
1 Centura Code Warrior
R. J. David Burke

2 Branching Out
Mark Hunter

3 Centura News: Real Time
Goes Graphical

9 Save Effort and Resources
with Forms on Tabs
Larry Stahl

13 Reporting Tools: The Answer
is Crystal Clear
Doug MItchell

15 Tip: How to Create a Greenbar-
paper Effect
Doug Mitchell

16 Centura News:
Drawing Library Launched

February 1997
Volume 2, Number 2

Continues on page 4

TMProProCenturaCentura
Hot Ideas for Centura® DevelopersFormerly Gupta Pro

Centura Code Warrior
R. J. David Burke

Every once in a while, it’s useful to

be reminded of some of the most

basic programming rules,

guidelines, practices, and

disciplines that help us excel as

software developers. This article

deals specifically with Centura

Team Developer and SQLWindows,

but, at a higher level, many of the

items discussed can be applied to

most other software development

environments. You’ll also find

warnings and advice for those who

need to prepare for Tomahawk.

debugging applications. Therefore, much research has
gone on in finding ways to reduce time spent in “debug
mode.”

This article doesn’t present anything new or
particularly innovative; it’s more of a visit to those early
days when we were taking courses in programming and
system development. Also, you may not necessarily agree
with all the ideas presented here, but at least it will start
you thinking about these issues and considering how you
want to deal with them.

Coding practices
We all develop our own programming style and
preferences, and this is, indeed, part of reason there are
many rich and innovative applications out there. So the
last thing I would recommend are rigid programming
rules that stifle our right-brain thinking. But there are
many useful practices discovered over the years that don’t

If you develop applications for a
living, regardless of the tool you
use, you are faced with a

significant number of issues in
addition to the technical issues
associated with programming. There
are pressures to “get the product out
the door”: provide a stable, (one
hopes) bug-free product with a
reduced time to market. There are the
issues involving the development
support environment such as
repositories, version control, and
configuration management, and the
QA environment such as test plans
and testing tools. A large part of all
this comes down to time spent

intrude upon
our creative
nature. Let’s
explore a few of
these.

Naming
conventions
Effective naming conventions give developers significant
details about a variable or window in just a glance. You
can quickly discern the variable data type, where it’s
defined, how it’s used, and what it abstracts with a well-
developed set of conventions.

Most SAL developers start with the naming
conventions recommended in the Developer’s Reference
manual, reproduced in Table 1. In Table 2 I add some
additional conventions that I’ve taken to. However, I

ProProCenturaCentura

Branching Out
Mark Hunter

debuted in January 1996. Software AG was sufficiently
impressed by the product to form a partnership with
InfoSpinner and begin marketing the product under their
name as iXpress. Advance royalty payments from
Software AG allowed InfoSpinner to keep growing the
company and the product.

What does InfoSpinner offer?
InfoSpinner’s main product, ForeSite, is a deployment
platform for Web-enabled applications. It offers several
sophisticated features, including comprehensive site
management, dynamic load balancing, fault tolerance,
multi-platform compatibility, security, and the ability to
present dynamic page content through links to relational
databases and other applications.

What does Centura gain from

When Keith
Lowery left
Gupta Corp.
after six years

of good service, many
developers regretted
the loss of his talents. I
lost touch of his
activities after that, but
it appears that Lowery has been quite busy. He is the
founder and Chief Technical Officer of InfoSpinner, Inc.,
which has just agreed to be acquired by Centura Software
Corp. in exchange for 4.5 million shares of Centura stock.
In a conversation with Centura Pro, he related some of the
reasons he decided to rejoin his old employer.

InfoSpinner, headquartered in Richardson, Texas, is in
many ways a typical Internet-oriented startup company.
At first staff meetings were held in coffee shops and
source code was swapped on disk among engineers
working out of their homes. Now the company has 14
employees, including eight engineers, and an actual
office. Like other startups, InfoSpinner was formed to
address obvious needs in the young Internet/intranet
market, especially the needs of large enterprises.
InfoSpinner created a product called ForeSite, which

Centura Pro is published monthly (12 times per year) by Pro
Publishing, PO Box 18288, Seattle, WA 98118–0288.

POSTMASTER: Send address changes to Centura Pro, PO Box
18288, Seattle, WA 98118–0288.

Copyright © 1997 by Pro Publishing. All rights reserved. No
part of this periodical may be used or reproduced in any
fashion whatsoever (except in the case of brief quotations
embodied in critical articles and reviews) without the prior
written consent of Pro Publishing. Printed in the United States
of America.

Centura Pro is a trademark of Pro Publishing. Other brand and
product names are trademarks or registered trademarks of
their respective holders.

This publication is intended as a general guide. It covers a
highly technical and complex subject and should not be used
for making decisions concerning specific products or
applications. This publication is sold as is, without warranty of
any kind, either express or implied, respecting the contents of
this publication, including but not limited to implied

warranties for the publication, performance, quality,
merchantability, or fitness for any particular purpose. Pro
Publishing, shall not be liable to the purchaser or any other
person or entity with respect to any liability, loss, or damage
caused or alleged to be caused directly or indirectly by this
publication. Articles published in Centura Pro reflect the views
of their authors; they may or may not reflect the view of Pro
Publishing. Opinions expressed by Centura Software
employees are their own and do not necessarily reflect the
views of the company.

Subscription information: To order, call Pro Publishing at
206-722-0406. Cost of domestic subscriptions: 12 issues, $119;
Canada: 12 issues, $129. Other countries: 12 issues, $139. Ask
about source code disk pricing. Individual issues cost $15. All
funds must be in U.S. currency.

Centura technical support: Call Centura Software Corp. at
415-321-4484.

If you have questions, ideas for bribing authors, or would just
love to chat about what you’re doing with Centura products,
contact us via one of the means at right.

Cyber Editor Mark Hunter, Techno Publisher Dian Schaffhauser,
Business Manager-o-matic Shelley Doyle, Production Editor Superhighway Paul Gould

Centura Pro on the Web
http://www.ProPublishing.com

Editorial Command Post
Phone: 818-249-1364

Fax: 818-246-0487
E-mail: 71460.3142@compuserve.com

Subscription Headquarters
Phone: 206-722-0406

Fax: 206-760-9026
E-mail: 71333.2142@compuserve.com

Mail
Pro Publishing
PO Box 18288

Seattle, WA 98118-0288

Source Code on CompuServe
GO CENTURA, Library 10

New Digs on the Web

2 Centura Pro February 1997 http://www.ProPublishing.com

Centura Pro February 1997 3http://www.ProPublishing.com

the acquisition of InfoSpinner?
First, they gain an entirely new revenue stream. ForeSite
will be sold to companies that had not previously done
business with Centura. Since the death of runtime license
fees, it has been difficult for tool companies to get on-
going revenue from their customers. Since ForeSite is
based on deployment, not development, it represents a
new form of revenue. It’s also a product that’s a natural
choice for OEM deals like the one with Software AG.

