
The Embedded I/O Company

TPMC861-S
VxWorks Device

4 Channel Isolated Serial Interfa

Version 4.0.x

User Manu

Issue 4.0.0

March 2012

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-42
Driver

ce (RS422/RS485)

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC861-SW-42 – VxWorks Device Driver Page 2 of 46

TPMC861-SW-42

VxWorks Device Driver

4 Chan. Isolated Serial Interface (RS422/RS485)

Supported Modules:
TPMC861

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2001-2012 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue July 7, 2001

1.1 Overrun Error added February 18, 2001

1.2 Mark/Space Parity added June 26, 2003

2.0.0 New File List, tpmc861Drv() and tpmc861DevCreate() have changed,
Description of tpmc861PciInit() added, Advanced description of the

ioctl() function codes

August 14, 2006

2.0.1 New Address TEWS LLC October 10, 2006

2.0.2 Description of BSP dependencies February 12, 2007

2.1.0 Description of default configuration, Description how to include device
driver into VxWorks projects modified, Address TEWS LLC removed

July 6, 2009

3.0.0 New version of driver, Legacy and VxBus-Support August 30, 2010

3.1.0 File list modified, Document layout revision. September 6, 2011

4.0.0 New ioctl function FIO_EXAR16XXX_CHANNEL_INFO, new chapter
Configuration of FIFO-Trigger-Levels

March 1, 2012

TPMC861-SW-42 – VxWorks Device Driver Page 3 of 46

Table of Contents

1 INTRODUCTION... 4

1.1 Device Driver ...4

2 INSTALLATION.. 5

2.1 Legacy vs. VxBus Driver ..6

2.2 VxBus Driver Installation ...6

2.2.1 Direct BSP Builds...8
2.2.2 Modification of the ‘Number of serial ports’..8

2.3 Legacy Driver Installation ..9

2.3.1 Include Device Driver in VxWorks Projects..9
2.3.2 Special Installation for Intel x86 based Targets ...9
2.3.3 BSP Dependent Adjustments ..10

2.4 System Resource Requirement...11

2.5 Default Configuration ...12

2.6 Configuration of FIFO-Trigger-Levels...13

3 VXBUS DRIVER SUPPORT... 14

3.1 Assignment of Port Names ..14

3.2 VxBus Error Codes ...14

3.3 Compatibility to pre-VxBus Applications ...15

4 LEGACY I/O SYSTEM FUNCTIONS.. 16

4.1 tpmc861Drv..16

4.2 tpmc861DevCreate..18

4.3 tpmc861PciInit...20

4.4 tpmc861Init ..21

5 BASIC I/O FUNCTIONS ... 23

5.1 open..23

5.2 close ...25

5.3 read...27

5.4 write..29

5.5 ioctl ...31

5.5.1 FIOBAUDRATE..33
5.5.2 FIO_EXAR16XXX_DATABITS ..34
5.5.3 FIO_EXAR16XXX_STOPBITS ..35
5.5.4 FIO_EXAR16XXX_PARITY ...36
5.5.5 FIO_EXAR16XXX_SETBREAK...37
5.5.6 FIO_EXAR16XXX_CLEARBREAK..38
5.5.7 FIO_EXAR16XXX_CHECKBREAK ...39
5.5.8 FIO_EXAR16XXX_CHECKERRORS..40
5.5.9 FIO_EXAR16XXX_RECONFIGURE ...41
5.5.10 FIO_EXAR16XXX_FIFO..42
5.5.11 FIO_EXAR16XXX_CHANNEL_INFO..44

TPMC861-SW-42 – VxWorks Device Driver Page 4 of 46

1 Introduction

1.1 Device Driver

The TPMC861-SW-42 VxWorks device driver software allows the operation of the supported modules
conforming to the VxWorks I/O system specification. This includes a device-independent basic I/O
interface with open(), close(), read(), write(), and ioctl() functions and a buffered I/O interface (fopen(),
fclose(), fprintf(), fscanf(), ...).

Special I/O operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TPMC861-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x release and mandatory for VxWorks SMP systems.

The TPMC861 driver includes the following functions supported by the VxWorks tty driver support
library for pre-VxBus systems or the sio driver library for VxBus compatible systems.

 ring buffering of input and output
 raw mode
 optional line mode with backspace and line-delete functions
 optional processing of X-on/X-off
 optional RETURN/LINEFEED conversion
 optional echoing of input characters
 optional stripping of the parity bit from 8 bit input
 optional special characters for shell abort and system restart

Additionally the following optional functions:

 select FIFO triggering point
 use 5...8 bit data words
 use 1, 1.5 or 2 stop bits
 optional even or odd parity
 changing baudrates
 reading board information and PCI location

The TPMC861-SW-42 supports the modules listed below:

TPMC861-10 4 Channel Isolated Serial Interface (RS422/RS485) (PMC)

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC861 User Manual

TPMC861 Engineering Manual

TPMC861-SW-42 – VxWorks Device Driver Page 5 of 46

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC861-SW-42’:

TPMC861-SW-42-4.0.0.pdf PDF copy of this manual
TPMC861-SW-42-VXBUS.zip Zip compressed archive with VxBus driver sources
TPMC861-SW-42-LEGACY.zip Zip compressed archive with legacy driver sources
ChangeLog.txt Release history
Release.txt Release information

