

SESAM USER MANUAL

Profast

Probabilistic Fatigue Analysis

DET NORSKE VERITAS

SESAM User Manual

Profast

Probabilistic Fatigue Analysis

October 1st, 2004

Valid from program version 2.2-03

Developed and marketed by DET NORSKE VERITAS

DNV Report No.: 94-7106 / Revision 7, October 1st, 2004

Copyright © 2004 Det Norske Veritas

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Published by:

Det Norske Veritas Veritasveien 1 N-1322 Høvik Norway

Telephone: +47 67 57 99 00 Facsimile: +47 67 57 72 72

E-mail, sales: software.sesam@dnv.com
E-mail, support: software.support@dnv.com

Website: www.dnv.com

If any person suffers loss or damage which is proved to have been caused by any negligent act or omission of Det Norske Veritas, then Det Norske Veritas shall pay compensation to such person for his proved direct loss or damage. However, the compensation shall not exceed an amount equal to ten times the fee charged for the service in question, provided that the maximum compensation shall never exceed USD 2 millions. In this provision "Det Norske Veritas" shall mean the Foundation Det Norske Veritas as well as all its subsidiaries, directors, officers, employees, agents and any other acting on behalf of Det Norske Veritas.

Table of Contents

1	INTR	ODUCTION	1-1
1.1	Profas	t - Probabilistic Fatigue Analysis	1-1
1.2	Profas	t in the SESAM System	1-2
1.3		o Read this Manual	
2	FEAT	TURES OF PROFAST	2-1
2.1	Analys	sis Capabilities	2-1
2.2		t Environment	
	2.2.1	Integration in SESAM	
	2.2.2	Terminology Clarification Between Framework and Profast	
	2.2.3	Profast as a Stand Alone Program	2-4
2.3	Structu	ıral Modelling	2-4
	2.3.1	Selection of Hotspots for Inspection Analysis	
	2.3.2	Transfer Function	
	2.3.3	Stress Concentration Factor	2-5
	2.3.4	Stress Influence Function	2-5
	2.3.5	Geometry Function	2-5
2.4	Enviro	onmental Loading	2-6
	2.4.1	Environmental Description	
	2.4.2	Long Term Stress Distribution	
2.5	Fation	e and Crack Growth Model	2.6
2.3	2.5.1	Fatigue Model	
	2.5.2	Crack Growth Model	
	2.5.3	Calibration of the Crack Growth Model	
	2.5.4	Failure Criteria	
2.6	Inspec	tion Finding and Repair	2-8
2.7	Inspec	tion Planning	2-10
	2.7.1	Target Reliability	
	2.7.2	Inspection Quality	
	2.7.3	Inspection Times	2-10

2.8	Uncertainty Modelling	
2.0	•	
2.9	Analysis and Results	
	2.9.2 SN Based Fatigue Analysis	
	2.9.3 Calibration of Crack Growth Analysis to SN Fatigue Reliability	
	2.9.4 Crack Growth Analysis	
	2.9.5 Inspection Planning	
	2.9.6 Tailor made Probability Analysis	
	2.9.7 Sensitivity Results	2-15
3	USERS'S GUIDE TO PROFAST	3-1
3.1	Preparations for Analysis	3-2
3.2	Starting Profast	3-2
5.2	3.2.1 Navigating the User Interface	
	3.2.2 Initialising the Database	
3.3	Definition of Fatigue Points	
3.4	Modelling Uncertainties.	3-8
J. T	3.4.1 Specifying Uncertainty on Input Parameters	
3.5	Environment, Forces and Load Modelling	3-12
0.0	3.5.1 Modelling Environmental Data	
	3.5.2 Applying Forces to a Fatigue Point	
	3.5.3 Modelling the Long Term Stress Range Distribution	
	3.5.4 Uncertainties Applied to a Sum-Rayleigh Stress Distribution	3-18
3.6	SN Analysis	3-19
2.0	3.6.1 Setting up the SN Analysis	
	3.6.2 SN Curves	
	3.6.3 Executing the SN Analysis and Examination of Results	3-20
3.7	Crack Growth Analysis	3-22
5.1	3.7.1 Setting up the Crack Growth Model and Geometry	2.22
	3.7.2 Calibration of the Crack Growth Model to the SN Analysis Result	
	3.7.3 Running a Crack Growth Analysis and Examination of Results	
3.8	Taking Inspections Into Account	3-30
	3.8.1 Inspection Events	
	3.8.2 Inspection Quality	
	3.8.3 Crack Growth Analysis After Inspection	3-32
	3.8.4 Taking Repair Into Account	3-32
3.9	Planning Future Inspections	3-34
	3.9.1 Setting up the Plan	
	3.9.2 Calculating the Inspection Plan and Examination of the Plan	3-36
3.10	Advanced Usage of Profast	3-39

	3.10.1	Probabilistic and Deterministic Analysis and Result Presentation	3-39
	3.10.2	Modelling Events	3-41
	3.10.3	Updating on Inspection at Another Fatigue Point	3-42
	3.10.4	Systems Reliability	3-43
3.11	Various	s Hints	3-43
	3.11.1	Importing Plot Files Into Documents	3-43
	3.11.2	The Required Plot Format is not Available	3-44
	3.11.3	Problems with Convergence During FORM/SORM Analysis	3-44
4	EXEC	CUTION OF PROFAST	4-1
4.1	Program	m Environment	4-1
	4.1.1	Command Line Arguments	
	4.1.2	Starting Profast in Graphics Mode	
	4.1.3	Starting Profast in Line Mode	
	4.1.4	Starting Profast in a Batch Run	
	4.1.5	Files and Data Safety	
	4.1.6	Starting Profast from a Framework Database	
4.2	Progran	m Requirements	4-8
	4.2.1	Execution Time	4-8
	4.2.2	Storage Space	4-9
4.3	Program	m Limitations	4-9
4.4	Using t	he Line Mode User Interface	4-10
	4.4.1	How to Get Help	4-10
	4.4.2	Command Input Files	4-11
	4.4.3	Accessing Default Values	4-12
	4.4.4	Abbreviation and Wildcards	
	4.4.5	Input of a Text or Name or Numerical Value	
	4.4.6	Selecting a Single Alternative from a List	
	4.4.7	Selecting Several Alternatives from a List	
	4.4.8	Entering a Vector or Matrix of Values	
	4.4.9	Setting and Clearing Loops in Command	
	4.4.10	Inserting a Command Into Another Command	
	4.4.11	Aborting all or Parts of a Command	
	4.4.12	Access to the Operating System	
	4.4.13	Appending Input Lines	
	4.4.14	Viewing the Current Status of a Command	
	4.4.15	Comments	
4.5	_	the Graphics Mode User Interface	
	4.5.1	How to Get Help	
	4.5.2	Tear-Off Menus	
	4.5.3	Dialog Boxes and Their Contents	
	4.5.4	The Standard Buttons in a Dialog Box	
	4.5.5	Selecting Several Alternatives from a List	4-23

	4.5.6	Entering a Prefixed List	4-23
	4.5.7	Entering a Vector or Matrix of Values	
	4.5.8	Journalling from Graphics Mode	
5	COM	MAND DESCRIPTION	5-1
5.1	Graphi	ical User Interface Menus	5-2
	5.1.1	The File Menu	
	5.1.2	The Structure Menu	5-3
	5.1.3	The Model Menu	5-3
	5.1.4	The Load menu	5-5
	5.1.5	The SN-Fatigue Menu	5-7
	5.1.6	The Crack-Growth Menu	
	5.1.7	The Plan Menu	
	5.1.8	The Analysis Menu	
	5.1.9	The Result Menu	
	5.1.10	The Options Menu	
	5.1.11	The Help Menu	5-11
5.2		Node Command Syntax	
		SN	
		GN CONDITIONING	
		GN CORRELATION	
		GN CRACK-GROWTH-MODEL	
		GN EXTREME-VALUE	
		GN FUNCTION-OPTION	
		GN GEOMETRY-FUNCTION	
		GN INFLUENCE-COEFFICIENTS	
		IN INSPECTION-QUALITY	
		GN MEASURED-VALUE	
		GN MINER-SUM-CRITICAL	
		GN MODEL-FACTOR	
		GN OPTIMISATION-BOUNDS	
		SN REPAIR	
		GN SCF	
		SN SENSITIVITY-CALCULATION	
		GN SENSITIVITY-CALCULATION INCREMENT	
		SN SENSITIVITY-CALCULATION VARIABLE	
		SN SN-CURVE	
		SN STARTING-POINT	
		SN TARGET PELLARIHITY	
		SN TARGET-RELIABILITY	
		IN THICKNESS-CORRECTION	
		GN TRANSFER-FUNCTION	
		GN UNCERTAINTY VALUE GN WAVE-DIRECTION-PROBABILITY	
	ASSIC	SN WAVE-SCATTER-DISTRIBUTION	5-54

ASSIGN WAVE-SPECTRUM-SHAPE	5-55
ASSIGN WAVE-SPREADING-FUNCTION	5-57
ASSIGN WAVE-STATISTICS	5-58
ASSIGN WELD-EFFECT	5-59
CHANGE	
CHANGE EVENT	5-62
CHANGE FUNCTION	
CHANGE FUNCTION FORMULA	5-65
CHANGE FUNCTION INTEGRAL	5-66
CHANGE FUNCTION RESPONSESURFACE	5-68
CHANGE SN-CURVE	5-70
CHANGE TRANSFER-FUNCTION	5-71
CHANGE VARIABLE	5-72
CHANGE VARIABLE DISTRIBUTION	5-74
CHANGE VARIABLE DISTRIBUTION SPLINE-1DIM	5-76
CHANGE VARIABLE FITTED-DISTRIBUTION	
CHANGE VARIABLE FUNCTION	5-81
CHANGE WAVE-SPREADING-FUNCTION	5-82
COPY	5-83
COPY EVENT	5-84
COPY VARIABLE	5-85
CREATE	5-86
CREATE EVENT	5-87
CREATE FATIGUE-POINT	5-89
CREATE FUNCTION	5-91
CREATE FUNCTION FORMULA	5-92
CREATE FUNCTION INTEGRAL	
CREATE FUNCTION RESPONSESURFACE	5-96
CREATE INSPECTION	5-98
CREATE SN-CURVE	
CREATE TRANSFER-FUNCTION	5-104
CREATE VARIABLE	5-106
CREATE VARIABLE DISTRIBUTION	5-108
CREATE VARIABLE DISTRIBUTION SPLINE-1DIM	
CREATE VARIABLE FITTED-DISTRIBUTION	5-112
CREATE VARIABLE FUNCTION	
CREATE WAVE-SPREADING-FUNCTION	5-116
CREATE WAVE-STATISTICS	5-117
DEFINE	
DEFINE ANALYSIS-OPTION	
DEFINE ANALYSIS-OPTION GENERATED-DISTRIBUTION	
DEFINE CALIBRATION-CRACK-GROWTH	
DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY	
DEFINE CUTOFF-PD6493	
DEFINE DISTRIBUTION-SIMULATION	
DEFINE FATIGUE-CONSTANTS	5-132
DEFINE FORM-SORM	5-133

DEFINE NLPQL	5-1	136
DEFINE RFCRC		
DEFINE MEAN-VALUE-FORM	5-1	138
DEFINE PARAMETER-STUDY		
DEFINE PLAN-INSPECTION		
DEFINE PRESENTATION		
DEFINE PRESENTATION CRACK-GROWTH-ANALYSIS	5-1	144
DEFINE PRESENTATION FUNCTION	5-1	145
DEFINE PRESENTATION RESULT		
DEFINE PRESENTATION TRANSFER-FUNCTION		
DEFINE PROBABILITY-ANALYSIS		
DEFINE PROBABILITY-SIMULATION AXIS-ORTHOGONAL	5-1	151
DEFINE PROBABILITY-SIMULATION DESIGN-POINT		
DEFINE PROBABILITY-SIMULATION DIRECTIONAL		
DEFINE PROBABILITY-SIMULATION MONTE-CARLO		
DEFINE SERVICE-LIFE		
DEFINE SN-ANALYSIS FAILURE-PROBABILITY		
DEFINE TRANSFER-FUNCTION	5-1	162
DEFINE UNCERTAINTY	5-1	163
DEFINE WEIBULL-FIT	5-1	165
DELETE	5-1	166
DELETE EVENT		
DELETE FATIGUE-POINT		
DELETE FUNCTION		
DELETE INSPECTION		
DELETE PLAN-INSPECTION		
DELETE RESULT		
DELETE SN-CURVE		
DELETE TRANSFER-FUNCTION		
DELETE VARIABLE		
DELETE WAVE-SPREADING-FUNCTION		
DELETE WAVE-STATISTICS		
DISPLAY		
DISPLAY CALIBRATION-CRACK-GROWTH		
DISPLAY CRACK-GROWTH-ANALYSIS		
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY		
DISPLAY CRACK-GROWTH-ANALYSIS LIFE-TIME		
DISPLAY DISTRIBUTION		
DISPLAY EVENT		
DISPLAY FITTED-DISTRIBUTION		
DISPLAY FUNCTION		
DISPLAY GEOMETRY-FUNCTION		
DISPLAY JOINT		
DISPLAY LABEL		
DISPLAY MEMBER		
DISPLAY PRESENTATION		
DISPLAY RESULT	5-1	196

DISPLAY RESULT DISTRIBUTION	5-197
DISPLAY RESULT IMPORTANCE-FACTORS	5-199
DISPLAY RESULT PARAMETER-STUDY	5-200
DISPLAY RESULT PARAMETER-STUDY IMPORTANCE-FACTOR	5-201
DISPLAY RESULT PARAMETER-STUDY MAIN-RESULT	5-202
DISPLAY SN-ANALYSIS	5-203
DISPLAY SN-ANALYSIS FAILURE-PROBABILITY	5-204
DISPLAY SN-ANALYSIS LIFE-TIME	5-205
DISPLAY SN-CURVE	5-206
DISPLAY STRESS-RANGE	
DISPLAY SUPERELEMENT	5-208
DISPLAY TRANSFER-FUNCTION	5-209
DISPLAY WAVE-SPREADING-FUNCTION	5-210
DISPLAY WELD-EFFECT	5-211
EXIT	5-212
FILE	5-213
FILE EXIT	5-214
FILE OPEN	5-215
HELP	5-216
PLOT	5-218
PRINT	5-219
PRINT ANALYSIS-SETTINGS	5-221
PRINT CALIBRATION-CRACK-GROWTH	5-222
PRINT CORRELATION	5-223
PRINT CRACK-GROWTH-ANALYSIS	5-224
PRINT DISTRIBUTION	5-226
PRINT EVENT	5-228
PRINT FATIGUE-POINT	5-230
PRINT FUNCTION	
PRINT FUNCTION DESCRIPTION	
PRINT FUNCTION FORMULA	5-234
PRINT FUNCTION GRADIENT	5-236
PRINT FUNCTION LIBRARY	
PRINT FUNCTION VALUE	5-239
PRINT INSPECTION.	
PRINT PARAMETER-STUDY	5-242
PRINT PLAN-INSPECTION	5-243
PRINT RESULT	5-245
PRINT RESULT ALL	
PRINT RESULT ANALYSIS-SETTINGS	
PRINT RESULT IMPORTANCE-FACTORS	5-248
PRINT RESULT INTERMEDIATE-RESULTS	5-249
PRINT RESULT PARAMETER-STUDY	
PRINT RESULT PARAMETER-STUDY IMPORTANCE-FACTOR	
PRINT RESULT PARAMETER-STUDY MAIN-RESULT	
PRINT RESULT SAMPLE	
PRINT RESULT SENSITIVITY	5-255

PRINT RESULT SUMMARY	5-257
PRINT SN-ANALYSIS	5-258
PRINT SN-CURVE	5-259
PRINT STARTING-POINT	5-260
PRINT TRANSFER-FUNCTION	5-261
PRINT UNCERTAINTY	
PRINT UNCERTAINTY DEFINITION	5-263
PRINT UNCERTAINTY VALUE	5-265
PRINT VARIABLE	5-267
PRINT WAVE-SPREADING-FUNCTION	5-269
PRINT WAVE-STATISTICS	5-270
RENAME	5-271
RENAME EVENT	5-272
RENAME FUNCTION	5-273
RENAME RESULT	5-274
RENAME VARIABLE	5-275
RUN	
RUN CALIBRATION-CRACK-GROWTH	5-278
RUN CRACK-GROWTH-ANALYSIS	5-279
RUN DETERMINISTIC-ANALYSIS	5-281
RUN DISTRIBUTION-ANALYSIS	
RUN INPUT-CHECK	
RUN PLAN-INSPECTION	
RUN PROBABILITY-ANALYSIS	
RUN RESTART	
RUN SN-ANALYSIS	
SAVE	
SAVE RESULT	
SELECT	
SELECT ANALYSIS-METHOD	
SELECT FUNCTION-LIBRARY	
SELECT RESULT	
SET	
SET COMPANY-NAME	
SET DISPLAY	
SET DRAWING	
SET GRAPH	
SET GRAPH HISTOGRAM	
SET GRAPH LINE-OPTIONS	
SET GRAPH PIE-CHART	
SET GRAPH XAXIS-ATTRIBUTES	
SET GRAPH YAXIS-ATTRIBUTES	
SET GRAPH ZAXIS-ATTRIBUTES	
SET PLOT	
SET PRINT	
VIEW	
VIEW FRAME	5-325

	VIEW PAN	5-326
	VIEW POSITION	5-327
	VIEW ROTATE	5-328
	VIEW ZOOM	5-330
API	PENDIX A TUTORIAL EXAMPLES	A-1
A 1	The Initial Framework Analysis	A-2
	A 1.1 Framework Command Input File	A-2
	A 1.2 Print File from Framework Analysis	A-6
	A 1.3 The Profast Analysis	A-10
	T I	
API	PENDIX B VARIABLES AND EVENTS MAINTAINED BY	
		Y PROFAST B-1
API B 1 B 2	PENDIX B VARIABLES AND EVENTS MAINTAINED BY Independent Values	Y PROFASTB-1
В 1	PENDIX B VARIABLES AND EVENTS MAINTAINED BY Independent Values	Y PROFASTB-1 B-1B-2
В 1	PENDIX B VARIABLES AND EVENTS MAINTAINED BY Independent Values	B-1 B-2 B-2 B-2 B-2
В 1	PENDIX B VARIABLES AND EVENTS MAINTAINED BY Independent Values	B-1 B-2 B-2 B-2 B-2
В 1	PENDIX B VARIABLES AND EVENTS MAINTAINED BY Independent Values	B-1 B-2 B-2 B-2 B-2 B-2 B-2 B-2
B 1 B 2	PENDIX B VARIABLES AND EVENTS MAINTAINED BY Independent Values	B-1 B-2 B-2 B-2 B-2 B-2 B-4 B-4
B 1 B 2	PENDIX B VARIABLES AND EVENTS MAINTAINED BY Independent Values Attached to a Fatigue Point B 2.1 Analysis Variables B 2.2 Events B 2.3 Stochastic Parameters Attached to an Inspection B 3.1 Analysis Variables B 3.2 Events B 3.2 Events	B-1 B-2 B-2 B-2 B-2 B-4 B-4 B-5
B 1 B 2	PENDIX B VARIABLES AND EVENTS MAINTAINED BY Independent Values	B-1 B-2 B-2 B-2 B-2 B-4 B-4 B-5

1 INTRODUCTION

1.1 Profast - Probabilistic Fatigue Analysis

Profast is a tool for planning of inspection of - in particular - offshore jacket structures. It can also be used on other types of structures.

The main objective of Profast is to enable the user to reduce the cost of inspection of the structure for fatigue damage.

During the design phase Profast is used to design the structure for minimal inspection, and to efficiently plan the inspection of the structure after installation.

During the operational phase Profast is used to update the inspection plan with results from already executed inspections, in order to efficiently use the information gained and minimize the future inspection costs

Profast allows efficient modelling of critical hotspots with related load and geometry data. Deterministic and probabilistic SN analysis can then be performed, as well as crack growth analysis based on a flexible crack growth model formulation. Inspection results can simply be assigned to the individual critical hotspots.

1-2 01-OCT-2004 Program version 2.2-03

1.2 Profast in the SESAM System

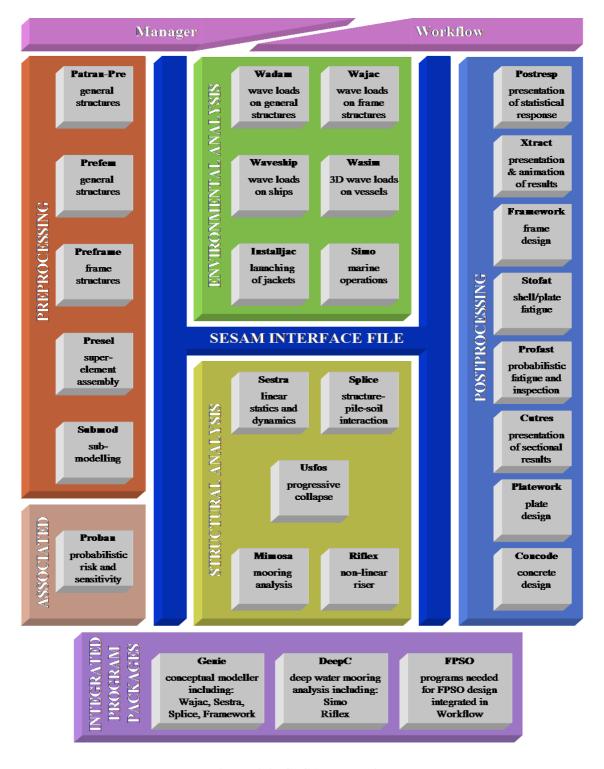


Figure 1.1 SESAM overview

SESAM is comprised of preprocessors, environmental analysis programs, structural analysis programs and post processors. An overview of SESAM is shown in Figure 1.1

Structures may be modelled by use of the SESAM preprocessors, subjected to wave loads by use of Wajac or Wadam, then subjected to structural analysis by use of Sestra (or similar solver program). The result is a Results Interface File (.SIN file).

This interface file may be read by Framework and used to identify those hotspots most prone to fatigue failure, and to establish parametric stress concentration factors.

Profast may then be used to do an in-depth inspection analysis of the critical hotspots. Profast makes direct usage of the structure and results established by Framework. It will not be necessary to enter the same data twice into Framework and Profast.

The distribution models available are described in detail in SESAM User's Manual: Proban Distributions, DNV SESAM Report NO.94-7089/Rev 1, June 1996

The theory is described in detail in SESAM Theory Manual: Profast No. 95-7005/Rev 3, 01 November 1996.

1.3 How to Read this Manual

Chapter 2 FEATURES OF PROFAST describes what the program can do.

Chapter 3 USERS'S GUIDE TO PROFAST contains guidance on how to exploit the features of Profast.

Chapter 4 EXECUTION OF PROFAST describes how to start the program and how to navigate the user interface. It also describes the files used by Profast and program requirements and limitations.

Chapter 5 COMMAND DESCRIPTION provides description of all commands and associated input data.

Appendix A TUTORIAL EXAMPLES contains a practical example on the usage of Profast.

Appendix B VARIABLES AND EVENTS MAINTAINED BY PROFAST are listed here.

1-4 01-OCT-2004 Program version 2.2-03

2 FEATURES OF PROFAST

The overall scope of Profast is to be a practical, commercial engineering software tool for probabilistic fatigue analysis and inspection planning for jacket type offshore structures based on fatigue crack growth models.

Profast is integrated with the existing SESAM program Framework for code check and traditional fatigue analysis. However, it is not necessary to run Framework in order to use Profast.

The following sections describe the features of Profast in some detail.

2.1 Analysis Capabilities

Profast primarily provides the following four decision support results:

- Reliability at a hotspot wt. fatigue failure
 - The reliability (or the failure probability) wt. fatigue failure as function of time based on either an S-N fatigue model or a Paris-Erdogan crack growth model is computed.
- · Updated Reliability Result
 - The reliability as function of time updated on basis of inspection findings and optionally repair.
- Inspection Planning Prescribed Inspection Time
 - For a given inspection quality, inspection (and possibly repair) history, predefined inspection intervals and a predefined reliability threshold, the joints necessary to inspect are identified. The procedure is based on the assumption that none of the inspections will find a crack.
- Inspection Planning Optimised Inspection Time
 - For a given inspection quality, inspection (and possibly repair) history and a predefined reliability threshold, the optimised time to next inspection is computed for a joint or a group of joints selected by the user.

In addition, a deterministic and probabilistic calculation of the S-N based fatigue life time and crack growth based life time may be performed.

2-2 01-OCT-2004 Program version 2.2-03

The following figure describes the flow of information into Profast.

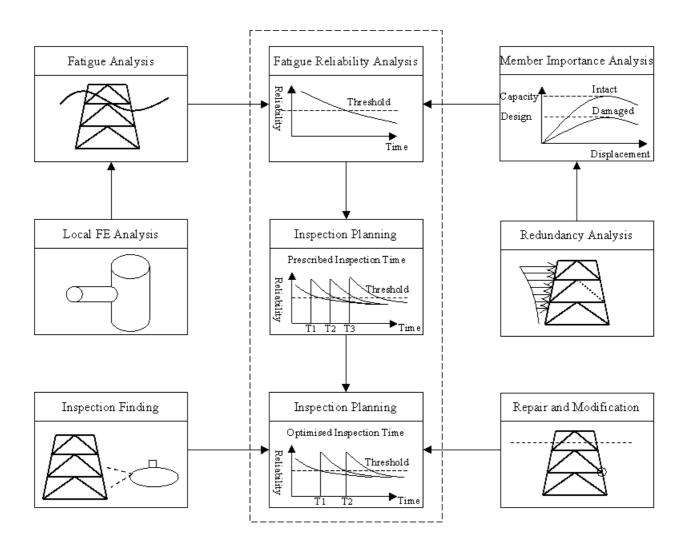


Figure 2.1 Flow of information into Profast

Profast is designed for probabilistic analysis of the reliability (or probability of failure) and for planning of inspections. Any other analysis results needed for this (transfer functions, member redundancy effects, selection of critical hotspots etc.) must be imported into Profast. When inspections have been performed, the probability of failure and the inspection plan may be updated as a consequence of the information gained.

2.2 Profast Environment

Profast may be run as a stand-alone program, or integrated in the SESAM system of programs.

2.2.1 Integration in SESAM

Inside the SESAM system, Profast may be seen as a post processor to Framework.

Framework is used first to define the jacket structure from the finite element description, calculate parametric stress concentration factors and identify the critical hotspots (other tools may also be used for this, e.g. Usfos).

Profast then takes over the database established by Framework, and thus may reuse all the data entered into Framework. Once Profast has opened the database, it becomes inaccessible to Framework. For this reason, it may be advisable to copy the database before running Profast.

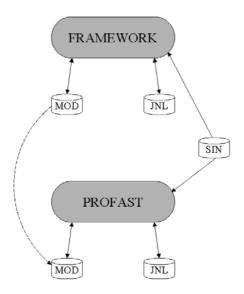


Figure 2.2 Integration between Profast and Framework

The SESAM Interface File is shared between the two programs, and must be available for Profast, when it is used by Framework. How to operate this integration is described in more detail in Section 4.1.6.

2.2.2 Terminology Clarification Between Framework and Profast

Please note that there is a possibility for some confusion in the terminology used by Profast and Framework.

In Framework, the terms "stochastic fatigue analysis" and "deterministic fatigue analysis" are used. The difference between the two basically refers to the way the environment is modelled, and both produce what in Profast would be termed a deterministic result (a single number).

2-4 01-OCT-2004 Program version 2.2-03

In Profast, a deterministic SN analysis is comparable to a stochastic fatigue analysis in Framework, while a probabilistic analysis (sometimes the word stochastic analysis is also used) refers to an analysis that produce a probability or distribution as a result.

2.2.3 Profast as a Stand Alone Program

Profast may be also run alone, without access to a SESAM model and SESAM analysis results, and without access to Framework. Profast is self-contained, and is able to perform an inspection analysis and inspection planning on user defined points in a structure.

In such a case the following must be observed:

- 1 The user must supply all needed data by command input (interactively or through command input files)
- 2 It will not be possible to examine (print/display) the underlying structure, because Profast has no knowledge of this structure.
- 3 It will however be possible to open a SESAM Interface File (SIN file) and read transfer functions from this file.

2.3 Structural Modelling

When Profast is integrated in the SESAM system, the available structural model information will be automatically utilised. When run as a stand alone program, all required structural information must be supplied explicitly.

2.3.1 Selection of Hotspots for Inspection Analysis

A number of hotspots may be selected for inspection analysis, either positioned on joints or members, or unrelated to a structural geometry. In the latter case, all information (e.g. geometry) must be specified by the user.

The critical hotspots must be selected through the use of an outside tool, e.g. Framework (for SN-based fatigue analysis) and/or Usfos (for member importance analysis).

Those hotspots selected for analysis in Profast are denoted fatigue points. The word hotspot has been avoided in order not to conflict with the terminology used by Framework.

2.3.2 Transfer Function

Sectional force and moment transfer functions are available via the SIF/SIN files from analyses carried out by the engineer, provided that a stochastic fatigue analysis was performed during environment load calculation. They will be utilised directly when the fatigue point is positioned in a structure read from a Framework database.

It is also possible to manually define transfer functions (as a set of points, or read from a SIN file).

2-5

2.3.3 Stress Concentration Factor

The different stress concentration factors (SCFs) presently available in Framework are applicable to the probabilistic fatigue and crack growth analyses when the structure is modelled and analysed using SESAM.

Note that a correction factor is applied to the bending SCF values at hotspots 4, 10, 16 and 22 for PIPE elements, when the SCF distribution is either CROWN-SADDLE or PARAMETRIC. In Framework, this correction is applied during a fatigue check analysis, and does not show up in the printed output. In Profast this correction is applied when the SCF values are transferred into the Profast database, and thus will show up in the printed output. The SCF values will therefore in this case appear to be different in Framework and Profast. The correction has been applied in the data transfer to Profast in order to achieve the same deterministic fatigue life in Profast as is calculated using a stochastic fatigue analysis in Framework. The correction factor can be manipulated in Profast by use of the command DEFINE FATIGUE-CONSTANTS, but the change will only take effect for fatigue points created after it has been made.

Stress concentration factors can also be specified manually.

2.3.4 Stress Influence Function

It is possible to manually specify stress influence coefficients from separate, detailed finite element analyses of joints, for use with any fatigue points. In the case of fatigue points positioned in a model from Framework, this will override the default SCF assignment read from the database. In any case, the user must take responsibility for creating and associating the correct transfer functions with the influence coefficients. See also Section 3.5.2 and the Profast Theory Manual.

2.3.5 Geometry Function

The following geometry functions are available:

- Centre crack in panel.
- Edge crack in panel.
- Surface crack in finite width plate for length and depth.
- Circumferential surface crack in hollow cylinder for depth.
- Tubular K-joint (data fit)
- Constant geometry function.
- A general polynomial geometry function with user defined parameters.
- User defined geometry function fitted to a set of data points.
- User defined weld magnification factors (optional usage), to be multiplied on the geometry function.

A factor can be applied to the geometry function, and uncertainty can be applied to this factor (useful for defining uncertainty in the model itself). Uncertainty can also be applied to other geometry function parameters.

2-6 01-OCT-2004 Program version 2.2-03

One dimensional geometry functions and the weld magnification factor can be displayed.

2.4 Environmental Loading

2.4.1 Environmental Description

The environment description consists of the following elements

- 1 A wave scatter diagram for each wave direction, with assigned wave spectrum shape (Pierson Moskowitz, Jonswap and General Gamma) and wave spreading function.
- 2 A probability distribution for the different wave directions.

The environmental description is identical to the one used in Framework when performing a stochastic fatigue analysis.

The scatter diagram may be used as is, fitted to a bivariate lognormal distribution, or to a distribution described by Fang and Hogben. For more details, see the Profast Theory manual.

2.4.2 Long Term Stress Distribution

The long term stress range distribution may be specified as one of the following

- 1 As a constant value, with optional uncertainty.
- 2 As a Weibull distribution with specification of ln(A) (the logarithm of the scale parameter) and 1/B (the reciprocal of the shape parameter). Both these parameters can be uncertain.
- 3 As a sum of Rayleigh distributions, based on the environmental and force description.
- 4 As a Weibull fit to the sum of Rayleigh distributions.

The calculation of the Sum-Rayleigh distribution is described in the Profast Theory Manual. In the first two cases, the number of load cycles per second must also be specified (it is calculated automatically in the latter cases). This value can be uncertain.

2.5 Fatigue and Crack Growth Model

2.5.1 Fatigue Model

An S-N fatigue model based on Miner's Rule is available. S-N curves are picked from a list of alternatives or specified manually by the user. It is not possible to update the SN-analysis based on inspection results, or to use the SN-analysis to prepare an inspection plan.

The following SN-curves are predefined in Profast. Note that the stress is in N/m^2 . However, when imported from Framework, these curves can be used with a model in different units provided that the E modulus is equivalent to $2.1*10^{11}$ N/mm², as the stress will automatically be scaled to the proper size by using the size

of the E modulus in the units actually used. Note that this unit conversion only applies to the predefined SN curves.

Table 2.1 Predefined SN-curves

Name	Description	m_0	$S_0 (N/m^2)$	N ₀	loga ₀	$logk_0$	Std(lk ₀)
DNV-X	Det Norske Veritas X- curve	4.1	34.000*10 ⁶	2*10 ⁸	39.1800	39.9800	0.4000
NS-B-SEA	NS 3472 B-curve sea cathodic	4.0	47.437*10 ⁶	2*10 ⁸	39.0055	39.3697	0.1821
NS-C-SEA	NS 3472 C-curve sea cathodic	3.5	33.221*10 ⁶	2*10 ⁸	34.6260	35.0342	0.2041
NS-D-SEA	NS 3472 D-curve sea cathodic	3.0	19.659*10 ⁶	2*10 ⁸	30.1817	30.6007	0.2095
NS-E-SEA	NS 3472 E-curve sea cathodic	3.0	17.299*10 ⁶	2*10 ⁸	30.0151	30.5169	0.2509
NS-F-SEA	NS 3472 F-curve sea cathodic	3.0	14.671*10 ⁶	2*10 ⁸	29.8004	30.2370	0.2183
NS-F2-SE	'NS 3472 F2-curve sea cathodic	3.0	12.914*10 ⁶	2*10 ⁸	29.6342	30.0900	0.2279
NS-G-SEA	NS 3472 G-curve sea cathodic	3.0	10.738*10 ⁶	2*10 ⁸	29.3939	29.7525	0.1793
NS-T-SEA	NS 3472 T-curve sea cathodic	3.0	19.390*10 ⁶	2*10 ⁸	30.1638	30.6606	0.2484
NS-W-SEA	NS 3472 W-curve sea cathodic	3.0	9.233*10 ⁶	2*10 ⁸	29.1970	29.5662	0.1846
API-X	API X-curve	4.38	35.000*10 ⁶	2*10 ⁸	41.3440	41.3440	0.2838
API-XP	API X'-curve	3.74	23.000*10 ⁶	2*10 ⁸	35.8340	35.8340	None

Note that the predefined NS3472 curves are based on the values of logk (named loga in NS3472) and the standard deviation of this reported in NS3472 (NS3472 gives redundant information: the corresponding stress levels are also reported, but rounded to integer values. These stress levels have not been used).

The relationship between S_0 , $log_{10}(a_0)$, $log_{10}(k_0)$ and the standard deviation of $log_{10}(k_0)$ is, when a deterministic analysis is performed:

$$S_0 = (\log_{10}(a_0)/N_0)(1/m0) = ((\log_{10}(k_0) - 2*Std(\log_{10}(k_0))/N_0)(1/m0)$$

During a probabilistic analysis, $log_{10}(k_0)$ follows a Normal distribution with the specified standard deviation.

2-8 01-OCT-2004 Program version 2.2-03

See also Figure 3.9.

2.5.2 Crack Growth Model

The following crack growth models are available:

- Paris-Erdogan, one dimensional crack growth with optional stress amplitude threshold
- Paris-Erdogan, two dimensional crack growth with optional stress amplitude threshold
- Shang, simulated two dimensional crack growth with optional stress amplitude threshold. This model simulates two dimensional crack growth by varying the aspect ratio as a function of the crack depth.

2.5.3 Calibration of the Crack Growth Model

The crack growth model may be calibrated to the SN model, in such a way that the reliability results are close during the service life of the structure.

Up to three parameters in the crack growth model and up to five time points are selected, and the parameters modified iteratively until the reliability results from the SN analysis and the crack growth model are close.

2.5.4 Failure Criteria

For the S-N analysis, the failure criterion is that the Miner's Sum exceeds a user specified level.

For the crack growth model, the failure criteria is that

The crack depth exceeds a user specified critical value

or

The crack length exceeds a user specified critical value

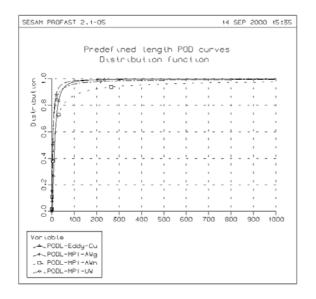
2.6 Inspection Finding and Repair

The following inspection events are available:

- 1 No crack found, i.e. the inspection event is:

 The crack size at the inspection time is smaller than the smallest detectable crack size.
- 2 A crack of unknown size was found, i.e. the inspection event is:

 The crack size at the inspection time is greater than the smallest detectable crack size.
- 3 A crack was found to be equal to, less than or greater than a measured value (with optional uncertainty), i.e. the inspection event is:


The crack size at the inspection time is identical to, less than or greater than the measured crack size.

For each finding, the inspection time must be specified. Inspections do not need to be specified in chronological order. Once specified, they can be deleted, but not changed.

2-9

Given that an inspection results in the finding of a crack, a decision on grind repair may be taken. In the case of grind repair, the grind depth must be specified and Profast then redefines the crack growth model and SN model from the time of the inspection.

An inspection is characterised by its inspection quality as defined by the Probability Of Detection (POD) curve, describing the smallest detectable crack size. A POD curve is modelled as a random variable. Some predefined POD curves exist (see Table 2.2, Figure 2.3 and Guideline for Offshore Structural Reliability Analysis, DnV Research Report No. 95-7003).

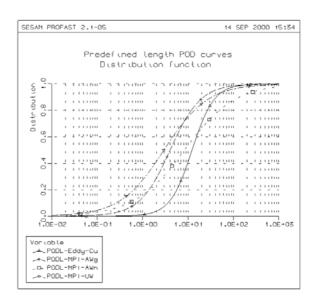


Figure 2.3 Predefined POD distributions — crack length in mm

These predefined curves are based on the distribution function:

$$F(a) = P(A < a) = 1 - 1 / (1 + (a/x_0)^b)$$

where a is the crack depth and x_0 and b are distribution parameters. This distribution is accessible under the name POD-Distrib, so it is possible to create other random variables using this distribution.

Table 2.2 Built-in POD curves for length inspection — crack length in mm

Name	x0	b	Description
PODL-MPI-UW	2.950	0.905	MPI Under Water
PODL-MPI-AWg	4.030	1.297	MPI Above Water, ground test surface
PODL-MPI-AWn	8.325	0.785	MPI Above Water, not ground test surface
PODL-Eddy-Cu	12.28	1.785	Eddy current

2-10 01-OCT-2004 Program version 2.2-03

2.7 Inspection Planning

Once a crack growth model is defined, inspections can be planned. This is because the crack growth model incorporates observable information (the crack size) into the model, thus allowing the calculation of conditional probabilities based on the observed information.

2.7.1 Target Reliability

In order to be able to decide when inspections are needed, a reliability target value βtarget must be specified for each fatigue point. The reliability at each point is not allowed to go below this target value.

For a proper choice of the target reliability, appropriate rules, guidelines and design codes should be consulted. The choice of target reliability is not a subject for this manual, as it may involve evaluation of the different failure consequences (e.g. economical, loss of life).

2.7.2 Inspection Quality

When planning inspections over the whole service life, it is standard practice to assume that inspections will be performed in the future when needed, and with the result that no crack is found.

In order to be able to do this, an inspection quality (POD curve) to be used in the future must be defined. If this inspection quality is not defined, Profast will only be able to plan one inspection into the future.

2.7.3 Inspection Times

There are two ways in which the inspection times can be planned

• Prescribed times:

The inspections are known to be performed at certain prescribed points in time. Thus, inspections will be planned such that the reliability of each fatigue point never falls below the target reliability.

• Optimised times:

The inspections are not performed until the reliability is identical to the target reliability. This will typically require fewer inspections than the inspection at prescribed times, but require more flexibility in the execution of the inspections.

2.8 Uncertainty Modelling

2.8.1 General Description

Many of the input values in Profast may be assigned an uncertainty which is used in the probabilistic analyses.

Each of these stochastic input values (termed stochastic parameters in the following) is represented by a random variable, and has a default uncertainty assigned. The random variable is unique for each instance of the value (e.g. for each initial crack depth defined), but the uncertainty definition is the same for all stochastic parameters of the same type (e.g. for all initial crack depths).

2-11

The default uncertainty definition consists of default distribution, bound(s) of the distribution when needed, and when applicable a default set of uncertainties labelled low, medium and high. The user may specify that a stochastic parameter has, for example, low uncertainty, and the default distribution will then be applied with the default definition of what low uncertainty is.

It is possible to override the default distribution in one of three ways:

- 1 By specifying that the stochastic parameter has no uncertainty assigned.
- 2 By creating another random variable and using this instead.
- 3 By changing the default uncertainty definition for the stochastic parameter. This will affect all stochastic parameters based on the same uncertainty definition.

It is possible to correlate stochastic parameters by correlating the associated random variables.

All available stochastic parameters are documented with the individual commands in Chapter 5, and the default uncertainty for each parameter may be printed by use of the command: PRINT UNCERTAINTY DEFINITION.

2.9 Analysis and Results

It is possible to run the following analyses types

- SN based fatigue analysis
- · Calibration of crack growth model to SN fatigue result
- · Crack growth analysis, with or without updating based on inspections
- · Inspection planning
- Tailor made probability analyses

These analyses may produce one or more of the following results

- Deterministic life time
- Stochastic distribution of the life time
- Reliability (failure probability) as a function of time
- Inspection plan
- Sensitivities

2-12 01-OCT-2004 Program version 2.2-03

2.9.1 Definition of the Reliability Index

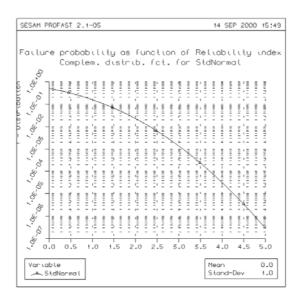


Figure 2.4 Correspondence between reliability index and failure probability

The term "reliability index" is used repeatedly during the Profast documentation. The reliability index (typically denoted β is in one-to-one correspondence with the failure probability p_f , and is defined as:

$$\beta = -\Phi^{-1}(p_f)$$

or equivalently

$$p_f = \Phi(-\beta)$$

where Φ is the Standard Normal distribution function.

The reliability index is increasing with increasing actual reliability and typical reliability index values are approximately in the range 1 to 7.

2.9.2 SN Based Fatigue Analysis

This analysis may be used to produce a deterministic or stochastic fatigue life, or produce the reliability as a function of time. It may be performed for the whole fatigue life, or from the time an inspection was performed.

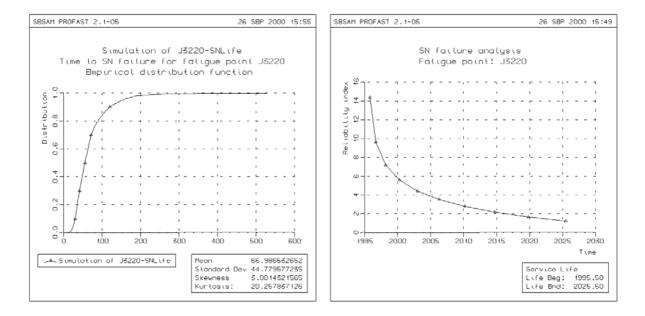


Figure 2.5 Results from SN fatigue analysis

Please note that the SN curve may be used differently in deterministic and probabilistic analysis, see Section 2.5.1. When there is uncertainty on the log(K) parameter in the SN curve, the deterministic fatigue life will be in the lower tail of the stochastic distribution, due to the fact that the deterministic analysis incorporates a safety factor on log(K).

By default, no sensitivity results are calculated during an SN failure probability analysis, in order to save computation time. This sensitivity calculation may be turned on if desired.

2.9.3 Calibration of Crack Growth Analysis to SN Fatigue Reliability

The calibration analysis is an iterative process, where the selected parameters are modified in order to produce a crack growth reliability result that matches the SN reliability result at the selected time points.

The result of the calibration and the iteration history may be printed and displayed. It has been observed, that the calibration produces a considerably better match for a two dimensional crack growth model than for a one dimensional model.

2-14 01-OCT-2004 Program version 2.2-03

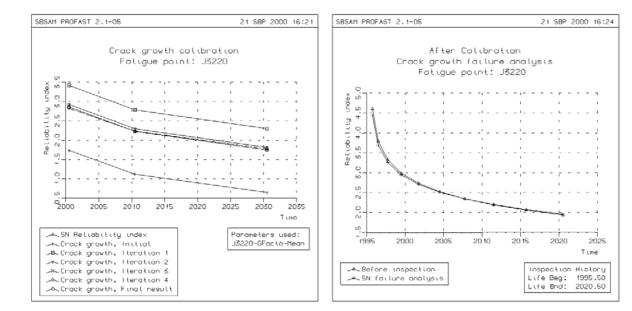
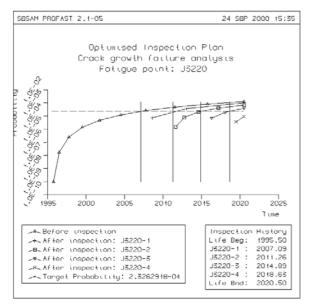


Figure 2.6 Result of crack growth calibration for a two dimensional crack growth model

2.9.4 Crack Growth Analysis

This analysis may be used to produce a deterministic or stochastic fatigue life, or to produce the reliability (failure probability) as a function of time. It may be performed from the start of the service life, or from the time an inspection was performed.

If an inspection exists after the start time of a failure probability analysis, the updating required at this inspection is automatically taken into account. The SN reliability curve may be shown with the crack growth reliability curve.


By default, no sensitivity results are calculated during a crack growth failure probability analysis, in order to save computation time. This sensitivity calculation may be turned on if desired.

Crack growth analysis results are presented in Figure 2.6 and Figure 2.7.

2.9.5 Inspection Planning

Inspection plans cannot be displayed by themselves. They can be printed point wise (i.e. fatigue point by fatigue point) or chronologically (in increasing order of time).

However, the planned future inspections may optionally be kept during the calculation of the plan, thus enabling the calculation and display of the predicted reliability of failure probability curve, as illustrated here:

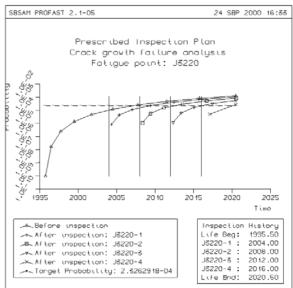


Figure 2.7 Crack growth failure curve according to prescribed and optimised inspection plan

2.9.6 Tailor made Probability Analysis

When Profast performs an SN or a crack growth analysis, it leaves a number of random variables and events, that have been used to perform the analysis. These are described in more detail in Chapter 3. These variables and events can be used to calculate probabilities and distributions, that are not otherwise directly accessible.

For example, the SN and crack growth failure analyses calculate the failure probability through a specified period of the service life. It is possible calculate the failure probability at the end of the service life only, by using the RUN PROBABILITY-ANALYSIS command on the variable FP-SNFail (for SN analysis) or FP-CGFail (for crack growth analysis), assuming that the fatigue point is named FP. This may be useful for examining sensitivities at the end of the service life without having to calculate them at a number of time points.

As a more advanced case, it is possible to condition the failure probability of one fatigue point (A) on an inspection of another point (B) by using the command: RUN PROBABILITY-ANALYSIS CONDITIONED A-CGFail B-INAll after a crack growth analysis of both A and B has been performed. The event B-INAll will contain all inspections performed at the point B.

2.9.7 Sensitivity Results

The probabilistic analysis may produce two kinds of sensitivity results:

Parametric sensitivity

2-16 01-OCT-2004 Program version 2.2-03

measures the change in a result (e.g. a probability of failure) resulting from a change in a parameter, e.g. the derivative of the result wt. the parameter. Parametric sensitivities are not dimensionless - the magnitude of the value will depend on the magnitude of the parameter.

Importance factors

measures the effect the uncertainty of a random variable has on the result. Importance factors sum up to 100%. Thus, if a variable has a very low importance factor, the effect on the result of treating the variable as a constant instead of random would most likely be negligible. On the other hand, if the importance factor of a variable is high, care should be taken in the modelling of the uncertainty of this variable.

Parametric sensitivities may be printed in tabular form or printed/displayed as a function of time when several analyses have been formed over time.

Importance factors may be presented similarly, and may also be displayed as a pie chart., see Figure 2.5.

A distribution analysis may only produce parametric sensitivities.

Please note that sensitivity results are turned off by default when doing SN and crack growth failure probability analysis.

SESAM Profast

3 USERS'S GUIDE TO PROFAST

This chapter describes the usage of Profast, with illustrating examples.

The analysis is divided into the following logical steps:

- 1 Preparations for analysis
- 2 Starting Profast
- 3 Definition of fatigue points
- 4 Environment, forces and load modelling
- 5 SN fatigue analysis
- 6 Crack growth analysis
- 7 Taking inspections into account
- 8 Planning future inspections

Each of these steps are described in detail in the following sections. In addition, there is a section about modelling of uncertainties, and a section on advanced use of Profast. At the end of the chapter, there is a section with various hints on how to facilitate the use of Profast.

An example is used to illustrate the steps. The example serves the purpose as a tutorial, although it is not a realistic example. It is based on the model shown in Figure 3.3. The command input files used are listed in Appendix A together with some results.

Command input examples and responses by Profast are shown using the Courier font with a slightly smaller size. An example:

```
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-OSCF ) MEDIUM Changed Variable J5120-OSCF to Normal( Mean-CoV: 3.53553, 5.0E-02)
```

3-2 01-OCT-2004 Program version 2.2-03

3.1 Preparations for Analysis

Before a Profast analysis can begin, the critical hotspots are usually determined. This is not done by use of Profast, but rather through some other utility program, e.g. Framework (to find the deterministic fatigue life) or Usfos (for progressive collapse analysis or member redundancy analysis).

In addition, the resulting forces on the structure may have been analysed, e.g. by use of Wajac, Wadam and Sestra, producing a results interface file (.SIN file) with the structure analyses and transfer functions (the transfer functions require a stochastic fatigue analysis in Wajac or Wadam). This file may be used by Profast to model the long term stress range distribution.

If such a file is not available, the transfer functions should be made available in a format suitable for inclusion by the CREATE TRANSFER-FUNCTION command. See the description of this command in Chapter 5.

Profast may start up from a database produced by Framework (the .MOD file). This will allow Profast to use the information in this database, as well as in the SIN file attached to this database. It will also allow display of the Framework model by use of the DISPLAY MEMBER / JOINT / LABEL / SUPERELEMENT / PRESENTATION commands. If Profast is started from a Framework database, please read Section 4.1.6 first, in order to make sure that the transition is done in the best possible way. Also, check which units have been used in the imported model, in order to make sure that the input to Profast is specified in the correct units.

Finally, it is advisable to keep each structure being analysed in a separate directory on the disk, to ease maintenance of files.

In the tutorial example two critical points are located at each end of the same member, 31415 (see Appendix A for details).

3.2 Starting Profast

The start-up is described in more detail in Section 4.1.

When Profast is started, an opening dialog is presented (see Figure 3.1).