Of course, ForeSite is also a near-perfect fit for
Centura’s plan for large-scale deployment of Web-enabled
applications created with Web Developer. Without
ForeSite, Centura would have needed to allocate lots of
resources to enhancing the JAWS server with the features
found in ForeSite— resources taken away from the ongoing
tool development efforts. And, to industry analysts, ForeSite
is more likely to be well-received than any deployment
platform Centura might have created internally.

Centura management says ForeSite gives them an
opportunity to visit accounts that hadn’t previously
chosen Centura tools. It is essential for Centura Software
to increase its customer base, and ForeSite should open
many doors.

Why did InfoSpinner choose to be acquired?
Lowery believes that there has been a fundamental
change in management’s vision at Centura recently. He
says that they appear to have a solid plan for gaining
market share, and their technical directions are aligned
with that plan. Remember that InfoSpinner shareholders
are accepting Centura stock, not cash. Lowery thinks that
Centura stock, at its current price, is a good growth
prospect. Considering that the stock price rose 25 percent
on the news, in spite of the diluting effect of an additional
4.5 million shares, the market shares those sentiments.

And InfoSpinner encountered challenges in
remaining independent. In the same way that Centura
faced a lot of hard work to enhance Web Developer
deployment, InfoSpinner faced a lot of hard work to add
more and better connectivity and other basic features, to
ForeSite. Much of Centura’s existing technology can be
put to work quickly to make ForeSite even more attractive

to potential customers. Lowery noted the good fit
between the two companies’ products.

InfoSpinner’s future
The InfoSpinner office in Richardson will become a
branch office of Centura, and the staff will remain to work
on ForeSite and related products. Lowery sees no sudden
shift in direction for his engineers; Centura is interested in
InfoSpinner’s products and wishes to keep enhancing and
marketing them. The products will remain open to all
platforms and development tools. And Software AG,
which kept InfoSpinner going in the early days, is happy
to see increased stability and functionality for the product;
their expectations for ForeSite (iXpress) remain strong.

Why does the InfoSpinner
Web page look so funny?
ForeSite is becoming a Centura product, and Centura
wants to create a coherent marketing plan for this
important new part of the company. While that’s going
on, they have asked InfoSpinner to suspend its public
marketing efforts. Thus, the empty look of
www.webspinner.com. OEM vendors may still publish
product information for the current version of ForeSite,
but there really will be significant changes to ForeSite
between now and the official Centura rollout later in the
first quarter. At that time a revised set of product specs
and other information will become available. You can also
expect an in-depth look at ForeSite’s features in Centura
Pro at about the same time.

Reading between the lines
R.J. David Burke’s “Code Warrior” article in this issue is
full of good advice, but the most interesting tidbits are
those which discuss how Tomahawk and its conversion
tools will deal with your existing SQLWindows and
Centura applications. It’s not too early to start thinking
about what you’ll need to do to make your apps compatible
with the future Centura Team Developer 2.0. At Pro
Publishing we’ve seen a little of the future, and it’s both
daunting and exciting. Preparing for Tomahawk will be a
major focus of the newsletter in the months to come. CP

NewsNewsCenturaCentura
Real-time Goes Graphical
DataViews Corp. recently announced DV-Xpresso 2.0,

a real-time graphics package that allows develop-

ers to create and customize cross-platform 2-D and

3-D dynamic data displays for decision support.

The graphics can be built and deployed to the Web,

Windows, or Unix. Developers can use the utility

to control, monitor, and represent data for execu-

tive information systems in industrial and finan-

cial applications. The package, which consists of

120-plus standard charts and graphics, downloads

drawings once; the dynamic data then modifies the

drawing, based on a frequency determined by the

programmer. Pricing starts at $1,000. The product

is expected to ship this quarter. To learn more,

call (800) 732-3200 or (413) 586-4144 or visit

www.dvcorp.com. CP

4 Centura Pro February 1997 http://www.ProPublishing.com

think there are still some conventions to work out.
Additionally, you can use a naming convention for

constants that don’t fit well into the referenced tables.
This convention is to start with an upper case prefix,
typically two or three characters, that identifies the
constant group and then an underscore, followed by a
descriptive, proper-cased phrase:

SAM_DoubleClick

Centura Code Warrior . . .
Continued from page 1

Table 1. SAL Identifier naming conventions.

Item type Object type Name prefix Example

Variables Boolean b bDone
Date/Time dt dtStart
File Handle hFile hFileLog
Long String ls lsImage
Number n nProfit
Sql Handle hSql hSqlQuery
String s or str sLastName
Window Handle hWnd hWndMain
globals g + type gbDebug
arrays a + type hWndaChildren[*]

Windows Form Window frm or fw frmMain
MDI Window mdi mdiFrame
Table Window tbl or tw tblMain
Dialog Box dlg dlgLogin
Data Field df dfPassword
Multiline Field ml mlComment
Column col colROWID
Pushbutton pb pbClose
Radio Button rb rbFemale
Check Box cb cbSaveInPreferences
Option Button ob obTableView
List Box lb lbDatabases
Combo Box cmb cmbTitle
Child Table tbl tblDetails
Horizontal Scroll Bar hsb hsbPan
Vertical Scroll Bar vsb vsbAspect
Picture pic picLogo
Custom Control cc ccMeter

Table 2. Additional popular naming conventions.

Item type Object type Name prefix Example

Resources Bitmap bmp bmpSplash
Icon ico icoCustomer
Cursor cur curDragCustomer

Functions and Top Level Parameters p_ + p_RepeatCount
Windows
Classes Class Names c or cls cExplorerList

Class Variables c_ + c_hWndInstances
Instance Variables i_ + i_sUserName

Named Menus Menus menu menuFile

Some developers have devised schemes for naming
functions, but I haven’t found one that suits me as far as
prefixing a function; so I just use unprefixed, descriptive
proper case names. One area where I deviate from the
common SAL-naming conventions is in the naming of
classes. Personally, I don’t find it very useful to prefix
class names with a c or cls. As with functions, I use an
unprefixed, descriptive proper case phrase, as shown in
Listing 1.

Listing 1. Declaring classes and custom controls.

Global Declarations

.

.

.
Class Definitions

Custom Control Class: Slider
Description: Slider control
Derived From
Class Variables
Instance Variables
Functions
Message Actions

.

.

.
Form Window: frmMain

Description: Main application
window

Named Menus
Menu
Tool Bar
Contents

Slider: sldrVolume
Message Actions

Functions
Window Variables
Window Parameters
Message Actions

Listing 1 also shows another practice
I like, which is to prefix custom
control class instances in a similar
manner as the standard controls.
Thus, all instances of the Slider
custom control class are prefixed
with “sldr.”

Another useful technique is to
organize your variables. I like to
organize them alphabetically. This
makes it fairly easy to locate
variables when browsing code. I used
to organize variables in the order
they were referenced, like in my
structured programming days; but
this is harder to browse and often
unknown in event-driven
environments.