The archive TPMC861-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/tpmc861’:

tpmc861drv.c TPMC861 device driver source (TPMC861 specific)
tpmc861def.h TPMC861 driver include file
tpmc861defaults.h TPMC861 device default configuration
tpmc861.h TPMC861 include file for driver and application
exar16xxxDrv.c device driver source (controller specific)
exar16xxxDef.h driver include file (controller specific)
exar16xxx.h include file for driver and application (controller specific)
Makefile Driver Makefile
40tpmc861.cdf Component description file for VxWorks development tools
tpmc861.dc Configuration stub file for direct BSP builds
tpmc861.dr Configuration stub file for direct BSP builds
include/tvxbHal.h Hardware dependent interface functions and definitions
apps/tpmc861exa.c Example application

The archive TPMC861-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./tpmc861’:

tpmc861drv.c TPMC861 device driver source
tpmc861def.h TPMC861 driver include file
tpmc861defaults.h TPMC861 device default configuration
tpmc861.h TPMC861 include file for driver and application
tpmc861pci.c TPMC861 device driver source for x86 based systems
exar16xxxDrv.c device driver source (controller specific)
exar16xxxDef.h driver include file (controller specific)
exar16xxx.h include file for driver and application (controller specific)
tpmc861exa.c Example application
include/tdhal.h Hardware dependent interface functions and definitions

TPMC861-SW-42 – VxWorks Device Driver Page 6 of 46

2.1 Legacy vs. VxBus Driver

In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

 VxWorks 5.x releases

 VxWorks 6.5 and earlier
releases

 VxWorks 6.x releases without
VxBus PCI bus support

 VxWorks 6.6 and later releases
with VxBus PCI bus

 SMP systems (only the VxBus
driver is SMP safe)

 64-bit systems (only the VxBus
driver is 64-bit compatible)

TEWS TECHNOLOGIES recommends not using the VxBus Driver before VxWorks release 6.6.
In previous releases required header files are missing and the support for 3

rd
-party drivers may

not be available.

2.2 VxBus Driver Installation

Because Wind River doesn’t provide a standard installation method for 3
rd

party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive TPMC861-SW-42-VXBUS.zip
to the typical 3

rd
party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be

substituted by the VxWorks installation directory).

After successful installation the TPMC861 device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/tpmc861.

At this point the TPMC861 driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processer (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/tpmc861

(3) Invoke the build command for the required processor and build tool with optional VXBUILD
argument
make CPU=cpuName TOOL=tool [VXBUILD=xxx]

TPMC861-SW-42 – VxWorks Device Driver Page 7 of 46

For Windows hosts this may look like this:

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc861

C:> make CPU=PENTIUM4 TOOL=diab

To compile SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line

C:> make CPU=PENTIUM4 TOOL=diab VXBUILD=SMP

To build 64-bit libraries, the argument VXBUILD=LP64 must be added to the command line

> make TOOL=gnu CPU=CORE VXBUILD=LP64

For 64-bit SMP-enabled libraries a build command may look like this

> make TOOL=gnu CPU=CORE VXBUILD="LP64 SMP"

To integrate the TPMC861 driver with the VxWorks development tools (Workbench), the component
configuration file 40tpmc861.cdf must be copied to the directory
installDir/vxworks-6.x/target/config/comps/VxWorks.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc861

C:> copy 40tpmc861.cdf \Windriver\vxworks-6.7\target\config\comps\vxWorks

In VxWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

C:> cd \Windriver\vxworks-6.7\target\config\comps\vxWorks

C:> del CxrCat.txt

C:> make

After successful completion of all steps above and restart of the Wind River Workbench, the TPMC861
driver can be included in VxWorks projects by selecting the “TEWS TPMC861 Driver“ component in
the “hardware (default) - Device Drivers” folder with the kernel configuration tool.

TPMC861-SW-42 – VxWorks Device Driver Page 8 of 46

2.2.1 Direct BSP Builds

In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the TPMC861 configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc861

C:> copy tpmc861.dc \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> copy tpmc861.dr \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> cd \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> make vxbUsrCmdLine.c

2.2.2 Modification of the ‘Number of serial ports’

The new number of serial ports must be specified in the configuration tool. By default only the number
of onboard serial ports is specified and TPMC861 will not be set up. To support the TPMC861 ports
the value of ‘/hardware/peripherals/serial/SIO/number of serial ports’ (NUM_TTY) must be set (at
least) to the total number of installed serial ports. For example, if there are two onboard ports and one
TPMC861 with 4 ports should be supported, the value must be set to a value of 6 at least.

TPMC861-SW-42 – VxWorks Device Driver Page 9 of 46

2.3 Legacy Driver Installation

2.3.1 Include Device Driver in VxWorks Projects

For including the TPMC861-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Extract all files from the archive TPMC861-SW-42-LEGACY.zip to your project directory.

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver C files in the tpmc861 directory can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.3.2 Special Installation for Intel x86 based Targets

The TPMC861 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TPMC861 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tpmc861pci.c contains the function tpmc861PciInit(). This routine finds out all
TPMC861 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

The right place to call the function tpmc861PciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window).

