, 
Recommendation) architectural characters. 
 
Different storage system: 
In BigDataBench, we also provide different data management systems(for example HBase, 
Cassandra, hive). Users can choose one or some of them to observe the architectural feature by 
running the basic operations(sort, grep, wordcount). 
 
Different programing models: 
Users can use BigDataBench to study three different programing models: MPI, MapReduce and 
Spark. 
 
 
 
 
 
 
 



8 
 

4 Prerequisite Software Packages 

 
Software Versio

n 
Download 

Hadoop 1.0.2 http://hadoop.apache.org/#Download+Hadoop 
HBase 0.94.5 http://www.apache.org/dyn/closer.cgi/hbase/ 
Cassandra 1.2.3 http://cassandra.apache.org/download/ 
MongoD
B 

2.4.1 http://www.mongodb.org/downloads 

Mahout 0.8 https://cwiki.apache.org/confluence/display/MAHOUT/Downloads 
Hive 0.9.0  https://cwiki.apache.org/confluence/display/Hive/GettingStarted 

#GettingStarted-InstallationandConfiguration 
Spark 0.8.0 http://spark.incubator.apache.org/ 
Impala 1.1.1 http://www.cloudera.com/content/cloudera-content/ 

cloudera-docs/Impala/latest/Installing-and-Using-Impala/ciiu_install.html 
MPICH 2.0 http://www.mpich.org/downloads/ 
Boost 1_43_0 http://www.boost.org/doc/libs/1_43_0/more/getting_started/unix-variants.h

tml 
Shark 0.8.0 http://shark.cs.berkeley.edu/ 
Scala 2.9.3 http://www.scala-lang.org/download/2.9.3.html 
GCC 4.8.2 http://gcc.gnu.org/releases.html 
GSL  1.16 http://www.gnu.org/software/gsl/ 
 

5 Big Data Generator Suite 

In BigDataBench 3.0, we introduce Big Data Generator Suite, a comprehensive tool developed to 
generate synthetic big data preserving the 4V properties. Specifically, our BDGS can generate data 
using a sequence of steps. First, BDGS selects application-specific and representative real-world 
data sets. Secondly, it constructs data generation models and derives their parameters and 
configurations from the data sets. Finally, given a big data system to be tested, BDGS generates 
synthetic data sets that can be used as inputs of application-specific workloads. In the release 
edition, BDGS is consist of three parts: Text generator, Graph generator, and Table generator. We 
will introduce how to use these tools to generate data as following. 

5.1 Text Generator 

We provide a data generation tool which can generate data with user specified data scale. In 
BigDataBench 3.0 we analyze the wiki data sets to generate model, and our text data generate tool 

http://hadoop.apache.org/#Download+Hadoop
http://www.apache.org/dyn/closer.cgi/hbase/
http://cassandra.apache.org/download/
http://www.mongodb.org/downloads
https://cwiki.apache.org/confluence/display/MAHOUT/Downloads
https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-InstallationandConfiguration
https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-InstallationandConfiguration
http://spark.incubator.apache.org/
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Installing-and-Using-Impala/ciiu_install.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Installing-and-Using-Impala/ciiu_install.html
http://www.mpich.org/downloads/
http://www.boost.org/doc/libs/1_43_0/more/getting_started/unix-variants.html
http://www.boost.org/doc/libs/1_43_0/more/getting_started/unix-variants.html
http://gcc.gnu.org/releases.html
http://www.gnu.org/software/gsl/


9 
 

can produce the big data based on the model. 
 
Usage 
 
Generate the data 

Basic command-line usage: 
sh gen_text_data.sh MODEL_NAME FIlE_NUM FILE_LINES LINE_WORDS 
OUT_DATA_DIR 
< MODEL_NAME >: the name of model used to generate new data 
< FIlE_NUM >: the number of files to generate 
< FILE_LINES >: number of lines in each file 
< LINE_WORDS >: number of words in each line 
<OUT_DATA_DIR >: output director 

 
For example: 

sh gen_text_data.sh lda_wiki1w 10 100 1000 gen_data/ 
This command will generate 10 files each contains 100 lines, and each contains 1000 words 
by using model wiki1w. 

 
Note: The tool Need to install GSL - GNU Scientific Library. Before you run the program, 
Please make sure that GSL is ready. 
Your also can choose parallel ,it runs like this: 

mkdir /mnt/raid/BigDataGeneratorSuite in every node 
        Configure Non password login and the host: parallel_ex/conf_hosts 
  To Run: 

 cd parallel_ex/ 
         sh deploy_ex.sh 
         sh run_textGen_.sh 
 

5.2 Graph Generator 

Here we use Kronecker to generate data that is both mathematically tractable and have all the 
structural properties from the real data set. (http://snap.stanford.edu/snap/index.html) 
 
In BigDataBench 3.0X we analyze the Google, Facebook and Amazon data sets to generate model, 
and our graph data generate tool can produce the big data based on the model. 
 
Usage 
Generate the data 

Basic command-line usage: 
./ gen_kronecker_graph  
-o:Output graph file name (default:'graph.txt') 
-m:Matrix (in Maltab notation) (default:'0.9 0.5; 0.5 0.1') 

http://snap.stanford.edu/snap/index.html


10 
 

-i:Iterations of Kronecker product (default:5) 
-s:Random seed (0 - time seed) (default:0) 

 
For example: 

./ gen_kronecker_graph -o:../data-outfile/amazon_gen.txt -m:"0.7196 0.6313; 0.4833 
0.3601" -i:23 

 

5.3 Table Generator 

We use Parallel Data Generation Framework to generate table data. The Parallel Data Generation 
Framework (PDGF) is a generic data generator for database benchmarking. PDGF was designed 
to take advantage of today's multi-core processors and large clusters of computers to generate 
large amounts of synthetic benchmark data very fast. PDGF uses a fully computational approach 
and is a pure Java implementation which makes it very portable. 
You can use your own configuration file to generate table data.  
 