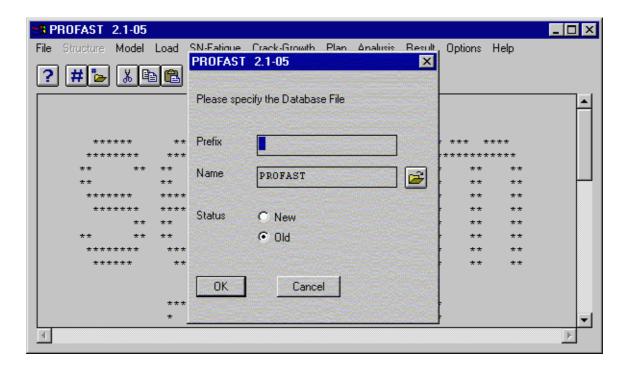


Figure 3.1 Profast start-up dialog

There are now two possible cases the first time Profast is started with a new model:

- A Framework model is to be used. In this case, the OLD alternative must be selected and the name and prefix of the model file specified. Note that it is recommended to copy the Framework model file to a file with another name and then use the copied file. This is because Framework may not open the database again once it has been opened by Profast, and because this will produce a journal file with a new name (Framework and Profast journals should not be mixed in the same file).
- No Framework model file is to be used. In this case, specify the name and prefix of the model file and select NEW.

If an existing Profast model file is to be opened, specify the name and prefix of the file and select OLD.

3.2.1 Navigating the User Interface

Profast has two different user interfaces:

- A line mode, text based interface suitable for typed commands and batch runs. This interface is described in detail in Section 4.4.
- A graphical user interface, suitable for interactive usage. This interface is described in detail in Section 4.5.

Both user interfaces journal the users actions in a file in the form of line mode commands. This file can be reused to re-establish the database (if needed) or as a concise description of the model.

3-4 01-OCT-2004 Program version 2.2-03

The graphical user interface incorporates the line mode user interface, both as a command input line and as a command picker, which will allow using the mouse to pick commands instead of typing them.

The graphical user interface has a different setup than the command line interface. The line mode commands are action oriented, i.e. the command syntax usually starts with a verb and is followed by a noun. The graphical user interface presents a pull down menu system, where the menus are grouped according to subjects. In the modelling and analysis process the menus are generally used from left to right. This is also the case for the tutorial example used in this chapter.

3.2.2 Initialising the Database

When a database is opened for the first time, some initialisation needs to be done.

If required, default uncertainties and other defaults should be changed at this stage, e.g. by reading in a command input file with the settings preferred by your company.

The display device and plot format (if needed) should be checked in order to see if they match the required local settings.

The service life of the structure being analysed must be set using DEFINE SERVICE-LIFE. This includes setting a start time and final time in years for the structure. The service life is specified in years. The tutorial example exemplifies a jacket installed mid 1995 and with a 30 year life span:

```
DEFINE SERVICE-LIFE 1995.5 2025.5
```

The corresponding dialog box is found under the "Model" pull down menu:

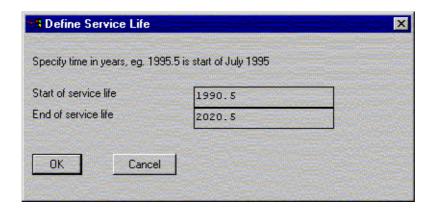
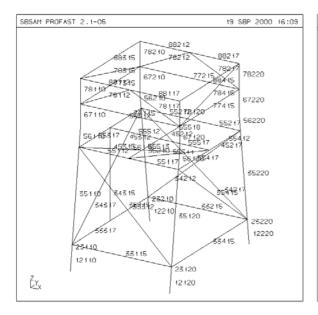



Figure 3.2 Dialog box for definition of the service file

If a Framework database is opened, the structure may be displayed if desired, to verify that the database is correctly transferred. The superelement, members and joints may be displayed. Members and joints may be displayed one by one, or as named sets predefined in Framework. These commands are available in the graphics user interface under the "Structure" pull down menu.

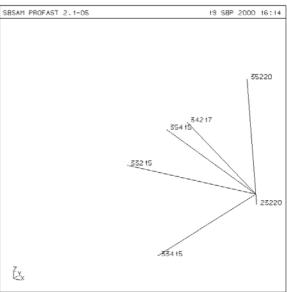


Figure 3.3 Display of all members and of joints 5120 and 3220

The plots have been created using the following commands:

3.3 Definition of Fatigue Points

A fatigue point is a point on the structure that is to be examined for possible inspection or performed inspection. This is typically a hotspot on a cross section of a beam, e.g. at a chord/brace intersection. As outlined in Section 3.1, these must have been identified before Profast is started.

Fatigue points are created by use of the command CREATE FATIGUE-POINT. Most of the attributes of the fatigue points are assigned by use of various assign commands. These commands are available in the graphical user interface under the "Model -> Fatigue Point" pull down menu.

Fatigue points can be of different types:

• PLATE and TUBE points are user defined points in a plate or tube geometry. The structure on which they are located is not known by Profast.

3-6 01-OCT-2004 Program version 2.2-03

 JOINT points are located at a chord/brace intersection of a jacket structure imported in the Framework database.

• MEMBER points are located at a fatigue check position along a member in a jacket structure imported in the Framework database.

The JOINT and MEMBER options are available only when a database created by Framework is used. When such a point is created, the existing SCF values are transferred, the corresponding transfer functions are created and assigned, the existing SN curve assignment is used and a Sum-Rayleigh stress range is assigned.

It is usually convenient to use at most 5 characters for the name of a fatigue point. When reading transfer functions and creating planned inspections, Profast will create names based on the fatigue point name if this is not too long. For example, the transfer function applied to the axial stress concentration factor is named by appending TRA to the fatigue point name, provided that this transfer function name does not exceed 8 characters. If it would do so (i.e. if the fatigue point name has more than 5 characters), an arbitrary name is selected.

The following commands will create the two fatigue points used in the tutorial example. Also shown is the response from Profast from the first command:

```
CREATE FATIGUE-POINT J5120 ' ' JOINT 5120 35415 BRACE 10
     Brace 35415 at CHORD-SIDE joint 3220
   * Joint type is reset from KTK to K since only 2 near braces
     Brace 35415 at BRACE-SIDE joint 3220
   * Joint type is reset from KTK to K since only 2 near braces
     Brace 35415 at BRACE-SIDE joint
                                              5120
   * Joint type is reset from KTK to K since only 2 near braces
           35415 at CHORD-SIDE joint
                                              5120
     Joint type is reset from KTK to K since only 2 near braces
     Created Variable J5120-ODiam as fixed with value 700.0
     Created Variable J5120-Thick as fixed with value 20.0
     Created Variable J5120-aTRF as fixed with value 1.0
     Created Variable J5120-bTRF as fixed with value 0.0
     Created Variable J5120-cTRF as fixed with value 0.0
     Created Variable J5120-RSP as fixed with value 1.0
     Created Variable J5120-SFacto as fixed with value 1.0
     Created Variable J5120-IFacto as fixed with value 1.0
     Created Variable J5120-ASCF as fixed with value 2.5
     Created Variable J5120-ISCF as fixed with value 3.53553
     Created Variable J5120-OSCF as fixed with value 3.53553
     Assigned SCF values to Fatigue point J5120:
         SCFax: 2.50000 1/Area: 2.34051E-05
         SCFipb:
                    3.53553
                                  z/Iy :
                                             -1.00129E-07
                   3.53553
                                  v/Iz :
                                              1.00129E-07
     Assigned transfer functions J5120TRA J5120TRI J5120TRO to J5120
     Created Variable J5120-MinerS as fixed with value 1.0
     Created Variable J5120-1K0 as Normal (Mean-Std 15.3801, 0.4)
     Created Variable J5120-m0 as fixed with value 4.1
     Created Variable J5120-1N0 as fixed with value 8.301
     Created Variable J5120-ThFac as fixed with value 1.0
     SN curve DNVX assigned to J5120
     Created Fatigue point J5120 at hotspot 10 in Brace side of Joint/Brace
     connection 5120 / 35415
```

```
CREATE FATIGUE-POINT J3220 ' ' JOINT 3220 35415 BRACE 10
```

Note that the values J5120-ODiam and J5120-Thick indicate that brace 35415 at joint 5120 has a pipe cross section with outer diameter 700mm and wall thickness 20mm.

Note also that a correction factor is applied to the bending SCF values at hotspots 4, 10, 16 and 22 for PIPE elements when the SCF distribution is either CROWN-SADDLE or PARAMETRIC (as is the case here). In Framework, this correction is applied during a fatigue check analysis, and does not show up in the printed output. In Profast this correction is applied when the SCF values are transferred into the Profast database, and thus will show up in the printed output. The SCF values will therefore in this case appear to be different in Framework and Profast. This correction has been applied in order to achieve the same deterministic fatigue life in Profast as is calculated using a stochastic fatigue analysis in Framework. The correction factor can be manipulated in Profast by use of the command DEFINE FATIGUE-CONSTANTS, but the change will only take effect for fatigue points created after it has been made.

The "Create Fatigue Point" dialog box is set up here to create one of the two fatigue points used in the tutorial example:

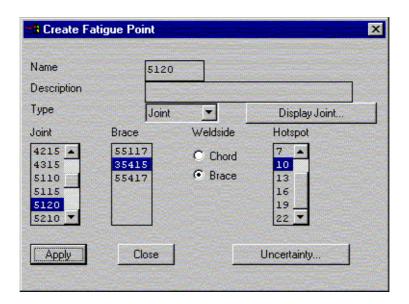


Figure 3.4 Dialog box for creating a fatigue point

Fatigue points and their associated data can be printed. Immediately after creation, the fatigue point J5120 gives the following print:

```
PRINT FATIGUE-POINT J5120
FatigPnt Contents
                         Value
J5120
                        Hotspot in brace at chord/brace connection
        Type
                        Joint 5120, Brace 35415, Hotspot 10 in Brace
        Position
                       700.0 Uncertainty: None
        Outer Diam
        Thickness
                        20.0 Uncertainty: None
                       Not assigned
        Target Rel.
        Insp. Qual.
                       Not assigned
```

3-8 01-OCT-2004 Program version 2,2-03

```
Inspection
                None performed
                SCFax: 2.50000
                                     Uncertainty: None
                SCFipb:
                           3.53553
                                     Uncertainty: None
                SCFopb:
                           3.53553 Uncertainty: None
                1/Area:
                           2.3405139E-05
                z/Iy :
                         -1.0012924E-07
                y/Iz :
                          1.0012924E-07
                Common factor: 1.0 Uncertainty: None
                Wave height linearisation
Transfer Func
                 axi: J5120TRA ipb: J5120TRI opb: J5120TRO
                Factor a: 1.0 Uncertainty: None
                Factor b: 0.0 Uncertainty: None
                Factor c: 0.0 Uncertainty: None
                Stress resp. factor: 1.0
                                         Uncertainty: None
                Sum Rayleigh distribution is calculated
Stress range
SN Curve
                DNVX
                      : Normal ( Mean-StD 15.3801 , 0.4)
                1K0
                m0
                      : 4.1 Uncertainty: None
                1 N O
                     : 8.301 Uncertainty: None
Miner Sum
                1.0 Uncertainty: None
```

3.4 Modelling Uncertainties

The basic principle in Profast is, that the user should be required only to specify the uncertainties, and not need to worry about the application of probabilistic methods.

The Proban commands CREATE VARIABLE and CHANGE VARIABLE can be used to model constant and random variables. However, this method may require some knowledge about probabilities and statistics. Therefore, a simpler way has been introduced, with default distributions and default uncertainty values defined for a number of input parameters, e.g. for the stress concentration factors and the crack sizes.

3.4.1 Specifying Uncertainty on Input Parameters

Parameters that can be uncertain are almost always attached to a named object, e.g. the crack growth parameters lnC and m are attached to a fatigue point. These parameters are named from the object they are attached to, e.g. as NAME-lnC and NAME-m.

Each uncertain parameter has a deterministic value (defined as the input value in the command where it is set) and an attached variable, which is used to keep the uncertainty. For example, these are the variables referred to by Profast in the messages following the creating of a fatigue point (see above). Such a variable has the same name as the parameter, but truncated to 12 characters.

All these derived variables are listed in Appendix B.

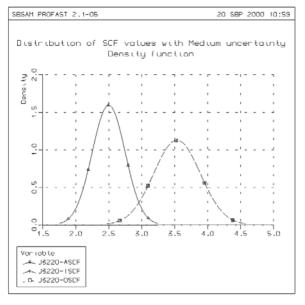
Uncertainty is assigned through the command ASSIGN UNCERTAINTY VALUE and can be printed by use of PRINT UNCERTAINTY VALUE. The commands PRINT VARIABLE, PRINT DISTRIBUTION and DISPLAY DISTRIBUTION may also be used to examine the variables associated with the stochastic parameters (See Figure 3.5).

```
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-OSCF ) MEDIUM

Changed Variable J5120-OSCF to Normal( Mean-CoV: 3.53553, 5.0E-02)
```

3_0

In the graphical user interface, all uncertainty modelling is available through the "Model" pull down menu.


Uncertainty can be assigned using the default low, medium or high values, specified as a standard deviation or as a coefficient of variation (i.e. (standard deviation)/(absolute value of mean)). However, for some distributions the uncertainty is a function of the mean (e.g. the Exponential distribution). In such a case, uncertainty can be switched on or off, but the magnitude of the uncertainty cannot be specified because it is already known:

```
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-a0 ) KNOWN Changed Variable J5120-a0 to Exponential ( Mean-Low: 0.11, 0.0)
```

Alternatively, no uncertainty can be specified (as NONE) or, in special cases, the uncertainty can be specified through another variable. In the latter case, the deterministic value of the parameter is set to the mean value of the variable, if possible.

The following graphs have been generated using the commands:

```
SET TITLE 'Distribution of SCF values with Medium uncertainty' ' ' ' ' ' SET DRAWING FONT-SIZE RELATIVE 1.5
DISPLAY DISTRIBUTION ONLY J3220*SCF DENSITY
DISPLAY DISTRIBUTION ONLY J3220*SCF DISTRIBUTION
```

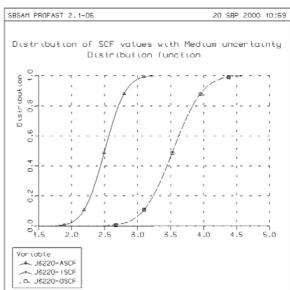



Figure 3.5 Distribution of SCFs with medium uncertainty applied

When desired, the random variables associated with the stochastic parameters can be correlated using the command ASSIGN CORRELATION. For example, modelling the load at the two ends of the same member to have a positive correlation:

```
ASSIGN CORRELATION ( J3220-lnA J5210-lnA ) BASIC 0.8
```

3-10 01-OCT-2004 Program version 2.2-03

```
CREATE VARIABLE CorrLoad 'Load correlation at member 35415' FIXED 0.8 ASSIGN CORRELATION ( J3220-lnA J5210-lnA ) BASIC CorrLoad
```

Both commands will set the same correlation value, but the latter approach have the advantage of allowing a sensitivity study on the value of the correlation.

The definition of the default uncertainty can be examined by use of PRINT UNCERTAINTY DEFINITION and changed by use of DEFINE UNCERTAINTY. The definition is accessible through the type of the object it is attached to instead of the name of a stochastic parameter, e.g. it is accessible as FatigPnt-lnC and Fatig-Pnt-m instead of J3220-lnC and J3220-m.

The definition of uncertainty includes

- · The default distribution
- The bounds on the distribution, when required
- The default low, medium and high values, when the uncertainty is not known from the mean value. Each of these may be specified as a coefficient of variation and/or a standard deviation. If both are specified, the value of the two that generates the largest standard deviation is used. Note that it is necessary to specify a standard deviation if the mean value can be zero.

If a definition is changed, all stochastic parameters based on this definition will have their distribution changed accordingly.

For example, to change the default uncertainty for the initial crack depth to a Lognormal distribution, and such that the low, medium and high uncertainty is specified as a coefficient of variation and that medium uncertainty is the default when a new initial crack depth is created (note that the Lognormal distribution requires a lower bound, in this case set to 0.0):

```
DEFINE UNCERTAINTY FatigPnt-a0 LogNormal MEDIUM 0.0

NOT-USED NOT-USED NOT-USED 0.1 0.01 0.05

The uncertainty definition of FatigPnt-a0 has been changed

The default uncertainty for FatigPnt-a0 has been changed to: Medium

Changed Variable J5120-a0 to Lognormal (Mean-CoV-Low: 0.1, 5.0E-02, 0.0)

Changed Variable J3220-a0 to Lognormal (Mean-CoV-Low: 0.1, 5.0E-02, 0.0)
```

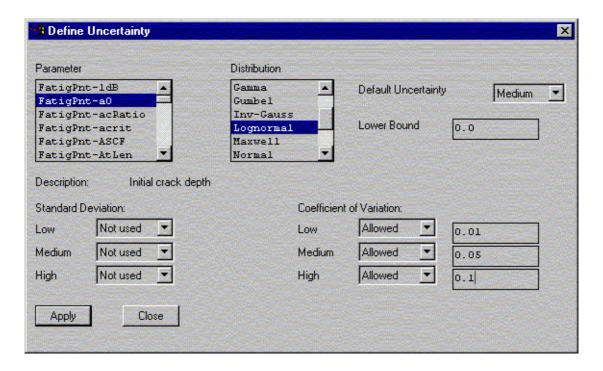


Figure 3.6 Dialog box for definition of uncertainties

There is generally not a large need for modelling random variables directly in Profast, except for POD distributions. However, when required, the commands CREATE/CHANGE VARIABLE can be used to model random variables with built-in uncertainty and constant values.

The following types of variables are available:

DISTRIBUTION

These variables are specified as following a random distribution. there is usually a choice between different sets of input parameters. See the Proban Distributions manual for details.

FITTED-DISTRIBUTION

These variables are also specified as following a random distribution. However, some or all of the distribution parameters are fitted to data values. These data values can be input by the user or generated by an analysis.

FIXED

These variables have a constant value.

FUNCTION

These variables are a function of other variables and/or numerical values. The library of available functions can be examined by use of the PRINT FUNCTION command.

GENERATED

3-12 01-OCT-2004 Program version 2.2-03

The distribution of these variables are generated from another variable. All variables generated from the same variable become independent, identically distributed variables (except if conditioning is applied, see ASSIGN CONDITIONING).

The POD variables used at inspections are modelled in this manner. The POD distribution is defined by a single random variable, and all instances of this POD distribution are generated from this variable, thus becoming independent and identically distributed.

For more details, see the command descriptions in Chapter 5.

Note that Profast creates and names a number of variables. These variables are write protected, and cannot be changed by the user.

3.5 Environment, Forces and Load Modelling

3.5.1 Modelling Environmental Data

In order to obtain the environmental description required for calculating the Sum-Rayleigh stress range distribution, the user must enter a scatter diagram and assign wave direction probabilities to all wave directions. The scatter diagram must have one or more wave spectrum shapes assigned and optionally one or more wave spreading functions.

An environmental model that has already been defined in Framework and exist in the database can be reused in Profast, except that the Nordenstrom wave statistics cannot be used by Profast.

The following commands illustrate the process (the commands are identical in Framework).

This example creates a scatter diagram with 5 sea states (the probabilities of the last two entries are added):

A wave spreading function may be created using this command:

```
CREATE WAVE-SPREADING-FUNCTION DIS2 'DISCRETE COS**2' USER-DEFINED (
%% Dir Weigth
-45 0.25
0 0.50
45 0.25
)
```

01-OCT-2003

3-13

And then applied to all of the scatter diagram:

```
ASSIGN WAVE-SPREADING-FUNCTION SCATTER DIS2 ALL
```

A Pierson-Moskowitz spectrum is applied to all sea states:

```
ASSIGN WAVE-SPECTRUM-SHAPE SCATTER PIERSON-MOSKOWITZ ALL
```

The scatter diagram is applied to each of the main wave directions.

```
ASSIGN WAVE-STATISTICS
LOOP

Dir Scatter diagram
-45 SCATTER
0 SCATTER
45 SCATTER
90 SCATTER
135 SCATTER
END
```

The probability of occurrence for each of the main wave directions is defined:

```
ASSIGN WAVE-DIRECTION-PROBABILITY
LOOP
% Dir Prob
-45 0.0
0 0.9
45 0.0
90 0.1
135 0.0
END
```

This modelling may be verified using PRINT and DISPLAY commands.

3.5.2 Applying Forces to a Fatigue Point

The forces can be applied either through SCFs (Stress Concentration factors) or influence coefficients.

In the graphical user interface, the SCFs and influence coefficients are accessible through the "Model" pull down menu. The transfer functions are accessible through the "Load" pull down menu.

If a database created by Framework is used, and the fatigue point is of JOINT or MEMBER type, Profast will automatically read SCFs from the database and assign them to the fatigue point if they are available. Profast will also read the corresponding transfer functions and assign them to the fatigue point. It is possible to override both the SCFs and the transfer functions with user defined values if desired. The default assignment is shown when a fatigue point is created (see Section 3.3).

The ASSIGN SCF command is used to apply user defined SCFs to a fatigue point. Three SCFs (axial, inplane bending and out-of-plane bending) and the reciprocal of the three corresponding cross section properties must be applied. After this, three transfer functions must be assigned, by use of the CREATE TRANS-FER-FUNCTION (if needed) and ASSIGN TRANSFER-FUNCTION commands.

Instead of the three stress concentration factors, up to 99 influence coefficients can be applied. The command ASSIGN INFLUENCE-COEFFICIENTS is used to apply influence coefficients at a fatigue point.

3-14 01-OCT-2004 Program version 2.2-03

Each influence coefficient is multiplied with a scaling factor, which is multiplied with the influence coefficient during the calculation. One transfer function must be assigned to each coefficient by use of the ASSIGN TRANSFER-FUNCTION command. Each influence coefficient represents one degree of freedom, and it is up to the user to keep track of the correct pairing of coefficients and transfer functions.

See also the example at the end of this section.

Uncertainty can be applied to each SCF or to each influence coefficient. See Chapter 5 for details.

Transfer functions can be read from a SIN file, if available, or be specified directly as a set of points. Please note that each named transfer function in Profast is defined for one degree of freedom and for all wave directions. Transfer functions can be displayed. The following graphs were created by use of these commands:

```
SET DRAWING FONT-SIZE RELATIVE 1.5

DISPLAY TRANSFER-FUNCTION * 0

DEFINE PRESENTATION TRANSFER-FUNCTION ORDINATE PHASE-AMPLITUDE
DISPLAY TRANSFER-FUNCTION J3220TRO 0
```

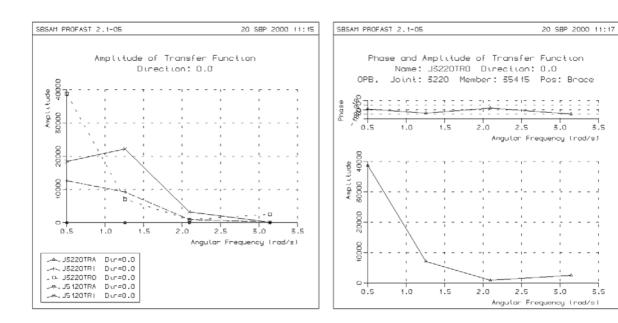


Figure 3.7 Display of transfer functions

The following example regenerates the default transfer of stress concentration factors and transfer functions for fatigue point J3220 (the response from Profast is not shown):

```
CREATE TRANSFER-FUNCTION J3220TRA ' ' USER-SPECIFIED 30.0
    (ONLY - 45.00)
                      0.503
                              7.923E+01
                                         6.749E+01
           -45.00
                     1.257
                             -1.821E+01
                                         1.210E+01
           -45.00
                     2.094
                             -5.479E+01
                                         8.118E+01
           -45.00
                     3.142
                              2.719E+01
                                         9.859E+01
             0.00
                     0.503
                              9.071E+00 5.807E+00
             0.00
                     1.257
                              1.754E+00 -1.664E+00
```

3-15

Profast

```
0.00
                    2.094 -6.567E-01 2.507E+00
            0.00
                    3.142 -6.314E-01 -3.063E+00
           45.00
                    0.503 -6.350E+01 -6.241E+01
                           2.682E+01 -2.768E+01
                    1.257
           45.00
           45.00
                    2.094
                           2.875E+01 -9.075E+01
           45.00
                    3.142
                           -2.678E+01 -1.028E+02
           90.00
                    0.503
                          -7.725E+01 -1.104E+02
           90.00
                    1.257
                            2.921E+01 1.701E+02
                    2.094
           90.00
                           2.950E+01 2.937E+01
           90.00
                    3.142 -1.353E+01 -1.124E+02
          135.00
                   0.503 -3.790E+01 -9.538E+01
          135.00
                    1.257 -1.923E+01 -6.543E+00
          135.00
                   2.094 -6.111E+01 -7.586E+01
                           2.299E+01 -9.951E+01 )
          135.00
                   3.142
CREATE TRANSFER-FUNCTION J3220TRI ' ' USER-SPECIFIED 30.0
    (ONLY - 45.00)
                  0.503 -1.568E+04 5.461E+03
          -45.00
                    1.257
                            3.623E+03
                                      4.924E+02
          -45.00
                    2.094
                          -3.351E+03 3.654E+03
          -45.00
                    3.142
                          1.504E+03 5.174E+03
            0.00
                   0.503 -6.595E+03 1.075E+04
            0.00
                   1.257
                           9.073E+03 1.723E+03
            0.00
                   2.094
                          1.010E+02 9.231E+02
            0.00
                    3.142 -5.749E+01 -1.944E+02
                           1.057E+03 1.118E+04
                    0.503
           45.00
                           -1.156E+03 3.209E+03
                    1.257
           45.00
           45.00
                    2.094
                            5.583E+02 -5.008E+03
                           -1.293E+03 -5.461E+03
           45.00
                    3.142
           90.00
                    0.503
                          -5.049E+03 1.317E+04
           90.00
                    1.257
                           4.308E+03 7.724E+03
                    2.094
           90.00
                          1.977E+03 7.616E+02
           90.00
                    3.142 -1.292E+03 -5.938E+03
                   0.503 -9.336E+03 8.808E+03
          135.00
          135.00
                    1.257
                           4.066E+03 -1.204E+03
                          -3.664E+03 -3.350E+03
          135.00
                    2.094
                   3.142
                           1.287E+03 -5.226E+03 )
          135.00
CREATE TRANSFER-FUNCTION J3220TRO ' ' USER-SPECIFIED 30.0
                    0.503
    (ONLY - 45.00)
                           1.961E+04 5.445E+03
          -45.00
                    1.257
                           -6.200E+03 -4.554E+03
                   2.094
                          -1.004E+03 -2.841E+03
          -45.00
          -45.00
                    3.142
                           4.786E+02 -2.424E+03
            0.00
                    0.503
                            3.805E+04 7.502E+03
            0.00
                    1.257
                            2.453E+03 -6.660E+03
                            7.825E+02 4.679E+02
            0.00
                    2.094
                            1.429E+02 -2.505E+03
            0.00
                    3.142
                                      1.402E+04
           45.00
                    0.503
                            2.425E+04
           45.00
                    1.257
                            4.630E+03
                                      3.693E+03
           45.00
                    2.094
                            3.238E+03 6.634E+02
           45.00
                    3.142
                          -5.920E+02 -2.128E+03
                    0.503
           90.00
                           7.563E+03 4.060E+03
                    1.257 -1.432E+03 -5.399E+03
           90.00
           90.00
                   2.094 -3.356E+03 -4.487E+02
           90.00
                    3.142
                          8.996E+02 8.401E+02
```

3-16 01-OCT-2004 Program version 2.2-03

```
135.00 0.503 -1.063E+03 -2.006E+04

135.00 1.257 -5.484E+03 5.974E+03

135.00 2.094 -7.991E+02 2.817E+03

135.00 3.142 5.801E+02 2.390E+03)

ASSIGN SCF J3220 2.5 2.3405139E-05 3.53553 -1.0012924E-07 3.53553 -1.0012924E-07

ASSIGN TRANSFER-FUNCTION J3220 WAVE-HEIGHT (ONLY J3220TRA J3220TRI J3220TRO)
```

If the same effect should be modelled using influence coefficients, the ASSIGN SCF command would be substituted with one of the following commands:

```
ASSIGN INFLUENCE-COEFFICIENTS J3220
( ONLY 2.5 2.3405139E-05 3.53553 -1.0012924E-07 3.53553 1.0012924E-07
ASSIGN INFLUENCE-COEFFICIENTS J3220
( ONLY 5.8512792e-05 1.0 -3.5401003e-07 1.0 3.5401003e-07 1.0 )
```

In the first case, the factors are identical to the reciprocal cross section properties. In the second case, the reciprocal cross section properties have been multiplied into the stress concentration factors, and the corresponding factors have been set to 1.0.

3.5.3 Modelling the Long Term Stress Range Distribution

There are four ways to assign the stress range:

- As a constant value, with optional uncertainty.
- As a Weibull distribution with specification of ln(A), the logarithm of the scale parameter and 1/B, the reciprocal of the shape parameter. Both these parameters can be uncertain.
- As a sum of Rayleigh distributions, based on the environmental and force description supplied above (see Section 3.5.1 and Section 3.5.2). The calculation of the Sum-Rayleigh distribution is described in the Profast Theory Manual.
- As a Weibull fit to the sum of Rayleigh distributions. See below for details.

The uncertain parameters applied to calculation of the Sum-Rayleigh distribution are described in the following section. When a JOINT or MEMBER type fatigue point is created, the Sum-Rayleigh type stress range is automatically assigned.

If a constant stress range is used, or a direct specification of the Weibull distribution, the number of load cycles per second must be specified. This value is automatically calculated when the Sum-Rayleigh or Weibull-fit stress range distribution is used. Uncertainty can be assigned to the number of load cycles per second.

The fit to the Weibull distribution produces the two Weibull parameters ln(A) and 1/B as uncertain parameters. It can be done in one of three ways:

- 1 As a deterministic fit, fitting to the 95% and 99% fractiles of the Sum-Rayleigh distribution.
- 2 As a deterministic fit, fitting to fractiles of the Sum-Rayleigh distribution at user defined probability values.

3 As a probabilistic fit, fitting to fractiles of the Sum-Rayleigh distribution at three user defined probability values.

The first two methods produce values of ln(A) and 1/B with no uncertainty (uncertainty can be applied later if required). The last method may apply uncertainty to one or both of these, as well as introduce a correlation between them.

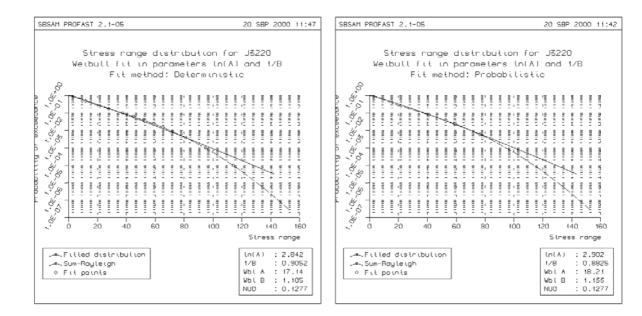


Figure 3.8 Display of weibull fits to the long term stress range distribution

The command DEFINE WEIBULL-FIT is used to set the probability values at which the fit is performed and ASSIGN STRESS-RANGE is used to assign the long term stress range definition to a fatigue point. In the graphical user interface, the long term stress range is accessible through the "Load -> Stress Range" pulldown menu.

```
ASSIGN STRESS-RANGE J3220 WEIBULL-FIT PROBABILISTIC
Created Variable J3220-lnA as Normal (Mean-StD: 2.9032, 3.239027E-02)
Created Variable J3220-ldB as fixed with value 0.882666
Created Variable J3220-nu0 as fixed with value 0.127833
Assigned Stress range to J3220 as Weibull Fit
```

The stress range assignment can be displayed if it is not constant, using DISPLAY STRESS-RANGE. In the case of a Weibull fit, an impression of the fit can be gained (see Figure 3.8).

Please note that in some cases, the SN life time calculated with the Sum-Rayleigh stress distribution and the fitted Weibull stress distribution may be quite different. In such a case, it may be advantageous to look into these possibilities:

 It may be a good idea to specify fit points quite far into the tail (see DEFINE WEIBULL-FIT DETER-MINISTIC). 3-18 01-OCT-2004 Program version 2.2-03

- The probabilistic Weibull fit may provide a better result than the deterministic fit.
- A parameter used in the fit (see next section) may have been given a distribution with a very long tail (e.g. a Lognormal or Exponential distribution).

3.5.4 Uncertainties Applied to a Sum-Rayleigh Stress Distribution

Each wave scatter diagram may have the following uncertainty assigned. The stochastic parameters are named in parenthesis, assuming a scatter diagram named SCAT:

1 Uncertainty on the parameters of the distribution fitted to the scatter diagram. These uncertainties are only in effect when a distribution has been fitted (see ASSIGN WAVE-SCATTER-DISTRIBUTION).

Uncertain factor on E(HS), the mean of HS (SCAT-EHS).

Uncertain factor on SD(HS), the standard deviation of HS (SCAT-SHS).

Uncertain factor on E(TZ), the mean of TZ (SCAT-ETZ).

Uncertain factor on SD(TZ), the standard deviation of TZ (SCAT-STZ).

Uncertain factor on Corr(HS,TZ), the correlation between HS and TZ (SCAT-CHT).

Uncertain factor on the skewness in the Fang-Hogben distribution (SCAT-FHS). This value is only used when a Fang-Hogben distribution is fitted.

2 Uncertainty on the parameter g in any Jonswap spectrum (SCAT-GWS).

Uncertainty on the parameter sA in any Jonswap spectrum (SCAT-AWS).

Uncertainty on the parameter sB in any Jonswap spectrum (SCAT-BWS).

3 Uncertainty on the parameter L in any General gamma spectrum (SCAT-LWS).

Uncertainty on the parameter N in any General gamma spectrum (SC4

4 Uncertainty on the power of a cosine power wave spreading function (SCAT-PWS). No uncertainty can be assigned to a user defined (discrete) wave spreading function.

The wave spectrum parameters are described in the Profast Theory Manual.

Each fatigue point (or inspection with a repair assigned) may have the following uncertainty assigned. The stochastic parameters are named in parenthesis, assuming a fatigue point (or inspection) named FP.

- 1 Uncertainty on factor (bias) on transfer function as a parabolic function of HS: a +b*HS +c* HS2 (FP-aTRF, FP-bTRF, FP-cTRF).
- 2 Uncertain factor on stress response (factor on square modulus of transfer function) (FP-RSP).
- 3 Uncertainty on each SCF (FP-ASCF, FP-ISCF,FP-OSCF) or on each influence coefficient (FP-Ixx, xx = 01,...,99). The value of these parameters may be changed in ASSIGN SCF and ASSIGN INFLUENCE-COEFFICIENT

Except where noted otherwise, all the values mentioned here can be changed by use of the command ASSIGN MODEL-FACTOR.

The uncertainty of each parameter may be changed by use of ASSIGN UNCERTAINTY VALUE.

3.6 SN Analysis

In the graphical user interface, all commands necessary for setting up, executing and examining results from an SN analysis are available under the "SN-Fatigue" pulldown menu, with the exception of stress range and uncertainty modelling.

3.6.1 Setting up the SN Analysis

To be able to perform an SN analysis, the following steps must first be completed:

- 1 An SN curve must first be assigned to the fatigue point using ASSIGN SN-CURVE. If necessary, the SN curve can be created first using CREATE SN-CURVE. The parameters of the SN curve can be uncertain. See CREATE SN-CURVE in Chapter 5 for details.
- 2 A thickness correction can be applied to the SN curve. See the command ASSIGN THICKNESS-COR-RECTION in Chapter 5 for details.
- 3 The critical damage value must be assigned using ASSIGN MINER-SUM-CRITICAL. The critical damage can be uncertain. The default value is 1.0 with no uncertainty assigned.
- 4 A stress range must be assigned, see Section 3.5.3.

If a JOINT or MEMBER type fatigue point is used, these settings will when possible have default values read from the database. It is usually possible to go directly from the creation of the fatigue point to the SN analysis in this case.

3.6.2 SN Curves

There are a few special considerations regarding SN curves, which the user should be aware of:

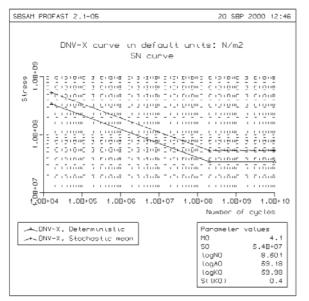
A number of SN curves have been preprogrammed. These are listed in Table 2.1 on page 2-7. These curves cannot be changed. Note that these predefined curves are in N/m2. However, when imported from Framework, these curves can be used with a model in different units provided that the E modulus is 2.1*1011 N/mm2, as the stress will automatically be scaled to the proper size by using the size of the E modulus in the units actually used. If no Framework model has been imported, or if the E modulus has a different value, it is the responsibility of the user to specify the SN curve in consistent units.

Most SN curves have a different deterministic and stochastic representation. This is because the SN curves used for deterministic analysis, e.g. in Framework, usually incorporate a safety factor by shifting the parameter log(K) with two standard deviations. Thus, if uncertainty is to be incorporated on K in a probabilistic analysis, log(K) is represented as having a Normal distribution with the original mean (without safety factor) and with the standard deviation that was originally used to compute the value of log(K) used deterministically. See also Section 2.5.1.

The thickness correction was applied differently in the original Profast. To be exact, the reciprocal of value computed from the formula in Figure 5.1 shall be identical to the thickness correction factor from old Profast uplifted to the power 1/m0, where m0 is the slope of the first section of the SN curve.

3-20 01-OCT-2004 Program version 2.2-03

In the tutorial example, the following SN curve is defined in Framework:


```
CREATE SN-CURVE DNVX USER 'DNV-X curve in N/mm2' 4.1 34.0 8.301 HORISONTAL-TAIL
```

This is the same as the predefined DNV-X curve, but specified in mm instead of m. In Profast, this curve is changed in order to incorporate uncertainty (this uncertainty is already built into the predefined DNV-X curve):

```
CHANGE SN-CURVE DNVX UNCERTAINTY 0.4
```

The UNCERTAINTY input option is the simplest way to modify the standard deviation of log10(K). There is also a STOCHASTIC option, where log10(K) and the standard deviation of this as input instead of the stress level S (the STOCHASTIC and UNCERTAINTY input option is not available in Framework).

SN curves may be displayed using DISPLAY SN-CURVE. When a standard deviation on log10(K) is defined, both the deterministic and stochastic curves are drawn:

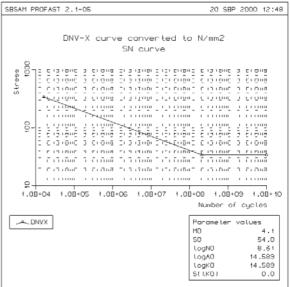


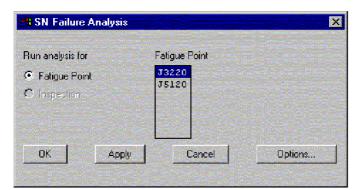
Figure 3.9 Display of SN curve

3.6.3 Executing the SN Analysis and Examination of Results

The command RUN SN-ANALYSIS is used. There are three options:

- Calculate the time to failure, deterministic or as a random distribution.
- Calculate the failure probability as a function of time
- Update the variables and events that are used in the analysis (see below).

In the graphics user interface, the pulldown menus "SN-Fatigue -> Life time" and "SN-Fatigue -> Failure probability" are used.


The SN analysis model is contained in two random variables and one event, with names derived from the name of the fatigue point, but abbreviated to 12 characters. In the case of the fatigue point J3220, these will be:

J3220-SNLife VARIABLE Time to SN failure in years

J3220-SNFail VARIABLE Limit state value (i.e. negative if failure, positive if safe).

J3220-SNFail EVENT Failure event (i.e. J3220-SNFail < 0)

These variables and events will be updated when needed by an analysis, or when an update is specifically requested by RUN SN-ANALYSIS UPDATE-MODEL (see also Appendix B).

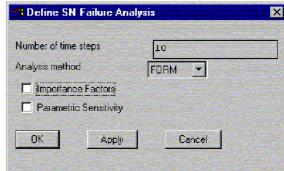
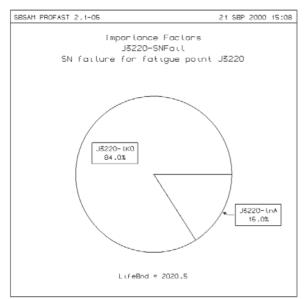


Figure 3.10 Dialog box for SN failure probability analysis and corresponding options

The analysis setup is defined through DEFINE SN-ANALYSIS FAILURE-PROBABILITY or through the DEFINE commands used to manipulate distribution analysis, e.g. DEFINE DISTRIBUTION-SIMULA-TION. Note that sensitivity analysis is turned off by default for probability analysis. This is to save computation time. It may however be informative to turn on importance factor calculation at least once to see the contribution each uncertainty makes to the failure probability. The number of time steps in the failure probability analysis defines the number of SN analyses used to map the failure probability over time. If set to 1, the analysis is performed at the end of the service life only.


The analysis method to be used for failure probability analysis is defined through DEFINE SN-ANALYSIS FAILURE-PROBABILITY METHOD or, if the DEFAULT option is selected, through the command SELECT ANALYSIS-METHOD PROBABILITY. The analysis method used for probabilistic life time analysis is defined using SELECT ANALYSIS-METHOD DISTRIBUTION.

The analysis results are stored with the names NAME-SNLife and NAME-SNFail respectively. The analysis results may be examined by use of PRINT/DISPLAY SN-ANALYSIS or, for a more detailed examination of one result, the commands SELECT RESULT followed by PRINT/DISPLAY RESULT may be used.

The following commands were used to generate these plots (note that the dominating uncertainty on log(K) was removed from the last plot to be able to discern the effect of the remaining values):

3-22 01-OCT-2004 Program version 2.2-03

DEFINE SN-ANALYSIS FAILURE-PROBABILITY IMPORTANCE ON RUN SN-ANALYSIS FAILURE-PROBABILITY J3220 SET DRAWING FONT-SIZE RELATIVE 1.5 DISPLAY RESULT IMPORTANCE 2020.5 DISPLAY RESULT PARAMETER-STUDY IMPORTANCE

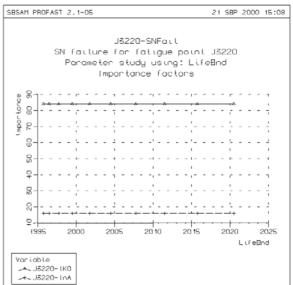


Figure 3.11 Importance factor results from an SN analysis

3.7 Crack Growth Analysis

In the graphical user interface, all commands necessary for setting up, executing and examining results from a crack growth analysis are available under the "Crack-Growth" pulldown menu, with the exception of stress range and uncertainty modelling.

3.7.1 Setting up the Crack Growth Model and Geometry

The crack growth model and geometry is assigned in three parts:

- 1 The dimension of the crack growth model and the corresponding parameters must be assigned first, using ASSIGN CRACK-GROWTH-MODEL. The dimension of the crack growth model affects the possible choice of geometry and crack types.
- 2 The geometry, crack type and stress intensity specification must then be assigned, using ASSIGN GEOMETRY-FUNCTION. The available choices are documented fully in Chapter 5 with the ASSIGN CRACK-GROWTH-MODEL command and in the Profast Theory Manual, and will not be repeated here except to note that two "free format" geometry functions are available: a polynomial form and a general data fit.

3 In addition, a weld effect may be assigned, using ASSIGN WELD-EFFECT, except for through thickness and edge cracks in a plate. The weld effect never falls below 1.0 and is multiplied on the geometry function. By default, no weld effect is assigned. The options include the British Standard PD6493 and fits to data points. An assigned weld has no effect on the SN analysis.

It is also necessary to have a stress range assigned, either as Weibull distribution or a constant value. A Sum-Rayleigh stress distribution imported from Framework should be exchanged with a Weibull fit before crack growth analysis is performed.

Finally, an SN analysis must be possible if a the crack growth model is to be calibrated to the SN analysis result.

Uncertainty can be applied to a number of the parameters. For more details, see the relevant commands in Chapter 5.

The following table suggest some values for m and lnC, which may be used when no other data are available. Note that these values of ln(C) conform to the units N and mm. Please be careful to specify the value in the correct units. If, for instance, meters were used instead of mm, the following change in ln(C) would be required (note that the material parameter m enters the correction):

```
ln(C) in (N,m) = ln(C) in (N,mm) - (m * 1.5 + 1) * ln(1000)
```

The value 1000 is the conversion factor from m to mm. If a different measurement unit is used, a corresponding factor can be applied instead.

If no uncertainty is applied to m, the standard deviation of ln(C) is the same regardless of the units used. However, if uncertainty is applied to m, and possibly also a correlation between m and lnC is introduced, the conversion is more complicated, and it is often better to model the dependency directly. As the values are usually specified in the codes and guidelines in mm, a predefined model function (lnC-UnitConv) exists for just this purpose. It takes three arguments: (1) ln(C) in mm, (2) the material parameter m and (3) the number of mm per unit of measurement. The following command example illustrates the process:

```
% Note that the computation ensures that ln(C) has the correct deterministic value
ASSIGN CRACK-GROWTH-MODEL P 0 PARIS-1DIM 3.5 $ -31.01 - (3.5*1.5+1)*Log(1000)
      Created Variable P-ITime as fixed with value 0
      Created variable P-m as fixed with value 3.5
      Created variable P-lnC as fixed with value -74.18347
ASSIGN UNCERTAINTY P-m STDV 0.1
     Changed variable P-m to Normal (Mean-Std 3.5, 0.1)
% First model the ln(C) value as specified in mm
CREATE VARIABLE P-lnCmm 'ln(C) in mm for fatigue point P' DISTRIBUTION
                        Normal Mean-Std -31.01 0.77
% Note that the correlation is specified between m and the ln(C) modelled in mm
ASSIGN CORRELATION ( P-m P-lnCmm ) BASIC -0.9
% Then model the modified ln(C) value
CREATE VARIABLE P-lnCm 'ln(C) in m for fatigue point P' FUNCTION
                        lnC-UnitConv P-lnCmm m 1000
\mbox{\ensuremath{\$}} Use the modified ln(C) value as stochastic representation of P-lnC
ASSIGN UNCERTAINTY P-lnC VARIABLE P-lnCm
      Changed P-lnC to be identical to P-lnCm
```

3-24 01-OCT-2004 Program version 2.2-03

Note that with this setup, a deterministic analysis will represent ln(C) with the value specified in the ASSIGN CRACK-GROWTH-MODEL command (-74.18437), while a probabilistic analysis will use the random variable P-lnCm.

Environment	ln(C)	(N,mm) (mean, std.dev)	Reference
In air and non corrosive	3.1	Normal(-29.84, 0.55)	offshore units. DnV, Classification
In sea water	3.5	Normal(-31.01, 0.77)	
In air	3.0	Normal(-29.31, 0.24)	Statistical Scatter in Fracture Toughness and Fatigue Crack Growth Rare Data, Johnston, G.O., ASTM STP 789, 1983, pp 42-66
In are	2.8	Normal(-27.66, 0.23)	Probabilistic Fracture Approach of Fatigue and Brittle Fracture in Tubu- lar Joints, Snijder, H.H. et. al., Proc. Steel in Marine Structures, Amster- dam, The Netherlands, 1987

Table 3.1 Suggested crack growth model parameters

One dimensional geometry functions and the weld effect can be displayed using DISPLAY GEOMETRY-FUNCTION and DISPLAY WELD-EFFECT.

These are the initial crack growth model settings used in the tutorial example, with Profast responses shown for J3220 (taken from the second line of the table above):

```
ASSIGN CRACK-GROWTH-MODEL J3220 0 PARIS-1DIM 3.5 -31 NO-THRESHOLD Created Variable J3220-ITime as fixed with value 0.0 Created Variable J3220-m as fixed with value 3.5 Created Variable J3220-lnC as fixed with value -31.0 Assigned Crack growth model to J3220 as Paris 1Dim ASSIGN CRACK-GROWTH-MODEL J5120 0 PARIS-1DIM 3.5 -31 NO-THRESHOLD ASSIGN GEOMETRY-FUNCTION J3220 TUBE-SURFACE DEPTH 0.1 20.0 0.1 .2 Created Variable J3220-a0 as Exponential (Mean-Low: 0.1, 0.0) Created Variable J3220-acrit as fixed with value 20.0 Created Variable J3220-acrati as fixed with value 0.1 Created Variable J3220-MSRati as fixed with value 0.2 Created Variable J3220-GFacto as fixed with value 1.0 Assigned Geometry function Tube Surface to J3220 ASSIGN GEOMETRY-FUNCTION J5120 TUBE-SURFACE DEPTH 0.1 20.0 0.1 .2
```

Please note that the initial crack depth by default has an Exponential distribution and is uncertain. The geometry function model factor is accessible, if desired, through the command ASSIGN MODEL-FACTOR GEOMETRY-FUNCTION.

After this initial assignment, the following uncertainties are added in the tutorial:

```
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-lnC ) STDV .77
Changed Variable J3220-lnC to Normal( Mean-StD: -31.0, 0.77)
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-GFactor ) COV .1
```

3-25

```
Changed Variable J3220-GFacto to Normal (Mean-CoV: 1.0, 0.1)
ASSIGN UNCERTAINTY VALUE (ONLY J3220-acRatio) COV .1
Changed Variable J3220-acRati to Normal (Mean-CoV: 0.1, 0.1)
ASSIGN UNCERTAINTY VALUE (ONLY J5120-lnC) STDV .77
Changed Variable J5120-lnC to Normal (Mean-StD: -31.0, 0.77)
ASSIGN UNCERTAINTY VALUE (ONLY J5120-GFactor) COV .1
Changed Variable J5120-GFacto to Normal (Mean-CoV: 1.0, 0.1)
ASSIGN UNCERTAINTY VALUE (ONLY J5120-acRatio) COV .1
Changed Variable J5120-acRati to Normal (Mean-CoV: 0.1, 0.1)
```

3.7.2 Calibration of the Crack Growth Model to the SN Analysis Result

If desired, the crack growth reliability model can be calibrated to the SN reliability result. This is done by manipulating one, two or three parameters in the crack growth model so that the SN and crack growth reliability results become as close as possible at a number of user defined time points. A least squares fit is used, manipulating the parameters according to sensitivity results from the crack growth reliability analysis.

Crack growth calibration is available in the graphical user interface in the pulldown menu under "Crack-Growth -> Calibrate to SN".

There are two convergence criteria, one based on the vertical distance between the curves and one based on the step length of the parameters. Both must be satisfied for convergence to be achieved. If convergence is achieved, Profast will by default automatically update the parameter values. If not, it is up to you to do this manually, if desired. These options are set by use of DEFINE CALIBRATION-CRACK-GROWTH or through the dialog box shown below:

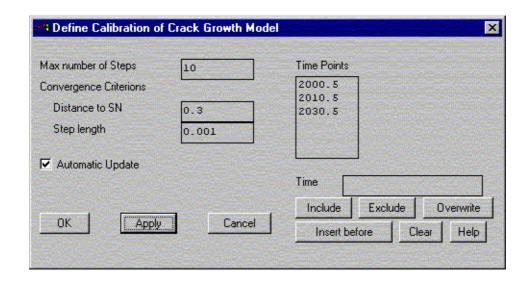


Figure 3.12 Dialog box for setting of calibration options

As can be seen in this example, taken from the tutorial, it is possible to calibrate beyond the service life of the structure.

3-26 01-OCT-2004 Program version 2.2-03

For the one dimensional crack growth models, the calibration does not always work too well, in that the distance between the curves may remain quite large. The calibration is in this case unable to sufficiently translate and rotate the crack growth reliability curve. In such a case it may be advisable to set the distance convergence criterion quite large. For two dimensional models, this does not seem to be a problem.

Profast only allows calibration of the parameters used exclusively in the crack growth model, and not on crack sizes. A constant value is listed with its name, while a random value is listed with its parameters. The possible selection is listed in the dialog box used for running the calibration and can be seen using a ? in line mode when prompted for the value.