I would also like to point out that
naming conventions are guidelines
rather than rules. This makes it easier
to allow useful exceptions. Perhaps
the best example of such an exception
is in variable names for numerics that

Centura Pro February 1997 5http://www.ProPublishing.com

are really handles. For these variables I generally choose
to go with h as the prefix as in Listing 2.

Listing 2. Allowing exceptions where appropriate.

Set hSysMenu = GetSystemMenu(hWndMDI)

I now find myself moving toward using Java naming
conventions for several reasons. First, the Tomahawk (2.0)
release of Centura Team Developer (CTD) will be quite
Java-centric (generated Java code, support for Java
classes). Second, I think Java’s style is more readable than
the legacy SAL conventions. Consider isDone instead of
bDone and numItems instead of nNumItems.

SAL supports up to 32 characters for identifiers. This
should give you the freedom to come up with meaningful,
descriptive names; but it must be balanced against using
names that are too long and difficult to read. Remember,
you want to get maximum expressiveness out of variable
names, not maximum character length.

Comments
The application outline includes many predefined items
for entering comments and descriptive text. However, I’ve
seen source code for many production programs in which
description items are mostly blank. Given that typically a
program is read many times but written once, it only
benefits us to document the code.

In the outline description items I like to use a format
similar to the Windows SDK documentation for functions
and a somewhat modified version for top-level windows
and classes. In-code comments are really useful as well,
especially for documenting non-obvious algorithms and
such. However, software development veterans know that
comments can never be trusted (typically, when the code
is changed by a junior maintenance programmer, who
doesn’t bother updating the comments) and only trust the
code itself. This reality reinforces the adage:

If you can say it in code or say it in comments, say it in code.

What this means is that if you can capture the essence
of a code fragment with a comment vs. with descriptive
variable names and programming constructs, go with the
latter. In self-descriptive code, the code itself will explain
how it works. In some cases it is helpful to augment the
code with comments that explain why the code does it the
way it does.

External function issues
One dilemma with respect to external functions is
whether to use export ordinals. Generally, I prefer not to,
unless required. If export ordinals are used, the compiler
will compile external functions as long as any function
has been exported with the specified ordinal, regardless of

whether it’s actually the function you intended to call. By
not using export ordinals, the compiler is forced to search
binaries for functions by name, which will cause the
compiler to fail if the functions aren’t defined and
exported. I’m sure export ordinals are in the top three of
migration problems when going from SQLWindows to
Centura Team Developer. A typical situation (IMHO) that
justifies using export ordinals occurs when you need to
declare the same external function more than once with
different parameters. A good example is the Windows API
function SetWindowPos, where you might redefine the
second parameter to accept either a Window Handle:
HWND or a Number: DWORD (Number: HANDLE in
CTD) depending on whether you need to actually
position a window or make it topmost.

Another reason for using ordinals is to avoid compile
errors for duplicate function names. For example, if you
write a general-purpose APL that defines a Windows API
function, and you want to include it in an existing
application, you must determine whether the function is
already defined in some other part of the app, and
perhaps modify code. If your APL uses a different, unique
name for the function and defines the ordinal, you can
include the APL in the app without fear of duplicate
symbol errors.

The second dilemma surrounding external functions
is whether to map API functions that take a handle data
type to a number or a window handle. Both have their
advantages and disadvantages. Mapping an external
handle data type to a window handle offers some
protection from using the value in arithmetic operations,
which typically aren’t a valid way to use the handle value.
However, the value is now susceptible to being used as a
window handle argument. By using a number for the
internal mapping, you get better expression in CTD
because you can choose Number: HANDLE. Also, with
the forthcoming changes in the Tomahawk release of
CTD, window references will replace window handles,
and this may make migration efforts more challenging.

More on functions
While talking about functions, here are some more tips. A
useful practice to adopt is to always check and validate
your parameters at the start of the function. While some
developers prefer to do validation on the arguments
before calling the function, from a modular and
encapsulation perspective, the function shouldn’t count
on this.

Another guideline for coding functions is to have
only one exit point (i.e. one Return). Most developers who
made it through structured programming retain this
practice, but the C community seems to have discouraged
this style. The benefit is readability. If there’s only one
exit, then it needs to be at the end of the function (the
exceptions are pathological) and can be quickly located.

6 Centura Pro February 1997 http://www.ProPublishing.com

Multiple Return statements make the
code harder to read and typically
introduce more code paths that need
to covered during testing (discussed
in Part 2 of this article).

Finally, get in the habit of
explicitly coding a return data type
for your functions. While the current
releases of SQLWindows and Centura
Team Developer default to a numeric
return data type, this will change in
the Tomahawk release of CTD, which
will support functions that return
nothing (VOID). (The converter will
automatically change functions with
no explicit return type to return a
Number.)

For every open, a close
Whenever you open a file or connect a Sql Handle, ensure
that you have a matching close or disconnect. While an
open File Handle isn’t dangerous (the runtime engine will
close the file upon normal termination of the application),
detecting an open handle may point you to code that isn’t
being executed, though you thought it was. Connected
Sql Handles at application termination can present
problems with some back ends. Suppose you build an
application to work with SQLBase for development and
forget to disconnect your Sql Handles at termination. You
then switch to Oracle for production. A connected Sql
Handle to Oracle at application termination can result in a
GPF, depending on which version of SQL*Net you’re
using.

Application properties
In SQLWindows these are items indented under the
“Design-time Settings” outline item (see Figure 1). In
Centura Team Developer, right click on the Application
node in the left pane and choose Properties from the menu.
Then select the Runtime tab in the properties dialog. In
either environment, consider the following options:

• Use Release 4.0 Scoping Rules. Always set this to No
unless you have an application built with
SQLWindows 4.0 and dependent on the scoping rules
in that version. If you have such an application, I
recommend you convert the app to use the present
scoping rules, as it is anticipated that release 4.0
scoping rules won’t be supported in the Tomahawk
release of CTD.

• Reject Multiple Window Instances. My preference for
this property is to set it to No (unchecked in CTD). If
you leave it as Yes (or checked), then when the
application attempts to create multiple instances, it

terminates rather abruptly and in an unfriendly
manner. If I need to limit window instances, I do it in
code.

• Fully Qualified External References. I normally set this
item to Yes (or checked). Unqualified external
references to variables and controls complicate
debugging. Of course, references to variables are best
avoided altogether if possible, as they violate
encapsulation. References are further discussed in the
section Scoping and Qualification. Unfortunately, this
setting has no effect on handle-qualified references
(previously known as semi-qualified references).

• Enable Runtime Checks of External References. This item
is useful to set to Yes (or checked) during
development, but set to No for production releases.
When set to Yes, the object referred to by a window
handle used in a fully qualified reference is checked
to ensure that it matches the identifier that follows the
window handle in the fully qualified expression. If
this is set to No and the check fails, then you’re
guaranteed to get a GPF and a fatal abnormal
termination of your app. If it’s set to Yes, you’ll get a
friendlier error dialog that explains why your app is
about to terminate. Certainly helps with the
debugging effort. After thoroughly testing your app,
you typically set this to No for building the
production EXE file to receive a modest performance
improvement in code execution of these kinds of
references.

