
RedBoot User’s Guide

RedBoot User’s Guide
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009 Free Software Foundation, Inc.

Documentation licensing terms

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is

presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright

holder.

Trademarks

Altera® and Excalibur™ are trademarks of Altera Corporation.

AMD® is a registered trademark of Advanced Micro Devices, Inc.

ARM®, StrongARM®, Thumb®, ARM7™, ARM9™ is a registered trademark of Advanced RISC Machines, Ltd.

Cirrus Logic® and Maverick™ are registered trademarks of Cirrus Logic, Inc.

Cogent™ is a trademark of Cogent Computer Systems, Inc.

Compaq® is a registered trademark of the Compaq Computer Corporation.

Fujitsu® is a registered trademark of Fujitsu Limited.

IBM®, and PowerPC™ are trademarks of International Business Machines Corporation.

IDT® is a registered trademark of Integrated Device Technology Inc.

Intel®, i386™, Pentium®, StrataFlash® and XScale™ are trademarks of Intel Corporation.

Intrinsyc® and Cerf™ are trademarks of Intrinsyc Software, Inc.

Linux® is a registered trademark of Linus Torvalds.

Matsushita™ and Panasonic® are trademarks of the Matsushita Electric Industrial Corporation.

Microsoft®, Windows®, Windows NT® and Windows XP® are registered trademarks of Microsoft Corporation, Inc.

MIPS®, MIPS32™ MIPS64™, 4K™, 5K™ Atlas™ and Malta™ are trademarks of MIPS Technologies, Inc.

Motorola®, ColdFire® is a trademark of Motorola, Inc.

NEC® V800™, V850™, V850/SA1™, V850/SB1™, VR4300™, and VRC4375™ are trademarks of NEC Corporation.

PMC-Sierra® RM7000™ and Ocelot™ are trademarks of PMC-Sierra Incorporated.

Red Hat, eCos™, RedBoot™, GNUPro®, and Insight™ are trademarks of Red Hat, Inc.

Samsung® and CalmRISC™ are trademarks or registered trademarks of Samsung, Inc.

Sharp® is a registered trademark of Sharp Electronics Corp.

SPARC® is a registered trademark of SPARC International, Inc., and is used under license by Sun Microsystems, Inc.

Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems, Inc.

SuperH™ and Renesas™ are trademarks owned by Renesas Technology Corp.

Texas Instruments®, OMAP™ and Innovator™ are trademarks of Texas Instruments Incorporated.

Toshiba® is a registered trademark of the Toshiba Corporation.

UNIX® is a registered trademark of The Open Group.

All other brand and product names, trademarks, and copyrights are the property of their respective owners.

Warranty

eCos and RedBoot are open source software, covered by a modified version of the GNU General Public Licence (http://www.gnu.org/copyleft/gpl.html),

and you are welcome to change it and/or distribute copies of it under certain conditions. See http://ecos.sourceware.org/license-overview.html for more

information about the license.

eCos and RedBoot software have NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the extent permitted by applicable law. Except when otherwise stated in

writing, the copyright holders and/or other parties provide the software “as is” without warranty of any kind, either expressed or implied, including, but

not limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the

software is with you. Should the software prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any copyright holder, or any other party who may modify and/or redistribute

the program as permitted above, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use

or inability to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a

failure of the program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.

Table of Contents
1. Getting Started with RedBoot ... 1

More information about RedBoot on the web .. 1
Installing RedBoot .. 1
User Interface .. 2
RedBoot Editing Commands .. 2
RedBoot Command History.. 3
RedBoot Startup Mode.. 3
RedBoot Resource Usage.. 4

Flash Resources ... 4
RAM Resources... 5

Configuring the RedBoot Environment... 5
Target Network Configuration... 6
Host Network Configuration ... 6

Enable TFTP on Red Hat Linux 6.2 .. 7
Enable TFTP on Red Hat Linux 7 (or newer).. 7
Enable BOOTP/DHCP server on Red Hat Linux .. 7
Enable DNS server on Red Hat Linux... 8
RedBoot network gateway ... 9

Verification .. 10

2. RedBoot Commands and Examples.. 11
Introduction ... 11
Common Commands... 13

alias.. 13
baudrate ... 15
cache .. 17
channel... 19
cksum... 21
disks... 23
dump.. 25
help .. 27
iopeek .. 29
iopoke .. 31
gunzip .. 33
ip_address .. 35
load .. 37
mcmp ... 41
mcopy .. 43
mfill.. 45
ping .. 47
reset.. 49
version ... 51

Flash Image System (FIS)... 53
fis init ... 53
fis list ... 55
fis free .. 57
fis create... 59
fis load ... 61
fis delete... 63
fis lock ... 65

v

fis unlock ... 67
fis erase .. 69
fis write .. 71

Filesystem Interface .. 73
fs info... 73
fs mount ... 75
fs umount ... 77
fs cd ... 79
fs mkdir.. 81
fs deldir .. 83
fs del .. 85
fs move .. 87
fs list .. 89
fs write ... 91

Persistent State Flash-based Configuration and Control... 93
Executing Programs from RedBoot .. 96

go ... 96
exec.. 99

3. Rebuilding RedBoot.. 101
Introduction ... 101

Rebuilding RedBoot using ecosconfig .. 101
Rebuilding RedBoot from the Configuration Tool .. 102

4. Updating RedBoot .. 103
Introduction ... 103

Load and start a RedBoot RAM instance .. 103
Update the primary RedBoot flash image ... 104
Reboot; run the new RedBoot image... 105

5. Installation and Testing .. 107
AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0) ASB2305 Board 107

Overview ... 107
Initial Installation... 107

Preparing to program the board ... 107
Preparing to use the JTAG debugger.. 108
Loading the RAM-based RedBoot via JTAG .. 108
Loading the boot PROM-based RedBoot via the RAM mode RedBoot 109

Additional Commands... 110
Memory Maps ... 110
Rebuilding RedBoot .. 111

ARM/ARM7 ARM Evaluator7T .. 111
Overview ... 111
Initial Installation... 112
Quick download instructions ... 112
Special RedBoot Commands... 112
Memory Maps ... 112
Rebuilding RedBoot .. 113

ARM/ARM7+ARM9 ARM Integrator ... 113
Overview ... 113
Initial Installation... 114
Quick download instructions ... 114
Special RedBoot Commands... 114

vi

Memory Maps ... 115
Rebuilding RedBoot .. 115

ARM/ARM7+ARM9 ARM PID Board and EPI Dev7+Dev9.. 116
Overview ... 116
Initial Installation Method ... 116
Special RedBoot Commands... 116
Memory Maps ... 116
Rebuilding RedBoot .. 117

ARM/ARM7 Atmel AT91 Evaluation Boards (EBXX) ... 117
Overview ... 117
Initial Installation Method ... 117

Installing RedBoot on the EB40 .. 118
Installing RedBoot on the EB40A, EB42 or EB55.. 119

Special RedBoot Commands... 120
Memory Maps ... 120
Rebuilding RedBoot .. 120

ARM/ARM7 Atmel JTST Evaluation Board (AT572D740-DK1) ... 121
Overview ... 121
Installing a RedBoot image on the JTST... 121

GDB console.. 122
PC console ... 122

Special RedBoot Commands... 122
Memory Maps ... 122

ARM/ARM7 Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)... 123
Overview ... 123
Initial Installation Method ... 123
Special RedBoot Commands... 123
Memory Maps ... 123
Platform Resource Usage .. 124
Rebuilding RedBoot .. 124

ARM/ARM9 Agilent AAED2000 .. 124
Overview ... 125
Initial Installation Method ... 125

RedBoot as Primary Bootmonitor.. 125
Special RedBoot Commands... 126
Memory Maps ... 127
Rebuilding RedBoot .. 128

ARM/ARM9 Altera Excalibur .. 128
Overview ... 128
Initial Installation Method ... 128
Flash management ... 129
Special RedBoot Commands... 129
Memory Maps ... 130
Rebuilding RedBoot .. 130

ARM/StrongARM(SA110) Intel EBSA 285 .. 130
Overview ... 131
Initial Installation Method ... 131
Communication Channels ... 131
Special RedBoot Commands... 131
Memory Maps ... 131
Platform Resource Usage .. 132
Rebuilding RedBoot .. 132

vii

ARM/StrongARM(SA1100) Intel Brutus ... 132
Overview ... 132
Initial Installation Method ... 132
Special RedBoot Commands... 132
Memory Maps ... 133
Platform Resource Usage .. 133
Rebuilding RedBoot .. 133

ARM/StrongARM(SA1100) Intel SA1100 Multimedia Board .. 134
Overview ... 134
Initial Installation Method ... 134
Special RedBoot Commands... 134
Memory Maps ... 134
Platform Resource Usage .. 135
Rebuilding RedBoot .. 135

ARM/StrongARM(SA1110) Intel SA1110 (Assabet) .. 135
Overview ... 135
Initial Installation Method ... 136
Special RedBoot Commands... 136
Memory Maps ... 136
Platform Resource Usage .. 137
Rebuilding RedBoot .. 137

ARM/StrongARM(SA11X0) Bright Star Engineering commEngine and nanoEngine........................ 137
Overview ... 137
Initial Installation... 138
Download Instructions... 138
Cohabiting with POST in Flash... 138
Special RedBoot Commands... 139
Memory Maps ... 140
Nano Platform Port.. 140
Ethernet Driver .. 141
Rebuilding RedBoot .. 141

ARM/StrongARM(SA11X0) Compaq iPAQ PocketPC ... 141
Overview ... 141
Initial Installation... 142

Installing RedBoot on the iPAQ using Windows/CE... 142
Installing RedBoot on the iPAQ - using the Compaq boot loader 143
Setting up and testing RedBoot ... 143
Installing RedBoot permanently .. 143
Restoring Windows/CE.. 144

Additional commands.. 144
Memory Maps ... 145
Rebuilding RedBoot .. 145

ARM/StrongARM(SA11X0) Intrinsyc CerfCube .. 146
Overview ... 146
Initial Installation... 146
Additional commands.. 146
Memory Maps ... 147
Rebuilding RedBoot .. 148

ARM/XScale Cyclone IQ80310 ... 148
Overview ... 148
Initial Installation Method ... 148
Error codes... 149

viii

Using RedBoot with ARM Bootloader ... 149
Special RedBoot Commands... 150
IQ80310 Hardware Tests ... 150
Rebuilding RedBoot .. 151
Interrupts.. 151
Memory Maps ... 152
Platform Resource Usage .. 153

ARM/XScale Intel IQ80321 ... 153
Overview ... 154
Initial Installation Method ... 154
Switch Settings .. 154
LED Codes .. 155
Special RedBoot Commands... 157

Memory Tests... 157
Repeating Memory Tests ... 158
Repeat-On-Fail Memory Tests... 158
Rotary Switch S1 Test.. 158
7 Segment LED Tests... 158
i82544 Ethernet Configuration... 158
Battery Status Test ... 158
Battery Backup SDRAM Memory Test ... 159
Timer Test .. 159
PCI Bus Test .. 159
CPU Cache Loop ... 159

Rebuilding RedBoot .. 159
Interrupts.. 159
Memory Maps ... 160
Platform Resource Usage .. 161

ARM/Intel XScale IXDP425 Network Processor Evaluation Board.. 162
Overview ... 162
Initial Installation Method ... 162
LED Codes .. 162
Rebuilding RedBoot .. 163
Interrupts.. 163
Memory Maps ... 164
Platform Resource Usage .. 165

ARM/Intel XScale Generic Residential Gateway... 165
Overview ... 165
Initial Installation Method ... 165
Rebuilding RedBoot .. 165
Interrupts.. 166
Memory Maps ... 167
Platform Resource Usage .. 167

Motorola PrPMC1100 CPU card .. 167
Overview ... 168
Initial Installation Method ... 168
Rebuilding RedBoot .. 168
Interrupts.. 168
Memory Maps ... 169
Platform Resource Usage .. 170

CalmRISC/CalmRISC16 Samsung CalmRISC16 Core Evaluation Board .. 170
Overview ... 170

ix

Initial Installation Method ... 171
Special RedBoot Commands... 171
Special Note on Serial Channel ... 171
Rebuilding RedBoot .. 171

CalmRISC/CalmRISC32 Samsung CalmRISC32 Core Evaluation Board .. 172
Overview ... 172
Initial Installation Method ... 172
Special RedBoot Commands... 172
Special Note on Serial Channel ... 173
Rebuilding RedBoot .. 173

FRV/FRV400 Fujitsu FR-V 400 (MB-93091) .. 173
Overview ... 173
Initial Installation Method ... 174
Special RedBoot Commands... 174
Memory Maps ... 174
Rebuilding RedBoot .. 174

Fujitsu FR-V Design Kit (MB93091-CBxx) .. 175
Overview ... 175
Initial Installation Method ... 175
Special RedBoot Commands... 175
Memory Maps ... 175
Rebuilding RedBoot .. 176
Resource Usage ... 176

Fujitsu FR-V Portable Demonstration Kit (MB93093-PD00) .. 176
Overview ... 176
Initial Installation Method ... 177
Special RedBoot Commands... 177
Memory Maps ... 177
Rebuilding RedBoot .. 177
Resource Usage ... 178

IA32/x86 x86-Based PC ... 178
Overview ... 178
Initial Installation... 178
Flash management ... 179
Special RedBoot Commands... 179
Memory Maps ... 179
Rebuilding RedBoot .. 179

MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Atlas Board ... 179
Overview ... 180
Initial Installation... 180

Quick download instructions ... 180
Atlas download format... 180

Flash management ... 181
Additional config options... 181

Additional commands.. 181
Interrupts.. 182
Memory Maps ... 182
Rebuilding RedBoot .. 183

MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Malta Board .. 183
Overview ... 183
Initial Installation... 183

Quick download instructions ... 184

x

Malta download format.. 184
Additional commands.. 184
Interrupts.. 185
Memory Maps ... 186
Rebuilding RedBoot .. 186

MIPS/RM7000 PMC-Sierra Ocelot .. 186
Overview ... 186
Additional commands.. 187
Memory Maps ... 187
Rebuilding RedBoot .. 188

MIPS/VR4375 NEC DDB-VRC4375... 188
Overview ... 188
Initial Installation Method ... 188
Special RedBoot Commands... 188
Memory Maps ... 189
Ethernet Driver .. 189
Rebuilding RedBoot .. 189

PowerPC/MPC860T Analogue & Micro PowerPC 860T... 190
Overview ... 190
Initial Installation Method ... 190
Special RedBoot Commands... 190
Memory Maps ... 190
Rebuilding RedBoot .. 190

PowerPC/MPC8XX Motorola MBX .. 191
Overview ... 191
Initial Installation Method ... 191
Special RedBoot Commands... 192
Memory Maps ... 192
Rebuilding RedBoot .. 192

SuperH/SH3(SH7708) Hitachi EDK7708 .. 192
Overview ... 192
Initial Installation Method ... 193
Memory Maps ... 193
Rebuilding RedBoot .. 193

SuperH/SH3(SH7709) Hitachi Solution Engine 7709.. 193
Overview ... 194
Initial Installation Method ... 194
Special RedBoot Commands... 194
Memory Maps ... 195
Ethernet Driver .. 196
Rebuilding RedBoot .. 196

SuperH/SH3(SH7729) Hitachi HS7729PCI ... 196
Overview ... 196
Initial Installation Method ... 196
Special RedBoot Commands... 197
Memory Maps ... 197
Rebuilding RedBoot .. 198

SuperH/SH3(SH77X9) Hitachi Solution Engine 77X9 .. 198
Overview ... 198
Initial Installation Method ... 199
Special RedBoot Commands... 199
Memory Maps ... 200

xi

Ethernet Driver .. 200
Rebuilding RedBoot .. 200

SuperH/SH4(SH7751) Hitachi Solution Engine 7751.. 200
Overview ... 201
Initial Installation Method ... 201
Special RedBoot Commands... 201
Memory Maps ... 202
Ethernet Driver .. 202
Rebuilding RedBoot .. 202

xii

List of Examples
1-1. Sample DHCP configuration file... 8
1-2. Sample /etc/named.conf for Red Hat Linux 7.x ... 8

xiii

xiv

Chapter 1. Getting Started with RedBoot
RedBoot™ is an acronym for "Red Hat Embedded Debug and Bootstrap", and is the standard embedded system
debug/bootstrap environment from Red Hat, replacing the previous generation of debug firmware: CygMon and
GDB stubs. It provides a complete bootstrap environment for a range of embedded operating systems, such as
embedded Linux™ and eCos™, and includes facilities such as network downloading and debugging. It also
provides a simple flash file system for boot images.

RedBoot provides a wide set of tools for downloading and executing programs on embedded target systems,
as well as tools for manipulating the target system’s environment. It can be used for both product development
(debug support) and for end product deployment (flash and network booting).

Here are some highlights of RedBoot’s capabilities:

• Boot scripting support

• Simple command line interface for RedBoot configuration and management, accessible via serial (terminal)
or Ethernet (telnet)

• Integrated GDB stubs for connection to a host-based debugger via serial or ethernet. (Ethernet connectivity
is limited to local network only)

• Attribute Configuration - user control of aspects such as system time and date (if applicable), default Flash
image to boot from, default failsafe image, static IP address, etc.

• Configurable and extensible, specifically adapted to the target environment

• Network bootstrap support including setup and download, via BOOTP, DHCP and TFTP

• X/YModem support for image download via serial

• Power On Self Test

Although RedBoot is derived from eCos, it may be used as a generalized system debug and bootstrap con-
trol software for any embedded system and any operating system. For example, with appropriate additions,
RedBoot could replace the commonly used BIOS of PC (and certain other) architectures. Red Hat is currently
installing RedBoot on all embedded platforms as a standard practice, and RedBoot is now generally included
as part of all Red Hat Embedded Linux and eCos ports. Users who specifically wish to use RedBoot with the
eCos operating system should refer to the Getting Started with eCos document, which provides information
about the portability and extendability of RedBoot in an eCos environment.

More information about RedBoot on the web
The RedBoot Net Distribution web site (http://sources.redhat.com/redboot/) contains downloadable sources
and documentation for all publically released targets, including the latest features and updates.

Installing RedBoot
To install the RedBoot package, follow the procedures detailed in the accompanying README.

Although there are other possible configurations, RedBoot is usually run from the target platform’s flash boot
sector or boot ROM, and is designed to run when your system is initially powered on. The method used to install
the RedBoot image into non-volatile storage varies from platform to platform. In general, it requires that the
image be programmed into flash in situ or programmed into the flash or ROM using a device programmer. In
some cases this will be done at manufacturing time; the platform being delivered with RedBoot already in place.

1

Chapter 1. Getting Started with RedBoot

In other cases, you will have to program RedBoot into the appropriate device(s) yourself. Installing to flash
in situ may require special cabling or interface devices and software provided by the board manufacturer. The
details of this installation process for a given platform will be found in Installation and Testing. Once installed,
user-specific configuration options may be applied, using the fconfig command, providing that persistent data
storage in flash is present in the relevant RedBoot version. See the Section called Configuring the RedBoot
Environment for details.

User Interface
RedBoot provides a command line user interface (CLI). At the minimum, this interface is normally available
on a serial port on the platform. If more than one serial interface is available, RedBoot is normally configured
to try to use any one of the ports for the CLI. Once command input has been received on one port, that port
is used exclusively until the board is reset or the channel is manually changed by the user. If the platform
has networking capabilities, the RedBoot CLI is also accessible using the telnet access protocol. By default,
RedBoot runs telnet on port TCP/9000, but this is configurable and/or settable by the user.

RedBoot also contains a set of GDB "stubs", consisting of code which supports the GDB remote protocol.
GDB stub mode is automatically invoked when the ’$’ character appears anywhere on a command line unless
escaped using the ’\’ character. The platform will remain in GDB stub mode until explicitly disconnected (via
the GDB protocol). The GDB stub mode is available regardless of the connection method; either serial or
network. Note that if a GDB connection is made via the network, then special care must be taken to preserve
that connection when running user code. eCos contains special network sharing code to allow for this situation,
and can be used as a model if this methodology is required in other OS environments.

RedBoot Editing Commands
RedBoot uses the following line editing commands.

NOTE: In this description, ^A means the character formed by typing the letter “A” while holding down the
control key.

• Delete (0x7F) or Backspace (0x08) erases the character to the left of the cursor.

• ^A or HOME moves the cursor (insertion point) to the beginning of the line.

• ^K erases all characters on the line from the cursor to the end.

• ^E or END positions the cursor to the end of the line.

• ^D or DELETE erases the character under the cursor.

• ^F or RIGHT-ARROW moves the cursor one character to the right.

• ^B or LEFT-ARROW moves the cursor one character to the left.

• ^P or UP-ARROW replaces the current line by a previous line from the history buffer. A small number of
lines can be kept as history. Using ^P (and ^N), the current line can be replaced by any one of the previously
typed lines.

• ^N or DOWN-ARROW replaces the current line by the next line from the history buffer.

2

Chapter 1. Getting Started with RedBoot

In the case of the fconfig command, additional editing commands are possible. As data are entered for this
command, the current/previous value will be displayed and the cursor placed at the end of that data. The user
may use the editing keys (above) to move around in the data to modify it as appropriate. Additionally, when
certain characters are entered at the end of the current value, i.e. entered separately, certain behavior is elicited.

• ^ (caret) switch to editing the previous item in the fconfig list. If fconfig edits item A, followed by item B,
pressing ^ when changing item B, allows you to change item A. This is similar to the up arrow. Note: ^P and
^N do not have the same meaning while editing fconfig data and should not be used.

• . (period) stop editing any further items. This does not change the current item.

• Return leaves the value for this item unchanged. Currently it is not possible to step through the value for
the start-up script; it must always be retyped.

RedBoot Command History
RedBoot provides support for listing and repeating previously entered commands. A list of previously entered
commands may be obtained by typing history at the command line:

RedBoot> history

0 fis list
1 fconfig -l
2 load -m ymodem
3 history

The following history expansions may be used to execute commands in the history list:

• !! repeats last command.

• !n repeats command n.

• !string repeats most recent command starting with string.

RedBoot Startup Mode
RedBoot can normally be configured to run in a number of startup modes (or just "modes" for short), deter-
mining its location of residence and execution:

ROM mode

In this mode, RedBoot both resides and executes from ROM memory (flash or EPROM). This mode is
used when there are limited RAM resources. The flash commands cannot update the region of flash where
the RedBoot image resides. In order to update the RedBoot image in flash, it is necessary to run a RAM
mode instance of RedBoot.

3

Chapter 1. Getting Started with RedBoot

ROMRAM mode

In this mode, RedBoot resides in ROM memory (flash or EPROM), but is copied to RAM memory before
it starts executing. The RAM footprint is larger than for ROM mode, but there are two advantages to make
up for this: it normally runs faster (relevant only on slower boards) and it is able to update the flash region
where the image resides.

RAM mode

In this mode, RedBoot both resides and executes from RAM memory. This is used for updating a primary
ROM mode image in situ and sometimes as part of the RedBoot installation on the board when there’s
already an existing (non-RedBoot) boot monitor available.

You can only use ROM and ROMRAM mode images for booting a board - a RAM mode image cannot
run unless loaded by another ROM monitor. There is no need for this startup mode if a RedBoot ROM-
RAM mode image is the primary boot monitor. When this startup mode is programmed into flash (as a
convenience as it’s fast to load from flash) it will generally be named as "RedBoot[RAM]" in the FIS
directory.

The chosen mode has influence on flash and RAM resource usage (see the Section called RedBoot Resource
Usage) and the procedure of an in situ update of RedBoot in flash (see Chapter 4).

The startup mode is controlled by the option CYG_HAL_STARTUP which resides in the platform HAL. Some
platforms provide only some of the RAM, ROM, and ROMRAM modes, others provide additional modes.

To see mode of a currently executing RedBoot, issue the version command, which prints the RedBoot banner,
including the startup mode (here ROM):

RedBoot>version

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 13:31:57, May 17 2002

RedBoot Resource Usage
RedBoot takes up both flash and RAM resources depending on its startup mode and number of enabled features.
There are also other resources used by RedBoot, such as timers. Platform-specific resources used by RedBoot
are listed in the platform specific parts of this manual.

Both flash and RAM resources used by RedBoot depend to some degree on the features enabled in the RedBoot
configuration. It is possible to reduce in particular the RAM resources used by RedBoot by removing features
that are not needed. Flash resources can also be reduced, but due to the granularity of the flash (the block sizes),
reductions in feature size do not always result in flash resource savings.

Flash Resources
On many platforms, a ROM mode RedBoot image resides in the first flash sectors, working as the board’s
primary boot monitor. On these platforms, it is also normal to reserve a similar amount of flash for a secondary
RAM mode image, which is used when updating the primary ROM mode image.

On other platforms, a ROMRAM mode RedBoot image is used as the primary boot monitor. On these platforms
there is not normally reserved space for a RAM mode RedBoot image, since the ROMRAM mode RedBoot is
capable of updating the primary boot monitor image.

4

Chapter 1. Getting Started with RedBoot

Most platforms also contain a FIS directory (keeping track of available flash space) and a RedBoot config
block (containing RedBoot board configuration data).

To see the amount of reserved flash memory, run the fis list command:

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot[RAM] 0x00020000 0x06020000 0x00020000 0x060213C0
RedBoot config 0x0007F000 0x0007F000 0x00001000 0x00000000
FIS directory 0x00070000 0x00070000 0x0000F000 0x00000000

To save flash resources, use a ROMRAM mode RedBoot, or if using a ROM mode RedBoot, avoid reserving
space for the RedBoot[RAM] image (this is done by changing the RedBoot configuration) and download the
RAM mode RedBoot whenever it is needed. If the RedBoot image takes up a fraction of an extra flash block,
it may be possible to reduce the image size enough to free this block by removing some features.

RAM Resources
RedBoot reserves RAM space for its run-time data, and such things as CPU exception/interrupt tables. It
normally does so at the bottom of the memory map. It may also reserve space at the top of the memory map
for configurable RedBoot features such as the net stack and zlib decompression support.

To see the actual amount of reserved space, issue the version command, which prints the RedBoot banner,
including the RAM usage:

RedBoot> version

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 13:31:57, May 17 2002

Platform: FooBar (SH 7615)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x06000000-0x06080000, 0x06012498-0x06061000 available
FLASH: 0x00000000 - 0x00080000, 8 blocks of 0x00010000 bytes each.

To simplify operations that temporarily need data in free memory, the limits of free RAM are also available as
aliases (aligned to the nearest kilo-byte limit). These are named FREEMEMLO and FREEMEMHI, and can
be used in commands like any user defined alias:

RedBoot> load -r -b %{FREEMEMLO} file

Raw file loaded 0x06012800-0x06013e53, assumed entry at 0x06012800

RedBoot> x -b %{FREEMEMHI}

06061000: 86 F5 EB D8 3D 11 51 F2 96 F4 B2 DC 76 76 8F 77 |....=.Q.....vv.w|
06061010: E6 55 DD DB F3 75 5D 15 E0 F3 FC D9 C8 73 1D DA |.U...u]......s..|

To reduce RedBoot’s RAM resource usage, use a ROM mode RedBoot. The RedBoot features that use most
RAM are the net stack, the flash support and the gunzip support. These, and other features, can be disabled to
reduce the RAM footprint, but obviously at the cost of lost functionality.

5

Chapter 1. Getting Started with RedBoot

Configuring the RedBoot Environment
Once installed, RedBoot will operate fairly generically. However, there are some features that can be configured
for a particular installation. These depend primarily on whether flash and/or networking support are available.
The remainder of this discussion assumes that support for both of these options is included in RedBoot.

Target Network Configuration
Each node in a networked system needs to have a unique address. Since the network support in RedBoot is
based on TCP/IP, this address is an IP (Internet Protocol) address. There are two ways for a system to “know”
its IP address. First, it can be stored locally on the platform. This is known as having a static IP address.
Second, the system can use the network itself to discover its IP address. This is known as a dynamic IP address.
RedBoot supports this dynamic IP address mode by use of the BOOTP (a subset of DHCP) protocol. In this
case, RedBoot will ask the network (actually some generic server on the network) for the IP address to use.

NOTE: Currently, RedBoot only supports BOOTP. In future releases, DHCP may also be supported, but
such support will be limited to additional data items, not lease-based address allocation.

The choice of IP address type is made via the fconfig command. Once a selection is made, it will be stored in
flash memory. RedBoot only queries the flash configuration information at reset, so any changes will require
restarting the platform.

Here is an example of the RedBoot fconfig command, showing network addressing:

RedBoot> fconfig -l

Run script at boot: false
Use BOOTP for network configuration: false
Local IP address: 192.168.1.29
Default server IP address: 192.168.1.101
DNS server IP address: 192.168.1.1
GDB connection port: 9000
Network debug at boot time: false

In this case, the board has been configured with a static IP address listed as the Local IP address. The default
server IP address specifies which network node to communicate with for TFTP service. This address can be
overridden directly in the TFTP commands.

The DNS server IP address option controls where RedBoot should make DNS lookups. A setting of 0.0.0.0
will disable DNS lookups. The DNS server IP address can also be set at runtime.

If the selection for Use BOOTP for network configuration had been true, these IP addresses would be
determined at boot time, via the BOOTP protocol. The final number which needs to be configured, regardless of
IP address selection mode, is the GDB connection port. RedBoot allows for incoming commands on either
the available serial ports or via the network. This port number is the TCP port that RedBoot will use to accept
incoming connections.

These connections can be used for GDB sessions, but they can also be used for generic RedBoot commands.
In particular, it is possible to communicate with RedBoot via the telnet protocol. For example, on Linux®:

% telnet redboot_board 9000
Connected to redboot_board
Escape character is ‘^]’.
RedBoot>

6

Chapter 1. Getting Started with RedBoot

Host Network Configuration
RedBoot may require three different classes of service from a network host:

• dynamic IP address allocation, using BOOTP

• TFTP service for file downloading

• DNS server for hostname lookups

Depending on the host system, these services may or may not be available or enabled by default. See your
system documentation for more details.

In particular, on Red Hat Linux, neither of these services will be configured out of the box. The following will
provide a limited explanation of how to set them up. These configuration setups must be done as root on the
host or server machine.

Enable TFTP on Red Hat Linux 6.2

1. Ensure that you have the tftp-server RPM package installed. By default, this installs the TFTP server in a
disabled state. These steps will enable it:

2. Make sure that the following line is uncommented in the control file /etc/inetd.conf

tftp dgram udp wait root /usr/sbin/tcpd /usr/sbin/in.tftpd

3. If it was necessary to change the line in Step 2, then the inetd server must be restarted, which can be done
via the command:

service inet reload

Enable TFTP on Red Hat Linux 7 (or newer)

1. Ensure that the xinetd RPM is installed.

2. Ensure that the tftp-server RPM is installed.

3. Enable TFTP by means of the following:

/sbin/chkconfig tftp on

Reload the xinetd configuration using the command:

/sbin/service xinetd reload

Create the directory /tftpboot using the command

mkdir /tftpboot

4. If you are using Red Hat 8 or newer, you may need to configure the built-in firewall to allow through
TFTP. Either edit /etc/sysconfig/iptables or run redhat-config-securitylevel on the command line
or from the menu as System Settings->Security Settings to lower the security level. You should only do
this with the permission of your systems administrator and if you are already behind a separate firewall.

NOTE: Under Red Hat 7 you must address files by absolute pathnames, for example: /tftpboot/boot.img
not /boot.img, as you may have done with other implementations. On systems newer than Red Hat 7 (7.1
and beyond), filenames are once again relative to the /tftpboot directory.

7

Chapter 1. Getting Started with RedBoot

Enable BOOTP/DHCP server on Red Hat Linux

First, ensure that you have the proper package, dhcp (not dhcpd) installed. The DHCP server provides Dynamic
Host Configuration, that is, IP address and other data to hosts on a network. It does this in different ways. Next,
there can be a fixed relationship between a certain node and the data, based on that node’s unique Ethernet
Station Address (ESA, sometimes called a MAC address). The other possibility is simply to assign addresses
that are free. The sample DHCP configuration file shown does both. Refer to the DHCP documentation for
more details.

Example 1-1. Sample DHCP configuration file

--------------- /etc/dhcpd.conf -----------------------------
default-lease-time 600;
max-lease-time 7200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option domain-name-servers 198.41.0.4, 128.9.0.107;
option domain-name “bogus.com”;
allow bootp;
shared-network BOGUS {
subnet 192.168.1.0 netmask 255.255.255.0 {

option routers 192.168.1.101;
range 192.168.1.1 192.168.1.254;

}
}
host mbx {

hardware ethernet 08:00:3E:28:79:B8;
fixed-address 192.168.1.20;
filename “/tftpboot/192.168.1.21/zImage”;
default-lease-time -1;
server-name “srvr.bugus.com”;
server-identifier 192.168.1.101;
option host-name “mbx”;

}

Once the DHCP package has been installed and the configuration file set up, type:

service dhcpd start

Enable DNS server on Red Hat Linux

First, ensure that you have the proper RPM package, caching-nameserver installed. Then change the con-
figuration (in /etc/named.conf) so that the forwarders point to the primary nameservers for your machine,
normally using the nameservers listed in /etc/resolv.conf.

Example 1-2. Sample /etc/named.conf for Red Hat Linux 7.x

--------------- /etc/named.conf -----------------------------
// generated by named-bootconf.pl

options {
directory "/var/named";
/*
* If there is a firewall between you and nameservers you want

* to talk to, you might need to uncomment the query-source

* directive below. Previous versions of BIND always asked

8

Chapter 1. Getting Started with RedBoot

* questions using port 53, but BIND 8.1 uses an unprivileged

* port by default.

*/
// query-source address * port 53;

forward first;
forwarders {

212.242.40.3;
212.242.40.51;

};
};

//
// a caching only nameserver config
//
// Uncomment the following for Red Hat Linux 7.2 or above:
// controls {
// inet 127.0.0.1 allow { localhost; } keys { rndckey; };
// };
// include "/etc/rndc.key";
zone "." IN {

type hint;
file "named.ca";

};

zone "localhost" IN {
type master;
file "localhost.zone";
allow-update { none; };

};

zone "0.0.127.in-addr.arpa" IN {
type master;
file "named.local";
allow-update { none; };

};

Make sure the server is started with the command:

service named start

and is started on next reboot with the command

chkconfig named on

Finally, you may wish to change /etc/resolv.conf to use 127.0.0.1 as the nameserver for your local
machine.