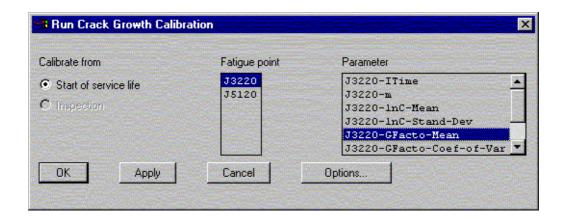


Figure 3.13 Dialog box for starting a crack growth calibration

When selecting parameters for calibration, please note the following:

- When two parameters are selected, it is usually a good choice to select one geometry function value (GFactor, acRatio, MSRatio etc.) and one crack growth model value (m, lnC etc.).
- For one dimensional crack growth models, the effect of selecting more than one parameter is usually not to improve the fit, but rather to spread the parameter changes onto more parameters.
- Some parameters may need to be fixed because of restrictions on the model.
- If a parameter with restricted variability is selected (e.g. standard deviation, coefficient of variation, a/c ratio, membrane stress ratio), the iteration process may temporarily try to give it an illegal value during the iteration, thus causing some warning messages. This is usually not a problem in achieving convergence. However, it is probably not a good idea to select only parameters with such restricted variability for the calibration.

The calibration result can be displayed and printed.

In this example, the factor on the geometry function is the only value used.

```
DEFINE CALIBRATION-CRACK-GROWTH TIME-POINTS (ONLY 2000.5 2010.5 2030.5)

RUN CALIBRATION-CRACK-GROWTH J3220

Parameter to be used in calibration (ONLY)??

Available values (selected values are shown in parentheses):

J3220-m

J3220-lnC-Mean
```

```
J3220-lnC-Stand-Dev
                              J3220-GFacto-Mean
    J3220-GFacto-Coef-of-Var
                              J3220-acRati-Mean
    J3220-acRati-Coef-of-Var
                              J3220-MSRati
Parameter to be used in calibration (ONLY)? J3220-GFacto-Mean
    Changed Variable : J3220-SNFail
    Changed Variable : J3220-CGFail
    Crack growth calibration for Fatigue point: J3220
    Parameter 1: J3220-GFacto-Mean
    IT Parameter 1 2000.50 2010.50 2030.50 STEP
                                                 DIST
       Not used
                    3.563
                           2.854
                                   2.159 0.0010 0.300
    SN
                    1.166
                           0.566
                                  0.000 2.2837 2.284
     0
         1.000E+00
         2.250E-01
     1
                    6.268
                            5.551
                                   4.844 4.9782 2.695
     2
         3.937E-01
                    4.268
                            3.580
                                    2.905 1.9705
                                                 0.725
         4.767E-01
     3
                    3.603
                            2.928
                                    2.268 0.6511
                                                 0.079
     4
         4.871E-01
                    3.529
                            2.855
                                    2.197 0.0727
                                                 0.030
     5
         4.872E-01
                    3.528
                            2.854
                                    2.196 0.0009
                                                 0.029
    Required convergence achieved.
    Changed Variable J3220-GFacto to Normal (Mean-CoV: 0.487231, 0.1)
```

The result may be displayed using DISPLAY CALIBRATION-CRACK-GROWTH. Shown here is the result for the other fatigue point, J3220 together with a display of crack growth analysis after calibration. In this case, the fit is quite good. You may wish to compare with the calibration of a two dimensional crack growth model, Figure 2.6 on page 2-14.

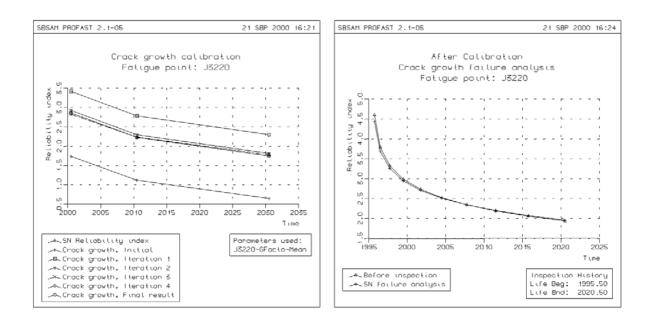


Figure 3.14 Result of crack growth calibration for a one dimensional crack growth model

These commands were used to generate the plots:

3-28 01-OCT-2004 Program version 2.2-03

```
RUN CALIBRATION-CRACK-GROWTH J3220 (ONLY J3220-GFactor-Mean)
SET DRAWING FONT-SIZE RELATIVE 1.5

DISPLAY CALIBRATION-CRACK-GROWTH J3220 ALL-ITERATIONS
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
SET TITLE 'After Calibration' ' ' ' ' '
DEFINE PRESENTATION CRACK-GROWTH-ANALYSIS SN-FAILURE ON
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220 RELIABILITY-INDEX
```

3.7.3 Running a Crack Growth Analysis and Examination of Results

The command RUN CRACK-GROWTH-ANALYSIS is used. There are three options:

- Calculate the failure probability as a function of time
- Calculate the time to failure, deterministic or as a random distribution.
- Update the variables and events that are used in the analysis (see below).

In the graphics user interface, the pulldown menus "Crack-Growth -> Life time" and "Crack-Growth -> Failure probability" are used.

The crack growth analysis model is contained in two random variables and one event, with names derived from the name of the fatigue point, but abbreviated to 12 characters. In the case of the fatigue point J3220, these will be:

J3220-CGLife VARIABLE Time to crack growth failure in years

J3220-CGFail VARIABLE Limit state value (i.e. negative if failure, positive if safe).

J3220-CGFail EVENT Failure event (i.e. J3220-SNFail < 0)

These variables and events will be updated when needed by an analysis, or when an update is specifically requested by RUN CRACK-GROWTH-ANALYSIS UPDATE-MODEL (see also Appendix B).

3_29

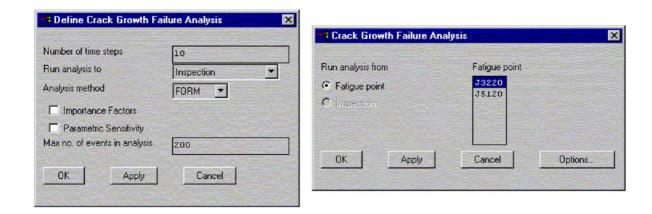
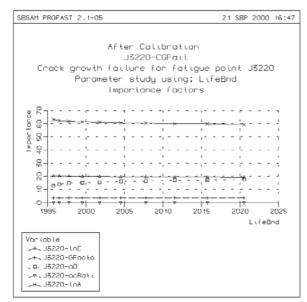


Figure 3.15 Dialog box for crack growth failure probability analysis and corresponding options

The analysis setup is defined through DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROBABIL-ITY or through the DEFINE commands used to manipulate distribution analysis, e.g. DEFINE DISTRIBUTION-SIMULATION. Note that sensitivity analysis is turned off by default for probability analysis. This is to save computation time. It may however be informative to turn on importance factor calculation at least once to see the contribution each uncertainty makes to the failure probability. Note also that, when an inspection is created, it will be possible to start the crack growth analysis at the time of the inspection. The number of time steps in the failure probability analysis defines the number of crack growth analyses used to map the failure probability over time. If set to 1, the analysis is performed only at the end of the service life or at the inspection time, as appropriate.


The analysis method to be used for failure probability analysis is defined through DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY METHOD or, if the DEFAULT option is selected, through the command SELECT ANALYSIS-METHOD PROBABILITY. The analysis method used for probabilistic life time analysis is defined using SELECT ANALYSIS-METHOD DISTRIBUTION.

The analysis results are stored with the names NAME-CGLife and NAME-CGFail respectively. The analysis results may be examined by use of PRINT/DISPLAY CRACK-GROWTH-ANALYSIS or, for a more detailed examination of one result, the commands SELECT RESULT followed by PRINT/DISPLAY RESULT may be used.

The following commands were used to generate these plots (note that the dominating uncertainty on log(K) was removed from the last plot to be able to discern the effect of the remaining values):

```
DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY IMPORTANCE ON RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
SET DRAWING FONT-SIZE RELATIVE 1.5
SET TITLE 'After Calibration' ' ' ' ' ' ' '
SELECT RESULT J3220-CGFail
DISPLAY RESULT PARAMETER-STUDY IMPORTANCE *
SET DRAWING FONT-SIZE RELATIVE 1.3
DISPLAY RESULT IMPORTANCE ( 1995.8 2004.5 2020.5 )
```

3-30 01-OCT-2004 Program version 2.2-03

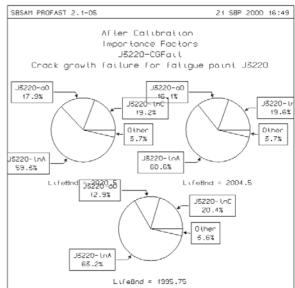


Figure 3.16 importance factor results from a crack growth failure analysis

3.8 Taking Inspections Into Account

The crack growth model formulation has one great advantage over the SN model: It contains an observable quantity, the crack size. Thus, it is possible to inspect the structure, measure the crack size if a crack was found, and formulate a conditional failure probability given this information.

In Profast, the user need not be concerned with the formulation of conditional probabilities. These are set up automatically when needed, e.g. in a crack growth analysis or during inspection planning. Instead, the user must supply the observed information at inspections, and assign uncertainty to the values as desired.

3.8.1 Inspection Events

In Profast, inspection observations can be modelled in the length and/or the depth direction. It is possible to model a crack in one direction (e.g. depth) and observe it in another (e.g. length), because the crack growth models have been formulated so that a depth/length conversion based on the a/c ratio is included when appropriate.

The following types of inspection results can be defined for depth and length:

- 1 No crack found, i.e. the inspection event is:

 The crack size at the inspection time is smaller than the smallest detectable crack size.
- 2 A crack of unknown size was found, i.e. the inspection event is:

 The crack size at the inspection time is greater than the smallest detectable crack size.

- 3 A crack was found and the size measured, i.e. the inspection event is:

 The crack size at the inspection time is identical to the measured crack size.
- 4 A crack was found and the size known to be less than a given value, i.e. the inspection event is:

 The crack size at the inspection time is less than the given crack size. This may for example be the case when the crack is ground away.
- 5 A crack was found and the size known to be greater than a given value, i.e. the inspection event is: The crack size at the inspection time is greater than the given crack size.
- 6 No observation of this crack size was made.

The inspection events described above can be applied to a fatigue point using the command CREATE INSPECTION (inspections are available in the "Model -> Inspection" pulldown menu in the graphical user interface). Each inspection is given a name, which must be different from all other created fatigue point and inspection names. The information required is the inspection time and event, as well as the observed information for crack depth and crack length.

For example, an inspection of length at which the crack size was measured to 5mm:

```
CREATE INSPECTION J5-I1 'First inspection at J5120' J5120 1994.5

NOT-OBSERVED CRACK-FOUND EQUAL-TO 5

Created Variable J5-I1-Time as fixed with value 1994.5

Created Inspection J5-I1 at fatigue point J5120 at time 1994.5

Depth inspection at J5-I1: Not Observed

Created Variable J5-I1-Length as fixed with value 5.0

Length inspection at J5-I1: Equal To 5.0
```

Inspections can be deleted but not changed. However, a grind repair can be added (see Section 3.8.4).

Note that during inspection planning, Profast may create future no-find inspections if needed in order to maintain the required target reliability. Such inspections are by default deleted when the planning is complete, but can be kept if desired (see also Section 3.9). If kept, they will be deleted if the inspection plan is deleted.

3.8.2 Inspection Quality

The quality of an inspection method is described by the smallest crack size that can be detected.

The smallest detectable crack size is typically modelled a random variable. The distribution of this random variable is called the POD curve (Probability Of Detection).

In the case of the first two inspection events, this value is needed. Depending on what was inspected, it must be specified for the depth, the length or both. An inspection quality to be applied in the future must also be specified before an inspection plan can insert no-find inspections when required, see also Section 3.9.

A number of POD curves are predefined (see Section 2.6). More can be defined, as they are simply modelled as random variables (using CREATE/CHANGE VARIABLE, note that data fit is available). For easy access, it is recommended to prefix the names of length POD curves with PODL- and names of depth POD curves with PODD-.

3-32 01-OCT-2004 Program version 2.2-03

For example: (these distributions are arbitrarily defined, and are not recommended in general):

```
CREATE VARIABLE PODL-Visual 'Visual Inspection quality, Length'
DISTRIBUTION EXPONENTIAL Mean-Low 6 0
CREATE VARIABLE PODD-Visual 'Visual Inspection quality, Depth'
DISTRIBUTION EXPONENTIAL Mean-Low 2 0
```

Each time a POD curve is applied to an inspection, it is referenced as a distribution generated from the original POD curve variable. You do not need to understand this in detail, but the implications are, that all POD curves based on the same POD variable are stochastic independent and use the same distribution definition. So, if the original POD curve variable is changed, all applications of the POD curve will be affected.

3.8.3 Crack Growth Analysis After Inspection

The command RUN CRACK-GROWTH-ANALYSIS is used. The possibilities are the same as described in Section 3.7.3. However, a life time analysis that starts before the time of the inspection, will not take the inspection into account, and a life time analysis for a inspection will ignore any later inspections.

A failure probability analysis will take all inspections into account from the start of the analysis and to the end of the service life. A new analysis is done after each inspection, because new information must be taken into account, thus resulting in a new conditional failure probability.

When an inspection is created, the following random variables and events are maintained by Profast when needed by an analysis, or when an update is specifically requested by RUN CRACK-GROWTH-ANALY-SIS UPDATE-MODEL (assuming an inspection named NAME, see also Appendix B):

NAME-InDep	VARIABLE	Depth inspection variable, if crack depth was observed.
NAME-InDep	EVENT	Depth inspection event, if crack depth was observed.
NAME-InLen	VARIABLE	Length inspection variable, if crack length was observed.
NAME-InLen	EVENT	Length inspection event, if crack length was observed.
NAME-InAll	EVENT	Intersection of all inspection events up to this time
NAME-CGFail	VARIABLE	Failure margin variable during remaining lifetime
NAME-CGFail	EVENT	Failure event during remaining lifetime
NAME-CGLife	VARIABLE	Time to crack growth failure in years

After the analysis is completed, these variables and events will be available to the user if the need for a special analysis arises.

3.8.4 Taking Repair Into Account

When an inspection is performed, it is by default assumed that no repair is performed. However, the command ASSIGN REPAIR may be used to implement a grind repair.

These actions are performed automatically when the ASSIGN REPAIR command is used:

- 1 The start time for the event of failure after the inspection, and for any future inspection event margins, is set to the inspection time.
- 2 The SN model assignments, crack growth model parameters and geometry function parameters are copied to new variables (independent, identically distributed). No weld effect is assigned after a grind repair.
- 3 The thickness of the material is reduced with the grind depth. The critical crack depth is unchanged. However, a critical crack depth greater than the thickness is simply treated as being equal to the thickness during analysis.
- 4 Assignment of CRACK-GROWTH-MODEL, GEOMETRY-FUNCTION, INFLUENCE-COEFFI-CIENTS, SCF, SN-CURVE, STRESS-RANGE, TRANSFER-FUNCTION and WELD-EFFECT to the inspection is now possible. The effect of such an assignment is to change the assigned value from the time of the inspection.

Note that the stress range assignment is not changed. This may be done if desired. Note also that change of e.g. SCF values does not implicitly change the stress range. The ASSIGN STRESS-RANGE command must subsequently be used.

For example, assuming a grind was made at the crack discovered earlier:

```
ASSIGN REPAIR J5-I1 GRIND 2
     Created Variable J5-I1-Grind as fixed with value 2.0
      Created Variable J5-I1-Thick as fixed with value 18.0
      Grind repair to depth 2.0 performed at inspection J5-I1
      Created Variable: J5-I1-GThick
      Changed Variable J5-I1-Thick to be identical to J5-I1-GThick
      SN curve DNVX assigned to J5-I1
      Created Variable J5-I1-MinerS as Normal (Mean-CoV: 1.0, 0.1)
      Created Variable J5-I1-ITime as fixed with value 0.0
      Created Variable J5-I1-m as fixed with value 3.5
      Created Variable J5-I1-lnC as Normal (Mean-StD: -31.0, 0.77)
      Created Variable J5-I1-GFacto as Normal (Mean-CoV: 0.545654, 0.1)
      Created Variable J5-I1-a0 as Exponential (Mean-Low: 0.1, 0.0)
      Created Variable J5-I1-acrit as fixed with value 20.0
      Created Variable J5-I1-acRati as Normal (Mean-CoV: 0.1, 0.1)
      Created Variable J5-I1-MSRati as fixed with value 0.2
```

3-34 01-OCT-2004 Program version 2.2-03

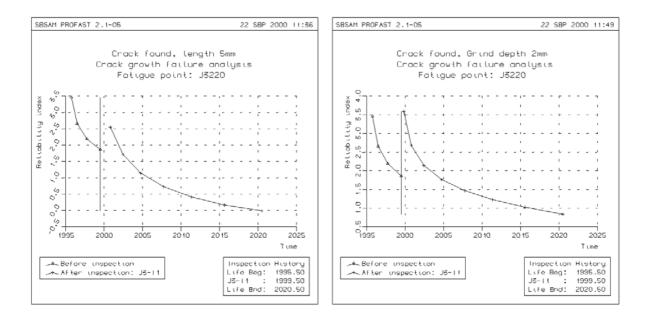


Figure 3.17 Crack growth failure analysis after inspection with and without grind repair

The effect of a grind repair is typically to increase the reliability of the structure significantly compared with the reliability after a crack was found.

These commands exemplify the finding of a crack of length 5mm and the subsequent grind to the depth of 2mm, and were used to create the plots:

```
CREATE INSPECTION J3-1 'First inspection at J3220' J3220 1999.5
                        NOT-OBSERVED CRACK-FOUND EQUAL-TO 5
DEFINE UNCERTAINTY Inspection-Length Normal NONE
                                           NOT-USED NOT-USED NOT-USED .01 .05 .1
ASSIGN UNCERTAINTY VALUE J3-I1-Length STDV 0.2
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
SET TITLE 'Crack found, Length 5mm' ' ' ' '
SET DRAWING FONT-SIZE RELATIVE 1.5
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220 RELIABILITY-INDEX
ASSIGN REPAIR J3-1 GRIND 2
DEFINE UNCERTAINTY Inspection-Grind Normal NONE
                                           NOT-USED NOT-USED NOT-USED .01 .05 .1
ASSIGN UNCERTAINTY VALUE J3-I1-Grind STDV 0.2
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
SET TITLE 'Crack found, Grind depth 2mm' ' ' ' '
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220 RELIABILITY-INDEX
```

3.9 Planning Future Inspections

The purpose is to plan inspections of the critical points (fatigue points) in a cost-efficient manner while still maintaining the required reliability for each point.

3_35

In order to make this possible, Profast offers two planning methods:

Prescribed times:

This method is used when inspections are known to be performed at certain prescribed points in time. The plan will be constructed, if possible, such that the reliability of each fatigue point never falls below the required reliability.

Optimised times:

This method is used when inspections can wait until absolutely necessary. The plan will be constructed so that each fatigue point is inspected when its reliability is identical to the required reliability. This will typically require fewer inspections than the inspection at prescribed times, but require more flexibility in the execution of the inspections.

The dialog boxes used to set up, execute and present an inspection plan are found in the graphics user interface in the "Plan" pulldown menu.

3.9.1 Setting up the Plan

In order to be able to decide when inspections are needed, a reliability target value β_{target} must be specified for each fatigue point. The reliability at each point is not allowed to go below this target value. The target reliability is specified using the command ASSIGN TARGET-RELIABILITY.

For a proper choice of the target reliability, appropriate rules, guidelines and design codes should be consulted. The choice of target reliability is not a subject for this manual, because it may involve evaluation of the different failure consequences (e.g. loss of life, economical). However, for convenience three possible approaches are outlined here:

- 1 Specific values are applied, depending on the type and consequence of failure of the member.
- 2 The target reliability for a member could be established by defining a maximal allowed SN fatigue damage level for the member, and setting the target reliability to the SN fatigue reliability for not exceeding this damage level.
- 3 The target reliability for a member could be established through redundancy analyses by comparing the failure probability of the structure before and after collapse of the member.

When planning inspections over the whole service life, it is standard practice to assume that inspections will be performed in the future when needed, and with the result that no crack is found. In order to be able to do this, an inspection quality (POD curve) to be used in the future must be defined. If this inspection quality is not defined, Profast will only be able to plan one inspection into the future. This is done by use of ASSIGN INSPECTION-QUALITY.

There are two other cases, where it will be impossible to plan more than one inspection ahead:

- 1 If an inspection already has been modelled after the starting time of the plan.
- 2 In a crack has been found before the starting time of the plan, and it has not been ground away.

3-36 01-OCT-2004 Program version 2.2-03



Figure 3.18 Dialog box for definition of optimised and prescribed inspection plan

The command DEFINE PLAN-INSPECTION is used to define the type of inspection plan and any prescribed inspection times. In addition, it is possible to specify if the convergence criterion for the optimised plan, decide if the reliability calculation should be monitored and decide if any planned inspections should be kept (see Figure 3.18).

3.9.2 Calculating the Inspection Plan and Examination of the Plan

The command RUN PLAN-INSPECTIONNING is used to actually create the plan. A number of fatigue points can be selected for inclusion in the plan. The plan is given a starting time, a name and a descriptive text. The name is used to access the plan for presentation and if it is to be deleted. All existing inspections up to and including the starting time are automatically taken into account.

As the number of probabilistic analyses is quite large, the planning process can take some time.

These are responses from Profast when making an optimised plan and a prescribed plan using the example fatigue points. In the last case, monitoring of the reliability index calculation is turned on:

```
ASSIGN TARGET-RELIABILITY J3220 LIFETIME-RELIABILITY 3.5
      Assigned target reliability 3.5 to J3220
ASSIGN TARGET-RELIABILITY J5120 LIFETIME-RELIABILITY 3.0
      Assigned target reliability 3.0 to J5120
ASSIGN INSPECTION-QUALITY (ONLY J3220 J5120 ) LENGTH PODL-MPI-UW
      Assigned inspection quality: PODL-MPI-UW (Length) to J3220
      Assigned inspection quality: PODL-MPI-UW (Length) to J5120
RUN PLAN-INSPECTION ( ONLY J3220 J5120 ) 1990.5 OPT 'Optimised plan'
     Calculating inspection plan OPT for 2 fatigue points using Optimised
     times
      J3220
              : Inspection at 2000.80 when reliability is
      J3220
              : Inspection at 2007.44 when reliability is
                                                             3.490
      T3220
              : Inspection at 2015.66 when reliability is
                                                             3 496
      J5120
              : Inspection at 1993.66 when reliability is
                                                             2.990
      J5120
              : Inspection at 1995.85 when reliability is
```

Program version 2.2-03 01-OCT-2003 3-37

```
: Inspection at 1998.69 when reliability is
     J5120
                                                          2.992
            : Inspection at 2002.15 when reliability is
            : Inspection at 2006.34 when reliability is
            : Inspection at 2011.12 when reliability is
             : Inspection at 2016.65 when reliability is
                                                          2.992
DEFINE PLAN-INSPECTION METHOD PRESCRIBED ( GROUP 1994.5 2018.5 4 2020.5 )
DEFINE PLAN-INSPECTION MONITOR-CALCULATION ON
DEFINE PLAN-INSPECTION KEEP-INSPECTIONS ON
RUN PLAN-INSPECTION ( ONLY J3220 J5120 ) 1990.5 PRE
                                       'Inspection every fourth year'
    Calculating inspection plan PRE for 2 fatigue points using 8 Prescribed times
            : Beta =
                      4.439 at 1994.50
                      3.748 at 1998.50
     J3220
            : Beta =
     J3220
            : Beta = 3.349 at 2002.50
             : Inspection at 1998.50 when reliability is
             : Created length inspection: J3220-1: No Crack Found
     J3220
                       3.843 at 2002.50 conditioned on 1 inspection
     J3220
             : Beta =
     J3220
            : Beta =
                        3.467 at 2006.50 conditioned on 1 inspection
     J3220
            : Inspection at 2002.50 when reliability is
                                                          3.843
     J3220
           : Created length inspection: J3220-2: No Crack Found
     J3220
            : Beta = 3.990 at 2006.50 conditioned on 2 inspections
           : Beta = 3.625 at 2010.50 conditioned on 2 inspections
     J3220
           : Beta = 3.376 at 2014.50 conditioned on 2 inspections
           : Inspection at 2010.50 when reliability is
     J3220
             : Created length inspection: J3220-3: No Crack Found
     J3220
     J3220
            : Beta = 3.990 at 2014.50 conditioned on 3 inspections
                      3.662 at 2018.50 conditioned on 3 inspections
     J3220
            : Beta =
     J3220
            : Beta =
                      3.541 at 2020.50 conditioned on 3 inspections
                      2.763 at 1994.50
     J5120
            : Beta =
            : Inspection at 1994.50 when reliability is
     J5120
                                                          2.763
     J5120
            : CANNOT MAINTAIN TARGET RELIABILITY:
                                                   3.000 at time 1994.50
            : Created length inspection: J5120-1: No Crack Found
     J5120
            : Beta =
                       2.580 at 1998.50 conditioned on 1 inspection
     J5120
     J5120
             : Inspection at 1998.50 when reliability is
                                                          2.580
             : CANNOT MAINTAIN TARGET RELIABILITY: 3.000 at time 1998.50
     J5120
             : Created length inspection: J5120-2: No Crack Found
     J5120
             : Beta = 2.688 at 2002.50 conditioned on 2 inspections
     J5120
     J5120
            : Inspection at 2002.50 when reliability is
                                                        2.688
            : CANNOT MAINTAIN TARGET RELIABILITY:
     J5120
                                                   3.000 at time 2002.50
     J5120
            : Created length inspection: J5120-3: No Crack Found
            : Beta = 2.846 at 2006.50 conditioned on 3 inspections
            : Inspection at 2006.50 when reliability is
            : CANNOT MAINTAIN TARGET RELIABILITY: 3.000 at time 2006.50
     J5120
            : Created length inspection: J5120-4: No Crack Found
     J5120
             : Beta =
                       3.001 at 2010.50 conditioned on 4 inspections
     J5120
     J5120
             : Beta =
                      2.569 at 2014.50 conditioned on 4 inspections
            : Inspection at 2010.50 when reliability is
     J5120
     J5120
            : Created length inspection: J5120-5: No Crack Found
     J5120
            : Beta = 3.140 at 2014.50 conditioned on 5 inspections
           : Beta = 2.710 at 2018.50 conditioned on 5 inspections
     J5120
           : Inspection at 2014.50 when reliability is
            : Created length inspection: J5120-6: No Crack Found
```

3-38 01-OCT-2004 Program version 2.2-03

```
J5120 : Beta = 3.262 at 2018.50 conditioned on 6 inspections J5120 : Beta = 3.022 at 2020.50 conditioned on 6 inspections
```

Note that the prescribed inspection interval is too long for the point at joint 5120. Given these times, there is no way that inspections can be planned such that the required target reliability is maintained.

This also becomes evident when the plans are printed. Plans can be printed showing the inspections in chronological order, or fatigue point by fatigue point:

```
PRINT PLAN-INSPECTION OPT POINTWISE
Inspection plan : OPT
Description : Optimised plan
Method
             : Inspect when target reliability is reached
Start Time : 1990.50
End Service Life: 2020.50
FatigPnt Target Reliab Time POD Curve Dir Remark
______
        3.500 3.499 2000.80 PODL-MPI-UW Len Jnt 3220
J3220
               3.490 2007.44 PODL-MPI-UW Len
               3.496 2015.66 PODL-MPI-UW
J5120
        3.000 2.990 1993.66 PODL-MPI-UW Len Jnt 5120
               2.998 1995.85 PODL-MPI-UW Len
               2.992 1998.69 PODL-MPI-UW Len
               2.999 2002.15 PODL-MPI-UW Len
               2.990 2006.34 PODL-MPI-UW Len
               2.999 2011.12 PODL-MPI-UW Len
               2.992 2016.65 PODL-MPI-UW Len
PRINT PLAN-INSPECTION PRE CHRONOLOGICAL
Inspection plan : PRE
Description : Inspection every fourth year
Method
             : Inspect only at prescribed times
            : 1994.50 1998.50 2002.50 2006.50 2010.50 2014.50
Time points
               2018.50 2020.50
           : 1990.50
Start Time
End Service Life: 2020.50
FatigPnt Target Reliab Time
                          POD Curve Dir Remark
______
        3.000 2.763 1994.50 PODL-MPI-UW Len Jnt 5120. BELOW TARGET!
J5120
J3220
        3.500 3.748 1998.50 PODL-MPI-UW Len Jnt 3220
        3.000 2.580 1998.50 PODL-MPI-UW Len Jnt 5120. BELOW TARGET!
J5120
J3220
        3.500 3.843 2002.50 PODL-MPI-UW Len Jnt 3220
J5120
       3.000 2.688 2002.50 PODL-MPI-UW Len Jnt 5120. BELOW TARGET!
J5120
       3.000 2.846 2006.50 PODL-MPI-UW Len Jnt 5120. BELOW TARGET!
J3220
       3.500 3.625 2010.50 PODL-MPI-UW Len Jnt 3220
J5120
       3.000 3.001 2010.50 PODL-MPI-UW Len Jnt 5120
J5120 3.000 3.140 2014.50 PODL-MPI-UW Len Jnt 5120
```

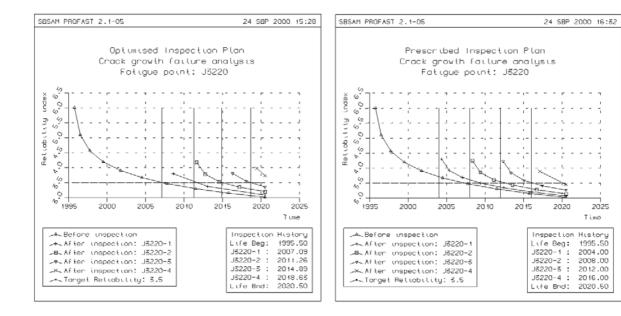


Figure 3.19 Planned crack growth reliability curve

If the inspections are kept (see DEFINE PLAN-INSPECTION KEEP-INSPECTIONS), it becomes possible to calculate the predicted failure probability as a function of time for each fatigue point, taking the planned inspections into account (see the figure above, and also Figure 2.7):

Such inspections must be deleted before another plan for the same fatigue point can be calculated. Deleting an inspection plan will automatically delete all inspections created by the plan.

3.10 Advanced Usage of Profast

This section describes some facilities, that require some knowledge about probabilistic methods and in some cases specific manipulations on the part of the user.

3.10.1 Probabilistic and Deterministic Analysis and Result Presentation

The RUN command (the Analysis menu in the graphical user interface) gives access to direct analysis of random variables and events. The following types of analysis are available:

- Deterministic analysis
 Calculates the value of a random variable and all variables on which it depends.
- Probability analysis
 Calculates the probability of an event, possibly conditioned on another event.
- Distribution analysis

3-40 01-OCT-2004 Program version 2.2-03

Calculates the distribution of a random variable, possibly conditioned on an event.

In all three cases, the result can be calculated for different values of a parameter, see DEFINE PARAMETER-STUDY. This is automatically done in the SN and crack growth failure probability analysis.

Each such analysis is stored under a name, and is accessible as a RESULT, e.g. through PRINT RESULT or through the Result menu in the graphical user interface. The result is by default named: LastAnalysis. This name can be changed after the analysis is completed by saving the result under another name, using SAVE RESULT. If not saved, the result will be over written the next time an analysis is run.

In order to be presented using PRINT or DISPLAY, the result must be selected, using SELECT RESULT. When an analysis is run, the result is automatically selected.

The SN and crack growth analysis use these analysis and result facilities. In these cases, the results are saved under names derived from the fatigue point or inspection being analysed (e.g. J3220-SNFail). These results are automatically accessible when PRINT/DISPLAY SN-ANALYSIS or PRINT/DISPLAY CRACK-GROWTH-ANALYSIS commands are executed. The results are, however, accessible directly by use of SELECT RESULT followed by PRINT and/or DISPLAY commands. This may be useful for examining details that are not available through other commands. See for example the commands leading to Figure 3.16.

A number of commands are available for setting up these analysis. In the graphics user interface, they are available in the Analysis menu (see also Section 5.1.8):

SELECT ANALYSIS-METHOD

Select the method used for probability and distribution analysis

DEFINE ANALYSIS-OPTION

Set a number of general analysis options

ASSIGN SENSITIVITY VARIABLE

Decide which for which parameters sensitivity analysis is performed

ASSIGN SENSITIVITY INCREMENT

Set parameter increments to be used for sensitivity analysis

DEFINE PARAMETER-STUDY

Define the parameter to be used and set the values

DEFINE FORM-SORM

Set a number of general options for FORM and SORM analysis

ASSIGN OPTIMISATION-BOUNDS

Assign bounds for variables during FORM/SORM analysis.

ASSIGN STARTING-POINT

Set starting point for variables and events to be used in a FORM/SORM analysis.

• DEFINE FORM-SORM GENERATED-DISTRIBUTIO

3-41

Set options for calculation of generated distributions.

 DEFINE PROBABILITY-SIMULATION AXIS-ORTHOGONAL Set options for axis-orthogonal simulation of a probability.

DEFINE PROBABILITY-SIMULATION DIRECTIONAL Set options for directional simulation of a probability.

DEFINE PROBABILITY-SIMULATION MONTE-CARLO Set options for Monte Carlo simulation of a probability.

DEFINE DISTRIBUTION-SIMULATION Set options for simulation of a distribution.

DEFINE MEAN-VALUE-FORM Set options for mean value based FORM calculation of a distribution.

• In addition, the DEFINE SN-ANALYSIS and DEFINE CRACK-GROWTH-ANALYSIS commands are available. The settings available here will override any other settings when these analyses are performed.

For a summary of the available commands for manipulation of results, see the command description of PRINT RESULT and DISPLAY RESULT and Section 5.1.9.

3.10.2 Modelling Events

There is generally not a large need for modelling events directly in Profast. The program maintains a number of events itself, in order to be able to execute the required SN and crack growth analyses (these are write protected and cannot be changed by the user). However, when required, the commands CREATE/CHANGE EVENT can be used.

The following types of events are available:

SINGLE-EVENT

The event is specified as a random variable being equal to, less than or greater than a numerical value.

INTERSECTION

The event is the intersection of a number of other events. The event is fulfilled if and only if each sub event is fulfilled.

UNION

The event is the union of a number of other events. The event is fulfilled if and only if at least one subevents is fulfilled.

CONDITIONED

The event is used in the RUN PROBABILITY-ANALYSIS CONDITIONED command to conveniently specify a conditioned analysis. It contains a conditioned event and an event conditioned on.

3-42 01-OCT-2004 Program version 2.2-03

3.10.3 Updating on Inspection at Another Fatigue Point

This section gives a specific example of how the events maintained by Profast can be used to perform an analysis, that is not directly available in the program: To calculate the conditional crack growth failure probability for one fatigue point given information gained at another fatigue point.

A-CGFail Failure of fatigue point A during the service life.

A1-InLen The inspection event for fatigue point A.

A1-InAll The intersection of all inspections done on A up to the time of

inspection A1.

B-CGFail Failure of fatigue point B during the service life.

If desired, the variables defining the different events can be correlated using ASSIGN CORRELATION.

The desired probability can then be found by using these commands:

```
RUN CRACK-GROWTH-ANALYSIS UPDATE-MODEL A
RUN CRACK-GROWTH-ANALYSIS UPDATE-MODEL B
RUN PROBABILITY-ANALYSIS CONDITIONED B-CGFail A1-InAll
```

The result can be examined using PRINT RESULT, see also Section 3.10.1 for a closer description of how to handle such analyses and examine the results. Note that the UPDATE-MODEL command is used to make sure that the events used in the following analysis are correctly defined.

To complicate matter further, assume that an extra inspection has been done at point A with a measured crack found (named A2), and a similar inspection has been done at point B (named B1). This may generate the following events:

A2-InLen The second inspection event for fatigue point A.

A2-InAll The intersection of both inspection events at point A.

B1-InLen The inspection event for fatigue point B.

B1-InAll The intersection of all inspections done on B up to the time of

inspection B1.

The failure probability for B given the inspections both at point A and B can be found using these commands:

```
RUN CRACK-GROWTH-ANALYSIS UPDATE-MODEL A
RUN CRACK-GROWTH-ANALYSIS UPDATE-MODEL B
CREATE EVENT B-InspAB 'Inspection at A and B' INTERSECTION ( A2-InAll B1-InAll )
RUN PROBABILITY-ANALYSIS CONDITIONED B-CGFail B-InspAB
```

Note that it is necessary to explicitly create the conditioning event, as it contains information from both A and B and is therefore not maintained by Profast.

01-OCT-2003

3-43

3.10.4 Systems Reliability

Profast does not handle systems reliability calculations by itself. It is up to the user to formulate the system failure event, and to make sure that it is correctly modelled. However, the failure events that are created by Profast during the analysis of each fatigue point may be reused for this purpose.

Thus, after an inspection analysis it may be possible to use the CREATE EVENT command to set up a system reliability event, e.g. as a union of some of the failure events created by Profast. The ASSING CORRELATION command may be used to correlate random variables that are present in different failure events (e.g. loads). The RUN PROBABILITY-ANALYSIS command may then be used to calculate the systems failure probability, and the PRINT/DISPLAY RESULT commands to examine the results.

For this type of analysis, Profast dose not offer the same type of assistance in the form of automated analysis preparation and result presentation as it does for e.g. crack growth analysis of a fatigue point. However, the tools are there, and it is up to the user to employ them to full effect.

3.11 Various Hints

This section contains various hints on how to facilitate the use of Profast.

3.11.1 Importing Plot Files Into Documents

Profast will orient postscript plots along the long edge of the paper. Thus, if a postscript plot produced by Profast is imported into a document and is intended to be presented with text (as in this manual), it will most likely be oriented in the wrong direction.

Some word processors cannot rotate such a picture. If you have this problem, use the following procedure instead:

- 1 Write the plot file in SESAM-NEUTRAL format.
- 2 Use the program PLTCNV_EXT, which is delivered with Profast, to convert it to another format. The input to PLTCNV_EXT will be:

```
SCALE = 0.9
OUTPUT-FILE-NAME=<the proper file name>
<input_file>.PLO
<output_format>
EXIT
```

For the list of proper output formats, run PLTCNV EXT interactively (Postscript is PSCR).

For documents maintained on a PC, the CGM or HPGL-7550 format may be more suitable than Postscript (the latter format is e.g. recognised by MS-Word when renamed to have a .HGL suffix). However, if such a file is written when running VMS, it cannot be imported directly into a PC document because of file format differences between VMS and DOS. In this case, it is better to write a file in SESAM-NEUTRAL format, and then use PLTCNV_EXT to convert it (as above), using HP70 as the output format. During this conversion, the SCALE command is not needed, and NO-ROTATE should be used instead.

3-44 01-OCT-2004 Program version 2.2-03

Please note that it is necessary to write one plot only to each plot file that is to be imported into a word processor.

3.11.2 The Required Plot Format is not Available

If the plot format required by your printer/plotter is not available in the SET PLOT FORMAT command, you can try the following:

- 1 Write the plot file in SESAM-NEUTRAL format.
- 2 Use the program PLTCNV_EXT, which is delivered with Profast, to convert it to another format.

This program includes several formats that are not available in Profast. However, the extra formats are not tested and supported as well as the formats included in Profast itself.

3.11.3 Problems with Convergence During FORM/SORM Analysis

In some cases, especially when inspections are used, the calculation of the reliability index using FORM or SORM fails. There are basically two things that can go wrong:

1 The search for the design point(s) fails.

Power-LSV

- In this case, Profast will display a message stating that the linearisation of the design point has failed. A possible remedy is to change the convergence criterion to a larger value, using the command: DEFINE FORM-SORM OPTIMIZATION SQP.
- 2 The calculation of the multinormal probability fails.
 - In this case, the design point(s) have been found and the linearisation completed, but the resulting failure set is of a form so that the probability content of the set cannot be calculated. It might help in this case to change the convergence criterion to a smaller value, using the same command as above.

There is also the possibility that the event used in the analysis has probability zero or one because of a problem in the model.

In some cases Profast will take steps to automatically adjust a parameter defining the form of the limit state function, in order to attempt to obtain a solution. This may happen during inspection planning, or during a crack growth analysis. As this is done automatically, there is usually no need to adjust this parameter manually. However, if you are familiar with limit state function formulations and wish to try, here is how it is done: The parameter is be accessible as a function option assigned to all crack growth failure variables and inspection events, as well as to the PFS-CGFail limit state function. The relevant function options are

Power-2DI For inspection limit states where a POD curve is used. This value should not be less

than 1 in order to contract the function for small values. To change it use the following command, where <name> is the name of the inspection limit state variable: ASSIGN FUNCTION-OPTION VARIABLE <name> Power-2DI <value>

ABBIGIT ONE HOLD WHAT BEE SHall BY WHITE

For all other crack growth limit states. This value should not be greater than 1 in order to stretch the function for small values and contract it for large values. To

change it, use the following command: ASSIGN FUNCTION-OPTION FUNC-

TION PFS-CGFail Power-LSV <value>

SESAM Profast

Program version 2.2-03 01-OCT-2003 3-45

The shape of the limit state function may be determined using a simulation of the distribution, or a deterministic analysis of the limit state variable combined with a parameter study.

Finally, if no equality events (i.e. inspections with known crack size) are involved, directional simulation may be attempted. This will take much more time. In order to switch to this, two commands must be used. The first commands allows the second to take effect during crack growth analysis.

DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY ANALYSIS-METHOD DEFAULT SELECT ANALYSIS-METHOD PROBABILITY-ANALYSIS DIRECTIONAL-SIMULATION

Monte Carlo simulation will in general not be useful, because the probability values are too small.

3-46 01-OCT-2004 Program version 2.2-03

4 EXECUTION OF PROFAST

Profast may be run in three different modes:

- In interactive line mode, using only character based input. The line mode facilities are described in sSection 4.4
- In interactive graphics mode with menus and dialog boxes, where input may be given using a mouse as well as the keyboard. The interactive graphics mode facilities are described in Section 4.5, but in addition this mode also gives access to the line mode facilities. It requires a works tat ion or an X-terminal running the OSF/MOTIF window system
- In batch mode, which uses the line mode syntax and facilities.

The start up of Profast in the three different modes is described in Section 4.1. This section also describes the files that Profast uses.

The program requirements and limitations are described in Section 4.2 and Section 4.3.

4.1 Program Environment

Profast accesses may access a database produced by Framework, and with it a SESAM Results Interface File on direct access (SIN) format. See Section 4.1.6 for details about how to start up Profast with a Framework database.

Profast is delivered as one or two executables (depending on the computer system). The executables can be used under different conditions:

The basic version can only run line mode. It contains the X Windows graphics driver. This version can be run on a computer that has X Windows, but does not have Motif installed. This version is delivered only on VMS systems.

The MOTIF version has all capabilities. It can run both graphics and line mode. This version must run under the Motif window manager.

4-2 01-OCT-2004 Program version 2.2-03

How to start the program in the different modes is described below.

4.1.1 Command Line Arguments

It is possible to specify command line arguments when starting Profast.

On VMS, the program an assignment of the following type must be done:

```
$PROFAST MOTIF :== $ SESAM:PROFAST MOTIF.EXE
```

Command line arguments may then be added to the alias activating the program, e.g.:

```
$ PROFAST MOTIF /NOHEADER/STAT=OLD/INT=LINE/C-F=test in.jnl/FORCED-EXIT
```

On other systems, the command line arguments are simply added to the usual command starting the program:

```
prompt> profast /NOHEADER/STAT=OLD/INT=LINE/C-F=test in.jnl/FORCED-EXIT
```

Please note that:

- 1 Command line arguments and values can be abbreviated, as described in Section 4.4.4. However, other input will be accepted, and used when possible.
- 2 Each argument name must begin with a slash (/), and each argument value must be prefixed by an equal sign (=). Spaces can be freely distributed around the equal sign and before each slash.
- 3 Texts with blank space and special characters (e.g. file names) can be protected in quotes. Please note that some operating systems change the case of the input text if it is not protected in quotes.
- 4 If at least one of /PREFIX, /NAME and /STATUS is specified, the prompt for database and journal file file name is disabled, and defaults are used for any unspecified values.
- 5 Profast will issue a message when an error is found in the command line specification.

Table 4.1 Command line arguments

/HEADER=value	Give the usual start-up header (SHORT) or no start-up header (NONE).
/NOHEADER	same as /HEADER=NONE
/PREFIX=prefix	Specifies the database and journal file prefix
/NAME=name	Specifies the database and journal file name
/STATUS=status	Specifies the database and journal file status as OLD or NEW
/INTERFACE=LINE	Start the program in line mode, ignoring the graphics user interface.
/INTERFACE=WINDOW	Start the program in graphics mode.

Table 4.1 Command line arguments

/COMMAND-FILE=filename	Read the specified command input file just after the database has been opened and initialised.
/NOCOMMAND-FILE	Do not read an initial command input file.
/FORCED-EXIT	Exit Profast after the database has been opened and initialised, and any initial command file has been read.
/NOFORCED-EXIT	Disable the forced exit.
/COMPANY-NAME=value	Specifies the header in the display (see also SET COMPANY-NAME)
/EYEDIR-X=value /EYEDIR-Y=value /EYEDIR-Z=value	Specifies the initial eye direction for display of the imported structure. When the first value is specified, the remaining are initialised to zero.
/PRINT-FORMFEED=value	Use FORTRAN or ASCII form feed character on LIS files.
/PLOT-COLOUR=value	Specifies the plot colour (see also SET PLOT COLOUR).
/PLOT-FORMAT=format	Specifies the plot file format (see also SET PLOT FORMAT).
/PLOT-PAGE-SIZE=value	Specifies the plot page size (see also SET PLOT PAGE-SIZE).

4.1.2 Starting Profast in Graphics Mode

To start Profast in graphics mode, the computer must be running under the Motif window manager.

Profast reads a resource file with the name FACEITCLASS.DAT (on VAX/VMS) and faceitClass (on Unix systems, note the use of upper- and lower case letters). this file is placed in the directory where private X application resource files are kept, often the home directory.

4-4 01-OCT-2004 Program version 2.2-03

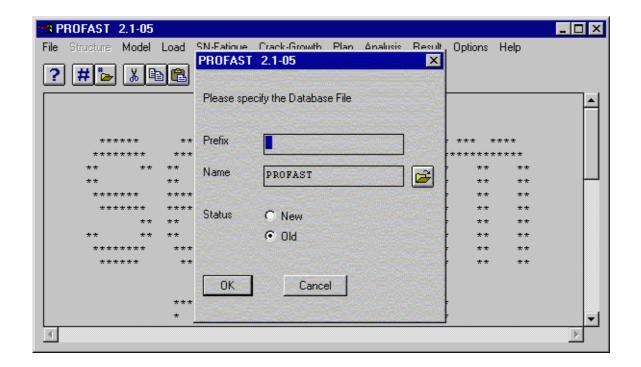


Figure 4.1 The program start-up dialog box

On VAX/VMS, this file must contain the following line:

```
faceitClass*fontList: fixed
```

If running on a VAX, the command to be used to start Profast in graphics mode is either

```
$RUN SESAM:PROFAST MOTIF.EXE
```

```
or
```

```
$PROFAST_MOTIF :== SESAM:PROFAST_MOTIF.EXE
$PROFAST_MOTIF
```

If running on a Unix system, the program name is simply typed:

```
prompt> profast
```

Profast responds by opening the main window, and overlaying it with a dialog box requesting the database file prefix, name and status, provided that none of these were specified as command line arguments (see Section 4.1.1).

Note that the default status is **Old**. Type in the file prefix and name., and select the proper status., the press the **OK** button (or type <Return>). Pressing the **Cancel** button will abort the session.

If the file specification is somehow in error, Profast will give an error message and keep the start-up dialog box open for a new file specification.

SESAM Profast

Program version 2.2-03 01-OCT-2004 4-5

If the file specification is correct, Profast will open the database file (with extension ".MOD") and a journal file with the same prefix and name (but with extension ".JNL"). Profast can now be operated as described in Section 4.5 Using the Graphics Mode User Interface.

To exit the program, choose the Exit option under the File menu. Profast will then close all open files and terminate execution.

4.1.3 Starting Profast in Line Mode

A line mode session will not give access to the interactive graphics mode capabilities. The program runs in the terminal (window), and commands are typed on the input line.

To start Profast in line mode, specify /INTERFACE=LINE as a command line argument (see Section 4.1.1).

After a short while, (provided that the /NOHEADER was not specified on the command line), a heading, similar to the one below, is echoed on the screen.

Marketing and Support by DNV Sesam

```
Program id : M2.1-01 Computer : DEC 3000 Model 400 Release date : 23-OCT-1996 Impl. update :
```

Copyright DET NORSKE VERITAS SESAM AS, P.O.Box 300, N-1322 Hovik, Norway

Profast then invites the user to enter the model file name (more information in section 4.1.2) through the following prompt;

```
Database file prefix ? / /
Database file name? /PROFAST/
```

4-6 01-OCT-2004 Program version 2.2-03

No extension should be given since this file has a predetermined extension (For VAX/VMS installations this is .MOD). The file name PROFAST (i.e. PROFAST.MOD) is offered as a default.

```
Database File Status? /OLD/ NEW
```

If the Profast database file already exists or if it a database created by Framework, the default OLD should be given,. If the database is to be created, the answer is NEW. See also Section 4.1.6.

Note that if at least one of /PREFIX, /NAME or /STATUS is specified as a command line argument, the prompts for these values will be ignored, and the value(s) that are not specified will be given defaults.

This start-up has opened a new database file, called PROFAST.MOD and a new journal file, called PROFAST.JNL (this session is running on a VAX). If the file specification is somehow incorrect, Profast will reissue the prompt for the database file prefix.

Typing a double dot (..) during the start-up phase will abort the program.

The facilities that are available in line mode are described in Section 4.4.

To exit the program, type the EXIT command. This will close all files and exit the program.

4.1.4 Starting Profast in a Batch Run

Using command line arguments (see Section 4.1.1) is the simplest way to execute Profast in batch. if Profast is the command that executes the program, the command to run test in jul in batch could be:

```
Profast /NAME=TEST/STAT=NEW/INT=LINE/C-F=test in.jnl/FORCED-EXIT
```

Note that it is necessary to use the line mode interface, and that the forced exit tells the program to exit when the command input file has been read. This command assumes that it is started at the directory where the database file and command input file will be (is) located.

This command can be enclosed in a batch command file (script). During a run, Profast reads commands from standard input (SYS\$INPUT in the VMS environment), so the commands can be typed into the batch file after the program start-up.

On a VAX, the batch command file could look like this:

```
$ SET DEFAULT mydisk:[mydir]
$ Profast /NAME=TEST/STAT=NEW/INT=LINE/C-F=test_in.jnl/FORCED-EXIT
$ EXIT
```

Alternatively, the commands could be specified directly in the batch command file:

```
$ SET DEFAULT mydisk:[mydir]
$ DEFINE/USER SYS$INPUT Profast.INP
$ RUN SESAM:Profast
   ' ' Profast NEW
    @TEST_IN.JNL
    EXIT
$ EXIT
```

Note that FOR005 cannot be used instead of SYS\$INPUT. Profast does not read from FORTRAN unit 5.

On a UNIX system the user could create a similar batch input file, e.g. Profast.inp, and then issue one of the commands below in order to execute Profast as a background process

```
prompt> Profast < Profast.INP > Profast.LOG &

or:
prompt> Profast /NAM=TEST/STA=N/INT=L/C-F=test in.jnl/F-EX > Profast.LOG &
```

The header and messages given by Profast will appear on the log file.

4.1.5 Files and Data Safety

File type	Extension	Profast		Format
		Reads from	Writes to	
DATABASE	.MOD	YES	YES	Binary
Results Interface	.SIN	YES	NO	Binary
JOURNAL	.JNL	NO	YES	ASCII
COMMAND INPUT	.JNL	YES	NO	ASCII
PRINT	.LIS	NO	YES	ASCII
PLOT	varies	NO	YES	Binary/ASCII

Table 4.2 Overview of Profast file handling

Profast makes use of the files shown in table above.

The **DATABASE** (also called MODEL file) is a direct access file that is used to keep the section geometry and results. It has the extension: ".MOD".