Be sure that the function is called prior to MMU initialization otherwise the TPMC861 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in sysLib.c:

tpmc861PciInit();

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

TPMC861-SW-42 – VxWorks Device Driver Page 10 of 46

2.3.3 BSP Dependent Adjustments

The driver includes a file called include/tdhal.h which contains functions and definitions for BSP
adaptation. It may be necessary to modify them for BSP specific settings. Most settings can be made
automatically by conditional compilation set by the BSP header files, but some settings must be
configured manually. There are two way of modification, first you can change the include/tdhal.h and
define the corresponding definition and its value, or you can do it, using the command line option –D.

There are 3 offset definitions (USERDEFINED_MEM_OFFSET, USERDEFINED_IO_OFFSET, and
USERDEFINED_LEV2VEC) that must be configured if a corresponding warning message appears
during compilation. These definitions always need values. Definition values can be assigned by
command line option -D<definition>=<value>.

Definition Description

USERDEFINED_MEM_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI
memory space access

USERDEFINED_IO_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI I/O
space access

USERDEFINED_LEV2VEC The value of this definition must be set to the
difference of the interrupt vector (used to connect the
ISR) and the interrupt level (stored to the PCI header)

Another definition allows a simple adaptation for BSPs that utilize a pciIntConnect() function to
connect shared (PCI) interrupts. If this function is defined in the used BSP, the definition of
USERDEFINED_SEL_PCIINTCONNECT should be enabled. The definition by command line option is
made by -D<definition>.

Please refer to the BSP documentation and header files to get information about the interrupt
connection function and the required offset values.

TPMC861-SW-42 – VxWorks Device Driver Page 11 of 46

2.4 System Resource Requirement

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Semaphores (
*1

) ---

(*1) For legacy drivers only one semaphore is used,
for VxBus-driver one semaphore is used per installed board

The specified requirements are specific to the driver. The VxWorks terminal manager will
require extra resources for each device.

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TPMC861-SW-42 – VxWorks Device Driver Page 12 of 46

2.5 Default Configuration

The driver will create the port with the default configuration specified in tpmc861defaults.h. All
channels will be set up with the same default configuration. If a different configuration is necessary,
the configuration can be changed by modifying the file. The assigned values must be compatible to
the values allowed for the corresponding ioctl() function.

The following defines are made for configuration:

TPMC861_DEFAULT_BAUD

Specifies the default baudrate.
(Default value: 9600)

TPMC861_DEFAULT_OPTIONS

Specifies the default terminal settings.
(Default value: OPT_RAW)

TPMC861_DEFAULT_RXFIFOTRIG

Specifies the default receive FIFO trigger level.
(See also 2.6 Configuration of FIFO-Trigger-Levels)
(Default value: 20)

TPMC861_DEFAULT_TXFIFOTRIG

Specifies the default transmit FIFO trigger level.
(See also 2.6 Configuration of FIFO-Trigger-Levels)
(Default value: 90)

TPMC861_DEFAULT_DATABITS

Specifies the default length of the data word.
(Default value: EXAR16XXX_DB_8)

TPMC861_DEFAULT_STOPBITS

Specifies the default length of the stop bit.
(Default value: EXAR16XXX_SB_10)

TPMC861_DEFAULT_PARITY

Specifies the default parity mode.
(Default value: EXAR16XXX_NOP)

If an illegal value is specified in the file the default value (in the delivered file) will be used.

TPMC861-SW-42 – VxWorks Device Driver Page 13 of 46

2.6 Configuration of FIFO-Trigger-Levels

The FIFO trigger-levels may influence the behavior of the target system. A modification of the FIFO-
trigger-levels also means changing the duration of a single interrupt and the number of interrupts that
will be generated.

Increasing the receive FIFO-trigger-level will lower the number of generated interrupts, but it will also
increase the execution time of a single interrupt function and it may increase the risk of loosing data by
FIFO overrun.

Increasing the transmit FIFO-trigger-level will increase the number of generated interrupts, but it will
also lower the execution time of a singe interrupt function and decrease the chance of gaps in the
transmission stream..

Known issue with interrupt execution time

In newer systems (VxWorks 6.x) a long interrupt execution time may lead into work queue overflow,
which may result in system crash or error state. If such a situation occurs while a data transfer is
working there are two ways to solve the problem: first the FIFO-trigger-levels can be adapted to
decrease the interrupt execution time, and secondly the Work Queue Size can be increased (value of
WIND_JOBS_MAX). Please refer to the VxWorks documentation for description of project
configuration.

TPMC861-SW-42 – VxWorks Device Driver Page 14 of 46

3 VxBus Driver Support
The TPMC861 will be fully integrated to the VxWorks system and the devices will be automatically
created when booting VxWorks.

3.1 Assignment of Port Names

The port names are assigned automatically when the ports are created. The assigned port name will
be ‘/tyCo/<n>” where <n> specifies the port number. Generally the first two port numbers (‘/tyCo/0’,
‘/tyCo/1’) are assigned to system ports and the additional ports on the TPMC861 supported boards will
start with port number 2. For example a system with one TPMC861 (4 channels) will assign the
following device names:

/tyCo/0 1
st

system port

/tyCo/1 2
nd

system port

/tyCo/2 1
st

channel of TPMC861

/tyCo/3 2
nd

channel of TPMC861

/tyCo/4 3
rd

channel of TPMC861

/tyCo/5 4
th

channel of TPMC861

If there is more than one supported TPMC861 board installed, the assignment of the channel numbers
to the boards depends on the search order of the system, but all the channels of one board will follow
up in a row.