Usage 
 
1. Prepare the configuration files 
The configuration files are written in XML and are by default stored in the config folder. 
PDGF-V2 is configured with 2 XML files: the schema configuration and the generation 
configuration. The schema configuration (demo-schema.xml) defines the structure of the data and 
the generation rules, while the generation configuration (demo-generation.xml) defines the output 
and the post-processing of the generated data.  
For the demo, we will generate the files demo-schema.xml and demo-generation.xml which are 
also contained in the provided .gz file. Initially, we will generate two tables: OS_ORDER and 
OS_ORDER_ITEM.  
 demo-schema.xml 
 demo-generation.xml 
2. Generate data 
After creating both demo-schema.xml and demo-generation.xml a first data generation run can be 
performed. Therefore it is necessary to open a shell, change into the PDGF Environment directory. 
 
Basic command-line usage WITH Scale Factor: 

cd Table_datagen/e-com 
java -XX:NewRatio=1 -jar pdgf.jar -l demo-schema.xml -l demo-generation.xml -c -s -sf 2000 
 

Your also can choose parallel ,it runs like this: 
mkdir /mnt/raid/BigDataGeneratorSuite in every node 

        Configure Non password login and the host: parallel_ex/conf_hosts 
  To Run: 

 cd parallel_ex/ 
         sh deploy_ex.sh 



11 
 

         sh run_personalResumeGen.sh 

6 Workloads 

After generating the big data, we integrate a series of workloads to process the data in our big data 
benchmarks. In this part, we will introduction how to run the Big Data Benchmark for each 
workload. It mainly has two steps. The first step is to generate the big data and the second step is 
to run the applications using the data we generated. 

6.1 Cloud OLTP 

6.1.1 MicroBenchmarks 

We use YCSB to run database basic operations. And, we provide three ways: HBase, Cassandra 
and MongoDB to run operations for each operation. 
 
To Prepare 
Obtain YCSB: 
wget https://github.com/downloads/brianfrankcooper/YCSB/ycsb-0.1.4.tar.gz 
tar zxvf ycsb-0.1.4.tar.gz 
cd ycsb-0.1.4 
Or clone the git repository and build: 
git clone git://github.com/brianfrankcooper/YCSB.git 
cd YCSB 
mvn clean package 
We name $YCSB as the path of YCSB for the following steps. 
 
Write: 
1. For HBase 
Basic command-line usage: 

cd $YCSB 
sh bin/ycsb load hbase -P workloads/workloadc -p threads=<thread-numbers> -p 
columnfamily=<family> -p recordcount=<recordcount-value> -p hosts=<hostip> -s>load.dat 

 
A few notes about this command: 
 <thread-number>  : the number of client threads, this is often done to increase the amount of 

load offered against the database. 
 <family> : In Hbase case, we used it to set database column. You should have database 

usertable with column family before running this command. Then all data will be loaded 
into database usertable with column family. 

 <recorcount-value>: the total records for this benchmark. For example, when you want to 
load 10GB data you shout set it to 10000000. 

https://github.com/downloads/brianfrankcooper/YCSB/ycsb-0.1.4.tar.gz


12 
 

 <hostip> : the IP of the hbase’s master node. 
 

2. For Cassandra 
Before you run the benchmark, you should create the keyspace and column family in the 
Cassandra. You can use the following commands to create it: 

CREATE KEYSPACE usertable 
with placement_strategy = 'org.apache.cassandra.locator.SimpleStrategy' 

and strategy_options = {replication_factor:2}; 
use usertable; 

create column family data with comparator=UTF8Type and 
default_validation_class=UTF8Type and key_validation_class=UTF8Type; 

 
Basic command-line usage: 

cd $YCSB 
sh bin/ycsb load cassandra-10  -P  workloads/workloadc  -p threads=<thread-numbers>  
-p recordcount=<recorcount-value> -p  hosts=<hostips>  -s >load.dat 

A few notes about this command: 
 <thread-number> : the number of client threads, this is often done to increase the amount of 

load offered against the database. 
 <recorcount-value> : the total records for this benchmark. For example, when you want to 

load 10GB data you shout set it to 10000000. 
 <hostips> : the IP of cassandra’s nodes. If you have more than one node you should divide 

with “,”. 
 

3. For MongoDB 
Basic command-line usage: 

cd $YCSB 
/bin/ycsb load mongodb  -P workloads/workloadc -p threads=<thread-numbers> -p 
recordcount=<recorcount-value> -p mongodb.url=<mongodb.url> -p 
mongodb.database=<database> -p mongodb.writeConcern=normal  -s >load.dat 

A few notes about this command: 
 <thread-number>  : the number of client threads, this is often done to increase the amount of 

load offered against the database. 
 <recorcount-value>: the total records for this benchmark. For example, when you want to 

load 10GB data you shout set it to 10000000. 
 <mongodb.url>:  this parameter should point to the mongos of the mongodb. For example 

“mongodb://172.16.48.206:30000”. 
 <database>: In Mongodb case, we used it to set database column. You should have database 

ycsb with collection usertable before running this command. Then all data will be loaded 
into database ycsb with collection usertable. To create the database and the collection, you 
can use the following commands: 
   db.runCommand({enablesharding:"ycsb"}); 
   db.runCommand({shardcollection:"ycsb.usertable",key:{ _id:1}});  

 



13 
 

Read: 
1. For HBase 
Basic command-line usage: 

cd $YCSB 
sh bin/ycsb run hbase  -P workloads/workloadc -p threads=<thread-numbers> -p  
columnfamily=<family> -p operationcount=<operationcount-value>  -p hosts=<hostip>       
-s>tran.dat 

A few notes about this command: 
 <thread-number>  : the number of client threads, this is often done to increase the amount of 

load offered against the database. 
 <family> : In Hbase case, we used it to set database column. You should have database 

usertable with column family before running this command. Then all data will be loaded 
into database usertable with column family. 

 < operationcount-value >: the total operations for this benchmark. For example, when you 
want to load 10GB data you shout set it to 10000000. 

 <hostip> : the IP of the hbase’s master node. 
 