See the on-line help or manuals for more information
on these items.

Object-oriented programming
OOP isn’t something that can be covered in any
significant detail in an article like this, but there are
important points to remember. In the current

Figure 1. Centura Team Developer defaults to Fully Qualified External
References but SQLWindows does not.

Centura Pro February 1997 7http://www.ProPublishing.com

implementations of SAL, encapsulation is a discipline you
have to maintain. Refrain from external references to
variables or child windows. In the Tomahawk release
we’ll see support for encapsulation from the compiler.

A hot topic in OOP is whether to use multiple
inheritance. I believe multiple inheritance has its place
and can be useful in many situations. Others disagree and
avoid using multiple inheritance.

Strive for reusability. Use classes and inheritance, and
partition your library files to optimize the reuse of your
work. Get over the not-invented-here-syndrome and look
for other code that you can reuse. Consider and evaluate
the available class libraries from third parties like
FrontEnd Systems, METEX, ADC, and Ten Ham
Informatiesystemen.

Scope and qualification
Understanding scope and how to formulate qualified
references is one of the more complicated aspects of SAL.
Fortunately, if you stick to the principles of object-
oriented programming, you can minimize your need to
use qualified references and simplify your code. The
forthcoming Tomahawk release of CTD will include
significant changes in this area, eliminating much of the
complexity that exists in SAL today. However, for the
present, it is useful to understand the various forms of
qualification and how they are used (or avoided).

In the outline there are many and varied places where
you can define the elements of an application. I use
elements as a catch-all to refer classes, windows,
variables, functions, and so forth. Each element has a
name or identifier that you use to refer to or manipulate
the element. The term used in the Developers Reference
manual is symbol. Depending on where you are in the
outline, and what element you want to refer to, you may
have to qualify the element’s symbol to help the compiler
(or runtime engine) understand what element you are
specifying.

The scope of a symbol is the part of the outline where
you can refer to an element using just its symbol, without
any additional qualifications. In SAL, scope is linked to
containership, that is, the scope of a symbol is anywhere
within the defining element, nested to any outline level.
This means, for example, that the scope of a data field in a
form window is anywhere inside the form window,
including its functions, other child windows, message
actions, and menu. The scope of global variables is
anywhere else within the outline, because you can think
of the outline itself as the highest-level of container.

To refer to an element of an application from outside
its scope, you need to use a qualified reference. Generally,
I see qualified references as either external references
(referring to an element defined in a different top-level
window or MDI window) or child references (referring to
an element defined in a child element; this is my own

term, not in the documentation). External references can
be more specific by making them fully qualified, which
means a window handle expression is prepended to the
qualified reference. Another way to look at qualified
references is that they are either object-qualified or class-
qualified, depending on what kind of reference you’re
trying to make.

What follows here is look at all the forms of
qualification, where and why you’d use them, and any
other comments.

Object-qualified references
Object-qualified references can take on a variety of forms
in SAL. Consider accessing a variable or data field in a
form window outside of the current scope:

Set frmCustomer.sLastName = frmQuery.sLastName
Call SalHideWindow(frmMain.pbCancel)

Notice how both of these lines of code are invasive,
violating the spirit of encapsulation. However, object-
qualified references to functions are generally acceptable:

Set sLastName = frmCustomer.GetLastName()

Resolving references to duplicate symbols
One of the reasons for object-qualified references is to
eliminate the ambiguity of duplicate symbols in different
top level windows. For example:

Form Window: frm1
Functions

Function: fX

Form Window: frm2
Functions

Function: fX

Dialog Box: dlg1
Window Variables

String: s
Message Actions

On SAM_Create
Set s = fX()

The compiler won’t be able to resolve the assignment to s.
The solution is to qualify fX with the object name of the
form whose fX function is to be invoked:

Set s = frm2.fX()

Referring to child symbols
in the context of a parent
A suitable example:

Form Window: frmMain
Contents

Child Table: tblDetails
Contents

FlashableColumn: col1
Message Actions

On SAM_Destroy
Call aTransaction.Active(FALSE)

Window Variables
Transaction: aTransaction

8 Centura Pro February 1997 http://www.ProPublishing.com

Message Actions
On SAM_Timer

Call tblDetails.col1.Flash()

The first occurrence of object-qualification is the call to
aTransaction.Active(). The scope of the UDV
aTransaction, defined in frmMain, extends to tblDetails.
However, the functions defined in the Transaction class
aren’t in the scope of tblDetails, so an object-qualified
reference is necessary.

The second occurrence of object-qualification is the
call to tblDetails.col1.Flash(). The context for this call is
within frmMain and, since col1 is a child element of
tblDetails, it needs to be qualified. Also notice col1
qualifies the Flash() function. In an object-qualified
reference you can provide as many levels of nesting as
necessary for your reference. Arguably, this second
occurrence violates encapsulation. Perhaps a better
approach would be to send the tblDetails a message or
call one of its functions, which would execute the column-
qualified function call.

Fully object-qualified reference
In applications that support multiple instances of a top-
level window, it is necessary to specify a particular
instance in an object-qualified reference. This is supported
by prefixing the object-qualified reference with a window
handle expression that provides the window handle of the
instance you want to use.

Resolving references to multiple instances of a window
Recall the following form window:

Form Window: frm1
Functions

Function: fX

Now consider the following:

Set hWnd1 = SalCreateWindow(frm1, hWndNULL)
Set hWnd2 = SalCreateWindow(frm1, hWndNULL)
Set s = frm1.fX()

The object-qualified reference frm1.fX() is ambiguous
in this case since there are two instances of frm1. The
solution is to go to a fully object-qualified reference that
specifies the instance to use:

Set s = hWnd2.frm1.fX()

Additional nesting is supported for fully object-
qualified references as well. Here’s an example:

Call hWndFrame.mdiMain.frmCustomer.
tblContacts.colLastName.Clear()

Another form of fully object-qualified references
handles the situation where there are multiple instances of
frmCustomer within mdiMain. An example:

Call hWndForm.(mdiMain.frmCustomer).
tblContacts.colLastName.Clear()

In this syntax, the window handle has to refer to the
rightmost symbol inside the parentheses. As another
example, if you had the window handle of an instance of
colLastName, you would write:

Call hWndCol.(mdiMain.frmCustomer.
tblContacts.colLastName).Clear()

Fully object-qualified references are perhaps the most
difficult to formulate in SAL because it’s difficult to
anticipate (during application design) exactly what is
needed and how to structure the application. It is
anticipated that the Tomahawk release of CTD will make
this form of qualification obsolete.