After booting the available devices can be checked with devs(). This function will return a list of all
created devices. If fewer devices have been created, please first check the defined maximum number
of serial devices. (See 2.2.2 Modification of the ‘Number of serial ports’)

3.2 VxBus Error Codes

There will be just system generated return codes for the ‘Basic I/O Functions’. The TPMC861 specific
‘Error Codes’ described with the functions are not valid for VxBus devices.

TPMC861-SW-42 – VxWorks Device Driver Page 15 of 46

3.3 Compatibility to pre-VxBus Applications

The VxBus driver is compatible to the legacy version of this driver. The only point which must be
guaranteed is, that the driver initialization is made via tpmc861Init() and not with tpmc861Drv() and
tpmc861DevCreate().

Legacy compatible initialization function

STATUS tpmc861Init
(

int *firstChanNo,
int *lastChanNo

)

This routine just returns the number of the first (firstChanNo) and last (lastChanNo) port number
assigned to the TPMC861 driver. The devices will be named ‘/tyCo/<firstChanNo>’ up
to ‘/tyCo/<lastChanNo>’

This function has been created for compatibility to the legacy driver. It allows usage of the same
example for bath, legacy and VxBus systems. It is not necessary to call this function in custom
application.

TPMC861-SW-42 – VxWorks Device Driver Page 16 of 46

4 Legacy I/O System Functions
This chapter describes the legacy driver-level interface to the I/O system. The purpose of these
functions is to install the driver in the I/O system, add and initialize devices.

The legacy I/O system functions are only relevant for the legacy TPMC861 driver. For the
VxBus-enabled TPMC861 driver, the driver will be installed automatically in the I/O system and
devices will be created as needed for detected modules.

4.1 tpmc861Drv

NAME

tpmc861Drv - installs the TPMC861 driver in the I/O system

This function is not implemented for systems supporting VxBus.

SYNOPSIS

#include “tpmc861.h”

STATUS tpmc861drv
(

void
)

DESCRIPTION

This function searches for devices on the PCI bus, installs the TPMC861 driver in the I/O system.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

TPMC861-SW-42 – VxWorks Device Driver Page 17 of 46

EXAMPLE

#include "tpmc861.h”

STATUS result;

/*-------------------

Initialize Driver

-------------------*/

result = tpmc861Drv();

if (result == ERROR)

{

/* Error handling */

}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error Code Description

ENXIO No TPMC861 found

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC861-SW-42 – VxWorks Device Driver Page 18 of 46

4.2 tpmc861DevCreate

NAME

tpmc861DevCreate – Add a TPMC861 device to the VxWorks system

SYNOPSIS

#include “tpmc861.h”

STATUS tpmc861DevCreate
(

char *name,
int glbChanNo,
int rdBufSize,
int wrtBufSize,
void *devConf

)

DESCRIPTION

This routine creates a device on a specified serial channel that will be serviced by the TPMC861
driver.

This function must be called before performing any I/O request to this device.

This function is not implemented for systems supporting VxBus.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx

This index number specifies the device to add to the system.

If more than one modules are installed the channel numbers will be assigned in the order the
VxWorks pciFindDevice() function will find the devices.

rdBufSize

This value specifies the size of the receive software FIFO.

wrtBufSize

This value specifies the size of the transmit software FIFO.

TPMC861-SW-42 – VxWorks Device Driver Page 19 of 46

devConf

This parameter is unused and should be set to NULL.

EXAMPLE

#include "tpmc861.h”

STATUS result;

/*---

Create the device "/tyCo/2" for the first device

1KB transmit and receive FIFO

---*/

result = tpmc861DevCreate("/tyCo/2",

0,

1024,

1024,

NULL);

if (result == OK)

{

/* Device successfully created */

}

else

{

/* Error occurred when creating the device */

}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S_iosLib_DEVICE_NOT_FOUND Driver has not been started,

or the specified channel has not been detected,

or channel structure has not been allocated

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TPMC861-SW-42 – VxWorks Device Driver Page 20 of 46

4.3 tpmc861PciInit

NAME

tpmc861PciInit – Generic PCI device initialization

SYNOPSIS

void tpmc861PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC861 PCI spaces (base address register) and to enable the TPMC861
device for access.

The global variable tpmc861Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tpmc861Status is equal to the
number of mapped PCI spaces

0 No TPMC861 device found

< 0 Initialization failed. The value of (tpmc861Status & 0xFF) is equal to the number
of mapped spaces until the error occurs.

Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].

Remedy: Add dummy entries as necessary (sysLib.c).

EXAMPLE

extern void tpmc861PciInit();

tpmc861PciInit();

TPMC861-SW-42 – VxWorks Device Driver Page 21 of 46

4.4 tpmc861Init

NAME

tpmc861Init – initialize TPMC861 driver and devices and return the assigned channel numbers

SYNOPSIS

#include “tpmc861.h”

STATUS tpmc861Init
(

int *firstDevIdx,
int *lastDevIdx

)

DESCRIPTION

This function is used by the TPMC861 example application to install the driver, to add all available
devices to the VxWorks system and to determine the assigned port names.