2. For Cassandra 
Basic command-line usage: 

cd $YCSB 
sh bin/ycsb run cassandra-10 -P workloads/workloadc -p threads=<thread-numbers> -p 
operationcount=<operationcount-value>  -p hosts=<hostips>  -s>tran.dat 

A few notes about this command: 
 <thread-number> : the number of client threads, this is often done to increase the amount of 

load offered against the database. 
 <operationcount-value> : the total records for this benchmark. For example, when you want 

to load 10GB data you shout set it to 10000000. 
 <hostips> : the IP of cassandra’s nodes. If you have more than one node you should divide 

with “,”. 
 

3. For MongoDB 
Basic command-line usage: 

cd $YCSB 
sh bin/ycsb run  mongodb  -P workloads/workloadc -p threads=<thread-numbers> -p 
operationcount=<operationcount-value> -p mongodb.url=<mongodb.url> -p  
mongodb.database=<database> -p mongodb.writeConcern=normal -p 
mongodb.maxconnections=<maxconnections>  -s>tran.dat 

A few notes about this command: 
 <thread-number>  : the number of client threads, this is often done to increase the amount of 

load offered against the database. 
 <operationcount-value> : the total records for this benchmark. For example, when you want 

to load 10GB data you shout set it to 10000000. 
 <mongodb.url>:  this parameter should point to the mongos of the mongodb. For example 

“mongodb://172.16.48.206:30000”. 



14 
 

 <database>: In Mongodb case, we used it to set database column. You should have database 
ycsb with collection usertable before running this command. Then all data will be loaded 
into database ycsb with collection usertable. To create the database and the collection, you 
can use the following commands: 
   db.runCommand({enablesharding:"ycsb"}); 
   db.runCommand({shardcollection:"ycsb.usertable",key:{ _id:1}});  

 <maxconnections> : the number of the max connections of mongodb. 
 

Scan: 
1. For HBase 
Basic command-line usage: 

cd $YCSB 
sh bin/ycsb run hbase  -P workloads/workloade -p threads=<thread-numbers> -p  
columnfamily=<family> -p operationcount=<operationcount-value>  -p hosts=<Hostip>  
-p  columnfamily=<family>   -s>tran.dat 

A few notes about this command: 
 <thread-number>  : the number of client threads, this is often done to increase the amount of 

load offered against the database. 
 <family> : In Hbase case, we used it to set database column. You should have database 

usertable with column family before running this command. Then all data will be loaded 
into database usertable with column family. 

 < operationcount-value >: the total operations for this benchmark. For example, when you 
want to load 10GB data you shout set it to 10000000. 

 <hostip> : the IP of the hbase’s master node. 
 
2. For Cassandra 
Basic command-line usage: 

cd $YCSB 
sh bin/ycsb run cassandra-10 -P  workloads/workloade -p threads=<thread-numbers> -p 
operationcount=<operationcount-value> -p hosts=<hostips>  -s>tran.dat  

A few notes about this command: 
 <thread-number> : the number of client threads, this is often done to increase the amount of 

load offered against the database. 
 <operationcount-value> : the total records for this benchmark. For example, when you want 

to load 10GB data you shout set it to 10000000. 
 <hostips> : the IP of cassandra’s nodes. If you have more than one node you should divide 

with “,”. 
 

3. For MongoDB 
Basic command-line usage: 

cd $YCSB 
sh bin/ycsb run  mongodb  -P workloads/workloade -p threads=<thread-numbers> -p 
operationcount=<operationcount-value>  -p mongodb.url=<mongodb.url> -p  
mongodb.database=<database> -p mongodb.writeConcern=normal -p 



15 
 

mongodb.maxconnections=<maxconnections>  -s>tran.dat 
A few notes about this command: 
 <thread-number>  : the number of client threads, this is often done to increase the amount of 

load offered against the database. 
 <operationcount-value> : the total records for this benchmark. For example, when you want 

to load 10GB data you shout set it to 10000000. 
 <mongodb.url>:  this parameter should point to the mongos of the mongodb. For example 

“mongodb://172.16.48.206:30000”. 
 <database>: In Mongodb case, we used it to set database column. You should have database 

ycsb with collection usertable before running this command. Then all data will be loaded 
into database ycsb with collection usertable. To create the database and the collection, you 
can use the following commands: 
   db.runCommand({enablesharding:"ycsb"}); 
   db.runCommand({shardcollection:"ycsb.usertable",key:{ _id:1}});  

<maxconnections> : the number of the max connections of mongodb. 
 

6.2 Offline Analytics 

6.2.1 MicroBenchmarks 

1. Hadoop-version (sort, grep, wordcount) 
To prepare: 
1. Please decompress the file: BigDataBench_V 3.0.tar.gz 

tar xzf BigDataBench_V3.0.tar.gz 
2. Open the DIR:  

cd BigDataBench_V3.0_Hadoop_Hive /MicroBenchmarks/ 
3. Gnerate data 

sh genData_MicroBenchmarks.sh 
To run wordcount and grep you can only do like this:   

sh run_MicroBenchmarks.sh 
but when you choose to run sort you should put the sort-transfer file in your hadoop and then to 
run like this(the sort-transfer  you can find in BigDataBench_V3.0.tar.gz) 
first : sh genData_MicroBenchmarks.sh  
second : sh sort-transfer.sh 
last : sh run_MicroBenchmarks.sh (choose sort to run) 
 