Handle-qualified reference
Handle-qualified references (originally called semi-
qualified references back around SQLWindows 3.x) were
introduced to SAL to provide a “poor man’s
polymorphism” before all the OOP additions that went
into SQLWindows 4.0. This form of qualification is now
obsolete and shouldn’t be used. It can make applications
difficult to maintain and debug. Currently, handle-
qualified references are still supported to facilitate
migration of older applications. However, in the
Tomahawk release of CTD, it is anticipated that this form
of qualification will no longer be supported. The
recommended migration strategy for legacy SAL code is
to use late-found function calls. For example, consider a
circa-SQLWindows 3.1 application with code like this:

Form Window: frmA
Functions

Function: Clear

Form Window: frmB
Functions

Function: Clear

Call hWnd.Clear()

where hWnd is the window handle of either an instance
of frmA or an instance of frmB. A possible restructuring
could look like this:

Form Window Class: cFrm
Functions

Function: Clear ! possibly a virtual function

cFrm: frmA
Functions

Function: Clear

cFrm: frmB
Functions

Function: Clear

Call hWnd.cFrm..Clear()

Continues on page 12

Centura Pro February 1997 9http://www.ProPublishing.com

ProProCenturaCentura

Save Effort and Resources
with Forms on Tabs
Larry Stahl

One great change introduced in

SQLWindows 5.0.2 (and temporarily

left out of 5.0.3) was the capability

of associating a form (or dialog)

with one particular tab on a tab

frame. This article shows how this

feature can conserve resources and

improve team programming.

Associating a form with a tab is
a great improvement over the
initial tab forms. Anybody

who has worked with tabs would
probably agree that the user interface
(UI) is great but has contributed to
some serious problems. The sole
original method by which tabs
worked was to have all of the
children on all tabs belong to the one
form that contained the tab. This often led to forms with
hundreds of child windows, sometimes reducing
resources to 10 percent or less available.

Another problem that crops up is managing the
development of the tab form. Usually all the information
presented on multiple tabs is related, but it often comes
from different tables for different tabs. Because all of the
tabs for a particular form are part of one source code
module, only one person can work on the form at a time.
Often projects are managed by checking in and out
modules that control a form; but this doesn’t work with
individual tabs on tab forms.

Forms on tabs can solve these problems.

What are forms on tabs?
So what, exactly, are forms on tabs? If you’ve used tabs,
you’re familiar with the properties dialog. The first five
properties were there in prior versions of SQLWindows.
They allow specification of the attributes of the tab form
such as the labels on the tabs, fonts, and colors of the
labels and the internal tab name.

A sixth property was added in 5.0.2 that lets you
associate a top-level form (form window or dialog box)
with an individual tab. You’ll notice in Figure 1 that
there’s a window name, the tab label, and the internal tab
name (which you can’t see here). Also illustrated in the
figure is a nice feature which, when you put the focus in
the window name column, shows a list of all of the forms
from which to choose.

Another feature has been added to ease working with

forms on tabs, as shown in Figure 2.
When a form is associated with a tab,
the tab displays a form icon and a
little message that a form is so
associated. It is easy to see the design
window associated with the form by
double-clicking on the icon.

Once you’ve associated a form
with a tab, SQLWindows handles the
creation of the form when the

Figure 1. Associating a window name with a specific tab.

appropriate tab is clicked. All of the standard
SQLWindows messages (such as SAM_Create) occur for
this form.

A fortunate combination of features
“OK,” you say, “That’s fine if a user is only going to use a
subset of the total number of tabs each time the tab form
is used. But if the form is created each time a tab is

Centura Pro February 1997 9http://www.ProPublishing.com

10 Centura Pro February 1997 http://www.ProPublishing.com

Figure 2. The first tab displays showing a form association.

chosen, and all of the tabs are selected, we can very
quickly get up to using 400 or 500 child windows.” Here,
a powerful combination of features in SQLWindows or
Centura Team Developer proves useful.

To take advantage of these features, each form that is
associated with a tab should contain a user-defined
variable (UDV). A UDV is a variable that is an instance of
a functional class that the developer creates. In the
example I’ve provided, they are instances of classes
cfcPersonal, cfcAddress, and cfcDependents. Each
functional class has the data required for the particular
form (in other words, cfcPersonal, shown in Listing 1,
contains variables for employee name, ID, and birth date
as well as functions to access those variables). Depending
upon how the database is structured, the functional class
might contain functions to insert, update, and delete the
data to the relevant tables in the database. Many
additional examples of UDV usage can be found in
MUSQLB.APP in the SAMPLES subdirectory of your
SQLWindows or Centura directory.

Listing 1. The functional class for Personal form UDV.

♦ Functional Class: cfcPersonal
◊ Description: Employee’s personal information
◊ Derived From
♦ Class Variables

◊ String: siEmpId
◊ String: siName
◊ Date/Time: dtiBirthdate

◊ Instance Variables
♦ Functions

♦ Function: GetEmpId
♦ Function: PutEmpId
♦ Function: GetName
♦ Function: PutName
♦ Function: GetBirthDate
♦ Function: PutBirthDate

I have found it useful to have a UDV for the entire tab
form (like a buffer for a database table or tables) and
contribute the UDV from each “child form” to this overall
UDV. Then, that UDV might be type cfcEmployee and
contain variables of type cfcPersonal, cfcAddress, and

cfcDependents, along with others. This functional class
could have functions to manipulate the database for the
employee, including such functions as creating a new
employee or—ahem—terminating one. This really shows
the power of object-orientation.

How do I use it?
When the form is created, read the data contained in the
UDV into the appropriate objects (data fields, combo
boxes, etc.) on the form. The value of data may be null, so
make sure that situation is handled correctly. When the
form is destroyed, write the data back into the UDV. The
data in a functional class is persistent through this
application session. (For example, class variables in a
functional class retain their information even when
instances of the functional class are terminated.) It’s
convenient to have one function to read the data from the
UDV into the form and one to write the data from the
form to the UDV.

When you’re in the windows variables section of a
form, the functional classes are shown as datatypes in the
outline options. The variables section of each of the three
forms we have associated with our tabs will have the
following defined:

cfcPersonal: uPersInfo
cfcAddress: uAddress
cfcDependents: uDeps

Using a late-bound function
The last capability needed to make this work is some way
of knowing when a user has “clicked off” the tab so that
you can save the information from the form and destroy
the form. As part of tab processing, the function
TabUserRequest is called, late-bound, from the
SQLWindows code. This means that if you have a
function by the same name in your tab form (the form that
contains the tabs), your version of the function will be
called, instead of the default version that comes with
QCKTABS.APL. The function takes two parameters: a
window handle and a number. Centura has implemented
tab functionality within the structure of a picture window,
picTabs (by default).The window handle is that of the tab
frame (often named picTabs), and the number is the index
of the tab to which you are moving. If you’re experienced
with tabs, you’ll recognize that this late-bound function
simply takes the place of the message, TABSM
UserRequest. Also, if for some reason program logic
dictates that the user not change tabs, you may call
function CancelMode(), which will deny the user’s
request and leave the current tab displayed.