RedBoot network gateway

RedBoot cannot communicate with machines on different subnets because it does not support routing. It al-
ways assumes that it can get to an address directly, therefore it always tries to ARP and then send packets
directly to that unit. This means that whatever it talks to must be on the same subnet. If you need to talk to
a host on a different subnet (even if it’s on the same ‘wire’), you need to go through an ARP proxy, provid-
ing that there is a Linux box connected to the network which is able to route to the TFTP server. For ex-
ample: /proc/sys/net/ipv4/conf/<interface>/proxy_arp where <interface>should be replaced with
whichever network interface is directly connected to the board.

9

Chapter 1. Getting Started with RedBoot

Verification
Once your network setup has been configured, perform simple verification tests as follows:

• Reboot your system, to enable the setup, and then try to ‘ping’ the target board from a host.

• Once communication has been established, try to ping a host using the RedBoot ping command - both by IP
address and hostname.

• Try using the RedBoot load command to download a file from a host.

10

Chapter 2. RedBoot Commands and Examples

Introduction
RedBoot provides three basic classes of commands:

• Program loading and execution

• Flash image and configuration management

• Miscellaneous commands

Given the extensible and configurable nature of eCos and RedBoot, there may be extended or enhanced sets of
commands available.

The basic format for commands is:

RedBoot> COMMAND [-S]... [-s val]... operand

Commands may require additional information beyond the basic command name. In most cases this additional
information is optional, with suitable default values provided if they are not present.

Format Description Example
-S A boolean switch; the behavior of

the command will differ,
depending on the presence of the
switch. In this example, the -f

switch indicates that a complete
initialization of the FIS data should
be performed. There may be many
such switches available for any
given command and any or all of
them may be present, in any order.

RedBoot> fis init -f

-s val A qualified value; the letter "s"
introduces the value, qualifying
it’s meaning. In the example, -b
0x100000 specifies where the
memory dump should begin. There
may be many such switches
available for any given command
and any or all of them may be
present, in any order.

RedBoot> dump -b 0x100000 -l

0x20

11

Chapter 2. RedBoot Commands and Examples

Format Description Example
operand A simple value; some commands

require a single parameter for
which an additional -X switch
would be redundant. In the
example, JFFS2 is the name of a
flash image. The image name is
always required, thus is no need to
qualify it with a switch. Note that
any un-qualified operand must
always appear at the end of the
command.

RedBoot> fis delete JFFS2

The list of available commands, and their syntax, can be obtained by typing help at the command line:

RedBoot> help

Manage aliases kept in FLASH memory
alias name [value]

Set/Query the system console baud rate
baudrate [-b <rate>]

Manage machine caches
cache [ON | OFF]

Display/switch console channel
channel [-1|<channel number>]

Display disk partitions
disks

Display (hex dump) a range of memory
dump -b <location> [-l <length>] [-s]

Manage flash images
fis {cmds}

Manage configuration kept in FLASH memory
fconfig [-i] [-l] [-n] [-f] [-d] | [-d] nickname [value]

Execute code at a location
go [-w <timeout>] [-c] [-n] [entry]

Help about help?
help [<topic>]

Set/change IP addresses
ip_address [-l <local_ip_address>[/<mask_length>]] [-h <server_address>]

Load a file
load [-r] [-v] [-d] [-c <channel>] [-h <host>] [-m {TFTP | HTTP | {x|y}MODEM | disk}]
[-b <base_address>] <file_name>

Network connectivity test
ping [-v] [-n <count>] [-t <timeout>] [-i <IP_addr]
-h <host>

Reset the system
reset

Display RedBoot version information
version

Display (hex dump) a range of memory
x -b <location> [-l <length>] [-s]

Commands can be abbreviated to their shortest unique string. Thus in the list above, d,du,dum and dump are
all valid for the dump command. The fconfig command can be abbreviated fc, but f would be ambiguous with
fis.

12

There is one additional, special command. When RedBoot detects ’$’ or ’+’ (unless escaped via ’\’) in a com-
mand, it switches to GDB protocol mode. At this point, the eCos GDB stubs take over, allowing connections
from a GDB host. The only way to get back to RedBoot from GDB mode is to restart the platform.

NOTE: Multiple commands may be entered on a single line, separated by the semi-colon “;” character.

The standard RedBoot command set is structured around the bootstrap environment. These commands are
designed to be simple to use and remember, while still providing sufficient power and flexibility to be useful. No
attempt has been made to render RedBoot as the end-all product. As such, things such as the debug environment
are left to other modules, such as GDB stubs, which are typically included in RedBoot.

The command set may be also be extended on a platform basis.

Common Commands

alias

Name
alias — Manipulate command line aliases

Synopsis

alias { name} [value]

Arguments

Name Type Description Default
name Name The name for this alias. none

value String Replacement value for
the alias.

none

Description
The alias command is used to maintain simple command line aliases. These aliases are shorthand for longer
expressions. When the pattern %{name} appears in a command line, including in a script, the corresponding
value will be substituted. Aliases may be nested.

If no value is provided, then the current value of the alias is displayed.

If the system supports non-volatile configuration data via the fconfig command (see the Section called Persis-
tent State Flash-based Configuration and Control in Chapter 2), then the value will be saved and used when

13

alias

the system is reset.

Examples
Set an alias.

RedBoot> alias joe "This is Joe"

Update RedBoot non-volatile configuration - continue (y/n)? n

Display an alias.

RedBoot> alias joe

’joe’ = ’This is Joe’

Use an alias. Note: the "=" command simply echoes the command to to console.

RedBoot> = %{joe}

This is Joe

Aliases can be nested.

RedBoot> alias frank "Who are you? %{joe}"

Update RedBoot non-volatile configuration - continue (y/n)? n
RedBoot> = %{frank}

Who are you? This is Joe

Notice how the value of %{frank} changes when %{joe} is changed since the value of %{joe} is not evaluated
until %{frank} is evaluated.

RedBoot> alias joe "This is now Josephine"

Update RedBoot non-volatile configuration - continue (y/n)? n
RedBoot> = %{frank}

Who are you? This is now Josephine

14

baudrate

Name
baudrate — Set the baud rate for the system serial console

Synopsis

baudrate [-b rate]

Arguments

Name Type Description Default
-b rate Number The baud rate to use for

the serial console.
none

Description
The baudrate command sets the baud rate for the system serial console.

If no value is provided, then the current value of the console baud rate is displayed.

If the system supports non-volatile configuration data via the fconfig command (see the Section called Persis-
tent State Flash-based Configuration and Control in Chapter 2), then the value will be saved and used when
the system is reset.

Examples
Show the current baud rate.

RedBoot> baudrate

Baud rate = 38400

Change the console baud rate. In order to make this operation safer, there will be a slight pause after the first
message to give you time to change to the new baud rate. If it doesn’t work, or a less than affirmative answer
is given to the "continue" prompt, then the baud rate will revert to the current value. Only after the baud rate
has been firmly established will RedBoot give you an opportunity to save the value in persistent storage.

RedBoot> baudrate -b 57600

Baud rate will be changed to 57600 - update your settings
Device baud rate changed at this point
Baud rate changed to 57600 - continue (y/n)? y
Update RedBoot non-volatile configuration - continue (y/n)? n

15

baudrate

16

cache

Name
cache — Control hardware caches

Synopsis

cache [on | off]

Arguments

Name Type Description Default
on Turn the caches on none

off Turn the caches off none

Description
The cache command is used to manipulate the caches on the processor.

With no options, this command specifies the state of the system caches.

When an option is given, the caches are turned off or on appropriately.

Examples
Show the current cache state.

RedBoot> cache

Data cache: On, Instruction cache: On

Disable the caches.

RedBoot> cache off

RedBoot> cache

Data cache: Off, Instruction cache: Off

Enable the caches.

RedBoot> cache on

RedBoot> cache

Data cache: On, Instruction cache: On

17

cache

18

channel

Name
channel — Select the system console channel

Synopsis

channel [-1 | channel_number]

Arguments

Name Type Description Default
-1 Reset the console channel none

channel_number Number Select a channel none

Description
With no arguments, the channel command displays the current console channel number.

When passed an argument of 0 upward, this command switches the console channel to that channel num-
ber. The mapping between channel numbers and physical channels is platform specific but will typically be
something like channel 0 is the first serial port, channel 1 is the second, etc.

When passed an argument of -1, this command reverts RedBoot to responding to whatever channel receives
input first, as happens when RedBoot initially starts execution.

Examples
Show the current channel.

RedBoot> channel

Current console channel id: 0

Change to an invalid channel.

RedBoot> channel 99

**Error: bad channel number ’99’

Revert to the default channel setting (any console mode).

19

channel

RedBoot> channel -1

20

cksum

Name
cksum — Compute POSIX checksums

Synopsis

cksum {-b location} {-l length}

Arguments

Name Type Description Default
-b location Memory address Location in memory for

stat of data.
none

-l length Number Length of data none

Description
Computes the POSIX checksum on a range of memory (either RAM or FLASH). The values printed (decimal
cksum, decimal length, hexadecimal cksum, hexadecimal length) can be compared with the output from the
Linux program ’cksum’.

Examples
Checksum a buffer.

RedBoot> cksum -b 0x100000 -l 0x100

POSIX cksum = 3286483632 256 (0xc3e3c2b0 0x00000100)

Checksum an area of memory after loading a file. Note that the base address and length parameters are provided
by the preceding load command.

RedBoot> load -r -b %{FREEMEMLO} redboot.bin

Raw file loaded 0x06012800-0x0602f0a8
RedBoot> cksum

Computing cksum for area 0x06012800-0x0602f0a8
POSIX cksum = 2092197813 116904 (0x7cb467b5 0x0001c8a8)

21

cksum

22

disks

Name
disks — List available disk partitions.

Synopsis

disks

Arguments
None.

Description
The disks command is used to list disk partitions recognized by RedBoot.

Examples
Show what disk partitions are available.

RedBoot> disks

hda1 Linux Swap
hda2 Linux
00100000: 00 3E 00 06 00 06 00 06 00 00 00 00 00 00 00 00 |.>..............|
00100010: 00 00 00 78 00 70 00 60 00 60 00 60 00 60 00 60 |...x.p.‘.‘.‘.‘.‘|

23

disks

24

dump

Name
dump — Display memory.

Synopsis

dump {-b location} [-l length] [-s] [-1 | -2 | -4]

Arguments

Name Type Description Default
-b location Memory address Location in memory for

start of data.
none

-l length Number Length of data 32

-s Boolean Format data using
Motorola S-records.

-1 Access one byte (8 bits)
at a time. Only the least
significant 8 bits of the
pattern will be used.

-1

-2 Access two bytes (16
bits) at a time. Only the
least significant 16 bits of
the pattern will be used.

-1

-4 Access one word (32
bits) at a time.

-1

Description
Display a range of memory on the system console.

The x is a synonym for dump.

Note that this command could be detrimental if used on memory mapped hardware registers.

The memory is displayed at most sixteen bytes per line, first as the raw hex value, followed by an ASCII
interpretation of the data.

Examples
Display a buffer, one byte at a time.

RedBoot> mfill -b 0x100000 -l 0x20 -p 0xDEADFACE

25

dump

RedBoot> x -b 0x100000

00100000: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |................|
00100010: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |................|

Display a buffer, one short (16 bit) word at a time. Note in this case that the ASCII interpretation is suppressed.

RedBoot> dump -b 0x100000 -2

00100000: FACE DEAD FACE DEAD FACE DEAD FACE DEAD
00100010: FACE DEAD FACE DEAD FACE DEAD FACE DEAD

Display a buffer, one word (32 bit) word at a time. Note in this case that the ASCII interpretation is suppressed.

RedBoot> dump -b 0x100000 -4

00100000: DEADFACE DEADFACE DEADFACE DEADFACE
00100010: DEADFACE DEADFACE DEADFACE DEADFACE

Display the same buffer, using Motorola S-record format.

RedBoot> dump -b 0x100000 -s

S31500100000CEFAADDECEFAADDECEFAADDECEFAADDE8E
S31500100010CEFAADDECEFAADDECEFAADDECEFAADDE7E

Display a buffer, with visible ASCII strings.

RedBoot> d -b 0xfe00b000 -l 0x80

0xFE00B000: 20 25 70 0A 00 00 00 00 41 74 74 65 6D 70 74 20 | %p.....Attempt |
0xFE00B010: 74 6F 20 6C 6F 61 64 20 53 2D 72 65 63 6F 72 64 |to load S-record|
0xFE00B020: 20 64 61 74 61 20 74 6F 20 61 64 64 72 65 73 73 | data to address|
0xFE00B030: 3A 20 25 70 20 5B 6E 6F 74 20 69 6E 20 52 41 4D |: %p [not in RAM|
0xFE00B040: 5D 0A 00 00 2A 2A 2A 20 57 61 72 6E 69 6E 67 21 |]...*** Warning!|
0xFE00B050: 20 43 68 65 63 6B 73 75 6D 20 66 61 69 6C 75 72 | Checksum failur|
0xFE00B060: 65 20 2D 20 41 64 64 72 3A 20 25 6C 78 2C 20 25 |e - Addr: %lx, %|
0xFE00B070: 30 32 6C 58 20 3C 3E 20 25 30 32 6C 58 0A 00 00 |02lX <> %02lX...|
0xFE00B080: 45 6E 74 72 79 20 70 6F 69 6E 74 3A 20 25 70 2C |Entry point: %p,|

26

help

Name
help — Display help on available commands

Synopsis

help [topic]

Arguments

Name Type Description Default
topic String Which command to

provide help for.
All commands

Description
The help command displays information about the available RedBoot commands. If a topic is given, then the
display is restricted to information about that specific command.

If the command has sub-commands, e.g. fis, then the topic specific display will print additional information
about the available sub-commands. special (ICMP) packets to a specific host. These packets should be auto-
matically returned by that host. The command will indicate how many of these round-trips were successfully
completed.

Examples
Show generic help. Note that the contents of this display will depend on the various configuration options for
RedBoot when it was built.

RedBoot> help

Manage aliases kept in FLASH memory
alias name [value]

Manage machine caches
cache [ON | OFF]

Display/switch console channel
channel [-1|<channel number>]

Compute a 32bit checksum [POSIX algorithm] for a range of memory
cksum -b <location> -l <length>

Display (hex dump) a range of memory
dump -b <location> [-l <length>] [-s] [-1|-2|-4]

Manage FLASH images
fis {cmds}

Manage configuration kept in FLASH memory
fconfig [-i] [-l] [-n] [-f] [-d] | [-d] nickname [value]

Execute code at a location
go [-w <timeout>] [entry]

27

help

Uncompress GZIP compressed data
gunzip -s <location> -d <location>

Help about help?
help [<topic>]

Read I/O location
iopeek [-b <location>] [-1|2|4]

Write I/O location
iopoke [-b <location>] [-1|2|4] -v <value>

Set/change IP addresses
ip_address [-l <local_ip_address>[/<mask_length>]] [-h <server_address>]

Load a file
load [-r] [-v] [-d] [-h <host>] [-m {TFTP | HTTP | {x|y}MODEM -c <channel_number>}]

[-f <flash_address>] [-b <base_address>] <file_name>

Compare two blocks of memory
mcmp -s <location> -d <location> -l <length> [-1|-2|-4]

Fill a block of memory with a pattern
mfill -b <location> -l <length> -p <pattern>

[-1|-2|-4]
Network connectivity test

ping [-v] [-n <count>] [-l <length>] [-t <timeout>] [-r <rate>]
[-i <IP_addr>] -h <IP_addr>

Reset the system
reset

Display RedBoot version information
version

Display (hex dump) a range of memory
x -b <location> [-l <length>] [-s] [-1|-2|-4]

Help about a command with sub-commands.

RedBoot> help fis

Manage FLASH images
fis {cmds}

Create an image
fis create -b <mem_base> -l <image_length> [-s <data_length>]

[-f <flash_addr>] [-e <entry_point>] [-r <ram_addr>] [-n] <name>

Display an image from FLASH Image System [FIS]
fis delete name

Erase FLASH contents
fis erase -f <flash_addr> -l <length>

Display free [available] locations within FLASH Image System [FIS]
fis free

Initialize FLASH Image System [FIS]
fis init [-f]

Display contents of FLASH Image System [FIS]
fis list [-c] [-d]

Load image from FLASH Image System [FIS] into RAM
fis load [-d] [-b <memory_load_address>] [-c] name

Write raw data directly to FLASH
fis write -f <flash_addr> -b <mem_base> -l <image_length>

28

iopeek

Name
iopeek — Read I/O location

Synopsis

iopeek [-b location] [-1 | -2 | -4]

Arguments

Name Type Description Default
-b location I/O address I/O Location. none

-1 Access a one byte (8 bit)
I/O location.

-1

-2 Access a two byte (16
bit) I/O location.

-1

-4 Access a one word (32
bit) I/O location.

-1

Description
Reads a value from the I/O address space.

Examples
Examine 8 bit value at I/O location 0x3F8.

RedBoot> iopeek -b 0x3f8

0x03f8 = 0x30

Examine 32 bit value at I/O location 0x3f8.

RedBoot> iopeek -b 0x3f8 -4

0x03f8 = 0x03c10065

29

iopeek

30

iopoke

Name
iopoke — Write I/O location

Synopsis

iopoke [-b location] [-1 | -2 | -4] [-v value]

Arguments

Name Type Description Default
-b location I/O address I/O Location. none

-1 Access a one byte (8 bit)
I/O location. Only the 8
least significant bits of
value will be used

-1

-2 Access a two byte (16
bit) I/O location. Only the
16 least significant bits of
value will be used

-1

-4 Access a one word (32
bit) I/O location.

-1

Description
Writes a value to the I/O address space.

Examples
Write 0x0123 to 16 bit I/O location 0x200.

RedBoot> iopoke -b 0x200 -v 0x123 -2

31

iopoke

32

gunzip

Name
gunzip — Uncompress GZIP compressed data

Synopsis

gunzip {-s source} {-d destination}

Arguments

Name Type Description Default
-s location1 Memory address Location of GZIP

compressed data to
uncompress.

Value set by last load or
fis load command.

-d location2 Memory address Destination to write
uncompressed data to.

none

Description
Uncompress GZIP compressed data.

Examples
Uncompress data at location 0x100000 to 0x200000.

RedBoot> gunzip -s 0x100000 -d 0x200000

Decompressed 38804 bytes

33

gunzip

34

ip_address

Name
ip_address — Set IP addresses

Synopsis

ip_address [-b] [-l local_IP_address [/netmask_length]] [-h server_IP_address] [-d
DNS_server_IP_address]

Arguments

Name Type Description Default
-b Boolean Obtain an IP address

using BOOTP or DHCP.
don’t use BOOTP/DHCP

-l
local_IP_address[/netmask_length]

Numeric IP or DNS name The IP address RedBoot
should use, optionally
with the network mask
length.

none

-h server_IP_address Numeric IP or DNS name The IP address of the
default server. Use of this
address is implied by
other commands, such as
load.

none

-d
DNS_server_IP_address

Numeric IP or DNS name The IP address of the
DNS server.

none

Description
The ip_address command is used to show and/or change the basic IP addresses used by RedBoot. IP addresses
may be given as numeric values, e.g. 192.168.1.67, or as symbolic names such as www.redhat.com if DNS
support is enabled.

The -b option is used to cause the target to perform a bootp or dhcp negotiation to get an IP address.

The -l option is used to set the IP address used by the target device. The network mask length can also be
specified

The -h option is used to set the default server address, such as is used by the load command.

The -d option is used to set the default DNS server address which is used for resolving symbolic network
addresses. Note that an address of 0.0.0.0 will disable DNS lookups.

35

ip_address

Examples
Display the current network settings.

RedBoot> ip_address

IP: 192.168.1.31, Default server: 192.168.1.101, DNS server IP: 0.0.0.0, DNS domain name:

Change the DNS server address.

RedBoot> ip_address -d 192.168.1.101

IP: 192.168.1.31, Default server: 192.168.1.101, DNS server IP: 192.168.1.101, DNS domain name:

Change the DNS domain name.

RedBoot> ip_address -D example.com

IP: 192.168.1.31, Default server: 192.168.1.101, DNS server IP: 192.168.1.101, DNS domain name: example.com

Change the default server address.

RedBoot> ip_address -h 192.168.1.104

IP: 192.168.1.31, Default server: 192.168.1.104, DNS server IP: 192.168.1.101, DNS domain name:

Set the IP address to something new, with a 255.255.255.0 netmask

RedBoot> ip_address -l 192.168.1.32/24

IP: 192.168.1.32, Default server: 192.168.1.104, DNS server IP: 192.168.1.101, DNS domain name:

36

load

Name
load — Download programs or data to the RedBoot platform

Synopsis

load [-v] [-d] [-r] [-m [[xmodem | ymodem | tftp | disk | file]]] [-h server_IP_address] [-f location] [-b
location] [-c channel] [file_name]

Arguments

Name Type Description Default
-v Boolean Display a small spinner

(indicator) while the
download is in progress.
This is just for feedback,
especially during long
loads. Note that the
option has no effect when
using a serial download
method since it would
interfere with the
protocol.

quiet

-d Boolean Decompress data stream
(gzip data)

non-compressed data

-r Boolean Raw (or binary) data. -b
or -f must be used

formatted (S-records,
ELF image, etc)

-m tftp Transfer data via the
network using TFTP
protocol.

TFTP

-m http Transfer data via the
network using HTTP
protocol.

TFTP

-m xmodem Transfer data using
X-modem protocol.

TFTP

-m ymodem Transfer data using
Y-modem protocol.

TFTP

-m disk Transfer data from a local
disk.

TFTP

-m file Transfer data from a local
filesystem such as JFFS2
or FAT.

TFTP

37

load

Name Type Description Default
-h server_IP_address Numeric IP or DNS name The IP address of the

TFTP or HTTP server.
Value set by ip_address

-b location Number Address in memory to
load the data. Formatted
data streams will have an
implied load address
which this option may
override.

Depends on data format

-f location Number Address in flash to load
the data. Formatted data
streams will have an
implied load address
which this option may
override.

Depends on data format

-c channel Number Specify which I/O
channel to use for
download. This option is
only supported when
using either xmodem or
ymodem protocol.

Depends on data format

file_name String The name of the file on
the TFTP or HTTP server
or the local disk. Details
of how this is specified
for TFTP are
host-specific. For local
disk files, the name must
be in disk: filename
format. The disk portion
must match one of the
disk names listed by the
disks command.

None

Description
The load command is used to download data into the target system. Data can be loaded via a network con-
nection, using either the TFTP or HTTP protocols, or the console serial connection using the X/Y modem
protocol. Files may also be loaded directly from local filesystems on disk. Files to be downloaded may either
be executable images in ELF executable program format, Motorola S-record (SREC) format or raw data.

Note: When downloading an ELF image, RedBoot will forcibly terminate the transfer once all the relevant
(loadable) ELF sections have been received. This behaviour reduces download time when using the X/Y
modem protocol over a slow serial connection. However, the terminal emulator may report that the transfer
is incomplete and has been cancelled. Such messages are normal and may be ignored.

38

load

Examples
Download a Motorola S-record (or ELF) image, using TFTP, specifying the base memory address.

RedBoot> load redboot.ROM -b 0x8c400000

Address offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000fe80

Download a Motorola S-record (or ELF) image, using HTTP, specifying the host [server] address.

RedBoot> load /redboot.ROM -m HTTP -h 192.168.1.104

Address offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000fe80

Load an ELF file from /dev/hda1 which should be an EXT2 partition:

RedBoot> load -mode disk hda1:hello.elf

Entry point: 0x00020000, address range: 0x00020000-0x0002fd70

Load an ELF file from /jffs2/applications which should be a directory in a JFFS2 filesystem:

RedBoot> load -mode file /jffs2/applications/hello.elf

Entry point: 0x00020000, address range: 0x00020000-0x0002fd70

39

load

40

mcmp

Name
mcmp — Compare two segments of memory

Synopsis

mcmp {-s location1} {-d location1} {-l length} [-1 | -2 | -4]

Arguments

Name Type Description Default
-s location1 Memory address Location for start of data. none

-d location2 Memory address Location for start of data. none

-l length Number Length of data none

-1 Access one byte (8 bits)
at a time. Only the least
significant 8 bits of the
pattern will be used.

-4

-2 Access two bytes (16
bits) at a time. Only the
least significant 16 bits of
the pattern will be used.

-4

-4 Access one word (32
bits) at a time.

-4

Description
Compares the contents of two ranges of memory (RAM, ROM, FLASH, etc).

Examples
Compare two buffers which match (result is quiet).

RedBoot> mfill -b 0x100000 -l 0x20 -p 0xDEADFACE

RedBoot> mfill -b 0x200000 -l 0x20 -p 0xDEADFACE

RedBoot> mcmp -s 0x100000 -d 0x200000 -l 0x20

Compare two buffers which don’t match. Only the first non-matching element is displayed.

RedBoot> mcmp -s 0x100000 -d 0x200000 -l 0x30 -2

41

mcmp

Buffers don’t match - 0x00100020=0x6000, 0x00200020=0x0000

42

mcopy

Name
mcopy — Copy memory

Synopsis

mcopy {-s source} {-d destination} {-l length} [-1 | -2 | -4]

Arguments

Name Type Description Default
-s location1 Memory address Location of data to copy. none

-d location2 Memory address Destination for copied
data.

none

-l length Number Length of data none

-1 Copy one byte (8 bits) at
a time.

-4

-2 Copy two bytes (16 bits)
at a time.

-4

-4 Copy one word (32 bits)
at a time.

-4

Description
Copies memory (RAM, ROM, FLASH, etc) from one area to another.

Examples
Copy 16 bits at a time.

RedBoot> mfill -b 0x100000 -l 0x20 -2 -p 0xDEAD

RedBoot> mfill -b 0x200000 -l 0x20 -2 -p 0x0

RedBoot> dump -b 0x200000 -l 0x20 -2

00200000: 0000 0000 0000 0000 0000 0000 0000 0000
00200010: 0000 0000 0000 0000 0000 0000 0000 0000
RedBoot> mcopy -s 0x100000 -d 0x200000 -2 -l 0x20

RedBoot> dump -b 0x200000 -l 0x20 -2

00200000: DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD
00200010: DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD

43

mcopy

44

mfill

Name
mfill — Fill RAM with a specified pattern

Synopsis

mfill {-b location} {-l length} {-p value} [-1 | -2 | -4]

Arguments

Name Type Description Default
-b location Memory address Location in memory for

start of data.
none

-l length Number Length of data none

-p pattern Number Data value to fill with 0

-1 Access one byte (8 bits)
at a time. Only the least
significant 8 bits of the
pattern will be used.

-4

-2 Access two bytes (16
bits) at a time. Only the
least significant 16 bits of
the pattern will be used.

-4

-4 Access one word (32
bits) at a time.

-4

Description
Fills a range of memory with the given pattern.

Examples
Fill a buffer with zeros.

RedBoot> x -b 0x100000 -l 0x20

00100000: 00 3E 00 06 00 06 00 06 00 00 00 00 00 00 00 00 |.>..............|
00100010: 00 00 00 78 00 70 00 60 00 60 00 60 00 60 00 60 |...x.p.‘.‘.‘.‘.‘|
RedBoot> mfill -b 0x100000 -l 0x20

RedBoot> x -b 0x100000 -l 0x20

00100000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00100010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

45

mfill

Fill a buffer with a pattern.

RedBoot> mfill -b 0x100000 -l 0x20 -p 0xDEADFACE

RedBoot> x -b 0x100000 -l 0x20

00100000: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |................|
00100010: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |................|

46

ping

Name
ping — Verify network connectivity

Synopsis

ping [-v] [-i local_IP_address] [-l length] [-n count] [-t timeout] [-r rate] {-h
server_IP_address}

Arguments

Name Type Description Default
-v Boolean Be verbose, displaying

information about each
packet sent.

quiet

-n local_IP_address Number Controls the number of
packets to be sent.

10

-i local_IP_address Numeric IP or DNS name The IP address RedBoot
should use.

Value set by ip_address

-h server_IP_address Numeric IP or DNS name The IP address of the host
to contact.

none

-l length Number The length of the ICMP
data payload.

64

-r length Number How fast to deliver
packets, i.e. time between
successive sends. A value
of 0 sends packets as
quickly as possible.

1000ms (1 second)

-t length Number How long to wait for the
round-trip to complete,
specified in milliseconds.

1000ms (1 second)

Description
The ping command checks the connectivity of the local network by sending special (ICMP) packets to a
specific host. These packets should be automatically returned by that host. The command will indicate how
many of these round-trips were successfully completed.

47

ping

Examples
Test connectivity to host 192.168.1.101.

RedBoot> ping -h 192.168.1.101

Network PING - from 192.168.1.31 to 192.168.1.101
PING - received 10 of 10 expected

Test connectivity to host 192.168.1.101, with verbose reporting.

RedBoot> ping -h 192.168.1.101 -v -n 4

Network PING - from 192.168.1.31 to 192.168.1.101
seq: 1, time: 1 (ticks)
seq: 2, time: 1 (ticks)
seq: 3, time: 1 (ticks)
seq: 4, time: 1 (ticks)

PING - received 10 of 10 expected

Test connectivity to a non-existent host (192.168.1.109).
RedBoot> ping -h 192.168.1.109 -v -n 4

PING: Cannot reach server ’192.168.1.109’ (192.168.1.109)

48

reset

Name
reset — Reset the device

Synopsis

reset

Arguments
None

Description
The reset command causes the target platform to be reset. Where possible (hardware support permitting), this
will be equivalent to a power-on reset condition.

Examples
Reset the platform.

RedBoot> reset

... Resetting.+... Waiting for network card: .
Socket Communications, Inc: Low Power Ethernet CF Revision C 5V/3.3V 08/27/98
Ethernet eth0: MAC address 00:c0:1b:00:ba:28
IP: 192.168.1.29, Default server: 192.168.1.101

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 10:41:41, May 14 2002

Platform: Compaq iPAQ Pocket PC (StrongARM 1110)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x01fc0000, 0x00014748-0x01f71000 available
FLASH: 0x50000000 - 0x51000000, 64 blocks of 0x00040000 bytes each.
RedBoot>

49

reset

50

version

Name
version — Display RedBoot version information

Synopsis

version

Arguments
None

Description
The version command simply displays version information about RedBoot.

Examples
Display RedBoot’s version.

RedBoot> version

RedBoot(tm) debug environment - built 09:12:03, Feb 12 2001
Platform: XYZ (PowerPC 860)
Copyright (C) 2000, 2001, Free Software Foundation, Inc.
RAM: 0x00000000-0x00400000

51

version

52

Flash Image System (FIS)
If the platform has flash memory, RedBoot can use this for image storage. Executable images, as well as data,
can be stored in flash in a simple file store. The fis command (fis is short for Flash Image System) is used to
manipulate and maintain flash images.

fis init

Name
fis init — Initialize Flash Image System (FIS)

Synopsis

fis init [-f]

Arguments

Name Type Description Default
-f All blocks of flash

memory (except for the
boot blocks) will be
erased as part of the
initialization procedure.

Description
This command is used to initialize the Flash Image System (FIS). It should normally only be executed once,
when RedBoot is first installed on the hardware. If the reserved images or their sizes in the FIS change, due to
a different configuration of RedBoot being used, it may be necessary to issue the command again though.

Note: Subsequent executions will cause loss of previously stored information in the FIS.

Examples
Initialize the FIS directory.

RedBoot> fis init

About to initialize [format] flash image system - continue (y/n)? y

*** Initialize FLASH Image System

53

fis init

Warning: device contents not erased, some blocks may not be usable
... Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .

Initialize the FIS directory and all of flash memory, except for first blocks of the flash where the boot monitor
resides.

RedBoot> fis init -f

About to initialize [format] flash image system - continue (y/n)? y

*** Initialize FLASH Image System
... Erase from 0x00020000-0x00070000:
... Erase from 0x00080000-0x00080000:
... Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .

54

fis list

Name
fis list — List Flash Image System directory

Synopsis

fis list [-c] [-d]

Arguments

Name Type Description Default
-c Show image checksum

instead of memory
address (column Mem

addr is replaced by
Checksum).

-d Show image data length
instead of amount of flash
occupied by image
(column Length is
replaced by Datalen).

Description
This command lists the images currently available in the FIS. Certain images used by RedBoot have fixed
names and have reserved slots in the FIS (these can be seen after using the fis init command). Other images
can be manipulated by the user.

Note: The images are listed in the order they appear in the FIS directory, not by name or creation time.

Examples
List the FIS directory.

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot config 0x0007F000 0x0007F000 0x00001000 0x00000000
FIS directory 0x00070000 0x00070000 0x0000F000 0x00000000

55

fis list

List the FIS directory, with image checksums substituted for memory addresses.

RedBoot> fis list -c

Name FLASH addr Checksum Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot config 0x0007F000 0x00000000 0x00001000 0x00000000
FIS directory 0x00070000 0x00000000 0x0000F000 0x00000000

List the FIS directory with image data lengths substituted for flash block reservation lengths.

RedBoot> fis list -d

Name FLASH addr Mem addr Datalen Entry point
RedBoot 0x00000000 0x00000000 0x00000000 0x00000000
RedBoot config 0x0007F000 0x0007F000 0x00000000 0x00000000
FIS directory 0x00070000 0x00070000 0x00000000 0x00000000

56

fis free

Name
fis free — Free flash image

Synopsis

fis free

Description
This command shows which areas of the flash memory are currently not in use. When a block contains non-
erased contents it is considered in use. Since it is possible to force an image to be loaded at a particular flash
location, this command can be used to check whether that location is in use by any other image.

Note: There is currently no cross-checking between actual flash contents and the FIS directory, which
mans that there could be a segment of flash which is not erased that does not correspond to a named
image, or vice-versa.

Examples
Show free flash areas.

RedBoot> fis free

0xA0040000 .. 0xA07C0000
0xA0840000 .. 0xA0FC0000

57

fis free

58

fis create

Name
fis create — Create flash image

Synopsis

fis create {-b data address} {-l length} [-f flash address] [-e entry] [-r relocation

address] [-s data length] [-n] [name]

Arguments

Name Type Description Default
-b Number Address of data to be

written to the flash.
Address of last loaded
file. If not set in a load
operation, it must be
specified.