2. Spark-version (sort, grep, wordcount)  
(If you use not one machine you must download the spark on each machines,and must download 
in the right way) 
To prepare: 
1.  Please decompress the file: BigDataBench_Sprak_V3.0.tar.gz  

tar xzf BigDataBench_Sprak_V3.0.tar.gz  



16 
 

2. Open the DIR:  
cd BigDataBench_V3.0_Spark+Shark/MicroBenchmarks/ 

3. Gnerate data 
sh genData_MicroBenchmarks.sh 
sh sort-transfer.sh 

To run:   
when you chose sort like this: 
before to run the sort you should put the sort-transfer file in your hadoop and then to run like this: 
(the sort-transfer  you can find in BigDataBench_Sprak_V3.0.tar) 
first : sh genData_MicroBenchmarks.sh  
second : sh sort-transfer.sh 
last: 
./run-bigdatabench cn.ac.ict.bigdatabench.Sort <master> <data_file> <save_file> [<slices>] 
 parameters: 
# <master>: URL of Spark server, for example: spark://172.16.1.39:7077 
# <data_file>: the HDFS path of input data, for example: /test/data.txt 
# <save_file>: the HDFS path to save the result 
# [<slices>]: optional, times of number of workers 
 
when you chose grep like this: 
./run-bigdatabench cn.ac.ict.bigdatabench.Grep <master> <data_file> <keyword> <save_file> 
[<slices>] 
parameters: 
# <master>: URL of Spark server, for example: spark://172.16.1.39:7077 
# <data_file>: the HDFS path of input data, for example: /test/data.txt 
# <keyword>: the keyword to filter the text 
# <save_file>: the HDFS path to save the result 
# [<slices>]: optional, times of number of workers 
 
When you chose wordcount lie this: 
./run-bigdatabench cn.ac.ict.bigdatabench.WordCount <master> <data_file> <save_file> 
[<slices>] 
parameters: 
 # <master>: URL of Spark server, for example: spark://172.16.1.39:7077 
 # <data_file>: the HDFS path of input data, for example: /test/data.txt 
 # <save_file>: the HDFS path to save the result 
 # [<slices>]: optional, times of number of workers 
 
3. Mpi-version (sort, grep, wordcount) 
(If you use not one machine you must put the MPI on each mpi-machines and put in the same 
path) 

1) Sort: 
To prepare: 
1.  Please decompress the file: BigDataBench_MPI_V3.0.tar.gz 



17 
 

tar xzf BigDataBench_MPI_V3.0.tar.gz 
2.  Open the DIR:  

cd BigDataBench_V3.0_MPI/MicroBenchmarks/MPI_Sort/ 
3. Gnerate data 

sh genData_sort.sh 
 
To makefile: 
This we provid two version,you can choose make it by yourself ,if you do that you must translate 
like this: 

make 
And you also can use mpi_sort ,we have already translated directly, the translated file is run_sort 
 
To run:   
mpirun -n process_number ./mpi_sort  <hdfs Path>  <hdfs port>  <input_file>  <output_file> 
For example: 
mpirun -n 24 ./mpi_sort 172.18.11.107 9000 /home/mpi /data 

2) Grep: 
To prepare: 
1.  Please decompress the file: BigDataBench_MPI_V3.0tar.gz 

tar xzf BigDataBench_MPI_V3.0tar.gz 
2.  Open the DIR:  

cd BigDataBench_MPI_V3.0tar.gz /MicroBenchmarks/ MPI_Grep/ 
3.  Gnerate data 

sh genData_grep.sh 
Then there will be a data-grep file in the current directory,you can find your datas in it .If you use 
not one machine you must put the datas on each mpi-machines,most of all you must pur them in 
the same path . 
 
To makefile: 
This we provid two version,you can choose make it by yourself ,if you do that you must translate 
like this : 
            make 
And you also can use mpi_grep ,we have already translated directly, the translated file is run_grep 
 
To run: 
mpirun -n process_number ./mpi_grep [input_file] [pattern] 

3) Wordcount: 
To prepare: 
1.  Please decompress the file: BigDataBench_MPI_V3.0.tar.gz 

tar xzf BigDataBench_MPI_V3.0tar.gz 
2.  Open the DIR:  

cdBigDataBench_MPI_V3.0.tar.gz /MicroBenchmarks/ MPI_WordCount/ 
3.  Gnerate data 

sh genData_wordcount.sh 



18 
 

Then there will be a data-wordcount file in the current directory,you can find your datas in it .If 
you use not one machine you must put the datas on each mpi-machines,most of all you must pur 
them in the same path . 
 
To makefile: 
This we provid two version,you can choose make it by yourself ,if you do that you must translate 
like this : 
       make 
And you also can use mpi_wordcount, we have already translated directly, the translated file is 
mpi_wordcount 
 
To run: 
wordcount like this: 
mpirun -n process_number ./run_wordcount  <input_file> 
 

4. BFS (Breath first search) 
To prepare 
4. Please decompress the file: BigDataBench_V3.0.tar.gz 

tar xzf BigDataBench_V3.0.tar.gz 
5. Open the DIR: graph500 

cd BigDataBench_V3.0/MicroBenchmarks/BFS/graph500 
 
Basic Command-line Usage: 

mpirun -np PROCESS_NUM graph500/mpi/graph500_mpi_simple VERTEX_SIZE 
 
Parameters: 
PROCESS_NUM: number of process; 
VERTEX_SIZE: number of vertex, the total number of vertex is 2^ VERTEX_SIZE 
 
For example: Set the number of total running process of to be 4, the vertex number to be 
2^20, the command is: 
mpirun -np 4 graph500/mpi/graph500_mpi_simple 20 

6.2.2 Analytics Workloads 

PageRank: 
The PageRank program now we use is obtained from Hibench. 
 

1. Hadoop-version 
To prepare and generate data: 

tar xzf BigDataBench_V3.0.tar.gz 
cd BigDataBench_V3.0_Hadoop_Hive/SearchEngine/PageRank 
sh genData_PageRank.sh 



19 
 

To run: 
sh run_PageRank.sh [#_of_nodes] [#_of_reducers] [makesym or nosym] 
[#_Iterations_of_GenGragh] 

 
[#_of_nodes] : number of nodes in the graph  
[#_of_reducers] : number of reducers to use in hadoop. - The number of reducers to use depends 
on the setting of the hadoop cluster. - The rule of thumb is to use (number_of_machine * 2) as the 
number of reducers.  
[#_Iterations_of_GenGragh] : Iterations of GenGragh 
 