From within the TabUserRequest function (see Listing
2), call the function hWnd.cQuickTabs.GetTop(), where
hWnd is the window handle parameter originally passed
to the TabUserRequest function. Set a numeric variable,
say, nWasIndex, to that value. Then call:

Centura Pro February 1997 11http://www.ProPublishing.com

hWnd.cQuickTabs.GetName(nWasIndex, sTag)

This takes the tab index and gets the “tag” or internal name
of the tab (remember the unique value you specified when
you set up the tabs). Given this tag, you may then call:

hWnd.cQuickTabs.DestroyPage(sTag)

which destroys the form on the tab but won’t eliminate
the association between the tab and its “child” form.
When you go back to that tab, the form will be

Late-bound Functions In CTD
Using late-bound functions is facilitated by Centura Team Developer. When

you are in an instance of a class and in the function section of the outline, you

can see all of the class functions available to you. If you double-click on the

function you wish to implement, a template (name, description, variables) of

that function is created in the outline for you.—L.S.

Listing 2. An example of the TabUserRequest function.

♦ Function: TabUserRequest
◊ Description: Indicates that user is attempting to change the current tab

by clicking, tabbing, or some other user action.
Note: Call CancelMode() to deny the user’s request

◊ Returns
♦ Parameters

◊ Window Handle: hWnd
◊ Number: nTab

◊ Static variables
♦ Local variables

◊ String: sTag
◊ Number: nWasIndex

♦ Actions
◊ Set nWasIndex=hWnd.cQuickTabs.GetTop()
♦ If nWasIndex !=nTab ! only do something if tabs change

◊ Call hWnd.cQuickTabs.GetName(nWasIndex, sTag) ! get the tag and number tab
◊ ! The DestroyPage function destroys the form associated with the tab

but doesn’t destroy the association; so that when it is again selected
the form appears.

◊ Call hWnd.cQuickTabs.DestroyPage(sTag)

Drawbacks
and caveats
Data is in the
UDV, not the
form
This is a new
way of
programming.
The functional
class is the
primary location
in the program,
not the form.
The data
remains even
after the form is
destroyed. The

Outline view with coding assistant displaying class functions and specific template.

reason the variables are class variables is so that even
after the instance of the class is destroyed (the form
variable), the class variables still exist. Any other instance
of the functional class shares in the functions and data in
that class. Therefore, the function to write to the employee
table (the DB table that holds the employee’s personal
information) might be in our cfcPersonal class and used
from the main tab, not the personal tab.

No knowledge of parent
The most difficult issue is not really a difficulty but aautomatically created.

Now you need to store the data
that resides on the form into your
UDV (that was created for that
purpose). When the form is created,
there must be code to read data from
the UDV and write it on to the form.
It works fine to write logic for those
two tasks within the
SAM_CreateComplete and the
SAM_Destroy messages. I
recommend creating a form window
class that always calls a function to
restore data on the create and save
the data (to the UDV) on the destroy.
By doing it all within the form, the
capability works without regard to
whether or not the form is associated
with a tab. Remember to use class
(not instance) variables in the
functional classes, because you
destroy the instance of the class every
time you destroy the form. By
writing a function to save the data for
each form, you can easily handle
special cases such as table windows
or extra data stored in form variables.

12 Centura Pro February 1997 http://www.ProPublishing.com

Class-qualified reference
A class-qualified reference is similar to an object-qualified
reference except that a class name is used to qualify a
reference. Class-qualified references are typically used in
derived classes or class objects to reference an element in
a base class. Class-qualified references are used to resolve
multiple inheritance collisions. An example:

Functional Class: A
Functions

Function: X

Functional Class: B
Functions

Function: X

Functional Class: C
Derived From

Class: A
Class: B

Functions
Function: X

Actions
Call A.X()
Call B.X()

An interesting use of class-qualified references is that
they can be used to reference class variables even when
there are no instances of a class. For example, you can do
this:

Global Declarations
Class Definitions

Form Window Class: cFrm
Contents

Data Field: df1
Message Actions

On SAM_Create
Set MyValue = c_s

Class Variables
String: c_s

Application Actions
On SAM_AppStartup

Set cFrm.c_s = ‘Hello’
Call SalCreateWindow(frm1, hWndNULL)

cFrm: frm1

and, upon execution, df1 in frm1 is initialized to “Hello”.

Fully class-qualified reference
A fully class-qualified reference is similar to a fully object-
qualified reference, except that a window handle
expression is used to specify a particular instance of a
class. After being evaluated, the window handle result
must refer to an instance of the class, or an object of a
class derived from the specified class. Fully class-qualified
references provide a fair amount of flexibility and room
for growth when designing class libraries or application
frameworks in applications themselves. For example, in:

Call hWnd[nIndex].cFrm..Initialize()

the window handle result would have to refer to an
instance of cFrm or an instance of a class derived from cFrm.

Like fully object-qualified references, it is anticipated
that Tomahawk will make the need for, and use of, fully
class-qualified references obsolete.

Next month: Test plans and testing. CP

R.J. David Burke is a Project Leader with Centura Software Corp. You can

send him e-mail via David.Burke@CenturaSoft.com.

Centura Code Warrior . . .
Continued from page 8

different way of thinking about the situation. That is, the
form has no direct knowledge of what is happening in the
tab (or parent). In many applications the user isn’t
allowed to save until certain information is supplied. When
all fields were on one form, that was fairly straightforward.
Now we’ll achieve this same capability using variables that
share the same class.

Suppose an employee can’t be saved to the database
until a name, birth date, and address are supplied. If the
main tab contains variables of type cfcPersonal and
cfcAddress, the solution is (again) to use the functional
class or classes that are instantiated by the UDVs used to
save the form’s data. If the main tab has UDVs that are of
the same class as the tab form’s UDVs, communication can
happen through those same variables. A simple call to:

uVarPersonal.GetName()

reveals the user’s input (or lack thereof). Even combining
such queries into one function in the “employee” variable
(say, cfcEmployee has a function IsAllReqd()) would
make sense. This entire concept of communications

between forms and sharing data can be expanded (and
possibly a topic for a later article).

The end of MDI?
An application or programming style is specific to an
individual programmer. But in this case I think it’s easy to
imagine that, rather than using an MDI structure for
many applications, using a tab form with individual
forms on tabs will be as flexible, and perhaps more
intuitive, for a user. There are many functions available to
manipulate tabs. Examine the sample application
QUIKTABS.APP (in the SAMPLES subdirectory) for
information regarding those functions. CP

Download FORMTABS.ZIP from the Centura third-party
forum on CompuServe or visit the Centura Pro Web site at
www.ProPublishing.com.

Larry Stahl is a consultant and founder of InterAct Consulting and a

Centura Software Training Partner. He provides business requirements

analysis, project management, design, programming services, and

training to a variety of businesses. He can be reached at

larry.stahl@juno.com or on CompuServe at 71165,1012.

ProProCenturaCentura

Reporting Tools:

The Answer is Crystal Clear
Doug Mitchell

This article reviews Seagate

Software’s Crystal Reports 5.0, a

popular and award-winning

reporting tool. This program can be

used as a powerful, stand-alone

reporting utility or as a report

engine integrated into your favorite

development environment.

with various development environments, particularly
Centura’s development products.