The **RESULTS INTERFACE FILE** (also called SIN-file) file is a direct access file that keeps the results from the finite element analysis. This file is only read from, but must always be kept available in the same location after first accession using the FILE OPEN command. It has the extension: ".SIN".

The **JOURNAL** file is used to keep a log of most of the commands that are accepted during a Profast session. If an existing (OLD) database is opened, the journal will be appended to the corresponding old journal file if this exists. The journal file has the extension ".JNL".

The **COMMAND INPUT** file is used to read commands and data into Profast. The usage of command input files is described in Section 4.4.2. The default extension of a command input file is ".JNL", but this default is not used if another extension is specified.

The **PRINT** file is used to keep output from the PRINT command when the print destination is set to FILE. The extension of the print file is ".LIS". The print file name and settings is specified using the command: SET PRINT. It is possible to use more than one print file during the same Profast session, but only one can be open at a time.

4_7

4-8 01-OCT-2004 Program version 2.2-03

The **PLOT** file is used to keep output from the PLOT command and from the DISPLAY command when the display destination is set to file. The plot file name and settings is specified using the command: SET PLOT. The extension of the plot file depends on the plot format used. If the SESAM neutral format is used, the extension is ".PLO". Several other formats are available, including Postscript with extension ".PS". It is possible to use more than one plot file during the same Profast session, but only one can be open at a time.

If the database file has been corrupted, the information may be reconstructed by use of the journal file. It is therefore recommended to take backup copies of the journal and database file at regular intervals.

4.1.6 Starting Profast from a Framework Database

When starting Profast from a Framework database, care must be taken so that it is easy to use the journal files from the two programs to reconstruct both analysis sequences.

The problem is, that both Profast and Framework use the same name for the database and journal file.

So, if Profast is started directly on the database that was closed by Framework, Profast will append its journal led commands to the existing journal file, produced by Framework. As the file starts with commands that are legal in Framework, but illegal in Profast, it becomes difficult to reconstruct the analysis sequence from the journal file.

There are two ways to ensure that it becomes easy to reconstruct the analysis sequence:

- 1 By copying the database created by Framework.
- 2 By renaming the journal file created by Framework.

In both cases, Profast will work on a database with a new name, and start journalling to a new file. Thus, there will exist one journal file with commands that can be used to recreate the Framework analysis sequence, and another that can be used to recreate the Profast analysis sequence.

In case a change is required in the Framework analysis, the Framework database can be modified (if case 1. was used) or reconstructed from the Framework journal file before the required modification is performed. The journal file produced by Profast can then be used with the modified Framework database to recreate the Profast analysis.

Please note that the SIN file used by Framework (and any FEM file that is also used) must be available for Profast also. Thus, if the Framework model file is copied or moved to another directory, the SIN (and possible FEM) file(s) may have to be copied/moved also.

4.2 Program Requirements

4.2.1 Execution Time

Most of Profast can be run interactive with no significant timing problems. However, the following situations may require so much computation time, that a batch run is advisable:

1 Calculating an inspection plan with several points

4_9

2 Calculating a crack growth analysis over the service life for a fatigue point with several inspections.

Because of an internal buffer limit, the database access performance may degrade considerably when a certain size of the database has been reached. It is not possible to predict exactly when this will happen.

4.2.2 Storage Space

The initial size of the database on ALPHA/VMS is ca. 400Kb when not using a Framework database.

A Framework database is initially expanded by ca. 250Kb on an ALPHA/VMS system.

The most significant contributor is the storage of SN and crack growth failure analysis results. The database containing the tutorial analysis takes up ca. 7.5Mb on an ALPHA/VMS system.

4.3 Program Limitations

The following limitations apply. See also the status list for current updates to this.

The names of fatigue points, inspections, SN curves, wave spreading functions, transfer functions and wave statistics are limited to 8 characters. The names of variables, events and results are limited to 12 characters. All names are case insensitive when matched with input text. The names of SN curves, wave spreading functions, transfer functions and wave statistics will be forced to upper case.

Descriptive texts are in most cases limited to 50 characters.

A maximum of 20 inspections can be created at the same fatigue point.

A maximum of 99 influence coefficients can be specified in one assignment.

Up to 36 wave directions and 201 frequencies can be used.

One scatter diagram can contain up to 25 different values of Hs, up to 25 different values of Tz and up to 7500 cells in all directions.

A maximum of 10 sets of transfer functions (stochastic linearisations for different values of (Hs,Tz)) can be specified for one fatigue point.

A maximum of 50 fit points can be specified for a deterministic Weibull stress range distribution fit.

The crack growth calibration is limited to 5 time points, up to three parameters can be adjusted, and no more than 99 iterations can be used.

Up to 200 data points can be specified in a data fit to a geometry function of a weld effect.

Each inspection plan can contain up to 100 fatigue points. A maximum of 50 prescribed time points can be specified.

There is a limit on the number of random variables that can be presented through the user interface (this limit does not apply to the number that can be stored in the database). If very many fatigue points and inspections are created, the number of variables created by Profast may exceed this limit. The effect is to

4-10 01-OCT-2004 Program version 2.2-03

prohibit use of some commands and generate some error messages when the commands are used. The commands, that in particular may create problems, include

DEFINE PARAMETER-STUDY
ASSIGN SENSITIVITY
PRINT VARIABLE
RUN PROBABILITY-ANALYSIS
RUN DISTRIBUTION-ANALYSIS
RUN DETERMINISTIC-ANALYSIS.

4.4 Using the Line Mode User Interface

The line mode environment in Profast is very powerful. It has many features and provides a great flexibility to the user. This section describes the facilities one by one. Even when running graphics mode, the line mode environment is available through the command input line.

There are two modes of operation inside the line mode environment, called "command mode" and "programming mode".

Command mode is the commonly used mode, it is used to give commands to Profast. A new input line always starts in command mode. To switch to/from programming mode inside an input line, type the dollar sign: \$.

Programming mode is used basically to calculate numerical values. These values can then be used in a command if desired, or they can be viewed as results.

When moving through the commands, Profast will present a prompt, possibly followed by a default in / /. The main command level is signified by the prompt: #. No default is presented here. The main commands are ASSIGN, CREATE etc. These are described in chapter 5. When moving inside a command the prompt will change and a default may be presented.

Different items on the command line are separated by blank spaces, except if it is text that is protected inside quotes. In special cases, the blank space may be left out. Such cases are documented in the sections below.

Profast does not require line breaks anywhere. Thus several commands can be typed into the same command input line.

In the following, input typed by the user is shown in bold face while prompts given by Profast are shown as ordinary text.

4.4.1 How to Get Help

Context sensitive help is available in command mode at any time using any of these methods:

Table 4.3 How to get help in line mode

Type: ?	to get a brief description of what Profast is expecting right now.
---------	--

Table 4.3 How to get help in line mode

Type: <text>?</text>	during a selection between alternatives to see all the alternatives that match <text>. <text> may contain wildcards or be an abbreviation.</text></text>
Type: ??	to get a more descriptive help text, showing how to proceed.

There is also a HELP menu under the main menu, giving on-line access to the items that are described here.

4.4.2 Command Input Files

Line mode commands may be read from a file as well as typed directly into Profast. Such a file may contain any syntax that is allowed in line mode, including reading another command input file.

The commands used to manipulate command input files are summarised below.

Table 4.4 Manipulation of command input files

@file name	Read the named file from the top. Reading will stop is an error if found, or at the end of the file, or if a line with only an @ is found. There may be one or more blank spaces between @ and the file name.
@file name <n></n>	Read <n> lines of the named file from the top. Reading will stop if an error is found, or if a line with only an @ is found. There may be one or more blank spaces between @ and the file name.</n>
@	Continue reading the presently open file. Reading will stop if an error is found, or at the end of the file, or if a line with only an @ is found.
@ <n></n>	Continue reading the presently open file. Reading will stop if an error is found, or if a line with only an @ is found.
@	Close the last opened command input file. There cannot be any blank space between @ and the dots.
@?	Show the name and status of the currently open command input file(s).

To read in a command input file, type an @ followed by the file name. To read parts of the file, specify the number of lines to read after the file name. If the file name does not have a suffix (i.e. a dot and the following part), Profast adds ".JNL" to the name.

Profast may have more than one command input file open at one time (i.e. you may reference a command input file from within another command input file). It will always read each file sequential, finishing the last opened file first. To get a list of the currently open files, type: @?

The last opened command input file may be closed explicitly by typing the @ followed by two dots: @...

When a command input file is being read, the lines read are echoed on the screen and logged on the journal file. Programming expressions are logged as comments and the resulting values are logged as part of the command. The @ command itself is not logged on the journal file.

4-12 01-OCT-2004 Program version 2.2-03

If an error is found in a command input file, Profast stops reading the file and skips the remaining part of the line where the error was found.

Profast will also stop reading of a command input file if it finds a line containing only an @

4.4.3 Accessing Default Values

Profast will in many cases supply a default value when input is requested. The default will be presented in / / . An example:

```
DEFINE TOLERANCE COORDINATE
Coordinate tolerance? /2.019901e-03/
```

The default may be accepted using one of the following methods:

Table 4.5 Input of default values

<return></return>	(i.e. an empty input line) to accept the current default.
: (colon)	to accept the current default. The colon must be preceded by a blank if it is not the first item on the command line. However, several colons may follow each other without intervening spaces.
; (semicolon)	to keep accepting defaults as long as they are presented, or until the command is complete. The semicolon must be preceded by a blank space if it is not the first item on the command line. However, several semicolons may follow each other without intervening spaces.

Please note that an empty line in a command input file will not be interpreted as a default. The colon and semicolon may be written into a command input file.

A colon or semicolon is never logged on the journal file. Instead, the substituted default value(s) is logged.

4.4.4 Abbreviation and Wildcards

Profast offers two methods to short-cut selection of elements in a list: Abbreviation and the use of wild-cards.

Abbreviation allows abbreviation of alternatives up to hyphens, as long as the abbreviation is unique. Thus, CALIBRATION-CRACK-GROWTH may be abbreviated to any of: CAL, C-C-G, CAL-C as long as the abbreviation is unique among the alternatives presented.

Wildcards consist of the following two characters:

Table 4.6 Wildcard characters

*	substitutes for any number of characters (including no characters).
&	substitutes for any one character. It must match exactly one character.

As an example, *y&&& matches xabycc1 and xy111 but not xaby11.

Abbreviation and wildcards may not be mixed in the same matching expression.

4.4.5 Input of a Text or Name or Numerical Value

Numerical values can be input in free format in Profast. Floating point numbers as: 1000 1..54 1e-44 .1e5 are all accepted.

Whole numbers can be specified as floating point numbers. Examples of whole numbers: 1000 1. .1e4

Names may contain any alphanumeric character as well as the underscore (_) and the hyphen (-). A name may be a whole number (i.e. this is a legal syntax), or may begin with an alphanumeric character, however it is strongly recommended to start all names with an alphanumerical character or an underscore. The maximal length of a name is documented with the command where the named object is created.

Text must be encapsulated in single quotes if it contains blank space(s) and/or special characters:

'This is a text containing 10 spaces and a single @'

4.4.6 Selecting a Single Alternative from a List

In many cases, Profast will require a selection of a single alternative from a list. An example is right at the start, at the main prompt: #, where the main commands are presented for selection. The selection need not be a selection between commands, it could also be a selection between named objects or between numerical values.

In selection of a single value, abbreviation is allowed, but wildcards cannot be used. An exact match is always preferred. Thus it is possible to select an item that is an abbreviation of another item in the list by typing the item exactly.

A single question mark: ? will show all items in the list. Prefixing the question mark with a a text: <text>? will show all items in the list matching <text>.

The input text may be typed in upper or lower case as desired, Profast disregards the case of the text when it does the comparison.

The input text used to make the selection is not logged on the journal file. Instead, the selected value is logged as it is presented in the list.

4.4.7 Selecting Several Alternatives from a List

In some cases, a list of items is presented, from which one or more items can be selected. An example is the DISPLAY SN-CURVE command, where a number of names may be selected for display.

In this selection, both wildcards and abbreviation may be used (but not inside the same text).

The syntax for the selection allows for more flexibility than in the single selection case, because it may be of interest to keep modifying the selection for some time before accepting it. The selection process consists of one or more selection operations, each of which follow the syntax described below. If more than one operation is required to complete the selection, the selection must be enclosed in parentheses: ()

4-14 01-OCT-2004 Program version 2.2-03

The syntax for a single selection operation is:

Table 4.7 Selection of several alternatives from a list

INCLUDE <text></text>	Include the item(s) matching <text> in the selection. Set the default status to INCLUDE. Any items specified after this will be included in the selection until the status is changed.</text>
ONLY <text></text>	Set the current selection to the item(s) matching <text> Set the default status to INCLUDE. Any items specified after this will be included in the selection until the status is changed.</text>
EXCLUDE <text></text>	Exclude the item(s) matching <text> from the selection. Set the default status to EXCLUDE. Any items specified after this will be excluded from the selection until the status is changed.</text>
<text></text>	Include or exclude the items matching <text>, depending on the default status. The initial default status is INCLUDE.</text>
GROUP <from> <to> <step></step></to></from>	In the case of a selection of numerical values, or of a selection between names (which can be integer values), the <text> can be substituted with this interval expression which expands to the values: <from> , <from> + <step>, <from> + 2*<step>,up to but not exceeding <to>.</to></step></from></step></from></from></text>

When a default selection is being presented, or if the left parentheses has been typed as input, Profast presents the right parenthesis as default: /)/.

A single question mark: ? will show all items in the list, listing the currently selected items in parenthesis. Prefixing the question mark with a text: <text>? will show all items in the list matching <text>.

Examples:

```
DISPLAY SN-CURVE *
```

will display all SN-curves currently stored in the database.

```
DISPLAY SN-CURVE ( * EXCLUDE B* )
```

will display all SN-curves except those with names starting with B.

4.4.8 Entering a Vector or Matrix of Values

The syntax for entering a vector or matrix of values is an extension of the syntax for selecting values from a list. In this case there is no fixed list to select from. Instead the items are inserted and manipulated as the vector/matrix is entered.

The term vector is used for the case where the input is one dimensional. The term matrix is used for the case where the input is multidimensional. Like a vector is built up from single items, a matrix is built from rows. There cannot be an unequal number of items in two different columns of a matrix.

The input of a vector/matrix is consists of one or more operations. If more than one operation is required (as it most likely will be), they must be enclosed in parentheses.

SESAM Profast

The syntax of one operation is (<row> refers to a single value in a vector or to a row in a matrix):

Table 4.8 Entering a vector of matrix values

INCLUDE <row></row>	Include the specified <row> as the last row. Set the default status to INCLUDE. Until the status is changed, rows that are entered will be added at the end.</row>	
EXCLUDE <row></row>	Exclude the specified <row>. Set the default status to EXCLUDE. The next row(s) that are entered will also be excluded until the default status is changed. Wildcards may be used to specify <row>. All matching rows will be excluded.</row></row>	
ONLY <row></row>	Include only <row> in the matrix, clearing any previous contents first. Set the default status to INCLUDE. Until the status is changed, rows that are entered will be added at the end.</row>	
INSERT-BEFORE <row1> <row2></row2></row1>	Insert <row2> before <row1>. Set the default status to INSERT-BEFORE. Until the status is changed, rows will be keep being inserted before <row1> (immediately after the last row entered). Wildcards may be used to specify <row1>, provided that one row is matched uniquely.</row1></row1></row1></row2>	
OVERWRITE <row1> <row2></row2></row1>	Overwrite <row1> with <row2>. Set the default status to OVERWRITE. The next row(s) that are entered will continue overwriting until the default status is changed, scrolling down as they do so. When the last row has been overwritten, the default status is changed to INCLUDE. Wildcards may be used to specify <row1>, provided that one row is matched uniquely.</row1></row2></row1>	
LIST	List the contents of the matrix.	
<row></row>	Insert, Exclude or overwrite, using <row>, depending on the default status. The initial default status is INCLUDE.</row>	

When a default vector/matrix is being presented, or if the left parenthesis has been typed as input, Profast presents the right parenthesis as default: /)/.

A single question mark will show the possible alternatives in the matrix.

Use LIST to see the rows in the matrix.

4.4.9 Setting and Clearing Loops in Command

When a command is completed, Profast will by default go back to the main prompt: #. If a command is to be repeated many time in slightly different versions, it can be desirable to not go back to the main prompt, but rather to some intermediate level. This is accomplished by typing in the text: LOOP at the point where the command is to be repeated. The loop is removed by typing END at the loop point, or by aborting the command using the double dot (..).

Example:

```
ASSIGN UNCERTAINTY VALUE
LOOP
C3501-lnC MEDIUM
C3501-m HIGH
```

4-16 01-OCT-2004 Program version 2.2-03

```
C3501-SC* LOW END
```

4.4.10 Inserting a Command Into Another Command

It is possible to insert a command at any point while in command mode (not in programming mode). This is done by simply typing the main prompt: # followed by the inserted command.

Profast will finish the new command, and then return to the point in the previous command, where the new command was inserted.

This is useful e.g. for catching up on settings or definitions that was forgotten while inside a PRINT or DIS-PLAY command, or for printing out objects to see what they contain. The following examples illustrate this:

```
DISPLAY SN_CURVE # SET GRAPH X LIMITS FREE ONLY DNV*
```

The same command cannot be entered recursive, e.g. it is not allowed to insert an DISPLAY SN-CURVE command inside another DISPLAY SN-CURVE command.

Commands can be nested this way to as many levels as desired. However, to nest with more than one level may be confusing and is not recommended. The current status may be seen by typing: -?.

4.4.11 Aborting all or Parts of a Command

To abort a command, type two dots after each other: ... Please note that all entries on the command line up to the double dot will be processed before the command is aborted.

The double dot clears all loops and previous input in the command and then presents the main prompt: #.

A double dot is only logged if a part of the current command has already been written to the journal file.

To abort parts of a command, going back to the last LOOP or to the point of a left parenthesis in a multiple selection or a vector or a matrix, type: <<<.

CtrlC may also be used to abort a command (hold the Control key while typing C). Usage of CtrlC will throw away all of the input of the command line as well as abort the command. Unlike the double dot, the input before the CtrlC is not processed. CtrlC may also be used to abort a running analysis.

4.4.12 Access to the Operating System

It is possible to issue a command to the operating system at any point in a Profast command (not from programming mode). This is done by typing an exclamation mark: ! followed by the operating system command. Everything on the input line after the exclamation mark is sent to the operating system.

This example, taking from a run on a VAX computer, will list all SIN-files on current directory.

```
!DIR *.SIN
```

This command will spawn a sub process on a VMS system. It must be terminated using the command: LOGOUT.

SESAM Profast

Program version 2.2-03 01-OCT-2004 4-17

!spawn

This command will spawn a sub process on a Unix system. It must be terminated using the command: exit.

This facility is very useful for obtaining directory listings, editing files (e.g. input files), spawning into the operating system to do more complicated tasks, etc.

This facility is also available from the command input line in graphics mode, but, when used here the output from the operating system will appear in the terminal window from which Profast was started.

4.4.13 Appending Input Lines

After receiving an input line, Profast will process the input, unless told otherwise. The way to suspend processing of an input line is to type a backslash: \ as the last character in the line. Profast will then issue the append prompt: >>.

4.4.14 Viewing the Current Status of a Command

Some commands are long, and it may be difficult to keep track of what has actually been given as input. In other cases where commands have been inserted, it is good to be able to see what the current command(s) actually look like to Profast. For this reason, the command: -? has been introduced.

4.4.15 Comments

A comment may be typed anywhere in a command while in command mode (not in programming mode). Comments are prefixed by the percent sign: %. Everything from the percent sign to the end of the line is treated as a comment. A comment need not be the first item on a line.

Examples:

```
DEFINE SERVICE-LIFE 0 25% In years % This is a comment.
```

4.5 Using the Graphics Mode User Interface

The Profast graphics environment offers a main window with the following parts (from top to bottom):

- Title bar. This is the name of the program that is being run.
- Main menu. This menu gives access to all the commands of Profast.
- Short-cut buttons. The first three toggles command input mode on and off, reads a command input file and closes a command input file. This last button is only active when a command input file is open. The last three buttons will cut, copy and past texts to and from the text input areas in Profast.
- Message area. This is used to show messages to the user, plus commands that have been typed into the command input line, as well as those that have been read form command input files.

4-18 01-OCT-2004 Program version 2.2-03

• Command input line This line contains the prompt for line mode input (showing the default when this is available), followed by a field which is used to type line mode commands. All facilities that are described in section are available through this line.

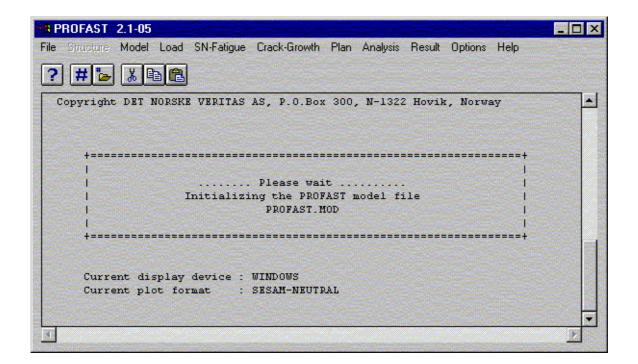


Figure 4.2 The main dialog window at start-up

In addition to the parts seen in Figure 4.2, the graphics area and command line area may be visible, as shown below:

Figure 4.3 The main window with graphics area and line mode command input areas

These areas are described in more detail in the following:

- The graphics area is displayed the first time the need for displaying a drawing arises. When this happens, the main window will be resized to fill a good part of the screen. This area cannot be removed once opened (except by exit of the program and starting it again).
- The command line and prompt at the bottom, as well as the command list at the right and the six short-cut buttons are used to give line mode commands to Profast. A command can be entered by clicking in the command list or by typing text in the command line, followed by <Enter>. The short-cut buttons all have explanatory texts attached, visible when the mouse pointer is paused over the button. Two extra buttons appear when a command input file is open.

If the main window is iconised, all the open dialog boxes disappear into the icon. They pop up again when the main window is popped up. In addition to this, the graphics environment consists of:

- Pulldown menus. These are pulled down from the items in the main menu. They are activated by clicking on an item in the main menu with the left mouse button, or by holding the left mouse button down on an item in the main menu. Similarly, some of the items in a pulldown menu may have a sub menu sliding side-wards from the parent menu. To select an item in a pulldown menu, click on it or drag the mouse pointer to the item and release the button.
- Dialog boxes. Much of the user interaction will happen through dialog boxes. Those items in the pull-down menus that have three dots following the item label, all open a dialog box when selected. The dialog box is described more fully in Section 4.5.3.
- Print window. After the first Print command has been issued, a print window will pop up. This window can be scrolled and contains all the output from the Print command, that is directed to the screen. The window has a limited buffer, so if a single print command generates excessive amounts of print, some of it may disappear out of the top of the window. The print window may be iconised separately from the

4-20 01-OCT-2004 Program version 2.2-03

main window. It is possible to print inside an iconised print window. It does however not pop up automatically from an iconised state when something is printed.

4.5.1 How to Get Help

There is a Help menu under the main menu, which contains much useful on-line information.

Context sensitive help is available through a Help button (the F1 button on some computers). When an entry in a dialog box (e.g. a text input field or a list that can be scrolled) is active, pressing the Help button will often display a context sensitive help text in a separate window.

Figure 4.4 Tear-off pulldown menu before and after it is torn off

4.5.2 Tear-Off Menus

When using Motif version 1.2 or greater, the pulldown menus can be torn off and displayed in separate windows. This is very useful for accessing commonly used dialog boxes. The menu is torn off by clicking on the stipulated line at the top of the menu (if no such line is visible, the menu cannot be torn off). To close the menu, select the "Close" entry in the menu at the upper left corner of the window frame.

4.5.3 Dialog Boxes and Their Contents

A dialog box is used to pass information from the user to Profast. Most dialog boxes also present the current defaults, and thus may be used to pass information from Profast to the user.

The typical entries in a dialog box are: **Input fields**, **Menus** and **Pushbuttons**.

An **Input field** can contain a text, a name, a whole number or a numerical value. The Set Plot dialog box contains two input fields: the file prefix and the file name description. To type into the field, click in it first using the left mouse button. In some input fields, the text can be longer than the width of the field as shown in the dialog box. The text will then scroll if typed beyond the width of the input field.

01-OCT-2004

Menus come in four different types: Togglebuttons, Radio boxes, Option menus and Scrollable lists. Selecting in a menu may cause considerable changes in the layout of the dialog box. This will depend on the dialog box in use.

A Togglebutton is a button that has two states: On and Off. One examples is given in the Set Plot box, where the Colour button is Off. Click on the button or on the corresponding label to switch the status of the button.

A Radio box is a collection of togglebuttons, where only one of the buttons can be active at any one time. All buttons are visible on the screen simultaneously. An example is the Members buttons the Select Member box. Click on a button or on the corresponding label to select that button.

An **Option menu** is similar to a radio box, in that it presents a number of alternatives, of which only one is active at any one time. It is however operated differently. Click on the menu (not the corresponding label) to bring up the list of alternatives. Then click on an alternative to select it. Alternatively, click on the menu and hold the button down, then move the mouse pointer through the menu to the selected value, and then release the mouse button. Page size menu in the Set Plot box is an example of an option menu.

A Scrollable list is a list of alternatives, that is presented in a scrollable box. Such a menu is used in order to preserve space, or because the items in the list cannot be predicted before the menu is used. Use the scrollbar to manoeuvre through the list, and select a value by clicking on it. The Format list in the Set Plot box is an example of a scrollable list. See also Section 4.5.5

A **Pushbutton** is a button, that causes an action to happen when it is clicked on.

OK, Apply and Cancel buttons are represented in the Set Plot box shown above. All dialog boxes have a standard set of buttons at the bottom of the box. These buttons are described later in this section.

If the label of a pushbutton is followed by three dots, the button will open a new dialog box. The Assign dialog boxes often contain pushbuttons that provide a short-cut to boxes placed under the Select main command.

4-22 01-OCT-2004 Program version 2.2-03

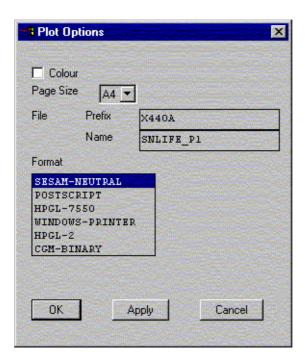


Figure 4.5 The Set Plot dialog box

In addition to these items, there are a few more complex input items, that are described in the following sections.

4.5.4 The Standard Buttons in a Dialog Box

A dialog box will contain one or more of these standard buttons, placed at the bottom of the box:

OK Accept the contents of the box and close the box. The box will not be closed if there

is an error in the information inside the box.

Apply Accept the contents of the box. The box is not closed.

Cancel Close the box without accepting the contents.

Close the box without accepting the contents.

Update the contents of the box to correctly represent information changed else-

where.

Help Provide context sensitive help

Most dialog boxes have a default pushbutton, that is activated by typing <Return> when the dialog box is active. This pushbutton is usually the OK or the Apply button. The default button will be highlighted or framed.

SESAM Profast

Program version 2.2-03 01-OCT-2004 4-2

4.5.5 Selecting Several Alternatives from a List

In e.g. the PRINT SN-CURVE command, a scrollable list of all curves is presented. Any number of variables can be selected from this list for print. Selected values are marked by highlighting.

The basic way to select values is to click on a value, and then drag the mouse through the list. All values that the mouse pointer is dragged through are selected, and any previously selected value becomes un-selected. To modify an existing selection, hold the Control key down while clicking in the list or dragging the mouse pointer through the list. All items that are clicked on while the Control key is held will reverse their selection status.

4.5.6 Entering a Prefixed List

The prefixed list is used to enter a number of values, that is unknown until the time the box is used, where each value has a prefix (or prompt). It is used to input distribution parameters, function arguments and starting point values.

In line mode, the list is simply traversed sequential from top to bottom. In graphics mode, the accompanying input field (located just below the box) is used to input and change values. The procedure used to change or input a value is:

- Select the corresponding row in the box. Double-click on the row if desired to transfer the current value to the input field. If no row is selected, the first row is implicitly used.
- Type the correct value in the input field.
- Hit <Return> in the input field to transfer the value to the box. The next row in the box will then be selected and the input field will be cleared.

Thus it is possible to input values sequential into the box by clicking on the input field and then typing the values one by one, with each value followed by a <Return>.

4.5.7 Entering a Vector or Matrix of Values

In many cases a vector or matrix of values must be input. An Example is entering a scatter diagram by the CREATE WAVE-STATISTICS command.

The graphics mode input of this is quite flexible. The values are presented in columns in a scrollable box. Under the box is one input field for each column in the matrix (one field if it is a vector). Under the input field(s) are two rows of buttons, that are used to manipulate the contents of the box.

Type values into the input fields, and hit <Return> in the last (bottom) field. The values are then inserted at the bottom, or before the selected row, or will overwrite the selected row, depending on the default status. The initial status is Include, which inserts values at the bottom. The input fields are cleared after the insertion is complete. Instead of pressing <Return>, a button may be pressed. The effect of this is:

Include Include the values in the input field(s) at the bottom, then clear the input fields. Sets

the default status to Include.

Exclude Exclude all selected rows from the matrix/vector. Sets the default status to Exclude.

4-24 01-OCT-2004 Program version 2.2-03

Overwrite Overwrite the selected row with the contents of the input fields. Only one row can

be selected in the scrollable box. The next row (if any) will then be selected, and

the default status will be set to Overwrite. The input fields will be cleared.

Insert before Insert the contents of the input fields before the selected row. Only one row can be

selected in the scrollable box. The default status will be set to "Insert before". The

input fields will be cleared.

Clear the contents of the matrix. NOTE: There is no way to get the cleared contents

back, other than perhaps cancelling the dialog box and opening it again.

Help Pressing this is equivalent to pressing the help button while the scrollable box has

the input focus. It provide on-line access to a description of how to use the matrix/

vector.

4.5.8 Journalling from Graphics Mode

All commands that are accepted from graphics mode are logged on the journal file. The commands are logged in a format that can be read into the corresponding line mode command.

There is one case, that deserves attention:

Some dialog boxes contain many line mode commands. An example is the Set Plot dialog box (Figure 4.5). Since all the visible contents of a dialog box are selected when the OK or Apply button is pressed, even if only parts of the box has been changed, all possible commands in the box will be logged.

Pressing the OK or Apply button in this box will generate the following log:

SET PLOT COLOUR OFF
SET PLOT FILE ' ' Profast
SET PLOT FORMAT SESAM-NEUTRAL
SET PLOT PAGE-SIZE A4

2-1

5 COMMAND DESCRIPTION

This chapter describes all the commands available in Profast.

As described in Chapter 4, Profast has two user interfaces: A graphical user interface (also called graphics mode) and a text based command interface (also called line mode).

The first section of this chapter lists the correspondence between the pulldown menus available in the graphical user interface and the line mode commands.

The line mode input is journalled, also when the graphical user interface is used. The line mode input is therefore described in full in this chapter. The second section lists the line mode commands alphabetically.

The hierarchical structure of the line-mode commands and numerical data is documented in this chapter by use of tables. How to interpret these tables is explained below. Examples are used to illustrate how the command structure may diverge into multiple choices and converge to a single choice.

In the example below command A is followed by either of the commands B and C. Thereafter command D is given. Legal alternatives are, therefore, A B D and A C D.

-~ 8		8
Δ	В	D
11	C	D

In the example below command A is followed by three selections of either of commands B and C as indicated by *3. For example: A B B B, or: A B B C, or A C B C, etc.

Δ	В	*3
11	C	3

In the example below the three dots in the left-most column indicate that the command sequence is a continuation of a preceding command sequence. The single asterisk indicate that B and C may be given any number of times. Conclude this sequence by the command END. The three dots in the right-most column indicate that the command sequence is to be continued by another command sequence.

	A	B C	*	
		END		•••

5-2 01-OCT-2004 Program version 2.2-03

In the example below command A is followed by any number of repetitions of either of the sequences B D and C D. Note that a pair of braces ({ }) is used here merely to define a sequence that may be repeated. The braces are not commands themselves.

A	{	В	D	}*
		C		

The characters A, B, C and D in the examples above represent parameters being line-mode COMMANDS (written in upper case) and numbers (written in lower case). All numbers may be entered as real or integer values. Brackets ([]) are used to enclose optional parameters.

A parameter followed by a '+' signifies a selection of one or more numerical values, names or texts from a list of items.

A parameter followed by a '*' signifies one or more alphanumeric or numerical values of the same type. These values are entered as a prefixed list.

Note: Line mode commands are in this chapter presented in upper case including hyphens. In graphics mode the commands appear in mixed case and without hyphens.

Note: Graphics mode commands that are irrelevant at a given time are masked out (shown grey in graphics mode).

Use of Profast in graphics mode is described in Section 4.5. Tutorial examples of line mode command input are given in Appendix A.

The HELP command is not described here. It is intended purely to serve as on-line help. Usage of the HELP command is not logged. When in doubt how to do things try the HELP command.

5.1 Graphical User Interface Menus

The pulldown menus of the graphical user interface are listed here from left to right and top to bottom, together with the line mode commands to which they correspond. The line mode commands can be found alphabetically in the next section.

Please note that some line mode commands are available through more than one pulldown menu. This is purely for convenience, and does not affect the journalling of these actions. Some dialog boxes are also available through short-cut buttons inside other dialog boxes.

5.1.1 The File Menu

This pulldown menu contains file manipulation commands and the command used to exit Profast.

Open FILE OPEN

Plot PLOT

Exit EXIT

SESAM Profast

Program version 2.2-03

01-OCT-2004

5-3

5.1.2 The Structure Menu

This menu contains commands used to view the structure imported from a Framework database and/or from a SESAM interface file. It will only be available when such a structure has been imported.

Display Superelement DISPLAY SUPERELEMENT

Display Member DISPLAY MEMBER

Display Joint DISPLAY JOINT

Display Label DISPLAY LABEL

Display Presentation DISPLAY PRESENTATION

Display View DISPLAY VIEW

5.1.3 The Model Menu

This menu contains commands used to model the critical points to be analysed, strength coefficients and inspections, in addition to uncertainties and general stochastic modelling.

Service Life DEFINE SERVICE-LIFE

Fatigue Point -

Create Fatigue Point CREATE FATIGUE-POINT

Delete Fatigue Point DELETE FATIGUE-POINT

Print Fatigue Point PRINT FATIGUE-POINT

Fatigue Constants DEFINE FATIGUE-CONSTANTS
Target Reliability ASSIGN TARGET-RELIABILITY
Inspection Quality ASSIGN INSPECTION-QUALITY

Inspection -

Create Inspection CREATE INSPECTION

Repair ASSIGN REPAIR

Delete Inspection DELETE INSPECTION
Print Inspection PRINT INSPECTION

SCF -

Assign SCF ASSIGN SCF

5-4 01-OCT-2004 Program version 2.2-03

Model Factor ASSIGN MODEL-FACTOR SCF

Influence Coefficients -

Assign Influence Coefficients ASSIGN INFLUENCE-COEFFICIENTS

Model Factor ASSIGN MODEL-FACTOR INFLUENCE-COEFFI-

CIENTS

Uncertainty -

Change Uncertainty ASSIGN UNCERTAINTY VALUE

Print Uncertainty PRINT UNCERTAINTY VALUE

Change Definition DEFINE UNCERTAINTY

Print Definition PRINT UNCERTAINTY DEFINITION

Variable -

Create Variable CREATE VARIABLE

Change Variable CHANGE VARIABLE

Delete Variable DELETE VARIABLE

Copy Variable COPY VARIABLE

Rename Variable RENAME VARIABLE

Extreme Type ASSIGN EXTREME-VALUE

Function Option ASSIGN FUNCTION-OPTION

Conditioning ASSIGN CONDITIONING

Display Distribution DISPLAY DISTRIBUTION

Display Fitted Distribution DISPLAY FITTED-DISTRIBUTION

Print Variable PRINT VARIABLE

Print Distribution PRINT DISTRIBUTION

Correlation -

Correlate Variables ASSIGN CORRELATION

Print Correlation PRINT CORRELATION

Event -

Program version 2.2-03 01-OCT-2004 5-5

Create Event CREATE EVENT
Change Event CHANGE EVENT
Delete Event DELETE EVENT
Copy Event COPY EVENT

Rename Event RENAME EVENT

Measured Value ASSIGN MEASURED-VALUE

Display Event DISPLAY EVENT
Print Event PRINT EVENT

Function -

Create Function CREATE FUNCTION
Change Function CHANGE FUNCTION
Delete Function DELETE FUNCTION
Rename Function RENAME FUNCTION
Display Function DISPLAY FUNCTION

Print Function Formula PRINT FUNCTION FORMULA
Function Option ASSIGN FUNCTION-OPTION
Select Library SELECT FUNCTION-LIBRARY

Presentation Options DEFINE PRESENTATION FUNCTION
Print Description PRINT FUNCTION DESCRIPTION

Print Value PRINT FUNCTION VALUE

Print Gradient PRINT FUNCTION GRADIENT
Print Library PRINT FUNCTION LIBRARY

5.1.4 The Load menu

This menu contains commands used to model the long term stress range distribution, environment and transfer functions.

Transfer Function -

Create Transfer Function	CREATE TRANSFER-FUNCTION
Change Transfer Function	CHANGE TRANSFER-FUNCTION
Delete Transfer Function	DELETE TRANSFER-FUNCTION
Display Transfer Function	DISPLAY TRANSFER-FUNCTION
Print Transfer Function	PRINT TRANSFER-FUNCTION

5-6 01-OCT-2004 Program version 2.2-03

Transfer Function Options DEFINE TRANSFER-FUNCTION

Transfer Function Presentation DEFINE PRESENTATION TRANSFER-FUNCTION

Assign Transfer Function ASSIGN TRANSFER-FUNCTION

Model Factor ASSIGN MODEL-FACTOR TRANSFER-FUNCTION

Wave Spreading -

Create Wave Spreading

CREATE WAVE-SPREADING-FUNCTION

Change Wave Spreading

CHANGE WAVE-SPREADING-FUNCTION

Delete Wave Spreading

DELETE WAVE-SPREADING-FUNCTION

Display Wave Spreading

DISPLAY WAVE-SPREADING-FUNCTION

Print Wave Spreading

PRINT WAVE-SPREADING-FUNCTION

Wave Statistics -

Create Wave Statistics CREATE WAVE-STATISTICS

Delete Wave Statistics DELETE WAVE-STATISTICS

Print Wave Statistics PRINT WAVE-STATISTICS

Assign Wave Direction ASSIGN WAVE-STATISTICS

Wave Direction Probability ASSIGN WAVE-DIRECTION-PROBABILITY

Wave Spectrum Shape ASSIGN WAVE-SPECTRUM-SHAPE

Wave Spreading ASSIGN WAVE-SPREADING-FUNCTION
Distribution Fit ASSIGN WAVE-SCATTER-DISTRIBUTION

Model Factor, Distribution ASSIGN MODEL-FACTOR SCATTER-DISTRIBUTION

Model Factor, Spectrum ASSIGN MODEL-FACTOR WAVE-SPECTRUM-SHAPE

Model Factor, Spreading ASSIGN MODEL-FACTOR WAVE-SPREADING

Stress Range -

Assign Stress Range ASSIGN STRESS-RANGE
Display Stress Range DISPLAY STRESS-RANGE

Probabilistic Fit Points DEFINE WEIBULL-FIT PROBABILISTIC
Deterministic Fit Points DEFINE WEIBULL-FIT DETERMINISTIC

Program version 2.2-03

01-OCT-2004

5-7

5.1.5 The SN-Fatigue Menu

This menu contains commands used to set up and execute SN based fatigue analysis, and to examine the results.

SN Curve -

Create SN Curve CREATE SN-CURVE
Change SN Curve CHANGE SN-CURVE
Delete SN Curve DELETE SN-CURVE
Display SN Curve DISPLAY SN-CURVE
Print SN Curve PRINT SN-CURVE

Thickness Correction ASSIGN THICKNESS-CORRECTION

Assign SN Curve ASSIGN SN-CURVE

Critical Miner Sum ASSIGN MINER-SUM-CRITICAL

Life Time Analysis -

Run Analysis RUN SN-ANALYSIS LIFE-TIME

Display Result DISPLAY SN-ANALYSIS LIFE-TIME

Print Result PRINT SN-ANALYSIS LIFE-TIME

Failure Analysis -

Analysis Options DEFINE SN-ANALYSIS FAILURE-PROBABILITY
Run Analysis RUN SN-ANALYSIS FAILURE-PROBABILITY

Display Result DISPLAY SN-ANALYSIS FAILURE-PROBABILITY

Print Result PRINT SN-ANALYSIS FAILURE-PROBABILITY

Update Analysis Model RUN SN-ANALYSIS UPDATE-MODEL

5.1.6 The Crack-Growth Menu

This menu contains commands used to set up and execute a crack growth based analysis, and to examine the results.

Crack Growth Model ASSIGN CRACK-GROWTH-MODEL

Geometry Function -

Assign Geometry Function ASSIGN GEOMETRY-FUNCTION

Profast

01-OCT-2004 Program version 2.2-03

> Model Factor ASSIGN MODEL-FACTOR GEOMETRY-FUNCTION

Display Geometry Function DISPLAY GEOMETRY-FUNCTION

Weld Effect -

Assign Weld Effect **ASSIGN WELD-EFFECT**

Model Factor ASSIGN MODEL-FACTOR WELD-EFFECT

Display Weld Effect **DISPLAY WELD-EFFECT**

Define PD6493 cutoff value **DEFINE CUTOFF-PD6493**

Calibrate to SN -

Calibration Options DEFINE CRACK-GROWTH-CALIBRATION

Run Calibration RUN CRACK-GROWTH-CALIBRATION

DISPLAY CRACK-GROWTH-CALIBRATION Display Result

Print Result PRINT CRACK-GROWTH-CALIBRATION

Life Time Analysis -

Run Analysis RUN CRACK-GROWTH-ANALYSIS LIFE-TIME

Display Result DISPLAY CRACK-GROWTH-ANALYSIS LIFE-TIME

Print Result PRINT CRACK-GROWTH-ANALYSIS LIFE-TIME

Failure Analysis -

DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROB-**Analysis Options**

ABILITY

RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBA-Run Analysis

BILITY

DEFINE PRESENTATION CRACK-GROWTH-ANALYSIS **Presentation Options**

DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-Display Result

PROBABILITY

PRINT CRACK-GROWTH-ANALYSIS FAILURE-PROBA-Print Result

BILITY

RUN CRACK-GROWTH-ANALYSIS UPDATE-MODEL Update Analysis Model

5.1.7 The Plan Menu

This menu contains commands used to set up and execute an inspection plan, and to examine the results.

Target Reliability ASSIGN TARGET-RELIABILITY **ASSIGN INSPECTION-QUALITY** Inspection Quality **Inspection Plan Options DEFINE PLAN-INSPECTION**

Program version 2.2-03 01-OCT-2004 5-9

Run Inspection Planning

RUN PLAN-INSPECTION

Print Inspection Plan

PRINT PLAN-INSPECTION

Delete Inspection Plan

DELETE PLAN-INSPECTION

5.1.8 The Analysis Menu

This menu contains commands used to set up and execute probabilistic and deterministic analysis in general. Results from such an analysis are examined by use of the "Result" menu.

Select Analysis Method SELECT ANALYSIS-METHOD
General Analysis Setup DEFINE ANALYSIS-OPTION

Sensitivity Calculation -

Selection ASSIGN SENSITIVITY VARIABLE
Increment ASSIGN SENSITIVITY INCREMENT

Parameter Study DEFINE PARAMETER-STUDY

Run Analysis -

Probability RUN PROBABILITY-ANALYSIS
Distribution RUN DISTRIBUTION-ANALYSIS
Deterministic RUN DETERMINISTIC-ANALYSIS

Restart Simulation RUN RESTART

FORM/SORM Analysis Setup

General FORM/SORM Setup DEFINE FORM-SORM

Optimization Bounds ASSIGN OPTIMISATION-BOUNDS

Starting Point ASSIGN STARTING-POINT

Generated Distribution DEFINE FORM-SORM GENERATED-DISTRIBUTION

Probability Simulation Setup

Axis Orthogonal Simulation

DEFINE PROBABILITY-SIMULATION AXIS-ORTHOGO-

NAL

Directional Simulation DEFINE PROBABILITY-SIMULATION DIRECTIONAL

5-10 01-OCT-2004 Program version 2.2-03

Design Point Simulation

DEFINE PROBABILITY-SIMULATION DESIGN-POINT

Monte Carlo Simulation

DEFINE PROBABILITY-SIMULATION MONTE-CARLO

Distribution Analysis Setup

Simulation DEFINE DISTRIBUTION-SIMULATION

Mean Value FORM DEFINE MEAN-VALUE-FORM

Print

Analysis Setup PRINT ANALYSIS-SETTINGS
Parameter Study PRINT PARAMETER-STUDY
FORM/SORM Starting Point PRINT STARTING-POINT

5.1.9 The Result Menu

This menu contains commands used to access results created while running probabilistic or deterministic analysis.

The results created during general probabilistic or deterministic analysis must be accessible through this menu.

The results created during SN analysis and crack growth analysis are accessible through this menu as well as through the "SN-Fatigue" and "Crack-Growth" menus.

Save Result

Select Result

Select Result

Delete Result

Rename Result

RENAME RESULT

Result Presentation DEFINE PRESENTATION RESULT

Display Result -

Distribution DISPLAY RESULT DISTRIBUTION

Importance Factors DISPLAY RESULT IMPORTANCE-FACTORS

Parameter Study, Main Result DISPLAY RESULT PARAMETER-STUDY MAIN-RESULT

DISPLAY RESULT PARAMETER-STUDY IMPORTANCE-

Parameter Study, Importance FACTOR

Print Result -

Program version 2.2-03 01-OCT-2004 5-11

Analysis Settings PRINT RESULT ANALYSIS-SETTINGS

Summary PRINT RESULT SUMMARY All PRINT RESULT ALL

Importance Factors PRINT RESULT IMPORTANCE-FACTORS

Sensitivity PRINT RESULT SENSITIVITY

Sample PRINT RESULT SAMPLE

Parameter Study, Main Result PRINT RESULT PARAMETER-STUDY MAIN-RESULT

Parameter Study, Importance PRINT RESULT PARAMETER-STUDY IMPORTANCE-

FACTOR

Intermediate Results PRINT RESULT INTERMEDIATE-RESULTS

5.1.10 The Options Menu

This menu contains the commands available in the line mode SET command, i.e. print and display settings.

Company Name SET COMPANY-NAME

Display SET DISPLAY
Drawing SET DRAWING

Graph -

Lines and Markers SET GRAPH LINE-OPTIONS

X Axis SET GRAPH X-AXIS-ATTRIBUTES
Y Axis SET GRAPH Y-AXIS-ATTRIBUTES
Z Axis SET GRAPH Z-AXIS-ATTRIBUTES

Histogram SET GRAPH HISTOGRAM

Pie Chart SET GRAPH PIE-CHART

Plot SET PLOT
Print SET PRINT
Title SET TITLE

5.1.11 The Help Menu

The contents of the Help menu is the same as is described with the HELP command in the next section.

5-12 01-OCT-2004 Program version 2.2-03

5.2 Line Mode Command Syntax

This section describes the complete syntax of the line mode command input. The commands are presented alphabetically. As the line mode input is case insensitive, all alternatives are presented in upper case.

ASSIGN

	CONDITIONING	
	CORRELATION	
	CRACK-GROWTH-MODELL	
	EXTREME-VALUE	
	FUNCTION-OPTION	
	GEOMETRY-FUNCTION	
	INFLUENCE-COEFFICIENTS	
	INSPECTION-QUALITY	
	MEASURED-VALUE	
	MINER-SUM-CRITICAL	
	MODEL-FACTOR	
	OPTIMISATION-BOUNDS	
	REPAIR	
ASSIGN	SCF	
ASSIGN	SENSITIVITY-CALCULATION	
	SN-CURVE	
	STARTING-POINT	
	STRESS-RANGE	
	TARGET-RELIABILITY	
	THICKNESS-CORRECTION	
	TRANSFER-FUNCTION	
	UNCERTAINTY-VALUE	
	WAVE-DIRECTION-PROBABILITY	
	WAVE-SCATTER-DISTRIBUTION	
	WAVE-SPECTRUM-SHAPE	
	WAVE-SPREADING-FUNCTION	
	WAVE-STATISTICS	
	WELD-EFFECT	

5-14 01-OCT-2004 Program version 2.2-03

PURPOSE:

Assign attribute(s) to one or more named objects.

PARAMETERS:

CONDITIONING Assign conditioning variables to a generated distribution varia-

ble.

CORRELATION Assign correlation between random variables.

CRACK-GROWTH-MODEL Assign the model used for crack growth analysis to a fatigue

point or an inspection with a repair assigned.

EXTREME-VALUE Assign extreme value distribution type to a random variable.

FUNCTION-OPTION Assign optional function input to a random variable that is a

function of other variables, or to a model function.

GEOMETRY-FUNCTION Assign the geometry function used for crack growth analysis to

a fatigue point or an inspection with a repair assigned.

INFLUENCE-COEFFICIENTS Assign influence coefficients to a fatigue point or an inspection

with a repair assigned, for calculation of the stress range.

MEASURED-VALUE Assign the measured value to an event with equality constraint.

MINER-SUM-CRITICAL Assign an SN analysis model to a fatigue point.

MODEL-FACTOR Assign factors (model correction) to some parts of the model.

OPTIMISATION-BOUNDS Assign bounds to a variable, limiting the range of values al-

lowed in FORM/SORM optimization.

REPAIR Assign repair condition to an inspection.

SCF Assign stress concentration factors to a fatigue point or an in-

spection with a repair assigned.

SENSITIVITY-CALCULATION Assign sensitivity calculation and increment to parameters.

SN-CURVE Assign an SN-curve to a fatigue point or an inspection with a

repair assigned.

STARTING-POINT Assign a starting point for the FORM/SORM analysis to an

event.

STRESS-RANGE Assign the stress range to a fatigue point or an inspection with

a repair assigned.

TARGET-RELIABILITY Assign a target reliability to one or more fatigue points. This

value defines when an inspection is required.

Program version 2.2-03	01-OCT-2004	5_15
Frogram version 2.2-05	V1-OC 1-2004	3-13

THICKNESS-CORRECTION Assign thickness correction to an SN-curve.

TRANSFER-FUNCTION Assign transfer functions for use in the calculation of the Sum-

Rayleigh stress range distribution.

UNCERTAINTY VALUE Assign uncertainty value to parameters in the model.

WAVE-DIRECTION-PROBABILITY To assign the probability of a wave direction.

WAVE-SCATTER-DISTRIBUTION To assign a distribution fit to the wave scatter diagram during

calculation of the Sum-Rayleigh long term stress distribution.

WAVE-SPECTRUM-SHAPE To assign wave spectrum shape to wave statistics.

WAVE-SPREADING-FUNCTION To assign wave spreading function to wave statistics.

WAVE-STATISTICS To assign wave statistics to a wave direction.

NOTES:

None.

5-16 01-OCT-2004 Program version 2.2-03

ASSIGN CONDITIONING

	CONDITIONING	variable	condvar+
--	--------------	----------	----------

PURPOSE:

Assign conditioning variable(s) to a generated distribution variable.

PARAMETERS:

variable The name of a generated distribution variable.

condvar+ A selection of variables that are kept fixed when the distribution is generated.

NOTES:

- 1 The current conditioning variables are presented as defaults when a generated distribution variable is selected.
- 2 The conditioning assignment to a variable is printed by use of the PRINT VARIABLE command.

See also:

- CREATE VARIABLE ... GENERATED
- PRINT VARIABLE

EXAMPLES:

```
ASSIGN CONDITIONING GenVar ( ONLY A B C ) ASSIGN CONDITIONING GenVar ( EXCLUDE ^{\star} )
```

Program version 2.2-03

01-OCT-2004

5-17

ASSIGN CORRELATION

		BASIC	value
 CORRELATION	univariate+	NORMALIZED	value
		NONE	

PURPOSE:

Assign the same correlation (or no correlation) to a number of variables.