2. Spark-version  

(If you use not one machine you must download the spark on each machines,and must download 
in the right way) 
To prepare: 
1.  Please decompress the file: BigDataBench_Sprak_V3.0.tar.gz 

tar xzf BigDataBench_Sprak_V3.0tar.gz 
2. Open the DIR:  

cd BigDataBench_Sprak_V3.0 /SearchEngine/ Pagerank 
3. Gnerate data 

sh genData_PageRank.sh 
To run:   

./run-bigdatabenchorg.apache.spark.examples.PageRank  
<master> <file> <number_of_iterations> <save_path> [<slices>] 
parameters: 
#<master>: URL of Spark server, for example: spark://172.16.1.39:7077 
#<file>: the HDFS path of input data, for example: /test/data.txt 
#<number_of_iterations>: number of iterations to run the algorithm 
#<save_path>: path to save the result 
#[<slices>]: optional, times of number of workers 
 

3. Mpi-version 
(If you use not one machine you must put the MPI on each mpi-machines and put in the same 
path) 
To prepare: 
1.  Please decompress the file:  BigDataBench_MPI_V3.0tar.gz 

tar xzf  BigDataBench_MPI_V3.0.tar.gz 
2.  Open the DIR:  

cd  BigDataBench_MPI_V3.0 / SearchEngine / MPI_Pagerank 
3.  Gnerate data 

sh genData_ PageRank.sh 
 
Then there will be a data- PageRank file in the current directory,you can find your datas in it .If 
you use not one machine you must put the datas on each mpi-machines,most of all you must pur 
them in the same path . 



20 
 

 
To makefile: 
This we provid two version,you can choose make it by yourself ,if you do that you must translate 
like this : 
   1 Install boost and cmake 

2cd/BigDataBench_V3.0_MPI/SearchEngine/MPI_Pagerank/parallel-bgl-0.7.0/libs/graph_par
allel/test 

make distributed_page_rank_test 

And you also can use run_PageRank, we have already translated directly, the translated file is 
run_PageRank 
 
To run:   
mpirun -n process_number ./run_PageRank <InputGraphfile> <num_ofVertex> <num_ofEdges> 
<iterations> 
parameters: 
#<num_ofVertex> <num_ofEdges> these two parameters you can find in your gen_data 
 <num_ofEdges>: data length  as L 
 <num_ofVertex>: 2^n 
 <iterations>: n 

 
Index: 
The Index program now we use is obtained from Hibench. 
To prepare: 

tar xzf BigDataBench_V3.0.tar.gz 
cd BigDataBench_V3.0_Hadoop_Hive/SearchEngine/Index 
(when you do prepare.sh you must put linux.words and words these two files in 
/usr/share/dict) 
sh prepare.sh 
 

Basic command-line usage: 
sh run_Index.sh 
 

Kmeans: 
The Kmeans program we used is obtained from Mahout. 

1. Hadoop-version 
To Prepare 

tar xzf BigDataBench_V3.0.tar.gz 
cd BigDataBench_V3.0_Hadoop_Hive /SNS/Kmeans 
sh genData_Kmeans.sh 

Basic command-line usage: 
sh run_Kmeans.sh 

 
 



21 
 

2. Spark-version  
(If you use not one machine you must download the spark on each machines,and must download 
in the right way) 
To prepare: 
1.  Please decompress the file: BigDataBench_Sprak_V3.0.tar.gz 

tar xzf BigDataBench_Sprak_V3.0.tar.gz 
4. Open the DIR:  

cd BigDataBench_V3.0_Spark+Shark /SNS /Kmeans 

5. Gnerate data 
sh genData_ Kmeans.sh 

To run:   
./run-bigdatabench org.apache.spark.mllib.clustering.KMeans <master> <input_file> <k> 
<max_iterations> [<runs>] 
 
 parameters: 
 #<master>: URL of Spark server, for example: spark://172.16.1.39:7077 
 #<input_file>: the HDFS path of input data, for example: /test/data.txt 
 #[<k>]: number of centers 
 #<max_iterations>: number of iterations to run the algorithm 
 #[<runs>]: optional, level of parallelism to split computation into 
 
3. Mpi-version 

(If you use not one machine you must put the MPI on each mpi-machines and put in the same 
path) 

Simple-kmeans： 

To prepare: 
1.  Please decompress the file:  BigDataBench_MPI_V3.0.tar.gz 
tar xzf  BigDataBench_MPI_V3.0.tar.gz 
2.  Open the DIR:  
cd  BigDataBench_MPI_V3.0/ SNS / Simple_Kmeans 

./Generating Image_data/color100.txt 100000 > wl.1 

The number of 100000 represent output grequency,and the number of outbound must more 

then the number of wl.1 . 

To makefile: 
This we provid two version,you can choose make it by yourself ,if you do that you must translate 
like this 
mpicxx Generating.cpp -o mpi_main 
And you also can use run we have already translated directly, the translated file is mpi_main 

 

 



22 
 

To run: 

mpirun -np 12 ./mpi_main -i wl.1 -n 10 –o 
then you will get a new cluster file like wl.1. 
 
parameters: 
-i:the data set of clusters 
-n:the number of clusters like kmeans’K 
-o:output file 
Then there will be a data in the current directory..If you use not one machine you must put the 
datas on each mpi-machines,most of all you must pur them in the same path . 
 
Connected Components: 
The Connected Components program we used is obtained from PEGASUS. 
1. Hadoop-version 
 
To Prepare 

tar xzf BigDataBench_V3.0.tar.gz 
cd BigDataBench_V3.0_Hadoop_Hive /SNS/Connected_Components 
sh genData_connectedComponents.sh 

 
Basic command-line usage: 
sh run_connectedComponents.sh [#_of_nodes] [#_of_reducers] [#_Iterations_of_GenGragh] 
 
[#_of_nodes] : number of nodes in the graph  
[#_of_reducers] : number of reducers to use in hadoop. - The number of reducers to use depends 
on the setting of the hadoop cluster. - The rule of thumb is to use (number_of_machine * 2) as the 
number of reducers.  
[#_Iterations_of_GenGragh] : Iterations of GenGragh 
 