-l Number Length of flash area to
occupy. If specified, and
the named image already
exists, the length must
match the value in the
FIS directory.

Length of area reserved
in FIS directory if the
image already exists, or
the length of the last
loaded file. If neither are
set, it must be specified.

-f Number Address of flash area to
occopy.

The address of an area
reserved in the FIS
directory for extant
images. Otherwise the
first free block which is
large enough will be
used.

-e Number Entry address for an
executable image, used
by the fis load command.

The entry address of last
loaded file.

-r Number Address where the image
should be relocated to by
the fis load command.
This is only relevant for
images that will be
loaded with the fis load
command.

The load address of the
last loaded file.

-s Number Actual length of data
written to image. This is
used to control the range
over which the checksum
is made.

It defaults to the length of
the last loaded file.

59

fis create

Name Type Description Default
-n When set, no image data

will be written to the
flash. Only the FIS
directory will be updated.

name String Name of flash image.

Description
This command creates an image in the FIS directory. The data for the image must exist in RAM memory before
the copy. Typically, you would use the RedBoot load command to load file into RAM and then the fis create
command to write it to a flash image.

Examples
Trying to create an extant image, will require the action to be verified.

RedBoot> fis create RedBoot -f 0xa0000000 -b 0x8c400000 -l 0x20000

An image named ‘RedBoot’ exists - continue (y/n)? n

Create a new test image, let the command find a suitable place.

RedBoot> fis create junk -b 0x8c400000 -l 0x20000

... Erase from 0xa0040000-0xa0060000: .

... Program from 0x8c400000-0x8c420000 at 0xa0040000: .

... Erase from 0xa0fe0000-0xa1000000: .

... Program from 0x8c7d0000-0x8c7f0000 at 0xa0fe0000: .

Update the RedBoot[RAM] image.

RedBoot> load redboot_RAM.img

Entry point: 0x060213c0, address range: 0x06020000-0x06036cc0
RedBoot> fis create RedBoot[RAM]

No memory address set.
An image named ’RedBoot[RAM]’ exists - continue (y/n)? y

* CAUTION * about to program ’RedBoot[RAM]’
at 0x00020000..0x00036cbf from 0x06020000 - continue (y/n)? y

... Erase from 0x00020000-0x00040000: ..

... Program from 0x06020000-0x06036cc0 at 0x00020000: ..

... Erase from 0x00070000-0x00080000: .

... Program from 0x0606f000-0x0607f000 at 0x00070000: .

60

fis load

Name
fis load — Load flash image

Synopsis

fis load [-b load address] [-c] [-d] [name]

Arguments

Name Type Description Default
-b Number Address the image should

be loaded to. Executable
images normally load at
the location to which the
file was linked. This
option allows the image
to be loaded to a specific
memory location,
possibly overriding any
assumed location.

If not specified, the
address associated with
the image in the FIS
directory will be used.

-c Compute and print the
checksum of the image
data after it has been
loaded into memory.

-d Decompress gzipped
image while copying it
from flash to RAM.

name String The name of the file, as
shown in the FIS
directory.

Description
This command is used to transfer an image from flash memory to RAM.

Once the image has been loaded, it may be executed using the go command.

Examples
Load and run RedBoot[RAM] image.

RedBoot> fis load RedBoot[RAM]

61

fis load

RedBoot> go

62

fis delete

Name
fis delete — Delete flash image

Synopsis

fis delete {name}

Arguments

Name Type Description Default
name Number Name of image that

should be deleted.

Description
This command removes an image from the FIS. The flash memory will be erased as part of the execution of
this command, as well as removal of the name from the FIS directory.

Note: Certain images are reserved by RedBoot and cannot be deleted. RedBoot will issue a warning if this
is attempted.

Examples

RedBoot> fis list

Name flash addr Mem addr Length Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000
RedBoot config 0xA0FC0000 0xA0FC0000 0x020000 0x00000000
FIS directory 0xA0FE0000 0xA0FE0000 0x020000 0x00000000
junk 0xA0040000 0x8C400000 0x020000 0x80000000
RedBoot> fis delete junk

Delete image ‘junk’ - continue (y/n)? y

... Erase from 0xa0040000-0xa0060000: .

... Erase from 0xa0fe0000-0xa1000000: .

... Program from 0x8c7d0000-0x8c7f0000 at 0xa0fe0000: .

63

fis delete

64

fis lock

Name
fis lock — Lock flash area

Synopsis

fis lock {-f flash_address} {-l length}

Arguments

Name Type Description Default
flash_address Number Address of area to be

locked.

length Number Length of area to be
locked.

Description
This command is used to write-protect (lock) a portion of flash memory, to prevent accidental overwriting of
images. In order to make any modifications to the flash, a matching fis unlock command must be issued. This
command is optional and will only be provided on hardware which can support write-protection of the flash
space.

Note: Depending on the system, attempting to write to write-protected flash may generate errors or warn-
ings, or be benignly quiet.

Examples
Lock an area of the flash

RedBoot> fis lock -f 0xa0040000 -l 0x20000

... Lock from 0xa0040000-0xa0060000: .

65

fis lock

66

fis unlock

Name
fis unlock — Unlock flash area

Synopsis

fis unlock {-f flash_address} {-l length}

Arguments

Name Type Description Default
flash_address Number Address of area to be

unlocked.

length Number Length of area to be
unlocked.

Description
This command is used to unlock a portion of flash memory forcibly, allowing it to be updated. It must be issued
for regions which have been locked before the FIS can reuse those portions of flash.

Note: Some flash devices power up in locked state and always need to be manually unlocked before they
can be written to.

Examples
Unlock an area of the flash

RedBoot> fis unlock -f 0xa0040000 -l 0x20000

... Unlock from 0xa0040000-0xa0060000: .

67

fis unlock

68

fis erase

Name
fis erase — Erase flash area

Synopsis

fis erase {-f flash_address} {-l length}

Arguments

Name Type Description Default
flash_address Number Address of area to be

erased.

length Number Length of area to be
erased.

Description
This command is used to erase a portion of flash memory forcibly. There is no cross-checking to ensure that
the area being erased does not correspond to an existing image.

Examples
Erase an area of the flash

RedBoot> fis erase -f 0xa0040000 -l 0x20000

... Erase from 0xa0040000-0xa0060000: .

69

fis erase

70

fis write

Name
fis write — Write flash area

Synopsis

fis write {-b mem_address} {-l length} {-f flash_address}

Arguments

Name Type Description Default
mem_address Number Address of data to be

written to flash.

length Number Length of data to be
writtem.

flash_address Number Address of flash to write
to.

Description
This command is used to write data from memory to flash. There is no cross-checking to ensure that the area
being written to does not correspond to an existing image.

Examples
Write an area of data to the flash

RedBoot> fis write -b 0x0606f000 -l 0x1000 -f 0x00020000

* CAUTION * about to program FLASH
at 0x00020000..0x0002ffff from 0x0606f000 - continue (y/n)? y

... Erase from 0x00020000-0x00030000: .

... Program from 0x0606f000-0x0607f000 at 0x00020000: .

71

fis write

72

Filesystem Interface
If the platform has access to secondary storage, then RedBoot may be able to access a filesystem stored on this
device. RedBoot can access FAT filesystems stored on IDE disks or CompactFlash devices and can use JFFS2
filesystems stored in FLASH memory. The fs command is used to manipulate files on filesystems. Applications
may be loaded into memory using the file mode of the load command.

fs info

Name
fs info — Print filesystem information

Synopsis

fs info

Arguments
The command takes no arguments.

Description
This command prints information about the filesystems that are available. Three lists are produced. The first
is a list of the filsystem implementations available in RedBoot; names from this list may be used in the -t

option to the fs mount command. The second list describes the block devices that are available for mounting a
filesystem; names from this list may be used in the -d option to the fs mount command. The last list describes
the filesystems that are already mounted.

Examples

RedBoot> fs info

Filesystems available:
ramfs
jffs2

Devices available:
/dev/flash1

Mounted filesystems:
Device Filesystem Mounted on

<undefined> ramfs /
/dev/flash1 jffs2 /flash

RedBoot>

73

fs info

74

fs mount

Name
fs mount — Mount a filesystem

Synopsis

fs mount [-d device] {-t fstype} {mountpoint}

Arguments

Name Type Description Default
device Number Device containing

filsystem to mount.
undefined

fstype Number Filesystem type.

mountpoint String Pathname for filesystem
root.

/

Description
This command is used make a filesystem available for access with the filesystem access commands. Three
things need to be defined to do this. First, the name of the device on which the filesystem is stored needs to
be given to the -d option. Secondly, the type of filesystem it is needs to be given to the -t option. Finally, the
pathname by which the new filesystem will be accessed needs to be supplied. Following a successful mount,
the root of the filesystem will be accessible at the mountpoint.

Examples
Mount a JFF2 partititon:

RedBoot> fs info

Filesystems available:
ramfs
jffs2

Devices available:
/dev/flash1

Mounted filesystems:
Device Filesystem Mounted on

<undefined> ramfs /
RedBoot> fs mount -d /dev/flash1 -t jffs2 /flash

RedBoot> fs info

Filesystems available:
ramfs
jffs2

75

fs mount

Devices available:
/dev/flash1

Mounted filesystems:
Device Filesystem Mounted on

<undefined> ramfs /
/dev/flash1 jffs2 /flash

RedBoot>

76

fs umount

Name
fs umount — Unmount filesystem

Synopsis

fs umount {mountpoint}

Arguments

Name Type Description Default
mountpoint String Mountpoint of filesystem

to unmount.

Description
This command removes a filesystem from being accessible using the filesystem commands. The single argu-
ment needs to be the mountpoint that was used when mounting the filesystem. This command will fail if the
current directory is currently within the filesystem to be unmounted.

Examples
Unmount a JFF2 partititon:

RedBoot> fs info

Filesystems available:
ramfs
jffs2

Devices available:
/dev/flash1

Mounted filesystems:
Device Filesystem Mounted on

<undefined> ramfs /
/dev/flash1 jffs2 /flash

RedBoot> fs umount /flash

RedBoot> fs info

Filesystems available:
ramfs
jffs2

Devices available:
/dev/flash1

Mounted filesystems:
Device Filesystem Mounted on

77

fs umount

<undefined> ramfs /
RedBoot>

78

fs cd

Name
fs cd — Change filesystem directory

Synopsis

fs cd [directory]

Arguments

Name Type Description Default
directory String Pathname to directory to

change to.
Root directory

Description
This command changes the current filesystem directory. Subsequent filesystem commands will be executed in
the new directory. If no argument is given, then the current directory is set back to the root of the filesystem
name space.

Examples
Change current directory:

RedBoot> fs list

212416 d--------- 3 size 128 .
212416 d--------- 3 size 128 ..
211392 d--------- 2 size 96 tests
210368 ---------- 1 size 4096 image
RedBoot> fs cd tests

RedBoot> fs list

211392 d--------- 2 size 96 .
212416 d--------- 3 size 128 ..
205760 ---------- 1 size 16384 test1
RedBoot>

79

fs cd

80

fs mkdir

Name
fs mkdir — Create filesystem directory

Synopsis

fs mkdir {directory}

Arguments

Name Type Description Default
directory String Pathname to directory to

delete.

Description
This command creates (makes) a directory in the filesystem.

Examples
Create directory:

RedBoot> fs list

212416 d--------- 2 size 128 .
212416 d--------- 2 size 128 ..
210368 ---------- 1 size 4096 image
RedBoot> fs mkdir tests

RedBoot> fs list

212416 d--------- 3 size 128 .
212416 d--------- 3 size 128 ..
211392 d--------- 2 size 64 tests
210368 ---------- 1 size 4096 image
RedBoot>

81

fs mkdir

82

fs deldir

Name
fs deldir — Delete filesystem directory

Synopsis

fs deldir {directory}

Arguments

Name Type Description Default
directory String Pathname to directory to

delete.

Description
This command deletes a directory from the filesystem. If the directory contains files or other directories then
this command will fail.

Examples
Delete directory:

RedBoot> fs list

212416 d--------- 3 size 128 .
212416 d--------- 3 size 128 ..
211392 d--------- 2 size 96 tests
210368 ---------- 1 size 4096 image
RedBoot> fs deldir tests

RedBoot> fs list

212416 d--------- 2 size 128 .
212416 d--------- 2 size 128 ..
210368 ---------- 1 size 4096 image
RedBoot>

83

fs deldir

84

fs del

Name
fs del — Delete file

Synopsis

fs del {file}

Arguments

Name Type Description Default
file String Pathname of file to

delete.

Description
This command deletes a file from the filesystem.

Examples
Change current directory:

RedBoot> fs list tests

211392 d--------- 2 size 96 .
212416 d--------- 3 size 128 ..
205760 ---------- 1 size 16384 test1
RedBoot> fs del tests/test1

RedBoot> fs list tests

211392 d--------- 2 size 96 .
212416 d--------- 3 size 128 ..
RedBoot>

85

fs del

86

fs move

Name
fs move — Move file

Synopsis

fs move {source} {dest}

Arguments

Name Type Description Default
source String Pathname of file to move.

dest String Pathname to new file
location.

Description
This command moves a file within a filesystem. This command will fail if the destination file already exists, or
is in a different filesystem.

Examples
Rename a file:

RedBoot> fs list tests

211392 d--------- 2 size 96 .
212416 d--------- 3 size 128 ..
205760 ---------- 1 size 12288 test1
RedBoot> fs move tests/test1 tests/test2

RedBoot> fs list tests

211392 d--------- 2 size 128 .
212416 d--------- 3 size 128 ..
205760 ---------- 1 size 12288 test2
RedBoot>

87

fs move

88

fs list

Name
fs list — List filesystem directory

Synopsis

fs list [directory]

Arguments

Name Type Description Default
directory String Pathname to directory to

list.
Current directory

Description
This command prints a list of the contents of the named directory. Each line of the listing starts with the file’s
inode number, which is its address in the filesystem. Following is a set of UNIX-like access flags, the first
character of this will be a ”d“ if this entry is a directory. The third item indicates the number of links to the file.
Following this is the size of the file in bytes and the last item is its name.

Examples
List the current directory:

RedBoot> fs list

212416 d--------- 3 size 128 .
212416 d--------- 3 size 128 ..
211392 ---------- 1 size 4096 image
206784 d--------- 2 size 96 tests
RedBoot>

List a subdirectory:

RedBoot> fs list tests
206784 d--------- 2 size 96 .
212416 d--------- 3 size 128 ..
205760 ---------- 1 size 16384 test1
RedBoot>

89

fs list

90

fs write

Name
fs write — Write to filesystem

Synopsis

fs write [-b mem_address] [-l length] {name}

Arguments

Name Type Description Default
mem_address Number Address of data to be

written to flash.
Address of last loaded
file. If not set by a load
operation it must be
specified.

length Number Length of data to be
written.

Length of last loaded file.

name String Name of file to create.

Description
This command is used to write data from memory to a file. If the file does not exist it will be created. If it does
exist, then it will be overwritten with the new contents.

Examples
Write an area of data to a file

RedBoot> fs write -b 0x0606f000 -l 0x1000 image

RedBoot> fs list

212416 d--------- 3 size 128 .
212416 d--------- 3 size 128 ..
211392 ---------- 1 size 4096 image
206784 d--------- 2 size 96 tests
RedBoot>

91

fs write

92

Chapter 2. RedBoot Commands and Examples

Persistent State Flash-based Configuration and Control
RedBoot provides flash management support for storage in the flash memory of multiple executable images
and of non-volatile information such as IP addresses and other network information.

RedBoot on platforms that support flash based configuration information will report the following message the
first time that RedBoot is booted on the target:

flash configuration checksum error or invalid key

This error can be ignored if no flash based configuration is desired, or can be silenced by running the fconfig
command as described below. At this point you may also wish to run the fis init command. See other fis
commands in the Section called Flash Image System (FIS).

Certain control and configuration information used by RedBoot can be stored in flash.

The details of what information is maintained in flash differ, based on the platform and the configuration.
However, the basic operation used to maintain this information is the same. Using the fconfig -l command, the
information may be displayed and/or changed.

If the optional flag -i is specified, then the configuration database will be reset to its default state. This is also
needed the first time RedBoot is installed on the target, or when updating to a newer RedBoot with different
configuration keys.

If the optional flag -l is specified, the configuration data is simply listed. Otherwise, each configuration pa-
rameter will be displayed and you are given a chance to change it. The entire value must be typed - typing
just carriage return will leave a value unchanged. Boolean values may be entered using the first letter (t for
true, f for false). At any time the editing process may be stopped simply by entering a period (.) on the line.
Entering the caret (^) moves the editing back to the previous item. See “RedBoot Editing Commands”, the
Section called RedBoot Editing Commands in Chapter 1.

If any changes are made in the configuration, then the updated data will be written back to flash after getting
acknowledgment from the user.

If the optional flag -n is specified (with or without -l) then “nicknames” of the entries are used. These are
shorter and less descriptive than “full” names. The full name may also be displayed by adding the -f flag.

The reason for telling you nicknames is that a quick way to set a single entry is provided, using the format

RedBoot> fconfig nickname value

If no value is supplied, the command will list and prompt for only that entry. If a value is supplied, then the
entry will be set to that value. You will be prompted whether to write the new information into flash if any
change was made. For example

RedBoot> fconfig -l -n

boot_script: false
bootp: false
bootp_my_ip: 10.16.19.176
bootp_server_ip: 10.16.19.66
dns_ip: 10.16.19.1
gdb_port: 9000
net_debug: false
RedBoot> fconfig bootp_my_ip 10.16.19.177

bootp_my_ip: 10.16.19.176 Setting to 10.16.19.177
Update RedBoot non-volatile configuration - continue (y/n)? y

... Unlock from 0x507c0000-0x507e0000: .

... Erase from 0x507c0000-0x507e0000: .

... Program from 0x0000a8d0-0x0000acd0 at 0x507c0000: .

... Lock from 0x507c0000-0x507e0000: .

93

Chapter 2. RedBoot Commands and Examples

RedBoot>

Additionally, nicknames can be used like aliases via the format %{nickname}. This allows the values stored
by fconfig to be used directly by scripts and commands.

Depending on how your terminal program is connected and its capabilities, you might find that you are unable
to use line-editing to delete the ‘old’ value when using the default behaviour of fconfig nickname or just plain
fconfig, as shown in this example:

RedBoot> fco bootp

bootp: false_

The user deletes the word “false;” and enters “true” so the display looks like this:

RedBoot> fco bootp

bootp: true

Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlock from ...
RedBoot> _

To edit when you cannot backspace, use the optional flag -d (for “dumb terminal”) to provide a simpler
interface thus:

RedBoot> fco -d bootp

bootp: false ? _

and you enter the value in the obvious manner thus:

RedBoot> fco -d bootp

bootp: false ? true

Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlock from ...
RedBoot> _

One item which is always present in the configuration data is the ability to execute a script at boot time. A
sequence of RedBoot commands can be entered which will be executed when the system starts up. Optionally,
a time-out period can be provided which allows the user to abort the startup script and proceed with normal
command processing from the console.

RedBoot> fconfig -l

Run script at boot: false
Use BOOTP for network configuration: false
Local IP address: 192.168.1.29
Default server IP address: 192.168.1.101
DNS server IP address: 192.168.1.1
DNS domain name: example.com
GDB connection port: 9000
Network debug at boot time: false

The following example sets a boot script and then shows it running.

RedBoot> fconfig

Run script at boot: false t

94

Chapter 2. RedBoot Commands and Examples

Boot script:
Enter script, terminate with empty line
>> fi li

Boot script timeout: 0 10

Use BOOTP for network configuration: false .
Update RedBoot non-volatile configuration - continue (y/n)? y

... Erase from 0xa0fc0000-0xa0fe0000: .

... Program from 0x8c021f60-0x8c022360 at 0xa0fc0000: .
RedBoot>
RedBoot(tm) debug environment - built 08:22:24, Aug 23 2000
Copyright (C) 2000, Free Software Foundation, Inc.

RAM: 0x8c000000-0x8c800000
flash: 0xa0000000 - 0xa1000000, 128 blocks of 0x00020000 bytes ea.
Socket Communications, Inc: Low Power Ethernet CF Revision C \
5V/3.3V 08/27/98 IP: 192.168.1.29, Default server: 192.168.1.101 \
== Executing boot script in 10 seconds - enter ^C to abort
RedBoot> fi li

Name flash addr Mem addr Length Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000
RedBoot config 0xA0FC0000 0xA0FC0000 0x020000 0x00000000
FIS directory 0xA0FE0000 0xA0FE0000 0x020000 0x00000000
RedBoot>

NOTE: The bold characters above indicate where something was entered on the console. As you can see,
the fi li command at the end came from the script, not the console. Once the script is executed, command
processing reverts to the console.

NOTE: RedBoot supports the notion of a boot script timeout, i.e. a period of time that RedBoot waits before
executing the boot time script. This period is primarily to allow the possibility of canceling the script. Since
a timeout value of zero (0) seconds would never allow the script to be aborted or canceled, this value is
not allowed. If the timeout value is zero, then RedBoot will abort the script execution immediately.

On many targets, RedBoot may be configured to run from ROM or it may be configured to run from RAM.
Other configurations are also possible. All RedBoot configurations will execute the boot script, but in certain
cases it may be desirable to limit the execution of certain script commands to one RedBoot configuration or
the other. This can be accomplished by prepending {<startup type>} to the commands which should be
executed only by the RedBoot configured for the specified startup type. The following boot script illustrates
this concept by having the ROM based RedBoot load and run the RAM based RedBoot. The RAM based
RedBoot will then list flash images.

RedBoot> fco

Run script at boot: false t

Boot script:
Enter script, terminate with empty line
>> {ROM}fis load RedBoot[RAM]

>> {ROM}go

>> {RAM}fis li

>>
Boot script timeout (1000ms resolution): 2

Use BOOTP for network configuration: false

95

...
Update RedBoot non-volatile configuration - continue (y/n)? y

... Unlock from 0x007c0000-0x007e0000: .

... Erase from 0x007c0000-0x007e0000: .

... Program from 0xa0015030-0xa0016030 at 0x007df000: .

... Lock from 0x007c0000-0x007e0000: .
RedBoot> reset

... Resetting.
+Ethernet eth0: MAC address 00:80:4d:46:01:05
IP: 192.168.1.153, Default server: 192.168.1.10

RedBoot(tm) bootstrap and debug environment [ROM]
Red Hat certified release, version R1.xx - built 17:37:36, Aug 14 2001

Platform: IQ80310 (XScale)
Copyright (C) 2000, 2001, Free Software Foundation, Inc.

RAM: 0xa0000000-0xa2000000, 0xa001b088-0xa1fdf000 available
FLASH: 0x00000000 - 0x00800000, 64 blocks of 0x00020000 bytes each.
== Executing boot script in 2.000 seconds - enter ^C to abort
RedBoot> fis load RedBoot[RAM]

RedBoot> go

+Ethernet eth0: MAC address 00:80:4d:46:01:05
IP: 192.168.1.153, Default server: 192.168.1.10

RedBoot(tm) bootstrap and debug environment [RAM]
Red Hat certified release, version R1.xx - built 13:03:47, Aug 14 2001

Platform: IQ80310 (XScale)
Copyright (C) 2000, 2001, Free Software Foundation, Inc.

RAM: 0xa0000000-0xa2000000, 0xa0057fe8-0xa1fdf000 available
FLASH: 0x00000000 - 0x00800000, 64 blocks of 0x00020000 bytes each.
== Executing boot script in 2.000 seconds - enter ^C to abort
RedBoot> fis li

Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00040000 0x00002000
RedBoot config 0x007DF000 0x007DF000 0x00001000 0x00000000
FIS directory 0x007E0000 0x007E0000 0x00020000 0x00000000
RedBoot>

Executing Programs from RedBoot
Once an image has been loaded into memory, either via the load command or the fis load command, execution
may be transfered to that image.

NOTE: The image is assumed to be a stand-alone entity, as RedBoot gives the entire platform over to it.
Typical examples would be an eCos application or a Linux kernel.

96

go

go

Name
go — Execute a program

Synopsis

go [-w timeout] [-c] [-n] [start_address]

Arguments

Name Type Description Default
-w timeout Number How long to wait before

starting execution.
0

-c Boolean Go with caches enabled. caches off

-n Boolean Go with network
interface stopped.

network enabled

start_address Number Address in memory to
begin execution.

Value set by last load or
fis load command.

Description
The go command causes RedBoot to give control of the target platform to another program. This program must
execute stand alone, e.g. an eCos application or a Linux kernel.

If the -w option is used, RedBoot will print a message and then wait for a period of time before starting the
execution. This is most useful in a script, giving the user a chance to abort executing a program and move on
in the script.

Examples
Execute a program - no explicit output from RedBoot.

RedBoot> go 0x40040

Execute a program with a timeout.

RedBoot> go -w 10

About to start execution at 0x00000000 - abort with ^C within 10 seconds
^C
RedBoot>

97

go

Note that the starting address was implied (0x00000000 in this example). The user is prompted that execution
will commence in 10 seconds. At anytime within that 10 seconds the user may type Ctrl+C on the console and
RedBoot will abort execution and return for the next command, either from a script or the console.

98

exec

Name
exec — Execute a Linux kernel

Synopsis

exec [-w timeout] [-r ramdisk_address] [-s ramdisk_length] [-b load_address {-l load_length}
] [-c kernel_command_line] [entry_point]

Arguments

Name Type Description Default
-w timeout Number Time to wait before

starting execution.
0

-r ramdisk_address Number Address in memory of
"initrd"-style ramdisk -
passed to Linux kernel.

None

-s ramdisk_length Number Length of ramdisk image
- passed to Linux kernel.

None

-b load_address Number Address in memory of
the Linux kernel image.

Value set by load or fis
load

-l load_length Number Length of Linux kernel
image.

none

-c
kernel_command_line

String Command line to pass to
the Linux kernel.

None

-x Boot kernel with
endianess opposite of
RedBoot endianess.

Boot kernel with same
endianess as RedBoot

entry_address Number Starting address for
Linux kernel execution

Implied by architecture

Description
The exec command is used to execute a non-eCos application, typically a Linux kernel. Additional information
may be passed to the kernel at startup time. This command is quite special (and unique from the go command)
in that the program being executed may expect certain environmental setups, for example that the MMU is
turned off, etc.

The Linux kernel expects to have been loaded to a particular memory location which is architecture depen-
dent(0xC0008000 in the case of the SA1110). Since this memory is used by RedBoot internally, it is not
possible to load the kernel to that location directly. Thus the requirement for the "-b" option which tells the
command where the kernel has been loaded. When the exec command runs, the image will be relocated to the
appropriate location before being started. The "-r" and "-s" options are used to pass information to the kernel

99

exec

about where a statically loaded ramdisk (initrd) is located.

The "-c" option can be used to pass textual "command line" information to the kernel. If the command line
data contains any punctuation (spaces, etc), then it must be quoted using the double-quote character ’"’. If the
quote character is required, it should be written as ’\"’.

The "-x" option is optionally available on some bi-endian platforms. It is used to boot a kernel built with an
endianess opposite of RedBoot.

Examples
Execute a Linux kernel, passing a command line, which needs relocation. The result from RedBoot is normally
quiet, with the target platform being passed over to Linux immediately.

RedBoot> exec -b 0x100000 -l 0x80000 -c "noinitrd root=/dev/mtdblock3 console=ttySA0"

Execute a Linux kernel, default entry address and no relocation required, with a timeout. The emphasized lines
are output from the loaded kernel.

RedBoot> exec -c "console=ttyS0,38400 ip=dhcp nfsroot=/export/elfs-sh" -w 5

Now booting linux kernel:
Base address 0x8c001000 Entry 0x8c210000
Cmdline : console=ttyS0,38400 ip=dhcp nfsroot=/export/elfs-sh
About to start execution at 0x8x210000 - abort with ^C within 5 seconds
Linux version 2.4.10-pre6 (...) (gcc version 3.1-stdsh-010931) #3 Thu Sep 27 11:04:23 BST 2001

100

Chapter 3. Rebuilding RedBoot

Introduction
RedBoot is built as an application on top of eCos. The makefile rules for building RedBoot are part of the eCos
CDL package, so it’s possible to build eCos from the Configuration Tool, as well as from the command line
using ecosconfig.

Building RedBoot requires only a few steps: selecting the platform and the RedBoot template, importing a
platform specific configuration file, and finally starting the build.

The platform specific configuration file makes sure the settings are correct for building RedBoot on the given
platform. Each platform should provide at least two of these configuration files: redboot_RAM.ecm for a RAM
mode RedBoot configuration and redboot_ROM.ecm or redboot_ROMRAM.ecm for a ROM or ROMRAM mode
RedBoot configuration. There may be additional configuration files according to the requirements of the par-
ticular platform.

The RedBoot build process results in a number of files in the install bin directory. The ELF file redboot.elf

is the pricipal result. Depending on the platform CDL, there will also be generated versions of RedBoot in other
file formats, such as redboot.bin (binary format, good when doing an update of a primary RedBoot image,
see the Section called Update the primary RedBoot flash image in Chapter 4), redboot.srec (Motorola S-
record format, good when downloading a RAM mode image for execution), and redboot.img (stripped ELF
format, good when downloading a RAM mode image for execution, smaller than the .srec file). Some platforms
may provide additional file formats and also relocate some of these files to a particular address making them
more suitable for downloading using a different boot monitor or flash programming tools.

The platform specific information in Chapter 5 should be consulted, as there may be other special instructions
required to build RedBoot for particular platforms.

Rebuilding RedBoot using ecosconfig
To rebuild RedBoot using the ecosconfig tool, create a temporary directory for building RedBoot, name it
according to the desired configuration of RedBoot, here RAM:

$ mkdir /tmp/redboot_RAM

$ cd /tmp/redboot_RAM

Create the build tree according to the chosen platform, here using the Hitachi Solution Engine 7751 board as
an example:

Note: It is assumed that the environment variable ECOS_REPOSITORY points to the eCos/RedBoot
source tree.

$ ecosconfig new se7751 redboot

U CYGPKG_HAL_SH_7750, new inferred value 0
U CYGPKG_HAL_SH_7751, new inferred value 1
U CYGHWR_HAL_SH_IRQ_USE_IRQLVL, new inferred value 1
U CYGSEM_HAL_USE_ROM_MONITOR, new inferred value 0
U CYGDBG_HAL_COMMON_CONTEXT_SAVE_MINIMUM, new inferred value 0
U CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS, new inferred value 1
U CYGFUN_LIBC_STRING_BSD_FUNCS, new inferred value 0

101

Chapter 3. Rebuilding RedBoot

U CYGPKG_NS_DNS_BUILD, new inferred value 0

Replace the platform name ("se7751") with the appropriate name for the chosen platform.

Then import the appropriate platform RedBoot configuration file, here for RAM configuration:

$ ecosconfig import ${ECOS_REPOSITORY}/hal/sh/se7751/VERSION/misc/redboot_RAM.ecm

$ ecosconfig tree

Replace architecture ("sh"), platform ("se7751") and version ("VERSION") with those appropriate for
the chosen platform and the version number of its HAL package. Also replace the configuration name
("redboot_RAM.ecm") with that of the appropriate configuration file.

RedBoot can now be built:

$ make

The resulting RedBoot files will be in the associated install directory, in this example, ./install/bin.

In Chapter 5 each platform’s details are described in the form of shell variables. Using those, the steps to build
RedBoot are:

export REDBOOT_CFG=redboot_ROM
export VERSION=VERSION
mkdir /tmp/${REDBOOT_CFG}
cd /tmp/${REDBOOT_CFG}
ecosconfig new ${TARGET} redboot
ecosconfig import ${ECOS_REPOSITORY}/hal/${ARCH_DIR}/${PLATFORM_DIR}/${VERSION}/misc/${REDBOOT_CFG}.ecm
ecosconfig tree
make

To build for another configuration, simply change the REDBOOT_CFG definition accordingly. Also make sure the
VERSION variable matches the version of the platform package.

Rebuilding RedBoot from the Configuration Tool
To rebuild RedBoot from the Configuration Tool, open the template window (Build->Templates) and select
the appropriate Hardware target and in Packages select "redboot". Then press OK. Depending on the platform,
a number of conflicts may need to be resolved before the build can be started; select "Continue".

Import the desired RedBoot configuration file from the platform HAL (File->Import...). Depending on the
platform, a number of conflicts may need to be resolved before the build can be started; select "Continue".
For example, if the platform selected is Hitachi SE7751 board and the RAM configuration RedBoot should be
built, import the file hal/sh/se7751/VERSION/misc/redboot_RAM.ecm.

Save the configuration somewhere suitable with enough disk space for building RedBoot (File->Save...).
Choose the name according to the RedBoot configuration, for example redboot_RAM.ecc.

Then start the build (Build->Library) and wait for it to complete. The resulting RedBoot files will be in the
associated install directory, for the example this would be redboot_RAM_install/bin.

As noted above, each platform’s details are described in Chapter 5. Use the information
provided in the shell variables to find the configuration file - the path to it is
${ECOS_REPOSITORY}/hal/${ARCH_DIR}/${PLATFORM_DIR}/${VERSION}/misc/${REDBOOT_CFG}.ecm,
where ECOS_REPOSITORY points to the eCos/RedBoot sources, VERSION is the version of the package (usually
"current") and REDBOOT_CFG is the desired configuration, e.g. redboot_RAM.

102

Chapter 4. Updating RedBoot

Introduction
RedBoot normally resides in an EPROM or, more common these days, a flash on the board. In the former case,
updating RedBoot necessitates physically removing the part and reprogramming a new RedBoot image into it
using prommer hardware. In the latter case, it is often possible to update RedBoot in situ using Redboot’s flash
management commands.

The process of updating RedBoot in situ is documented in this section. For this process, it is assumed that the
target is connected to a host system and that there is a serial connection giving access to the RedBoot CLI.
For platforms with a ROMRAM mode RedBoot, skip to the Section called Update the primary RedBoot flash
image.

Note: The addresses and sizes included in the below are examples only, and will differ from those you will
see. This is normal and should not cause concern.