A review, not a comparison
To begin with, this first article is more of a review of
Crystal, rather than a direct comparison of Crystal with
Centura’s reporting tool (ReportWindows/Report
Builder). Therefore, you won’t find any comparative
feature checklist or performance benchmark graphs.
However, since you’re probably familiar with Centura’s
reporting tool, this article informally compares the two
tools to each other frequently. While both of these tools
are in the same category (client-side reporting tools)
Crystal is in an entirely different class. Crystal is the
Ferrari of reporting tools—powerful,
fast, friendly, and slick looking. By
comparison, Centura’s reporting tool
is more like a hand-me-down Yugo—
outdated, slow, sparse on features,
and not known for its reliability (but
free!). I am not out to bash Centura,
but just about the biggest change to
ReportWindows in the last three
years was its name change to Report
Builder. (To be fair, the QuickReports
feature has been added more
recently, but it enhances integration,
so it will be covered in the second
article.)

Let’s face it, there are only two
reasons to use Centura’s reporting

tool when products such as Crystal
are available: its price (free) and its
tight integration with Centura’s
development products. This second
reason is very important to users of
Centura’s development tools;
therefore, I’ll cover it thoroughly in
the second article.

Go Professional
Crystal comes in two versions: the Professional edition
which lists for $395 (upgrades $199) and the stripped-
down Standard edition for $195 (upgrades $79). The
features discussed in this review are based on the
Professional edition. Besides a few add-ons, the main
features missing from the Standard edition are native SQL
support (ODBC access only to desktop data sources such
as Access, Excel, and FoxPro) and some programmability
(about half the number of API functions are exposed).
Therefore, when using a client/server development
environment, such as Centura’s, the Professional edition
is the only way to go.

Weighing in at over 87 tons, er, megabytes…
Crystal comes in both 16-bit and 32-
bit versions, each of which installs
easily from the CD. When fully
installed, the 32-bit Professional
edition consumes a whopping 87M.
The recommended RAM is 8M, but
16M is more workable. It runs on
Windows 3.1, Windows 95, and
Windows NT 3.51 or higher.
Luckily, Seagate provides the
necessary assistance for using its
monster of an application. The CD
includes a computer-based training
course sampler, a user manual of
more than 700 pages, and extensive
on-line help. The manual is
impressive, not only in its size and

Crystal Reports
Professional 5.0
Crystal Reports
Professional 5.0

Suggested retail, $395;
upgrade, $199

Seagate Software, Inc.
Information Management
Group
1095 West Pender Street
Vancouver BC Canada V6E 2M6
(800) 877-2340, (604) 681-3435
www.img.seagatesoftware.com

Because of Crystal Reports’
scope and complexity, this
article focuses only on the

features and user interface of the
product, to provide you with a good
understanding of Crystal’s
capabilities and limitations. A second
article, which will appear in a
subsequent issue of Centura Pro, will
focus on the integration of Crystal

Centura Pro February 1997 13

14 Centura Pro February 1997 http://www.ProPublishing.com

detail, but also in its ability to anticipate common
questions and issues. For example, I was interested in
reproducing the greenbar paper effect that I often use
with my Centura reports. Sure enough, the manual had a
topic entitled “How to alternate background colors for
rows.” (See my tip if you’re interested in how it’s done.)
Other nice touches with the user manual are much
appreciated. For example, it includes an extensive
“What’s New” section and a clever section—“Suggested
Learning Paths”—for different types of users. Moreover,
Crystal’s wizard-like “Experts” make the typical complex
tasks easy.

You name it,
Crystal Reports
connects to it.

One of
Crystal’s many
strengths is its
ability to connect
to virtually any
data source.
Besides the
typical data
sources, Crystal
can connect to
Arbor’s Essbase
(OLAP),
Symantec’s Act!,
Computer
Associates’
Clipper,
Microsoft’s
Exchange, Excel,
NT event logs,
ASCII files,
Lotus Notes 3.x
and 4.x, and a
variety of Web
server activity
logs. In addition
to the plethora of
ODBC devices,
the latest version
of Crystal comes
with a collection
of native SQL routers for faster SQL access. Native router
support is provided for Centura’s SQLBase, Oracle, and
Sybase databases.

Centura’s reporting tool’s data source has to be either
a Centura application or a CSV file. Since Centura’s
development products can connect to most of the above
data sources, indirectly, Centura’s reporting tool can, too.
However, this architecture, which relies on DDE to
transfer the data from the Centura application to the
report engine, adds another layer of overhead that hits

performance. I have long suspected that this DDE
interface has been Centura’s Achilles’ heel when it comes
to robustness. Centura’s reporting tool is adequate for
short, simple reports; but I have often encountered
problems when I have used it for larger batch reports.
Other users of Crystal’s previous versions have reported
stability problems, so Crystal is not necessarily immune to
this problem.

Features, features, everywhere
The sheer number of features that Crystal 5.0 has is

almost
overwhelming.
The excellent
documentation,
on-line help, and
Experts go a
long way to
prevent a novice
user from
becoming
intimidated.
Here are some of
the more notable
features.

A friendly
(inter)face
If you use
Centura’s
reporting tool,
you’ll feel at
home with
Crystal’s user
interface, which
is similar. Both
have report
templates
divided into
report bands or
sections (see
Figures 1 and 2).
These bands can
be expanded,
contracted,

hidden, or duplicated to customize a report template. A
tool bar and menus provide access to the various features.
In Crystal, right-clicking invokes context menus for quick
and easy access to key functionality.

Once I became familiar with Crystal’s interface, it was
no contest in terms of ease-of-use. However, not
everything is intuitive, and it does have its limitations.
One particular annoyance was the inability to undo after
the use of certain Experts. While Crystal does warn you
that this is the case, if you ignore the warning and don’t

Figure 2. Seagate’s Crystal Reports Pro 5.0 interface

Figure 1. Centura’s Report Builder interface.

Centura Pro February 1997 15http://www.ProPublishing.com

save, you learn the hard way that Experts aren’t always
right.

Another annoying limitation is the inability to drag
and drop a group of selected items between report bands.
Fortunately, Crystal allows you to move one item at a
time, a step above Centura’s reporting tools, which force
you to cut and paste between bands. It’s also possible to
open multiple report design windows at once and drag
items from one report to another.

A Query tool allows you to take a graphical approach
to developing the underlying SQL queries for reports. You
may also enter SQL queries directly if you prefer.

Many Experts ready to assist you
Crystal provides over a dozen Experts, or wizards, to
guide you with such tasks as creating a variety of reports,
preparing graphs, setting up your overall report format,
linking related databases, selecting records for inclusion
in your report, and gathering the necessary files for report
distribution. Centura’s reporting tool at least provides a
Wizard for cross-tab reports. This is necessary because
cross-tab reports are one of the most complex routine
reporting tasks.