2. Spark-version  
(If you use not one machine you must download the spark on each machines,and must download 
in the right way) 
To prepare: 
1.  Please decompress the file: BigDataBench_Sprak_V3.0.tar.gz 

tar xzf BigDataBench_Sprak_V3.0.tar.gz 
2. Open the DIR:  

cd BigDataBench_V3.0_Spark+Shark / SNS/connect/ 
3. Gnerate data 

sh genData_ connectedComponents.sh 
To run:   
./run-bigdatabench cn.ac.ict.bigdatabench.ConnectedComponent <master> <data_file> [<slices>] 
 parameters: 
 #<master>: URL of Spark server, for example: spark://172.16.1.39:7077 
 #<data_file>: the HDFS path of input data, for example: /test/data.txt 



23 
 

 #[<slices>]: optional, times of number of workers 
 
3. Mpi-version 
(If you use not one machine you must put the MPI on each mpi-machines and put in the same 
path) 
To prepare: 
1.  Please decompress the file: BigDataBench_MPI_V3.0.tar.gz 

tar xzf BigDataBench_MPI_V3.0.tar.gz 
2.  Open the DIR:  

cd BigDataBench_MPI_V3.0 / SNS/MPI_Connect 
4. Gnerate data 

sh genData_connectedComponents.sh 
 
Then there will be a data- Connected_Components file in the current directory,you can find your 
datas in it .If you use not one machine you must put the datas on each mpi-machines,most of all 
you must pur them in the same path . 
 
To makefile: 
This we provid two version,you can choose make it by yourself ,if you do that you must translate 
like this : 
   1 Install boost and cmake 

2cd/BigDataBench_V3.0_MPI/SNS/Connected_Components/parallel-bgl-0.7.0/ 
libs/graph_parallel/test 

make distributed_ramt_cc 

And you also can use run_connectedComponents, we have already translated directly, the 
translated file is run_connectedComponents 
 
To run:   
mpirun -n process_number ./run_connectedComponents <InputGraphfile> <num_ofVertex> 
<num_ofEdges> 
parameters: 
<num_ofVertex> <num_ofEdges> these two parameters you can find in your gen_data 
<num_ofEdges>: data length  as L 
<num_ofVertex>: 2^n 
 
Collaborative Filtering Recommendation: 
Collaborative filtering recommendation is one of the most widely used algorithms in E-com 
analysis. It aims to solve the prediction problem where the task is to estimate the preference of a 
user towards an item which he/she has not yet seen.  
 
We use the RecommenderJob in Mahout(http://mahout.apache.org/) as our Recommendation 
workload, which is a completely distributed itembased recommender. It expects ID1, ID2, value 
(optional) as inputs, and outputs ID1s with associated recommended ID2s and their scores. As you 



24 
 

know, the data set is a kind of graph data. 
 
Before you run the RecommenderJob, you must have HADOOP and MAHOUT prepared. You can 
use Kronecker (see 4.2.1) to generate graph data for RecommenderJob. 
 
Basic command-line usage: 

tar xzf BigDataBench_V3.0.tar.gz 
cd BigDataBench_V3.0_Hadoop_Hive/E-commerce 
sh genData_recommendator.sh 
sh run_recommendator.sh 

 
Input parameters according to the instructions: 
1. The DIR of your working director; 
2. The DIR of MAHOUT_HOME. 
 
Naive Bayes  
Naive Bayes is an algorithm that can be used to classify objects into usually binary categories. It is 
one of the most common learning algorithms in Classification. Despite its simplicity and rather 
naive assumptions it has proven to work surprisingly well in practice. 
 
We use the naivebayes in Mahout(http://mahout.apache.org/) as our Bayes workload, which is a 
completely distributed classifier.  
When you choose to run bayes,we should use mahout-0.6 .So we provide the mahout-0.6 in 
E-commerce.You must install and export the environment.You can do like this: 

  cd BigDataBench_V3.0/E-commerce 
  tar -zxvf mahout-distribution-0.6.tar.gz 
  export BigDataBench_V3.0/E-commerce/ mahout-distribution-0.6 

and then you can run it  
 
1. Hadoop-version 
Basic command-line usage: 

tar xzf BigDataBench_V3.0.tar.gz 
cd BigDataBench_V3.0_Hadoop_Hive /E-commerce 
sh genData_naivebayes.sh 
sh run_naivebayes.sh 
 

Input parameters according to the instructions: 
The DIR of your working director; 
The DIR of MAHOUT_HOME. 
 

2. Spark-version  
(If you use not one machine you must download the spark on each machines,and must download 
in the right way) 
To prepare: 



25 
 

1.  Please decompress the file:  BigDataBench_Sprak_V3.0.tar.gz 
tar xzf BigDataBench_Sprak_V3.0.tar.gz 

5. Open the DIR:  
cd  BigDataBench_V3.0_Spark+Shark / E-commerce 

6. Gnerate data 
sh genData_ naivebayes.sh 

To run:  
    sh run_naivebayes.sh 

 
3. Mpi-version 
(If you use not one machine you must put the MPI on each mpi-machines and put in the same 
path) 
 
To prepare: 
1.  Please decompress the file:   

tar xzf BigDataBench_MPI_V3.0.tar.gz 
2.  Open the DIR:  

cd BigDataBench_MPI_V3.0 / E-commerce/MPI_naivebayes 
7. Gnerate data 

sh genData_naivebayes.sh 
 
The naivebayes is special ,you can not copy the data to each machines .You must use everyone 
machine’s genData_naivebayes.sh to generate datas,and then you can change prcoess numberes. 
 
To makefile: 
This we provid two version,you can choose make it by yourself ,if you do that you must translate 
like this 
mpic++ -std=c++11 -o  MPI_NB MPI_NB.cpp 
And you also can use run_sort we have already translated directly, the translated file is 
run_naivebayes 
 
To run:   
mpirun -n process_number ./run_naivebayes -i <inputfile> -o <save_file> 
(the bayes algorithm need we use BigdataSuit in every machines. We must genearte datas fisrt.Not 
like others to copy the datas to every machines.) 