All software FIFOs (Receive / Transmit) will be configured with a size of 1KB.

The function calls tpmc861Drv() and tpmc861DevCreate(). The devices will be named with ‘/tyCo/<n>’
where <n> specifies the channel. Because the default serial devices are named in the same kind, the
driver searches for the first free number and will name the TPMC861 starting with this number in a
row.

For example already two local serial devices are created and one TPMC861 is installed, the names
‘/tyCo/0’ and ‘/tyCo/1’ are assigned to the local channels, ‘/tyCo/2’ up to ‘/tyCo/5’ will be assigned to
the 4 TPMC861 channels. In this example the function will set a 2 for the first and a 5 for the last
assigned device.

After calling this function, it is not necessary to call tpmc861Drv() or tpmc861DevCreate()
explicitly.

PARAMETER

firstDevIdx

Pointer where the lowest assigned device number for TPMC861 devices will be returned.

lastDevIdx

Pointer where the highest assigned device number for TPMC861 devices will be returned.

TPMC861-SW-42 – VxWorks Device Driver Page 22 of 46

EXAMPLE

#include "tpmc861.h”

STATUS result;

int firstNo;

int lastNo;

char devName[20];

int chanNo;

result = tpmc861Init(&firstNo, &lastNo);

if (result == ERROR)

{

/* Error handling */

}

else

{

for (chanNo = firstNo; chanNo <= lastNo; chanNo++)

{

sprintf(devName, “\tyCo\%d”, chanNo);

fd = open(devName, …);

…

}

}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

Error codes are only set by system functions. The error codes are stored in errno and can be read with
the function errnoGet().

See 4.1 and 4.2 for a description of possible error codes.

TPMC861-SW-42 – VxWorks Device Driver Page 23 of 46

5 Basic I/O Functions

5.1 open

NAME

open - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TPMC861 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened.
For the legacy driver version, the name specified for the device (e.g. by tpmc861DevCreate())
must be used.
For the VxBus driver version the system assigned device name (‘/tyCo/<n>’) must be used.

flags

Not used

mode

Not used

TPMC861-SW-42 – VxWorks Device Driver Page 24 of 46

EXAMPLE

int fd;

/*--

Open the device named "/tyCo/2" for I/O

--*/

fd = open("/tyCo/2", 0, 0);

if (fd == ERROR)

{

/* error handling */

}

RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual.

SEE ALSO

ioLib, basic I/O routine - open()

TPMC861-SW-42 – VxWorks Device Driver Page 25 of 46

5.2 close

NAME

close – close a device or file

SYNOPSIS

STATUS close
(

int fd
)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;

STATUS retval;

/*----------------

close the device

----------------*/

retval = close(fd);

if (retval == ERROR)

{

/* error handling */

}

TPMC861-SW-42 – VxWorks Device Driver Page 26 of 46

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TPMC861-SW-42 – VxWorks Device Driver Page 27 of 46

5.3 read

NAME

read – read data from a specified device.

SYNOPSIS

int read
(

int fd,
char *buffer,
size_t maxbytes

)

DESCRIPTION

This function can be used to read data from the device.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

buffer

This argument points to a user supplied buffer. The returned data will be filled into this buffer.

maxbytes

This parameter specifies the maximum number of read bytes (buffer size).

TPMC861-SW-42 – VxWorks Device Driver Page 28 of 46

EXAMPLE

#define BUFSIZE 100

int fd;

char buffer[BUFSIZE];

int retval;

/*-----------------------------

Read data from TPMC861 device

-----------------------------*/

retval = read(fd, buffer, BUFSIZE);

if (retval != ERROR)

{

printf(“%d bytes read\n”, retval);

}

else

{

/* handle the read error */

}

RETURNS

Number of bytes read or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual.

SEE ALSO

ioLib, basic I/O routine - read()

TPMC861-SW-42 – VxWorks Device Driver Page 29 of 46

5.4 write

NAME

write – write data from a buffer to a specified device.

SYNOPSIS

int write
(

int fd,
char *buffer,
size_t nbytes

)

DESCRIPTION

This function can be used to write data to the device.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

buffer

This argument points to a user supplied buffer. The data of the buffer will be written to the
device.

nbytes

This parameter specifies the number of bytes to be written.

TPMC861-SW-42 – VxWorks Device Driver Page 30 of 46

EXAMPLE

int fd;

char buffer[] = “Hello World”;

int retval;

/*------------------------------

Write data to a TPMC861 device

------------------------------*/

retval = write(fd, buffer, strlen(buffer));

if (retval != ERROR)

{

printf(“%d bytes written\n”, retval);

}

else

{

/* handle the write error */

}

RETURNS

Number of bytes written or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - write()

TPMC861-SW-42 – VxWorks Device Driver Page 31 of 46

5.5 ioctl

NAME

ioctl - performs an I/O control function.