Reporting types for all occasions
One of Crystal’s most useful features is its tab-based
wizard, Create Report Expert. This Expert leads you
through step-by-step instructions for creating a number of
different types of reports: standard, form letter, form,
cross-tab, subreport, mail labels, top N, and drill-down.
These reports can contain multiple detail sections,
conditional sections, and columns. With version 5.0,
reports can also be nested within each other. The Expert’s
interface is user-friendly and easily replaces Centura’s
quick report-generation capability, while providing a
great deal more flexibility and power. For example, this
report creation Expert can be re-entered to accommodate
future changes.

Report distribution in many shapes and sizes
Seagate Software takes report distribution to new heights.
In addition to the standard ability to print to a printer or a
Preview window, Crystal can export a report file through
e-mail, as a fax, directly to disk, to a Microsoft Exchange
folder, to a Lotus Notes database, or to an ODBC data
source. The report can be exported in any of several
formats, including word processing, spreadsheet,
database file, HTML, or standard data exchange (such as
CSV, DIF, and RTF).

Crystal allows you to distribute a report to a user’s
desktop, complete with a stand-alone snapshot of data.
Using the Report Distribution Expert, you can package a
report with a current snapshot of data and any required
components for stand-alone viewing/printing. A royalty-

free runtime license is included.

It all depends—conditional formatting
One of Crystal’s key features is its flexibility provided
through its conditional formatting. Using its If-Then-Else
formula, you can allow a report’s content to change
depending upon its source data. While a programmer will
be comfortable with Seagate’s powerful Formula Editor
used to control the conditional logic and more, it is not as
intuitive nor user-friendly as the rest of the tool. On the
positive side, users of Centura’s reporting tool will be at
home because Centura’s Formula Editor has the same
look and feel as Crystal’s.

Tip!Tip!CenturaCentura
How to
Create a
Greenbar-paper Effect

One effect I created extensively with Centura’s reporting

tool was to alternate the background color or shade of

detail lines in order to improve readability. This effect

mimics the green-barred paper used by antiquated line

printers.

Producing this effect is simple using Centura’s

reporting tool. After selecting the Detail band, choose the

Line menu item under the Format menu. Click on the

Color button from the Format Line dialog box to access

the Format Line Colors dialog box. In the background

group, choose a color, such as green, and click on the

Alternate Color check box. Now the detail lines will

alternate between the specified background color and no

color. Since I often print on a black and white printer, I

choose a custom light gray shade as my alternate color.

Hint: make the background color a light shade.

Otherwise, when the report is copied or faxed, the shaded

detail lines can become illegible.

Using Crystal, the process to produce the effect is not

as simple nor intuitive. Fortunately, it’s nicely documented

within the user manual for version 5.0 on page 179, so I

won’t detail the exact steps here. The method takes

advantage of the conditional formatting feature to

conditionally suppress the background color formatting

for alternating rows. On the downside, this method

requires that you duplicate the entire detail band. As a

result, this means that enhancements and maintenance of

the report becomes more of a hassle.—D.M.

16 Centura Pro February 1997 http://www.ProPublishing.com

What Crystal Reports is not
It’s easy to get overwhelmed by all of Crystal’s features.
However, Crystal does have its limitations. Although it’s
obviously a powerful client-side reporting tool, in trying
to be all things to all people, Crystal falls short when
compared to its competition once it steps out of its bailiwick.

Client/server reporting tool for large batch jobs
The limitations of client-side reporting tools become
apparent when the client and server reside on physically
different machines, and large batch reports are a
requirement. In this case, any client-side reporting tool is
going to fall short in terms of performance when
compared to a server-based reporting tool such as MITI’s
SQR Workbench. Of course, Centura’s reporting tool is
also client-side and, therefore, suffers similar performance
problems.

Note that Seagate has already recognized that Crystal
can’t be all things to all people, and has introduced
another product called Crystal Info. This three-tier client/
server reporting system allows users to schedule reports
for immediate or future generation. It uses Crystal
Reports as the design tool and features a robust server-
based engine with good scalability. Check out their Web
page for more information on this new product
(www.img.seagatesoftware.com/cinfo/default.htm).

Ad-hoc query and reporting tool
Crystal isn’t the best choice for an ad hoc query and
reporting tool for end users. It can be simplified for users
by creating an optional “Crystal Dictionary” metalayer.
The dictionary metalayer provides a filter that simplifies
and clarifies complex data forusers. In other words, the
dictionary makes it easier for users to create their own
reports. There are many other advantages to using the
Crystal Dictionary feature, so if providing on-the-fly
query and reporting capability is a requirement, that’s
added incentive to investigate this useful feature.

While its Dictionary metalayer feature makes Crystal

more user-friendly for users, there are better tools on the
market that provide greater functionality and ease of use,
such as IQ Software Corp.’s IQ Objects. Centura’s answer
to end-user query tools is its aging Quest product, which
can’t compete with these newer products on the market.

Web publishing tool
Finally, I wouldn’t recommend Crystal as a Web
publishing tool. While it does allow for reports to be
exported to a static HTML file, it doesn’t allow any
capability for publishing dynamic HTML database
reports, such as Oracle’s Web Request Broker or
Netscape’s LiveWire product.

Since Centura’s reporting tool doesn’t support HTML
output at all, I guess something is better than nothing.
Using Centura’s tight integration between its development
and reporting tool, it is possible to create HTML output
with additional coding using QuickReports API, but this
and other possibilities will be explored in my next article.

But, wait, there’s more!
When all said and done, it’s easy to see why Crystal is
such a popular client-side reporting tool. From a stand-
alone reporting tool perspective, Centura’s reporting tool
doesn’t provide much competition. However, the critical
question that remains from a Centura programmer’s point
of view is this: To what degree can Crystal be integrated
into the Centura development environment? Obviously,
Centura’s own reporting tool is going to have better
integration out of the box, but how much better? Stay
tuned! CP

Doug Mitchell is a Principal with American Management Systems (AMS)

in Fairfax, Virginia. He has been using Centura products to help his clients

develop custom client/server business applications for the last six years.

He volunteers as a Centura Team Assist member, serves as a Centura

instructor, presides over the Washington, D.C.-area Centura user group

and has presented at the last four Centura conferences. Contact him at

doug_mitchell@mail.amsinc.com.

NewsNewsCenturaCentura
Drawing Library Launched
TriLogic+ Automation BV, in Amsterdam, recently

introduced its fourth utility for Centura develop-

ers. TriLogic Shape Composer is a figure library

that allows data to be presented as graphical

objects in a diagram or drawing. The advantage is

that developers can use it to provide end users

with real-world metaphors representing their data

and the logic of their programs. Shape Composer

includes a 16-bit SQLWindows version and a 32-bit

Centura, shipped on the same disk. The company

also publishes Class Explorer for SQLWindows, a

class browser; Memorize, an in-memory database for

optimizing application performance; and the Widget

Library for SQLWindows, a library of user interface

QuickObjects. A developer version of Shape Composer

is priced at $495 during its introduction. To learn

more, contact the company at +31-20-612-3344 or fax

+31-20-685-5741. The company expects its Web site

at www.trilogic.nl to be active in February. CP

If your company has news about new products, services, clients,

or projects, send details to 71460.3142@compuserve.com, or fax

(818) 246-0487.