6.3 OLAP and Interactive Analytics 

6.3.1 MicroBenchmarks 

1. Hive Version 
To prepare and generate data: With reference to 5.3 Table Generator 
Create tables and load data into tables: 



26 
 

(MicroBenchmark and AMPLabWorkloads use the same table) 
cd $HIVE_HOME/bin 
./hive 
create database bigdatabench; 
use bigdatabench; 
create table bigdatabench_dw_order(order_id int,buyer_id int,create_date string) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE; 
 
create table bigdatabench_dw_item(item_id int,order_id int,goods_id int,goods_number 
double,goods_price double,goods_amount double) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE; 
load data local inpath 
'$BigDataBench_HOME/BigDataGeneratorSuite/Table_datagen/output/OS_ORDER.txt' 
overwrite into table bigdatabench_dw_order; 

load data local inpath '$BigDataBench_HOME 
/BigDataGeneratorSuite/Table_datagen/output/OS_ORDER_ITEM.txt' overwrite into table 
bigdatabench_dw_item; 
create table item_temp as select ORDER_ID from bigdatabench_dw_item; 

 
To run: 

cd Interactive_MicroBenchmark 
sh run-MicroBenchmark.sh 
(For ease of use, we recommend that you use a local mysql server to store metadata) 
 

2. Shark Version 
To prepare and generate data:  
With reference to 5.3 Table Generator 
Upload the text files in $BigDataBench_HOME/BigDataGeneratorSuite/Table_datagen/output/ to 
HDFS and make sure these files in different pathes. 
Create tables: 
tar zxvf MicroBenchmark.tar 
cd Interactive_MicroBenchmark 
shark 
create external table bigdatabench_dw_item(item_id int,order_id int,goods_id int,goods_number 
double,goods_price double,goods_amount double) ROW FORMAT DELIMITED FIELDS 
TERMINATED BY '|' STORED AS TEXTFILE LOCATION ‘path to OS_ODER_ITEM.txt’; 
create external table bigdatabench_dw_order(order_id int,buyer_id int,create_date string) ROW 
FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE LOCATION 
‘path to OS_ORDER.txt’; 
create table item_temp as select ORDER_ID from bigdatabench_dw_item; 
 
To run: 
cd Interactive_MicroBenchmark 
edit free_m.sh to make sure it runs correctly. 



27 
 

sh runMicroBenchmark.sh 
 
3. Impala Version 
To prepare and generate data:  
With reference to 5.3 Table Generator 
Upload the text files in $BigDataBench_HOME/BigDataGeneratorSuite/Table_datagen/output/ to 
HDFS and make sure these files in different pathes 
Create tables: 
$HIVE_HOME/bin 
./hive 
create external table bigdatabench_dw_item(item_id int,order_id int,goods_id int,goods_number 
double,goods_price double,goods_amount double) ROW FORMAT DELIMITED FIELDS 
TERMINATED BY '|' STORED AS TEXTFILE LOCATION ‘path to OS_ODER_ITEM.txt’; 
create external table bigdatabench_dw_order(order_id int,buyer_id int,create_date string) ROW 
FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE LOCATION 
‘path to OS_ORDER.txt’; 
create table item_temp as select ORDER_ID from bigdatabench_dw_item; 
 
To run: 
tar zxvf MicroBenchmark.tar.gz 
cd MicroBenchmark 
edit free_m.sh and impala-restart.sh to make sure them run correctly. 
sh runMicroBenchmark.sh 
 

6.3.2 Analysitic workloads 

1. Hive Version 
AMPLab workloads 
To prepare and generate data: 

the data of table bigdatabench_dw_order and talbe bigdatabench_dw_item： 
With reference to the previous section 

Create tables and load data into tables: 
(MicroBenchmark and AMPLabWorkloads use the same table) 

cd $HIVE_HOME/bin 
./hive 
create database bigdatabench; 
use bigdatabench; 
create table bigdatabench_dw_order(order_id int,buyer_id int,create_date string) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE; 
 
create table bigdatabench_dw_item(item_id int,order_id int,goods_id int,goods_number 
double,goods_price double,goods_amount double) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE; 



28 
 

load data local inpath ' /home/output /OS_ORDER.txt' overwrite into table 
bigdatabench_dw_order; 
load data local inpath 
 ' /home/L/BigDataBench_V3.0_Hadoop_Hive/BigDataGeneratorSuite/Table_datagen/e-com 
output/OS_ORDER_ITEM.txt' overwrite into table bigdatabench_dw_item; 
create table item_temp as select ORDER_ID from bigdatabench_dw_item;  
 

To run: 
cd Interactive_Query 
sh run-AnalyticsWorkload.sh 

TPC-DS workloads 
To prepare and generate data: 

cd OLAP_Benchmark 

./dsdgen -scale <data-size> -dir <data-directory>  

A few notes about this command: 
 <data-size> : the number of the data size, the unite is GB. 
 <data-directory> :the path where your data want to put. 

./mvdata.sh <data-directory> 
Create the TPC-ds tables: 

Firstly, you should put TPC-DS data into the hdfs. 
cd OLAP_Benchmark 

sh create-tpcds-tables.sh 
To run: 

cd OLAP_Benchmark 
sh run-TPC-DS.sh 
 

2. Shark Version 
AMPLab workloads 
To prepare and generate data:  
With reference to 5.3 Table Generator 
Upload the text files in $BigDataBench_HOME/BigDataGeneratorSuite/Table_datagen/output/ to 
HDFS and make sure these files in different pathes. 
Create tables: 
tar zxvf InteractiveQuery.tar.gz 
cd InteractiveQuery 
shark 
create external table bigdatabench_dw_item(item_id int,order_id int,goods_id int,goods_number 
double,goods_price double,goods_amount double) ROW FORMAT DELIMITED FIELDS 
TERMINATED BY '|' STORED AS TEXTFILE LOCATION 'path to OS_ODER_ITEM.txt'; 
create external table bigdatabench_dw_order(order_id int,buyer_id int,create_date string) ROW 
FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE LOCATION 
'path to OS_ORDER.txt'; 
create table item_temp as select ORDER_ID from bigdatabench_dw_item; 



29 
 

 
To run: 
cd InteractiveQuery 
edit free_m.sh to make sure it runs correctly.   
sh runQuery.sh 
TPC-DS workloads 
To prepare and generate data: 
tar zxvf TPC-DS.tar.gz 
cd OLAP_Benchmark 
./dsdgen -scale <data-size> -dir <data-directory> 
A few notes about this command: 
 <data-size> : the number of the data size, the unite is GB. 
 <data-directory> :the path where your data want to put. 