Load and start a RedBoot RAM instance
There are a number of choices here. The basic case is where a RAM mode image has been stored in the FIS
(flash Image System). To load and execute this image, use the commands:

RedBoot> fis load RedBoot[RAM]

RedBoot> go

If this image is not available, or does not work, then an alternate RAM mode image must be loaded:

RedBoot> load redboot_RAM.img

Entry point: 0x060213c0, address range: 0x06020000-0x060369c8
RedBoot> go

Note: This command loads the RedBoot image using the TFTP protocol via a network connection. Other
methods of loading are available, refer to the load command for more details.

Note: If you expect to be doing this more than once, it is a good idea to program the RAM mode image
into the flash. You do this using the fis create command after having downloaded the RAM mode image,
but before you start it.

Some platforms support locking (write protecting) certain regions of the flash, while others do not. If your
platform does not support locking, simply ignore the fis unlock and fis lock steps (the commands will not
be recognized by RedBoot).

RedBoot> fis unlock RedBoot[RAM]

... Unlock from 0x00000000-0x00020000: ..
RedBoot> fis create RedBoot[RAM]

An image named ’RedBoot[RAM]’ exists - continue (y/n)? y

* CAUTION * about to program ’RedBoot[RAM]’
at 0x00020000..0x000369c7 from 0x06020000 - continue (y/n)?y

... Erase from 0x00020000-0x00040000: ..

... Program from 0x06020000-0x060369c8 at 0x00020000: ..

... Erase from 0x00070000-0x00080000: .

103

Chapter 4. Updating RedBoot

... Program from 0x0606f000-0x0607f000 at 0x00070000: .
RedBoot> fis lock RedBoot[RAM]

... Lock from 0x00000000-0x00020000: ..

Update the primary RedBoot flash image
An instance of RedBoot should now be running on the target from RAM. This can be verified by looking for
the mode identifier in the banner. It should be either [RAM] or [ROMRAM].

If this is the first time RedBoot is running on the board or if the flash contents has been damaged, initialize the
FIS directory:

RedBoot> fis init -f

About to initialize [format] FLASH image system - continue (y/n)? y

*** Initialize FLASH Image System
... Erase from 0x00020000-0x00070000:
... Erase from 0x00080000-0x00080000:
... Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .

It is important to understand that the presence of a correctly initialized FIS directory allows RedBoot to au-
tomatically determine the flash parameters. Additionally, executing the steps below as stated without loading
other data or using other flash commands (than possibly fis list) allows RedBoot to automatically determine
the image location and size parameters. This greatly reduces the risk of potential critical mistakes due to typo-
graphical errors. It is still always possible to explicitly specify parameters, and indeed override these, but it is
not advised.

Note: If the new RedBoot image has grown beyond the slot in flash reserved for it, it is necessary to
change the RedBoot configuration option CYGBLD_REDBOOT_MIN_IMAGE_SIZE so the FIS is created
with adequate space reserved for RedBoot images. In this case, it is necessary to re-initialize the FIS
directory as described above, using a RAM mode RedBoot compiled with the updated configuration.

Using the load command, download the new flash based image from the host, relocating the image to RAM::

RedBoot> load -r -b %{FREEMEMLO} redboot_ROM.bin

Raw file loaded 0x06046800-0x06062fe8, assumed entry at 0x06046800

Note: This command loads the RedBoot image using the TFTP protocol via a network connection. Other
methods of loading are available, refer to the load command for more details.

Note: Note that the binary version of the image is being downloaded. This is to ensure that the memory
after the image is loaded should match the contents of the file on the host. Loading SREC or ELF versions
of the image does not guarantee this since these formats may contain holes, leaving bytes in these holes
in an unknown state after the load, and thus causing a likely cksum difference. It is possible to use these,
but then the step verifying the cksum below may fail.

104

Chapter 4. Updating RedBoot

Once the image is loaded into RAM, it should be checksummed, thus verifying that the image on the target is
indeed the image intended to be loaded, and that no corruption of the image has happened. This is done using
the cksum command:

RedBoot> cksum

Computing cksum for area 0x06046800-0x06062fe8
POSIX cksum = 2535322412 116712 (0x971df32c 0x0001c7e8)

Compare the numbers with those for the binary version of the image on the host. If they do not match, try
downloading the image again.

Assuming the cksum matches, the next step is programming the image into flash using the FIS commands.

Some platforms support locking (write protecting) certain regions of the flash, while others do not. If your
platform does not support locking, simply ignore the fis unlock and fis lock steps (the commands will not be
recognized by RedBoot).

RedBoot> fis unlock RedBoot

... Unlock from 0x00000000-0x00020000: ..
RedBoot> fis create RedBoot

An image named ’RedBoot’ exists - continue (y/n)? y

* CAUTION * about to program ’RedBoot’
at 0x00000000..0x0001c7e7 from 0x06046800 - continue (y/n)? y

... Erase from 0x00000000-0x00020000: ..

... Program from 0x06046800-0x06062fe8 at 0x00000000: ..

... Erase from 0x00070000-0x00080000: .

... Program from 0x0606f000-0x0607f000 at 0x00070000: .
RedBoot> fis lock RedBoot

... Lock from 0x00000000-0x00020000: ..

Reboot; run the new RedBoot image
Once the image has been successfully written into the flash, simply reset the target and the new version of
RedBoot should be running.

When installing RedBoot for the first time, or after updating to a newer RedBoot with different configuration
keys, it is necessary to update the configuration directory in the flash using the fconfig command. See the
Section called Persistent State Flash-based Configuration and Control in Chapter 2.

105

Chapter 4. Updating RedBoot

106

Chapter 5. Installation and Testing

AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0)
ASB2305 Board

Overview
RedBoot supports the debug serial port and the built in ethernet port for communication and downloads. The
default serial port settings are 115200,8,N,1 with RTS/CTS flow control. RedBoot can run from either flash,
and can support flash management for either the boot PROM or the system flash regions.

The following RedBoot configurations are supported:

Configuration Mode Description File
PROM [ROM] RedBoot running from

the boot PROM and able
to access the system
flash.

redboot_ROM.ecm

FLASH [ROM] RedBoot running from
the system flash and able
to access the boot PROM.

redboot_FLASH.ecm

RAM [RAM] RedBoot running from
RAM and able to access
the boot PROM.

redboot_RAM.ecm

Initial Installation
Unless a pre-programmed system flash module is available to be plugged into a new board, RedBoot must
be installed with the aid of a JTAG interface unit. To achieve this, the RAM mode RedBoot must be loaded
directly into RAM by JTAG and started, and then that must be used to store the ROM mode RedBoot into the
boot PROM.

These instructions assume that you have binary images of the RAM-based and boot PROM-based RedBoot
images available.

Preparing to program the board

If the board is to be programmed, whether via JTAG or RedBoot, some hardware settings need to be changed:

• Jumper across ST18 on the board to allow write access to the boot PROM.

• Set DIP switch S1-3 to OFF to allow RedBoot to write to the system flash.

• Set the switch S5 (on the front of the board) to boot from whichever flash is not being programmed. Note
that the RedBoot image cannot access the flash from which it is currently executing (it can only access the

107

Chapter 5. Installation and Testing

other flash).

The RedBoot binary image files should also be copied to the TFTP pickup area on the host providing TFTP
services if that is how RedBoot should pick up the images it is going to program into the flash. Alternatively,
the images can be passed by YMODEM over the serial link.

Preparing to use the JTAG debugger

The JTAG debugger will also need setting up:

1. Install the JTAG debugger software (WICE103E) on a PC running Windows (WinNT is probably the best
choice for this) in “C:/PanaX”.

2. Install the Matsushita provided “project” into the “C:/Panax/wice103e/prj” directory.

3. Install the RedBoot image files into the “C:/Panax/wice103e/prj” directory under the names redboot.ram
and redboot.prom.

4. Make sure the PC’s BIOS has the parallel port set to full bidirectional mode.

5. Connect the JTAG debugger to the PC’s parallel port.

6. Connect the JTAG debugger to the board.

7. Set the switch on the front of the board to boot from “boot PROM”.

8. Power up the JTAG debugger and then power up the board.

9. Connect the board’s Debug Serial port to a computer by a null modem cable.

10. Start minicom or some other serial communication software and set for 115200 baud, 1-N-8 with hardware
(RTS/CTS) flow control.

Loading the RAM-based RedBoot via JTAG

To perform the first half of the operation, the following steps should be followed:

1. Start the JTAG debugger software.

2. Run the following commands at the JTAG debugger’s prompt to set up the MMU registers on the CPU.

ed 0xc0002000, 0x12000580

ed 0xd8c00100, 0x8000fe01

ed 0xd8c00200, 0x21111000

ed 0xd8c00204, 0x00100200

ed 0xd8c00208, 0x00000004

ed 0xd8c00110, 0x8400fe01

ed 0xd8c00210, 0x21111000

ed 0xd8c00214, 0x00100200

ed 0xd8c00218, 0x00000004

ed 0xd8c00120, 0x8600ff81

ed 0xd8c00220, 0x21111000

ed 0xd8c00224, 0x00100200

ed 0xd8c00228, 0x00000004

ed 0xd8c00130, 0x8680ff81

ed 0xd8c00230, 0x21111000

ed 0xd8c00234, 0x00100200

108

Chapter 5. Installation and Testing

ed 0xd8c00238, 0x00000004

ed 0xd8c00140, 0x9800f801

ed 0xd8c00240, 0x00140000

ed 0xd8c00244, 0x11011100

ed 0xd8c00248, 0x01000001

ed 0xda000000, 0x55561645

ed 0xda000004, 0x000003c0

ed 0xda000008, 0x9000fe01

ed 0xda00000c, 0x9200fe01

ed 0xda000000, 0xa89b0654

3. Run the following commands at the JTAG debugger’s prompt to tell it what regions of the CPU’s address
space it can access:

ex 0x80000000,0x81ffffff,/mexram

ex 0x84000000,0x85ffffff,/mexram

ex 0x86000000,0x867fffff,/mexram

ex 0x86800000,0x87ffffff,/mexram

ex 0x8c000000,0x8cffffff,/mexram

ex 0x90000000,0x93ffffff,/mexram

4. Instruct the debugger to load the RAM RedBoot image into RAM:

_pc=90000000

u_pc

rd redboot.ram,90000000

5. Load the boot PROM RedBoot into RAM:

rd redboot.prom,91020000

6. Start RedBoot in RAM:

g

Note that RedBoot may take some time to start up, as it will attempt to query a BOOTP or DHCP server
to try and automatically get an IP address for the board. Note, however, that it should send a plus over the
serial port immediately, and the 7-segment LEDs should display “rh 8”.

Loading the boot PROM-based RedBoot via the RAM mode RedBoot

Once the RAM mode RedBoot is up and running, it can be communicated with by way of the serial port.
Commands can now be entered directly to RedBoot for flashing the boot PROM.

1. Instruct RedBoot to initialise the boot PROM:

RedBoot> fi init

2. Write the previously loaded redboot.prom image into the boot PROM:

RedBoot> fi write -f 0x80000000 -b 0x91020000 -l 0x00020000

3. Check that RedBoot has written the image:

RedBoot> dump -b 0x91020000

RedBoot> dump -b 0x80000000

Barring the difference in address, the two dumps should be the same.

4. Close the JTAG software and power-cycle the board. The RedBoot banners should be displayed again over
the serial port, followed by the RedBoot prompt. The boot PROM-based RedBoot will now be running.

109

Chapter 5. Installation and Testing

5. Power off the board and unjumper ST18 to write-protect the contents of the boot PROM. Then power the
board back up.

6. Run the following command to initialise the system flash:

RedBoot> fi init

Then program the system flash based RedBoot into the system flash:

RedBoot> load -r -b %{FREEMEMLO} redboot_FLASH.bin

RedBoot> fi write -f 0x84000000 -b %{FREEMEMLO} -l 0x00020000

NOTE: RedBoot arranges the flashes on booting such that they always appear at the same addresses,
no matter which one was booted from.

7. A similar sequence of commands can be used to program the boot PROM when RedBoot has been booted
from an image stored in the system flash.

RedBoot> load -r -b %{FREEMEMLO} /tftpboot/redboot_ROM.bin

RedBoot> fi write -f 0x80000000 -b %{FREEMEMLO} -l 0x00020000

See the Section called Persistent State Flash-based Configuration and Control in Chapter 2 for details on
configuring the RedBoot in general, and also the Section called Flash Image System (FIS) in Chapter 2 for
more details on programming the system flash.

Additional Commands
The exec command which allows the loading and execution of Linux kernels, is supported for this architec-
ture (see the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for
ASB2305 board are:

-w <time>

Wait time in seconds before starting kernel

-c "params"

Parameters passed to kernel

<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

The parameter string is stored in the on-chip memory at location 0x8C001000, and is prefixed by “cmdline:”
if it was supplied.

Memory Maps
RedBoot sets up the following memory map on the ASB2305 board.

NOTE: The regions mapped between 0x80000000-0x9FFFFFFF are cached by the CPU. However, all
those regions can be accessed uncached by adding 0x20000000 to the address.

110

Chapter 5. Installation and Testing

Physical Address Range Description
----------------------- -----------
0x80000000 - 0x9FFFFFFF Cached Region
0x80000000 - 0x81FFFFFF Boot PROM
0x84000000 - 0x85FFFFFF System Flash
0x86000000 - 0x86007FFF 64Kbit Sys Config EEPROM
0x86F90000 - 0x86F90003 4x 7-segment LEDs
0x86FA0000 - 0x86FA0003 Software DIP Switches
0x86FB0000 - 0x86FB001F PC16550 Debug Serial Port
0x8C000000 - 0x8FFFFFFF On-Chip Memory (repeated 16Kb SRAM)
0x90000000 - 0x93FFFFFF SDRAM
0x98000000 - 0x9BFFFFFF Paged PCI Memory Space (64Mb)
0x9C000000 - 0x9DFFFFFF PCI Local SRAM (32Mb)
0x9E000000 - 0x9E03FFFF PCI I/O Space
0x9E040000 - 0x9E0400FF AM33-PCI Bridge Registers
0x9FFFFFF4 - 0x9FFFFFF7 PCI Memory Page Register
0x9FFFFFF8 - 0x9FFFFFFF PCI Config Registers
0xA0000000 - 0xBFFFFFFF Uncached Mirror Region
0xC0000000 - 0xDFFFFFFF CPU Control Registers

The ASB2305 HAL makes use of the on-chip memory in the following way:

0x8C000000 - 0x8C0000FF hal_vsr_table
0x8C000100 - 0x8C0001FF hal_virtual_vector_table
0x8C001000 - Linux command line (RedBoot exec command)

- 0x8C003FFF Emergency DoubleFault Exception Stack

Currently the CPU’s interrupt table lies at the beginning of the RedBoot image, which must therefore be aligned
to a 0xFF000000 mask.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=asb2305
export ARCH_DIR=mn10300
export PLATFORM_DIR=asb2305

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM7 ARM Evaluator7T

Overview
RedBoot supports both serial ports for communication and downloads. The default serial port settings are
38400,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File

111

Chapter 5. Installation and Testing

Configuration Mode Description File
ROM [ROM] RedBoot running from

flash address 0x20000,
with ARM Boot Monitor
in flash boot sector.

redboot_ROMA.ecm

Initial Installation
RedBoot is installed using the on-board boot environment. See the user manual for full details.

Quick download instructions
Here are quick start instructions for downloading the prebuilt Redboot image:

• Boot the board and press ENTER:

ARM Evaluator7T Boot Monitor PreRelease 1.00
Press ENTER within 2 seconds to stop autoboot
Boot:

• Erase the part of the flash where RedBoot will get programmed:

Boot: flasherase 01820000 10000

• Prepare to download the UU-encoded version of the RedBoot image:

Boot: download 10000

Ready to download. Use ’transmit’ option on terminal emulator to download file.

• Either use ASCII transmit option in the terminal emulator, or on Linux, simply cat the file to the serial port:

$ cat redboot.UU > /dev/ttyS0

When complete, you should see:

Loaded file redboot.bin at address 000100000, size = 41960
Boot:

• Program the flash:

Boot: flashwrite 01820000 10000 10000

• And verify that the module is available:

Boot: rommodules

Header Base Limit
018057c8 01800000 018059e7 BootStrapLoader v1.0 Apr 27 2000 10:33:58
01828f24 01820000 0182a3e8 RedBoot Apr 5 2001

• Reboot the board and you should see the RedBoot banner.

Special RedBoot Commands
None.

112

Chapter 5. Installation and Testing

Memory Maps
RedBoot sets up the following memory map on the E7T board.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range C B Description
----------------------- - - -----------
0x00000000 - 0x0007ffff Y N SDRAM
0x03ff0000 - 0x03ffffff N N Microcontroller registers
0x01820000 - 0x0187ffff N N System flash (mirrored)

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=e7t
export ARCH_DIR=arm
export PLATFORM_DIR=e7t

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM7+ARM9 ARM Integrator

Overview
RedBoot supports both serial ports for communication and downloads. The default serial port settings are
38400,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

ROMRAM [ROMRAM] RedBoot running from
RAM, but contained in
the board’s flash boot
sector.

redboot_ROMRAM.ecm

113

Chapter 5. Installation and Testing

Initial Installation
RedBoot is installed using the on-board bootPROM environment. See the user manual for full details.

Quick download instructions
Here are quick start instructions for downloading the prebuilt Redboot image:

• Set DIP switch S1[1] to the ON position and reset or power the board up. You will see the bootPROM startup
message on serial port A (J14):

Initialising...

ARM bootPROM [Version 1.3] Rebuilt on Jun 26 2001 at 22:04:10
Running on a Integrator Evaluation Board
Board Revision V1.0, ARM966E-S Processor
Memory Size is 16MBytes, Flash Size is 32MBytes
Copyright (c) ARM Limited 1999 - 2001. All rights reserved.
Board designed by ARM Limited
Hardware support provided at http://www.arm.com/
For help on the available commands type ? or h
boot Monitor >

• Issue the FLASH ROM load command:

boot Monitor > L

Load Motorola S-Records into flash

Deleting Image 0

The S-Record loader only accepts input on the serial port.
Type Ctrl/C to exit loader.

• Either use the ASCII transmit option in the terminal emulator, or on Linux, simply cat the file to the serial
port:

$ cat redboot.srec > /dev/ttyS0

When complete, type Ctrl-C and you should see something similar to:

................................

................................

....................
Downloaded 5,394 records in 81 seconds.

Overwritten block/s
0

boot Monitor >

• Set DIP switch S1[1] to the OFF position and reboot the board and you should see the RedBoot banner.

114

Chapter 5. Installation and Testing

Special RedBoot Commands
None.

Memory Maps
RedBoot sets up the following memory map on the Integrator board.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

ARM7TDMI

Physical Address Range C B Description
----------------------- - - -----------
0x00000000 - 0x0007ffff N N SSRAM
0x00080000 - 0x0fffffff N N SDRAM (depends on part fitted)
0x10000000 - 0x1fffffff N N System control and peripheral registers
0x20000000 - 0x23ffffff N N Boot ROM (contains boot Monitor)
0x24000000 - 0x27ffffff N N FLASH ROM (contains RedBoot)
0x28000000 - 0x2bffffff N N SSRAM echo area
0x40000000 - 0x5fffffff N N PCI Memory access windows
0x60000000 - 0x60ffffff N N PCI IO access window
0x61000000 - 0x61ffffff N N PCI config space window
0x62000000 - 0x6200ffff N N PCI bridge register window
0x80000000 - 0x8fffffff N N SDRAM echo area (used for PCI accesses)

ARM966E

Physical Address Range C B Description
----------------------- - - -----------
0x00000000 - 0x000fffff N N SSRAM
0x00100000 - 0x0fffffff N N SDRAM (depends on part fitted)
0x10000000 - 0x1fffffff N N System control and peripheral registers
0x20000000 - 0x23ffffff N N Boot ROM (contains boot Monitor)
0x24000000 - 0x27ffffff N N FLASH ROM (contains RedBoot)
0x28000000 - 0x2bffffff N N SSRAM echo area
0x40000000 - 0x5fffffff N N PCI Memory access windows
0x60000000 - 0x60ffffff N N PCI IO access window
0x61000000 - 0x61ffffff N N PCI config space window
0x62000000 - 0x6200ffff N N PCI bridge register window
0x80000000 - 0x8fffffff N N SDRAM echo area (used for PCI accesses)

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=integrator
export ARCH_DIR=arm

115

Chapter 5. Installation and Testing

export PLATFORM_DIR=integrator

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM7+ARM9 ARM PID Board and EPI Dev7+Dev9

Overview
RedBoot uses either of the serial ports. The default serial port settings are 38400,8,N,1. Management of on-
board flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
Device programmer is used to program socketed flash parts with ROM version of RedBoot.

Alternatively, to install RedBoot on a target that already has eCos GDB stubs, download the RAM mode image
of RedBoot and run it. Initialize the flash image directory: fis init Then download the ROM version of RedBoot
and program it into flash:

RedBoot> load -b %{FREEMEMLO} -m ymodem

RedBoot> fi cr RedBoot

Special RedBoot Commands
None.

Memory Maps
RedBoot sets up the following memory map on the PID board.

Physical Address Range Description
----------------------- -----------
0x00000000 - 0x0007ffff DRAM

116

Chapter 5. Installation and Testing

0x04000000 - 0x04080000 flash
0x08000000 - 0x09ffffff ASB Expansion
0x0a000000 - 0x0bffffff APB Reference Peripheral
0x0c000000 - 0x0fffffff NISA Serial, Parallel and PC Card ports

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=pid
export ARCH_DIR=arm
export PLATFORM_DIR=pid

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM7 Atmel AT91 Evaluation Boards (EBXX)

Overview
RedBoot support is available for the EB40, EB40A, EB42 and EB55 boards. By default all these boards are
shipped with only 256Kbytes of RAM. To minimize the amount of RAM used by RedBoot, only very basic
flash management is provided, comprising of just the fis erase and fis write commands.

RedBoot supports both serial ports. On all AT91 evaluation boards, serial port A requires a straight through
cable to connect with a PC, whereas serial port B requires a null modem cable. If you fail to be able to connect
to Angel in the instructions below when installing RedBoot, be sure to verify you are using the appropriate
cable for the serial port. The default serial port settings for RedBoot are 38400,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

ROMRAM [ROMRAM] RedBoot running from
RAM, but contained in
the board’s flash boot
sector.

redboot_ROMRAM.ecm

117

Chapter 5. Installation and Testing

Initial Installation Method
RedBoot installation is essentially the same for all boards, however the details differ slightly. Please make sure
you follow the directions from the correct section below. Any errors could result in an unusable board.

Installing RedBoot on the EB40

This development board comes with ARM’s debug tool, Angel, installed in flash. At this time, Angel will not
be replaced. Rather, RedBoot will be placed in the alternate half of flash. Switch SW1 is used to select which
monitor to boot. Once RedBoot is installed, selecting SW1 to lower mem will choose Angel, whereas selecting
SW1 to upper mem will choose RedBoot.

Set SW1 to lower mem and connect serial port A to a host computer. Using GDB from the host and Angel on
the board, download and run the RAM mode image of RedBoot to the board.

arm-elf-gdb redboot_RAM.elf

(gdb) tar rdi s=/dev/ttyS0

Angel Debug Monitor (serial) 1.04 (Advanced RISC Machines SDT 2.5) for
AT91EB40 (2.00)
Angel Debug Monitor rebuilt on Apr 07 2000 at 12:40:31
Serial Rate: 9600
Connected to ARM RDI target.
(gdb) set $cpsr=0xd3

(gdb) load

Loading section .rom_vectors, size 0x40 lma 0x2020000
Loading section .text, size 0x7fd8 lma 0x2020040
Loading section .rodata, size 0x15a0 lma 0x2028018
Loading section .data, size 0x2e4 lma 0x20295b8
Start address 0x2020040 , load size 39068
Transfer rate: 6250 bits/sec, 500 bytes/write.
(gdb) cont

Continuing.

Once RedBoot is started, the GDB session connected with Angel must be suspended (this can be done using
Ctrl-Z) or terminated (with Ctrl-C or the Windows task manager). Follow this by connecting to the board using
a terminal emulator such as hyperterminal or minicom at 38400-8N1. At this point, RedBoot will be running
on the board in RAM.

RedBoot> version

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 14:09:27, Jul 20 2001

Platform: Atmel AT91/EB40 (ARM7TDMI)
Copyright (C) 2000, 2001, Free Software Foundation, Inc.

RAM: 0x02000000-0x02080000, 0x020116d8-0x0207fd00 available
FLASH: 0x01010000 - 0x01020000, 256 blocks of 0x00000100 bytes each.

RedBoot>

Now, download the ROM mode image.

RedBoot> load -m ymodem -b %{FREEMEMLO}

Use your terminal emulator to send the file redboot_ROM.srec via YModem. e.g. Transfer->Send File in
Hyperterminal, or Ctrl-A S in minicom. Finally, program it to flash.

RedBoot> fi wr -f 0x01010000 -b %{FREEMEMLO} -l 0xe100

118

Chapter 5. Installation and Testing

SW1 should now be set to upper mem to select booting with RedBoot rather than Angel. Finally, press the
"reset" pushbutton and RedBoot should come up on the board.

Installing RedBoot on the EB40A, EB42 or EB55

These development boards come with ARM’s debug tool, Angel, installed in flash. At this time, Angel will not
be replaced. Rather, RedBoot will be placed in the alternate half of flash. Jumper JP1 is used to select which
monitor to boot. Once RedBoot is installed, setting JP1 to STD will choose Angel, whereas setting JP1 to USER

will choose RedBoot.

Set JP1 to STD and connect serial port A to a host computer. Using GDB from the host and Angel on the board,
download the RAM mode image of RedBoot to the board, and start it using the ’cont’ command.

arm-elf-gdb redboot_RAM.elf

(gdb) tar rdi s=/dev/ttyS0

Angel Debug Monitor (serial) 1.04 (Advanced RISC Machines SDT 2.5) for AT91EB55 (2.20)
Angel Debug Monitor rebuilt on Feb 03 2002 at 16:10:20
Serial Rate: 9600
Connected to ARM RDI target.
(gdb) set $cpsr=0xd3

(gdb) load

Loading section .rom_vectors, size 0x40 lma 0x2008000
Loading section .text, size 0xb0b8 lma 0x2008040
Loading section .rodata, size 0x1c27 lma 0x20130f8
Loading section .data, size 0x5f0 lma 0x2014d20
Start address 0x2008040, load size 54031
Transfer rate: 6264 bits/sec, 500 bytes/write.
(gdb) cont

Continuing.

Once RedBoot is started, the GDB session connected with Angel must be suspended (this can be done using
Ctrl-Z) or terminated (with Ctrl-C or the Windows task manager). Follow this by connecting to the board using
a terminal emulator such as hyperterminal or minicom at 38400-8N1. At this point, RedBoot will be running
on the board in RAM.

RedBoot> version

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 16:58:52, May 7 2003

Platform: Atmel AT91/EB55 (ARM7TDMI)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x02000000-0x02040000, 0x020068a8-0x0203f000 available
FLASH: 0x01010000 - 0x01200000, 31 blocks of 0x00010000 bytes each.

RedBoot>

Now, download the ROM mode image.

RedBoot> load -m ymodem -b %{FREEMEMLO}

Use your terminal emulator to send the file redboot_ROM.srec via YModem. e.g. Transfer->Send File in
Hyperterminal, or Ctrl-A S in minicom. Finally, program it to flash.

RedBoot> fi wr -f 0x01100000 -b %{FREEMEMLO} -l 0x10000

Set JP1 to the USER setting, press the "reset" pushbutton and RedBoot should come up on the board.

119

Chapter 5. Installation and Testing

Special RedBoot Commands
None.

Memory Maps
This processor has no MMU, so the only memory map is for physical addresses.

The memory layout of the EB40 is as follows:

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x00000fff On-chip SRAM
0x01000000 - 0x0101ffff Flash
0x02000000 - 0x0207ffff RAM
0xffe00000 - 0xffffffff I/O registers

The flash based RedBoot image occupies virtual addresses 0x01010000 - 0x0101dfff.

The memory layout of the EB40A is as follows:

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x0003ffff On-chip SRAM
0x01000000 - 0x011fffff Flash
0x02000000 - 0x02ffffff External SRAM (optional)
0xffe00000 - 0xffffffff I/O registers

The flash based RedBoot image occupies virtual addresses 0x01100000 - 0x0110ffff.

The memory layout of the EB42 and EB55 is as follows:

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x00001fff On-chip SRAM
0x01000000 - 0x011fffff Flash
0x02000000 - 0x0203ffff RAM
0xffe00000 - 0xffffffff I/O registers

The flash based RedBoot image occupies virtual addresses 0x01100000 - 0x0110ffff.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export ARCH_DIR=arm

export TARGET=eb40
export PLATFORM_DIR=at91/eb40

export TARGET=eb40a
export PLATFORM_DIR=at91/eb40a

export TARGET=eb42
export PLATFORM_DIR=at91/eb42

export TARGET=eb55

120

Chapter 5. Installation and Testing

export PLATFORM_DIR=at91/eb55

Use just one of the TARGET and PLATFORM_DIR variable pairs only.

The names of configuration files are listed above with the description of the associated modes.

When reprogramming RedBoot using RedBoot itself, you should load a RedBoot RAM image as normal, and
load the new ROM image into RAM. However before programming the new image into Flash you must switch
SW1 to lower mem (EB40) or set JP1 to STD (EB40A, EB42, EB55) before writing to Flash.

Warning!
Failure to set SW1 to lower mem (EB40) or JP1 to STD (EB40A, EB42, EB55) will cause
the installation of RedBoot to overwrite Angel, thus making the board unbootable. Only
hardware JTAG can restore the board once in this state.

ARM/ARM7 Atmel JTST Evaluation Board (AT572D740-DK1)

Overview
RedBoot support is available for the JTST board. By default this board is shipped with 256Kbytes of external
SRAM. To minimize the amount of RAM used by RedBoot, only very basic flash management is provided,
comprising of just the fis erase and fis write commands.

RedBoot supports two serial ports. The default serial port settings for RedBoot are 115200,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Installing a RedBoot image on the JTST
This development board comes with RedBoot installed on flash. To install a new version of RedBoot
or another binary image in flash you must start a GDB session setting a remote target and load
and run the jtstflashd.elf diopsis application. This is a daemon that listens on JTST serial port
1. On the PC side you must use the jtstflash.exe (both linux and windows PC are supported) to
flash the image on JTST. The sources for win32 and linux/cygwin versions of this host tool can
be found in the support directory of the jtst hal. The binaries can be found along with the binaries
for redboot on the eCos website at http://ecos.sourceware.org/ecos/boards/redbootbins/at91jtst/
(http://ecos.sourceware.org/ecos/boards/redbootbins/at91jtst/index.html)

121

Chapter 5. Installation and Testing

When the jtstflashd.elf is started, the user should open the jumper JP5 to write in the second half (512Kbytes)
of the flash, in this way the original RedBoot image is preserved.

GDB console

arm-elf-gdb jtstflash.elf

(gdb) set remotebaud 115200

(gdb) target remote /dev/ttyS0

Remote debugging using /dev/ttyS0
0x00502a44 in ?? ()
(gdb) load

Loading section .internal_vectors, size 0x1c4 lma 0x160
Loading section .rom_vectors, size 0x40 lma 0x606000
Loading section .text, size 0x14198 lma 0x606040
Loading section .rodata, size 0xb6c lma 0x61a1d8
Loading section .data, size 0x498 lma 0x61ad44
Start address 0x606040, load size 86944
Transfer rate: 77283 bits/sec, 301 bytes/write.
(gdb) c

Continuing.

* JTST FLASH PROGRAMMER

* opening usart port 1
...

PC console

jtstflash mybinaryimage.bin

* binary len 79536 bytes flash add 0x500000..

* flash id check ok

* erasing space address 0x500000... please wait

* flash erase check ok

* start programming 79536 bytes.

Special RedBoot Commands
None.

Memory Maps
This processor has no MMU, so the only memory map is for physical addresses.

The memory layout of the JTST after bootstrap is as follows:

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x00007fff On-chip SRAM
0x00500000 - 0x0057ffff Flash
0x00600000 - 0x0063ffff External SRAM
0x00410000 - 0x0042fffc On-chip Magic Data Memory Left
0x00430000 - 0x0043fffc On-chip Magic Data Memory Right
0x00430000 - 0x0044fffc On-chip Magic Program Memory
0x00490000 - 0x00490ffc On-chip Arm/Magic Data Exchange Left
0x004A0000 - 0x004A0ffc On-chip Arm/Magic Data Exchange Right

122

Chapter 5. Installation and Testing

0x00450000 - 0x0045003c Magic I/O registers
0x00460000 - 0x0046000c Magic Control registers
0xffe00000 - 0xffffffff I/O registers

ARM/ARM7 Cirrus Logic EP7xxx (EDB7211, EDB7212,
EDB7312)

Overview
RedBoot supports both serial ports on the board and the ethernet port. The default serial port settings are
38400,8,N,1. RedBoot also supports flash management on the EDB7xxx for the NOR flash only.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

ROMRAM [ROMRAM] RedBoot running from
RAM, but contained in
the board’s flash boot
sector (EDB7312 only).

redboot_ROMRAM.ecm

Initial Installation Method
A Windows or Linux utility is used to program flash using serial port #1 via on-chip programming firmware.
See board documentation for details on in situ flash programming.

Special RedBoot Commands
None.

Memory Maps
The MMU page tables and LCD display buffer, if enabled, are located at the end of DRAM.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

123

Chapter 5. Installation and Testing

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x01ffffff NOR Flash (EDB7211, EDB7212)
0x00000000 - 0x00ffffff NOR Flash (EDB7312)
0x10000000 - 0x11ffffff NAND Flash
0x20000000 - 0x2fffffff Expansion 2
0x30000000 - 0x3fffffff Expansion 3
0x40000000 - 0x4fffffff PCMCIA 0
0x50000000 - 0x5fffffff PCMCIA 1
0x60000000 - 0x600007ff On-chip SRAM
0x80000000 - 0x8fffffff I/O registers
0xc0000000 - 0xc1ffffff DRAM (EDB7211, EDB7212)
0xc0000000 - 0xc0ffffff DRAM (EDB7312)

Virtual Address Range C B Description
----------------------- - - ----------------------------------
0x00000000 - 0x01ffffff Y Y DRAM
0x00000000 - 0x00fcffff Y Y DRAM (EDB7312)
0x20000000 - 0x2fffffff N N Expansion 2
0x30000000 - 0x3fffffff N N Expansion 3
0x40000000 - 0x4fffffff N N PCMCIA 0
0x50000000 - 0x5fffffff N N PCMCIA 1
0x60000000 - 0x600007ff Y Y On-chip SRAM
0x80000000 - 0x8fffffff N N I/O registers
0xc0000000 - 0xc001ffff N Y LCD buffer (if configured)
0xe0000000 - 0xe1ffffff Y Y NOR Flash (EDB7211, EDB7212)
0xe0000000 - 0xe0ffffff Y Y NOR Flash (EDB7312)
0xf0000000 - 0xf1ffffff Y Y NAND Flash

The flash based RedBoot image occupies virtual addresses 0xe0000000 - 0xe003ffff.