SYNOPSIS

#include “tpmc861.h”

int ioctl
(

int fd,
int request,
EXAR16XXX_IOCTL_ARG_T arg

)

DESCRIPTION

Special I/O operation that do not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

TPMC861-SW-42 – VxWorks Device Driver Page 32 of 46

request

This argument specifies the function that shall be executed. The TPMC861 device driver uses
the standard tty driver support library tyLib. For details of supported ioctl functions see VxWorks
Reference Manual: tyLib and VxWorks Programmer's Guide: I/O System. Following additional
functions are defined:

Function Description

FIO_EXAR16XXX_DATABITS Set length of data word

FIO_EXAR16XXX_STOPBITS Set length of the stop bit

FIO_EXAR16XXX_PARITY Set parity checking mode

FIO_EXAR16XXX_SETBREAK Set Break signal

FIO_EXAR16XXX_CLEARBREAK Release Break signal

FIO_EXAR16XXX_CHECKBREAK Check if a Break signal has been detected

FIO_EXAR16XXX_CHECKERRORS Get error state of the device

FIO_EXAR16XXX_RECONFIGURE Reconfigure device with the default parameters

FIO_EXAR16XXX_FIFO Configure use of FIFO and set trigger levels

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

For TPMC861 legacy driver version: The error code is a standard error code set by the I/O
system (see VxWorks Reference Manual). Function specific error codes will be described with
the function.

For TPMC861 VxBus driver version: The error code is always a standard error code set by the
I/O system. There are no driver specific error codes.

SEE ALSO

ioLib, basic I/O routine - ioctl()

TPMC861-SW-42 – VxWorks Device Driver Page 33 of 46

5.5.1 FIOBAUDRATE

This I/O control function configures the baudrate for the specified device. It is basically a standard
function with a few points to pay attention to. The function specific control parameter arg passes the
selected baudrate to the device driver.

The selected baud rate is always set to the nearest selectable value.

How to calculate baudrates, please refer to the TPMC861 User Manual.

Examples:

Required Baud Rate Selected Baud Rate

9600 9600

100000 115200

115200 115200

Higher baud rates shall be used with enabled FIFO, this will avoid loosing data.

EXAMPLE

#include “tpmc861.h”

int fd;

int result;

/*-------------------------

Set baud rate to 9600

-------------------------*/

result = ioctl(fd, FIOBAUDRATE, 9600);

if (result == OK)

{

/* Success */

}

else

{

/* Function failed */

}

ERROR CODES

Error Code Description

EINVAL Baudrate out of range

TPMC861-SW-42 – VxWorks Device Driver Page 34 of 46

5.5.2 FIO_EXAR16XXX_DATABITS

This I/O control function selects the number of data bits in one word for the specific device.

The function specific control parameter arg passes the selected value to the device driver. The
following values are possible:

Value Description

EXAR16XXX_DB_5 use 5 data bits

EXAR16XXX_DB_6 use 6 data bits

EXAR16XXX_DB_7 use 7 data bits

EXAR16XXX_DB_8 use 8 data bits

EXAMPLE

#include "tpmc861.h”

int fd;

int result;

/*-------------------------------------

Set channel to a word length of 7 bit

-------------------------------------*/

result = ioctl(fd, FIO_EXAR16XXX_DATABITS, EXAR16XXX_DB_7);

if (result == OK)

{

/* Success */

}

else

{

/* Function failed */

}

ERROR CODES

Error Code Description

EINVAL Invalid number of data bits specified

TPMC861-SW-42 – VxWorks Device Driver Page 35 of 46

5.5.3 FIO_EXAR16XXX_STOPBITS

This I/O control function selects the number of stop bits used for the specific device.

The function specific control parameter arg passes the selected value to the device driver. The
following values are possible:

Value Description

EXAR16XXX_SB_10 use 1 stop bit

EXAR16XXX_SB_15 use 1.5 stop bits

EXAR16XXX_SB_20 use 2 stop bits

EXAMPLE

#include "tpmc861.h”

int fd;

int result;

/*---

Set channel to a stop bit length of 1 bit

---*/

result = ioctl (fd, FIO_EXAR16XXX_STOPBITS, EXAR16XXX_SB_10);

if (result == OK)

{

/* Success */

}

else

{

/* Function failed */

}

ERROR CODES

Error Code Description

EINVAL Invalid number of stop bits specified

TPMC861-SW-42 – VxWorks Device Driver Page 36 of 46

5.5.4 FIO_EXAR16XXX_PARITY

This I/O control function selects parity checking mode for the specific device.

The function specific control parameter arg passes the selected value to the device driver. The
following values are possible:

Value Description

EXAR16XXX_NOP do not use parity

EXAR16XXX_EVP use EVEN parity

EXAR16XXX_ODP use ODD parity

EXAR16XXX_SPP use SPACE parity

EXAR16XXX_MAP use MARK parity

EXAMPLE

#include "tpmc861.h”

int fd;

int result;

/*-------------------------------

Configure channel no parity

-------------------------------*/

result = ioctl(fd, FIO_EXAR16XXX_PARITY, EXAR16XXX_NOP);

if (result == OK)

{

/* Success */

}

else

{

/* Function failed */

}

ERROR CODES

Error Code Description

EINVAL Invalid parity mode specified

TPMC861-SW-42 – VxWorks Device Driver Page 37 of 46

5.5.5 FIO_EXAR16XXX_SETBREAK

This I/O control function sets break state on transmit line. The function specific control parameter arg
is unused and will be ignored.