./mvdata.sh <data-directory> 
Put TPC-DS data into the hdfs 
Create tables: 
Edit create-tpcds-tables.sql to make sure the queries use the right pathes 
shark –f create-tpcds-tables.sql 
To run: 
cd OLAP_Benchmark 
edit free_m.sh to make sure it runs correctly. 
sh runTPC-DS.sh 
About qurey12 
Query12_2 will use query12_1’s result.  
 
3. Impala Version 
AMPLab workloads 
To prepare and generate data:  
With reference to 5.3 Table Generator 
Upload the text files in $BigDataBench_HOME/BigDataGeneratorSuite/Table_datagen/output/ to 
HDFS and make sure these files in different pathes. 
Create tables: 
$HIVE_HOME/bin/hive 
create external table bigdatabench_dw_item(item_id int,order_id int,goods_id int,goods_number 
double,goods_price double,goods_amount double) ROW FORMAT DELIMITED FIELDS 
TERMINATED BY '|' STORED AS TEXTFILE LOCATION ‘path to OS_ODER_ITEM.txt’; 
create external table bigdatabench_dw_order(order_id int,buyer_id int,create_date string) ROW 
FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE LOCATION 
‘path to OS_ORDER.txt’; 
create table item_temp as select ORDER_ID from bigdatabench_dw_item; 
 
To run: 
cd InteractiveQuery 
edit free_m.sh and impala-restart.sh to make sure them run correctly. 



30 
 

sh runQuery.sh 
TPC-DS workloads 
To prepare and generate data: 
tar zxvf TPC-DS.tar 
cd TPC-DS 
./dsdgen -scale <data-size> -dir <data-directory> 
A few notes about this command: 
 <data-size> : the number of the data size, the unite is GB. 
 <data-directory> :the path where your data want to put. 

./mvdata.sh <data-directory> 
Put TPC-DS data into the hdfs 
Create tables: 
Edit create-tpcds-tables.sql to make sure the queries use the right pathes 
hive –f create-tpcds-tables.sql 
To run: 
cd TPC-DS 
Edit free_m.sh and impala-restart.sh to make sure them run correctly. 
sh runTPC-DS.sh 
About qurey12 
Query12_2 will use query12_1’s result 
 

7 Reference 

[1] “wikipedia,” http://download.wikipedia.com/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 
[2] “Amazon reviews,” http://snap.stanford.edu/data/web-Amazon.html 
[3] “google web graph,” http://snap.stanford.edu/data/web-Google.html 
[4] “facebook graph,” http://snap.stanford.edu/data/egonets-Facebook.html 
[5] “Snap home page,” http://snap.stanford.edu/snap/download.html 
[6] J. Zhan, L. Zhang, N. Sun, L.Wang, Z. Jia, and C. Luo, “High volume throughput computing: 
Identifying and characterizing throughput oriented workloads in data centers,” in Parallel and 
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th 
International. IEEE, 2012, pp. 1712–1721. 
[7] Zhen Jia, Lei Wang, Jianfeng Zhan, Lixin Zhang, and Chunjie Luo, Characterizing data 
analysis workloads in data centers, 2013 IEEE International Symposium on Workload 
Characterization (IISWC 2013). 
[8] Yuqing Zhu, Jianfeng Zhan, ChuliangWeng, Raghunath Nambiar, Jingchao Zhang, Xingzhen 
Chen, and Lei Wang. Generating comprehensive big data workloads as a benchmarking 
framework. In The 19th International Conference on Database Systems for Advanced Applications 
(DASFAA 2014), 2014. 
[9] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He, Wanling Gao, 
Zhen Jia, Yingjie Shi, Shujie Zhang, Cheng Zhen, Gang Lu, Kent Zhan, and Bizhu Qiu. 
Bigdatabench: A big data benchmark suite from internet services. The 20th IEEE International 

http://download.wikipedia.com/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://snap.stanford.edu/data/web-Amazon.html
http://snap.stanford.edu/data/web-Google.html
http://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/snap/download.html


31 
 

Symposium on High-Performance Computer Architecture(HPCA), 2014. 
[10] Chunjie Luo, Jianfeng Zhan, Zhen Jia, Lei Wang, Gang Lu, Lixin Zhang, Chengzhong Xu, 
and Ninghui Sun. Cloudrank-d: benchmarking and ranking cloud computing systems for data 
processing applications. Frontiers of Computer Science, 6(4):347–362, 2012. 


	1 Background
	2 Release and Update History
	3 Introduction
	3.1 Our Benchmarking Methodology
	3.2 Chosen Data sets and Workloads
	3.3 Use case

	4 Prerequisite Software Packages
	5 Big Data Generator Suite
	5.1 Text Generator
	5.2 Graph Generator
	5.3 Table Generator

	6 Workloads
	6.1 Cloud OLTP
	6.1.1 MicroBenchmarks

	6.2 Offline Analytics
	6.2.1 MicroBenchmarks
	6.2.2 Analytics Workloads

	2cd/BigDataBench_V3.0_MPI/SearchEngine/MPI_Pagerank/parallel-bgl-0.7.0/libs/graph_parallel/test
	make distributed_page_rank_test
	cd BigDataBench_V3.0_Spark+Shark /SNS /Kmeans
	2cd/BigDataBench_V3.0_MPI/SNS/Connected_Components/parallel-bgl-0.7.0/ libs/graph_parallel/test
	make distributed_ramt_cc
	6.3 OLAP and Interactive Analytics
	6.3.1 MicroBenchmarks
	6.3.2 Analysitic workloads


	7 Reference