Platform Resource Usage
The EP7xxx timer #2 is used as a polled timer to provide timeout support for network and XModem file
transfers.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=edb7211
export TARGET=edb7212
export TARGET=edb7312
export ARCH_DIR=arm
export PLATFORM_DIR=edb7xxx

Use one of the TARGET settings only.

The names of configuration files are listed above with the description of the associated modes.

124

Chapter 5. Installation and Testing

ARM/ARM9 Agilent AAED2000

Overview
RedBoot supports the serial and ethernet ports on the board. The default serial port settings are 38400,8,N,1.
RedBoot also supports flash management on the AAED2000.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROMRAM [ROMRAM] RedBoot running from

RAM, but contained in
the board’s flash boot
sector.

redboot_primary_ROMRAM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_primary_RAM.ecm

Initial Installation Method
It is possible to install RedBoot in one of two ways. Either as the primary bootmonitor on the board (installed
to blocks 0-1 of the flash) or as the secondary bootmonitor on the board (installed to blocks 1-2 of the flash).

Presently, only the former method is supported.

RedBoot as Primary Bootmonitor

RedBoot is installed in flash using the on-board ARM Boot Monitor.

Boot the board while pressing SPACE. This should bring up the Boot Monitor:

ARM bootPROM [Version 1.3] Rebuilt on Jul 16 2001 at 16:21:36
Running on a P920 board Evaluation Board
Board Revision V1.0, ARM920T processor Processor
Memory Size is 32MBytes, Flash Size is 32MBytes
Copyright (c) ARM Limited 1999 - 2001. All rights reserved.
Board designed by ARM Limited
Hardware support provided at http://www.arm.com/
For help on the available commands type ? or h
boot Monitor >

Download the RAM mode image of RedBoot configured as a primary bootmonitor using the ARM bootmoni-
tor’s SREC-download command:

boot Monitor > m

Load Motorola S-Record image into memory and execute it
The S-Record loader only accepts input on the serial port.
Record addresses must be between 0x00008000 and 0x01E0F510.
Type Ctrl/C to exit loader.

Use the terminal emulator’s ASCII upload command, or (on Linux) simply cat the file to the serial port:

$ cat redboot_primary_RAM/redboot.srec >/dev/ttyS1

125

Chapter 5. Installation and Testing

You should see RedBoot start up:

FLASH configuration checksum error or invalid key
Ethernet eth0: MAC address 00:30:d3:03:04:99
IP: 192.168.42.111, Default server: 192.168.42.3

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 13:15:40, Nov 9 2001

Platform: AAED2000 system (ARM9) [Primary]
Copyright (C) 2000, 2001, Free Software Foundation, Inc.

RAM: 0x00000000-0x01f80000, 0x0006f208-0x01f51000 available
FLASH: 0x60000000 - 0x62000000, 256 blocks of 0x00020000 bytes each.
RedBoot>

As can be seen from the output above, the network has been configured to give the board an IP address and
information about the default server. If things are not set up on your network, you can still continue, but use
the Y-modem download method when loading the RedBoot ROMRAM mode image. Now initialize RedBoot’s
FIS:

RedBoot> fis init

About to initialize [format] FLASH image system - continue (y/n)? y

*** Initialize FLASH Image System
Warning: device contents not erased, some blocks may not be usable

... Erase from 0x61fe0000-0x62000000: .

... Program from 0x01f5f000-0x01f5f300 at 0x61fe0000: .

Download the ROMRAM mode image of RedBoot via ethernet:

RedBoot> load -b %{FREEMEMLO} redboot_primary_ROMRAM/redboot.srec

or using serial Y-modem protocol:

RedBoot> load -mode ymodem -b %{FREEMEMLO}

(Use the terminal emulator’s Y-modem upload command to send the file
redboot_primary_ROMRAM/redboot.srec.) When the image has been downloaded, program it into flash:

Address offset = 0x00ff8000
Entry point: 0x00008040, address range: 0x00008000-0x0002da80
RedBoot> fi cr RedBoot

An image named ’RedBoot’ exists - continue (y/n)? y

* CAUTION * about to program ’RedBoot’
at 0x60000000..0x6003ffff from 0x00100000 - continue (y/n)? y

... Erase from 0x60000000-0x60040000: ..

... Program from 0x00100000-0x00140000 at 0x60000000: ..

... Erase from 0x61fe0000-0x62000000: .

... Program from 0x01f5f000-0x01f7f000 at 0x61fe0000: .

Now reset the board. You should see the RedBoot banner.

Special RedBoot Commands
The exec command which allows the loading and execution of Linux kernels, is supported for this board
(see the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for the
AAED2000 are:

126

Chapter 5. Installation and Testing

-b <addr>

Location Linux kernel was loaded to

-l <len>

Length of kernel

-c "params"

Parameters passed to kernel

-r <addr>

’initrd’ ramdisk location

-s <len>

Length of initrd ramdisk

The parameters for kernel image base and size are automatically set after a load operation. So one way of
starting the kernel would be:

RedBoot> load -r -b 0x100000 zImage

Raw file loaded 0x00100000-0x001a3d6c
RedBoot> exec -c "console=ttyAC0,38400"
Using base address 0x00100000 and length 0x000a3d6c
Uncompressing Linux.....

An image could also be put in flash and started directly:

RedBoot> exec -b 0x60040000 -l 0xc0000 -c "console=ttyAC0,38400"

Uncompressing Linux.....

Memory Maps
The MMU page tables are located at 0x4000.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x01ffffff Flash
0x10000000 - 0x100fffff Ethernet
0x30000000 - 0x300fffff Board registers
0x40000000 - 0x4fffffff PCMCIA Slot (0)
0x50000000 - 0x5fffffff Compact Flash Slot (1)
0x80000000 - 0x800037ff I/O registers
0xb0060000 - 0xb00fffff On-chip SRAM
0xf0000000 - 0xfd3fffff SDRAM

Virtual Address Range C B Description
----------------------- - - ----------------------------------
0x00000000 - 0x01f7ffff Y Y SDRAM
0x01f80000 - 0x01ffffff Y Y SDRAM (used for LCD frame buffer)
0x10000000 - 0x100fffff N N Ethernet

127

Chapter 5. Installation and Testing

0x30000000 - 0x300fffff N N Board registers
0x40000000 - 0x4fffffff N N PCMCIA Slot (0)
0x50000000 - 0x5fffffff N N Compact Flash Slot (1)
0x60000000 - 0x61ffffff N N Flash
0x80000000 - 0x800037ff N N I/O registers
0xf0000000 - 0xffffffff N N SDRAM (uncached)

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=aaed
export ARCH_DIR=arm
export PLATFORM_DIR=arm9/aaed2000

The names of configuration files are listed above with the description of the associated modes.

ARM/ARM9 Altera Excalibur

Overview
RedBoot supports the serial port labelled P2 on the board. The default serial port settings are 57600,8,N,1.
RedBoot also supports flash management on the Excalibur.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROMRAM [ROMRAM] RedBoot running from

RAM, but contained in
the board’s flash boot
sector.

redboot_ROMRAM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

REDBOOT [ROMRAM] RedBoot running from
top of RAM, but
contained in the board’s
flash boot sector.

redboot_REDBOOT.ecm

NOTE: RedBoot is currently hardwired to use a 128MB SDRAM SIMM module.

128

Chapter 5. Installation and Testing

Initial Installation Method
A Windows utility (exc_flash_programmer.exe) is used to program flash using the ByteBlasterMV JTAG unit.
See board documentation for details on in situ flash programming.

For ethernet to work (under Linux) the following jumper settings should be used on a REV 2 board:

SW2-9 : OFF
U179 : 2-3
JP14-18 : OPEN
JP40-41 : 2-3
JP51-55 : 2-3

Flash management
The ROMRAM and REDBOOT configurations supported on this platform differ only in the memory lay-
out (ROMRAM configuration runs RedBoot from 0x00008000 while REDBOOT configuration runs Red-
Boot from 0x07f80000). The REDBOOT configuration allows applications to be loaded and run from address
0x00008000.

Special RedBoot Commands
The exec command which allows the loading and execution of Linux kernels, is supported for this board (see
the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for the Excalibur
are:

-b <addr>

Location Linux kernel was loaded to

-l <len>

Length of kernel

-c "params"

Parameters passed to kernel

-r <addr>

’initrd’ ramdisk location

-s <len>

Length of initrd ramdisk

The parameters for kernel image base and size are automatically set after a load operation. So one way of
starting the kernel would be:

RedBoot> load -r -b 0x100000 zImage

Raw file loaded 0x00100000-0x001a3d6c
RedBoot> exec -c "console=ttyUA0,57600"

Using base address 0x00100000 and length 0x000a3d6c
Uncompressing Linux.....

129

Chapter 5. Installation and Testing

An image could also be put in flash and started directly:

RedBoot> exec -b 0x40400000 -l 0xc0000 -c "console=ttyUA0,57600"

Uncompressing Linux.....

Memory Maps
The MMU page tables are located at 0x4000.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x07ffffff SDRAM
0x08000000 - 0x0805ffff On-chip SRAM
0x40000000 - 0x40ffffff Flash
0x7fffc000 - 0x7fffffff I/O registers
0x80000000 - 0x8001ffff PLD

Virtual Address Range C B Description
----------------------- - - ----------------------------------
0x00000000 - 0x07ffffff Y Y SDRAM
0x08000000 - 0x0805ffff Y Y On-chip SRAM
0x40000000 - 0x403fffff N Y Flash
0x7fffc000 - 0x7fffffff N N I/O registers
0x80000000 - 0x8001ffff N N PLD

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=excalibur_arm9
export ARCH_DIR=arm
export PLATFORM_DIR=arm9/excalibur

The names of configuration files are listed above with the description of the associated modes.

130

Chapter 5. Installation and Testing

ARM/StrongARM(SA110) Intel EBSA 285

Overview
RedBoot uses the single EBSA-285 serial port. The default serial port settings are 38400,8,N,1. If the EBSA-
285 is used as a host on a PCI backplane, ethernet is supported using an Intel PRO/100+ ethernet adapter.
Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
A linux application is used to program the flash over the PCI bus. Sources and build instructions for this utility
are located in the RedBoot sources in: packages/hal/arm/ebsa285/current/support/linux/safl_util

Communication Channels
Serial, Intel PRO 10/100+ 82559 PCI ethernet card.

Special RedBoot Commands
None.

Memory Maps
Physical and virtual mapping are mapped one to one on the EBSA-285 using a first level page table located at
address 0x4000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Address Range C B Description
----------------------- - - ----------------------------------
0x00000000 - 0x01ffffff Y Y SDRAM
0x40000000 - 0x400fffff N N 21285 Registers
0x41000000 - 0x413fffff Y N flash
0x42000000 - 0x420fffff N N 21285 CSR Space

131

Chapter 5. Installation and Testing

0x50000000 - 0x50ffffff Y Y Cache Clean
0x78000000 - 0x78ffffff N N Outbound Write Flush
0x79000000 - 0x7c0fffff N N PCI IACK/Config/IO
0x80000000 - 0xffffffff N Y PCI Memory

Platform Resource Usage
Timer3 is used as a polled timer to provide timeout support for networking and XModem file transfers.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=ebsa285
export ARCH_DIR=arm
export PLATFORM_DIR=ebsa285

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA1100) Intel Brutus

Overview
RedBoot supports both board serial ports on the Brutus board. The default serial port settings are 38400,8,N,1.
flash management is not currently supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
Device programmer is used to program socketed flash parts.

132

Chapter 5. Installation and Testing

Special RedBoot Commands
None.

Memory Maps
The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x000fffff Boot ROM
0x08000000 - 0x083fffff Application flash
0x10000000 - 0x100fffff SRAM
0x18000000 - 0x180fffff Chip Select 3
0x20000000 - 0x3fffffff PCMCIA
0x80000000 - 0xbfffffff SA-1100 Internal Registers
0xc0000000 - 0xc7ffffff DRAM Bank 0
0xc8000000 - 0xcfffffff DRAM Bank 1
0xd0000000 - 0xd7ffffff DRAM Bank 2
0xd8000000 - 0xdfffffff DRAM Bank 3
0xe0000000 - 0xe7ffffff Cache Clean

Virtual Address Range C B Description
----------------------- - - ----------------------------------
0x00000000 - 0x003fffff Y Y DRAM Bank 0
0x00400000 - 0x007fffff Y Y DRAM Bank 1
0x00800000 - 0x00bfffff Y Y DRAM Bank 2
0x00c00000 - 0x00ffffff Y Y DRAM Bank 3
0x08000000 - 0x083fffff Y Y Application flash
0x10000000 - 0x100fffff Y N SRAM
0x20000000 - 0x3fffffff N N PCMCIA
0x40000000 - 0x400fffff Y Y Boot ROM
0x80000000 - 0xbfffffff N N SA-1100 Internal Registers
0xe0000000 - 0xe7ffffff Y Y Cache Clean

Platform Resource Usage
The SA11x0 OS timer is used as a polled timer to provide timeout support for XModem file transfers.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=brutus
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/brutus

133

Chapter 5. Installation and Testing

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA1100) Intel SA1100 Multimedia Board

Overview
RedBoot supports both board serial ports. The default serial port settings are 38400,8,N,1. flash management
is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
A device programmer is used to program socketed flash parts.

Special RedBoot Commands
None.

Memory Maps
The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x000fffff Boot flash
0x08000000 - 0x083fffff Application flash
0x10000000 - 0x107fffff SA-1101 Board Registers
0x18000000 - 0x180fffff Ct8020 DSP
0x18400000 - 0x184fffff XBusReg
0x18800000 - 0x188fffff SysRegA

134

Chapter 5. Installation and Testing

0x18c00000 - 0x18cfffff SysRegB
0x19000000 - 0x193fffff Spare CPLD A
0x19400000 - 0x197fffff Spare CPLD B
0x20000000 - 0x3fffffff PCMCIA
0x80000000 - 0xbfffffff SA1100 Internal Registers
0xc0000000 - 0xc07fffff DRAM Bank 0
0xe0000000 - 0xe7ffffff Cache Clean
Virtual Address Range C B Description

----------------------- - - ----------------------------------
0x00000000 - 0x007fffff Y Y DRAM Bank 0
0x08000000 - 0x083fffff Y Y Application flash
0x10000000 - 0x100fffff N N SA-1101 Registers
0x18000000 - 0x180fffff N N Ct8020 DSP
0x18400000 - 0x184fffff N N XBusReg
0x18800000 - 0x188fffff N N SysRegA
0x18c00000 - 0x18cfffff N N SysRegB
0x19000000 - 0x193fffff N N Spare CPLD A
0x19400000 - 0x197fffff N N Spare CPLD B
0x20000000 - 0x3fffffff N N PCMCIA
0x50000000 - 0x500fffff Y Y Boot flash
0x80000000 - 0xbfffffff N N SA1100 Internal Registers
0xc0000000 - 0xc07fffff N Y DRAM Bank 0
0xe0000000 - 0xe7ffffff Y Y Cache Clean

Platform Resource Usage
The SA11x0 OS timer is used as a polled timer to provide timeout support for XModem file transfers.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=sa1100mm
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/sa1100mm

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA1110) Intel SA1110 (Assabet)

Overview
RedBoot supports the board serial port and the compact flash ethernet port. The default serial port settings are
38400,8,N,1. RedBoot also supports flash management on the Assabet.

The following RedBoot configurations are supported:

135

Chapter 5. Installation and Testing

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
A Windows or Linux utility is used to program flash over parallel port driven JTAG interface. See board
documentation for details on in situ flash programming.

The flash parts are also socketed and may be programmed in a suitable device programmer.

Special RedBoot Commands
None.

Memory Maps
The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x07ffffff flash
0x08000000 - 0x0fffffff SA-1111 Board flash
0x10000000 - 0x17ffffff Board Registers
0x18000000 - 0x1fffffff Ethernet
0x20000000 - 0x2fffffff SA-1111 Board PCMCIA
0x30000000 - 0x3fffffff Compact Flash
0x40000000 - 0x47ffffff SA-1111 Board
0x48000000 - 0x4bffffff GFX
0x80000000 - 0xbfffffff SA-1110 Internal Registers
0xc0000000 - 0xc7ffffff DRAM Bank 0
0xc8000000 - 0xcfffffff DRAM Bank 1
0xd0000000 - 0xd7ffffff DRAM Bank 2
0xd8000000 - 0xdfffffff DRAM Bank 3
0xe0000000 - 0xe7ffffff Cache Clean

Virtual Address Range C B Description
----------------------- - - ----------------------------------
0x00000000 - 0x01ffffff Y Y DRAM Bank 0
0x08000000 - 0x0fffffff Y Y SA-1111 Board flash
0x10000000 - 0x17ffffff N N Board Registers
0x18000000 - 0x1fffffff N N Ethernet

136

Chapter 5. Installation and Testing

0x20000000 - 0x2fffffff N N SA-1111 Board PCMCIA
0x30000000 - 0x3fffffff N N Compact Flash
0x40000000 - 0x47ffffff N N SA-1111 Board
0x48000000 - 0x4bffffff N N GFX
0x50000000 - 0x57ffffff Y Y flash
0x80000000 - 0xbfffffff N N SA-1110 Internal Registers
0xc0000000 - 0xc1ffffff N Y DRAM Bank 0
0xe0000000 - 0xe7ffffff Y Y Cache Clean

Platform Resource Usage
The SA11x0 OS timer is used as a polled timer to provide timeout support for network and XModem file
transfers.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=assabet
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/assabet

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA11X0) Bright Star Engineering
commEngine and nanoEngine

Overview
RedBoot supports a serial port and the built in ethernet port for communication and downloads. The default
serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the system flash
region.

The following RedBoot configurations are supported:

Configuration Mode Description File
POST [ROM] RedBoot running from

the first free flash block at
0x40000.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

137

Chapter 5. Installation and Testing

Initial Installation
Unlike other targets, the nanoEngine comes equipped with boot firmware which you cannot modify. See chap-
ter 5, "nanoEngine Firmware" of the nanoEngine Hardware Reference Manual (we refer to "July 17, 2000 Rev
0.6") from Bright Star Engineering.

Because of this, eCos, and therefore Redboot, only supports a special configuration of the ROM mode, starting
at offset 0x40000 in the flash.

Briefly, the POST-configuration RedBoot image lives in flash following the BSE firmware. The BSE firmware
is configured, using its standard bootcmd command, to run RedBoot at startup.

Download Instructions
You can perform the initial load of the POST-configuration RedBoot image into flash using the BSE firmware’s
load command. This will load a binary file, using TFTP, and program it into flash in one operation. Be-
cause no memory management is used in the BSE firmware, flash is mapped from address zero upwards, so
the address for the RedBoot POST image is 0x40000. You must use the binary version of RedBoot for this,
redboot-post.bin.

This assumes you have set up the other BSE firmware config parameters such that it can communicate over
your network to your TFTP server.

>load redboot-post.bin 40000

loading ... erasing blk at 00040000
erasing blk at 00050000
94168 bytes loaded cksum 00008579
done
>
> set bootcmd "go 40000"

> get

myip = 10.16.19.198
netmask = 255.255.255.0
eth = 0
gateway = 10.16.19.66
serverip = 10.16.19.66
bootcmd = go 40000
>

NOTE: the BSE firmware runs its serial IO at 9600 Baud; RedBoot runs instead at 38400 Baud. You must
select the right baud rate in your terminal program to be able to set up the BSE firmware.

After a reset, the BSE firmware will print

Boot: BSE 2000 Sep 12 2000 14:00:30
autoboot: "go 40000" [hit ESC to abort]

and then RedBoot starts, switching to 38400 Baud.

Once you have installed a bootable RedBoot in the system in this manner, we advise re-installing using the
generic method described in Chapter 4 in order that the Flash Image System contains an appropriate description
of the flash entries.

138

Chapter 5. Installation and Testing

Cohabiting with POST in Flash
The configuration file named redboot_POST.ecm configures RedBoot to build for execution at address
0x50040000 (or, during bootup, 0x00040000). This is to allow power-on self-test (POST) code or immutable
firmware to live in the lower addresses of the flash and to run before RedBoot gets control. The assumption is
that RedBoot will be entered at its base address in physical memory, that is 0x00040000.

Alternatively, for testing, you can call it in an already running system by using go 0x50040040 at another
RedBoot prompt, or a branch to that address. The address is where the reset vector points. It is reported by
RedBoot’s load command and listed by the fis list command, amongst other places.

Using the POST configuration enables a normal config option which causes linking and initialization against
memory layout files called "...post..." rather than "...rom..." or "...ram..." in the include/pkgconf directory.
Specifically:

include/pkgconf/mlt_arm_sa11x0_nano_post.h

include/pkgconf/mlt_arm_sa11x0_nano_post.ldi

include/pkgconf/mlt_arm_sa11x0_nano_post.mlt

It is these you should edit if you wish to move the execution address from 0x50040000 in the POST configu-
ration. Startup mode naturally remains ROM in this configuration.

Because the nanoEngine contains immutable boot firmware at the start of flash, RedBoot for this target is
configured to reserve that area in the Flash Image System, and to create by default an entry for the POST mode
RedBoot.

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
(reserved) 0x50000000 0x50000000 0x00040000 0x00000000
RedBoot[post] 0x50040000 0x00100000 0x00020000 0x50040040
RedBoot config 0x503E0000 0x503E0000 0x00010000 0x00000000
FIS directory 0x503F0000 0x503F0000 0x00010000 0x00000000
RedBoot>

The entry "(reserved)" ensures that the FIS cannot attempt to overwrite the BSE firmware, thus ensuring that
the board remains bootable and recoverable even after installing a broken RedBoot image.

Special RedBoot Commands
The nanoEngine/commEngine has one or two Intel i82559 Ethernet controllers installed, but these have no
associated serial EEPROM in which to record their Ethernet Station Address (ESA, or MAC address). The
BSE firmware records an ESA for the device it uses, but this information is not available to RedBoot; we
cannot share it.

To keep the ESAs for the two ethernet interfaces, two new items of RedBoot configuration data are introduced.
You can list them with the RedBoot command fconfig -l thus:

RedBoot> fconfig -l

Run script at boot: false
Use BOOTP for network configuration: false
Local IP address: 10.16.19.91
Default server IP address: 10.16.19.66
Network hardware address [MAC] for eth0: 0x00:0xB5:0xE0:0xB5:0xE0:0x99
Network hardware address [MAC] for eth1: 0x00:0xB5:0xE0:0xB5:0xE0:0x9A
GDB connection port: 9000
Network debug at boot time: false
RedBoot>

139

Chapter 5. Installation and Testing

You should set them before running RedBoot or eCos applications with the board connected to a network. The
fconfig command can be used as for any configuration data item; the entire ESA is entered in one line.

Memory Maps
The first level page table is located at physical address 0xc0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x003fffff 4Mb FLASH (nCS0)
0x18000000 - 0x18ffffff Internal PCI bus - 2 x i82559 ethernet
0x40000000 - 0x4fffffff External IO or PCI bus
0x80000000 - 0xbfffffff SA-1110 Internal Registers
0xc0000000 - 0xc7ffffff DRAM Bank 0 - 32Mb SDRAM
0xc8000000 - 0xcfffffff DRAM Bank 1 - empty
0xe0000000 - 0xe7ffffff Cache Clean

Virtual Address Range C B Description
----------------------- - - ----------------------------------
0x00000000 - 0x001fffff Y Y DRAM - 8Mb to 32Mb
0x18000000 - 0x180fffff N N Internal PCI bus - 2 x i82559 ethernet
0x40000000 - 0x4fffffff N N External IO or PCI bus
0x50000000 - 0x51ffffff Y Y Up to 32Mb FLASH (nCS0)
0x80000000 - 0xbfffffff N N SA-1110 Internal Registers
0xc0000000 - 0xc0ffffff N Y DRAM Bank 0: 8 or 16Mb
0xc8000000 - 0xc8ffffff N Y DRAM Bank 1: 8 or 16Mb or absent
0xe0000000 - 0xe7ffffff Y Y Cache Clean

The ethernet devices use a "PCI window" to communicate with the CPU. This is 1Mb of SDRAM which is
shared with the ethernet devices that are on the PCI bus. It is neither cached nor buffered, to ensure that CPU
and PCI accesses see correct data in the correct order. By default it is configured to be megabyte number 30,
at addresses 0x01e00000-0x01efffff. This can be modified, and indeed must be, if less than 32Mb of SDRAM
is installed, via the memory layout tool, or by moving the section __pci_window referred to by symbols
CYGMEM_SECTION_pci_window* in the linker script.

Though the nanoEngine ships with 32Mb of SDRAM all attached to DRAM bank 0, the code can cope with
any of these combinations also; "2 x " in this context means one device in each DRAM Bank.

1 x 8Mb = 8Mb 2 x 8Mb = 16Mb
1 x 16Mb = 16Mb 2 x 16Mb = 32Mb

All are programmed the same in the memory controller.

Startup code detects which is fitted and programs the memory map accordingly. If the device(s) is 8Mb, then
there are gaps in the physical memory map, because a high order address bit is not connected. The gaps are the
higher 2Mb out of every 4Mb.

The SA11x0 OS timer is used as a polled timer to provide timeout support within RedBoot.

140

Chapter 5. Installation and Testing

Nano Platform Port
The nano is in the set of SA11X0-based platforms. It uses the arm architectural HAL, the sa11x0 variant HAL,
plus the nano platform hal. These are components

CYGPKG_HAL_ARM hal/arm/arch/
CYGPKG_HAL_ARM_SA11X0 hal/arm/sa11x0/var
CYGPKG_HAL_ARM_SA11X0_NANO hal/arm/sa11x0/nano

respectively.

The target name is "nano" which includes all these, plus the ethernet driver packages, flash driver, and so on.

Ethernet Driver
The ethernet driver is in two parts:

A generic ether driver for Intel i8255x series devices, specifically the i82559, is devs/eth/intel/i82559. Its
package name is CYGPKG_DEVS_ETH_INTEL_I82559.

The platform-specific ether driver is devs/eth/arm/nano. Its package is CYGPKG_DEVS_ETH_ARM_NANO. This
tells the generic driver the address in IO memory of the chip, for example, and other configuration details. This
driver picks up the ESA from RedBoot’s configuration data - unless configured to use a static ESA in the usual
manner.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=nano
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/nano

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA11X0) Compaq iPAQ PocketPC

Overview
RedBoot supports the serial port via cradle or cable, and Compact Flash ethernet cards if fitted for communi-
cation and downloads. The LCD touchscreen may also be used for the console, although by default RedBoot
will switch exclusively to one channel once input arrives.

The default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the
system flash region.

The following RedBoot configurations are supported:

141

Chapter 5. Installation and Testing

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

WinCE [RAM] RedBoot running from
RAM, started from
OSloader.

redboot_WinCE.ecm

Initial Installation
RedBoot ROM and WinCE mode images are needed by the installation process.

Installing RedBoot on the iPAQ using Windows/CE
The Windows/CE environment originally shipped with the iPAQ contains a hidden mini-loader, sometimes
referred to as the "Parrot" loader. This loader can be started by holding down the action button (the joypad)
while resetting the unit or when powering on. At this point, a blue bird will appear on the LCD screen. Also at
this point, a simple loader can be accessed over the serial port at 115200/8N1. Using this loader, the contents
of the iPAQ flash memory can be saved to a Compact Flash memory card.

NOTE: We have only tested this operation with a 32Mbyte CF memory card. Given that the backup will
take 16MBytes + 1KByte, something more than a 16MByte card will be required.

Use the "r2c" command to dump Flash contents to the CF memory card. Once this completes, RedBoot can be
installed with no fear since the Parrot loader can be used to restore the Flash contents at a later time.

If you expect to completely recover the state of the iPAQ Win/CE environment, then HotSync should be run to
backup all "RAM" files as well before installing RedBoot.

The next step in installing RedBoot on the iPAQ actually involves Windows/CE, which is the native envi-
ronment on the unit. Using WinCE, you need to install an application which will run a RAM based version
of RedBoot. Once this is installed and running, RedBoot can be used to update the flash with a native/ROM
version of RedBoot.

• Using ActiveSync, copy the file OSloader to your iPAQ.

• Using ActiveSync, copy the file redboot_WinCE.bin to the iPAQ as bootldr in its root directory. Note: this is
not the top level folder displayed by Windows (Mobile Device), but rather the ’My Pocket PC’ folder within
it.

• Execute OSloader. If you didn’t create a shortcut, then you will have to poke around for it using the WinCE
file explorer.

• Choose the Tools->BootLdr->Run after loading from file menu item.

142

Chapter 5. Installation and Testing

At this point, the RAM based version of RedBoot should be running. You should be able to return to this point
by just executing the last two steps of the previous process if necessary.

Installing RedBoot on the iPAQ - using the Compaq boot loader

This method of installation is no longer supported. If you have previously installed either the Compaq boot
loader or older versions of RedBoot, restore the Win/CE environment and proceed as outlined above.

Setting up and testing RedBoot

When RedBoot first comes up, it will want to initialize its LCD touch screen parameters. It does this by
displaying a keyboard graphic and asks you to press certain keys. Using the stylus, press and hold until the
prompt is withdrawn. When you lift the stylus, RedBoot will continue with the next calibration.

Once the LCD touchscreen has been calibrated, RedBoot will start. The calibration step can be skipped by
pressing the return/abort button on the unit (right most button with a curved arrow icon). Additionally, the
unit will assume default values if the screen is not touched within about 15 seconds.

Once RedBoot has started, you should get information similar to this on the LCD screen. It will also appear on
the serial port at 38400,8,N,1.

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 06:17:41, Mar 19 2001
Platform: Compaq iPAQ Pocket PC (StrongARM 1110)

Copyright (C) 2000, 2001, Free Software Foundation, Inc.

RAM: 0x00000000-0x01fc0000, 0x0001f200-0x01f70000 available
FLASH: 0x50000000 - 0x51000000, 64 blocks of 0x00040000 bytes
each.

Since the LCD touchscreen is only 30 characters wide, some of this data will be off the right hand side of the
display. The joypad may be used to pan left and right in order to see the full lines.

If you have a Compact Flash ethernet card, RedBoot should find it. You’ll need to have BOOTP enabled for
this unit (see your sysadmin for details). If it does, it will print a message like:

... Waiting for network card: .Ready!
Socket Communications Inc: CF+ LPE Revision E 08/04/99
IP: 192.168.1.34, Default server: 192.168.1.101

Installing RedBoot permanently
Once you are satisfied with the setup and that RedBoot is operating properly in your environment, you can set

143

Chapter 5. Installation and Testing

up your iPAQ unit to have RedBoot be the bootstrap application.

CAUTION
This step will destroy your Windows/CE environment.

Before you take this step, it is strongly recommended you save your WinCE FLASH
contents as outlined above using the "parrot" loader, or by using the Compaq OSloader:

• Using OSloader on the iPAQ, select the Tools->Flash->Save to
files.... menu item.

• Four (4) files, 4MB each in size will be created.

• After each file is created, copy the file to your computer, then delete
the file from the iPAQ to make room in the WinCE ramdisk for the
next file.

You will need to download the version of RedBoot designed as the ROM bootstrap. Then install it permanently
using these commands:

RedBoot> lo -r -b 0x100000 redboot_ROM.bin

RedBoot> fi loc -f 0x50000000 -l 0x40000

RedBoot> fis init

RedBoot> fi unl -f 0x50040000 -l 0x40000

RedBoot> fi cr RedBoot -b 0x100000

RedBoot> fi loc -f 0x50040000 -l 0x40000

RedBoot> reset

WARNING
You must type these commands exactly! Failure to do so may render your iPAQ totally
useless. Once you’ve done this, RedBoot should come up every time you reset.

Restoring Windows/CE

To restore Windows/CE from the backup taken in the Section called Installing RedBoot permanently, visit
http://www.handhelds.org/projects/wincerestoration.html for directions.

Additional commands
The exec command which allows the loading and execution of Linux kernels, is supported for this board (see
the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for the iPAQ
are:

-b <addr>

Location Linux kernel was loaded to

144

Chapter 5. Installation and Testing

-l <len>

Length of kernel

-c "params"

Parameters passed to kernel

-r <addr>

’initrd’ ramdisk location

-s <len>

Length of initrd ramdisk

Linux kernels may be run on the iPAQ using the sources from the anonymous CVS repository at the
Handhelds project (http://www.handhelds.org/) with the elinux.patch patch file applied. This file
can be found in the misc/ subdirectory of the iPAQ platform HAL in the RedBoot sources, normally
hal/arm/sa11x0/ipaq/VERSION/misc/

On the iPAQ (and indeed all SA11x0 platforms), Linux expects to be loaded at address 0xC0008000 and the
entry point is also at 0xC0008000.

Memory Maps
RedBoot sets up the following memory map on the iPAQ: The first level page table is located at physical
address 0xC0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x01ffffff 16Mb to 32Mb FLASH (nCS0) [organized as below]

0x000000 - 0x0003ffff Parrot Loader
0x040000 - 0x0007ffff RedBoot
0xf80000 - 0x00fbffff Fconfig data
0xfc0000 - 0x00ffffff FIS directory

0x30000000 - 0x3fffffff Compact Flash
0x48000000 - 0x4bffffff iPAQ internal registers
0x80000000 - 0xbfffffff SA-1110 Internal Registers
0xc0000000 - 0xc1ffffff DRAM Bank 0 - 32Mb SDRAM
0xe0000000 - 0xe7ffffff Cache Clean

Virtual Address Range C B Description
----------------------- - - ----------------------------------
0x00000000 - 0x01ffffff Y Y DRAM - 32Mb
0x30000000 - 0x3fffffff N N Compact Flash
0x48000000 - 0x4bffffff N N iPAQ internal registers
0x50000000 - 0x51ffffff Y Y Up to 32Mb FLASH (nCS0)
0x80000000 - 0xbfffffff N N SA-1110 Internal Registers
0xc0000000 - 0xc1ffffff N Y DRAM Bank 0: 32Mb
0xe0000000 - 0xe7ffffff Y Y Cache Clean

145

Chapter 5. Installation and Testing

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=ipaq
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/ipaq

The names of configuration files are listed above with the description of the associated modes.