PARAMETERS:

univariate+ A selection of variables that are defined as one dimensional distributions with nu-

merical or fixed parameter values. All pairs of the selected variables will be as-

signed the specified correlation.

BASIC The correlation is specified in the physical space.

NORMALIZED The correlation is specified in the transformed standard normal space.

value Correlation value. Can be a numerical value or the name of a one dimensional var-

iable.

NOTES:

1 It is possible to do sensitivity analysis on correlation coefficients by creating them as fixed variables first, then using the fixed variable to specify the correlation value (see example below).

See also:

PRINT CORRELATION

EXAMPLES:

```
ASSIGN CORRELATION ( P-lnC P-m ) BASIC -0.9
CREATE VARIABLE StrCorr 'Stress Correlation' FIXED 0.8
ASSIGN CORRELATION (FP-lnA FP-ldB ) NORMALIZED. StrCorr
ASSIGN SENSITIVITY VARIABLE INCLUDE StrCorr
ASSIGN CORRELATION PP* NONE
```

5-18 01-OCT-2004 Program version 2.2-03

ASSIGN CRACK-GROWTH-MODEL

•••	CRACK-GROW	TH-MODEL	fatig	gpnt/	inspec	InitTime	
	PARIS-1DIM	lnC, m			NO-TH	HRESHOLI)
SHANG lnC, m			DK0				
	PARIS-2DIM	lnCa, m, Ca/C	Cc				

PURPOSE:

Assign the crack growth analysis model to a fatigue point or to an inspection with a repair assigned.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection with a repair assigned. This is referred

to as NAME in the naming of stochastic parameters below.

InitTime Crack initiation time. Uncertainty can be assigned to the parameter NAME-ITime.

PARIS-1DIM One dimensional crack growth model, using Paris law.

lnC ln(C), material parameter. Please take care to specify this for the correct units. See

also Section 3.7.1 and Table 3.1. Uncertainty can be assigned to the parameter

NAME-lnC.

m, material parameter. See also Section 3.7.1 and Table 3.1. Uncertainty can be as-

signed to the parameter NAME-m.

NO-THRESHOLD Paris law is used with no threshold value.

DK0 Threshold value. Uncertainty can be assigned to the parameter NAME-DK0.

SHANG One dimensional crack growth model, where the aspect ratio is a function of the

crack depth, thus simulating two dimensional crack growth behaviour.

lnCa ln(Ca), material parameter. Please take care to specify this for the correct units. See

also Section 3.7.1 and Table 3.1. Uncertainty can be assigned to the parameter

NAME-lnCa.

Ca/Cc (Ca/Cc)**(1/m). Usually set to 1.1. Uncertainty can be assigned to the parameter

NAME-CaC.

PARIS-2DIM Two dimensional crack growth model using Paris law.

NOTES:

1 To change the uncertainty of a parameter, use the command ASSIGN UNCERTAINTY VALUE.

Program version 2.2-03 01-OCT-2004 5-19

2 The crack growth model assignment can be printed by use of the command PRINT FATIGUE-POINT or PRINT INSPECTION.

See also:

- ASSIGN GEOMETRY-FUNCTION
- ASSIGN WELD-EFFECT
- ASSIGN UNCERTAINTY VALUE
- PRINT FATIGUE-POINT
- PRINT INSPECTION

EXAMPLES:

ASSIGN CRACK-GROWTH-MODEL FATIGUE-POINT C3501 2 PARIS-1DIM -31 3.0 NO-THRESHOLD ASSIGN CRACK-GROWTH-MODEL FATIGUE-POINT C3502 2 PARIS-1DIM -31 3.0 200.0

5-20 01-OCT-2004 Program version 2.2-03

ASSIGN EXTREME-VALUE

		MIN-OF-N	n_min
 EXTREME-VALUE	variable	MAX-OF-N	n_max
		NONE	

PURPOSE:

Assign extreme type to a distribution variable.

PARAMETERS:

variable A one dimensional distribution variable or a generated distribu-

tion variable.

MIN-OF-N n min

The extreme distribution is the minimum of n min independ-

ent, identically distributed variables with the distribution that was input when the selected variable was created/changed.

n min must be a positive whole number.

MAX-OF-N n max The extreme distribution is the maximum of n max independ-

ent, identically distributed variables with the distribution that was input when the selected variable was created/changed.

n_max must be a positive whole number.

NONE No extreme type distribution is used for this variable.

NOTES:

1 All variables have by default no extreme type assigned.

2 The extreme value assignment is printed by use of the PRINT VARIABLE command.

See also:

PRINT VARIABLE

EXAMPLES:

```
ASSIGN EXTREME-VALUE Amplitude MAX-OF-N 5 ASSIGN EXTREME-VALUE Amplitude NONE
```

Program version 2.2-03	01-OCT-2004	5-2

ASSIGN FUNCTION-OPTION

	FUNCTION-OPTION	FUNCTION	 option	value
•••		VARIABLE	орион	varue

PURPOSE:

Assign input, that is not of random or numerical nature, to a model function.

PARAMETERS:

FUNCTION Assign the value directly to a function. In this case it is applied to all variables cre-

ated by use of the function (until changed again).

function Name of the function to which the value is assigned.

VARIABLE Assign the value to a variable that is based on a model function. This assignment

affects only the selected variable, not any other variables based on the same func-

tion.

variable Name of the variable to which the value is assigned.

option The option to be defined. The range of available options varies from function to

function.

value The value of the option. This will be either a whole number, a floating point

number, a text, a file name or a selection between alternatives, dependent on the

selected option.

NOTES:

1 The default function options can be printed by use of the PRINT FUNCTION DESCRIPTION command.

2 The function options assigned to a variable are printed by use of the PRINT VARIABLE command.

3 The function options assigned to the variables created by this program should not be changed by the user.

See also:

- PRINT FUNCTION DESCRIPTION
- PRINT VARIABLE

EXAMPLES:

ASSIGN FUNCTION-OPTION FUNCTION F11 POWER 3
ASSIGN FUNCTION-OPTION VARIABLE VAR33 ACCURACY-TYPE RELATIVE
ASSIGN FUNCTION-OPTION VARIABLE VAR33 ACCURACY-VALUE 1.1E-5

5-22 01-OCT-2004 Program version 2.2-03

ASSIGN GEOMETRY-FUNCTION

 GEOMETRY-FUNCTIO	N fatigpnt/i	inspect
PLATE-CENTER	a0,acr,Mem	Str
PLATE-EDGE	a0,acr,Mem	Str
PLATE-SURFACE-1D	DEPTH	a0,acr,a/c,MemStr
TEME SOMME ID	LENGTH	c0,ccr,a/c,MemStr
PLATE-SURFACE-2D	DEPTH	a0,acr,ccr,a/c,MemStr
 TEME SORMED 2D	LENGTH	c0,acr,ccr,a/c,MemStr
TUBE-SURFACE	DEPTH	a0,acr,a/c,MemStr
POLYNOMIAL	DEPTH	a0,acr,a/c,Polycoefs
TOETTOMINE	LENGTH	c0,ccr,a/c,Polycoefs
DATA-FIT	DEPTH	a0,acr,a/c,x,Gmf*
	LENGTH	c0,ccr,a/c,x,Gmf*

PURPOSE:

Assign the geometry function to use for crack growth analysis to a fatigue point or an inspection with a repair assigned.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection with a repair assigned. This is referred

to as NAME in the naming of stochastic parameters below.

PLATE-CENTER Through thickness crack, centred in a plane plate.

a0 Initial crack depth. Uncertainty can be assigned to the parameter NAME-a0.

acr Critical crack depth. Uncertainty can be assigned to the parameter NAME-acr.

MemStr Membrane-stress ratio (mem/(mem+ben)). Uncertainty can be assigned to the pa-

rameter NAME-MSRatio.

PLATE-EDGE Through thickness crack, at the edge of a plane plate.

PLATE-SURFACE-1D Surface crack in a plane plate, using the Raju-Newman solution. and the one di-

mensional crack growth model.

PLATE-SURFACE-2D Surface crack in a plane plate, using the Raju-Newman solution. and a two dimen-

sional crack growth model.

DEPTH The crack depth is critical.

Program version 2.2-03	01-OCT-2004	5-23

LENGTH The crack length is critical.

c0 Initial crack length (2*c0 is the full length). Uncertainty can be assigned to the pa-

rameter NAME-c0.

a/c Aspect ratio a/c. Uncertainty can be assigned to the parameter NAME-acRatio.

ccr Critical crack length (2*ccr is the full length). Uncertainty can be assigned to the

parameter NAME-2ccr.

TUBE-SURFACE Surface crack in tube, circular in outer diameter. The crack length propagates per-

pendicular to the direction of the tube.

POLYNOMIAL Polynomial geometry function, with x = (2c)/Width or a/Thick, of the form: $(c_1 - c_2)$

 $c_2*x + c_3*x2)*(1 + c_4*Exp(-c_5*x) + c_6*Exp(-c_7*(x**c_8))$

PolyCoefs 8 coefficients defining a polynomial. Uncertainty can be assigned to the parameter

NAME-c1Pol, NAME-c2Pol, ..., NAME-c8Pol.

DATA-FIT Geometry function fitted to input data.

x,Gmf* A set of geometry function values at different depths or lengths x.

NOTES:

1 A crack growth model must be assigned to the fatigue point before a geometry function can be assigned.

- 2 The PARIS-2DIM options only allow specification of a PLATE-SURFACE-2D geometry function. The PARIS-1DIM and SHANG options only allow specification of all the other geometry functions.
- 3 The TUBE-SURFACE geometry function is only available if the fatigue point has a tube geometry.
- 4 To change the uncertainty of a parameter, use the command ASSIGN UNCERTAINTY VALUE.
- 5 The geometry function assignment can be printed by use of the command PRINT FATIGUE-POINT.
- 6 A one dimensional geometry function can be displayed by use of the command DISPLAY GEOMETRY-FUNCTION.
- 7 The initial version of Profast contained an extra geometry function applicable to K joints, which was fitted to the PLATE-SURFACE function in the depth direction with MemStr = 0.25 and a/c = 0.15, and with a weld effect applied. This function has been removed, but can be reconstructed by use of the POL-YNOMIAL function with coefficients: 1.08 0.7 0.0 1.24 22.1 3.17 357.0 1.0.

See also:

- ASSIGN CRACK-GROWTH-MODEL
- ASSIGN WELD-EFFECT
- ASSIGN UNCERTAINTY VALUE

5-24 01-OCT-2004 Program version 2.2-03

- RUN CALIBRATION-CRACK-GROWTH
- DISPLAY GEOMETRY-FUNCTION
- PRINT FATIGUE-POINT
- PRINT INSPECTION

EXAMPLES:

ASSIGN GEOMETRY-FUNCTION C3501 PLATE-CENTER 1 25 25 0.4
ASSIGN CRACK-GROWTH-MODEL C3502 PLATE-SURFACE LENGTH 4 0.2 25 1000 0.1 0.4

01-OCT-2004

5-25

ASSIGN INFLUENCE-COEFFICIENTS

	INFLUENCE-COEFFICIENTS	fatiannt/inspect	N	NONE	
	IN ECEIVEE COEFFICIENTS	Tutigpiti inspect	{	Coef,Fact	}*

PURPOSE:

Assign the influence coefficients for calculation of the stress range to a fatigue point or an inspection with repair assigned.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection with a repair assigned. This is referred

to as NAME in the naming of stochastic parameters below.

NONE No influence coefficients are assigned.

Coef, Fact Influence coefficients Coef and factors Fact. Each factor is multiplied with the cor-

responding coefficient at the calculation of the stress range. Uncertainty in the coefficient can be assigned to the parameter named NAME-Ixx, with xx being the

number of the coefficient.

NOTES:

- 1 Uncertainty in the influence coefficients can also be accounted for by a single multiplicative factor, with a default value of 1. The value is represented by the variable named NAME-IFactor. This variable has no uncertainty by default.
- 2 To change the uncertainty of a parameter, use the command ASSIGN UNCERTAINTY VALUE.
- 3 During the calculation of the stress range distribution as a sum of Rayleigh distributions, the input values here are applied as: Σ Force_i * Coef_i * Fact_i
- 4 Force transfer functions corresponding to the influence coefficients must be assigned through the command ASSIGN TRANSFER-FUNCTION.
- 5 Fatigue points located at a JOINT or MEMBER have by default parametric SCFs, calculated when running Framework, when possible. These values may be overridden by the direct specification of influence coefficients if desired. If this is done, the user must also take responsibility for correctly creating and assigning transfer functions to the influence coefficients.
- 6 The influence coefficient assignment can be printed by use of the command PRINT FATIGUE-POINT or PRINT INSPECTION.
- 7 Note that the stress range assigned to the fatigue point is not changed until an ASSIGN STRESS-RANGE command is issued.

See also:

5-26 01-OCT-2004 Program version 2.2-03

- ASSIGN SCF
- ASSIGN TRANSFER-FUNCTION
- ASSIGN STRESS-RANGE
- PRINT FATIGUE-POINT
- PRINT INSPECTION

EXAMPLES:

ASSIGN INFLUENCE-COEFFICIENTS FATIGUE-POINT C3501 (ONLY 0.015 1 0.32 1 1.45 1)

Program version 2.2-03

01-OCT-2004

5-27

ASSIGN INSPECTION-QUALITY

	INSPECTION-QUALITY	fationnt+	DEPTH	POD
•••	INSTECTION-QUALITY	ratigpiit	LENGTH	TOD

PURPOSE:

Assign the inspection quality to be used at planned inspections of a fatigue point.

PARAMETERS:

fatigpnt+ A selection of names of fatigue points.

DEPTH The depth of the crack will be inspected.

LENGTH The length of the crack will be inspected.

POD The POD curve (Probability Of Detection) describing the inspection quality. This

is the name of a random variable.

NOTES:

- 1 The inspection quality is used to define future inspections in an inspection plan.
- 2 See also Section 2.6 and Section 3.8.2.
- 3 The inspection quality assignment can be printed by use of the command PRINT FATIGUE-POINT.

See also:

- PRINT FATIGUE-POINT
- ASSIGN TARGET-RELIABILITY
- RUN PLAN-INSPECTION

EXAMPLES:

ASSIGN INSPECTION-QUALITY C35* PODL-MPI-UW ASSIGN INSPECTION-QUALITY C3501 PODL-Eddy-Cu

5-28 01-OCT-2004 Program version 2.2-03

ASSIGN MEASURED-VALUE

	MEASURED-VALUE	event	variable
•••	WIE/ISORED-VILOE	CVCIII	NONE

PURPOSE:

Assign the measured value to an equality event

PARAMETERS:

event The name of an event of type SINGLE.

variable The name of the variable which was measured. This may be a coordinate in a mul-

tidimensional variable.

NONE No measured value is assigned to the selected event.

NOTES:

- 1 By default no measured variable is assigned to any event, except the events describing inspections where a crack is measured to a certain size.
- 2 The measured value assigned to an event is printed by use of the PRINT EVENT command.
- 3 The measured value assignments to the events created by this program should not be changed by the user.

See also:

PRINT EVENT

EXAMPLES:

ASSIGN MEASURED-VALUE FindCrack am

Program version 2.2-03

01-OCT-2004

5-29

ASSIGN MINER-SUM-CRITICAL

	MINER-SUM-CRITICAL	fatigpnt/inspect	damage
--	--------------------	------------------	--------

PURPOSE:

Assign critical SN damage value to a fatigue point or an inspection with repair assigned.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection with repair assigned. This is referred

to as NAME in the naming of stochastic parameters below.

damage The critical amount of damage (Miner sum at failure). Uncertainty can be assigned

to the parameter NAME-MinerS.

NOTES:

The Miner sum assignment can be printed by use of the command PRINT FATIGUE-POINT.

See also:

- ASSIGN SN-CURVE
- ASSIGN STRESS-RANGE
- RUN PROBABILITY-ANALYSIS
- RUN DETERMINISTIC-ANALYSIS
- PRINT FATIGUE-POINT

EXAMPLES:

ASSIGN MINER-SUM-CRITICAL C3501 1.0 NONE

5-30 01-OCT-2004 Program version 2.2-03

ASSIGN MODEL-FACTOR

MODEL-FACTOR	
--------------	--

	GEOMETRY-FUNCTION	fatigpnt/inspect, GFactor
	INFLUENCE-COEFFICIENTS	fatigpnt/inspect, IFactor
	SCF	fatigpnt/inspect, SFactor
	TRANSFER-FUNCTION	fatigpnt/inspect, a, b, c, fRSP
•••	SCATTER-DISTRIBUTION	scatter, fEHS, fSHS, fETZ, fSTZ, fCorr, fSkew
	WAVE-SPECTRUM-SHAPE	scatter, fgamma, fsigmaA, fsigmaB, fL, fN
	WAVE-SPREADING	scatter, fPower
	WELD-EFFECT	fatigpnt/inspect, SFactor

PURPOSE:

Assign factors in order to modify the model (e.g. to account for model uncertainty).

PARAMETERS:

GEOMETRY-FUNCTION	Assign factor	to be mul	ltıplıed	on a geometry function.
-------------------	---------------	-----------	----------	-------------------------

fatigpnt/inspect The name of a fatigue point, or of an inspection with a repair

assigned. This is referred to as NAME in the naming of sto-

chastic parameters below.

INFLUENCE-COEFFICIENTS Assign factor to be multiplied on all influence coefficients.

SCF Assign factor to be multiplied on all stress concentration fac-

tors.

SCATTER-DISTRIBUTION Assign factors to the parameters of the distribution fitted to the

scatter diagram. These factors are used only when a distribution

has been fitted to the scatter diagram.

scatter The name of a wave scatter diagram. This is referred to as

NAME in the naming of stochastic parameters below.

fEHS Factor on the mean of H_S. Uncertainty may be applied to the

stochastic parameter NAME-EHS.

fSHS Factor on the standard deviation of H_S. Uncertainty may be ap-

plied to the stochastic parameter NAME-SHS.

Factor on the mean of T_Z. Uncertainty may be applied to the

stochastic parameter NAME-ETZ..

Program version 2.2-03 01-OCT-2004 5-3

fSTZ Factor on the standard deviation of T₇. Uncertainty may be ap-

plied to the stochastic parameter NAME-STZ.

fCorr Factor on the correlation between H_S and Tz. Uncertainty may

be applied to the stochastic parameter NAME-CHT.

fSkew Factor on the skewness in a fitted Fang-Hogben distribution.

Uncertainty may be applied to the stochastic parameter

NAME-FHS.

TRANSFER-FUNCTION Assign factors to the value of the transfer function and the

stress response.

a, b, c The factor on the transfer function is a function of H_S as fol-

lows: factor = $a + b * Hs + c * H_S^2$. Uncertainty may be applied to the stochastic parameters NAME-aTRF, NAME-bTRF,

NAME-cTRF.

fRSP Factor on the stress response (the square modulus of the trans-

fer function). Uncertainty may be applied to the stochastic pa-

rameter NAME-RSP.

WAVE-SPECTRUM-SHAPE Assign a factor to the parameters of a wave spectrum assigned

to a scatter diagram.

fgamma Factor on the parameter gamma in a Jonswap spectrum. Uncer-

tainty may be applied to the stochastic parameter NAME-

GWS.

fsigmaA Factor on the parameter sigmaA in a Jonswap spectrum. Uncer-

tainty may be applied to the stochastic parameter NAME-AWS.

fsigmaB Factor on the parameter sigmaB in a Jonswap spectrum. Uncer-

tainty may be applied to the stochastic parameter NAME-BWS.

fL Factor on the parameter L in a General Gamma spectrum. Un-

certainty may be applied to the stochastic parameter NAME-

LWS.

fN Factor on the parameter N in a General Gamma spectrum. Un-

certainty may be applied to the stochastic parameter NAME-

NWS.

WAVE-SPREADING Assign a factor to the power of wave spreading functions as-

signed to a scatter diagram.

fPower Factor on the power of a wave spreading function assigned to a

scatter diagram. Uncertainty may be applied to the stochastic

parameter NAME-PWS.

WELD-EFFECT Assign factor to be multiplied on a weld effect value.

5-32 01-OCT-2004 Program version 2.2-03

NOTES:

- 1 To change the uncertainty of a parameter, use the command ASSIGN UNCERTAINTY VALUE.
- 2 The current values can be printed by use of the command PRINT UNCERTAINTY VALUE.
- 3 The bivariate distribution type fitted to each scatter diagram is defined by use of ASSIGN WAVE-SCAT-TER-DISTRIBUTION.
- 4 Note that the stress range assigned to the inspection or fatigue point is not changed until an ASSIGN STRESS-RANGE command is issued.

See also:

- ASSIGN STRESS-RANGE
- ASSIGN WAVE-SCATTER-DISTRIBUTION
- ASSIGN UNCERTAINTY VALUE
- PRINT UNCERTAINTY VALUE
- PRINT FATIGUE-POINT
- PRINT INSPECTION

EXAMPLES:

The default assignments to a new fatigue point or scatter diagram are:

```
ASSIGN MODEL-FACTOR SCATTER-DISTRIBUTION NEWSCAT 1 1 1 1 1 1 1 ASSIGN MODEL-FACTOR WAVE-SPECTRUM-SHAPE NEWSCAT 1 1 1 1 1 1 ASSIGN MODEL-FACTOR TRANSFER-FUNCTION NEWFATP 1 0 0 1
```

Program version 2.2-03

01-OCT-2004

5-33

ASSIGN OPTIMISATION-BOUNDS

	OPTIMISATION-BOUNDS	variable	MODEL-SPACE		lower		upper
•••	OI TIMISATION-DOUNDS	variable	U-SPACE	•••	OFF	•••	OFF

PURPOSE:

Assign bounds on variables, to be used in FORM/SORM optimization.

PARAMETERS:

variable Name of the variable to which the bounds are assigned. This is a one dimensional

distribution variable, or a generated distribution variable.

MODEL-SPACE The bounds are specified in model space (physical input values).

U-SPACE The bounds are specified in the transformed normal space.

lower The value of the lower bound.

upper The value of the upper bound.

OFF The default bound is used.

NOTES:

The optimization bounds assigned to a variable are printed by use of the PRINT VARIABLE command.

See also:

• PRINT VARIABLE

EXAMPLES:

ASSIGN OPTIMISATION-BOUNDS Amplitude MODEL-SPACE 0 OFF ASSIGN OPTIMISATION-BOUNDS Load U-SPACE -20 20

5-34 01-OCT-2004 Program version 2.2-03

ASSIGN REPAIR

	REPAIR	inspect	GRIND	depth
•••	KE17 HIK	пізресі	NONE	depth

PURPOSE:

Assign repair information to an inspection.

PARAMETERS:

inspect The name of an inspection. This is referred to as NAME in the naming of stochastic

parameters below.

GRIND A grind repair was performed.

depth Grind depth. Uncertainty in the value can be assigned to the parameter named

NAME-Grind.

NONE No repair was done.

NOTES:

1 It is currently not possible to change a repair type. Thus, the NONE alternative currently has no function.

- 2 The repair assignments can be printed by use of the command PRINT INSPECTION.
- 3 A Grind assignment has many effects on the model. See Section 3.8.4 for details.

See also:

- ASSIGN CRACK-GROWTH-MODEL
- ASSIGN STRESS-RANGE
- ASSIGN SCF FATIGUE-POINT
- ASSIGN INFLUENCE-COEFFICIENTS
- ASSIGN TRANSFER-FUNCTION FATIGUE-POINT
- PRINT INSPECTION

EXAMPLES:

ASSIGN REPAIR C3501 GRIND 6

Program version 2.2-03	01-OCT-2004	5-35
------------------------	-------------	------

ASSIGN SCF

	SCF	fatigpnt/inspect	NONE
•••	ber	iungpin inspect	SCF_axi, 1/area, SCF_ipb, z/Iy, SCF_opb, y/Iz

PURPOSE:

Assign stress concentration factors to a fatigue point or an inspection with a repair assigned.

PARAMETERS:

fatigpnt The name of a fatigue point or an inspection with a repair assigned. This is referred

to as NAME in the naming of stochastic parameters below.

NONE No stress concentration factors are assigned.

SCF axi Axial stress concentration factor. Uncertainty can be assigned to the parameter

NAME-ASCF.

1/area Force to Stress transformation, Axial (1 / cross section area).

SCF ipb In-plane bending stress concentration factor. Uncertainty can be assigned to the pa-

rameter NAME-ISCF.

z/Iy Force to Stress transformation, In-plane bending.

SCF opb Out of plane bending stress concentration factor. Uncertainty can be assigned to the

parameter NAME-OSCF.

y/Iz Force to Stress transformation, Out-of-plane bending.

NOTES:

- 1 Uncertainty in the SCFs can also be accounted for by a single multiplicative factor, with a default value of 1. The value is represented by the variable named NAME-SFactor. This variable has no uncertainty by default.
- 2 To change the uncertainty of a parameter, use the command ASSIGN UNCERTAINTY VALUE.
- 3 During the calculation of the stress range distribution as a sum of Rayleigh distributions, the input values here are applied as (where A is a force to stress transformation coefficient): Σ Force_i * SCF_i * A_i
- 4 Force transfer functions must be assigned through the command ASSIGN TRANSFER-FUNCTION.
- 5 Fatigue points located at a JOINT or MEMBER have by default parametric SCFs, calculated when running Framework, when possible. These values may be overridden by the direct specification of SCFs if desired. If this is done, the user must also take responsibility for correctly creating and assigning transfer functions to the SCFs.

5-36 01-OCT-2004 Program version 2.2-03

- 6 The SCF assignment can be printed by use of the command PRINT FATIGUE-POINT or PRINT INSPECTION.
- 7 Note that the stress range assigned to the fatigue point is not changed until an ASSIGN STRESS-RANGE command is issued.

See also:

- ASSIGN INFLUENCE-COEFFICIENTS
- ASSIGN TRANSFER-FUNCTION
- ASSIGN STRESS-RANGE
- PRINT FATIGUE-POINT
- PRINT INSPECTION

EXAMPLES:

ASSIGN SCF C3501 2.5 2.341E-05 3.536 -1.001E-07 3.536 1.001E-07

Program version 2.2-03 01-OCT-2004 5-37

ASSIGN SENSITIVITY-CALCULATION

	SENSITIVITY-CALCULATION	INCREMENT	
•••	SENSITIVITI-CAECOLATION	VARIABLE	•••

PURPOSE:

Assign sensitivity calculation parameters and increments.

PARAMETERS:

INCREMENT Assign increment value to be used for sensitivity calculation.

VARIABLE Select parameters for sensitivity calculation.

NOTES:

None.

5-38 01-OCT-2004 Program version 2.2-03

ASSIGN SENSITIVITY-CALCULATION INCREMENT

	INCREMENT	parameter	value	
•••	IIVEREIVIEIVI	parameter	DEFAULT	

PURPOSE:

Assign increment to be used for sensitivity calculation.

PARAMETERS:

parameter The parameter for which the increment applies. This can be a fixed variable, the

name of a numerical parameter in a distribution variable, or the name of a numer-

ical argument in a function variable.

value The increment to be used.

DEFAULT Use the default increment.

NOTES:

The specified increment overrides any increment specified by DEFINE ANALYSIS-OPTION DIFFERENTIATION.

See also:

• ASSIGN SENSITIVITY-CALCULATION VARIABLE

EXAMPLES:

ASSIGN SENSITIVITY-CALCULATION INCREMENT P1-lnC ON 0.01 ASSIGN SENSITIVITY-CALCULATION INCREMENT P1-lnC OFF

5-39

ASSIGN SENSITIVITY-CALCULATION VARIABLE

VARIABLE	parameter+
----------	------------

PURPOSE:

Select a number of parameters for sensitivity calculation.

PARAMETERS:

parameter+ The parameters to be used for sensitivity calculation. These can be a fixed variable,

the name of a numerical parameter in a distribution variable, or the name of a nu-

merical argument in a function variable.

NOTES:

1 The parameters that have previously been selected are presented as the default selection. To deassign sensitivity to some of these, remove them from the selection.

2 The command DEFINE ANALYSIS-OPTION SENSITIVITY is used to confirm or override the selection specified here.

See also:

- ASSIGN SENSITIVITY-CALCULATION INCREMENT
- DEFINE ANALYSIS-OPTION SENSITIVITY

EXAMPLES:

ASSIGN SENSITIVITY-CALCULATION VARIABLE *-Mean ASSIGN SENSITIVITY-CALCULATION VARIABLE INCLUDE P1-lnC-Stdv

5-40 01-OCT-2004 Program version 2.2-03

ASSIGN SN-CURVE

	SN-CURVE	fatigpnt/inspect	sn_curve
--	----------	------------------	----------

PURPOSE:

Assign an SN-curve to a fatigue point or to an inspection with a repair assigned.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or of an inspection with a repair assigned.

sn curve The name of an SN-curve.

NOTES:

1 A number of default SN-curves are available - see chapter 2.

2 The SN-curve assignment to a fatigue point can be printed by use of the command PRINT FATIGUE-POINT or PRINT INSPECTION.

See also:

- ASSIGN MINER-SUM-CRITICAL
- RUN PROBABILITY-ANALYSIS
- PRINT FATIGUE-POINT
- PRINT INSPECTION

EXAMPLES:

ASSIGN SN-CURVE FATIGUE-POINT PDNV-T

01-OCT-2004

5-41

ASSIGN STARTING-POINT

	STARTING-POINT	event		ş	numerical	\ *	Ī
	SHARING FORVE	VARIABLE	variable	ı	DEFAULT	,	

PURPOSE:

Assign a starting point for the FORM/SORM optimization to an event or a variable.

PARAMETERS:

event Name of the event to which the starting point is assigned. This must be a single

event.

VARIABLE Assign the starting point to a variable. This must be a one dimensional distribution

variable or a generated distribution variable. This assignment causes the starting point value to be used in all events that depend on the variable, except when over-

ridden by a direct assignment to the event.

variable Name of the variable to which the starting point is assigned.

numerical Numerical starting point value. The value must be specified in the physical model

space, not in U-space.

default The text default implies a default starting point value, that is the origin in U-space.

NOTES:

1 The starting point assignment can be printed by use of the PRINT STARTING-POINT command.

2 The use of starting points in the FORM/SORM optimization is determined by the DEFINE FORM-SORM STARTING-POINT INITIAL command.

See also:

- PRINT STARTING-POINT
- DEFINE FORM-SORM STARTING-POINT INITIAL

EXAMPLES:

ASSIGN STARTING-POINT EP1 7.52 DEFAULT DEFAULT 2200 -8.65 ASSIGN STARTING-POINT VARIABLE VAR7 DEFAULT DEFAULT

5-42 01-OCT-2004 Program version 2.2-03

ASSIGN STRESS-RANGE

			NONE		
			CONSTANT	value, nu0	
			WEIBULL-AB	lnA, 1/B, nu0	
•••	STRESS-RANGE	fatigpnt/inspect	SUM-RAYLEIGH		
				FRACTILE-95-99	
			WEIBULL-FIT	DETERMINISTIC	
				PROBABILISTIC	

PURPOSE:

Assign the stress range to a fatigue point or an inspection with a repair assigned.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection with a repair assigned. This is referred

to as NAME in the naming of stochastic parameters below.

NONE No stress range is assigned.

CONSTANT The stress range is constant, except for any assigned uncertainty.

value The constant stress range value. Uncertainty can be assigned to the parameter

NAME-SRange.

nu0 The number of load cycles per second. This value is calculated automatically when

the SUM-RAYLEIGH or WEIBULL-FIT options are used. Uncertainty can be as-

signed to the parameter NAME-nu0.

WEIBULL-AB The stress range is Weibull distributed, with the parameters specified directly.

lnA The logarithm of the scale parameter A in the Weibull distribution. Uncertainty can

be assigned to the parameter NAME-lnA.

1/B The reciprocal of the shape parameter B in the Weibull distribution. Uncertainty

can be assigned to the parameter NAME-1dB

SUM-RAYLEIGH The stress distribution is calculated as a sum of rayleigh distributions, each calcu-

lated from an environmental wave description, a set of force transfer functions and

a number of stress concentration factors or influence coefficients.

WEIBULL-FIT The stress range is Weibull distributed, fitted to the Sum-Rayleigh distribution de-

scribed above. The fit generates values of lnA and 1/B, stored as the parameters NAME-lnA and NAME-1dB, either as constant variables or with assigned uncer-

tainties.

,		
Program version 2.2-03	01-OCT-2004	5-43

FRACTILE-95-99 The Weibull distribution is fitted to two fractiles in the Sum-Rayleigh distribution,

calculated at the 95% and 99% cumulative probabilities. This generates a determin-

istic fit, with constant values of lnA and 1/B.

DETERMINISTIC The Weibull distribution is fitted to any number of fractiles in the Sum-Rayleigh

distribution, as specified by the user in the command DEFINE WEIBULL-FIT DETERMINISTIC. This generates a deterministic fit, with constant values of lnA and

1/B.

PROBABILISTIC The Weibull distribution is fitted to three fractiles in the Sum-Rayleigh distribu-

tion, as specified by the user in the command DEFINE WEIBULL-FIT PROBA-BILISTIC. This generates a probabilistic fit, with uncertainties assigned to NAME-

lnA and/or NAME-1/B, and with a possible correlation between the two.

NOTES:

1 To change the uncertainty of a parameter, use the command ASSIGN UNCERTAINTY VALUE.

- 2 The uncertainty applied in the probabilistic fit is described in chapter 3. See also the command ASSIGN MODEL-FACTOR.
- 3 The bivariate distribution type fitted to each scatter diagram (if any) is defined by use of ASSIGN WAVE-SCATTER-DISTRIBUTION.
- 4 The stress range assignment can be printed by use of the command PRINT FATIGUE-POINT or PRINT INSPECTION.

See also:

- ASSIGN SCF
- ASSIGN INFLUENCE-COEFFICIENTS
- ASSIGN MODEL-FACTOR
- CREATE TRANSFER-FUNCTION
- ASSIGN TRANSFER-FUNCTION
- CREATE WAVE-STATISTICS
- ASSIGN WAVE-SCATTER-DISTRIBUTION
- ASSIGN-WAVE-SPECTRUM-SHAPE
- CREATE WAVE-SPREADING-FUNCTION
- ASSIGN WAVE-SPREADING-FUNCTION
- ASSIGN WAVE-DIRECTION-PROBABILITY
- ASSIGN WAVE-STATISTICS

5-44 01-OCT-2004 Program version 2.2-03

- PRINT FATIGUE-POINT
- PRINT INSPECTION

EXAMPLES:

ASSIGN STRESS-RANGE FATIGUE-POINT C3501 CONSTANT 40.0 0.15 ASSIGN STRESS-RANGE FATIGUE-POINT WEIBULL-AB 4.2 0.8 0.15 ASSIGN STRESS-RANGE FATIGUE-POINT WEIBULL-FIT PROBABILISTIC

Program version 2.2-03 01-OCT-2004 5-45

ASSIGN TARGET-RELIABILITY

		LIFETIME-RELIABILITY	beta
TARGET-RELIABILITY	fatigpnt+	LIFETIME-PROBABILITY	prob
 THROLI-REELINDIETT	idtigpiit	ANNUAL-RELIABILITY	beta
		ANNUAL-PROBABILITY	prob

PURPOSE:

Assign the target reliability at which an inspection is required to a fatigue point.

PARAMETERS:

fatigpnt+ A selection of names of fatigue points.

LIFETIME-RELIABILITY Target is lifetime reliability.

LIFETIME-PROBABILITY Target is lifetime probability.

ANNUAL-RELIABILITY Target is annual reliability.

ANNUAL-PROBABILITY Target is annual probability.

beta The target reliability.

prob The target probability.

NOTES:

- 1 The target reliability is used to set up an inspection plan.
- 2 The target reliability assignment can be printed by use of the command PRINT FATIGUE-POINT.

See also:

- PRINT FATIGUE-POINT
- ASSIGN INSPECTION-QUALITY
- RUN PLAN-INSPECTION

EXAMPLES:

ASSIGN TARGET-RELIABILITY C35* ANNUAL-PROBABILITY 0.0001 ASSIGN TARGET-RELIABILITY C3501 LIFETIME-RELIABILITY 2.5

5-46 01-OCT-2004 Program version 2.2-03

ASSIGN THICKNESS-CORRECTION

		NONE		
 THICKNESS-CORRECTION	name	STANDARD-T-CURVE	tref	
		ARBITRARY	tref, tcut, texp	

PURPOSE:

To assign thickness correction to an SN-curve.

PARAMETERS:

name SN-curve name.

NONE No thickness correction applies.

STANDARD-T-CURVE Standard T-curve (tcut=tref, texp=0.25). The reference thick-

ness may e.g. be 0.032 metres, but must be given in current con-

sistent units.

ARBITRARY User specifies all the parameters used in the thickness correc-

tion formula.

tref Reference thickness, for which the SN-curve is valid without

correction.

tcut Cut-off thickness. If the actual thickness is smaller, the cut-off

thickness is applied in the formula below.

texp Exponent.

NOTES:

- 1 SN-curves have no thickness correction assigned at creation.
- 2 The thickness correction assignment can be printed by use of the command PRINT SN-CURVE
- 3 The thickness correction factor *f* to be applied to the hotspot stress is computed according to the following formula for a given section thickness *t*:

$$f = \begin{cases} \left(t_{cut}/t_{ref}\right)^{t\exp} & (t \le t_{cut}) \\ \left(t/t_{ref}\right)^{t\exp} & (t > t_{cut}) \end{cases}$$

4 The following figure illustrates the application of the thickness correction.

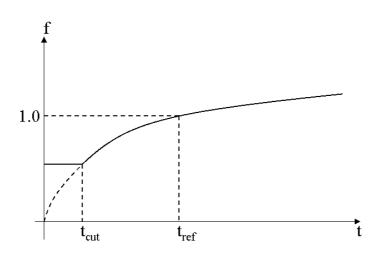


Figure 5.1 Application of thickness correction to an SN-curve

See also:

• CREATE SN-CURVE

EXAMPLES:

ASSIGN THICKNESS-CORRECTION DNV-T STANDARD-T-CURVE 0.032

5-48 01-OCT-2004 Program version 2.2-03

ASSIGN TRANSFER-FUNCTION

TRANSFER-FUNCTION fatigpnt/inspect	NONE			
TRANSFER FUNCTION	fationnt/inchect	WAVE-HEIGHT	TRFs	
 TRANSPER-PONCTION	ratigpin/mspect	STOCHASTIC	HS, TZ	TRFs
		STOCHASTIC	115, 12	NONE

PURPOSE:

Assign force transfer functions to a fatigue point or an inspection with a repair assigned.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection with a repair assigned. This is referred

to as NAME in the naming of stochastic parameters below.

NONE No transfer functions are assigned.

WAVE-HEIGHT Wave height linearisation has been used

STOCHASTIC Stochastic linearisation has been used

HS, TZ Values at which the stochastic linearisation has been performed. More than one

Hs,Tz combination can be specified, and will then be applied in the calculation of

the Sum-Rayleigh distribution for the stress range.

NONE Disable any previous transfer function assignment to the fatigue point for this

Hs, Tz combination.

TRFs A number of transfer functions, specified by name. The number will be 3 if SCFs

has been assigned to the fatigue point / inspection, or it will be the same as the number of influence coefficients, if influence coefficients has been assigned to the fatigue point / inspection. The order of the transfer functions must match the order

of the SCFs or influence coefficients.

NOTES:

1 The transfer function assignment can be printed by use of the command PRINT FATIGUE-POINT.

2 Note that the stress range assigned to the fatigue point is not changed until an ASSIGN STRESS-RANGE command is issued.

See also:

- CREATE TRANSFER-FUNCTION
- CHANGE TRANSFER-FUNCTION

Program version 2.2-03 01-OCT-2004 5-49

- DISPLAY-TRANSFER-FUNCTION
- PRINT TRANSFER-FUNCTION
- ASSIGN SCF
- ASSIGN INFLUENCE-COEFFICIENTS
- PRINT FATIGUE-POINT

EXAMPLES:

ASSIGN TRANSFER-FUNCTION FATIGUE-POINT C3105 WAVE-HEIGHT T3105XX T3105XZ T3105YZ

5-50 01-OCT-2004 Program version 2.2-03

ASSIGN UNCERTAINTY VALUE

			NONE		
			LOW		
			MEDIUM		
	VALUE	LUE parameter+	HIGH		
•••	VALUE		COV	cov	
			STDV	stdv	
			KNOWN		
			VARIABLE	name	

PURPOSE:

Assign uncertainty value to a parameter.

PARAMETERS:

parameter+ The name of one or more parameters, that can have uncertainty assigned (See note

1 below). Such a parameter has its own name, if it is a global parameter (e.g. Service-Life), or a derived name if it belongs to a named object. The derived name is composed of the name of the object (e.g. MEMB3501) and an identification of the parameter (e.g. Width), connected by a hyphen (e.g. MEMB3501-Width). The uncertainty representation is stored in a variable with the same name as the parameter,

but truncated to 12 characters (e.g. MEMB3501-Wid) (See note 2 below).

NONE The parameter has no uncertainty assigned, i.e. the associated variable is FIXED.

LOW The parameter has a low uncertainty assigned (see note 3 below).

MEDIUM The parameter has a medium uncertainty assigned (see note 3 below).

HIGH The parameter has a high uncertainty assigned (see note 3 below).

COV The uncertainty of the parameter is specified as a coefficient of variation (see note

3 below).

cov The coefficient of variation ((Standard Deviation) = (Coef of Var) * Abs(Mean)).

STDV The uncertainty of the parameter is specified as a standard deviation (see note 3 be-

low).

stdv The standard deviation.

KNOWN The standard deviation is a function of the mean and cannot be specified directly.

VARIABLE The uncertainty of the parameter is represented as another random variable.

01-OCT-2004

5-51

name

The name of a one dimensional random variable.

NOTES:

- 1 All parameters that can have uncertainty assigned are documented with the commands where they are being used.
- 2 The variable associated with the parameter can be examined using the commands PRINT VARIABLE, PRINT DISTRIBUTION and DISPLAY DISTRIBUTION.
- 3 Each parameter type (e.g. the width of the of the plate in which the fatigue point sits) has a default uncertainty definition. This definition consists of a random distribution (e.g. Normal), and definition of LOW, MEDIUM and HIGH uncertainty in terms of standard deviation and/or coefficient of variation (when both of these are specified, the one that generates the highest standard deviation for a given mean value takes effect). The mean value of the variable will be the input value of the parameter. This definition may be changed by use of the command DEFINE UNCERTAINTY. All available parameter types can be printed by use of the command PRINT UNCERTAINTY DEFINITION OVERVIEW. The default distribution and uncertainty can be printed by use of PRINT UNCERTAINTY DEFINITION DESCRIPTION.
- 4 To bypass the default distribution, use the VARIABLE option.
- 5 In some cases (e.g. the Exponential distribution), the standard deviation is a function of the mean value and cannot be specified directly. In such a case, only the NONE, KNOWN and VARIABLE alternatives will be presented.
- 6 The VARIABLE option may be used to assign the same random variable to several parameters, for example, to use the same material parameter at two hotspots on the same member:

```
CREATE VARIABLE lnC ' ' DISTRIBUTION NORMAL M-C -31 0.1 ASSIGN UNCERTAINTY VALUE C3501A-lnC VARIABLE lnC ASSIGN UNCERTAINTY VALUE C3501B-lnC VARIABLE lnC
```

- 7 The current uncertainty assignment may be printed by use of the command PRINT UNCERTAINTY VALUE.
- 8 Uncertain parameters can be correlated by use of the command ASSIGN CORRELATION with the associated variable.
- 9 If a selection of more than one parameter names is made, the remaining input will be presented as the current safety level specification of all the selected parameters. If not all selected parameters have the same specification, there will be no default value for the remaining parameters.

See also:

- ASSIGN CORRELATION
- CREATE VARIABLE
- DEFINE UNCERTAINTY
- DISPLAY DISTRIBUTION
- PRINT DISTRIBUTION

5-52 01-OCT-2004 Program version 2.2-03

- PRINT UNCERTAINTY
- PRINT VARIABLE

EXAMPLES:

ASSIGN UNCERTAINTY VALUE C3501-lnA MEDIUM ASSIGN UNCERTAINTY VALUE C35*-ldB HIGH

Program version 2.2-03

01-OCT-2004

5-53

ASSIGN WAVE-DIRECTION-PROBABILITY

	WAVE-DIRECTION-PROBABILITY	wave-dir	probability
--	----------------------------	----------	-------------

PURPOSE:

To assign a probability associated with a wave direction.

PARAMETERS:

wave-dir Wave direction in degrees.

probability Probability associated with wave direction.

NOTES:

1 The initial value of all wave direction probabilities are 0.0.

2 The sum of wave direction probabilities must be 1.0.

See also:

• PRINT WAVE-DIRECTIONS

EXAMPLES:

ASSIGN WAVE-DIRECTION-PROBABILITY 0 1.0

5-54 01-OCT-2004 Program version 2.2-03

ASSIGN WAVE-SCATTER-DISTRIBUTION

		NONE
 WAVE-SCATTER-DISTRIBUTION	stat-name	LOGNORMAL
		FANG-HOGBEN

PURPOSE:

To assign a distribution fit to the wave scatter diagram during calculation of the Sum-Rayleigh long term stress distribution.

PARAMETERS:

stat-name Name of wave statistics (scatter diagram).

NONE The input scatter diagram is used directly.

LOGNORMAL A bivariate lognormal distribution is fitted to the (H_S, T_Z) data.

FANG-HOGBEN For a distribution described by Fang and Hogben to describe the (H_S,T_Z) data.

NOTES:

The calculation of the Sum-Rayleigh long term stress distribution is described in more detail in the Profast Theory Manual.

See also:

- CREATE WAVE-STATISTICE
- PRINT WAVE-STATISTICS
- ASSIGN WAVE-STATISTICS
- ASSIGN STRESS-RANGE
- ASSIGN MODEL-FACTOR SCATTER-DISTRIBUTION

EXAMPLES:

The default assignment is the Lognormal distribution:

ASSIGN WAVE-SCATTER-DISTRIBUTION scatter LOGNORMAL

Program version 2.2-03 01-OCT-2004

ASSIGN WAVE-SPECTRUM-SHAPE

			PIERSON-M	OSKOWI	TZ	
	WAVE-SPECTRUM-SHAPE	stat-name	JONSWAP	gamma, s	igmaA, sigmaB	
			GENERAL-0	GAMMA	facL, facN	

	ALL			
•••	PART	lowHs, uppHs, lowTz, uppTz		

PURPOSE:

To assign a wave spectrum shape to a wave statistics (scatter diagram).

PARAMETERS:

stat-name Name of wave statistics (scatter diagram).

PIERSON-MOSKOWITZ A Pierson-Moskowitz spectrum shall be assigned to the wave

statistics.

JONSWAP A JONSWAP spectrum shape shall be assigned to the wave sta-

tistics.

gamma Peak enhancement factor of JONSWAP.

sigmaA Left width of JONSWAP spectrum.

sigmaB Right width of JONSWAP spectrum.

GENERAL-GAMMA A GENERAL-GAMMA spectrum shape shall be assigned to

the wave-statistics.

facL Parameter L for the GENERAL-GAMMA spectrum.

facN Parameter N for the GENERAL-GAMMA spectrum.

ALL The spectrum shape is assigned to all sea states in the wave-sta-

tistics.

PART The spectrum shape is assigned to a subset of the wave-statis-

tics, where [H_s, T_z] is between specified limits.

lowH_s Lowest H_s-value.

 $uppH_s$ Upper H_s -value.

 $lowT_z$ Lowest T_z -value.

5-56 01-OCT-2004 Program version 2.2-03

 $uppT_z$ Upper T_z -value.

NOTES:

Please be aware that the Jonswap spectrum is much more time consuming than the Pierson Moskowitz spectrum.

See also:

- CREATE WAVE-STATISTICE
- PRINT WAVE-STATISTICS
- ASSIGN WAVE-SPREADING-FUNCTION
- ASSIGN MODEL-FACTOR WAVE-SPECTRUM-SHAPE

EXAMPLES:

ASSIGN WAVE-SPECTRUM-SHAPE SCATTERA JONSWAP 3.3 0.07 0.09 ALL

Program version 2.2-03

01-OCT-2004

5-57

ASSIGN WAVE-SPREADING-FUNCTION

	WAVE-SPREADING-FUNCTION	stat-name	spread-name	
	WIVE STREADING TONCTION	Stat Harrie	NONE	•••

	ALL	
•••	PART	lowHs, uppHs, lowTz, uppTz

PURPOSE:

To assign a spreading function to a wave statistics (scatter diagram).

PARAMETERS:

stat-name Name of wave statistics (scatter diagram) to be assigned the spreading function.

spread-name Name of spreading function to be assigned to stat-name.

NONE No spreading is assigned, the sea is assumed to be long crested.

ALL The spreading function is assigned to all sea states in the wave-statistics.

PART The spreading function is assigned to a subset of the wave-statistics, where $[H_s, T_z]$

is between specified limits.

lowH_s Lowest H_s-value.

uppH_s Upper H_s-value.

 $lowT_z$ Lowest T_z -value.

 $uppT_z$ Upper T_z -value.

NOTES:

See also:

- CREATE WAVE-STATISTICS
- CREATE WAVE-SPREADING-FUNCTION
- PRINT WAVE-SPREADING-FUNCTION
- ASSIGN MODEL-FACTOR WAVE-SPREADING

EXAMPLES:

ASSIGN WAVE-SPREADING-FUNCTION SCATTERA SPREDA ALL

5-58 01-OCT-2004 Program version 2.2-03

ASSIGN WAVE-STATISTICS

	WAVE-STATISTICS	wave-dir	stat-name
--	-----------------	----------	-----------

PURPOSE:

To assign a wave statistics (scatter diagram) to a wave direction.

PARAMETERS:

wave-dir Wave direction.

stat-name Name of wave statistics (scatter diagram) to be associated with the wave direction

wave-dir.

NOTES:

See also:

• CREATE WAVE-STATISTICS

EXAMPLES:

ASSIGN WAVE-STATISTICS 0 SCATTERA

ASSIGN WELD-EFFECT

		NONE			
		PD6493	A	ttLen, Me	mStr
 WELD-EFFECT	fatigpnt/inspect	KJOINT-FIT			
	GENERAL-DATA	{	d,Mgf	}*	
		NORMALISED-DATA	{	dt,Mgf	}*

PURPOSE:

To assign a weld effect to a fatigue point or an inspection with a repair assigned, thus multiplying a stress intensity factor to the geometry function.

PARAMETERS:

fatignt/inspect The name of a fatigue point or an inspection with a repair assigned. This is refer
--

to as NAME in the naming of stochastic parameters below.

NONE No weld effect is applied to this fatigue point.

PD6493 Use the weld effect specified in the British code PD6493.

AttLen Length of attachment at weld. Uncertainty can be assigned to the parameter

NAME-AtLen.

MemStr Membrane-stress ratio. Note that this may also need to be specified when not al-

ready specified with ASSIGN GEOMETRY-FUNCTON. Uncertainty can be as-

signed to the parameter NAME-MSRatio.

KJOINT-FIT Use the following stress intensity factor, derived from finite element analysis: 1.0

+1.24*Exp(-22.1*(d/t)) + 3.17*Exp(-357*(d/t)) where d is the crack depth and t is

the thickness.

GENERAL-DATA The stress intensity factor is specified through a set of data points. This option may

not be implemented.

d,Mgf* A number of values of depths d and weld magnification factors Mgf, specifying the

user defined stress intensity function. A simple spline will be fitted to the function.

NORMALISED-DATA The stress intensity factor is specified through a set of normalised data points.

dt,Mgf* A number of values of normalised depths dt (from 0 to 1) and weld magnification

factors Mgf, specifying the user defined stress intensity function. A simple spline

will be fitted to the function.

5-60 01-OCT-2004 Program version 2.2-03

NOTES:

- 1 A weld effect cannot be applied to the PLATE-CENTER and PLATE-EDGE crack types.
- 2 To change the uncertainty of a parameter, use the command ASSIGN UNCERTAINTY VALUE.
- 3 If the model is assigned to an inspection, all stochastic parameters can be specified as "Unchanged" (this input is case insensitive, but cannot be abbreviated). In this case the value from the previous inspection (or the fatigue point if no previous inspection exist) is used unchanged.
- 4 The weld effect assignment can be displayed and printed by use of the commands DISPLAY WELD-EFFECT and PRINT FATIGUE-POINT.