EXAMPLE

#include “tpmc861.h”

int fd;

int retval;

/*-----------------------

Set break on Tx line(s)

-----------------------*/

retval = ioctl(fd, FIO_EXAR16XXX_SETBREAK, 0);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

TPMC861-SW-42 – VxWorks Device Driver Page 38 of 46

5.5.6 FIO_EXAR16XXX_CLEARBREAK

This I/O control function resets break state on transmit line. The function specific control parameter arg
is unused and will be ignored.

EXAMPLE

#include “tpmc861.h”

int fd;

int retval;

/*-----------------------

Clear break on Tx line(s)

-----------------------*/

retval = ioctl(fd, FIO_EXAR16XXX_CLEARBREAK, 0);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

TPMC861-SW-42 – VxWorks Device Driver Page 39 of 46

5.5.7 FIO_EXAR16XXX_CHECKBREAK

This I/O control function returns if a break event on the receive line has been detected since the last
call of the function. The function specific control parameter arg passes a pointer (int*) where the return
value will be stored. A return value TRUE indicates that a break event has been detected, the value
FALSE indicates that no break event has been detected.

EXAMPLE

#include “tpmc861.h”

int fd;

int retval;

int breakDetect;

/*-----------------------

Check break

-----------------------*/

retval = ioctl(fd, FIO_EXAR16XXX_CHECKBREAK,
(EXAR16XXX_IOCTL_ARG_T)&breakDetect);

if (retval != ERROR)

{

/* function succeeded */

if (breakDetect)

{

/* A break has been detected */

}

}

else

{

/* handle the error */

}

TPMC861-SW-42 – VxWorks Device Driver Page 40 of 46

5.5.8 FIO_EXAR16XXX_CHECKERRORS

This I/O control function returns the error state of the device. The function specific control parameter
arg points to a buffer (unsigned int) the status will be returned. The returned status is an OR’ed value
of the following flags:

Value Description

EXAR16XXX_FRAMING_ERR This bit is set if a framing error has been detected
since the last call.

EXAR16XXX_PARITY_ERR This bit is set if a parity error has been detected since
the last call.

EXAR16XXX_OVERRUN_ERR This bit is set if an overrun error has been detected
since the last call.

EXAMPLE

#include “tpmc861.h”

int fd;

int retval;

unsigned long errStat;

/*------------------

Get receive status

------------------*/

retval = ioctl(fd, FIO_EXAR16XXX_CHECKERRORS,
((EXAR16XXX_IOCTL_ARG_T))&errStat);

if (retval != ERROR)

{

/* function succeeded */

if (errStat & EXAR16XXX_FRAMING_ERR)

{

/* Framing error occurred */

}

}

else

{

/* handle the error */

}

TPMC861-SW-42 – VxWorks Device Driver Page 41 of 46

5.5.9 FIO_EXAR16XXX_RECONFIGURE

This I/O control function resets the device to the default configuration. The function specific control
parameter arg is not used for this function.

EXAMPLE

#include “tpmc861.h”

int fd;

int retval;

/*--------------------------

Reconfigure serial channel

--------------------------*/

retval = ioctl(fd, FIO_EXAR16XXX_RECONFIGURE, 0);

if (retval != ERROR)

{

/* function succeeded */

}

else

{

/* handle the error */

}

TPMC861-SW-42 – VxWorks Device Driver Page 42 of 46

5.5.10 FIO_EXAR16XXX_FIFO

This I/O control function specifies if FIFOs shall be enabled and which trigger levels should be used
for interrupt generation. The function specific control parameter arg passes a pointer to the FIFO
setting structure (EXAR16XXX_FIFO_STRUCT).

typedef struct

{

int rxFifoTrigger;

int txFifoTrigger;

} EXAR16XXX_FIFO_STRUCT;

rxFifoTrigger

Specifies the receive FIFO trigger level. Allowed values are:

1…127 FIFOs enabled, value specifies receive FIFO
trigger level

EXAR16XXX_F_NO FIFOs disabled, only valid if transmit FIFO will
also be disabled.

txFifoTrigger

Specifies the transmit FIFO trigger level. Allowed values are:

1…127 FIFOs enabled, value specifies transmit FIFO
trigger level

EXAR16XXX_F_NO FIFOs disabled, only valid if receive FIFO will also
be disabled.

Changing the FIFO-fifo-trigger levels may influence the behavior of your target system,
therefore please refer to chapter 2.6 Configuration of FIFO-Trigger-Levels.

TPMC861-SW-42 – VxWorks Device Driver Page 43 of 46

EXAMPLE

#include “tpmc861.h”

int fd;

int result;

EXAR16XXX_FIFO_STRUCT fifoSet;

/*---------------------------

Enable FIFO with

- receive trigger at 85

- transmit trigger at 15

---------------------------*/

fifoSet.rxFifoTrigger = 85;

fifoSet.txFifoTrigger = 15

result = ioctl(fd, FIO_EXAR16XXX_FIFO, (EXAR16XXX_IOCTL_ARG_T)&fifoSet);

if (result == OK)

{

/* Success */

}

else

{

/* Function failed */

}

ERROR CODES

Error Code Description

EINVAL Invalid Trigger Level specified or the combination of trigger
levels is not allowed.