ARM/StrongARM(SA11X0) Intrinsyc CerfCube

Overview
RedBoot supports the serial port and the builtin ethernet connection for communication and downloads.

The default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the
system flash region.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation
The original boot loader supplied with the CerfCube can be used to install RedBoot. Connect to the device
using a serial port at 38400/8N1. Copy the binary RedBoot ROM mode image to an available TFTP server.
Issue these commands to the Instrinsyc loader:

download tftp:x.x.x.x redboot_ROM.bin 0xc0000000

flashloader 0x00000000 0xc0000000 0x20000

where x.x.x.x is the IP address of the TFTP server.

NOTE: Other installation methods may be available via the Intrinsyc loader. Contact Intrinsyc for details.

146

Chapter 5. Installation and Testing

Additional commands
The exec command which allows the loading and execution of Linux kernels, is supported for this board (see
the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for the CerfCube
are:

-b <addr>

Location Linux kernel was loaded to

-l <len>

Length of kernel

-c "params"

Parameters passed to kernel

-r <addr>

’initrd’ ramdisk location

-s <len>

Length of initrd ramdisk

Memory Maps
RedBoot sets up the following memory map on the CerfCube: The first level page table is located at physical
address 0xC0004000. No second level tables are used.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x01ffffff 16Mb to 32Mb FLASH (nCS0) [organized as below]

0x000000 - 0x0001ffff RedBoot
0x020000 - 0x0003ffff RedBoot [RAM version]
0xfc0000 - 0x00fdffff Fconfig data
0xfe0000 - 0x00ffffff FIS directory

0x0f000000 - 0x0fffffff Onboard ethernet
0x10000000 - 0x17ffffff CerfCube internal registers
0x20000000 - 0x3fffffff PCMCIA / Compact Flash
0x80000000 - 0xbfffffff SA-1110 Internal Registers
0xc0000000 - 0xc1ffffff DRAM Bank 0 - 32Mb SDRAM
0xe0000000 - 0xe7ffffff Cache Clean

Virtual Address Range C B Description
----------------------- - - ----------------------------------
0x00000000 - 0x01ffffff Y Y DRAM - 32Mb
0x08000000 - 0x0fffffff N N Onboard ethernet controller
0x10000000 - 0x17ffffff N N CerfCube internal registers
0x20000000 - 0x3fffffff N N PCMCIA / Compact Flash
0x50000000 - 0x51ffffff Y Y Up to 32Mb FLASH (nCS0)
0x80000000 - 0xbfffffff N N SA-1110 Internal Registers
0xc0000000 - 0xc1ffffff N Y DRAM Bank 0: 32Mb

147

Chapter 5. Installation and Testing

0xe0000000 - 0xe7ffffff Y Y Cache Clean

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=cerf
export ARCH_DIR=arm
export PLATFORM_DIR=sa11x0/cerf

The names of configuration files are listed above with the description of the associated modes.

ARM/XScale Cyclone IQ80310

Overview
RedBoot supports both serial ports and the built-in ethernet port for communication and downloads. The default
serial port settings are 115200,8,N,1. RedBoot also supports flash management for the onboard 8MB flash.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

ROMA [ROM] RedBoot running from
flash address 0x40000,
with ARM bootloader in
flash boot sector.

redboot_ROMA.ecm

RAMA [RAM] RedBoot running from
RAM with ARM
bootloader in flash boot
sector.

redboot_RAMA.ecm

Initial Installation Method
The board manufacturer provides a DOS application which is capable of programming the flash over the PCI
bus, and this is required for initial installations of RedBoot. Please see the board manual for information on

148

Chapter 5. Installation and Testing

using this utility. In general, the process involves programming one of the two flash based RedBoot images to
flash. The ROM mode RedBoot (which runs from the flash boot sector) should be programmed to flash address
0x00000000. The ROMA RedBoot mode (which is started by the ARM bootloader) should be programmed to
flash address 0x00004000.

To install RedBoot to run from the flash boot sector, use the manufacturer’s flash utility to install the ROM
mode image at address zero.

To install RedBoot to run from address 0x40000 with the ARM bootloader in the flash boot sector, use the
manufacturer’s flash utility to install the ROMA mode image at address 0x40000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksum error or invalid key

This is normal, and indicates that the flash must be configured for use by RedBoot. Even if the above message
is not printed, it may be a good idea to reinitialize the flash anyway. Do this with the fis command:

RedBoot> fis init

About to initialize [format] flash image system - continue (y/n)? y

*** Initialize flash Image System
Warning: device contents not erased, some blocks may not be usable
... Unlock from 0x007e0000-0x00800000: .
... Erase from 0x007e0000-0x00800000: .
... Program from 0xa1fd0000-0xa1fd0400 at 0x007e0000: .
... Lock from 0x007e0000-0x00800000: .
Followed by the fconfig command:

RedBoot> fconfig

Run script at boot: false

Use BOOTP for network configuration: false

Local IP address: 192.168.1.153

Default server IP address: 192.168.1.10

GDB connection port: 1000

Network debug at boot time: false

Update RedBoot non-volatile configuration - continue (y/n)? y

... Unlock from 0x007c0000-0x007e0000: .

... Erase from 0x007c0000-0x007e0000: .

... Program from 0xa0013018-0xa0013418 at 0x007c0000: .

... Lock from 0x007c0000-0x007e0000: .

Note: When later updating RedBoot in situ, it is important to use a matching ROM and RAM mode pair of
images. So use either RAM/ROM or RAMA/ROMA images. Do not mix them.

Error codes
RedBoot uses the two digit LED display to indicate errors during board initialization. Possible error codes are:

88 - Unknown Error
55 - I2C Error
FF - SDRAM Error
01 - No Error

149

Chapter 5. Installation and Testing

Using RedBoot with ARM Bootloader
RedBoot can coexist with ARM tools in flash on the IQ80310 board. In this configuration, the ARM bootloader
will occupy the flash boot sector while RedBoot is located at flash address 0x40000. The sixteen position rotary
switch is used to tell the ARM bootloader to jump to the RedBoot image located at address 0x40000. RedBoot
is selected by switch position 0 or 1. Other switch positions are used by the ARM firmware and RedBoot will
not be started.

Special RedBoot Commands
A special RedBoot command, diag, is used to access a set of hardware diagnostics provided by the board
manufacturer. To access the diagnostic menu, enter diag at the RedBoot prompt:

RedBoot> diag

Entering Hardware Diagnostics - Disabling Data Cache!
1 - Memory Tests
2 - Repeating Memory Tests
3 - 16C552 DUART Serial Port Tests
4 - Rotary Switch S1 Test for positions 0-3
5 - seven Segment LED Tests
6 - Backplane Detection Test
7 - Battery Status Test
8 - External Timer Test
9 - i82559 Ethernet Configuration
10 - i82559 Ethernet Test
11 - Secondary PCI Bus Test
12 - Primary PCI Bus Test
13 - i960Rx/303 PCI Interrupt Test
14 - Internal Timer Test
15 - GPIO Test
0 - quit Enter the menu item number (0 to quit):

Tests for various hardware subsystems are provided, and some tests require special hardware in order to execute
normally. The Ethernet Configuration item may be used to set the board ethernet address.

IQ80310 Hardware Tests

1 - Memory Tests
2 - Repeating Memory Tests
3 - 16C552 DUART Serial Port Tests
4 - Rotary Switch S1 Test for positions 0-3
5 - 7 Segment LED Tests
6 - Backplane Detection Test
7 - Battery Status Test
8 - External Timer Test
9 - i82559 Ethernet Configuration
10 - i82559 Ethernet Test
11 - i960Rx/303 PCI Interrupt Test
12 - Internal Timer Test
13 - Secondary PCI Bus Test
14 - Primary PCI Bus Test
15 - Battery Backup SDRAM Memory Test
16 - GPIO Test
17 - Repeat-On-Fail Memory Test
18 - Coyonosa Cache Loop (No return)
19 - Show Software and Hardware Revision

150

Chapter 5. Installation and Testing

0 - quit
Enter the menu item number (0 to quit):

Tests for various hardware subsystems are provided, and some tests require special hardware in order to execute
normally. The Ethernet Configuration item may be used to set the board ethernet address.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=iq80310
export ARCH_DIR=arm
export PLATFORM_DIR=iq80310

The names of configuration files are listed above with the description of the associated modes.

Interrupts
RedBoot uses an interrupt vector table which is located at address 0xA000A004. Entries in this table are
pointers to functions with this protoype::

int irq_handler(unsigned vector, unsigned data)

On an IQ80310 board, the vector argument is one of 49 interrupts defined in
hal/arm/iq80310/current/include/hal_platform_ints.h::

// *** 80200 CPU ***
#define CYGNUM_HAL_INTERRUPT_reserved0 0
#define CYGNUM_HAL_INTERRUPT_PMU_PMN0_OVFL 1 // See Ch.12 - Performance Mon.
#define CYGNUM_HAL_INTERRUPT_PMU_PMN1_OVFL 2 // PMU counter 0/1 overflow
#define CYGNUM_HAL_INTERRUPT_PMU_CCNT_OVFL 3 // PMU clock overflow
#define CYGNUM_HAL_INTERRUPT_BCU_INTERRUPT 4 // See Ch.11 - Bus Control Unit
#define CYGNUM_HAL_INTERRUPT_NIRQ 5 // external IRQ
#define CYGNUM_HAL_INTERRUPT_NFIQ 6 // external FIQ

// *** XINT6 interrupts ***
#define CYGNUM_HAL_INTERRUPT_DMA_0 7
#define CYGNUM_HAL_INTERRUPT_DMA_1 8
#define CYGNUM_HAL_INTERRUPT_DMA_2 9
#define CYGNUM_HAL_INTERRUPT_GTSC 10 // Global Time Stamp Counter
#define CYGNUM_HAL_INTERRUPT_PEC 11 // Performance Event Counter
#define CYGNUM_HAL_INTERRUPT_AAIP 12 // application accelerator unit

// *** XINT7 interrupts ***
// I2C interrupts
#define CYGNUM_HAL_INTERRUPT_I2C_TX_EMPTY 13
#define CYGNUM_HAL_INTERRUPT_I2C_RX_FULL 14
#define CYGNUM_HAL_INTERRUPT_I2C_BUS_ERR 15
#define CYGNUM_HAL_INTERRUPT_I2C_STOP 16
#define CYGNUM_HAL_INTERRUPT_I2C_LOSS 17

151

Chapter 5. Installation and Testing

#define CYGNUM_HAL_INTERRUPT_I2C_ADDRESS 18

// Messaging Unit interrupts
#define CYGNUM_HAL_INTERRUPT_MESSAGE_0 19
#define CYGNUM_HAL_INTERRUPT_MESSAGE_1 20
#define CYGNUM_HAL_INTERRUPT_DOORBELL 21
#define CYGNUM_HAL_INTERRUPT_NMI_DOORBELL 22
#define CYGNUM_HAL_INTERRUPT_QUEUE_POST 23
#define CYGNUM_HAL_INTERRUPT_OUTBOUND_QUEUE_FULL 24
#define CYGNUM_HAL_INTERRUPT_INDEX_REGISTER 25
// PCI Address Translation Unit
#define CYGNUM_HAL_INTERRUPT_BIST 26

// *** External board interrupts (XINT3) ***
#define CYGNUM_HAL_INTERRUPT_TIMER 27 // external timer
#define CYGNUM_HAL_INTERRUPT_ETHERNET 28 // onboard enet
#define CYGNUM_HAL_INTERRUPT_SERIAL_A 29 // 16x50 uart A
#define CYGNUM_HAL_INTERRUPT_SERIAL_B 30 // 16x50 uart B
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTD 31 // secondary PCI INTD
// The hardware doesn’t (yet?) provide masking or status for these
// even though they can trigger cpu interrupts. ISRs will need to
// poll the device to see if the device actually triggered the
// interrupt.
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTC 32 // secondary PCI INTC
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTB 33 // secondary PCI INTB
#define CYGNUM_HAL_INTERRUPT_PCI_S_INTA 34 // secondary PCI INTA

// *** NMI Interrupts go to FIQ ***
#define CYGNUM_HAL_INTERRUPT_MCU_ERR 35
#define CYGNUM_HAL_INTERRUPT_PATU_ERR 36
#define CYGNUM_HAL_INTERRUPT_SATU_ERR 37
#define CYGNUM_HAL_INTERRUPT_PBDG_ERR 38
#define CYGNUM_HAL_INTERRUPT_SBDG_ERR 39
#define CYGNUM_HAL_INTERRUPT_DMA0_ERR 40
#define CYGNUM_HAL_INTERRUPT_DMA1_ERR 41
#define CYGNUM_HAL_INTERRUPT_DMA2_ERR 42
#define CYGNUM_HAL_INTERRUPT_MU_ERR 43
#define CYGNUM_HAL_INTERRUPT_reserved52 44
#define CYGNUM_HAL_INTERRUPT_AAU_ERR 45
#define CYGNUM_HAL_INTERRUPT_BIU_ERR 46

// *** ATU FIQ sources ***
#define CYGNUM_HAL_INTERRUPT_P_SERR 47
#define CYGNUM_HAL_INTERRUPT_S_SERR 48

The data passed to the ISR is pulled from a data table (hal_interrupt_data) which immediately follows the
interrupt vector table. With 49 interrupts, the data table starts at address 0xA000A0C8.

An application may create a normal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.

152

Chapter 5. Installation and Testing

Memory Maps
The first level page table is located at 0xa0004000. Two second level tables are also used. One second level
table is located at 0xa0008000 and maps the first 1MB of flash. The other second level table is at 0xa0008400,
and maps the first 1MB of SDRAM.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x00000fff flash Memory
0x00001000 - 0x00001fff 80312 Internal Registers
0x00002000 - 0x007fffff flash Memory
0x00800000 - 0x7fffffff PCI ATU Outbound Direct Window
0x80000000 - 0x83ffffff Primary PCI 32-bit Memory
0x84000000 - 0x87ffffff Primary PCI 64-bit Memory
0x88000000 - 0x8bffffff Secondary PCI 32-bit Memory
0x8c000000 - 0x8fffffff Secondary PCI 64-bit Memory
0x90000000 - 0x9000ffff Primary PCI IO Space
0x90010000 - 0x9001ffff Secondary PCI IO Space
0x90020000 - 0x9fffffff Unused
0xa0000000 - 0xbfffffff SDRAM
0xc0000000 - 0xefffffff Unused
0xf0000000 - 0xffffffff 80200 Internal Registers

Virtual Address Range C B Description
----------------------- - - ----------------------------------
0x00000000 - 0x00000fff Y Y SDRAM
0x00001000 - 0x00001fff N N 80312 Internal Registers
0x00002000 - 0x007fffff Y N flash Memory
0x00800000 - 0x7fffffff N N PCI ATU Outbound Direct Window
0x80000000 - 0x83ffffff N N Primary PCI 32-bit Memory
0x84000000 - 0x87ffffff N N Primary PCI 64-bit Memory
0x88000000 - 0x8bffffff N N Secondary PCI 32-bit Memory
0x8c000000 - 0x8fffffff N N Secondary PCI 64-bit Memory
0x90000000 - 0x9000ffff N N Primary PCI IO Space
0x90010000 - 0x9001ffff N N Secondary PCI IO Space
0xa0000000 - 0xbfffffff Y Y SDRAM
0xc0000000 - 0xcfffffff Y Y Cache Flush Region
0xd0000000 - 0xd0000fff Y N first 4k page of flash
0xf0000000 - 0xffffffff N N 80200 Internal Registers

Platform Resource Usage
The external timer is used as a polled timer to provide timeout support for networking and XModem file
transfers.

153

Chapter 5. Installation and Testing

ARM/XScale Intel IQ80321

Overview
RedBoot supports the serial port and the built-in ethernet port for communication and downloads. The default
serial port settings are 115200,8,N,1. RedBoot also supports flash management for the onboard 8MB flash.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
The board manufacturer provides a DOS application which is capable of programming the flash over the PCI
bus, and this is required for initial installations of RedBoot. Please see the board manual for information
on using this utility. In general, the process involves programming the ROM mode RedBoot image to flash.
RedBoot should be programmed to flash address 0x00000000 using the DOS utility.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksum error or invalid key

This is normal, and indicates that the flash must be configured for use by RedBoot. Even if the above message
is not printed, it may be a good idea to reinitialize the flash anyway. Do this with the fis command:

RedBoot> fis init

About to initialize [format] FLASH image system - continue (y/n)? y

*** Initialize FLASH Image System
Warning: device contents not erased, some blocks may not be usable
... Unlock from 0xf07e0000-0xf0800000: .
... Erase from 0xf07e0000-0xf0800000: .
... Program from 0x01ddf000-0x01ddf400 at 0xf07e0000: .
... Lock from 0xf07e0000-0xf0800000: .

Switch Settings
The 80321 board is highly configurable through a number of switches and jumpers. RedBoot makes some
assumptions about board configuration and attention must be paid to these assumptions for reliable RedBoot

154

Chapter 5. Installation and Testing

operation:

• The onboard ethernet and the secondary slot may be placed in a private space so that they are not seen by
a PC BIOS. If the board is to be used in a PC with BIOS, then the ethernet should be placed in this private
space so that RedBoot and the BIOS do not conflict.

• RedBoot assumes that the board is plugged into a PC with BIOS. This requires RedBoot to detect when the
BIOS has configured the PCI-X secondary bus. If the board is placed in a backplane, RedBoot will never see
the BIOS configure the secondary bus. To prevent this wait, set switch S7E1-3 to ON when using the board
in a backplane.

• For the remaining switch settings, the following is a known good configuration:

S1D1 All OFF

S7E1 7 is ON, all others OFF

S8E1 2,3,5,6 are ON, all others OFF

S8E2 2,3 are ON, all others OFF

S9E1 3 is ON, all others OFF

S4D1 1,3 are ON, all others OFF

J9E1 2,3 jumpered

J9F1 2,3 jumpered

J3F1 Nothing jumpered

J3G1 2,3 jumpered

J1G2 2,3 jumpered

LED Codes
RedBoot uses the two digit LED display to indicate status during board initialization. Possible codes are:

LED Actions

Power-On/Reset
88

Set the CPSR
Enable coprocessor access
Drain write and fill buffer
Setup PBIU chip selects

A1
Enable the Icache

A2
Move FLASH chip select from 0x0 to 0xF0000000
Jump to new FLASH location

A3
Setup and enable the MMU

A4
I2C interface initialization

90

155

Chapter 5. Installation and Testing

Wait for I2C initialization to complete
91

Send address (via I2C) to the DIMM
92

Wait for transmit complete
93

Read SDRAM PD data from DIMM
94

Read remainder of EEPROM data.
An error will result in one of the following
error codes on the LEDs:
77 BAD EEPROM checksum
55 I2C protocol error
FF bank size error

A5
Setup DDR memory interface

A6
Enable branch target buffer
Drain the write & fill buffers
Flush Icache, Dcache and BTB
Flush instuction and data TLBs
Drain the write & fill buffers

SL
ECC Scrub Loop

SE
A7

Clean, drain, flush the main Dcache
A8

Clean, drain, flush the mini Dcache
Flush Dcache
Drain the write & fill buffers

A9
Enable ECC

AA
Save SDRAM size
Move MMU tables into RAM

AB
Clean, drain, flush the main Dcache
Clean, drain, flush the mini Dcache
Drain the write & fill buffers

AC
Set the TTB register to DRAM mmu_table

AD
Set mode to IRQ mode

A7
Move SWI & Undefined "vectors" to RAM (at 0x0)

A6
Switch to supervisor mode

A5
Move remaining "vectors" to RAM (at 0x0)

A4
Copy DATA to RAM

156

Chapter 5. Installation and Testing

Initialize interrupt exception environment
Initialize stack
Clear BSS section

A3
Call platform specific hardware initialization

A2
Run through static constructors

A1
Start up the eCos kernel or RedBoot

Special RedBoot Commands
A special RedBoot command, diag, is used to access a set of hardware diagnostics. To access the diagnostic
menu, enter diag at the RedBoot prompt:

RedBoot> diag

Entering Hardware Diagnostics - Disabling Data Cache!

IQ80321 Hardware Tests

1 - Memory Tests
2 - Repeating Memory Tests
3 - Repeat-On-Fail Memory Tests
4 - Rotary Switch S1 Test
5 - 7 Segment LED Tests
6 - i82544 Ethernet Configuration
7 - Baterry Status Test
8 - Battery Backup SDRAM Memory Test
9 - Timer Test

10 - PCI Bus test
11 - CPU Cache Loop (No Return)
0 - quit

Enter the menu item number (0 to quit):

Tests for various hardware subsystems are provided, and some tests require special hardware in order to execute
normally. The Ethernet Configuration item may be used to set the board ethernet address.

Memory Tests

This test is used to test installed DDR SDRAM memory. Five different tests are run over the given address
ranges. If errors are encountered, the test is aborted and information about the failure is printed. When selected,
the user will be prompted to enter the base address of the test range and its size. The numbers must be in hex
with no leading “0x”

Enter the menu item number (0 to quit): 1

Base address of memory to test (in hex): 100000

Size of memory to test (in hex): 200000

Testing memory from 0x00100000 to 0x002fffff.

Walking 1’s test:
0000000100000002000000040000000800000010000000200000004000000080
0000010000000200000004000000080000001000000020000000400000008000
0001000000020000000400000008000000100000002000000040000000800000

157

Chapter 5. Installation and Testing

0100000002000000040000000800000010000000200000004000000080000000
passed
32-bit address test: passed
32-bit address bar test: passed
8-bit address test: passed
Byte address bar test: passed
Memory test done.

Repeating Memory Tests

The repeating memory tests are exactly the same as the above memory tests, except that the tests are automat-
ically rerun after completion. The only way out of this test is to reset the board.

Repeat-On-Fail Memory Tests

This is similar to the repeating memory tests except that when an error is found, the failing test continuously
retries on the failing address.

Rotary Switch S1 Test

This tests the operation of the sixteen position rotary switch. When run, this test will display the current position
of the rotary switch on the LED display. Slowly dial through each position and confirm reading on LED.

7 Segment LED Tests

This tests the operation of the seven segment displays. When run, each LED cycles through 0 through F and a
decimal point.

i82544 Ethernet Configuration

This test initializes the ethernet controller’s serial EEPROM if the current contents are invalid. In any case, this
test will also allow the user to enter a six byte ethernet MAC address into the serial EEPROM.

Enter the menu item number (0 to quit): 6

Current MAC address: 00:80:4d:46:00:02
Enter desired MAC address: 00:80:4d:46:00:01

Writing to the Serial EEPROM... Done

******** Reset The Board To Have Changes Take Effect ********

Battery Status Test

This tests the current status of the battery. First, the test checks to see if the battery is installed and reports that
finding. If the battery is installed, the test further determines whether the battery status is one or more of the
following:

• Battery is charging.

158

Chapter 5. Installation and Testing

• Battery is fully discharged.

• Battery voltage measures within normal operating range.

Battery Backup SDRAM Memory Test

This tests the battery backup of SDRAM memory. This test is a three step process:

1. Select Battery backup test from main diag menu, then write data to SDRAM.

2. Turn off power for 60 seconds, then repower the board.

3. Select Battery backup test from main diag menu, then check data that was written in step 1.

Timer Test

This tests the internal timer by printing a number of dots at one second intervals.

PCI Bus Test

This tests the secondary PCI-X bus and socket. This test requires that an IQ80310 board be plugged into the
secondary slot of the IOP80321 board. The test assumes at least 32MB of installed memory on the IQ80310.
That memory is mapped into the IOP80321 address space and the memory tests are run on that memory.

CPU Cache Loop

This test puts the CPU into a tight loop run entirely from the ICache. This should prevent all external bus
accesses.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=iq80321
export ARCH_DIR=arm
export PLATFORM_DIR=xscale/iq80321

The names of configuration files are listed above with the description of the associated modes.

Interrupts
RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are pointers to
functions with this protoype::

int irq_handler(unsigned vector, unsigned data)

159

Chapter 5. Installation and Testing

On an IQ80321 board, the vector argument is one of 32 interrupts defined in
hal/arm/xscale/verde/current/include/hal_var_ints.h::

// *** 80200 CPU ***
#define CYGNUM_HAL_INTERRUPT_DMA0_EOT 0
#define CYGNUM_HAL_INTERRUPT_DMA0_EOC 1
#define CYGNUM_HAL_INTERRUPT_DMA1_EOT 2
#define CYGNUM_HAL_INTERRUPT_DMA1_EOC 3
#define CYGNUM_HAL_INTERRUPT_RSVD_4 4
#define CYGNUM_HAL_INTERRUPT_RSVD_5 5
#define CYGNUM_HAL_INTERRUPT_AA_EOT 6
#define CYGNUM_HAL_INTERRUPT_AA_EOC 7
#define CYGNUM_HAL_INTERRUPT_CORE_PMON 8
#define CYGNUM_HAL_INTERRUPT_TIMER0 9
#define CYGNUM_HAL_INTERRUPT_TIMER1 10
#define CYGNUM_HAL_INTERRUPT_I2C_0 11
#define CYGNUM_HAL_INTERRUPT_I2C_1 12
#define CYGNUM_HAL_INTERRUPT_MESSAGING 13
#define CYGNUM_HAL_INTERRUPT_ATU_BIST 14
#define CYGNUM_HAL_INTERRUPT_PERFMON 15
#define CYGNUM_HAL_INTERRUPT_CORE_PMU 16
#define CYGNUM_HAL_INTERRUPT_BIU_ERR 17
#define CYGNUM_HAL_INTERRUPT_ATU_ERR 18
#define CYGNUM_HAL_INTERRUPT_MCU_ERR 19
#define CYGNUM_HAL_INTERRUPT_DMA0_ERR 20
#define CYGNUM_HAL_INTERRUPT_DMA1_ERR 22
#define CYGNUM_HAL_INTERRUPT_AA_ERR 23
#define CYGNUM_HAL_INTERRUPT_MSG_ERR 24
#define CYGNUM_HAL_INTERRUPT_SSP 25
#define CYGNUM_HAL_INTERRUPT_RSVD_26 26
#define CYGNUM_HAL_INTERRUPT_XINT0 27
#define CYGNUM_HAL_INTERRUPT_XINT1 28
#define CYGNUM_HAL_INTERRUPT_XINT2 29
#define CYGNUM_HAL_INTERRUPT_XINT3 30
#define CYGNUM_HAL_INTERRUPT_HPI 31

The data passed to the ISR is pulled from a data table (hal_interrupt_data) which immediately follows the
interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

An application may create a normal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.

Memory Maps
The RAM based page table is located at RAM start + 0x4000. RedBoot may be configured for one of two mem-
ory maps. The difference between them is the location of RAM and the PCI outbound windows. The alternative
memory map may be used when building RedBoot or eCos by using the RAM_ALTMAP and ROM_ALTMAP startup
types in the configuration.

NOTE: The virtual memory maps in this section use a C, B, and X column to indicate the caching policy
for the region..

X C B Description

160

Chapter 5. Installation and Testing

- - - ---
0 0 0 Uncached/Unbuffered
0 0 1 Uncached/Buffered
0 1 0 Cached/Buffered Write Through, Read Allocate
0 1 1 Cached/Buffered Write Back, Read Allocate
1 0 0 Invalid -- not used
1 0 1 Uncached/Buffered No write buffer coalescing
1 1 0 Mini DCache - Policy set by Aux Ctl Register
1 1 1 Cached/Buffered Write Back, Read/Write Allocate

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x7fffffff ATU Outbound Direct Window
0x80000000 - 0x900fffff ATU Outbound Translate Windows
0xa0000000 - 0xbfffffff SDRAM
0xf0000000 - 0xf0800000 FLASH (PBIU CS0)
0xfe800000 - 0xfe800fff UART (PBIU CS1)
0xfe840000 - 0xfe840fff Left 7-segment LED (PBIU CS3)
0xfe850000 - 0xfe850fff Right 7-segment LED (PBIU CS2)
0xfe8d0000 - 0xfe8d0fff Rotary Switch (PBIU CS4)
0xfe8f0000 - 0xfe8f0fff Baterry Status (PBIU CS5)
0xfff00000 - 0xffffffff Verde Memory mapped Registers

Default Virtual Map X C B Description
----------------------- - - - ----------------------------------
0x00000000 - 0x1fffffff 1 1 1 SDRAM
0x20000000 - 0x9fffffff 0 0 0 ATU Outbound Direct Window
0xa0000000 - 0xb00fffff 0 0 0 ATU Outbound Translate Windows
0xc0000000 - 0xdfffffff 0 0 0 Uncached alias for SDRAM
0xe0000000 - 0xe00fffff 1 1 1 Cache flush region (no phys mem)
0xf0000000 - 0xf0800000 0 1 0 FLASH (PBIU CS0)
0xfe800000 - 0xfe800fff 0 0 0 UART (PBIU CS1)
0xfe840000 - 0xfe840fff 0 0 0 Left 7-segment LED (PBIU CS3)
0xfe850000 - 0xfe850fff 0 0 0 Right 7-segment LED (PBIU CS2)
0xfe8d0000 - 0xfe8d0fff 0 0 0 Rotary Switch (PBIU CS4)
0xfe8f0000 - 0xfe8f0fff 0 0 0 Baterry Status (PBIU CS5)
0xfff00000 - 0xffffffff 0 0 0 Verde Memory mapped Registers

Alternate Virtual Map X C B Description
----------------------- - - - ----------------------------------
0x00000000 - 0x000fffff 1 1 1 Alias for 1st MB of SDRAM
0x00100000 - 0x7fffffff 0 0 0 ATU Outbound Direct Window
0x80000000 - 0x900fffff 0 0 0 ATU Outbound Translate Windows
0xa0000000 - 0xbfffffff 1 1 1 SDRAM
0xc0000000 - 0xdfffffff 0 0 0 Uncached alias for SDRAM
0xe0000000 - 0xe00fffff 1 1 1 Cache flush region (no phys mem)
0xf0000000 - 0xf0800000 0 1 0 FLASH (PBIU CS0)
0xfe800000 - 0xfe800fff 0 0 0 UART (PBIU CS1)
0xfe840000 - 0xfe840fff 0 0 0 Left 7-segment LED (PBIU CS3)
0xfe850000 - 0xfe850fff 0 0 0 Right 7-segment LED (PBIU CS2)
0xfe8d0000 - 0xfe8d0fff 0 0 0 Rotary Switch (PBIU CS4)
0xfe8f0000 - 0xfe8f0fff 0 0 0 Baterry Status (PBIU CS5)
0xfff00000 - 0xffffffff 0 0 0 Verde Memory mapped Registers

161

Chapter 5. Installation and Testing

Platform Resource Usage
The Verde programmable timer0 is used for timeout support for networking and XModem file transfers.

ARM/Intel XScale IXDP425 Network Processor Evaluation
Board

Overview
RedBoot supports the builtin high-speed and console UARTs and a PCI based i82559 ethernet card for com-
munication and downloads. The default serial port settings are 115200,8,N,1. RedBoot also supports flash
management for the 16MB boot flash on the mainboard.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

flash sector.
redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
The IXDP425 flash is socketed, so initial installation may be done using an appropriate device programmer.
JTAG based initial may also be used. In either case, the ROM mode RedBoot is programmed into the boot
flash at address 0x00000000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksum error or invalid key

This is normal, and indicates that the flash should be configured for use by RedBoot. See the Section called
Persistent State Flash-based Configuration and Control in Chapter 2 for more details.

LED Codes
RedBoot uses the 4 digit LED display to indicate status during board initialization. Possible codes are:

LED Actions

Power-On/Reset
Set the CPSR
Enable coprocessor access
Drain write and fill buffer
Setup expansion bus chip selects

162

Chapter 5. Installation and Testing

1001
Enable Icache

1002
Initialize SDRAM controller

1003
Switch flash (CS0) from 0x00000000 to 0x50000000

1004
Copy MMU table to RAM

1005
Setup TTB and domain permissions

1006
Enable MMU

1007
Enable DCache

1008
Enable branch target buffer

1009
Drain write and fill buffer
Flush caches

100A
Start up the eCos kernel or RedBoot

0001

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=ixdp425
export ARCH_DIR=arm
export PLATFORM_DIR=xscale/ixdp425

The names of configuration files are listed above with the description of the associated modes.

Interrupts
RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are pointers to
functions with this protoype::

int irq_handler(unsigned vector, unsigned data)

On the IXDP425 board, the vector argument is one of many interrupts defined in
hal/arm/xscale/ixp425/current/include/hal_var_ints.h::

#define CYGNUM_HAL_INTERRUPT_NPEA 0
#define CYGNUM_HAL_INTERRUPT_NPEB 1
#define CYGNUM_HAL_INTERRUPT_NPEC 2
#define CYGNUM_HAL_INTERRUPT_QM1 3
#define CYGNUM_HAL_INTERRUPT_QM2 4
#define CYGNUM_HAL_INTERRUPT_TIMER0 5
#define CYGNUM_HAL_INTERRUPT_GPIO0 6

163

Chapter 5. Installation and Testing

#define CYGNUM_HAL_INTERRUPT_GPIO1 7
#define CYGNUM_HAL_INTERRUPT_PCI_INT 8
#define CYGNUM_HAL_INTERRUPT_PCI_DMA1 9
#define CYGNUM_HAL_INTERRUPT_PCI_DMA2 10
#define CYGNUM_HAL_INTERRUPT_TIMER1 11
#define CYGNUM_HAL_INTERRUPT_USB 12
#define CYGNUM_HAL_INTERRUPT_UART2 13
#define CYGNUM_HAL_INTERRUPT_TIMESTAMP 14
#define CYGNUM_HAL_INTERRUPT_UART1 15
#define CYGNUM_HAL_INTERRUPT_WDOG 16
#define CYGNUM_HAL_INTERRUPT_AHB_PMU 17
#define CYGNUM_HAL_INTERRUPT_XSCALE_PMU 18
#define CYGNUM_HAL_INTERRUPT_GPIO2 19
#define CYGNUM_HAL_INTERRUPT_GPIO3 20
#define CYGNUM_HAL_INTERRUPT_GPIO4 21
#define CYGNUM_HAL_INTERRUPT_GPIO5 22
#define CYGNUM_HAL_INTERRUPT_GPIO6 23
#define CYGNUM_HAL_INTERRUPT_GPIO7 24
#define CYGNUM_HAL_INTERRUPT_GPIO8 25
#define CYGNUM_HAL_INTERRUPT_GPIO9 26
#define CYGNUM_HAL_INTERRUPT_GPIO10 27
#define CYGNUM_HAL_INTERRUPT_GPIO11 28
#define CYGNUM_HAL_INTERRUPT_GPIO12 29
#define CYGNUM_HAL_INTERRUPT_SW_INT1 30
#define CYGNUM_HAL_INTERRUPT_SW_INT2 31

The data passed to the ISR is pulled from a data table (hal_interrupt_data) which immediately follows the
interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

An application may create a normal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.