See also:

- ASSIGN CRACK-GROWTH-MODEL
- ASSIGN GEOMETRY-FUNCTION
- DISPLAY WELD-EFFECT
- PRINT FATIGUE-POINT

EXAMPLES:

ASSIGN WELD-EFFECT FATIGUE-POINT C3501 NONE
ASSIGN WELD-EFFECT FATIGUE-POINT C3501 NORMALISED-DATA (0.0 1.0 0.3 2.5 0.6 3.4 1.0 2.5)

Program version 2.2-03 01-OCT-2004 5-61

CHANGE

	EVENT	•••
CHANGE	FUNCTION	•••
	SN-CURVE	
CHANGL	TRANSFER-FUNCTION	
	VARIABLE	
	WAVE-SPREADING-FUNCTION	

PURPOSE:

Change a named object.

PARAMETERS:

EVENT Change an event.

FUNCTION Change a function.

SN-CURVE Change an SN curve.

TRANSFER-FUNCTION Change a transfer function.

VARIABLE Change a random variable.

WAVE-SPREADING-FUNCTION Change a wave spreading function.

NOTES:

None.

5-62 01-OCT-2004 Program version 2.2-03

CHANGE EVENT

				CONDITIONED	event	condition	n
	EVENT	name	desc	INTERSECTION	subevent+		
•••	LVLIVI	name	uese	SINGLE	1d-variable	<, =, >	threshold
				UNION	subevent+		

PURPOSE:

To change an event

PARAMETERS:

name Name of the event to be changed.

desc Descriptive text for the event.

CONDITIONED The event is a conditioned event.

event The name of the event that is being conditioned.

condition The name of the event that is forming the condition.

INTERSECTION The event is an intersection of other events, i.e. it is fulfilled only when all subev-

ents are fulfilled.

UNION The event is a union of other events, i.e. it is fulfilled when at least one subevent is

fulfilled.

subevent+ A selection of events forming either an intersection of union. These cannot be con-

ditioned events.

SINGLE The event is a simple (in)equality.

1d-variable The name of the one dimensional variable that is forming the left hand side if the

(in)equality.

(IN)EQ The type of (in)equality. One of: <, =, >

threshold The numerical right hand side of the single event.

NOTES:

- 1 When the event name is selected, the existing state of the event is presented as defaults (unless the type of the event is changed).
- 2 The events that are created by this program should not be changed by the user.

Program version 2.2-03 01-OCT-2004 5-63

See also:

- CREATE EVENT
- COPY EVENT
- RENAME EVENT
- DISPLAY EVENT
- PRINT EVENT
- ASSIGN STARTING-POINT
- ASSIGN MEASURED-VALUE

EXAMPLES:

```
CHANGE EVENT Loss: NPV 0
CHANGE EVENT No1-Crack2: INTERSECTION (ONLY NoCrack-1 Crack2)
CHANGE EVENT Fail-Cond 'Failure given nofind, then find' CONDITIONED Failure No1-Crack2
```

5-64 01-OCT-2004 Program version 2.2-03

CHANGE FUNCTION

			FORMULA	
 FUNCTION	name	desc	INTEGRAL	
			RESPONSESURFACE	

PURPOSE:

To change a function.

PARAMETERS:

name Name of the function. Cannot be changed.

desc Descriptive text associated with the function formula.

FORMULA Change a function formula.

INTEGRAL Change an integration function.

 $RESPONSESURFACE \quad Change \ a \ response \ surface \ function.$

NOTES:

None.

Program version 2.2-03

01-OCT-2004

5-65

CHANGE FUNCTION ... FORMULA

	FORMULA	{	arguments	adesc	}*	formula-text
--	---------	---	-----------	-------	-----------	--------------

PURPOSE:

Change a function formula.

PARAMETERS:

argument Name of a formula argument At least one argument must be defined.

adesc Description of argument.

formula-text Formula text lines.

NOTES:

Formula syntax is described in command CREATE FUNCTION FORMULA.

See also:

- CREATE FUNCTION ... FORMULA
- DELETE FUNCTION ... FORMULA
- DISPLAY FUCTION
- PRINT FUNCTION
- RENAME FUNCTION

EXAMPLES:

```
CHANGE FUNCTION FORMULA SYMFOR1 'Symbolic Formula' ( ONLY A 'Arg 1' B 'Arg 2' ) '(A+B) **2' CHANGE FUNCTION FORMULA SYMFOR2 'Symbolic Formula' ( 'A+FUNOPT ( OPT_NAM_1 = ''Quot''''-1'', OPT_NAM_2=file.name, OPT_NAM_3=MENU_ENTRY, OPT_NAM_4 = 3, OPT_NAM_5 = 0.5E-3, B*3-A)')
```

5-66 01-OCT-2004 Program version 2.2-03

CHANGE FUNCTION ... INTEGRAL

 INTEGRA	AL	~	argna	me	argdesc	*	funct	ion	{	value integrator	*	
 method	lowe	erbo	und	uppe	erbound	tolera	nce					

PURPOSE:

To change an integration function.

PARAMETERS:

argname, argdesc Matrix of argument names and corresponding argument descriptions. At least one

argument must be defined.

function Name of function to be integrated (integrand).

value Value can be a numerical value or an argument name, "argname".

integrator Text value: integrator. Case insensitive. The text value "integrator" is inserted in

order to identify the single integration variable.

method Integration method to be used. One of: ROMBERG, SIMPSON or TRAPEZOI-

DAL.

lowerbound Lower bound for integrator. Must be a numerical value or an argument name, "ar-

gname".

upperbound Upper bound for integrator. Must be a numerical value or an argument name, "ar-

gname".

tolerance Relative precision in result of integration.

NOTES:

- 1 An argument name consists of maximum 12 alphanumeric characters and _. The first character must be alphabetic.
- 2 An argument description consists of maximum 50 characters.
- 3 The text value "integrator" may be an attribute of more than one function parameter.

See also:

- CREATE FUNCTION ... INTEGRAL
- DISPLAY FUNCTION

Program version 2.2-03 01-OCT-2004 5-67

- PRINT FUNCTION
- RENAME FUNCTION

EXAMPLES:

Change integration of c+x from x=a to x=b to c+c+a+b+x+x from x=a to x=b

CHANGE FUNCTION cplusx 'Integrate c+c+a+b+x+x from x=a to x=b' INTEGRAL (ONLY a 'x_lower' b 'x_upper' c 'additive parameter') Sum (ONLY c c a b Integrator Integrator) Romberg a b 0.000001

5-68 01-OCT-2004 Program version 2.2-03

CHANGE FUNCTION ... RESPONSESURFACE

 RES	SPONSESURFACE	{	argname	argdesc	}*	function	
 {	point,argname,meth	od,iı	ncrement }	*			

PURPOSE:

To change a response surface function.

PARAMETERS:

argname, argdesc Matrix of argument names and corresponding argument descriptions. At least one

argument must be defined.

function Name of function to be approximated.

point Centre of approximations

argname Argument name. This approximated function argument becomes the argument ar-

gname of the approximation.

method Function fit method to be used.

L or L1: Linear approximation based on positive incrementation.

L2 : Linear approximation based on two way incrementation.

D : Quadratic (diagonal) approximation. No cross derivatives with other argu-

ments.

QName :Q followed by name. Quadratic approximation including cross terms for

arguments that have the same group Name. Q alone is treated as a group.

increment Increment to be used with the fit.

NOTES:

- 1 An argument name consists of maximum 12 alphanumeric characters and _. The first character must be alphabetic.
- 2 An argument description consists of maximum 50 characters.
- 3 Point, argname, method and increment are comma separated.

See also:

- CREATE FUNCTION ... RESPONSESURFACE
- DISPLAY FUNCTION

Program version 2.2-03 01-OCT-2004 5-69

- PRINT FUNCTION
- PRINT RESPONSESURFACE
- RENAME FUNCTION

EXAMPLES:

Change a quadratic response surface function to appfunc centred around (1,2,3), with increment 1 for the second argument of appfunc and increment 2 for the third argument of appfunc including cross terms. The response function has two arguments, while the approximated function has three arguments:

```
CHANGE FUNCTION rspfu 'Response surface' RESPONSESURFACE ( ONLY a 'x_arg1' b 'x arg2' ) appfunc 1 2,a,QGroup,1 3,b,QGroup,2
```

Change linear response surface function to appfune centred around (1,2,3), with increment 1 for each argument, the second argument of appfune and increment 2 for the third argument of appfune including cross terms:

```
CHANGE FUNCTION rspfu 'Response surface' RESPONSESURFACE (ONLY a 'x_arg1' b 'x arg2' c 'x arg3' ) appfunc 1,c,L,1 2,b,L1,1 3,a,L2,1
```

5-70 01-OCT-2004 Program version 2.2-03

CHANGE SN-CURVE

			USER	data
	SN-CURVE	name	LOGA	data
•••			STOCHASTIC	data
			UNCERTAINTY	std(logk0)

PURPOSE:

Change the properties of an SN curve.

PARAMETERS:

sn-name Name of SN-curve to be changed.

USER The SN curve is specified using the stress level S.

LOGA The SN curve is specified defined using the value of loga (sometimes named logk),

usually incorporating a safety factor.

STOCHASTIC The SN curve is specified with parameters that can be stochastic.

data See CREATE SN-CURVE.

UNCERTAINTY Change the uncertainty of log10(k0).

std(logk0) The standard deviation of $log_{10}(k0)$.

NOTES:

See also:

- ASSIGN SN-CURVE
- CREATE SN-CURVE
- DISPLAY SN-CURVE
- PRINT SN-CURVE

EXAMPLES:

CHANGE SN-CURVE DNVX USER 'Veritas X-curve' 4.1 34 8.29 HORISONTAL TAIL CHANGE SN-CURVE DNVX UNCERTAINTY 0.4

Program version 2.2-03

01-OCT-2004

5-71

CHANGE TRANSFER-FUNCTION

	TRANSFER-FUNCTION	name	desc	dir	freq, real, imag*
--	-------------------	------	------	-----	-------------------

PURPOSE:

Change a transfer function.

PARAMETERS:

name Name of transfer function to be changed.

desc A descriptive text for the transfer function.

dir Wave direction in degrees.

freq, real, imag* Transfer function data in sets of (frequency, real part, imaginary part).

NOTES:

See also:

- ASSIGN TRANSFER-FUNCTION
- CREATE TRANSFER-FUNCTION
- DISPLAY TRANSFER-FUNCTION
- PRINT TRANSFER-FUNCTION

EXAMPLES:

CHANGE TRANSFER-FUNCTION TRF33 'Descriptive text' 45 (ONLY 0.503 18.14 31.62 1.257 14.93 14.08 2.094 20.54 27.81 3.142 -8.02 37.97)

5-72 01-OCT-2004 Program version 2.2-03

CHANGE VARIABLE

	VARIABLE	name	disc	DISTRIBUTION		
				FITTED-DISTRIBUTION		
				FIXED	value	
				FUNCTION		
				GENERATED	1dvar	
				IDENTITY	variable	

PURPOSE:

To change a variable.

PARAMETERS:

name Name of the variable to be changed.

disc Descriptive text for the variable.

DISTRIBUTION The variable is assigned a distribution. See a following page for

details.

FITTED-DISTRIBUTION The variable is assigned a distribution that is fitted to input da-

ta. See a following page for details.

FIXED The variable has a fixed value.

value The numerical value of a fixed variable.

FUNCTION The variable is assigned a model function. See a following page

for details.

GENERATED The distribution of the variable is generated from the distribu-

tion of another variable.

1dvar The variable specifying a generated distribution. This is a one-

dimensional variable or a coordinate in a multidimensional var-

iable.

IDENTITY The variable is identical to another variable.

variable The name of an existing variable.

NOTES:

1 When the variable name is selected, the existing state of the variable is presented as defaults (unless the type of the variable is changed).

- 2 Some of the variables in a generated distribution may be shared between the generated variable and the generating variable by using the ASSIGN CONDITIONING command.
- 3 A generated distribution may be assigned an extreme type distribution by using the ASSIGN EXTREME-VALUE command.

See also:

- CREATE VARIABLE
- COPY VARIABLE
- RENAME VARIABLE
- PRINT VARIABLE
- ASSIGN CONDITIONING
- ASSIGN EXTREME-VALUE

EXAMPLES:

CHANGE VARIABLE Width : FIXED 22.5

CHANGE VARIABLE Amplitude : GENERATED Var44

5-74 01-OCT-2004 Program version 2.2-03

CHANGE VARIABLE ... DISTRIBUTION

	DISTRIBUTION	distribution	[dim]	input-seq	parameters	
		SPLINE-1DIM	•••			

PURPOSE:

To change a variable to be based on a distribution, or to change a distribution already assigned.

PARAMETERS:

distribution The name of the distribution (excepting the spline distribution).

[dim] The dimension of the distribution, if this is not fixed.

input-seq The sequence of parameters used to define the distributions.

parameters The parameter value(s) for the chosen input sequence. Each parameter value may

be either a numerical value or the name of an existing one-dimensional variable.

Please note that the name of a variable cannot be abbreviated here.

SPLINE-1DIM The variable is assigned a distribution, fitted to input data. See a following page for

details.

NOTES:

1 The existing values are presented as defaults whenever this is possible.

- 2 The variable may be assigned an extreme type distribution by using the ASSIGN EXTREME-VALUE command.
- 3 The distribution function and density values may be printed by use of the PRINT DISTRIBUTION com-
- 4 The moments of the distribution are calculated and printed (if possible) by use of the PRINT VARIA-BLE command.
- 5 The distributions are described in SESAM User's Manual: Proban Distribution.

See also:

- CREATE VARIABLE
- DISPLAY DISTRIBUTION
- PRINT VARIABLE
- PRINT DISTRIBUTION

Program version 2.2-03 01-OCT-2004 5-75

• ASSIGN EXTREME-VALUE

EXAMPLES:

CHANGE VARIABLE X ' ' DISTRIBUTION Normal Mean-CoV 22 0.2 CHANGE VARIABLE Y ' ' DISTRIBUTION Normal Mean-Std X 3.1

5-76 01-OCT-2004 Program version 2.2-03

CHANGE VARIABLE ... DISTRIBUTION SPLINE-1DIM

	SPLINE-1DIM		lower	upper _	UNWEIGHTED	{	fractile	probability	}*			
					WEIGHTED	{	fractile	probability	weight	}*	•••	
	HIGH			EQUA	IL							
	MEDIUM		FREE	FREE								
	LOW			VANIS	SH							
			UNIM	ODAL								

PURPOSE:

To change a variable to have a fitted distribution based on splines, or to change a spline distribution already assigned.

PARAMETERS:

lower The lower bound of the distribution.

upper The upper bound of the distribution.

UNWEIGHTED Do not apply user defined weights to the spline fit.

WEIGHTED Apply user defined weights to the input points in the spline fit.

fractile, probability The fractiles and probability values to which the distribution

function is fitted. All probabilities must be greater than 0 and

smaller than 1.

fractile, probability, weighted The fractiles and probability values to which the distribution

function is fitted with corresponding weights. All probabilities

must be greater than 0 and smaller than 1.

HIGH Use high accuracy when fitting the spline distribution to the da-

ta. In some cases it may be difficult to get convergence when

high accuracy is used.

MEDIUM Use medium accuracy when fitting the spline distribution to the

data.

LOW Use low accuracy when fitting the spline distribution to the da-

ta.

FREE The fitted distribution need not be unimodal.

UNIMODAL The fitted distribution must be unimodal.

EQUAL The tail values of a FREE fit must be identical.

Program version 2.2-03 01-OCT-2004

FREE No restriction on the tail values of a FREE fit, except that they

are non-negative.

VANISH Both tail values of a FREE fit must be zero.

NOTES:

1 The existing values are presented as defaults whenever this is possible. If changing from UNWEIGHTED to WEIGHTED, the existing fractiles and probabilities are kept as defaults, and the weights are all set to 1.

- 2 If the spline will not fit, try relaxing the demands on accuracy or check if any of the points have been specified wrongly.
- 3 The variable may be assigned an extreme type distribution by using the ASSIGN EXTREME-VALUE command.
- The distribution function and density values may be printed by use of the PRINT DISTRIBUTION com-
- The moments of the distribution are calculated and printed (if possible) by use of the PRINT VARIA-BLE command.
- 6 The distribution itself may be displayed using DISPLAY DISTRIBUTION. The accuracy of the fit may be examined using DISPLAY FITTED-DISTRIBUTION.

See also:

- CREATE VARIABLE
- DISPLAY DISTRIBUTION
- **DISPLAY FITTED-DISTRIBUTION**
- PRINT VARIABLE
- PRINT DISTRIBUTION
- ASSIGN EXTREME-VALUE

EXAMPLES:

CHANGE VARIABLE X ' ' DISTRIBUTION Spline-1Dim 0 10 UNWEIGHTED (ONLY 1.0 0.5 3.0 0.25 5.0 0.5 7.0 0.7 8.0 0.9 9.0 0.95) HIGH UNIMODAL

5-78 01-OCT-2004 Program version 2.2-03

CHANGE VARIABLE ... FITTED-DISTRIBUTION

 FITTED-DISTRIBU	JTION	distributio	n	input-seq	parameter*		
CUMULATIVE		WEIGHTED		Fractile	Probability	Weight	}*
COMOLATIVE	UNWEIGHTED			Fractile	Probability	}*	
 OBSERVATIONS	WEIGHTED			Observation	Weight	}*	
OBSERVATIONS	UNWE	EIGHTED		Observation	*		
RESULT	result r	name			•		

PURPOSE:

To change a variable to be fitted to a distribution, or to change a fitted distribution already assigned.

PARAMETERS:

distribution The name of the distribution (excepting the spline distribution

and multidimensional distributions).

input-seq The sequence of parameters used to define the distributions.

parameter* The parameter specification for the chosen input sequence.

Each parameter value may be either specified as a numerical value (in which case it is not fitted), as: FIT, in which case it is fitted, or as: FIT<value>, where <value> is a numerical value used as starting point for an iterative fit. A lower bound on the fitted value is specified by L<value>. An upper bound on the

fitted value is specified by U<value>.

CUMULATIVE Fit to cumulative input data.

WEIGHTED The input data are weighted. The weights must be positive.

UNWEIGHTED The input data are not weighted.

Fractile, Probability, Weight Successive values of fractiles, cumulative probabilities and

weights. The probabilities must be in the interval]0,1[. The input data will be sorted in order of increasing probability.

Fractile, Probability Successive values of fractiles and cumulative probabilities. The

probabilities must be in the interval]0,1[. The input data will

be sorted in order of increasing probability.

OBSERVATIONS The input data are observed values of the variable.

Observation, Weight Successive values of observations and weights. The input data

will be sorted in order of increasing observation values.

in the state of th		
Program version 2.2-03	01-OCT-2004	5-79

Observation Observed values of the random variable to which a distribution

is fitted. The input data will be sorted in order of increasing ob-

servation values.

RESULT Fit the distribution to the results of a probability or distribution

analysis. Simulation results will be fitted and stored as OB-SERVATIONS, after being grouped into weighted interval data if many samples exist. Mean value based FORM results will be fitted and stored as CUMULATIVE data with equal weights on all points. Probability results from a parameter study will be fitted (if possible) and stored as CUMULATIVE data with equal weights on all points. In the case of a parameter study of a distribution analysis, the result for the first parameter value is

used.

result name

The name of the result for which the distribution is to be fitted.

NOTES:

1 The existing values are presented as defaults whenever this is possible.

- 2 The RESULT option can be useful for substituting a variable requiring lengthy computation time with a fitted distribution.
- 3 The variable may be assigned an extreme type distribution by using the ASSIGN EXTREME-VALUE command.
- 4 The distribution function and density values may be printed by use of the PRINT DISTRIBUTION command.
- 5 The moments of the distribution are calculated and printed (if possible) by use of the PRINT VARIA-BLE command.
- 6 The distribution itself may be displayed using DISPLAY DISTRIBUTION. The accuracy of the fit may be examined using DISPLAY FITTED-DISTRIBUTION.
- 7 The distributions are described in SESAM User's Manual: Proban Distributions.

See also:

- CREATE VARIABLE
- DISPLAY DISTRIBUTION
- DISPLAY FITTED-DISTRIBUTION
- PRINT VARIABLE
- PRINT DISTRIBUTION
- ASSIGN EXTREME-VALUE

5-80 01-OCT-2004 Program version 2.2-03

EXAMPLES:

CHANGE VARIABLE X $^{\prime}$ $^{\prime}$ FITTED-DISTRIBUTION Normal Mean-CoV FIT FIT OBS UNW (ONLY 1.34 2.56 8.65 4.32 4.67 6.66 5.23 3.25)

CHANGE VARIABLE Y ' ' FITTED-DISTRIBUTION Normal Mean-Std FIT15 FIT CUMULATIVE WEIGHTED (ONLY 12 0.1 1 15 0.3 2 17 0.7 1 20 0.9 1)

CREATE VARIABLE RES ' ' FITTED-DISTRIBUTION Lognormal Mean-Std-L FIT FIT 0 RESULT LastAnalysis

Program version 2.2-03

01-OCT-2004

5-8

CHANGE VARIABLE ... FUNCTION

	FUNCTION	function	[dim]	arguments
--	----------	----------	-------	-----------

PURPOSE:

To change a variable to be based on a model function, or to change a function already assigned.

PARAMETERS:

function The name of the function. The functions can be listed by use of the commands

PRINT FUNCTION LIBRARY and PRINT FUNCTION DESCRIPTION.

[dim] The dimension of the function, if this is not fixed.

arguments The argument value(s) for the chosen function. Each argument value may be either

a numerical value or the name of an existing one-dimensional variable. Please note

that the name of a variable cannot be abbreviated here.

NOTES:

1 The existing values are presented as defaults whenever this is possible.

- 2 The variables that are created by this program should not be changed by the user.
- 3 The selection of functions presented is determined by the current selection of sub-libraries (see SELECT FUNCTION-LIBRARY). This is because some libraries may contain a large number of functions and/or not be relevant to the current problem.

See also:

- CREATE VARIABLE
- PRINT VARIABLE
- PRINT FUNCTION
- SELECT FUNCTION-LIBRARY

EXAMPLES:

```
CHANGE VARIABLE Total-Durati : FUNCTION Sum ( EXCLUDE Path-1 ) CHANGE VARIABLE Diff1 ' ' FUNCTION Difference Resist5 Load4
```

5-82 01-OCT-2004 Program version 2.2-03

CHANGE WAVE-SPREADING-FUNCTION

WAVE-SPREADING-FUNCTION	name	desc	COSINE-POWER	p	power		
 WIVE STREADING TENETION	name	dese	USER-DEFINED	{	wave-dir, weight	} *	

PURPOSE:

To modify a wave spreading function.

PARAMETERS:

name Name of wave spreading function.

desc Text associated with the spreading function.

COSINE-POWER The spreading function is represented by a cosine function.

power Power of the cosine function.

USER-DEFINED The spreading function is defined by data points.

wave-dir, weight* A set of points defining the spreading function:

- Wave direction, relative to the main wave direction.

- Weight associated with wave direction.

NOTES:

The sum of weights must be 1.0.

See also:

- ASSIGN WAVE-SPREADING-FUNCTION
- CREATE WAVE-SPREADING-FUNCTION
- DISPLAY WAVE-SPREADING-FUNCTION
- PRINT WAVE-SPREADING-FUNCTION
- · ASSIGN MODEL-FACTOR WAVE-SPREADING

EXAMPLES:

CHANGE WAVE-SPREADING-FUNCTION COS2 'Analytical cos**2' COSINE 2

Program version 2.2-03

01-OCT-2004

COPY

PURPOSE:

Copy a named object to another.

PARAMETERS:

EVENT Copy an event.

VARIABLE Copy a random variable.

NOTES:

None.

5-83

5-84 01-OCT-2004 Program version 2.2-03

COPY EVENT

	EVENT	from	to
--	-------	------	----

PURPOSE:

To copy one event to another.

PARAMETERS:

from The name of the event to be copied.

to The name of the new event. This cannot be the name of an existing event.

NOTES:

Only the basic contents of the event (i.e. those defined in CREATE) are copied. Assignments are not copied.

See also:

- CHANGE EVENT
- CREATE EVENT
- DELETE EVENT
- RENAME EVENT
- PRINT EVENT
- DISPLAY EVENT
- ASSIGN MEASURED-VALUE
- ASSIGN STARTING-POINT

EXAMPLES:

COPY EVENT Moment-1 Moment-2

Program version 2.2-03

01-OCT-2004

5-85

COPY VARIABLE

	VARIABLE	from	to
--	----------	------	----

PURPOSE:

To copy one variable to another.

PARAMETERS:

from The name of the variable to be copied.

to The name of the new variable. This cannot be the name of an existing variable.

NOTES:

Only the basic contents of the event (i.e. those defined in CREATE) are copied. Assignments are not copied.

See also:

- CHANGE VARIABLE
- CREATE VARIABLE
- DELETE VARIABLE
- RENAME VARIABLE
- PRINT VARIABLE
- DISPLAY VARIABLE
- ASSIGN CONDITIONING
- ASSIGN CORRELATION
- ASSIGN EXTREME-VALUE
- ASSIGN FUNCTION-OPTION
- ASSIGN OPTIMISATION-BOUNDS
- ASSIGN SENSITIVITY-CALCULATION
- ASSIGN STARTING-POINT

EXAMPLES:

COPY VARIABLE Width1 Width2

5-86 01-OCT-2004 Program version 2.2-03

CREATE

	EVENT					
	FATIGUE-POINT	•••				
	FUNCTION					
	INSPECTION					
CREATE	SN-CURVE					
	TRANSFER-FUNCTION					
	VARIABLE					
	WAVE-SPREADING-FUNCTION					
	WAVE-STATISTICS					

PURPOSE:

Create a named object.

PARAMETERS:

EVENT Create an event.

FATIGUE-POINT Create a fatigue point.

FUNCTION Create a function.

INSPECTION Create an inspection of a fatigue point.

SN-CURVE Create an SN curve.

TRANSFER-FUNCTION Create a transfer function.

VARIABLE Create a random variable.

WAVE-SPREADING-FUNCTION Create a wave spreading function.

WAVE-STATISTICS Create a wave statistics formulation.

NOTES:

None.

Program version 2.2-03 01-OCT-2004

CREATE EVENT

	EVENT r		desc	CONDITIONED	event	condition		
		name		INTERSECTION	subevent+			
		name	dese	SINGLE	1d-variable	<, =, >	threshold	
				UNION	subevent+			

PURPOSE:

To create an event.

PARAMETERS:

name Name of the event. This cannot be the name of an existing event. Event names are

matched case insensitively and can not be longer than 12 characters.

desc Descriptive text for the event. It can be up to 50 characters long.

CONDITIONED The event is a conditioned event.

event The name of the event that is being conditioned.

condition The name of the event that is forming the condition.

INTERSECTION The event is an intersection of other events, i.e. it is fulfilled only when all subev-

ents are fulfilled.

UNION The event is a union of other events, i.e. it is fulfilled when at least one subevent is

fulfilled.

subevent+ A selection of events forming either an intersection of union. These cannot be con-

ditioned events.

SINGLE The event is a simple (in)equality.

1d-variable The name of the one dimensional variable that is forming the left hand side if the

(in)equality.

<, =, > One of: < less than, = equal, > greater than

threshold The numerical right hand side of the single event.

NOTES:

See also:

CHANGE EVENT

5-88 01-OCT-2004 Program version 2.2-03

- COPY EVENT
- RENAME EVENT
- DELETE EVENT
- DISPLAY EVENT
- PRINT EVENT
- ASSIGN STARTING-POINT
- ASSIGN MEASURED-VALUE

EXAMPLES:

CREATE EVENT Loss 'Negative net present value' NPV 0
CREATE EVENT No1-Crack2 'Both inspections' INTERSECTION (ONLY NoCrack-1 Crack2)
CREATE EVENT Fail-Cond 'Failure given nofind, then find' CONDITIONED Failure No1-Crack2

CREATE FATIGUE-POINT

	FATIGUE-POINT		desc	JOINT	Joint, Brace	CHORD	Hotspot		
				JOHVI	Joint, Drace	BRACE	Tiotspot		
		name		MEMBER	Member, Position, Hotspot				
				PLATE	Width, Thickness				
				TUBE	OutDia, Thickness				

PURPOSE:

To create a fatigue point.

PARAMETERS:

name Name of the fatigue point. This name must be unique among fatigue points and no

longer than 8 characters. Names are matched case insensitively. This is referred to

as NAME in the naming of stochastic parameters below.

desc Descriptive text associated with the fatigue point.

JOINT The point is positioned in a chord/brace connection in a joint, as defined in a

Framework database.

Joint The name of the joint where the point is located.

Brace The name of a brace connecting to the joint.

CHORD The point is sitting in the chord.

BRACE The point is sitting in the brace.

Hotspot Hotspot number.

MEMBER The point is positioned on a member, as defined in a Framework database.

Member The name of the member where the point is located.

Position Fatigue check position on the member, as defined in a Framework database.

PLATE The point is positioned in a plate geometry. In this case the user must supply all rel-

evant data, i.e. the program does not associate it with any specific structure.

Width The width of the plate. Uncertainty can be assigned to the parameter NAME-

Width.

Thickness of the plate, or the wall thickness of the tube. Uncertainty can be as-

signed to the parameter NAME-Thick.

5-90 01-OCT-2004 Program version 2.2-03

OutDia Outer diameter of the tube. An equivalent width is calculated as 3.14*OutDia, for

use with plate geometry functions. Uncertainty can be assigned to the parameter

NAME-ODiam.

TUBE The point is positioned in a tube geometry. In this case the user must supply all rel-

evant data, i.e. the program does not associate it with any specific structure.

NOTES:

The JOINT and MEMBER options require access to a Framework database.

See also:

- ASSIGN TARGET-RELIABILITY
- ASSIGN INSPECTION-QUALITY
- ASSIGN STRESS-RANGE
- ASSIGN SN-CURVE
- ASSIGN MINER-SUM-CRITICAL
- ASSIGN CRACK-GROWTH-MODEL
- ASSIGN GEOMETRY-FUNCTION
- ASSIGN WELD-EFFECT
- CREATE INSPECTION
- PRINT FATIGUE-POINT

EXAMPLES:

CREATE FATIGUE-POINT I4567-3 'Hotspot 12 in joint 4567' PLATE 1000 10 CREATE FATIGUE-POINT C3501 'Chord 3501, critical hotspot' JOINT 3501 1900 CHORD 3

Program version 2.2-03 01-OCT-2004 5-91

CREATE FUNCTION

			FORMULA	•••
 FUNCTION	name	desc	INTEGRAL	
			RESPONSESURFACE	

PURPOSE:

To create a function.

PARAMETERS:

name Name of the function. This name must be unique among functions and no longer

than 12 characters. Names are matched case insensitive.

desc Descriptive text associated with the function formula.

FORMULA Create a function formula.

INTEGRAL Create an integration function.

RESPONSESURFACE Create a response surface function.

NOTES:

None.

5-92 01-OCT-2004 Program version 2.2-03

CREATE FUNCTION ... FORMULA

	FORMULA	{	argname	argdesc	}*	formula-text
--	---------	---	---------	---------	-----------	--------------

PURPOSE:

To create a function formula.

PARAMETERS:

argname, argdesc A matrix of argument names and corresponding argument descriptions. At least

one argument must be defined.

formula-text Formula text lines.

NOTES:

1 An argument name consists of maximum 12 alphanumeric characters and _. The first character must be alphabetic.

2 An argument description consists of maximum 50 characters.

3 A formula is input through a number of lines that are concatenated. The order of calculation is according to the FORTRAN syntax. See the syntax below.

Unary operators: + plus sign, - minus sign

Binary operators: + addition, - subtraction, * multiplication, / division, ** exponentiation

Separator: , separates the elements of a function argument/option list

Delimiters: (left parenthesis,) right parenthesis. Delimits a function argument/option list and

a portion of a formula.

Operators... Association Precedence

FUNAM(,), () left to right 5

** right to left 4

Unary +, Unary - right to left 3

*,/ left to right 2

binary +, binary - left to right 1

Quotes:' delimits a character value. An apostrophe within a quoted text must be entered as "

in graphics mode and as "" in line mode/on journal file.

Blanks Blanks are deleted except within quoted texts.

Hyphen -: A hyphen - in the defined name for a function, function option or function option

menu entry, must be entered as . Names should be unique when - is replaced by .

Program version 2.2-03 01-OCT-2004 5-93

Case sensitivity:

The formula text is case insensitive, except within a quoted string (function option yelve)

value).

Function option: A function option is entered as OPTION_NAME=OPTION-VALUE.

See also:

CHANGE FUNCTION

- DISPLAY FUNCTION
- PRINT FUNCTION
- RENAME FUNCTION

EXAMPLES:

```
CREATE FUNCTION SYMFOR1 'Symbolic formula' FORMULA ( ONLY A 'Arg A' B 'Arg B' ) '(A+B)**2'
CREATE FUNCTION SYMFOR2 'Symbolic formula' FORMULA ( 'A+FUNOPT( OPT_NAM_1 =' 'Quot''''-1'', OPT_NAM_2 = file.name, OPT_NAM_3 = MENU_ENTRY, OPT_NAM_4 = 3, OPT_NAM_5 = 0.5E-3, B*3-A)')
```

5-94 01-OCT-2004 Program version 2.2-03

CREATE FUNCTION ... INTEGRAL

	INTEGR	AI.	\	argnai	me	argdesc) *	function	{	value) *		
INTEGRA		argnar	maine argu		,	raneti	011	·	integrator		•••		
	method	low	erbo	ound	upp	erbound	tolera	ance					

PURPOSE:

To create an integration function.

PARAMETERS:

argname, argdesc Matrix of argument names and corresponding argument descriptions. At least one

argument must be defined.

function Name of function to be integrated (integrand).

value Value can be a numerical value or an input argument name, "argname".

integrator Text value: integrator. Case insensitive. The text value "integrator" is inserted in

order to identify the single integration variable.

method Integration method to be used. One of: ROMBERG, SIMPSON or TRAPEZOI-

DAL.

lowerbound Lower bound for integrator. Must be a numerical value or an argument name, "ar-

gname".

upperbound Upper bound for integrator. Must be a numerical value or an argument name, "ar-

gname"

tolerance Relative precision in result of integration.

NOTES:

- 1 An argument name consists of maximum 12 alphanumeric characters and _. The first character must be alphabetic.
- 2 An argument description consists of maximum 50 characters.
- 3 The text value "integrator" may be an attribute of more than one function parameter.

See also:

- CHANGE FUNCTION ... INTEGRAL
- DISPLAY FUNCTION

Program version 2.2-03 01-OCT-2004 5-95

- PRINT FUNCTION
- RENAME FUNCTION

EXAMPLES:

Integrate c+x from x=a to x=b:

CREATE FUNCTION cplusx 'Integrate c+x from from a to b' INTEGRAL (ONLY a 'x_lower' b 'x_upper' c 'additive parameter') SUM (ONLY c Integrator) Romberg a b 0.000001

5-96 01-OCT-2004 Program version 2.2-03

CREATE FUNCTION ... RESPONSESURFACE

	RESPONSESURFACE		{	argname	argdesc	}*	function	
•••	{	point,argname,metho	od,ir	ncrement }	*			

PURPOSE:

To create a response surface function.

PARAMETERS:

argname, argdesc Matrix of argument names and corresponding argument descriptions. At least one

argument must be defined.

function Name of function to be approximated.

point Centre of approximations

argname Argument name. This approximated function argument becomes the argument ar-

gname of the approximation.

method Function fit method to be used.

L or L1: Linear approximation based on positive incrementation.

L2 : Linear approximation based on two way incrementation.

D : Quadratic (diagonal) approximation. No cross derivatives with other argu-

ments.

QName :Q followed by name. Quadratic approximation including cross terms for

arguments that have the same group Name. Q alone is treated as a group.

increment Increment to be used with the fit.

NOTES:

- 1 An argument name consists of maximum 12 alphanumeric characters and _. The first character must be alphabetic.
- 2 An argument description consists of maximum 50 characters.
- 3 Point, argname, method and increment are comma separated.

See also:

- CHANGE FUNCTION ... RESPONSESURFACE
- DISPLAY FUNCTION

Program version 2.2-03 01-OCT-2004 5-97

- PRINT FUNCTION
- PRINT RESPONSESURFACE
- RENAME FUNCTION

EXAMPLES:

Fit a quadratic response surface function to appfune centred around (1,2,3), with increment 1 for the second argument of appfune and increment 2 for the third argument of appfune including cross terms. The response function has two arguments, while the approximated function has three arguments:

```
CREATE FUNCTION rspfu 'Response surface' RESPONSESURFACE ( ONLY a 'x_arg1' b 'x arg2' ) appfunc 1 2,a,QGroup,1 3,b,QGroup,2
```

Fit linear response surface function to appfune centred around (1,2,3), with increment 1 for each argument. the second argument of appfune and increment 2 for the third argument of appfune including cross terms:

```
CREATE FUNCTION rspfu 'Response surface' RESPONSESURFACE ( ONLY a 'x_arg1' b 'x arg2' c 'x arg3' ) appfunc 1,c,L,1 2,b,L1,1 3,a,L2,1
```

Profast

5-98 01-OCT-2004 Program version 2.2-03

CREATE INSPECTION

	INSPECTION	name	desc	fatigpnt	time			
	NOT-OBSERVI	ED						
	NO-CRACK-FO	OUND	dpod					
		CD ACIV FOLDID				dpod		
•••	CRACK-FOUN				N	depth		
	CRACK-FOUN	EQUA	L-TO		depth			
		LESS-	ГНАМ	1	depth			
	NOT-OBSERV	ED						
	NO-CRACK-FO	OUND	lpod					
			UNKN	OWN		lpod		
•••	CBACK FOLIN	CRACK-FOUND		ΓER-THΑ	N :	length		
	CRACK-FOUN			L-TO		length		
		LESS-	ТНАП		length			

PURPOSE:

Create an inspection at an existing fatigue point.

PARAMETERS:

Name of the inspection. This name must be unique among fatigue points and inname

> spections and no longer than 8 characters. Names are matched case insensitively. This is referred to as NAME in the naming of stochastic parameters below.

desc Descriptive text associated with the inspection.

fatigpnt The name of the fatigue point at which the inspection was performed.

The time in years (decimal) at which the inspection is performed. time

NOT-OBSERVED The given crack direction was not observed.

NO-CRACK-FOUND No crack was found in the given direction, i.e. any crack present is less than the

detectable crack size.

CRACK-FOUND A crack was found in the given direction, either GREATER-THAN, EQUAL-TO

or LESS-THAN the specified size.

Program version 2.2-03	01-OCT-2004	5-99

lpod The smallest detectable crack length (defines the POD curve), referenced as the

name of a random variable. Note that this is the full crack length, even though the

geometry function is usually modelled in half crack lengths.

dpod The smallest detectable crack depth (defines the POD curve), referenced as the

name of a random variable.

length Measured crack length. Note that this is the full crack length, even though the ge-

ometry function is usually modelled in half crack lengths. Uncertainty can be as-

signed to the parameter NAME-Length.

depth Measured crack depth. Uncertainty can be assigned to the parameter NAME-

Depth.

NOTES:

1 Any repair is taken into account by subsequent use of the ASSIGN REPAIR command.

- 2 It is not possible to create two inspections at the same inspection time at the same point.
- 3 A number of POD curves are predefined. See chapter 2 for details.
- 4 The inspection assignments can be printed by use of the command PRINT INSPECTION.

See also:

- RUN CRACK-GROWTH-ANALYSIS
- ASSIGN REPAIR

EXAMPLES:

CREATE INSPECTION C3501-1 'First inspection' C3501 6 NOT-OBSERVED NO-CRACK PODL-MPI-UW

5-100 01-OCT-2004 Program version 2.2-03

CREATE SN-CURVE

		USER	text, m0, S0, logN0	
 SN-CURVE	name	LOGA	text, m0, loga0, logN0	•••
		STOCHASTIC	text, m0, logk0, sd(logk0), logN0	

	DEFAULT-TAIL			
	ALIGNED-WITH-FIRST			
	HORISONTAL-TAIL			
•••			ALIGNED-WITH-SECOND	
	ARBITRARY-TAIL	m1	HORISONTAL-TAIL	logN1
			ARBITRARY-TAIL	logN1, m2

PURPOSE:

Create a SN-curve with up to 3 segments.

PARAMETERS:

name SN-curve name. This name must be unique among SN curves

and no longer than 8 characters. Names are matched case insen-

sitively.

USER The SN curve is specified using the stress level S at the end of

the first segment.

LOGA The SN curve is specified using the value of loga (sometimes

named logk), usually incorporating a safety factor.

STOCHASTIC The SN curve is specified with parameters that can be stochas-

tic.

text Text associated with SN-curve.

m0 Inverse slope of first segment. When a STOCHASTIC curve is

assigned to a fatigue point or inspection with name NAME, un-

certainty can be assigned to the parameter NAME-m0.

Stress level at end first segment.

logN0 Log10 cycles to failure at end first segment. When a STO-

CHASTIC curve is assigned to a fatigue point or inspection with name NAME, uncertainty can be assigned to the parame-

ter NAME-INO.

Program version 2.2-03 01-OCT-2004 5-101

loga0 Log10 of parameter a at first segment $(N \cdot S^m = a)$. This value

usually incorporates a safety factor, i.e. it is related to logk0 as:

loga0 = logk0 - 2*stdv(logk0)

logk0 Log10 of parameter k at first segment $(N \cdot S^m = k)$. This value

usually does not incorporate a safety factor. The relation to

loga0 is described above.

sd(logk0) The standard deviation of log10(k0). In a deterministic analy-

sis, log10(a0) = log10(k0) - 2*stdv(log10(k0)) is used. In a probabilistic analysis, log10(k0) has a Normal distribution with

mean log(k0) and this standard deviation.

DEFAULT-TAIL Second segment continues with m1 = 2*m0 - 1.

ALIGNED-WITH-FIRST Second segment continues with m1 = m0.

HORISONTAL-TAIL Second segment is horizontal.

ARBITRARY-TAIL Second segment is arbitrary.

m1 Inverse slope of second segment. When a STOCHASTIC curve

is assigned to a fatigue point or inspection with name NAME, uncertainty can be assigned to the parameter NAME-m1.

ALIGNED-WITH-SECOND Third segment continues with m2 = m1.

HORISONTAL-TAIL Third segment is horizontal.

logN1 Log10 cycles to failure at end second segment. When a STO-

CHASTIC curve is assigned to a fatigue point or inspection with name NAME, uncertainty can be assigned to the parame-

ter NAME-IN1.

m2 Inverse slope of third segment. When a STOCHASTIC curve is

assigned to a fatigue point or inspection with name NAME, un-

certainty can be assigned to the parameter NAME-m2.

NOTES:

1 To change the uncertainty of a parameter, use the command ASSIGN UNCERTAINTY VALUE.

2 A number of SN curves are predefined in units N/m². These are listed in Chapter 2.

3 Any thickness correction must be assigned separately, using the command ASSIGN THICKNESS-COR-RECTION. 5-102 01-OCT-2004 Program version 2.2-03

4 The number of cycles to failure (N) for a given stress range (S) is computed according to the following formula (see also the figure below):

$$N \cdot S^m = k$$

$$\log N = \begin{cases} \log k_0 - (m_0 \cdot \log S) & \text{for} \quad (S > S_0) \\ \log k_1 - (m_1 \cdot \log S) & \text{for} \quad (S_1 < S < S_0) \\ \log k_2 - (m_2 \cdot \log S) & \text{for} \quad (S_2 < S_1) \end{cases}$$

5 Please remember to be consistent in the use of units. See also Section 2.5.1.

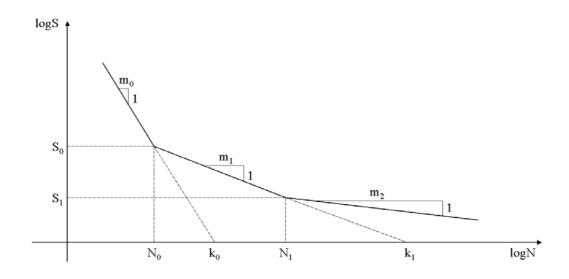


Figure 5.2 Definition of an SN-curve

See also:

- ASSIGN SN-CURVE
- CHANGE SN-CURVE
- DISPLAY SN-CURVE
- PRINT SN-CURVE

EXAMPLES:

These command will redefine the built-in DNV-X curve to units N/mm².

CREATE SN-CURVE DNVX USER 'Veritas X-curve' 4.1 34 8.301 HORISONTAL-TAIL

Program version 2.2-03 01-OCT-2004 5-103

CREATE SN-CURVE DNVX STOCHASTIC 'Veritas X-curve' 4.1 13.78 0.4 8.301 HORISONTAL TAIL

5-104 01-OCT-2004 Program version 2.2-03

CREATE TRANSFER-FUNCTION

	TRANSFER-	TRANSFER-FUNCTION 1				desc					
	GENERAL-COMBINATION					trf, fact	trf, fact				}*
	USER-SPECIFIED					depth, d	dir, freq, real, imag				} *
	RESULT					pereleme	nt				
		elem	FOR	FORCE			pos		COMP		
	ELEMENT		STRESS			gaus	S	COMP			
			STRAIN				gaus	S	COMP		
•••		node	DISP	DISPLACEMENT							
	NODE		VEL	OC:	ITY	-	CON	ЛP			
		ACC	ACCELERATION								

PURPOSE:

Create a transfer function,

PARAMETERS:

name Name of the transfer function. This name must be unique

among transfer functions and no longer than 8 characters. Names are matched case insensitively. This is referred to as

NAME in the naming of stochastic parameters below.

desc A descriptive text for the transfer function.

GENERAL-COMBINATION The transfer function is a linear combination of existing trans-

fer functions.

trf,fact* A set of transfer function names and corresponding coefficients

in the linear combination, i.e. $trf_{new} = \sum trf_i^* fact_i$

USER-SPECIFIED The transfer function is given as a set of data points.

depth Water depth.

dir,freq, real, imag* Transfer function data in sets of: (direction in degrees, frequen-

cy, real part, imaginary part).

RESULT Read the transfer function from a SESAM interface file

(opened by use of FILE OPEN).

Program version 2.2-03 01-OCT-2004 5-105

superelement The number of the superelement from which the function is

read.

ELEMENT elem The transfer function is a result on an element with the speci-

fied number.

FORCE The function is a force.

STRESS The function is a stress.

STRAIN The function is a strain.

pos Position on the element.

COMP Component.

gauss Gauss point.

NODE node

The transfer function is a result on a node with the specified

number.

DISPLACEMENT The function is a displacement.

VELOCITY The function is a velocity.

ACCELERATION The function is an acceleration.

NOTES:

See also:

- ASSIGN TRANSFER-FUNCTION
- CHANGE TRANSFER-FUNCTION
- DISPLAY TRANSFER-FUNCTION
- PRINT TRANSFER-FUNCTION
- FILE OPEN

EXAMPLES:

CREATE TRANSFER-FUNCTION T1123-31 'Element 1123, Pos 3, Axial force' RESULT 1 ELEMENT 1123 FORCE 3 1 $^{\circ}$

CREATE TRANSFER-FUNCTION TRF1-3 GENERAL-COMBINATION TRF1 3.0

CREATE TRANSFER-FUNCTION TRF12 GENERAL-COMBINATION (ONLY TRF1 0.5 TRF2 0.5)

5-106 01-OCT-2004 Program version 2.2-03

CREATE VARIABLE

	VARIABLE name desc		DISTRIBUTION	•••	
			FITTED-DISTRIBUTION		
		desc	FIXED	value	
•••	VARIABLE	пате	uese	FUNCTION	
				GENERATED	1dvar
				IDENTITY	variable

PURPOSE:

To create a variable.

PARAMETERS:

name Name of the variable to be created. This cannot be the name of

an existing variable. Variable names are matched case insensi-

tively and can be up to 12 characters long.

desc Descriptive text for the variable. It can be up to 50 characters

long.

DISTRIBUTION The variable is assigned a distribution. See a following page for

details.

FITTED-DISTRIBUTION The variable is assigned a distribution that is fitted to input da-

ta. See a following page for details.

FIXED The variable has a fixed value.

value The numerical value of a fixed variable.

FUNCTION The variable is assigned a model function. See a following page

for details.

GENERATED The distribution of the variable is generated from the distribu-

tion of another variable.

1dvar The variable specifying a generated distribution. This is a one-

dimensional variable or a coordinate in a multidimensional var-

iable.

IDENTITY The variable is identical to another variable.

variable The name of an existing variable.

Program version 2.2-03 01-OCT-2004 5-107

NOTES:

- 1 Some of the variables in a generated distribution may be shared between the generated variable and the generating variable by using the ASSIGN CONDITIONING command.
- 2 A generated distribution may be assigned an extreme type distribution by using the ASSIGN EXTREME-VALUE command.

See also:

- CHANGE VARIABLE
- COPY VARIABLE
- DELETE VARIABLE
- RENAME VARIABLE
- PRINT VARIABLE
- ASSIGN CONDITIONING
- ASSIGN EXTREME-VALUE

EXAMPLES:

CREATE VARIABLE Width 'Width of plate' FIXED 22.5
CREATE VARIABLE Amplitude 'Wave amplitude' GENERATED Var44

5-108 01-OCT-2004 Program version 2.2-03

CREATE VARIABLE ... DISTRIBUTION

DISTRIBUTION	distribution	[dim]	input-seq	parameters
 DISTRIBUTION	SPLINE-1DIM	•••		

PURPOSE:

To create a variable to be based on a distribution.

PARAMETERS:

distribution The name of the distribution (excepting the spline distribution).

[dim] The dimension of the distribution, if this is not fixed.

input-seq The sequence of parameters used to define the distributions.

parameters The parameter value(s) for the chosen input sequence. Each parameter value may

be either a numerical value or the name of an existing one-dimensional variable.

Please note that the name of a variable cannot be abbreviated here.

SPLINE-1DIM The variable is assigned a distribution, fitted to input data. See a following page for

details.

NOTES:

- 1 The variable may be assigned an extreme type distribution by using the ASSIGN EXTREME-VALUE command.
- 2 The distribution function and density values may be printed by use of the PRINT DISTRIBUTION command.
- 3 The moments of the distribution are calculated and printed (if possible) by use of the PRINT VARIA-BLE command.
- 4 The distributions are described in SESAM User's Manual: Proban Distributions.

See also:

- CHANGE VARIABLE
- DISPLAY DISTRIBUTION
- PRINT VARIABLE
- PRINT DISTRIBUTION
- ASSIGN CORRELATION

Program version 2.2-03 01-OCT-2004 5-109

• ASSIGN EXTREME-VALUE

EXAMPLES:

CREATE VARIABLE X ' ' DISTRIBUTION Normal Mean-CoV 22 0.2 CREATE VARIABLE Y ' ' DISTRIBUTION Normal Mean-Std X 3.1

5-110 01-OCT-2004 Program version 2.2-03

CREATE VARIABLE ... DISTRIBUTION SPLINE-1DIM

	SPLINE-1DI		lower	unner	UNV	WEIGHTED	{	fractile	probability	}*		
	SI LINE-IDII	VI	IOWCI	upper	WEIGHTED		{	fractile	probability	weight	}*	
	HIGH			EQU.	AL							
	MEDIUM			FREE	REE FREE							
•••	LOW	•••		VAN	VANISH							
	LOW		UNIM	10DAL								

PURPOSE:

To create a variable to have a fitted distribution based on splines.

PARAMETERS:

lower The lower bound of the distribution.

upper The upper bound of the distribution.

UNWEIGHTED Do not apply user defined weights to the spline fit.

WEIGHTED Apply user defined weights to the input points in the spline fit.

fractile, probability The fractiles and probability values to which the distribution

function is fitted. All probabilities must be greater than 0 and

smaller than 1.

function is fitted with corresponding weights. All probabilities

must be greater than 0 and smaller than 1.