TPMC861-SW-42 – VxWorks Device Driver Page 44 of 46

5.5.11 FIO_EXAR16XXX_CHANNEL_INFO

This I/O control function returns information regarding the specified channel. The returned information
contains information about the board where the channel is located. The function will also return
information about the PCI-bus location where the controller of the channel can be found. This
information may be helpful to find a special channel in the system and to assign a physical channel to
a logical device.

The function specific control parameter arg passes a pointer to an information structure
(EXAR16XXX_CHANNEL_INFO_STRUCT) where the information will be filled in.

typedef struct

{

struct exar16xx_board_info_struct board;

struct exar16xx_controller_info_struct controller;

} EXAR16XXX_CHANNEL_INFO_STRUCT;

board

This structure (struct exar16xx_board_info_struct) contains board information that belongs to a
specified channel.

struct exar16xx_board_info_struct

{

int channelNo;

unsigned int boardId;

unsigned int boardVariant;

int boardIndex;

};

channelNo

This value returns the channel number of the board where the channel is located. The returned
number will match the channel number assigned in the User Manual.

boardId

This value returns a unique ID, which identifies the used board type. This information may be of
interest if other serial boards are used. The driver will always return TPMC861_MODULE_ID
identifying the TPMC861.

boardVariant

This value returns the board variant. The returned number specified the xx in the board name
TPMC861-xx.

boardIndex

This value returns the index of the specified board. If just one TPMC861 is used, this index will
always be 0, but if more than a single TPMC861 is installed, the index value returned is the
index for PCI-search (The index is depends on the search order of the BSP).

TPMC861-SW-42 – VxWorks Device Driver Page 45 of 46

controller

This structure (struct exar16xx_controller_info_struct) contains information that belongs to the
controller and the specified channel which describes the location of the controller and channel on
PCI-bus.

struct exar16xx_controller_info_struct

{

int pciBusNo;

int pciDeviceNo;

int pciFunctionNo;

int controllerPort;

};

pciBusNo

This PCI bus number the channels controller is located at.

pciDeviceNo

This PCI device number the channels controller is located at.

pciFunctionNo

This PCI function number the channels controller is located at. The TPMC861 is not a
multifunction device, therefore the function number is always 0.

controllerPort

This value specifies the channel index within the controller, as assigned in the documentation of
the controller chip.

EXAMPLE

#include “tpmc861.h”

int fd;

int retval;

EXAR16XXX_CHANNEL_INFO_STRUCT channelInfo;

…

TPMC861-SW-42 – VxWorks Device Driver Page 46 of 46

…

/*-----------------------------

Get Channel Board Information

-----------------------------*/

result = ioctl(fd, FIO_EXAR16XXX_CHANNEL_INFO,
(EXAR16XXX_IOCTL_ARG_T)&channelInfo);

if (result == OK)

{

printf("Get Channel Board Information successfully executed\n");

printf("Board: TPMC%d-%02d - Board Index: %d\n",
channelInfo.board.boardId,
channelInfo.board.boardVariant,
channelInfo.board.channelNo);

printf(" Channel number on board: %d\n",
channelInfo.board.channelNo);

printf("Controller: PCI-Location: [%d/%d/%d]\n",
channelInfo.controller.pciBusNo,
channelInfo.controller.pciDeviceNo,
channelInfo.controller.pciFunctionNo);

printf(" Local channel number on controller: %d\n",
channelInfo.controller.controllerPort);

}

else

{

/* handle the error */

}

	1	Introduction
	1.1	Device Driver

	2	Installation
	2.1	Legacy vs. VxBus Driver
	2.2	VxBus Driver Installation
	2.2.1	Direct BSP Builds
	2.2.2	Modification of the ‘Number of serial ports’

	2.3	Legacy Driver Installation
	2.3.1	Include Device Driver in VxWorks Projects
	2.3.2	Special Installation for Intel x86 based Targets
	2.3.3	BSP Dependent Adjustments

	2.4	System Resource Requirement
	2.5	Default Configuration
	2.6	Configuration of FIFO-Trigger-Levels

	3	VxBus Driver Support
	3.1	Assignment of Port Names
	3.2	VxBus Error Codes
	3.3	Compatibility to pre-VxBus Applications

	4	Legacy I/O System Functions
	4.1	tpmc861Drv
	4.2	tpmc861DevCreate
	4.3	tpmc861PciInit
	4.4	tpmc861Init

	5	Basic I/O Functions
	5.1	open
	5.2	close
	5.3	read
	5.4	write
	5.5	ioctl
	5.5.1	FIOBAUDRATE
	5.5.2	FIO_EXAR16XXX_DATABITS
	5.5.3	FIO_EXAR16XXX_STOPBITS
	5.5.4	FIO_EXAR16XXX_PARITY
	5.5.5	FIO_EXAR16XXX_SETBREAK
	5.5.6	FIO_EXAR16XXX_CLEARBREAK
	5.5.7	FIO_EXAR16XXX_CHECKBREAK
	5.5.8	FIO_EXAR16XXX_CHECKERRORS
	5.5.9	FIO_EXAR16XXX_RECONFIGURE
	5.5.10	FIO_EXAR16XXX_FIFO
	5.5.11	FIO_EXAR16XXX_CHANNEL_INFO