Memory Maps
The RAM based page table is located at RAM start + 0x4000.

NOTE: The virtual memory maps in this section use a C, B, and X column to indicate the caching policy
for the region..

X C B Description
- - - ---
0 0 0 Uncached/Unbuffered
0 0 1 Uncached/Buffered
0 1 0 Cached/Buffered Write Through, Read Allocate
0 1 1 Cached/Buffered Write Back, Read Allocate
1 0 0 Invalid -- not used
1 0 1 Uncached/Buffered No write buffer coalescing
1 1 0 Mini DCache - Policy set by Aux Ctl Register
1 1 1 Cached/Buffered Write Back, Read/Write Allocate

Virtual Address Physical Address XCB Size (MB) Description
--------------- ---------------- --- --------- -----------

0x00000000 0x00000000 010 256 SDRAM (cached)

164

Chapter 5. Installation and Testing

0x10000000 0x10000000 010 256 SDRAM (alias)
0x20000000 0x00000000 000 256 SDRAM (uncached)
0x48000000 0x48000000 000 64 PCI Data
0x50000000 0x50000000 010 16 Flash (CS0)
0x51000000 0x51000000 000 112 CS1 - CS7
0x60000000 0x60000000 000 64 Queue Manager
0xC0000000 0xC0000000 000 1 PCI Controller
0xC4000000 0xC4000000 000 1 Exp. Bus Config
0xC8000000 0xC8000000 000 1 Misc IXP425 IO
0xCC000000 0xCC000000 000 1 SDRAM Config

Platform Resource Usage
The IXP425 programmable OStimer0 is used for timeout support for networking and XModem file transfers.

ARM/Intel XScale Generic Residential Gateway

Overview
RedBoot supports the console UART and a PCI based i82559 ethernet card for communication and downloads.
The default serial port settings are 115200,8,N,1. RedBoot also supports flash management for the 16MB
onboard flash.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

flash sector.
redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
The GRG flash is socketed, so initial installation may be done using an appropriate device programmer. JTAG
based initial may also be used. In either case, the ROM mode RedBoot is programmed into the boot flash at
address 0x00000000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksum error or invalid key

This is normal, and indicates that the flash should be configured for use by RedBoot. See the Section called
Persistent State Flash-based Configuration and Control in Chapter 2 for more details.

165

Chapter 5. Installation and Testing

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=grg
export ARCH_DIR=arm
export PLATFORM_DIR=xscale/grg

The names of configuration files are listed above with the description of the associated modes.

Interrupts
RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are pointers to
functions with this protoype::

int irq_handler(unsigned vector, unsigned data)

On the GRG board, the vector argument is one of many interrupts defined in
hal/arm/xscale/ixp425/current/include/hal_var_ints.h::

#define CYGNUM_HAL_INTERRUPT_NPEA 0
#define CYGNUM_HAL_INTERRUPT_NPEB 1
#define CYGNUM_HAL_INTERRUPT_NPEC 2
#define CYGNUM_HAL_INTERRUPT_QM1 3
#define CYGNUM_HAL_INTERRUPT_QM2 4
#define CYGNUM_HAL_INTERRUPT_TIMER0 5
#define CYGNUM_HAL_INTERRUPT_GPIO0 6
#define CYGNUM_HAL_INTERRUPT_GPIO1 7
#define CYGNUM_HAL_INTERRUPT_PCI_INT 8
#define CYGNUM_HAL_INTERRUPT_PCI_DMA1 9
#define CYGNUM_HAL_INTERRUPT_PCI_DMA2 10
#define CYGNUM_HAL_INTERRUPT_TIMER1 11
#define CYGNUM_HAL_INTERRUPT_USB 12
#define CYGNUM_HAL_INTERRUPT_UART2 13
#define CYGNUM_HAL_INTERRUPT_TIMESTAMP 14
#define CYGNUM_HAL_INTERRUPT_UART1 15
#define CYGNUM_HAL_INTERRUPT_WDOG 16
#define CYGNUM_HAL_INTERRUPT_AHB_PMU 17
#define CYGNUM_HAL_INTERRUPT_XSCALE_PMU 18
#define CYGNUM_HAL_INTERRUPT_GPIO2 19
#define CYGNUM_HAL_INTERRUPT_GPIO3 20
#define CYGNUM_HAL_INTERRUPT_GPIO4 21
#define CYGNUM_HAL_INTERRUPT_GPIO5 22
#define CYGNUM_HAL_INTERRUPT_GPIO6 23
#define CYGNUM_HAL_INTERRUPT_GPIO7 24
#define CYGNUM_HAL_INTERRUPT_GPIO8 25
#define CYGNUM_HAL_INTERRUPT_GPIO9 26
#define CYGNUM_HAL_INTERRUPT_GPIO10 27
#define CYGNUM_HAL_INTERRUPT_GPIO11 28
#define CYGNUM_HAL_INTERRUPT_GPIO12 29
#define CYGNUM_HAL_INTERRUPT_SW_INT1 30
#define CYGNUM_HAL_INTERRUPT_SW_INT2 31

The data passed to the ISR is pulled from a data table (hal_interrupt_data) which immediately follows the
interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

166

Chapter 5. Installation and Testing

An application may create a normal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.

Memory Maps
The RAM based page table is located at RAM start + 0x4000.

NOTE: The virtual memory maps in this section use a C, B, and X column to indicate the caching policy
for the region..

X C B Description
- - - ---
0 0 0 Uncached/Unbuffered
0 0 1 Uncached/Buffered
0 1 0 Cached/Buffered Write Through, Read Allocate
0 1 1 Cached/Buffered Write Back, Read Allocate
1 0 0 Invalid -- not used
1 0 1 Uncached/Buffered No write buffer coalescing
1 1 0 Mini DCache - Policy set by Aux Ctl Register
1 1 1 Cached/Buffered Write Back, Read/Write Allocate

Virtual Address Physical Address XCB Size (MB) Description
--------------- ---------------- --- --------- -----------

0x00000000 0x00000000 010 32 SDRAM (cached)
0x10000000 0x00000000 010 32 SDRAM (alias)
0x20000000 0x00000000 000 32 SDRAM (uncached)
0x48000000 0x48000000 000 64 PCI Data
0x50000000 0x50000000 010 16 Flash (CS0)
0x51000000 0x51000000 000 112 CS1 - CS7
0x60000000 0x60000000 000 64 Queue Manager
0xC0000000 0xC0000000 000 1 PCI Controller
0xC4000000 0xC4000000 000 1 Exp. Bus Config
0xC8000000 0xC8000000 000 1 Misc IXP425 IO
0xCC000000 0xCC000000 000 1 SDRAM Config

Platform Resource Usage
The IXP425 programmable OStimer0 is used for timeout support for networking and XModem file transfers.

167

Chapter 5. Installation and Testing

Motorola PrPMC1100 CPU card

Overview
RedBoot supports the builtin high-speed and console UARTs . The console UART is the default and feeds
the front panel COM1 connector. The high-speed UART signals are only available from the PN4 IO connec-
tor. Therefore, usability of this port depends on the carrier board used. The default serial port settings are
115200,8,N,1. RedBoot also supports flash management for the 16MB boot flash on the mainboard.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

flash sector.
redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
The PrPMC1100 flash is socketed, so initial installation may be done using an appropriate device programmer.
JTAG based flash programming may also be used. In either case, the ROM mode RedBoot is programmed into
the boot flash at address 0x00000000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksum error or invalid key

This is normal, and indicates that the flash should be configured for use by RedBoot. Even if this message is
not seen, it is recommended that the fconfig be run to initialize the flash configuration area. See the Section
called Persistent State Flash-based Configuration and Control in Chapter 2 for more details.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=prpmc1100
export ARCH_DIR=arm
export PLATFORM_DIR=xscale/prpmc1100

The names of configuration files are listed above with the description of the associated modes.

168

Chapter 5. Installation and Testing

Interrupts
RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are pointers to
functions with this protoype::

int irq_handler(unsigned vector, unsigned data)

On the PrPMC1100 board, the vector argument is one of many interrupts defined in
hal/arm/xscale/ixp425/current/include/hal_var_ints.h::

#define CYGNUM_HAL_INTERRUPT_NPEA 0
#define CYGNUM_HAL_INTERRUPT_NPEB 1
#define CYGNUM_HAL_INTERRUPT_NPEC 2
#define CYGNUM_HAL_INTERRUPT_QM1 3
#define CYGNUM_HAL_INTERRUPT_QM2 4
#define CYGNUM_HAL_INTERRUPT_TIMER0 5
#define CYGNUM_HAL_INTERRUPT_GPIO0 6
#define CYGNUM_HAL_INTERRUPT_GPIO1 7
#define CYGNUM_HAL_INTERRUPT_PCI_INT 8
#define CYGNUM_HAL_INTERRUPT_PCI_DMA1 9
#define CYGNUM_HAL_INTERRUPT_PCI_DMA2 10
#define CYGNUM_HAL_INTERRUPT_TIMER1 11
#define CYGNUM_HAL_INTERRUPT_USB 12
#define CYGNUM_HAL_INTERRUPT_UART2 13
#define CYGNUM_HAL_INTERRUPT_TIMESTAMP 14
#define CYGNUM_HAL_INTERRUPT_UART1 15
#define CYGNUM_HAL_INTERRUPT_WDOG 16
#define CYGNUM_HAL_INTERRUPT_AHB_PMU 17
#define CYGNUM_HAL_INTERRUPT_XSCALE_PMU 18
#define CYGNUM_HAL_INTERRUPT_GPIO2 19
#define CYGNUM_HAL_INTERRUPT_GPIO3 20
#define CYGNUM_HAL_INTERRUPT_GPIO4 21
#define CYGNUM_HAL_INTERRUPT_GPIO5 22
#define CYGNUM_HAL_INTERRUPT_GPIO6 23
#define CYGNUM_HAL_INTERRUPT_GPIO7 24
#define CYGNUM_HAL_INTERRUPT_GPIO8 25
#define CYGNUM_HAL_INTERRUPT_GPIO9 26
#define CYGNUM_HAL_INTERRUPT_GPIO10 27
#define CYGNUM_HAL_INTERRUPT_GPIO11 28
#define CYGNUM_HAL_INTERRUPT_GPIO12 29
#define CYGNUM_HAL_INTERRUPT_SW_INT1 30
#define CYGNUM_HAL_INTERRUPT_SW_INT2 31

The data passed to the ISR is pulled from a data table (hal_interrupt_data) which immediately follows the
interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

An application may create a normal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.

Memory Maps
The RAM based page table is located at RAM start + 0x4000.

NOTE: The virtual memory maps in this section use a C, B, and X column to indicate the caching policy
for the region..

169

Chapter 5. Installation and Testing

X C B Description
- - - ---
0 0 0 Uncached/Unbuffered
0 0 1 Uncached/Buffered
0 1 0 Cached/Buffered Write Through, Read Allocate
0 1 1 Cached/Buffered Write Back, Read Allocate
1 0 0 Invalid -- not used
1 0 1 Uncached/Buffered No write buffer coalescing
1 1 0 Mini DCache - Policy set by Aux Ctl Register
1 1 1 Cached/Buffered Write Back, Read/Write Allocate

Virtual Address Physical Address XCB Size (MB) Description
--------------- ---------------- --- --------- -----------

0x00000000 0x00000000 010 256 SDRAM (cached)
0x10000000 0x10000000 010 256 SDRAM (alias)
0x20000000 0x00000000 000 256 SDRAM (uncached)
0x48000000 0x48000000 000 64 PCI Data
0x50000000 0x50000000 010 16 Flash (CS0)
0x51000000 0x51000000 000 112 CS1 - CS7
0x60000000 0x60000000 000 64 Queue Manager
0xC0000000 0xC0000000 000 1 PCI Controller
0xC4000000 0xC4000000 000 1 Exp. Bus Config
0xC8000000 0xC8000000 000 1 Misc CPU IO
0xCC000000 0xCC000000 000 1 SDRAM Config

Platform Resource Usage
The CPU programmable OStimer0 is used for timeout support for networking and XModem file transfers.

CalmRISC/CalmRISC16 Samsung CalmRISC16 Core
Evaluation Board

Overview
The Samsung CalmRISC16 evaluation platform consists of two boards connected by a ribbon cable. One
board contains the CPU core and memory. The other board is called the MDSChip board and provides the
host interface. The calmRISC16 is a harvard architecture with separate 22-bit program and data addresses.
The instruction set provides no instruction for writing to program memory. The MDSChip board firmware
(called CalmBreaker) provides a pseudo register interface so that code running on the core has access to a
serial channel and a mechanism to write to program memory. The serial channel is fixed at 57600-8-N-1 by
the firmware. The CalmBreaker firmware also provides a serial protocol which allows a host to download a
program and to start or stop the core board.

The following RedBoot configurations are supported:

Configuration Mode Description File

170

Chapter 5. Installation and Testing

Configuration Mode Description File
ROM [ROM] RedBoot running via the

MDSChip board.
redboot_ROM.ecm

Initial Installation Method
The CalmRISC16 core is controlled through the MDSChip board. There is no non-volatile storage available
for RedBoot, so RedBoot must be downloaded to the board on every power cycle. A small utility program is
used to download S-record files to the eval board. Sources and build instructions for this utility are located in
the RedBoot sources in: packages/hal/calmrisc16/ceb/current/support

To download the RedBoot image, first press the reset button on the MDSChip board. The green ’Run’ LED on
the core board should go off. Now, use the utility to download the RedBoot image with:

$ calmbreaker -p /dev/term/b --reset --srec-code -f redboot.elf

Note that the ’-p /dev/term/b’ specifies the serial port to use and will vary from system to system. The download
will take about two minutes. After it finishes, start RedBoot with:

$ calmbreaker -p /dev/term/b --run

The ’Run’ LED on the core board should be on. Connecting to the MDSboard with a terminal and typing enter
should result in RedBoot reprinting the command prompt.

Special RedBoot Commands
None.

Special Note on Serial Channel
The MDSChip board uses a relatively slow microcontroller to provide the pseudo-register interface to the core
board. This pseudo-register interface provides access to the serial channel and write access to program memory.
Those interfaces are slow and the serial channel is easily overrun by a fast host. For this reason, GDB must be
told to limit the size of code download packets to avoid serial overrun. This is done with the following GDB
command:

(gdb) set download-write-size 25

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=calm16_ceb
export ARCH_DIR=calmrisc16
export PLATFORM_DIR=ceb

171

Chapter 5. Installation and Testing

The names of configuration files are listed above with the description of the associated modes.

CalmRISC/CalmRISC32 Samsung CalmRISC32 Core
Evaluation Board

Overview
The Samsung CalmRISC32 evaluation platform consists of two boards connected by a ribbon cable. One
board contains the CPU core and memory. The other board is called the MDSChip board and provides the
host interface. The calmRISC32 is a harvard architecture with separate 32-bit program and data addresses.
The instruction set provides no instruction for writing to program memory. The MDSChip board firmware
(called CalmBreaker) provides a pseudo register interface so that code running on the core has access to a
serial channel and a mechanism to write to program memory. The serial channel is fixed at 57600-8-N-1 by
the firmware. The CalmBreaker firmware also provides a serial protocol which allows a host to download a
program and to start or stop the core board.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running via the

MDSChip board.
redboot_ROM.ecm

Initial Installation Method
The calmRISC32 core is controlled through the MDSChip board. There is no non-volatile storage available for
RedBoot, so RedBoot must be downloaded to the board on every power cycle. A small utility program is used
to download S-record files to the eval board. Sources and build instructions for this utility are located in the
RedBoot sources in: packages/hal/calmrisc32/ceb/current/support

To download the RedBoot image, first press the reset button on the MDSChip board. The green ’Run’ LED on
the core board should go off. Now, use the utility to download the RedBoot image with:

$ calmbreaker -p /dev/term/b --reset --srec-code -f redboot.elf

Note that the ’-p /dev/term/b’ specifies the serial port to use and will vary from system to syetm. The download
will take about two minutes. After it finishes, start RedBoot with:

$ calmbreaker -p /dev/term/b --run

The ’Run’ LED on the core board should be on. Connecting to the MDSboard with a terminal and typing enter
should result in RedBoot reprinting the command prompt.

172

Chapter 5. Installation and Testing

Special RedBoot Commands
None.

Special Note on Serial Channel
The MDSChip board uses a relatively slow microcontroller to provide the pseudo-register interface to the core
board. This pseudo-register interface provides access to the serial channel and write access to program memory.
Those interfaces are slow and the serial channel is easily overrun by a fast host. For this reason, GDB must be
told to limit the size of code download packets to avoid serial overrun. This is done with the following GDB
command:

(gdb) set download-write-size 25

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=calm32_ceb
export ARCH_DIR=calmrisc32
export PLATFORM_DIR=ceb

The names of configuration files are listed above with the description of the associated modes.

FRV/FRV400 Fujitsu FR-V 400 (MB-93091)

Overview
RedBoot supports both serial ports, which are available via the stacked serial connectors on the mother board.
The topmost port is the default and is considered to be port 0 by RedBoot. The bottommost port is serial port
1. The default serial port settings are 38400,8,N,1.

FLASH management is also supported, but only for the FLASH device in IC7. This arrangement allows for
IC8 to retain either the original Fujitsu board firmware, or some application specific contents.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROMRAM [ROMRAM] RedBoot running from

RAM, but contained in
the board’s flash boot
sector.

redboot_ROMRAM.ecm

173

Chapter 5. Installation and Testing

Configuration Mode Description File
RAM [RAM] RedBoot running from

RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
RedBoot can be installed by directly programming the FLASH device in IC7 or by using the Fujitsu pro-
vided software to download and install a version into the FLASH device. Complete instructions are provided
separately.

Special RedBoot Commands
None.

Memory Maps
The memory map of this platform is fixed by the hardware (cannot be changed by software). The only attributes
which can be modified are control over cacheability, as noted below.

Address Cache? Resource
00000000-03EFFFFF Yes SDRAM (via plugin DIMM)
03F00000-03FFFFFF No SDRAM (used for PCI window)
10000000-1FFFFFFF No MB86943 PCI bridge
20000000-201FFFFF No SRAM
21000000-23FFFFFF No Motherboard resources
24000000-25FFFFFF No PCI I/O space
26000000-2FFFFFFF No PCI Memory space
30000000-FDFFFFFF ?? Unused
FE000000-FEFFFFFF No I/O devices
FF000000-FF1FFFFF No IC7 - RedBoot FLASH
FF200000-FF3FFFFF No IC8 - unused FLASH
FF400000-FFFFFFFF No Misc other I/O

NOTE: The only configuration currently suppored requires a 64MB SDRAM DIMM to be present on the
CPU card. No other memory configuration is supported at this time.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=frv400
export ARCH_DIR=frv
export PLATFORM_DIR=frv400

174

Chapter 5. Installation and Testing

The names of configuration files are listed above with the description of the associated modes.

Fujitsu FR-V Design Kit (MB93091-CBxx)

Overview
RedBoot supports both serial ports, which are available via the stacked serial connectors on the mother board
in the case of the FR400 CPU board, and via serial connectors present on the other supported CPU boards
themselves. The topmost port is the default and is considered to be port 0 by RedBoot. The bottommost port
is serial port 1. The default serial port settings are 115200,8,N,1. The serial port supports baud rates up to
460800, which can be set using the baud command as described in Chapter 2.

FLASH management is also supported, but only for the FLASH device in IC7. This arrangement allows for IC8
to retain either the original Fujitsu board firmware, or some application specific contents. Two basic RedBoot
configurations are supported:

Configuration Mode Description File
ROMRAM [ROMRAM] RedBoot running from

RAM, but contained in
the board’s flash boot
sector.

redboot_ROMRAM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Since the normal RedBoot configuration does not use the FLASH ROM except during startup, it is unnecessary
to load a RAM-based RedBoot before reprogramming the FLASH.

Initial Installation Method
RedBoot can be installed by directly programming the FLASH device in IC7 or by using the Fujitsu pro-
vided software to download and install a version into the FLASH device. Complete instructions are provided
separately.

Special RedBoot Commands
The exec command as described in Chapter 2 is supported by RedBoot on this target, for executing Linux
kernels. Only the command line and timeout options are relevant to this platform.

Memory Maps
The memory map of this platform is fixed by the hardware (cannot be changed by software). The only attributes

175

Chapter 5. Installation and Testing

which can be modified are control over cacheability, as noted below.

Address Cache? Resource
00000000-03EFFFFF Yes SDRAM (via plugin DIMM)
03F00000-03FFFFFF No SDRAM (used for PCI window)
10000000-1FFFFFFF No MB86943 PCI bridge
20000000-201FFFFF No SRAM
21000000-23FFFFFF No Motherboard resources
24000000-25FFFFFF No PCI I/O space
26000000-2FFFFFFF No PCI Memory space
30000000-FDFFFFFF ?? Unused
FE000000-FEFFFFFF No I/O devices
FF000000-FF1FFFFF No IC7 - RedBoot FLASH
FF200000-FF3FFFFF No IC8 - unused FLASH
FF400000-FFFFFFFF No Misc other I/O

NOTE: The only configuration currently suppored requires a 64MiB SDRAM DIMM to be present on the
CPU card. No other memory configuration is supported at this time.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=mb93091
export ARCH_DIR=frv
export PLATFORM_DIR=mb93091

The names of configuration files are listed above with the description of the associated modes.

Resource Usage
The RedBoot image occupies flash addresses 0xFF000000 - 0xFF03FFFF. To execute it copies itself out of
there to RAM at 0x03E00000. RedBoot reserves memory from 0x00000000 to 0x0001FFFF for its own use.
User programs can use memory from 0x00020000 to 0x03DFFFFF. RAM based RedBoot configurations are
designed to run from RAM at 0x00020000.

Fujitsu FR-V Portable Demonstration Kit (MB93093-PD00)

Overview
RedBoot supports the serial port which is available via a special cable connected to the CON_UART connector
on the board. The default serial port settings are 115200,8,N,1. The serial port supports baud rates up to 460800,
which can be set using the baud command as described in Chapter 2.

176

Chapter 5. Installation and Testing

FLASH management is also supported. Two basic RedBoot configurations are supported:

Configuration Mode Description File
ROMRAM [ROMRAM] RedBoot running from

RAM, but contained in
the board’s flash boot
sector.

redboot_ROMRAM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Since the normal RedBoot configuration does not use the FLASH ROM except during startup, it is unnecessary
to load a RAM-based RedBoot before reprogramming the FLASH.

Initial Installation Method
The Portable Demonstration Kit should have been shipped with an existing version of RedBoot, which can be
upgraded to the current version using the instructions below.

Special RedBoot Commands
The exec command as described in Chapter 2 is supported by RedBoot on this target, for executing Linux
kernels. Only the command line and timeout options are relevant to this platform.

Memory Maps
The memory map of this platform is fixed by the hardware (cannot be changed by software). The only attributes
which can be modified are control over cacheability, as noted below.

Address Cache? Resource
00000000-03EFFFFF Yes SDRAM (via plugin DIMM)
03F00000-03FFFFFF No Unused (SDRAM)
10000000-1FFFFFFF No AX88796 Ethernet
20000000-2FFFFFFF No System FPGA
30000000-3FFFFFFF No MB93493 companion chip (unused)
40000000-FCFFFFFF ?? Unused
FD000000-FDFFFFFF ?? FLASH (ROM3,ROM4) (unused)
FE000000-FEFFFFFF No Miscellaneous on-chip I/O
FF000000-FFFFFFFF No RedBoot FLASH (16MiB)

NOTE: The only configuration currently suppored requires a 64MiB SDRAM DIMM to be present on the
CPU card. No other memory configuration is supported at this time.

177

Chapter 5. Installation and Testing

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=mb93093
export ARCH_DIR=frv
export PLATFORM_DIR=mb93093

Resource Usage
The RedBoot image occupies flash addresses 0xFF000000 - 0xFF03FFFF. To execute it copies itself out of
there to RAM at 0x03E00000. RedBoot reserves memory from 0x00000000 to 0x0001FFFF for its own use.
User programs can use memory from 0x00020000 to 0x03DFFFFF. RAM based RedBoot configurations are
designed to run from RAM at 0x00020000.

IA32/x86 x86-Based PC

Overview
RedBoot supports two serial ports and an Intel i82559 based ethernet card (for example an Intel EtherExpress
Pro 10/100) for communication and downloads. The default serial port settings are 38400,8,N,1.

The following RedBoot configurations are supported:

Configuration Mode Description File
Floppy [Floppy] RedBoot running from a

boot floppy disk installed
in the A: drive of the PC.

redboot_ROM.ecm

Initial Installation
RedBoot takes the form of a self-booting image that must be written onto a formatted floppy disk. The process
will erase any file system or data that already exists on that disk, so proceed with caution.

For Red Hat Linux users, this can be done by:

$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0H1440

For NT Cygwin users, this can be done by first ensuring that the raw floppy device is mounted as /dev/fd0.
To check if this is the case, type the command mount at the Cygwin bash prompt. If the floppy drive is already
mounted, it will be listed as something similar to the following line:

\\.\a: /dev/fd0 user binmode

If this line is not listed, then mount the floppy drive using the command:

178

Chapter 5. Installation and Testing

$ mount -f -b //./a: /dev/fd0

To actually install the boot image on the floppy, use the command:

$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0

Insert this floppy in the A: drive of the PC to be used as a target and ensure that the BIOS is configured to boot
from A: by default. On reset, the PC will boot from the floppy and be ready to be debugged via either serial
line, or via the ethernet interface if it is installed.

NOTE: Unreliable floppy media may cause the write to silently fail. This can be determined if the RedBoot
image does not correctly boot. In such cases, the floppy should be (unconditionally) reformatted using the
fdformat command on Linux, or format a: /u on DOS/Windows.

Flash management
PC RedBoot does not support any FLASH commands.

Special RedBoot Commands
None.

Memory Maps
All selectors are initialized to map the entire 32-bit address space in the familiar protected mode flat model.
Page translation is not used. RAM up to 640K is mapped to 0x0 to 0xa0000. RAM above 640K is mapped
from address 0x100000 upwards. Space is reserved between 0xa0000 and 0x100000 for option ROMs and the
BIOS.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=pc
export ARCH_DIR=i386
export PLATFORM_DIR=pc

The names of configuration files are listed above with the description of the associated modes.

179

Chapter 5. Installation and Testing

MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Atlas
Board

Overview
RedBoot supports the DgbSer serial port and the built in ethernet port for communication and downloads. The
default serial port settings are 115200,8,N,1. RedBoot runs from and supports flash management for the system
flash region.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation
RedBoot is installed using the code download facility built into the Atlas board. See the Atlas User manual for
details, and also the Atlas download format in the Section called Atlas download format.

Quick download instructions

Here are quick start instructions for downloading the prebuilt RedBoot image.

1. Locate the prebuilt files in the bin directory: deleteall.dl and redboot.dl.

2. Make sure switch S1-1 is OFF and switch S5-1 is ON. Reset the board and verify that the LED display
reads Flash DL.

3. Make sure your parallel port is connected to the 1284 port Of the Atlas board.

4. Send the deleteall.dl file to the parallel port to erase previous images:

$ cat deleteall.dl >/dev/lp0

When this is complete, the LED display should read Deleted.

5. Send the ROM mode RedBoot image to the board:

$ cat redboot.dl >/dev/lp0

When this is complete, the LED display should show the last address programmed. This will be something
like: 1fc17000.

6. Change switch S5-1 to OFF and reset the board. The LED display should read RedBoot.

7. Run the RedBoot fis init and fconfig commands to initialize the flash. See the Section called Additional
config options, the Section called Flash Image System (FIS) in Chapter 2 and the Section called Persistent
State Flash-based Configuration and Control in Chapter 2 for details.

180

Chapter 5. Installation and Testing

Atlas download format

In order to download RedBoot to the Atlas board, it must be converted to the Atlas download format. There
are different ways of doing this depending on which version of the developer’s kit is shipped with the board.

The Atlas Developer’s Kit CD contains an srec2flash utility. The source code for this utility is part of
the yamon/yamon-src-01.01.tar.gz tarball on the Dev Kit CD. The path in the expanded tarball is
yamon/bin/tools. To use srec2flash to convert the S-record file:

$ srec2flash -EL -S29 redboot.srec >redboot.dl

The Atlas/Malta Developer’s Kit CD contains an srecconv.pl utility which requires Perl. This utilty is part
of the yamon/yamon-src-02.00.tar.gz tarball on the Dev Kit CD. The path in the expanded tarball is
yamon/bin/tools. To use srecconv to convert the S-record file:

$ cp redboot_ROM.srec redboot_ROM.rec

$ srecconv.pl -ES L -A 29 redboot_ROM

The resulting file is named redboot_ROM.fl.

Flash management

Additional config options

The ethernet MAC address is stored in flash manually using the fconfig command. You can use the YAMON
setenv ethaddr command to print out the board ethernet address. Typically, it is:

00:0d:a0:00:xx:xx

where xx.xx is the hex representation of the board serial number.

Additional commands
The exec command which allows the loading and execution of Linux kernels, is supported for this architecture
(see the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for MIPS
boards are:

-b <addr>

Location to store command line and environment passed to kernel

-w <time>

Wait time in seconds before starting kernel

-c "params"

Parameters passed to kernel

<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

181

Chapter 5. Installation and Testing

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers equivalent
to a C call with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified by the -b parameter, or by default at address
0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified, is
0x80000750.

Interrupts
RedBoot uses an interrupt vector table which is located at address 0x80000400. Entries in this table are pointers
to functions with this protoype:

int irq_handler(unsigned vector, unsigned data)

On an atlas board, the vector argument is one of 25 interrupts defined in
hal/mips/atlas/VERSION/include/plf_intr.h:

#define CYGNUM_HAL_INTERRUPT_SER 0
#define CYGNUM_HAL_INTERRUPT_TIM0 1
#define CYGNUM_HAL_INTERRUPT_2 2
#define CYGNUM_HAL_INTERRUPT_3 3
#define CYGNUM_HAL_INTERRUPT_RTC 4
#define CYGNUM_HAL_INTERRUPT_COREHI 5
#define CYGNUM_HAL_INTERRUPT_CORELO 6
#define CYGNUM_HAL_INTERRUPT_7 7
#define CYGNUM_HAL_INTERRUPT_PCIA 8
#define CYGNUM_HAL_INTERRUPT_PCIB 9
#define CYGNUM_HAL_INTERRUPT_PCIC 10
#define CYGNUM_HAL_INTERRUPT_PCID 11
#define CYGNUM_HAL_INTERRUPT_ENUM 12
#define CYGNUM_HAL_INTERRUPT_DEG 13
#define CYGNUM_HAL_INTERRUPT_ATXFAIL 14
#define CYGNUM_HAL_INTERRUPT_INTA 15
#define CYGNUM_HAL_INTERRUPT_INTB 16
#define CYGNUM_HAL_INTERRUPT_INTC 17
#define CYGNUM_HAL_INTERRUPT_INTD 18
#define CYGNUM_HAL_INTERRUPT_SERR 19
#define CYGNUM_HAL_INTERRUPT_HW1 20
#define CYGNUM_HAL_INTERRUPT_HW2 21
#define CYGNUM_HAL_INTERRUPT_HW3 22
#define CYGNUM_HAL_INTERRUPT_HW4 23
#define CYGNUM_HAL_INTERRUPT_HW5 24

The data passed to the ISR is pulled from a data table (hal_interrupt_data) which immediately follows the
interrupt vector table. With 25 interrupts, the data table starts at address 0x80000464 on atlas.

An application may create a normal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.

182

Chapter 5. Installation and Testing

Memory Maps
Memory Maps RedBoot sets up the following memory map on the Atlas board.

Physical Address Range Description
----------------------- -------------
0x00000000 - 0x07ffffff SDRAM
0x08000000 - 0x17ffffff PCI Memory Space
0x18000000 - 0x1bdfffff PCI I/O Space
0x1be00000 - 0x1bffffff System Controller
0x1c000000 - 0x1dffffff System flash
0x1e000000 - 0x1e3fffff Monitor flash
0x1f000000 - 0x1fbfffff FPGA

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=atlas_mips32_4kc
export TARGET=atlas_mips64_5kc
export ARCH_DIR=mips
export PLATFORM_DIR=atlas

Use one of the TARGET settings only.

The names of configuration files are listed above with the description of the associated modes.

MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Malta
Board

Overview
RedBoot supports both front facing serial ports and the built in ethernet port for communication and downloads.
The default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for the
system flash region.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

183

Chapter 5. Installation and Testing

Initial Installation
RedBoot is installed using the code download facility built into the Malta board. See the Malta User manual
for details, and also the Malta download format in the Section called Malta download format.

Quick download instructions

Here are quick start instructions for downloading the prebuilt RedBoot image.

1. Locate the prebuilt files in the bin directory: deleteall.fl and redboot_ROM.fl.

2. Make sure switch S5-1 is ON. Reset the board and verify that the LED display reads Flash DL.

3. Make sure your parallel port is connected to the 1284 port Of the Atlas board.

4. Send the deleteall.fl file to the parallel port to erase previous images:

$ cat deleteall.fl >/dev/lp0

When this is complete, the LED display should read Deleted.