HIGH Use high accuracy when fitting the spline distribution to the da-

ta. In some cases it may be difficult to get convergence when

high accuracy is used.

MEDIUM Use medium accuracy when fitting the spline distribution to the

data

LOW Use low accuracy when fitting the spline distribution to the da-

ta.

FREE The fitted distribution need not be unimodal.

UNIMODAL The fitted distribution must be unimodal.

EQUAL The tail values of a FREE fit must be identical.

Program version 2,2-03 01-OCT-2004 5-111

FREE No restriction on the tail values of a FREE fit, except that they

are non-negative.

VANISH Both tail values of a FREE fit must be zero.

NOTES:

1 If the spline will not fit, try relaxing the demands on accuracy or check if any of the points have been specified wrongly.

- 2 The variable may be assigned an extreme type distribution by using the ASSIGN EXTREME-VALUE command.
- 3 The distribution function and density values may be printed by use of the PRINT DISTRIBUTION command.
- 4 The moments of the distribution are calculated and printed (if possible) by use of the PRINT VARIA-BLE command.
- 5 The distribution itself may be displayed using DISPLAY DISTRIBUTION. The accuracy of the fit may be examined using DISPLAY FITTED-DISTRIBUTION.

See also:

- CHANGE VARIABLE
- DISPLAY DISTRIBUTION
- DISPLAY FITTED-DISTRIBUTION
- PRINT VARIABLE
- PRINT DISTRIBUTION
- ASSIGN CORRELATION
- ASSIGN EXTREME-VALUE

EXAMPLES:

CREATE VARIABLE X $^{\prime}$ $^{\prime}$ DISTRIBUTION Spline-1Dim 0 10 UNWEIGHTED (ONLY 1.0 0.5 3.0 0.25 5.0 0.5 7.0 0.7 8.0 0.9 9.0 0.95) HIGH UNIMODAL

5-112 01-OCT-2004 Program version 2.2-03

CREATE VARIABLE ... FITTED-DISTRIBUTION

	FITTED-DISTRIBU	JTION	distribution	on	input-seq pa	arameter*		
CUMULATIVE		WEIGHTED		{	fractile	probability weight		}*
	COMOLATIVE	UNWEIGHTED		{	fractile	probability	} *	
	OBSERVATIONS	WEIGHTED		{	observation	weight	}*	
	OBSERVATIONS	UNWEIGHTED		{	observation	}*		
	RESULT result name							

PURPOSE:

To create a variable to be fitted to a distribution.

PARAMETERS:

distribution The name of the distribution (excepting the spline distribution

and multidimensional distributions).

input-seq The sequence of parameters used to define the distributions.

parameter* The parameter specification for the chosen input sequence.

Each parameter value may be either specified as a numerical value (in which case it is not fitted), as: FIT, in which case it is fitted, or as: FIT<value>, where <value> is a numerical value used as starting point for an iterative fit. A lower bound on the fitted value is specified by L<value>. An upper bound on the

fitted value is specified by U<value>.

CUMULATIVE Fit to cumulative input data.

WEIGHTED The input data are weighted. The weights must be positive.

UNWEIGHTED The input data are not weighted.

fractile, probability, weight Successive values of fractiles, cumulative probabilities and

weights. The probabilities must be in the interval]0,1[. The input data will be sorted in order of increasing probability.

fractile, probability Successive values of fractiles and cumulative probabilities. The

probabilities must be in the interval]0,1[. The input data will

be sorted in order of increasing probability.

OBSERVATIONS The input data are observed values of the variable.

observation, weight Successive values of observations and weights. The input data

will be sorted in order of increasing observation values.

<u> </u>		
Program version 2.2-03	01-OCT-2004	5-113

observation Observed values of the random variable to which a distribution

is fitted. The input data will be sorted in order of increasing ob-

servation values.

RESULT Fit the distribution to the results of a probability or distribution

analysis. Simulation results will be fitted and stored as OB-SERVATIONS, after being grouped into weighted interval data if many samples exist. Mean value based FORM results will be fitted and stored as CUMULATIVE data with equal weights on all points. Probability results from a parameter study will be fitted (if possible) and stored as CUMULATIVE data with equal weights on all points. In the case of a parameter study of a distribution analysis, the result for the first parameter value is

used.

result name

The name of the result for which the distribution is to be fitted.

NOTES:

1 The existing values are presented as defaults whenever this is possible.

- 2 The RESULT option can be useful for substituting a variable requiring lengthy computation time with a fitted distribution.
- 3 The variable may be assigned an extreme type distribution by using the ASSIGN EXTREME-VALUE command.
- 4 The distribution function and density values may be printed by use of the PRINT DISTRIBUTION command.
- 5 The moments of the distribution are calculated and printed (if possible) by use of the PRINT VARIA-BLE command.
- 6 The distribution itself may be displayed using DISPLAY DISTRIBUTION. The accuracy of the fit may be examined using DISPLAY FITTED-DISTRIBUTION.
- 7 The distributions are described in SESAM User's Manual: Proban Distributions.

See also:

- CREATE VARIABLE
- DISPLAY DISTRIBUTION
- DISPLAY FITTED-DISTRIBUTION
- PRINT VARIABLE
- PRINT DISTRIBUTION
- ASSIGN EXTREME-VALUE

5-114 01-OCT-2004 Program version 2.2-03

EXAMPLES:

CREATE VARIABLE X $^{\prime}$ $^{\prime}$ FITTED-DISTRIBUTION Normal Mean-CoV FIT FIT OBS UNW (ONLY 1.34 2.56 8.65 4.32 4.67 6.66 5.23 3.25)

CREATE VARIABLE Y ' ' FITTED-DISTRIBUTION Normal Mean-Std FIT15 FIT CUMULATIVE WEIGHTED (ONLY 12 0.1 1 15 0.3 2 17 0.7 1 20 0.9 1)

CREATE VARIABLE RES ' ' FITTED-DISTRIBUTION Lognormal Mean-Std-L FIT FIT 0 RESULT LastAnalysis

Program version 2.2-03

01-OCT-2004

5-115

CREATE VARIABLE ... FUNCTION

	FUNCTION	function	[dim]	argument*
--	----------	----------	-------	-----------

PURPOSE:

To create a variable to be a function of numerical values or other variables.

PARAMETERS:

function The name of the function. The functions can be listed by use of the commands

PRINT FUNCTION LIBRARY and PRINT FUNCTION DESCRIPTION.

[dim] The dimension of the function, if this is not fixed.

argument* The argument value(s) for the chosen function. Each argument value may be either

a numerical value or the name of an existing one-dimensional variable. Please note

that the name of a variable cannot be abbreviated here.

NOTES:

The selection of functions presented is determined by the current selection of sub-libraries (see SELECT FUNCTION-LIBRARY). This is because some libraries may contain a large number of functions and/or not be relevant to the current problem.

See also:

- CHANGE VARIABLE
- PRINT VARIABLE
- PRINT FUNCTION
- SELECT FUNCTION-LIBRARY

EXAMPLES:

```
CREATE VARIABLE Total-Durati 'Total duration of project' FUNCTION Sum ( EXCLUDE Path-1 )
CREATE VARIABLE Diff1 ' ' FUNCTION Difference Resist5 Load4
```

5-116 01-OCT-2004 Program version 2.2-03

CREATE WAVE-SPREADING-FUNCTION

	WAVE-SPREADING-FUNCTION	name desc		COSINE-POWER	pov	ver	
•••	WIN E-SI REMDING-I ONCTION	name	dese	USER-DEFINED	{	wave-dir, weight	}*

PURPOSE:

Create a wave spreading function.

PARAMETERS:

name Name of wave spreading function. This name must be unique among transfer func-

tions and no longer than 8 characters. Names are matched case insensitively.

desc Descriptive text associated with the spreading function.

COSINE-POWER The spreading function is represented by a cosine function.

power Power of the cosine function.

USER-DEFINED The spreading function is defined by data points.

wave-dir, weight A set of points defining the spreading function:

- Wave direction, relative to the main wave direction.

- Weight associated with wave direction.

NOTES:

The sum of weights must be 1.0.

See also:

- ASSIGN WAVE-SPREADING-FUNCTION
- CHANGE WAVE-SPREADING-FUNCTION
- DISPLAY WAVE-SPREADING-FUNCTION
- PRINT WAVE-SPREADING-FUNCTION

EXAMPLES:

CREATE WAVE-SPREADING-FUNCTION COS2 'Analytical cos**2' COSINE 2

Program version 2.2-03 01-OCT-2004 5-11

CREATE WAVE-STATISTICS

	WAVE-STATISTIC	CS	name	desc	SC	CATTER-DIAGRAM	
	PROBABILITY	{	Hs, Tz, p	orob	} *		
•••	OCCURRENCE	{	Hs, Tz, o	occr	}*		

PURPOSE:

To create a wave scatter diagram.

PARAMETERS:

name Name of wave statistics. This name must be unique among wave statistics and no

longer than 8 characters. Names are matched case insensitively.

desc Descriptive text associated with the wave statistics.

SCATTER-DIAGRAM The wave statistics is a scatter diagram.

PROBABILITY The scatter diagram shall be defined in terms of probability for each set of Hs and

Tz values.

OCCURRENCE The scatter diagram shall be defined in terms of occurrence for each set of Hs and

Tz values.

Hs Significant wave height of one sea state.

Tz Zero up-crossing period for one sea state.

prob Probability of occurrence for one sea state.

occr Number of occurrences for one sea state.

NOTES:

1 If the sea states of the scatter diagram are defined in terms of probability then the sum of all probabilities must be 1.0.

2 A number of stochastic factors are assigned to each scatter diagram. The values of these factors may be changed by use of ASSIGN MODEL-FACTOR (see this command for details). The uncertainty may be changed by use of ASSIGN UNCVERTAINTY VALUE.

See also:

- ASSIGN WAVE-STATISTICS
- ASSIGN WAVE-SPECTRUM-SHAPE

5-118 01-OCT-2004 Program version 2.2-03

- ASSIGN WAVE-SPREADING-FUNCTION
- ASSIGN WAVE-DIRECTION-PROBABILITY
- CHANGE WAVE-STATISTICS
- PRINT WAVE-STATISTICS
- ASSIGN MODEL-FACTOR SCATTER-DISTRIBUTION
- ASSIGN MODEL-FACTOR WAVE-SPECTRUM-SHAPE
- ASSIGN MODEL-FACTOR WAVE-SPREADING
- ASSIGN UNCERTAINTY VALUE

EXAMPLES:

CREATE WAVE-STATISTICS WS1 'Scatter diagram for SESAM field' SCATTER PROBABILITY ($5.0\ 7.0\ 0.1\ 6.0\ 6.0\ 0.5\ 7.0\ 6.0\ 0.3\ 8.0\ 5.0\ 0.1$)

Program version 2.2-03 01-OCT-2004 5-119

DEFINE

	ANALYSIS-OPTION	
	CALIBRATION-CRACK-GROWTH	
	CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY	
	CUTOFF-PD6493	
	DISTRIBUTION-SIMULATION	
	FATIGUE-CONSTANTS	
	FORM-SORM	
	MEAN-VALUE-FORM	
DEFINE	PARAMETER-STUDY	
DEFINE	PLAN-INSPECTION	
	PRESENTATION	
	PROBABILITY-SIMULATION	
	SERVICE-LIFE	
	SN-ANALYSIS	
	FAILURE-PROBABILITY	
	TRANSFER-FUNCTION	
	UNCERTAINTY	
	WEIBULL-FIT	

PURPOSE:

Define global parameters or analysis options.

PARAMETERS:

ANALYSIS-OPTION	Define general options for distribution and proba-
-----------------	--

bility analysis.

CALIBRATION-CRACK-GROWTH Define calibration of the crack growth model to

the SN reliability result.

CRACK-GR-AN FAILURE-PROBABILITY Define how a failure probability crack growth

analysis is executed.

CUTOFF-PD6493 Define the cut off value for PD6493.

DISTRIBUTION-SIMULATION Define simulation of distributions.

5-120 01-OCT-2004 Program version 2.2-03

FATIGUE-CONSTANTS Define constants applied to SCFs read from a

Framework database.

FORM-SORM Define options for FORM and SORM probability

analysis.

MEAN-VALUE-FORM Define how a mean based FORM distribution

analysis is performed.

PARAMETER-STUDY Define values of a parameter for repeated analysis

as a function of this parameter.

PLAN-INSPECTION Define how an inspection plan is executed.

PRESENTATION Define options used for presentation (print and

display).

PROBABILITY-SIMULATION Define options for simulation of probabilities.

SERVICE-LIFE Define the service life for the structure being ana-

lysed.

SN-ANALYSIS FAILURE PROBABILITY

Define how an SN analysis of the failure probabil-

ity is executed.

TRANSFER-FUNCTION Define how transfer functions are applied.

UNCERTAINTY Define the default uncertainty for a parameter.

WEIBULL-FIT Define data points for a Weibull fit to the stress

range distribution.

5-121

DEFINE ANALYSIS-OPTION

		DIFFERENTIATION	uspace1, uspace2, rel, abs, limit		
		GRADIENT-CALCULATION	ANALYTICAL		
		GRADIENT-CALCULATION	NUMERICA		
		IMPORTANCE-FACTORS	ON		
		IMFORTANCE-FACTORS	OFF		
			GRADIENT-VALUES	ON	
		GRADIENT-VALUES	OFF		
			LEVEL	level	
		INTERMEDIATE-RESULTS	POINT-VALUES	ON	
			TORVI-VALUES	OFF	
	ANALYSIS-OPTION		SHOW-DURING-ANALYSIS	ON	
			SHOW BORNING MITTELL SIG	OFF	
		PARAMETER-STUDY	ON		
		TARAMETER-STOD I	OFF		
			DEFAULT		
		SEEDS	RANDOM		
			seed1, seed2, seed3		
			ALL		
		SENSITIVITY	NONE		
			SELECTED		
		GENERATED-DISTRIBUTION	1		

PURPOSE:

Define analysis options for probability and distribution analyses.

PARAMETERS:

DIFFERENTIATION Define differentiation increments for use in FORM/SORM op-

timization and in calculation of sensitivity values.

uspace1 The differentiation increment in U-space. It must be positive.

uspace2 The differentiation increment for the hessian matrix in U-space.

Used during the FORM/SORM optimization. It must be posi-

tive.

5-122 01-OCT-2004 Program version 2.2-03

rel Relative parameter increment. It must be positive.

abs Absolute parameter increment. It must be positive.

limit Limit for application of relative parameter increment. The ab-

solute increment is used if the absolute value of the parameter

is less than limit. It must be positive.

GRADIENT-CALCULATION Determines if the gradients that have been programmed into the

model functions are used (ANALYTICAL) or if all differentia-

tion is done numerically (NUMERICAL).

IMPORTANCE-FACTORS Controls if importance factors are calculated.

INTERMEDIATE-RESULTS During an analysis, intermediate results may be stored on the

database and possibly written to the screen. This is mainly in

order to facilitate debugging of the program.

GRADIENT-VALUES Controls if gradient values are shown during the analysis.

LEVEL level Controls the amount of intermediate results to be generated.

The possible alternatives are: NONE, LOW, MEDIUM, EX-

CESSIVE.

POINT/VALUES Controls if point values (e.g. values of variables forming single

events) are shown during the analysis.

SHOW-DURING-ANALYSIS Controls whether the immediate results will be shown on the

screen during the analysis run. Please take care, as excessive

amounts of output may be generated.

PARAMETER-STUDY Controls if an assigned parameter study is actually performed.

SEEDS Controls specification of seeds for the pseudo-random number

generator. The generator requires three integer seeds. If two otherwise identical sample sequences are started with the same

seeds. they will produce the same results.

DEFAULT The default seeds are: 699570728 398267609 1044576128.

These are mostly useful for testing (reproduction of results).

RANDOM The seeds are generated randomly from the date and time. This

works quite well, and is recommended for most sample se-

quences.

seed1 seed2 seed3 A direct specification of the three integer seeds.

SENSITIVITY Controls the extent of the parametric sensitivity calculation

(does not control importance factor calculation). May be used to override the assignments done by the ASSIGN SENSITIVI-TY-CALCULATION command. The possible alternatives are:

Drogram version 2.2.02	01-OCT-2004	5 122
Program version 2.2-03	V1-OC 1-2004	5-123

ALL (calculate all), SELECTED (calculate assigned values) or NONE.

GENERATED-DISTRIBUTION

Define analysis options for use of generated distributions. See a following page.

NOTES:

The current analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.

See also:

- DEFINE PARAMETER-STUDY
- ASSIGN SENSITIVITY-CALCULATION
- PRINT ANALYSIS-SETTINGS

EXAMPLE:

The following values are default when the program starts up with a new database:

```
DEFINE ANALYSIS-OPTION DIFFERENTIATION 0.001 0.1 0.0001 0.001 1.0E-10
DEFINE ANALYSIS-OPTION GRADIENT-CALCULATION ANALYTICAL
DEFINE ANALYSIS-OPTION IMPORTANCE-FACTORS ON
DEFINE ANALYSIS-OPTION INTERMEDITATE RESULTS GRADIENT-VALUES OFF
DEFINE ANALYSIS-OPTION INTERMEDITATE RESULTS LEVEL NONE
DEFINE ANALYSIS-OPTION INTERMEDITATE RESULTS POINT-VALUES OFF
DEFINE ANALYSIS-OPTION INTERMEDITATE RESULTS SHOW-DURING-ANALYSIS OFF
DEFINE ANALYSIS-OPTION PARAMETER-STUDY ON
DEFINE ANALYSIS-OPTION SEEDS RANDOM
DEFINE ANALYSIS-OPTION SENSITIVITY SELECTED
```

5-124 01-OCT-2004 Program version 2.2-03

DEFINE ANALYSIS-OPTION GENERATED-DISTRIBUTION

 GENERATED-DISTRIBUTION	

	DIFFERENTIATION	uspace1	uspace2	rel	abs	limit	
		ANALYTICAL					
	GRADIENT-CALCULATION	ONEWAY-I	NCREME	NTATION			
		TWOWAY-	INCREME	ENTATION	Ţ		
	U-SPACE-BOUNDS	Value					
		NONE					
	INTERMEDIATE-RESULTS	LOW					
		MEDIUM					
		EXCESSIVE					
	FRACTILE-FROM-PROBABILITY	UNMIN	maxit	maxstep	conv		
		SQP	maxit	maxstep	conv		
	PROBABILITY-FROM-FRACTILE	NLPQL	•••	•	•		
		RFCRC	•••				

PURPOSE:

Define analysis options for usage of generated distributions.

PARAMETERS:

DIEEEDENIELATION

DIFFERENTIATION	Define differentiation increments for use in optimization.
-----------------	--

uspace1 The differentiation increment in U-space. It must be positive.

uspace2 The differentiation increment for the hessian matrix in U-space.

Used during the FORM/SORM optimization. It must be posi-

tive.

rel Relative parameter increment. It must be positive.

abs Absolute parameter increment. It must be positive.

limit Limit for application of relative parameter increment. The ab-

solute increment is used if the absolute value of the parameter

is less than limit. It must be positive.

GRADIENT-CALCULATION Determines if the gradients that have been programmed into the

model functions are used (ANALYTICAL), or if one way

Program version 2.2-03 01-OCT-2004 5-125

(u+du) or two way (u+du and u-du) incrementation is used to

determine the gradient.

U-SPACE-BOUNDS Initialises the u-space optimisation upper bounds to Value and

the u-space lower bounds to -Value.

INTERMEDIATE-RESULTS Controls the amount of intermediate results to be generated.

The possible alternatives are: NONE, LOW, MEDIUM, EX-

CESSIVE.

FRACTILE-FROM-PROBABILITY Defines the optimization method used to calculate a fractile

from a probability value.

UNMIN Unconstrained minimisation in polar coordinates.

maxit The maximal number of iterations allowed.

maxstep The maximal number of steps in one search direction.

conv Convergence criterion.

PROBABILITY-FROM-FRACTILE Defines the optimization method used to calculate a probability

from a fractile value.

SQP Sequential quadratic programming.

NLPQL Sequential quadratic programming. Extended options set. See

DEFINE ... NLPQL.

RFCRC Robusted Rackwitz-Fiessler method. See DEFINE ... RFCRC.

NOTES:

The current analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.

See also:

• PRINT ANALYSIS-SETTINGS

EXAMPLE:

The following values are default when the program starts up with a new database:

DEFINE ANALYSIS-OPTION GENERATED-DISTRIBUTION DIFFERENTIATION 1.0E-6 1.0E-3 1.0E-6 1.0E-6 1.0E-10

DEFINE ANALYSIS-OPTION GENERATED-DISTRIBUTION INTERMEDIATE-RESULTS NONE

DEFINE ANALYSIS-OPTION GENERATED-DISTRIBUTION FRACTILE-FROM-PROBABILITY UNMIN 40 10 1.72633D-7

DEFINE ANALYSIS-OPTION GENERATED-DISTRIBUTION PROBABILITY-FROM-FRACTILE SQP 40 10 1.72633D-7

5-126 01-OCT-2004 Program version 2.2-03

DEFINE CALIBRATION-CRACK-GROWTH

	AUTOMATIC-UPDATE	ON/OFF
	DISTANCE-TO-SN	dist
 CALIBRATION-CRACK-GROWTH	MAX-NUMBER-OF-STEPS	nstep
	STEP-LENGTH	eps
	TIME-POINTS	{Time}*

PURPOSE:

Define calibration of the crack growth model to the SN reliability result.

PARAMETERS:

AUTOMATIC-UPDATE ON/OFF When ON, the parameter values are automatically updated after

convergence has been achieved. When OFF, the parameter val-

ues must be updated manually.

DISTANCE-TO-SN dist

The required distance between the crack growth reliability in-

dexes and SN reliability indexes at the specified time points.

MAX-NUMBER-OF-STEPS nstep

The maximum number of steps attempted to find a calibration

result. Must be positive.

STEP-LENGTH eps

The maximal step length of the parameter values.

TIME-POINTS Time The time points at which the calibration is made. At least two

time points must be specified, and all must be greater than the start time specified by the command DEFINE SERVICE-LIFE.

NOTES:

- 1 Convergence is achieved when both the distance and step length criterion is satisfied. The iteration stops in any case if the step length is negligible.
- 2 For one dimensional crack growth models there is a limit to how small the distance can get. It may therefore be advisable to set a large distance criterion in this case.

See also:

- RUN CALIBRATION-CRACK-GROWTH
- ASSIGN CRACK-GROWTH-MODEL

EXAMPLE:

The following values are default when the program starts up with a new database:

Program version 2.2-03 01-OCT-2004 5-127

DEFINE CALIBRATION-CRACK-GROWTH AUTOMATIC-UPDATE OFF
DEFINE CALIBRATION-CRACK-GROWTH DISTANCE-TO-SN 0.3
DEFINE CALIBRATION-CRACK-GROWTH MAX-NUMBER-OF-STEPS 10
DEFINE CALIBRATION-CRACK-GROWTH STEP-LENGTH 0.001
DEFINE CALIBRATION-CRACK-GROWTH TIME-POINTS % 20%, 50% and 100% of service life

5-128 01-OCT-2004 Program version 2.2-03

DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY

			FORM
		ANALYSIS-METHOD	SORM
			DEFAULT
		IMPORTANCE-FACTORS	ON
	FAILURE-PROBABILITY	INI OKIANCE-FACTORS	OFF
		NUMBER-OF-TIME-STEPS	nstep
		PARAMETRIC-SENSITIVITY	ON/OFF
		RUN-ANALYSIS-TO	INSPECTION
		KON-MWILISIS-10	SERVICE-LIFE-ERND
		MAX-NOOF-LATEST-INSPECTIONS	ninsp
		ANNUAL-OR-LIFETIME-PROBABILITY	ANNUAL
		ANNOAL-OR-LIFE HWE-FRODABILIT I	LIFE-TIME

PURPOSE:

Define how a crack growth analysis of the failure probability is performed.

PARAMETERS:

ANALYSIS-METHOD Use FORM or SORM (Parabolic) for the analysis,

or use the DEFAULT method selected by the command SELECT ANALYSIS-METHOD PROBA-

BILITY-ANALYSIS.

IMPORTANCE-FACTORS ON/OFF Disable (OFF) or enable (ON) calculation of im-

portance factors (in order to save computation time). This setting overrides the DEFINE ANALYSIS-OPTION IMPORTANCE command for crack growth analysis of the failure probability.

NUMBER-OF-TIME-STEPS nstep

The number of steps used to map the probability

as a function of time over the whole service life. If the analysis is run over a shorter period, the number of steps is reduced according to the length

of time covered.

PARAMETRIC-SENSITIVITY ON/OFF Disable (OFF) or enable (ON) calculation of par-

ametric sensitivities (in order to save computation time). This setting overrides the DEFINE ANALYSIS-OPTION SENSITIVITY command for crack growth analysis of the failure probability.

Program version 2.2-03	01-OCT-2004	5-129

RUN-ANALYSIS-TO Run each analysis to the end of the service life or

to the next inspection. The latter is the default, and

the former is the most time.

MAX-NO.-OF-LATEST-INSPECTIONS

The maximum number of latest inspections in-

cluded in a run. The purpose is to reduce the amount of calculation by including only the number of latest inspections that has significance to the calculated reliability. Often the three latest inspections suffice, but this must be jugded on a

case to case basis.

ninsp The number of latest inspections included in an

analysis.

ANNUAL-OR-LIFE-TIME-PROBABILITY The type of analysis.

ANNUAL Calculate annual failure probability.

LIFE-TIME Calculate life time failure probability.

NOTES:

See also:

- RUN CRACK-GROWTH-ANALYSIS
- DISPLAY CRACK-GROWTH-ANALYSIS
- PRINT CRACK-GROWTH-ANALYSIS
- DEFINE PRESENTATION CRACK-GROWTH-ANALYSIS

EXAMPLE:

The following values are default when the program starts up with a new database:

DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROB ANALYSIS-METHOD FORM
DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROB IMPORTANCE FACTORS OFF
DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROB NUMBER-OF-STEPS 10
DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROB PARAMETRIC-SENSITIVITY OFF
DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROB RUN-ANALYSIS-TO INSPECTION

DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROB MAX-NO.-OF-LATEST-INSPECTIONS 200 DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROB ANNUAL-OR-LIFE-TIME-PROBABILITY

LIFE-TIME

5-130 01-OCT-2004 Program version 2.2-03

DEFINE CUTOFF-PD6493

... CUTOFF-PD6493 value

PURPOSE:

Define the cut off value for PD6493.

PARAMETERS:

Value Recommended 0.15mm. Convert here to your own units.

NOTES:

- 1 The PD6493 weld magnification curve is not valid at the surface. The NPD (Norwegian Petroleum Directorate) recommendation is to use the value at 0.15mm below the surface for depths closer to surface. This value must be converted to the units operated in by the user.
- 2 The value is initialised to zero. If PD6493 is used in an analysis and the value is not positive, the analysis is aborted. The value must thus be set by the user.

EXAMPLE:

DEFINE CUTOFF-PD6493 0.15

Program version 2.2-03 01-OCT-2004 5-131

DEFINE DISTRIBUTION-SIMULATION

	MONTE-CARLO-SIMULATION	nsim
 DISTRIBUTION-SIMULATION	LATIN-HYPERCUBE-SIMULATION	nsim
	RESET	

PURPOSE:

Define analysis options for simulation of distributions.

PARAMETERS:

MONTE-CARLO-SIMULATION Define Monte Carlo simulation of distributions.

LATIN-HYPERCUBE-SIMULATION Define Latin Hypercube simulation of distributions.

nsim The number of samples to be executed.

RESET Reset all values and options to the default values used when in-

itialising a new database.

NOTES:

The current analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.

See also:

- SELECT ANALYSIS-METHOD DISTRIBUTION-ANALYSIS
- PRINT ANALYSIS-SETTINGS
- RUN DISTRIBUTION-ANALYSIS

EXAMPLE:

The following values are default when the program starts up with a new database:

DEFINE DISTRIBUTION-SIMULATION MONTE-CARLO-SIMULATION 1000 DEFINE DISTRIBUTION-SIMULATION LATIN-HYPERCUBE-SIMULATION 100

5-132 01-OCT-2004 Program version 2.2-03

DEFINE FATIGUE-CONSTANTS

	FATIGUE-CONSTANTS	IN-PLANE-FACTOR	Fipb
	THIGOL CONSTRAINS	OUT-OF-PLANE-FACTOR	Fopb

PURPOSE:

Define constants applied to SCFs read from a Framework database.

PARAMETERS:

IN-PLANE-FACTOR Fipb Correction factor applied for the in plane bending SCF at

hotspots 4, 10, 16 and 22, only for PIPE elements and if the SCF distribution is either CROWN-SADDLE or PARAMET-

RIC.

OUT-OF-PLANE-FACTOR Fopb Correction factor applied for the out of plane bending SCF, as

above.

NOTES:

- 1 The factors are applied when a fatigue point located on a structure analysed in Framework is created, and the corresponding SCF values are created. Once the fatigue point is created, these factors no longer have any effect on SCF values for this point.
- 2 This command is only available when a Framework database is used.
- 3 Please be careful with applying factors less than 1.0 as this can be in conflict with the underlying theory.

See also:

- CREATE FATIGUE-POINT
- ASSIGN SCF

EXAMPLE:

The default values are set when running Framework.

DEFINE FATIGUE-CONSTANTS IN-PLANE-FACTOR 1.0 DEFINE FATIGUE-CONSTANTS OUT-OF-PLANE-FACTOR 1.0

DEFINE FORM-SORM

		BOUNDS	ON		
		BOUNDS	OFF		
		INACTIVE-CONS	TD AINITS	ON	
		INACTIVE-CONS	TRAINTS	OFF	
		IMPORTANCE-FA	CTORS	ON	
		IVII ORITHVEL-171	e roks	OFF	
		MULTINORMAL		SQP	
		WOLINORWAL		CRUDE	
			SQP	maxit, maxstep, conv	
	FORM-SORM	OPTIMIZATION	NLPQL		
			RFCRC		
			RSM		
		SENSITIVITY	ANALYTICAL	ONE-WAY	
				TWO-WAY	
			ASYMPTOTIC		
			INITIAL	ASSIGNED	
		STARTING-	HATTI	DEFAULT	
		POINT	PARAMETER-STUDY	PREVIOUS-SOLUTION	
				SAME-AS-INITIAL	
		RESET			

PURPOSE:

Define FORM/SORM analysis options.

PARAMETERS:

BOUNDS Control the usage of bounds in probability calculation in a large

intersection. If ON, bounds are used. If OFF, the probability is calculated using the multinormal distribution on the comple-

mentary set.

on/off One of the alternatives: ON and OFF

5-134 01-OCT-2004 Program version 2.2-03

INACTIVE-CONSTRAINTS Control linearisation of constraints, that are inactive initially. If

ON, such constraints are also linearised. If OFF, they are not

linearised.

MULTINORMAL Controls how the probability is calculated through the multi-

normal distribution. The SQP option is the most accurate. The CRUDE option should only be used if the SQP option fails.

OPTIMISATION Selection of the optimization algorithm. Currently, only one al-

gorithm is available.

SQP Sequential quadratic programming.

maxit The maximal number of iterations allowed.

maxstep The maximal number of steps in one search direction.

conv Convergence criterion.

NLPQL Sequential quadratic programming. Extended options set. See

DEFINE ... NLPQL

RFCRC Robusted Rackwitz-Fiessler method. See DEFINE ... RFCRC.

RSM Response surface method. See DEFINE ...RSM.

SENSITIVITY Controls the method used to calculate parametric sensitivities

and importance factors. ANALYTICAL calculation is exact for the FORM result, but requires a number of differentiations. AS-YMPTOTIC calculation is quick, but not as accurate. The second order derivations using the ANALYTICAL calculation may be done ONE-WAY or TWO-WAY (to gain accuracy).

STARTING-POINT INITIAL Controls the usage of the starting point in the FORM/SORM

optimization. In a parameter study, it applies to the first analysis, as well as any other analysis where the previous solution is not used. The starting point can be either ASSIGNED (see ASSIGN STARTING-POINT) or DEFAULT. The default starting

point is a small shift from the origin in U-space.

STARTING-POINT PARAMETER-STUDY Controls the usage of starting points in a parameter study. Ei-

ther the PREVIOUS-SOLUTION is used whenever possible, or the starting point is defined as above (SAME-AS-INITIAL).

RESET Reset all values and options to the default values used when in-

itialising a new database.

NOTES:

The current analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.

See also:

Program version 2.2-03 01-OCT-2004 5-135

- ASSIGN STARTING-POINT
- DEFINE ANALYSIS-OPTION
- PRINT ANALYSIS-SETTINGS
- SELECT ANALYSIS-METHOD PROBABILITY-ANALYSIS

EXAMPLE:

The following values are default when the program starts up with a new database:

```
DEFINE FORM-SORM BOUNDS OFF
DEFINE FORM-SORM INACTIVE-CONSTRAINTS ON
DEFINE FORM-SORM MULTINORMAL SQP
DEFINE FORM-SORM OPTIMIZATION SQP 40 10 0.0025
DEFINE FORM-SORM SENSITIVITY ANALYTICAL ONE-WAY
DEFINE FORM-SORM STARTING-POINT INITIAL ASSIGNED
DEFINE FORM-SORM STARTING-POINT PARAMETER-STUDY PREVIOUS-SOLUTION
```

5-136 01-OCT-2004 Program version 2.2-03

DEFINE ... NLPQL

PURPOSE:

Options for NLPQL.

PARAMETERS:

search method One of BFGS and STEEPEST-DESCENT. BFGS generates a

quadratic approximation to the function optimised on. STEEP-EST-DESCENT generates a sequential linear approximation and is the more robust method when the gradients have poor

numerical quality.

maxit Maximum number of general iterations (gradient evaluations.)

maximum step length FREE (limited by optimisation bounds) or VALUE. The value

is the maximum steplength during one iteration. Prevents over-

shooting.

maxfun Maximum number of function evaluations in line search for

step length that improves merit function.

conv Kuhn-Tucker optimality criterion.

cnsv Test for constraint violation. ON-DEFAULT uses the square

root of conv as test value. ON-USER uses a user specified val-

ue as test value. OFF skips the constraint value test.

bestpoint ON delivers the best point reached during optimisation even if

a convergency criterion is not met. OFF delivers a point that

necessarily fulfils the convergency criteria.

NOTES:

The current analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.

See also:

• PRINT ANALYSIS-SETTINGS

EXAMPLES:

The following values are default when the program starts up with a new database:

DEFINE FORM-SORM OPTIMIZATION NLPQL BFGS 40 VALUE 5.0 10 0.0025 ON-DEFAULT OFF

Program version 2.2-03

01-OCT-2004

5-137

DEFINE ... RFCRC

RFCRC m	ethod maxit	conv	test
---------	-------------	------	------

PURPOSE:

Options for RFCRC.

PARAMETERS:

method One of RF (Racwitz-Fiessler method) and RFCRC (Rackwitz-

Fiessler method robusted with circle steps.)

maxit Maximum number of general iterations (gradient evaluations.)

conv Optimality criterion. Test for the U-space distance between the

two last iterates.

test Progress test. If RFstep(i+1) suggested by the algorithm is less

than RFstep(i)/test, then accept the step, else proceed with a cir-

cle step.

NOTES:

A RF step is performed initially. Then the next step suggested by the RF method is examined. If the progress is unsatisfactory, then a circle step is performed. This step defines a u-space circle with center at u=0 and passing through the current iteration point in the plane defined by the u-space gradient at that point. The minimum point, um, of the event function, g(u), on this circle is found and an iteration is performed on the line from 0 to um to find g(unext)=0.

The method is restricted to a single event.

The analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.

See also:

• PRINT ANALYSIS-SETTINGS

EXAMPLES:

The following values are default when the program starts up with a new database:

DEFINE FORM-SORM OPTIMIZATION RFCRC CIRCLE 40 0.001 4.0

5-138 01-OCT-2004 Program version 2.2-03

DEFINE MEAN-VALUE-FORM

		POINTS	number
	MEAN-VALUE-FORM	LOWER-PROBABILITY	lower
		UPPER-PROBABILITY	upper
•••		GRADIENT	ONE
		GRADIENT	THREE
		RESET	

PURPOSE:

Define Mean value based FORM analysis options.

PARAMETERS:

POINTS number The number of points to be calculated. These are spaced equal-

ly in distance in U-space, from the distance corresponding to

lower to the distance corresponding to upper.

LOWER-PROBABILITY lower The lower probability bound for the range in which values are

calculated. Must be positive and less than 1.

UPPER-PROBABILITY upper

The upper probability bound for the range in which values are

calculated. Must be positive and less than 1.

GRADIENT The method uses either ONE gradient (at the origin of U-space)

or THREE gradients (the remaining two are calculated at the

lower and upper bound).

RESET Reset all values and options to the default values used when in-

itialising a new database.

NOTES:

The current analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.

See also:

- PRINT ANALYSIS-SETTINGS
- SELECT ANALYSIS-METHOD DISTRIBUTION-ANALYSIS

EXAMPLE:

The following values are default when the program starts up with a new database:

DEFINE MEAN-VALUE-FORM POINTS 19

Program version 2.2-03 01-OCT-2004 5-139

DEFINE MEAN-VALUE-FORM LOWER-PROBABILITY 0.01
DEFINE MEAN-VALUE-FORM UPPER-PROBABILITY 0.99

DEFINE MEAN-VALUE-FORM GRADIENT ONE

5-140 01-OCT-2004 Program version 2.2-03

DEFINE PARAMETER-STUDY

	PARAMETER-STUDY	parameter	{value}*
--	-----------------	-----------	----------

PURPOSE:

Define parameter study values of a fixed variable or of a numerical parameter in a distribution or of a numerical argument in a function.

PARAMETERS:

parameter The name of a fixed variable or the name of a numerical parameter in a distribution

or of a numerical argument in a function.

value Those parameter values for which the parameter study is to be performed.

NOTES:

1 A parameter study may be modified by entering the command again and selecting the same parameter. The current values are then presented as defaults.

2 Usage of the parameter study is controlled by the command DEFINE ANALYSIS-OPTION PARAMETER-STUDY.

See also:

- DEFINE ANALYSIS-OPTION PARAMETER-STUDY
- PRINT PARAMETER-STUDY
- PRINT RESULT PARAMETER-STUDY
- DISPLAY RESULT PARAMETER-STUDY

EXAMPLES:

```
DEFINE PARAMETER-STUDY XX-abc ( ONLY 22 24 25 29.6 ) DEFINE PARAMETER-STUDY StrCorr GROUP 0.1 0.9 0.1
```

Program version 2.2-03 01-OCT-2004 5-141

DEFINE PLAN-INSPECTION

	PLAN-INSPECTION	METHOD	PRESCRIBED-TIMES		{Time}*	
			OPTIMISED-TIMES		conv	maxit
		MONITOR-CALCULATION		OFF		
				ON		
•••				ALL		
		KEEP-INSPECTIONS MAX-NOOF-LATEST-INSPE		OFF		
				ON		
				ECTIONS	ninsp	

PURPOSE:

Define how an inspection plan is executed.

PARAMETERS:

METHOD Specify planning method.

PRESCRIBED-TIMES Inspect only at prescribed times.

time The prescribed time points at which inspection is possible.

OPTIMISED-TIMES Inspect each point when it is optimal, i.e. when the reliability

threshold has been reached.

conv The difference between target and actual reliability index is

used as stop criterion.

maxit The maximum number of iterations.

MONITOR-CALCULATION Specify monitoring of the calculation of reliability indexes.

OFF: Do not monitor calculations. ON: Monitor calculations presenting one line for each reliability. ALL: Full monitoring of

Profast calculations.

KEEP INSPECTIONS Specify what to do with predicted inspections created during

the planning process. OFF: Delete planned inspections when

the planning is done. ON: Keep planned inspections.

MAX-NO.-OF-LATEST-INSPECTIONS The maximum number of latest inspections included in a run.

The purpose is to reduce the amount of calculation by including only the number of latest inspections that has significance to the calculated reliability. Often the three latest inspections suf-

fice, but this must be jugded on a case to case basis.

5-142 01-OCT-2004 Program version 2.2-03

ninsp

The number of latest inspections included in an analysis.

NOTES:

- 1 Keeping planned inspections allows a crack growth calculation to be performed showing the predicted reliability curve during the service life.
- 2 When a plan is deleted, all inspections created by the plan will be deleted.

See also:

- RUN PLAN-INSPECTION
- DEFINE CRACK-GROWTH-ANALYSIS

EXAMPLE:

The following values are default when the program starts up with a new database:

```
DEFINE PLAN-INSPECTION OPTIMISED-TIMES 0.01 10

DEFINE PLAN-INSPECTION MONITOR-CALCULATION OFF

DEFINE PLAN-INSPECTION KEEP-INSPECTIONS OFF

DEFINE PLAN-INSPECTION MAX-NO.-OF-LATEST-INSPECTIONS 200
```

Program version 2.2-03 01-OCT-2004 5-143

DEFINE PRESENTATION

		CRACK-GROWTH-ANALYSIS		
	PRESENTATION	FUNCTION		
		RESULT		
		TRANSFER-FUNCTION		

PURPOSE:

Define presentation of results and input data.

PARAMETERS:

CRACK-GROWTH-ANALYSIS Define presentation of crack growth analysis results.

FUNCTION Define presentation of model functions.

RESULT Define presentation of analysis results.

TRANSFER-FUNCTION Define presentation of transfer functions.

NOTES:

None.

5-144 01-OCT-2004 Program version 2.2-03

DEFINE PRESENTATION CRACK-GROWTH-ANALYSIS

	CRACK-GROWTH-ANALYSIS	SN-FAILURE-CURVE	OFF
	Circle Gito will him Elbis	SIV THEORE CORVE	ON

PURPOSE:

Define presentation of crack growth analysis results.

PARAMETERS:

SN-FAILURE-CURVE Specify if the SN failure curve shall be included (when available) in the display of

the crack growth analysis failure curve. OFF: Do not include the SN failure curve.

ON: Include the SN failure curve.

NOTES:

See also:

- RUN SN-ANALYSIS FAILURE-PROBABILITY
- RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY
- DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY

EXAMPLES:

The default at program start-up is:

DEFINE PRESENTATION CRACK-GROWTH-ANALYSIS SN-FAILURE-CURVE OFF

Program version 2.2-03 01-OCT-2004 5-145

DEFINE PRESENTATION FUNCTION

	FUNCTION	1D-FUNCTION-DISPLAY	nval
		2D-FUNCTION-DISPLAY	nx, ny

PURPOSE:

Define options for presentation of model functions

PARAMETERS:

1D-FUNCTION-DISPLAY nval The number of function evaluations used in a one dimensional

graph of a model function.

2D-FUNCTION-DISPLAY nx, ny

The number of abscissa (nx) and ordinate (ny) values used in a

two dimensional display of a model function. The total number

of function evaluations will be nx*ny.

NOTES:

See also:

• DISPLAY FUNCTION

EXAMPLE:

The following values are default when the program starts up with a new database:

DEFINE PRESENTATION FUNCTION 1D-FUNCTION-DISPLAY 101
DEFINE PRESENTATION FUNCTION 2D-FUNCTION-DISPLAY 21 21

5-146 01-OCT-2004 Program version 2.2-03

DEFINE PRESENTATION RESULT

	RESULT	CONFIDENCE-VALUE	conf
		IMPORTANCE-CUTOFF	cutoff
		IMPORTANCE-LIMIT	limit
		INTERMEDIATE-SIMULATIONS	intsim
•••		SENSITIVITY-MEASURE	inc, lim
		V-SPACE-POINT	ON
		V SITICE I OHVI	OFF
		RESET	

PURPOSE:

Define options for presentation of results.

PARAMETERS:

CONFIDENCE-VALUE conf

The confidence value that is used with print and display of confidence limits. This value must be given in %, e.g. a value of 95 will print/display 95% confidence limits.

IMPORTANCE-CUTOFF cutoff

This value is used to cut off the smallest importance factor values from the print of importance factors. This value must be given in %, e.g. if input as 5, all importance factor values less than 5% will not be printed.

IMPORTANCE-LIMIT limit

This value is used to group the smallest importance factor values in the display of importance factors. This value must be given in %, e.g. if input as 5, all importance factor values less than 5% will be shown in one pie slice, named "Other".

INTERMEDIATE-SIMULATIONS intsim

Determines how many lines of intermediate results will be printed with the PRINT RESULT ALL command after a simulation analysis. To see all intermediate simulation results, set intsim to a value equal to or greater than the number of samples performed.

SENSITIVITY-MEASURE inc, lim

Defines how sensitivity measures are calculated. A sensitivity measure is dimensionless, in that it measures the change in the target value when a parameter is multiplied by (1+inc). As this definition

Profast

Program version 2.2-03 01-OCT-2004

> does not work when the parameter value is zero, lim denotes the smallest parameter value to which it can be applied.

V-SPACE-POINT Defines if the V-space coordinates of a FORM linearisation point are to be printed (ON) or not

(OFF).

RESET Reset all values and options to the default values

used when initialising a new database.

NOTES:

See also:

- PRINT RESULT
- DISPLAY RESULT

EXAMPLE:

The following values are default when the program starts up with a new database:

DEFINE PRESENTATION RESULT CONFIDENCE-VALUE 90 DEFINE PRESENTATION RESULT IMPORTANCE-CUTOFF 0 DEFINE PRESENTATION RESULT IMPORTANCE-LIMIT 5 DEFINE PRESENTATION RESULT INTERMEDIATE-SIMULATIONS 10 DEFINE PRESENTATION RESULT SENSITIVITY-MEASURE 0.1 0.0001

DEFINE PRESENTATION RESULT V-SPACE-POINT OFF

5-148 01-OCT-2004 Program version 2.2-03

DEFINE PRESENTATION TRANSFER-FUNCTION

	TRANSFER-FUNCTION	ORDINATE-VALUES	AMPLITUDE
			PHASE-AMPLITUDE
			REAL-IMAGNARY
		ABSCISSA-AXIS	ANGULAR-FREQUENCY
			PERIOD
			WAVE-LENGTH

PURPOSE:

Define presentation of transfer functions.

PARAMETERS:

ORDINATE-VALUES Define how the ordinate is presented.

AMPLITUDE Use the amplitude in the display of the transfer functions. This

will allow display of more than one curve at the same time.

PHASE-AMPLITUDE Use the phase and amplitude as ordinates in the display of the

transfer function. This will generate two curves, and allows display of only one transfer function in one direction at a time.

REAL-IMAGINARY Display the real and imaginary values as ordinates in the dis-

play of the transfer function. This will generate two curves, and allows display of only one transfer function in one direction at

a time.

ABSCISSA-AXIS Define how the abscissa is presented.

ANGULAR-FREQUENCY Use angular frequencies along the abscissa axis.

PERIOD Use the wave period along the abscissa axis.

WAVE-LENGTH Use the wave length along the abscissa axis.

NOTES:

See Figure 3.7.

See also:

- CHANGE TRANSFER-FUNCTION
- CREATE TRANSFER-FUNCTION

Program version 2.2-03 01-OCT-2004 5-149

- DISPLAY TRANSFER-FUNCTION
- PRINT TRANSFER-FUNCTION

EXAMPLES:

The default at program start-up is:

DEFINE PRESENTATION TRANSFER-FUNCTION ORDINATE-VALUES AMPLITUDE
DEFINE PRESENTATION TRANSFER-FUNCTION ABSCISSA-AXIS ANGULAR-FREQUENCY

5-150 01-OCT-2004 Program version 2.2-03

DEFINE PROBABILITY-ANALYSIS

	PROBABILITY-ANALYSIS	AXIS-ORTHOGONAL	
		DESIGN-POINT	
		DIRECTIONAL	•••
		MONTE-CARLO	

PURPOSE:

Define analysis options that apply to simulation of a probability.

PARAMETERS:

AXIS-ORTHOGONAL Define analysis options for axis orthogonal simulation.

DESIGN-POINT Define analysis options for design point simulation.

DIRECTIONAL Define analysis options for directional simulation.

MONTE-CARLO Define analysis options for Monte Carlo simulation.

NOTES:

None

DEFINE PROBABILITY-SIMULATION AXIS-ORTHOGONAL

		COEFFICIENT-OF-VARIATION	cov
		CPU-TIME	cpu
		DENSITY	CONDITIONED
	AXIS-ORTHOGONAL	DENOTT	STANDARD-NORMAL
			RISKY-AND-FAST
		SEARCH	MEDIUM-SAFE
			SAFE-AND-SLOW
		SIMULATIONS	nsim
		RESET	

PURPOSE:

Define analysis options for axis orthogonal simulation of a probability.

PARAMETERS:

COEFFICIENT-OF-VARIATION cov The sampling will stop if the coefficient of variation of the sim-

ulated result becomes lower than or equal to cov. To disable this

stop criterion, set cov to 0. cov must be non-negative.

CPU-TIME cpu The sampling will stop when the cpu time cpu (in seconds) has

been exceeded. The check is performed after each sample is completed. To disable this stop criterion, set cpu to 0. cpu must

be non-negative.

DENSITY Specifies the sampling density.

CONDITIONED This density has a shape that is dependent on the shape of the

limit state surface, and produces a result that is a multiplicative correction to the FORM probability. This is generally quite fast and accurate, but it depends on a reasonable FORM approxima-

tion to the limit state surface.

STANDARD-NORMAL This density is not dependent on the shape of the limit state sur-

face, and produces an additive correction to the FORM proba-

bility. This option is the slowest and safest of the two.

SEARCH Specifies how the line search for points on the limit state sur-

face is performed along the simulated direction.

RISKY-AND-FAST This search method simply checks one point far out on the line,

and looks for a solution only if the sign of the function is different at the origin and at the end point. This method is generally

5-152 01-OCT-2004 Program version 2.2-03

sufficient for single events. It is generally not recommended for

analysis of other events.

MEDIUM-SAFE This search method steps out to the first solution (if any), then

takes one step to the end to see if there should be another solu-

tion. This method is sufficiently accurate in most cases.

SAFE-AND-SLOW This search method steps out to the "end" of the line (where the

probability becomes negligible) without skipping any larger

pieces.

SIMULATIONS nsim

The simulation will stop after nsim samples has been complet-

ed. nsim must be a positive whole number.

RESET Reset all values and options to the default values used when in-

itialising a new database.

NOTES:

1 The current analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.

2 The simulation will run until any one of the stop criteria has been met.

3 Sensitivity calculation is not possible with this analysis method.

See also:

- PRINT ANALYSIS-SETTINGS
- SELECT ANALYSIS-METHOD PROBABILITY-ANALYSIS3

EXAMPLE:

The following values are default when the program starts up with a new database:

```
DEFINE PROBABILITY-ANALYSIS AXIS-ORTHOGONAL COEFFICIENT-OF-VARIATION 0
```

DEFINE PROBABILITY-ANALYSIS AXIS-ORTHOGONAL CPU-TIME 60

DEFINE PROBABILITY-ANALYSIS AXIS-ORTHOGONAL DENSITY CONDITIONED DEFINE PROBABILITY-ANALYSIS AXIS-ORTHOGONAL SEARCH MEDIUM-SAFE DEFINE PROBABILITY-ANALYSIS AXIS-ORTHOGONAL SIMULATIONS 50

5-153

DEFINE PROBABILITY-SIMULATION DESIGN-POINT

	COEFFICIENT-OF-VARIATION	cov
DESIGN-POINT	CPU-TIME	cpu
 DESIGN-FOINT	SIMULATIONS	nsim
	RESET	

PURPOSE:

Define analysis options for design point simulation of a probability.

PARAMETERS:

COEFFICIENT-OF-VARIATION cov The simulations will stop if the coefficient of variation of the

simulated result becomes lower than or equal to cov. To disable this stop criterion, set cov to 0. cov must be non-negative.

CPU-TIME cpu

The simulations will stop when the cpu time cpu (in seconds)

has been exceeded. The check is performed after each simulation is completed. To disable this stop criterion, set cpu to 0.

cpu must be non-negative.

SIMULATIONS nsim

The simulation will stop after nsim simulations has been com-

pleted. nsim must be a positive whole number.

RESET Reset all values and options to the default values used when in-

itialising a new database.