5. Send the RedBoot image to the board:

$ cat redboot_ROM.fl >/dev/lp0

When this is complete, the LED display should show the last address programmed. This will be something
like: 1fc17000.

6. Change switch S5-1 to OFF and reset the board. The LED display should read RedBoot.

7. Run the RedBoot fis init and fconfig commands to initialize the flash. See the Section called Flash Image
System (FIS) in Chapter 2 and the Section called Persistent State Flash-based Configuration and Control
in Chapter 2 for details.

Malta download format

In order to download RedBoot to the Malta board, it must be converted to the Malta download format.

The Atlas/Malta Developer’s Kit CD contains an srecconv.pl utility which requires Perl. This utility is part
of the yamon/yamon-src-02.00.tar.gz tarball on the Dev Kit CD. The path in the expanded tarball is
yamon/bin/tools. To use srecconv to convert the S-record file:

$ cp redboot_ROM.srec redboot_ROM.rec

$ srecconv.pl -ES L -A 29 redboot_ROM

The resulting file is named redboot_ROM.fl.

Additional commands
The exec command which allows the loading and execution of Linux kernels, is supported for this architecture
(see the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for MIPS
boards are:

-b <addr>

Location to store command line and environment passed to kernel

184

Chapter 5. Installation and Testing

-w <time>

Wait time in seconds before starting kernel

-c "params"

Parameters passed to kernel

<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers equivalent
to a C call with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified by the -b parameter, or by default at address
0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified, is
0x80000750.

Interrupts
RedBoot uses an interrupt vector table which is located at address 0x80000200. Entries in this table are pointers
to functions with this protoype:

int irq_handler(unsigned vector, unsigned data)

On the malta board, the vector argument is one of 22 interrupts defined in
hal/mips/malta/VERSION/include/plf_intr.h:

#define CYGNUM_HAL_INTERRUPT_SOUTH_BRIDGE_INTR 0
#define CYGNUM_HAL_INTERRUPT_SOUTH_BRIDGE_SMI 1
#define CYGNUM_HAL_INTERRUPT_CBUS_UART 2
#define CYGNUM_HAL_INTERRUPT_COREHI 3
#define CYGNUM_HAL_INTERRUPT_CORELO 4
#define CYGNUM_HAL_INTERRUPT_COMPARE 5
#define CYGNUM_HAL_INTERRUPT_TIMER 6
#define CYGNUM_HAL_INTERRUPT_KEYBOARD 7
#define CYGNUM_HAL_INTERRUPT_CASCADE 8
#define CYGNUM_HAL_INTERRUPT_TTY1 9
#define CYGNUM_HAL_INTERRUPT_TTY0 10
#define CYGNUM_HAL_INTERRUPT_11 11
#define CYGNUM_HAL_INTERRUPT_FLOPPY 12
#define CYGNUM_HAL_INTERRUPT_PARALLEL 13
#define CYGNUM_HAL_INTERRUPT_REAL_TIME_CLOCK 14
#define CYGNUM_HAL_INTERRUPT_I2C 15
#define CYGNUM_HAL_INTERRUPT_PCI_AB 16
#define CYGNUM_HAL_INTERRUPT_PCI_CD 17
#define CYGNUM_HAL_INTERRUPT_MOUSE 18
#define CYGNUM_HAL_INTERRUPT_19 19
#define CYGNUM_HAL_INTERRUPT_IDE_PRIMARY 20
#define CYGNUM_HAL_INTERRUPT_IDE_SECONDARY 21

The data passed to the ISR is pulled from a data table (hal_interrupt_data) which immediately follows the
interrupt vector table. With 22 interrupts, the data table starts at address 0x80000258.

185

Chapter 5. Installation and Testing

An application may create a normal C function with the above prototype to be an ISR. Just poke its address
into the table at the correct index and enable the interrupt at its source. The return value of the ISR is ignored
by RedBoot.

Memory Maps
Memory Maps RedBoot sets up the following memory map on the Malta board.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

Physical Address Range C B Description
----------------------- - - -----------
0x80000000 - 0x81ffffff Y Y SDRAM
0x9e000000 - 0x9e3fffff Y N System flash (cached)
0x9fc00000 - 0x9fffffff Y N System flash (mirrored)
0xa8000000 - 0xb7ffffff N N PCI Memory Space
0xb4000000 - 0xb40fffff N N Galileo System Controller
0xb8000000 - 0xb80fffff N N Southbridge / ISA
0xb8100000 - 0xbbdfffff N N PCI I/O Space
0xbe000000 - 0xbe3fffff N N System flash (noncached)
0xbf000000 - 0xbfffffff N N Board logic FPGA

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=malta_mips32_4kc
export ARCH_DIR=mips
export PLATFORM_DIR=malta

The names of configuration files are listed above with the description of the associated modes.

MIPS/RM7000 PMC-Sierra Ocelot

Overview
RedBoot uses the front facing serial port. The default serial port settings are 38400,8,N,1. RedBoot also sup-
ports ethernet. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File

186

Chapter 5. Installation and Testing

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Additional commands
The exec command which allows the loading and execution of Linux kernels, is supported for this architecture
(see the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for MIPS
boards are:

-b <addr>

Location to store command line and environment passed to kernel

-w <time>

Wait time in seconds before starting kernel

-c "params"

Parameters passed to kernel

<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers equivalent
to a C call with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified by the -b parameter, or by default at address
0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified, is
0x80000750.

Memory Maps
RedBoot sets up the following memory map on the Ocelot board.

Note that these addresses are accessed through kseg0/1 and thus translate to the actual address range
0x80000000-0xbfffffff, depending on the need for caching/non-caching access to the bus.

NOTE: The virtual memory maps in this section use a C and B column to indicate whether or not the region
is cached (C) or buffered (B).

187

Chapter 5. Installation and Testing

Physical Address Range Description
----------------------- -----------
0x00000000 - 0x0fffffff SDRAM
0x10000000 - 0x10ffffff PCI I/O space
0x12000000 - 0x13ffffff PCI Memory space
0x14000000 - 0x1400ffff Galileo system controller
0x1c000000 - 0x1c0000ff PLD (board logic)
0x1fc00000 - 0x1fc7ffff flash

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=ocelot
export ARCH_DIR=mips
export PLATFORM_DIR=rm7000/ocelot

The names of configuration files are listed above with the description of the associated modes.

MIPS/VR4375 NEC DDB-VRC4375

Overview
RedBoot supports only serial port 1, which is connected to the upper of the stacked serial connectors on the
board. The default serial port settings are 38400,8,N,1. FLASH management is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROMRAM [ROMRAM] RedBoot running from

RAM, but contained in
the board’s flash boot
sector.

redboot_ROMRAM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
A device programmer should be used to program a socketed FLASH part (AMD 29F040). The board as de-
livered is configured for a 512K EPROM. To install a FLASH ROM, Jumpers J30, J31 and J36 need to be
changed as described in the board’s User Manual.

188

Chapter 5. Installation and Testing

Special RedBoot Commands
None.

Memory Maps
RedBoot sets up the memory map primarily as described in the board’s User Manual. There are some minor
differences, noted in the following table:

Physical Virtual Resource
Addresses Addresses
00000000-01FFFFFF 80000000-81FFFFFF Base SDRAM (cached)
00000000-01FFFFFF A0000000-A1FFFFFF Base SDRAM (uncached)
0C000000-0C0BFFFF AC000000-AC0B0000 PCI IO space
0F000000-0F0001FF AF000000-AF0001FF VRC4375 Registers
1C000000-1C0FFFFF BC000000-BC0FFFFF VRC4372 Registers
1C100000-1DFFFFFF BC100000-BDFFFFFF PCI Memory space
1FC00000-1FC7FFFF BFC00000-BFC7FFFF FLASH ROM
80000000-8000000D C0000000-C000000D RTC
8000000E-80007FFF C000000E-C0007FFF NVRAM
81000000-81FFFFFF C1000000-C1FFFFFF Z85C30 DUART
82000000-82FFFFFF C2000000-C2FFFFFF Z8536 Timer
83000000-83FFFFFF C3000000-C3FFFFFF 8255 Parallel port
87000000-87FFFFFF C7000000-C7FFFFFF Seven segment display

NOTE: By default the VRC4375 SIMM control registers are not programmed since the values used must
depend on the SIMMs installed. If SIMMs are to be used, correct values must be placed in these registers
before accessing the SIMM address range.

NOTE: The allocation of address ranges to devices in the PCI IO and memory spaces is handled by the
eCos PCI support library. They do not correspond to those described in the board User Manual.

NOTE: The MMU has been set up to relocate the VRC4372 supported devices mapped at physical ad-
dresses 0x8xxxxxxx to virtual addresses 0xCxxxxxxx.

Ethernet Driver
The ethernet driver is in two parts:

A generic ether driver for the Intel i21143 device is located in devs/eth/intel/i21143. Its package name is
CYGPKG_DEVS_ETH_INTEL_I21143.

The platform-specific ether driver is devs/eth/mips/vrc4375. Its package is
CYGPKG_DEVS_ETH_MIPS_VRC4375. This tells the generic driver the address in IO memory of the chip, for
example, and other configuration details. The ESA (MAC address) is by default collected from on-board
serial EEPROM, unless configured statically within this package.

189

Chapter 5. Installation and Testing

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=vrc4373
export ARCH_DIR=mips
export PLATFORM_DIR=vrc4373

The names of configuration files are listed above with the description of the associated modes.

PowerPC/MPC860T Analogue & Micro PowerPC 860T

Overview
RedBoot uses the SMC1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is also supported
using the RJ-45 connector. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROMRAM [ROMRAM] RedBoot running from

RAM, but contained in
the board’s flash boot
sector.

redboot_ROMRAM.ecm

Initial Installation Method
RedBoot must be installed at the A & M factory.

Special RedBoot Commands
None.

Memory Maps
Memory Maps RedBoot sets up the following memory map on the MBX board.

Physical Address Range Description
----------------------- -----------
0x00000000 - 0x007fffff DRAM
0xfe000000 - 0xfe0fffff flash (AMD29LV8008B)
0xff000000 - 0xff0fffff MPC registers

190

Chapter 5. Installation and Testing

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=viper
export ARCH_DIR=powerpc
export PLATFORM_DIR=viper

The names of configuration files are listed above with the description of the associated modes.

PowerPC/MPC8XX Motorola MBX

Overview
RedBoot uses the SMC1/COM1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is also
supported using the 10-base T connector.

Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
Device programmer is used to program the XU1 socketed flash part (AM29F040B) with the ROM mode image
of RedBoot. Use the on-board EPPC-Bug monitor to update RedBoot.

This assumes that you have EPPC-Bug in the on-board flash. This can be determined by setting up the board
according to the following instructions and powering up the board.

The EPPC-Bug prompt should appear on the SMC1 connector at 9600 baud, 8N1.

1. Set jumper 3 to 2-3 [allow XU1 flash to be programmed]

2. Set jumper 4 to 2-3 [boot EPPC-Bug]

If it is available, program the flash by following these steps:

1. Prepare EPPC-Bug for download:

EPPC-Bug>lo 0

191

Chapter 5. Installation and Testing

At this point the monitor is ready for input. It will not return the prompt until the file has been downloaded.

2. Use the terminal emulator’s ASCII download feature (or a simple clipboard copy/paste operation) to down-
load the redboot.ppcbug file.

Note that on Linux, Minicom’s ASCII download feature seems to be broken. A workaround is to load
the file into emacs (or another editor) and copy the full contents to the clipboard. Then press the mouse
paste-button (usually the middle one) over the Minicom window.

3. Program the flash with the downloaded data:

EPPC-Bug>pflash 40000 60000 fc000000

4. Switch off the power, and change jumper 4 to 1-2. Turn on the power again. The board should now boot
using the newly programmed RedBoot.

Special RedBoot Commands
None.

Memory Maps
Memory Maps RedBoot sets up the following memory map on the MBX board.

Physical Address Range Description
----------------------- -----------
0x00000000 - 0x003fffff DRAM
0xfa100000 - 0xfa100003 LEDs
0xfe000000 - 0xfe07ffff flash (AMD29F040B)
0xff000000 - 0xff0fffff MPC registers

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=mbx
export ARCH_DIR=powerpc
export PLATFORM_DIR=mbx

The names of configuration files are listed above with the description of the associated modes.

SuperH/SH3(SH7708) Hitachi EDK7708

Overview
RedBoot uses the serial port. The default serial port settings are 38400,8,N,1.

192

Chapter 5. Installation and Testing

Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
Program the ROM RedBoot image into flash using an eprom programmer.

Memory Maps
RedBoot sets up the following memory map on the EDK7708 board.

Physical Address Range Description
----------------------- -----------
0x80000000 - 0x8001ffff Flash (AT29LV1024)
0x88000000 - 0x881fffff DRAM
0xa4000000 - 0xa40000ff LED ON
0xb8000000 - 0xb80000ff LED ON

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=edk7708
export ARCH_DIR=sh
export PLATFORM_DIR=edk7708

The names of configuration files are listed above with the description of the associated modes.

193

Chapter 5. Installation and Testing

SuperH/SH3(SH7709) Hitachi Solution Engine 7709

Overview
This description covers the MS7709SE01 variant. See the Section called SuperH/SH3(SH77X9) Hitachi Solu-
tion Engine 77X9 for instructions for the MS7729SE01 and MS7709SSE0101 variants.

RedBoot uses the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1. Ethernet is
also supported using the 10-base T connector.

Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial programming of
RedBoot:

1. Set switch SW4-1 to ON [boot from EPROM]

2. Connect a serial cable to CN1 (SCI) and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:

Ready >fl

4. The monitor should now ask for input:

Flash ROM data copy to RAM
Please Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:

$ cat redboot_SE7709RP_ROM.eprom.srec > /dev/ttyS0

Eventually you should see something like

Start Addrs = A1000000
End Addrs = A1xxxxxx
Transfer complete

from the monitor.

5. Set switch SW4-1 to OFF [boot from flash] and reboot the board. You should now see the RedBoot banner.

194

Chapter 5. Installation and Testing

Special RedBoot Commands
The exec command which allows the loading and execution of Linux kernels is supported for this board (see
the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for the SE77x9
are:

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to 0x8c101000

-i <addr>

Start address of initrd image

-j <size>

Size of initrd image

-c "args"

Kernel arguments string

-m <flags>

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.

-f <flags>

RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101

-l <type>

Loader type

Finally the kernel entry address can be specified as an optional argument. The default is 0x8c102000

For the the SE77x9, Linux by default expects to be loaded at 0x8c001000 which conflicts with the data space
used by RedBoot. To work around this, either change the CONFIG_MEMORY_START kernel option to a
higher address, or use the compressed kernel image and load it at a higher address. For example, setting
CONFIG_MEMORY_START to 0x8c100000, the kernel expects to be loaded at address 0x8c101000 with the
entry point at 0x8c102000.

Memory Maps
RedBoot sets up the following memory map on the SE77x9 board.

Physical Address Range Description
----------------------- -----------
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - 0x8dffffff DRAM
0xb0000000 - 0xb03fffff Ethernet (DP83902A)
0xb0800000 - 0xb08fffff 16C552A
0xb1000000 - 0xb100ffff Switches
0xb1800000 - 0xb18fffff LEDs
0xb8000000 - 0xbbffffff PCMCIA (MaruBun)

195

Chapter 5. Installation and Testing

Ethernet Driver
The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=se77x9
export ARCH_DIR=sh
export PLATFORM_DIR=se77x9

The names of configuration files are listed above with the description of the associated modes.

SuperH/SH3(SH7729) Hitachi HS7729PCI

Overview
RedBoot uses the COM1 and COM2 serial ports (and the debug port on the motherboard). The default se-
rial port settings are 38400,8,N,1. Ethernet is also supported using a D-Link DFE-530TX PCI plugin card.
Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
A ROM mode RedBoot image must be programmed into the two EPROMs. Two files with a split version of the
ROM mode image is provided: it is also possible to recreate these from the redboot.bin file, but requires the
split_word.c program in hal/sh/hs7729pci/VERSION/misc to be built and executed with the redboot.bin

filename as sole argument.

After doing this it is advised that another ROM mode image of RedBoot is programmed into the on-board
flash, and that copy be used for booting the board. This allows for software programmed updates of RedBoot

196

Chapter 5. Installation and Testing

instead of having to reprogram the EPROMs.

1. Program the EPROMs with RedBoot. The .lo image should go in socket M1 and the .hi image in socket
M2.

2. Set switch SW1-6 to ON [boot from EPROM]

3. Follow the instructions under Flash management for updating the flash copy of RedBoot, but force the
flash destination address with

-f 0x80400000

due to setting of the SW1-6 switch.

4. Set switch SW1-6 to OFF [boot from flash] and reboot the board. You should now see the RedBoot
banner. At this time you may want to issue the command fis init to initialize the flash table with the
correct addresses.

Special RedBoot Commands
The exec command which allows the loading and execution of Linux kernels is supported for this board (see the
Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for the HS7729PCI
are:

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to 0x8c101000

-i <addr>

Start address of initrd image

-j <size>

Size of initrd image

-c "args"

Kernel arguments string

-m <flags>

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.

-f <flags>

RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101

-l <type>

Loader type

Finally the kernel entry address can be specified as an optional argument. The default is 0x8c102000

On the HS7729PCI, Linux expects to be loaded at address 0x8c101000 with the entry point at 0x8c102000.
This is configurable in the kernel using the CONFIG_MEMORY_START option.

197

Chapter 5. Installation and Testing

Memory Maps
RedBoot sets up the following memory map on the HS7729PCI board.

Physical Address Range Description
----------------------- -----------
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x80400000 - 0x807fffff EPROM (M27C800)
0x82000000 - 0x82ffffff SRAM
0x89000000 - 0x89ffffff SRAM
0x8c000000 - 0x8fffffff SDRAM
0xa8000000 - 0xa800ffff SuperIO (FDC37C935A)
0xa8400000 - 0xa87fffff USB function (ML60851C)
0xa8800000 - 0xa8bfffff USB host (SL11HT)
0xa8c00000 - 0xa8c3ffff Switches
0xa8c40000 - 0xa8c7ffff LEDs
0xa8c80000 - 0xa8cfffff Interrupt controller
0xb0000000 - 0xb3ffffff PCI (SD0001)
0xb8000000 - 0xbbffffff PCMCIA (MaruBun)

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=hs7729pci
export ARCH_DIR=sh
export PLATFORM_DIR=hs7729pci

The names of configuration files are listed above with the description of the associated modes.

SuperH/SH3(SH77X9) Hitachi Solution Engine 77X9

Overview
This description covers the MS7729SE01 and MS7709SSE0101 variants. See the Section called
SuperH/SH3(SH7709) Hitachi Solution Engine 7709 for instructions for the MS7709SE01 variant.

RedBoot uses the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1. Ethernet is
also supported using the 10-base T connector. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

198

Chapter 5. Installation and Testing

Configuration Mode Description File
RAM [RAM] RedBoot running from

RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial programming of
RedBoot:

1. Set switches SW4-3 and SW4-4 to ON [boot from EPROM]

2. Connect a serial cable to COM2 and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:

Ready >fl

4. The monitor should now ask for input:

Flash ROM data copy to RAM
Please Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:

$ cat redboot_ROM.eprom.srec > /dev/ttyS0

Eventually you should see something like

Start Addrs = A1000000
End Addrs = A1xxxxxx
Transfer complete

from the monitor.

5. Set switch SW4-3 to OFF [boot from flash] and reboot the board. You should now see the RedBoot banner.

Special RedBoot Commands
The exec command which allows the loading and execution of Linux kernels is supported for this board (see
the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for the SE77x9
are:

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to 0x8c101000

-i <addr>

Start address of initrd image

-j <size>

Size of initrd image

-c "args"

Kernel arguments string

199

Chapter 5. Installation and Testing

-m <flags>

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.

-f <flags>

RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101

-l <type>

Loader type

Finally the kernel entry address can be specified as an optional argument. The default is 0x8c102000

On the SE77x9, Linux expects to be loaded at address 0x8c101000 with the entry point at 0x8c102000. This
is configurable in the kernel using the CONFIG_MEMORY_START option.

Memory Maps
RedBoot sets up the following memory map on the SE77x9 board.

Physical Address Range Description
----------------------- -----------
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - 0x8dffffff SDRAM
0xb0000000 - 0xb03fffff Ethernet (DP83902A)
0xb0400000 - 0xb07fffff SuperIO (FDC37C935A)
0xb0800000 - 0xb0bfffff Switches
0xb0c00000 - 0xbfffffff LEDs
0xb1800000 - 0xb1bfffff PCMCIA (MaruBun)

Ethernet Driver
The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=se77x9
export ARCH_DIR=sh
export PLATFORM_DIR=se77x9

The names of configuration files are listed above with the description of the associated modes.

200

Chapter 5. Installation and Testing

SuperH/SH4(SH7751) Hitachi Solution Engine 7751

Overview
RedBoot uses the COM1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is also supported
using the 10-base T connector. Management of onboard flash is also supported.

The following RedBoot configurations are supported:

Configuration Mode Description File
ROM [ROM] RedBoot running from

the board’s flash boot
sector.

redboot_ROM.ecm

RAM [RAM] RedBoot running from
RAM with RedBoot in
the flash boot sector.

redboot_RAM.ecm

Initial Installation Method
The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial programming of
RedBoot:

1. Set switches SW5-3 and SW5-4 to ON [boot from EPROM]

2. Connect a serial cable to COM1 and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:

Ready >fl

4. The monitor should now ask for input:

Flash ROM data copy to RAM
Please Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:

$ cat redboot_ROM.eprom.srec > /dev/ttyS0

Eventually you should see something like

Start Addrs = A1000000
End Addrs = A1xxxxxx
Transfer complete

from the monitor.

5. Set switch SW5-3 to OFF [boot from flash] and reboot the board. You should now see the RedBoot banner.

Special RedBoot Commands
The exec command which allows the loading and execution of Linux kernels is supported for this board (see
the Section called Executing Programs from RedBoot in Chapter 2). The exec parameters used for the SE7751
are:

201

Chapter 5. Installation and Testing

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to 0x8c101000

-i <addr>

Start address of initrd image

-j <size>

Size of initrd image

-c "args"

Kernel arguments string

-m <flags>

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.

-f <flags>

RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101

-l <type>

Loader type

Finally the kernel entry address can be specified as an optional argument. The default is 0x8c102000

On the SE7751, Linux expects to be loaded at address 0x8c101000 with the entry point at 0x8c102000. This
is configurable in the kernel using the CONFIG_MEMORY_START option.

Memory Maps
RedBoot sets up the following memory map on the SE7751 board.

Physical Address Range Description
----------------------- -----------
0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - 0x8fffffff SDRAM
0xb8000000 - 0xb8ffffff PCMCIA (MaruBun)
0xb9000000 - 0xb9ffffff Switches
0xba000000 - 0xbaffffff LEDs
0xbd000000 - 0xbdffffff PCI MEM space
0xbe200000 - 0xbe23ffff PCI Ctrl space
0xbe240000 - 0xbe27ffff PCI IO space

Ethernet Driver
The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

202

Chapter 5. Installation and Testing

Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot according to the
procedure described in Chapter 3:

export TARGET=se7751
export ARCH_DIR=sh
export PLATFORM_DIR=se7751

The names of configuration files are listed above with the description of the associated modes.

203

Chapter 5. Installation and Testing

204

	RedBoot User's Guide
	Table of Contents
	List of Examples
	Chapter 1. Getting Started with RedBoot
	More information about RedBoot on the web
	Installing RedBoot
	User Interface
	RedBoot Editing Commands
	RedBoot Command History
	RedBoot Startup Mode
	RedBoot Resource Usage
	Flash Resources
	RAM Resources

	Configuring the RedBoot Environment
	Target Network Configuration
	Host Network Configuration
	Enable TFTP on Red Hat Linux 6.2
	Enable TFTP on Red Hat Linux 7 (or newer)
	Enable BOOTP/DHCP server on Red Hat Linux
	Enable DNS server on Red Hat Linux
	RedBoot network gateway

	Verification

	Chapter 2. RedBoot Commands and Examples
	Introduction
	Common Commands
	alias
	Name
	Synopsis
	Arguments
	Description
	Examples

	baudrate
	Name
	Synopsis
	Arguments
	Description
	Examples

	cache
	Name
	Synopsis
	Arguments
	Description
	Examples

	channel
	Name
	Synopsis
	Arguments
	Description
	Examples

	cksum
	Name
	Synopsis
	Arguments
	Description
	Examples

	disks
	Name
	Synopsis
	Arguments
	Description
	Examples

	dump
	Name
	Synopsis
	Arguments
	Description
	Examples

	help
	Name
	Synopsis
	Arguments
	Description
	Examples

	iopeek
	Name
	Synopsis
	Arguments
	Description
	Examples

	iopoke
	Name
	Synopsis
	Arguments
	Description
	Examples

	gunzip
	Name
	Synopsis
	Arguments
	Description
	Examples

	ipaddress
	Name
	Synopsis
	Arguments
	Description
	Examples

	load
	Name
	Synopsis
	Arguments
	Description
	Examples

	mcmp
	Name
	Synopsis
	Arguments
	Description
	Examples

	mcopy
	Name
	Synopsis
	Arguments
	Description
	Examples

	mfill
	Name
	Synopsis
	Arguments
	Description
	Examples

	ping
	Name
	Synopsis
	Arguments
	Description
	Examples

	reset
	Name
	Synopsis
	Arguments
	Description
	Examples

	version
	Name
	Synopsis
	Arguments
	Description
	Examples

	Flash Image System (FIS)
	fis init
	Name
	Synopsis
	Arguments
	Description
	Examples

	fis list
	Name
	Synopsis
	Arguments
	Description
	Examples

	fis free
	Name
	Synopsis
	Description
	Examples

	fis create
	Name
	Synopsis
	Arguments
	Description
	Examples

	fis load
	Name
	Synopsis
	Arguments
	Description
	Examples

	fis delete
	Name
	Synopsis
	Arguments
	Description
	Examples

	fis lock
	Name
	Synopsis
	Arguments
	Description
	Examples

	fis unlock
	Name
	Synopsis
	Arguments
	Description
	Examples

	fis erase
	Name
	Synopsis
	Arguments
	Description
	Examples

	fis write
	Name
	Synopsis
	Arguments
	Description
	Examples

	Filesystem Interface
	fs info
	Name
	Synopsis
	Arguments
	Description
	Examples

	fs mount
	Name
	Synopsis
	Arguments
	Description
	Examples

	fs umount
	Name
	Synopsis
	Arguments
	Description
	Examples

	fs cd
	Name
	Synopsis
	Arguments
	Description
	Examples

	fs mkdir
	Name
	Synopsis
	Arguments
	Description
	Examples

	fs deldir
	Name
	Synopsis
	Arguments
	Description
	Examples

	fs del
	Name
	Synopsis
	Arguments
	Description
	Examples

	fs move
	Name
	Synopsis
	Arguments
	Description
	Examples

	fs list
	Name
	Synopsis
	Arguments
	Description
	Examples

	fs write
	Name
	Synopsis
	Arguments
	Description
	Examples

	Persistent State Flashbased Configuration and Control
	Executing Programs from RedBoot
	go
	Name
	Synopsis
	Arguments
	Description
	Examples

	exec
	Name
	Synopsis
	Arguments
	Description
	Examples

	Chapter 3. Rebuilding RedBoot
	Introduction
	Rebuilding RedBoot using ecosconfig
	Rebuilding RedBoot from the Configuration Tool

	Chapter 4. Updating RedBoot
	Introduction
	Load and start a RedBoot RAM instance
	Update the primary RedBoot flash image
	Reboot; run the new RedBoot image

	Chapter 5. Installation and Testing
	AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0) ASB2305 Board
	Overview
	Initial Installation
	Preparing to program the board
	Preparing to use the JTAG debugger
	Loading the RAMbased RedBoot via JTAG
	Loading the boot PROMbased RedBoot via the RAM mode RedBoot

	Additional Commands
	Memory Maps
	Rebuilding RedBoot

	ARM/ARM7 ARM Evaluator7T
	Overview
	Initial Installation
	Quick download instructions
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	ARM/ARM7+ARM9 ARM Integrator
	Overview
	Initial Installation
	Quick download instructions
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	ARM/ARM7+ARM9 ARM PID Board and EPI Dev7+Dev9
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	ARM/ARM7 Atmel AT91 Evaluation Boards (EBXX)
	Overview
	Initial Installation Method
	Installing RedBoot on the EB40
	Installing RedBoot on the EB40A, EB42 or EB55

	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	ARM/ARM7 Atmel JTST Evaluation Board (AT572D740DK1)
	Overview
	Installing a RedBoot image on the JTST
	GDB console
	PC console

	Special RedBoot Commands
	Memory Maps

	ARM/ARM7 Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Platform Resource Usage
	Rebuilding RedBoot

	ARM/ARM9 Agilent AAED2000
	Overview
	Initial Installation Method
	RedBoot as Primary Bootmonitor

	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	ARM/ARM9 Altera Excalibur
	Overview
	Initial Installation Method
	Flash management
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	ARM/StrongARM(SA110) Intel EBSA 285
	Overview
	Initial Installation Method
	Communication Channels
	Special RedBoot Commands
	Memory Maps
	Platform Resource Usage
	Rebuilding RedBoot

	ARM/StrongARM(SA1100) Intel Brutus
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Platform Resource Usage
	Rebuilding RedBoot

	ARM/StrongARM(SA1100) Intel SA1100 Multimedia Board
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Platform Resource Usage
	Rebuilding RedBoot

	ARM/StrongARM(SA1110) Intel SA1110 (Assabet)
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Platform Resource Usage
	Rebuilding RedBoot

	ARM/StrongARM(SA11X0) Bright Star Engineering commEngine and nanoEngine
	Overview
	Initial Installation
	Download Instructions
	Cohabiting with POST in Flash
	Special RedBoot Commands
	Memory Maps
	Nano Platform Port
	Ethernet Driver
	Rebuilding RedBoot

	ARM/StrongARM(SA11X0) Compaq iPAQ PocketPC
	Overview
	Initial Installation
	Installing RedBoot on the iPAQ using Windows/CE
	Installing RedBoot on the iPAQ using the Compaq boot loader
	Setting up and testing RedBoot
	Installing RedBoot permanently
	Restoring Windows/CE

	Additional commands
	Memory Maps
	Rebuilding RedBoot

	ARM/StrongARM(SA11X0) Intrinsyc CerfCube
	Overview
	Initial Installation
	Additional commands
	Memory Maps
	Rebuilding RedBoot

	ARM/XScale Cyclone IQ80310
	Overview
	Initial Installation Method
	Error codes
	Using RedBoot with ARM Bootloader
	Special RedBoot Commands
	IQ80310 Hardware Tests
	Rebuilding RedBoot
	Interrupts
	Memory Maps
	Platform Resource Usage

	ARM/XScale Intel IQ80321
	Overview
	Initial Installation Method
	Switch Settings
	LED Codes
	Special RedBoot Commands
	Memory Tests
	Repeating Memory Tests
	RepeatOnFail Memory Tests
	Rotary Switch S1 Test
	7 Segment LED Tests
	i82544 Ethernet Configuration
	Battery Status Test
	Battery Backup SDRAM Memory Test
	Timer Test
	PCI Bus Test
	CPU Cache Loop

	Rebuilding RedBoot
	Interrupts
	Memory Maps
	Platform Resource Usage

	ARM/Intel XScale IXDP425 Network Processor Evaluation Board
	Overview
	Initial Installation Method
	LED Codes
	Rebuilding RedBoot
	Interrupts
	Memory Maps
	Platform Resource Usage

	ARM/Intel XScale Generic Residential Gateway
	Overview
	Initial Installation Method
	Rebuilding RedBoot
	Interrupts
	Memory Maps
	Platform Resource Usage

	Motorola PrPMC1100 CPU card
	Overview
	Initial Installation Method
	Rebuilding RedBoot
	Interrupts
	Memory Maps
	Platform Resource Usage

	CalmRISC/CalmRISC16 Samsung CalmRISC16 Core Evaluation Board
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Special Note on Serial Channel
	Rebuilding RedBoot

	CalmRISC/CalmRISC32 Samsung CalmRISC32 Core Evaluation Board
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Special Note on Serial Channel
	Rebuilding RedBoot

	FRV/FRV400 Fujitsu FRV 400 (MB93091)
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	Fujitsu FRV Design Kit (MB93091CBxx)
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot
	Resource Usage

	Fujitsu FRV Portable Demonstration Kit (MB93093PD00)
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot
	Resource Usage

	IA32/x86 x86Based PC
	Overview
	Initial Installation
	Flash management
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Atlas Board
	Overview
	Initial Installation
	Quick download instructions
	Atlas download format

	Flash management
	Additional config options

	Additional commands
	Interrupts
	Memory Maps
	Rebuilding RedBoot

	MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Malta Board
	Overview
	Initial Installation
	Quick download instructions
	Malta download format

	Additional commands
	Interrupts
	Memory Maps
	Rebuilding RedBoot

	MIPS/RM7000 PMCSierra Ocelot
	Overview
	Additional commands
	Memory Maps
	Rebuilding RedBoot

	MIPS/VR4375 NEC DDBVRC4375
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Ethernet Driver
	Rebuilding RedBoot

	PowerPC/MPC860T Analogue & Micro PowerPC 860T
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	PowerPC/MPC8XX Motorola MBX
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	SuperH/SH3(SH7708) Hitachi EDK7708
	Overview
	Initial Installation Method
	Memory Maps
	Rebuilding RedBoot

	SuperH/SH3(SH7709) Hitachi Solution Engine 7709
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Ethernet Driver
	Rebuilding RedBoot

	SuperH/SH3(SH7729) Hitachi HS7729PCI
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Rebuilding RedBoot

	SuperH/SH3(SH77X9) Hitachi Solution Engine 77X9
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Ethernet Driver
	Rebuilding RedBoot

	SuperH/SH4(SH7751) Hitachi Solution Engine 7751
	Overview
	Initial Installation Method
	Special RedBoot Commands
	Memory Maps
	Ethernet Driver
	Rebuilding RedBoot