NOTES:

- 1 The design point simulation first finds the design point. Then it performs a Monte Carlo probability simulation with sampling density centered at the design point.
- 2 The current analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.
- 3 The simulation will run until any one of the stop criteria has been met.
- 4 Sensitivity calculation is not possible with this analysis method.

See also:

- PRINT ANALYSIS-SETTINGS
- SELECT ANALYSIS-METHOD PROBABILITY-ANALYSIS

EXAMPLES:

The following values are default when the program starts up with a new database:

5-154 01-OCT-2004 Program version 2.2-03

DEFINE PROBABILITY-ANALYSIS DESIGN-POINT COEFFICIENT-OF-VARIATION 0

DEFINE PROBABILITY-ANALYSIS DESIGN-POINT CPU-TIME 60

DEFINE PROBABILITY-ANALYSIS DESIGN-POINT SIMULATIONS 1000

DEFINE PROBABILITY-SIMULATION DIRECTIONAL

	COEFFICIENT-OF-VARIATION	cov	
	CPU-TIME	сри	
		DEFAULT	
		RANDOM-DIRECTION	
	METHOD	ORTHOGONAL-1	
		ORTHOGONAL-2	
		ORTHOGONAL-3	
 DIRECTIONAL		RISKY-AND-FAST	
	SEARCH-LIMIT	MEDIUM-SAFE	
		SAFE-AND-SLOW	
		PROBABILITY	probvalue
	SEARCH-LIMIT	STANDARD-NORMAL	argvalue
	STEP-LENGTH	length	
	SIMULATIONS	nsim	
	RESET		

PURPOSE:

Define analysis options for directional simulation of a probability.

PARAMETERS:

COEFFICIENT-OF-VARIATION cov The simulations will stop if the coefficient of variation of the

simulated result becomes lower than or equal to *cov*. To disable this stop criterion, set *cov* to 0. The *cov* must be non-negative.

CPU-TIME *cpu* The simulations will stop when the cpu time (in seconds) has

been exceeded. The check is performed after each simulation is completed. To disable this stop criterion, set *cpu* to 0. The *cpu*

must be non-negative.

METHOD Specifies the sampling method.

DEFAULT The default sampling method is selected on the basis of the di-

mension of the *u*-space. This method is recommended in most cases. If the model contains a time consuming model function,

it may be better to use the random direction method.

5-156 01-OCT-2004 Program version 2.2-03

RANDOM-DIRECTION

The probability is calculated in a simulated direction and in the opposite direction, and the average of the two probabilities is used as the sample probability. This reduces the sample variance because the two probabilities can be assumed to be negatively correlated. This is the simplest technique. It is mostly useful when the more sophisticated techniques take too long time to produce results.

ORTHOGONAL-1

An orthogonal set of directions, that span the *u*-space, is simulated. The probability is then found in each of these directions and their opposite directions, and the average value is calculated and used as the sample value. The sample variance is further reduced by this method. The drawback is that it may take some time to produce each sample value because of the large number of calculations involved.

ORTHOGONAL-2

Is a sophistication of the ORTHOGONAL-1 method. Instead of using the simulated directions and their opposites, all possible averages of two of these directions are used. This gives a better coverage of *u*-space, but increases computation time considerably.

ORTHOGONAL-3

As ORTHOGONAL-2, except that averages are formed of all possible combinations of three directions instead of two. This method can be very time consuming.

SEARCH

Specifies how the line search for points on the limit state surface is performed along the simulated direction.

RISKY-AND-FAST

This search method simply checks one point far out on the line, and looks for a solution only if the sign of the function is different at the origin and at the end point. This method is generally sufficient for single events. It is generally not recommended for analysis of other events.

MEDIUM-SAFE

This search method steps out to the first solution (if any), then takes one step to the end to see if there should be another solution. This method is sufficiently accurate in most cases.

SAFE-AND-SLOW

This search method steps out in the u-space to the "end" of the line (where the probability becomes negligible) without skipping any larger pieces.

SEARCH-LIMIT

The search method steps out in the u-space until the probability of the remaining line becomes negligible, as specified by the search limit. The search limit may be entered as a PROBABIL-ITY with value probval or as a STANDARD-NORMAL argval, which is the u-space search limit. Notice the correspondence $(\Phi(-u)=probval)$

STEP-LENGTH length

The search method steps out in the u-space in search for zero points until the probability of the remaining line becomes

D	04 0 00 000	- 4
Program version 2.2-03	01-OCT-2004	5-157

negligible, as specified by the search limit. Starting from u=0,

the next step is $u_{\text{next}} = u_{\text{current}} + length$.

SIMULATIONS *nsim* The simulation will stop after *nsim* simulations has been com-

pleted. nsim must be a positive whole number.

RESET Reset all values and options to the default values used when in-

itialising a new database.

NOTES:

1 The current analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.

2 The simulation will run until any one of the stop criteria has been met.

See also:

- PRINT ANALYSIS-SETTINGS
- SELECT ANALYSIS-METHOD PROBABILITY-ANALYSIS

EXAMPLES:

The following values are default when the program starts up with a new database:

```
DEFINE PROBABILITY-ANALYSIS DIRECTIONAL COEFFICIENT-OF-VARIATION 0
DEFINE PROBABILITY-ANALYSIS DIRECTIONAL CPU-TIME 60
DEFINE PROBABILITY-ANALYSIS DIRECTIONAL METHOD DEFAULT
DEFINE PROBABILITY-ANALYSIS DIRECTIONAL SEARCH MEDIUM-SAFE
DEFINE PROBABILITY-ANALYSIS DIRECTIONAL SIMULATIONS 50
```

5-158 01-OCT-2004 Program version 2.2-03

DEFINE PROBABILITY-SIMULATION MONTE-CARLO

		COEFFICIENT-OF-VARIATION	cov
	MONTE-CARLO	CPU-TIME	cpu
•••	WONTE-CINEO	SIMULATIONS	nsim
		RESET	

PURPOSE:

Define analysis options for Monte Carlo simulation of a probability.

NOTES:

- 1 The current analysis settings may be printed by use of the PRINT ANALYSIS-SETTINGS command.
- 2 The simulation will run until any one of the stop criteria has been met.
- 3 Sensitivity calculation is not possible with this analysis method.

See also:

- PRINT ANALYSIS-SETTINGS
- SELECT ANALYSIS-METHOD PROBABILITY-ANALYSIS

EXAMPLE:

The following values are default when the program starts up with a new database:

```
DEFINE PROBABILITY-ANALYSIS MONTE-CARLO COEFFICIENT-OF-VARIATION 0
DEFINE PROBABILITY-ANALYSIS MONTE-CARLO CPU-TIME 60
DEFINE PROBABILITY-ANALYSIS MONTE-CARLO SIMULATIONS 1000
```

Program version 2.2-03

01-OCT-2004

5-159

DEFINE SERVICE-LIFE

	SERVICE-LIFE	start	final
--	--------------	-------	-------

PURPOSE:

Define the life time of the structure being analysed.

PARAMETERS:

start Start time of the analysis, in years.

final End time of the analysis, in years.

NOTES:

Times are is specified in decimal years, e.g. 1995.5 is the start of July 1995.

See also:

- ASSIGN UNCERTAINTY VALUE
- PRINT UNCERTAINTY
- PRINT ANALYSIS-SETTINGS

EXAMPLES:

The default at program start-up is:

DEFINE SERVICE-LIFE 0 25

5-160 01-OCT-2004 Program version 2.2-03

DEFINE SN-ANALYSIS FAILURE-PROBABILITY

			FORM
		ANALYSIS-METHOD	SORM
			DEFAULT
	FAILURE-PROBABILITY	IMPORTANCE-FACTORS	ON
•••	TAILUKE-I KODADILIT I		OFF
		NUMBER-OF-STEPS	nstep
		PARAMETRIC-SENSITIVITY	ON
			OFF

PURPOSE:

Define how an SN analysis of the failure probability is performed.

PARAMETERS:

ANALYSIS-METHOD Use FORM or SORM (Parabolic) for the analysis, or use the

DEFAULT method selected by the command SELECT ANAL-

YSIS-METHOD PROBABILITY-ANALYSIS.

IMPORTANCE-FACTORS Disable (OFF) or enable (ON).

calculation of importance factors (in order to save computation time). This setting overrides the DEFINE ANALYSIS-OP-TION IMPORTANCE command for crack growth analysis of

the failure probability.

NUMBER-OF-STEPS nstep

The number of steps used to map the probability as a function

of time over the whole service life.

PARAMETRIC-SENSITIVITY Disable (OFF) or enable (ON) calculation of parametric sensi-

tivities (in order to save computation time). This setting overrides the DEFINE ANALYSIS-OPTION SENSITIVITY command for crack growth analysis of the failure probability.

NOTES:

See also.

- RUN SN-ANALYSIS
- DISPLAY SN-ANALYSIS
- PRINT SN-ANALYSIS

Program version 2.2-03 01-OCT-2004 5-161

EXAMPLE:

The following values are default when the program starts up with a new database:

DEFINE SN-ANALYSIS FAILURE-PROB ANALYSIS-METHOD FORM

DEFINE SN-ANALYSIS FAILURE-PROB IMPORTANCE-FACTORS OFF

DEFINE SN-ANALYSIS FAILURE-PROB NUMBER-OF-STEPS 10

DEFINE SN-ANALYSIS FAILURE-PROB PARAMETRIC-SENSITIVITY OFF

5-162 01-OCT-2004 Program version 2.2-03

DEFINE TRANSFER-FUNCTION

		LINEAR
 TRANSFER-FUNCTION	INTERPOLATION	QUADRATIC
		CUBIC

PURPOSE:

Define the usage of transfer functions.

PARAMETERS:

INTERPOLATION Define the interpolation method to be used during calculation of a transfer function

value: LINEAR, QUADRATIC or CUBIC interpolation.

NOTES:

The quadratic and cubic options may cause some instability in the calculation of the Sum-Rayleigh distribution.

See also.

• ASSIGN STRESS-RANGE

EXAMPLES:

The default at program start-up is:

DEFINE TRANSFER-FUNCTION INTERPOLATION LINEAR

Program version 2,2-03 01-OCT-2004 5-163

DEFINE UNCERTAINTY

 UNCERTAINTY	parameter	distribution	DEFAULT	
 lower, upper, lowC	oV, medCoV,	HigCoV, lowS	tD, medStDH	igStD

PURPOSE:

Define the default uncertainty for a stochastic parameter.

PARAMETERS:

parameter A parameter name.

distribution Default distribution for the parameter. The mean value of the distribution will be

input as the parameter value when the default distribution is used. Mpost distributions require in addition an uncertainty definition. In this case, this is defined through the remaining six values as LOW, MEDIUM and HIGH uncertainty values. If no uncertainty is required (e.g. for the Exponential distribution), these values

ues need not be input.

DEFAULT The default uncertainty to be used when a new parameter is created based on this

definition. One of NONE, KNOWN if the standard deviation is a function of the

mean value, and one of NONE, LOW, MEDIUM, HIGH otherwise.

lower Lower bound for the distribution, when applicable.

upper Upper bound for the distribution, when applicable.

lowCoV The Coefficient of Variation to be applied as LOW uncertainty.

medCoV The Coefficient of Variation to be applied as MEDIUM uncertainty.

higCoV The Coefficient of Variation to be applied as HIGH uncertainty.

lowStD The Standard Deviation to be applied as LOW uncertainty.

medStD The Standard Deviation to be applied as MEDIUM uncertainty.

higStD The Standard Deviation to be applied as HIGH uncertainty.

NOTES:

- 1 The Coefficient of Variation is defined in this case as the standard deviation divided by the absolute value of the mean.
- 2 When defining the uncertainty based on the user input, the coefficient of variation is applied unless it generates an uncertainty lower than the corresponding standard deviation. In this case, the standard devi-

5-164 01-OCT-2004 Program version 2.2-03

ation is used. Thus the uncertainty can never be less than the standard deviation, and will grow with the mean value when CoV * Abs(Mean) becomes larger than the standard deviation.

- 3 When an uncertainty definition is changed, all stochastic parameters based on this definition will be updated to reflect the new definition.
- 4 The current setting can be printed using the command PRINT UNCERTAINTY-DEFINITION.

See also.

- ASSIGN UNCERTAINTY VALUE
- PRINT UNCERTAINTY

EXAMPLES:

DEFINE UNCERTAINTY FatigPnt-lnC LOGNORMAL NONE 0.01 0.05 0.2 0.01 0.05 0.2

Program	

01-OCT-2004

DEFINE WEIBULL-FIT

		DETERMINISTIC	{prob}*
	WEIBULL-FIT		prob1, fac11, fac12
WEIBOLL-III	PROBABILISTIC	prob2, fac21, fac22	
			prob3, fac31, fac32

PURPOSE:

Define probability and stress values at which a Weibull stress range fit is performed.

PARAMETERS:

DETERMINISTIC Define probability values for a deterministic Weibull fit.

Cumulative probabilities, used to define fractile stress values at which the distribuprob

tion is fitted. At least two values must be specified.

PROBABILISTIC Define probability values for a probabilistic Weibull fit.

prob1, prob2, prob3 Cumulative probability values, used to define fractiles at which a probabilistic fit

is performed.

fac11 ... fac32 Factors on the stress values at which the probabilistic analyses are performed. facil

and faci2 are used together with probi.

NOTES:

See also.

• ASSIGN STRESS-RANGE

EXAMPLES:

The defaults at program start-up is:

DEFINE WEIBULL-FIT DETERMINISTIC (ONLY 0.5 0.825 0.9 0.937 0.96 0.975 0.985 0.991 0.996 0.999 0.9999)

DEFINE WEIBULL-FIT PROBABILISTIC 0.921 1.0 1.2 0.975 1.0 1.2 0.994 1.0 1.2

5-166 01-OCT-2004 Program version 2.2-03

DELETE

	EVENT	
	FATIGUE-POINT	
	FUNCTION	
	INSPECTION	
	PLAN-INSPECTION	
DELETE	RESULT	
	SN-CURVE	
	TRANSFER-FUNCTION	
	VARIABLE	
	WAVE-SPREADING-FUNCTION	
	WAVE-STATISTICS	

PURPOSE:

Delete a named object.

PARAMETERS:

EVENT Delete an event.

FATIGUE-POINT Delete a fatigue point.

FUNCTION Delete a function formula or a function integral.

INSPECTION Delete an inspection.

PLAN-INSPECTION Delete an inspection plan.

RESULT Delete an analysis result.

SN-CURVE Delete an SN curve.

TRANSFER-FUNCTION Delete a transfer function.

VARIABLE Delete a random variable.

WAVE-SPREADING-FUNCTION Delete a wave spreading function.

WAVE-STATISTICS Delete a wave statistics formulation.

Program version 2.2-03 01-OCT-2004 5-167

NOTES:

None.

5-168 01-OCT-2004 Program version 2.2-03

DELETE EVENT

... EVENT name+

PURPOSE:

Delete one or more events.

PARAMETERS:

name+ Name(s) of the event(s) to be deleted.

NOTES:

Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.

See also.

- CREATE EVENT
- CHANGE EVENT
- COPY EVENT
- RENAME EVENT
- DISPLAY EVENT
- PRINT EVENT

EXAMPLES:

DELETE EVENT PFC*

Program version 2.2-03

01-OCT-2004

5-169

DELETE FATIGUE-POINT

... FATIGUE-POINT name+

PURPOSE:

Delete one or more fatigue points.

PARAMETERS:

name+ Name(s) of fatigue point(s) to be deleted.

NOTES:

Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.

See also.

- CREATE FATIGUE-POINT
- PRINT FATIGUE-POINT

EXAMPLES:

DELETE FATIGUE-POINT C35

5-170 01-OCT-2004 Program version 2.2-03

DELETE FUNCTION

	FUNCTION	name+
--	----------	-------

PURPOSE:

Delete one or more function formulas or function integrals.

PARAMETERS:

name+ Name(s) of the function(s) to be deleted.

NOTES:

Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.

See also:

- CREATE FUNCTION
- CHANGE FUNCTION
- RENAME FUNCTION
- DISPLAY FUNCTION
- PRINT FUNCTION

EXAMPLES:

DELETE FUNCTION SYMFUN

Program version 2.2-03

01-OCT-2004

5-171

DELETE INSPECTION

... INSPECTION name+

PURPOSE:

Delete one or more inspections.

PARAMETERS:

name+

Name(s) of the inspection(s) to be deleted.

NOTES:

- 1 Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.
- 2 When an inspection is deleted, all assignments to the inspection are also deleted.

See also.

- CREATE INSPECTION
- PRINT INSPECTION

EXAMPLES:

DELETE INSPECTION P1S-*

5-172 01-OCT-2004 Program version 2.2-03

DELETE PLAN-INSPECTION

	PLAN-INSPECTION	name+
--	-----------------	-------

PURPOSE:

Delete one or more results from an inspection plan analysis.

PARAMETERS:

name+ Name(s) of the inspection plan(s) to be deleted.

NOTES:

- 1 Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.
- 2 When an inspection plan is deleted, all inspections generated by the plan are also deleted.

See also.

- RUN PLAN-INSPECTION
- PRINT PLAN-INSPECTION

EXAMPLES:

DELETE PLAN-INSPECTION BRAGE3

Program version 2.2-03

01-OCT-2004

5-173

DELETE RESULT

	RESULT	name+
--	--------	-------

PURPOSE:

Delete one or more results.

PARAMETERS:

name+ Name(s) of the result(s) to be deleted.

NOTES:

- 1 Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.
- 2 Those results created by this program should not be deleted by the user.

See also.

- RUN PROBABILITY-ANALYSIS
- RUN DISTRIBUTION-ANALYSIS
- SAVE RESULT
- DISPLAY RESULT
- PRINT RESULT

EXAMPLES:

DELETE RESULT Prob*

5-174 01-OCT-2004 Program version 2.2-03

DELETE SN-CURVE

... SN-CURVE name+

PURPOSE:

Delete one or more SN curves.

PARAMETERS:

name+ Name(s) of SN-curve(s) to be deleted.

NOTES:

- 1 Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.
- 2 Predefined SN-curves cannot be deleted.

See also.

- CREATE SN-CURVE
- DISPLAY SN-CURVE
- PRINT SN-CURVE

EXAMPLES:

DELETE SN-CURVE USER*

Program version 2.2-03

01-OCT-2004

5-175

DELETE TRANSFER-FUNCTION

	TRANSFER-FUNCTION	name+
--	-------------------	-------

PURPOSE:

Delete one or more transfer functions.

PARAMETERS:

name+ Name(s) of transfer function(s) to be deleted.

NOTES:

Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.

See also.

- CREATE TRANSFER-FUNCTION
- DISPLAY TRANSFER-FUNCTION
- PRINT TRANSFER-FUNCTION

EXAMPLES:

DELETE TRANSFER-FUNCTION USER*

5-176 01-OCT-2004 Program version 2.2-03

DELETE VARIABLE

... VARIABLE name+

PURPOSE:

Delete one or more variables.

PARAMETERS:

name+ Name(s) of the variable(s) to be deleted.

NOTES:

- 1 Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.
- 2 If a deleted variable is used in a single event, the single event is also deleted.

See also.

- CREATE VARIABLE
- CHANGE VARIABLE
- COPY VARIABLE
- RENAME VARIABLE
- DISPLAY VARIABLE
- PRINT VARIABLE

EXAMPLES:

DELETE VARIABLE X*

Program version 2.2-03

01-OCT-2004

5-177

DELETE WAVE-SPREADING-FUNCTION

	WAVE-SPREADING-FUNCTION	name+
--	-------------------------	-------

PURPOSE:

Delete one or more wave spreading functions.

PARAMETERS:

name+

Name(s) of wave spreading function(s) to be deleted.

NOTES:

Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.

See also.

- CREATE WAVE-SPREADING-FUNCTION
- DISPLAY WAVE-SPREADING-FUNCTION
- PRINT WAVE-SPREADING-FUNCTION

EXAMPLES:

DELETE WAVE-SPREADING-FUNCTION SPR*

5-178 01-OCT-2004 Program version 2.2-03

DELETE WAVE-STATISTICS

	WAVE-STATISTICS	name+
--	-----------------	-------

PURPOSE:

Delete one or more wave statistics.

PARAMETERS:

name+ Name(s) of wave statistics to be deleted.

NOTES:

Deletion cannot be undone. The only way to undo a deletion is to edit the command(s) generating the deleted object from the journal file, and then read the command input file into the program again.

See also.

- CREATE WAVE-STATISTICS
- DISPLAY WAVE-STATISTICS
- PRINT WAVE-STATISTICS

EXAMPLES:

DELETE WAVE-STATISTICS SCAT?

DISPLAY

	T	
	CALIBRATION-CRACK-GROWTH	
	CRACK-GROWTH-ANALYSIS	
	DISTRIBUTION	
	EVENT	
	FUNCTION	
	FITTED-DISTRIBUTION	
	GEOMETRY-FUNCTION	
	JOINT	
	LABEL	
DISPLAY	MEMBER	
	PRESENTATION	
	RESULT	
	SN-ANALYSIS	
	SN-CURVE	
	STRESS-RANGE	
	SUPERELEMENT	
	TRANSFER-FUNCTION	
	WAVE-SPREADING-FUNCTIO	
	WELD-EFFECT	
		•

PURPOSE:

To present input data and results graphically.

PARAMETERS:

CALIBRATION-CRACK-GROWTH Display the result of a crack growth model calibration.

CRACK-GROWTH-ANALYSIS Display the result of a crack growth analysis.

DISTRIBUTION Display the distribution of random variable(s).

EVENT Display an event.

FUNCTION Display a model function.

FITTED-DISTRIBUTION Display a fitted the distribution with input data.

5-180 01-OCT-2004 Program version 2.2-03

GEOMETRY-FUNCTION Display an assigned geometry function.

JOINT Display one or more joints.

LABEL Turns display of labels on/off.

MEMBER Display one or more members.

PRESENTATION Switch between wire frame and hidden surface display.

RESULT Display an analysis result.

SN-ANALYSIS Display the result of an SN analysis.

SN-CURVE Display one or more SN curves.

STRESS-RANGE Display the distribution of the stress range.

TRANSFER-FUNCTION Display one or more transfer functions.

SUPERELEMENT Display the finite element model for the current superelement.

WAVE-SPREADING-FUNCTION Display a wave spreading function.

WELD-EFFECT Display an assigned weld effect.

NOTES:

- 1 Display of joints and members require access to a Framework database.
- 2 Display of a superelement requires access to a SIN file.
- 3 Display of results will only be available when the results exist.

Program version 2.2-03 01-OCT-2004 5-181

DISPLAY CALIBRATION-CRACK-GROWTH

Ī			FINAL
	 CALIBRATION-CRACK-GROWTH	fatigpnt/inspect	START-AND-FINAL
			ALL-ITERATIONS

PURPOSE:

Display the result of a calibration of the crack growth model to the SN reliability result.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection for which the calibration was made.

FINAL Display the final result only (SN reliability indexes and crack growth reliabilitity

indexes).

START-AND-FINAL Display the initial crack growth reliability indexes together with the final result.

ALL-ITERATIONS Display all iterations together with the starting point and the final result.

NOTES:

Examples of the display can be seen in Figure 2.6 and Figure 3.14.

See also.

- RUN CALIBRATION-CRACK-GROWTH
- PRINT CALIBRATION-CRACK-GROWTH
- SET GRAPH

EXAMPLE:

DISPLAY CALIBRATION-CRACK-GROWTH C3501 START-AND-FINAL

5-182 01-OCT-2004 Program version 2.2-03

DISPLAY CRACK-GROWTH-ANALYSIS

CRACK-GROWTH-ANALYSIS	FAILURE-PROBABILITY	
 CRACK-GROWIII-ANALISIS	LIFE-TIME	•••

PURPOSE:

Display the result of a crack growth analysis.

PARAMETERS:

FAILURE-PROBABILITY Display the result of a crack growth analysis of the failure prob-

ability

LIFE-TIME Display the result of a crack growth analysis of the time to fail-

ure.

NOTES:

None.

Program version 2.2-03

01-OCT-2004

5-183

DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY

	FAILURE-PROBABILITY	fatigpnt/inspect	PROBABILITY
•••	THEORE TROBUBILITY	iutigpit/ilispect	RELIABILITY-INDEX

PURPOSE:

Display the result of a crack growth analysis of the failure probability.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection for which the analysis was made.

PROBABILITY Display the probability as a function of time.

RELIABILITY-INDEX Display the reliability index as a function of time.

NOTES:

- 1 The SN reliability result may be shown in the same graph. See DEFINE PRESENTATION CRACK-GROWTH-ANALYSIS.
- 2 The target reliability is shown if it has been assigned.
- 3 Examples of the display can be seen in Figure 2.6, Figure 2.7, Figure 3.14, Figure 3.17 and Figure 3.19.

See also.

- RUN CRACK-GROWTH-ANALYSIS
- PRINT CRACK-GROWTH-ANALYSIS
- DEFINE PRESENTATION CRACK-GROWTH-ANALYSIS
- SELECT RESULT
- DISPLAY RESULT PARAMETER-STUDY
- SET GRAPH

EXAMPLE:

DISPLAY CRACK-GROWTH-ANALYSIS FAILURE C3501 RELIABILITY-INDEX

5-184 01-OCT-2004 Program version 2.2-03

DISPLAY CRACK-GROWTH-ANALYSIS LIFE-TIME

		HISTOGRAM
 LIFE-TIME	fatigpnt/inspect	DISTRIBUTION
		COMPLEMENTARY-DISTRIBUTION

PURPOSE:

Display the result of a crack growth analysis of the time to failure.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection for which the anal-

ysis was made.

HISTOGRAM Display the histogram for the simulated distribution. This op-

tion cannot be used if a Mean value based FORM analysis was

performed.

DISTRIBUTION Display the distribution function for the life time.

COMPLEMENTARY-DISTRIBUTION Display the complementary distribution function for the life

time.

NOTES:

1 Only probabilistic analysis results can be displayed.

2 A probabilistic analysis can also be displayed using the commands SELECT RESULT and DISPLAY RESULT DISTRIBUTION.

See also.

- RUN CRACK-GROWTH-ANALYSIS
- PRINT CRACK-GROWTH-ANALYSIS
- SET GRAPH
- SELECT RESULT
- DISPLAY RESULT DISTRIBUTION

EXAMPLE:

DISPLAY CRACK-GROWTH-ANALYSIS LIFE C3501 DISTRIBUTION

B	04 0 075 0004	
Program version 2.2-03	01-OCT-2004	

DISPLAY DISTRIBUTION

		DENSITY
 DISTRIBUTION	univar+	DISTRIBUTION
		COMPLEMENTARY-DISTRIBUTION

PURPOSE:

Display distribution and density functions for existing variables.

PARAMETERS:

univar+ A selection of one-dimensional distribution variables with nu-

merical or fixed parameters.

DENSITY Display the density function for the selected variable(s).

DISTRIBUTION Display the distribution function for the selected variable(s).

COMPLEMENTARY-DISTRIBUTION Display the complementary distribution function for the select-

ed variable(s).

NOTES:

The functions are calculated within a range of three standard deviations (five standard deviations if limited by a bound) on each side of the mean.

See also.

- DISPLAY RESULT DISTRIBUTION
- DISPLAY FITTED-DISTRIBUTION
- PRINT DISTRIBUTION
- PRINT VARIABLE
- SET GRAPH

EXAMPLE:

DISPLAY DISTRIBUTION (ONLY Width Height) DENSITY

5-186 01-OCT-2004 Program version 2.2-03

DISPLAY EVENT

	EVENT	event	SINGLE
•••	LVLIVI	event	MULTIPLE

PURPOSE:

Display the definition of an event as a network.

PARAMETERS:

event The name of the event to be displayed.

SINGLE Display only the first level subevents.

MULTIPLE Display the first two levels of subevents as network.

NOTES:

Unions are displayed horizontally and intersections vertically.

See also.

- PRINT EVENT
- SET

EXAMPLE:

DISPLAY EVENT Beam-Fail MULTIPLE

Program		

01-OCT-2004

5-187

DISPLAY FITTED-DISTRIBUTION

FITTED-DISTRIBUTION variable

PURPOSE:

Display a fitted distribution with the points it is fitted to.

PARAMETERS:

variable

The name of a variable that is assigned a fitted distribution.

NOTES:

- 1 A spline fit or cumulative fit is displayed as a distribution function curve.
- 2 A fit to observations is displayed as a histogram with the density function of the fitted distribution. This display can be regulated by use of the SET GRAPH HISTOGRAM command.

See also.

- DISPLAY DISTRIBUTION
- PRINT DISTRIBUTION
- PRINT VARIABLE
- SET

EXAMPLE:

DISPLAY FITTED-DISTRIBUTION Sp133

5-188 01-OCT-2004 Program version 2.2-03

DISPLAY FUNCTION

	FUNCTION	name	[coord]	from	
--	----------	------	---------	------	--

ONE-ARGUMENT	argx, tox		
 TWO-ARGUMENTS	argx, tox, argy, toy	SURFACE	
TWO THEODINE TO		CONTOUR	min, max, step

PURPOSE:

Display distribution and density functions for existing variables.

PARAMETERS:

name Name of the function.

[coord] Coordinate of the function, if multidimensional.

from Argument value(s) where the calculation of the function is started.

ONE-ARGUMENT Display the function as a graph with one argument along the abscissa and the func-

tion value as the ordinate.

argx Name of the argument to be used as abscissa.

tox End value along the abscissa axis.

TWO-ARGUMENT Display the function as a surface or contour plot. This option is not available for

functions with only one argument.

argy Name of the argument to be used as ordinate.

toy End value along the ordinate axis.

SURFACE Show a surface plot.

CONTOUR Show a contour plot.

min max step Contour specification: min, min+step, ... until max is reached.

NOTES:

- 1 Functions where the number of coordinates is defined by the user cannot be displayed.
- 2 The function option values in effect at the time of display will be used. Note that these may affect the number of arguments of the function, as well as the dimension and function value.

Program version 2.2-03 01-OCT-2004 5-189

See also.

- DEFINE PRESENTATION FUNCTION
- PRINT FUNCTION
- ASSIGN FUNCTION-OPTION
- SET GRAPH

EXAMPLE:

DISPLAY FUNCTION Power 0.0 2.34 ONE-ARG Value 7.0 DISPLAY FUNCTION Power 0.0 1.0 TWO-ARG Value 5.0 Exponent 3.0 SURFACE

5-190 01-OCT-2004 Program version 2.2-03

DISPLAY GEOMETRY-FUNCTION

	GEOMETRY-FUNCTION	fatigpnt/inspect
--	-------------------	------------------

PURPOSE:

Display a weld effect assigned to a fatigue point or to an inspection with a repair assigned.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection with a geometry function assigned.

NOTES:

- 1 Geometry functions for two-dimensional crack growth models cannot be displayed.
- 2 An assigned weld effect is not multiplied on the geometry function as displayed here.

See also.

- ASSIGN GEOMETRY-FUNCTION
- DISPLAY WELD-EFFECT
- SET GRAPH

EXAMPLE:

DISPLAY GEOMETRY-FUNCTION C3501

Program version 2.2-03 01-OCT-2004

DISPLAY JOINT

	ALL
 JOINT	joint
	set

PURPOSE:

Display one or more joints.

PARAMETERS:

ALL Display all joints.

joint Display the one named joint.

set Display all joints in the named set of joints.

NOTES:

- 1 This commands requires access to a database produced by Framework.
- 2 Only those sets of joints that have been created by use of Framework can be selected for display here.
- 3 The VIEW command may be used to manipulate the display.
- 4 An example of this display can be found in Figure 3.3.

See also.

- DISPLAY MEMBER
- DISPLAY LABEL
- DISPLAY PRESENTATION
- VIEW

EXAMPLE:

DISPLAY JOINT ALL

5-192 01-OCT-2004 Program version 2.2-03

DISPLAY LABEL

		MEMBER-NAMES		ON
	LABEL	JOINT-NAMES		ON
	LADEL	CHORD-AND-BRACE	•••	OFF
		FATIGUE-POINT		OFT

PURPOSE:

Turns display of labels on members or joints on or off.

PARAMETERS:

MEMBER-NAMES Label the member names.

JOINT-NAMES Label the joint names.

CHORD-AND-BRACE Label the chord and brace status of each end of members (joint display only).

FATIGUE-POINT Display the fatigue points positioned on the structure as diamonds.

ON Turn label ON.

OFF Turn label OFF.

NOTES:

1 In CHORD-AND-BRACE display:

C = chord

B = brace

L = local chord or both chord and brace

N = non-pipe

P = probably a pile

S = support or free end

E = element end, when member has been mod-

elled by more than one element

2 An example of this display can be found in Figure 3.3.

See also.

DISPLAY MEMBER

Program version 2.2-03 01-OCT-2004 5-193

- DISPLAY JOINT
- DISPLAY PRESENTATION
- VIEW

EXAMPLES:

DISPLAY LABEL MEMBER-NAMES ON

The default labelling is OFF in all cases.

5-194 01-OCT-2004 Program version 2.2-03

DISPLAY MEMBER

	ALL
 MEMBER	member
	set

PURPOSE:

Display one or more members.

PARAMETERS:

ALL Display all members.

member Display the one named member.

set Display all members in the named set of members.

NOTES:

- 1 This commands requires access to a database produced by Framework.
- 2 Only those sets of members that have been created by use of Framework can be selected for display here.
- 3 The command: DISPLAY PRESENTATION may be used to switch between wire-frame display and hidden surface display.
- 4 The VIEW command may be used to manipulate the display.
- 5 An example of this display can be found in Figure 3.3.

See also.

- DISPLAY JOINT
- DISPLAY LABEL
- DISPLAY PRESENTATION
- VIEW

EXAMPLE:

DISPLAY MEMBER ALL

Program version 2.2-03

01-OCT-2004

5-195

DISPLAY PRESENTATION

1	PRESENTATION	WIREFRAME HIDDEN SUBSACE recolution			
	TRESERVITATION	HIDDEN-SURFACE	resolution		

PURPOSE:

Switch between wire-frame and hidden surface display.

PARAMETERS:

WIREFRAME Line display.

HIDDEN-SURFACE Hidden surface display.

resolution Numerical factor defining resolution for the hidden-surface display (default value

is 1.0, a value of 0.1 will give a coarse resolution).

NOTES:

1 The HIDDEN-SURFACE display is only available in the DISPLAY MEMBER command.

2 The HIDDEN-SURFACE display requires a high performance (gray-scale or colour) workstation or terminal running the X windows system.

See also.

- DISPLAY MEMBER
- VIEW

EXAMPLES:

DISPLAY PRESENTATION HIDDEN-SURFACE 0.1

5-196 01-OCT-2004 Program version 2.2-03

DISPLAY RESULT

	DISTRIBUTION	
 RESULT	IMPORTANCE-FACTORS	•••
	PARAMETER-STUDY	

PURPOSE:

Display results generated by PROBAN graphically.

PARAMETERS:

DISTRIBUTION Display the result of a distribution analysis.

IMPORTANCE-FACTORS Display the importance factors resulting from a probability

analysis.

PARAMETER-STUDY Display results as a function of the parameter in a parameter

study.

NOTES:

None.

Program version 2.2-03 01-OCT-2004 5-197

DISPLAY RESULT DISTRIBUTION

				DENSITY
	DISTRIBUTION	[value]	univar/result+	DISTRIBUTION
				COMPLEMENTARY-DISTRIBUTION

PURPOSE:

Display distribution and density functions for existing variables and for results.

PARAMETERS:

[value] This input is only required if the selected result is a parameter

study. value is then one of the parameter values for which the study was run. The particular result from the analysis using the

selected value will be displayed.

univar/result+ A selection of one-dimensional distribution variables with nu-

merical or fixed parameters, or of results. The following results may be available: Empirical: The empirical distribution from a simulation. Mean-V-FORM: The distribution calculated in a

Mean value based FORM analysis.

DENSITY Display the density function for the selected variable(s). For an

empirical distribution, a histogram is drawn (see also SET GRAPH HISTOGRAM). It is not possible to display the densi-

ty for a Mean-V-FORM result.

DISTRIBUTION Display the distribution function for the selected variable(s).

COMPLEMENTARY-DISTRIBUTION Display the complementary distribution function for the select-

ed variable(s).

NOTES:

- 1 The distribution and density functions are calculated within a range of three standard deviations on each side of the mean.
- 2 When a distribution simulation is selected, and no parameter study was performed, two variables are fitted to the estimated moments: a Hermite transformation distribution (using four moments) and a Normal distribution (using two moments). These are available in the variables named Hermite-Fit and Normal-Fit.
- 3 A histogram cannot be displayed with a logarithmic X or Y axis.
- 4 The empirical distribution function is calculated as: $F(x_{(i)}) = i/(n+1)$ when n simulations were completed and the sample points have been ordered as: $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$.

5-198 01-OCT-2004 Program version 2.2-03

See also.

- DISPLAY DISTRIBUTION
- PRINT RESULT
- SELECT RESULT
- SET

EXAMPLE:

DISPLAY RESULT DISTRIBUTION (ONLY Empirical Normal-Fit) DENSITY DISPLAY RESULT DISTRIBUTION ONLY Mean-V-FORM DISTRIBUTION

Program version 2.2-03

01-OCT-2004

5-199

DISPLAY RESULT IMPORTANCE-FACTORS

	IMPORTANCE-FACTORS	[value+]
--	--------------------	----------

PURPOSE:

Display importance factors.

PARAMETERS:

value+

This input is only required if the selected result is a parameter study. value is then a selection of the parameter values for which the study was run. The particular results from the analysis using the selected value(s) will be displayed.

NOTES:

- 1 The importance factors are displayed as a pie chart.
- 2 All importance factor values less than a user definable limit are grouped into one segment labelled "Other" (see DEFINE PRESENTATION RESULT IMPORTANCE-LIMIT).
- 3 The form of the pie charts may be manipulated by use of the command SET GRAPH PIE-CHART.
- 4 Examples of the display can be seen in Figure 3.11 and Figure 3.16.

See also.

- DEFINE PRESENTATION RESULT IMPORTANCE-LIMIT
- DISPLAY RESULT PARAMETER-STUDY IMPORTANCE-FACTOR
- PRINT RESULT
- SELECT RESULT
- SET

EXAMPLE:

```
DISPLAY RESULT IMPORTANCE-FACTORS % no parameter study
DISPLAY RESULT IMPORTANCE-FACTORS ONLY 22.5 % pick one from a study
DISPLAY RESULT IMPORTANCE-FACTORS ONLY * % all results from a study
```

5-200 01-OCT-2004 Program version 2.2-03

DISPLAY RESULT PARAMETER-STUDY

	PARAMETER-STUDY	IMPORTANCE-FACTOR	
	TARAMETER STODI	MAIN-RESULT	•••

PURPOSE:

Display results as a function of the parameter in a parameter study.

PARAMETERS:

IMPORTANCE-FACTOR Display importance factors as a function of the parameter.

MAIN-RESULT Display one or more main results as a function of the parameter.

NOTES:

None.

Program version 2.2-03

01-OCT-2004

5-20

DISPLAY RESULT PARAMETER-STUDY IMPORTANCE-FACTOR

	IMPORTANCE-FACTOR	impname+
--	-------------------	----------

PURPOSE:

Display importance factors as a function of the parameter in a parameter study.

PARAMETERS:

impname+ A selection of importance factor names. The segment named "Other" in the pie

chart representation is not used here. All available importance factor names can be

selected.

NOTES:

Examples of the display can be seen in Figure 3.11 and Figure 3.16.

See also.

- PRINT RESULT PARAMETER-STUDY IMPORTANCE-FACTOR
- DISPLAY RESULT IMPORTANCE-FACTORS
- SELECT RESULT
- SET

EXAMPLE:

DISPLAY RESULT PARAMETER-STUDY IMPORTANCE-FACTOR (ONLY Depth ImpGroup-1) DISPLAY RESULT PARAMETER-STUDY IMPORTANCE-FACTOR ONLY T*

5-202 01-OCT-2004 Program version 2.2-03

DISPLAY RESULT PARAMETER-STUDY MAIN-RESULT

	MAIN-RESULT	mainres+
--	-------------	----------

PURPOSE:

Display main results as a function of the parameter in a parameter study.

PARAMETERS:

mainres+

A selection of main results. The list of available results depend on the analysis performed. All possible main results are presented in the list, even though they may not all be calculated for all the individual analyses in the parameter study. For deterministic analysis of a variable there will be one result for each coordinate, and for an event there will be one result. These results will be named after the variable or event analysed.

NOTES:

1 All possible main results from probability and distribution analyses are listed in SESAM User's Manual: Proban.

See also:

- PRINT RESULT PARAMETER-STUDY MAIN-RESULT
- SELECT RESULT
- SET

EXAMPLE:

```
DISPLAY RESULT PARAMETER-STUDY MAIN-RESULT ( ONLY Prob* Conf* ) DISPLAY RESULT PARAMETER-STUDY MAIN-RESULT ONLY *Mean*
```

Program version 2.2-03 01-OCT-2004 5-203

DISPLAY SN-ANALYSIS

SN-ANALYSIS	FAILURE-PROBABILITY	
 SIV-ZIIVZEI SIS	LIFE-TIME	•••

PURPOSE:

Display the result of an SN analysis.

PARAMETERS:

FAILURE-PROBABILITY Display the result of an SN analysis of the failure probability.

LIFE-TIME Display the result of an SN analysis of the time to failure.

NOTES:

None.

5-204 01-OCT-2004 Program version 2.2-03

DISPLAY SN-ANALYSIS FAILURE-PROBABILITY

	FAILURE-PROBABILITY	fatigpnt/inspect	PROBABILITY	
•••			RELIABILITY-INDEX	

PURPOSE:

Display the result of an SN analysis of the failure probability.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection for which the anal-

ysis was made.

PROBABILITY Display the probability as a function of time.

RELIABILITY-INDEX Display the reliability index as a function of time.

NOTES:

See also:

- RUN SN-ANALYSIS
- PRINT SN-ANALYSIS
- SELECT RESULT
- DISPLAY RESULT PARAMETER-STUDY
- SET GRAPH

EXAMPLE:

DISPLAY SN-ANALYSIS FAILURE C3501 RELIABILITY-INDEX

Program version 2.2-03

01-OCT-2004

5-205

DISPLAY SN-ANALYSIS LIFE-TIME

		HISTOGRAM
 LIFE-TIME	fatigpnt/inspect	DISTRIBUTION
		COMPLEMENTATY-DISTRIBUTION

PURPOSE:

Display the result of an SN analysis of the time to failure.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection for which the anal-

ysis was made.

HISTOGRAM Display the histogram for the simulated distribution. This op-

tion cannot be used if a Mean value based FORM analysis was

performed.

DISTRIBUTION Display the distribution function for the life time.

COMPLEMENTARY-DISTRIBUTION Display the complementary distribution function for the life

time.

NOTES:

1 Only probabilistic analysis results can be displayed.

2 A probabilistic analysis can also be displayed using the commands SELECT RESULT and DISPLAY RESULT DISTRIBUTION.

See also:

- RUN SN-ANALYSIS
- PRINT SN-ANALYSIS
- SET GRAPH
- SELECT RESULT
- DISPLAY RESULT DISTRIBUTION

EXAMPLE:

DISPLAY SN-ANALYSIS LIFE C3501 DISTRIBUTION

5-206 01-OCT-2004 Program version 2.2-03

DISPLAY SN-CURVE

... SN-CURVE name+

PURPOSE:

Display one or more SN curves

PARAMETERS:

name+ Name(s) of SN-curve(s) to be displayed.

NOTES:

- 1 The SN-curves will always be shown in a log-log scale.
- 2 If one curve of type STOCHASTIC is displayed, two curves are drawn, using the value of logk with and without the safety factor applied.
- 3 Examples of the SN curve display can be seen in Figure 3.9.

See also:

- CREATE SN-CURVE
- CHANGE SN-CURVE
- PRINT SN-CURVE
- SET GRAPH

EXAMPLES:

DISPLAY SN-CURVE DNV*

Program version 2.2-03

01-OCT-2004

5-207

DISPLAY STRESS-RANGE

	STRESS-RANGE	fatigpnt/inspect
--	--------------	------------------

PURPOSE:

Display the distribution of the stress range assigned to a fatigue point or an inspection.

PARAMETERS:

fatigpnt/inspect

The name of a fatigue point or an inspection with a stress range assignment.

NOTES:

- 1 A CONSTANT stress range cannot be displayed.
- 2 A WEIBULL-AB stress range is displayed as an exceedance probability curve for the specified Weibull distribution.
- 3 A SUM-RAYLEIGH stress range is displayed as the exceedance probability curve for the Sum-Rayleigh distribution.
- 4 A WEIBULL-FIT stress range is displayed as two exceedance probability curves for the fitted Weibull distribution and the Sum-Rayleigh distribution with the fit points imposed.
- 5 The tail of the stress range distribution may be examined in more detail by setting a logarithmic Y axis: SET GRAPH Y-AXIS SPACING LOGARITHMIC.
- 6 Examples of the stress range display can be seen in Figure 3.8.

See also:

- ASSIGN STRESS-RANGE
- SET GRAPH

EXAMPLE:

DISPLAY STRESS-RANGE C3501

5-208 01-OCT-2004 Program version 2.2-03

DISPLAY SUPERELEMENT

PURPOSE:

Display the finite element model for the current superelement.

PARAMETERS:

None:

NOTES:

This commands requires access to a database produced by Framework or a SIN file.

See also:

- PRINT SUPERELEMENT
- VIEW

EXAMPLE:

DISPLAY SUPERELEMENT

Program version 2.2-03 01-OCT-2004 5-209

DISPLAY TRANSFER-FUNCTION

	TRANSFER-FUNCTION	name+	dir+
--	-------------------	-------	------

PURPOSE:

Display one or more transfer functions at one or more directions.

PARAMETERS:

name+ Name(s) of transfer function(s) to be displayed.

dir+ Selection of directions for which the function(s) is displayed.

NOTES:

- 1 Invalid combinations of names and directions are ignored.
- 2 The command DEFINE PRESENTATION TRANSFER-FUNCTION may be used to select the value(s) to be displayed along the ordinate axis.
- 3 If the ORDINATE-VALUES is set to PHASE-AMPLITUDE or REAL-IMAGINARY, only the first valid combination of name and direction will be displayed.
- 4 An example of this display can be found in Figure 3.7.

See also:

- CREATE TRANSFER-FUNCTION
- CHANGE TRANSFER-FUNCTION
- PRINT TRANSFER-FUNCTION
- SET GRAPH
- DEFINE PRESENTATION TRANSFER-FUNCTION

EXAMPLES:

DISPLAY TRANSFER-FUNCTION TRF* (0 45)

5-210 01-OCT-2004 Program version 2.2-03

DISPLAY WAVE-SPREADING-FUNCTION

	WAVE-SPREADING-FUNCTION	name	[space]
--	-------------------------	------	---------

PURPOSE:

Display one wave spreading function.

PARAMETERS:

name Name of a wave spreading function.

space Space between each wave direction angle for which the function is displayed. This

value is independent of what the program will use in calculations. This value is

only required when a cosine power function is displayed.

NOTES:

See also:

- CREATE WAVE-SPREADING-FUNCTION
- CHANGE WAVE-SPREADING-FUNCTION
- PRINT WAVE-SPREADING-FUNCTION

EXAMPLES:

DISPLAY WAVE-SPREADING-FUNCTION COS2 30 DISPLAY WAVE-SPREADING-FUNCTION USERDEF

Program version 2.2-03

01-OCT-2004

5-211

DISPLAY WELD-EFFECT

WELD-EFFE	T fatigpnt/inspect
-----------	--------------------

PURPOSE:

Display a weld effect assigned to a fatigue point or to an inspection with a repair assigned.

PARAMETERS:

fatigpnt/inspect

The name of a fatigue point or an inspection with a weld effect assigned.

NOTES:

See also:

- ASSIGN WELD-EFFECT
- DISPLAY GEOMETRY-FUNCTION
- SET

EXAMPLE:

DISPLAY WELD-EFFECT C3501

5-212 01-OCT-2004 Program version 2.2-03

EXIT

EXIT

PURPOSE:

Close all open files and stop execution of Profast.

PARAMETERS:

None.

NOTES:

- 1 This command is not available from the menu bar in graphics mode. Use FILE EXIT instead.
- 2 This command is not journalled.
- 3 EXIT cannot be abbreviated.

See also:

• FILE EXIT

EXAMPLES:

EXIT

Program version 2.2-03 01-OCT-2004 5-213

FILE

FILE	EXIT	
TILL	OPEN	

PURPOSE:

To manage file access and close the program.

PARAMETERS:

EXIT Close all open files and exit the program.

OPEN Open a SESAM interface file.

NOTES:

None.

5-214 01-OCT-2004 Program version 2.2-03

FILE EXIT

PURPOSE:

Close all open files and stop execution of Profast.

PARAMETERS:

None.

NOTES:

- 1 This command is not journalled.
- 2 EXIT cannot be abbreviated.

See also:

• FILE EXIT

EXAMPLES:

EXIT

Program version 2.2-03

01-OCT-2004

5-215

FILE OPEN

	OPEN	format	prefix	name
--	------	--------	--------	------

PURPOSE:

To open a Results Interface File.

PARAMETERS:

format Results Interface File format. One of: SIF-FORMATTED, SIU-UNFORMATTED

and SIN-DIRECT-ACCESS.

prefix Results Interface File prefix.

prefix Results Interface File name.

NOTES:

This command is only available if no Framework database is used. Its sole purpose is to enable reading of transfer functions from the file.

See also:

• CREATE TRANSFER-FUNCTION

EXAMPLES:

FILE OPEN SIN X108A R1

5-216 01-OCT-2004 Program version 2.2-03

HELP

	ABOUT-HELP		
HELP	COMMAND-INPUT-FILE		
	LINE-MODE	COMMANDS	
		DEFAULTS	
		SELECTING	
		OTHER-FACILITIES	
	PROGRAMMING-MODE	BUILT-IN	
		EXPRESSIONS	
		OVERVIEW	
		VARIABLES	
	STATUS-LIST		
	SUPPORT		

PURPOSE:

Provide guidance to the user.

PARAMETERS:

ABOUT-HELP Provide information about the HELP command.

COMMAND-INPUT-FILE Provide information about command input files.

LINE-MODE Provide information specific for usage in line mode.

COMMANDS Provide information about specifying commands in line mode.

DEFAULTS Provide information about usage of defaults in line mode.

SELECTING Provide information about selection and abbreviation in line

mode.

OTHER-FACILITIES Provide information about special facilities in line mode.

PROGRAMMING-MODE Provide information about the programming mode.

BUILT-IN Provide information about built in functions, procedures and

constants, accessible in programming mode.

EXPRESSIONS Provide information about the use of calculation expressions in

programming mode.

Program version 2.2-03 01-OCT-2004 5-217

OVERVIEW Provide an overview of the facilities available in programming

mode.

VARIABLES Provide information about the usage of variables in program-

ming mode.

STATUS-LIST Examine the status list for Profast.

SUPPORT Provide information that is helpful at a support request. This in-

clude information about the versions of the program and linked-in libraries, and about the environment in which the pro-

gram runs.

NOTES:

1 This command is not journalled.

- 2 There is no guarantee that this command will remain compatible over time.
- 3 All information, except the status list, is treated as a program message, i.e. it is written into the message window in graphics mode and echoed at the terminal in line mode. The status list is presented in the print window when running in graphics mode, and presented one screenful at a time when running in line mode.
- 4 See also the sections in chapter 4 on getting help when running in line mode and in graphics mode.

5-218 01-OCT-2004 Program version 2.2-03

PLOT

PLOT

PURPOSE:

Execute the last DISPLAY command and write the result to the currently selected plot file.

PARAMETERS:

None.

NOTES:

- 1 The plot file and format is specified by use of the SET PLOT command.
- 2 Note that the command does not actually write the display as seen on the screen to file it re-executes the DISPLAY command, taking any changed settings into account.
- 3 This command is not available from the menu bar in graphics mode. Use FILE PLOT instead, or use the graphics pick mode.

See also:

- DISPLAY
- FILE PLOT
- SET PLOT

EXAMPLES:

PLOT

Program version 2.2-03 01-OCT-2004 5-219

PRINT

	ANALYSIS-SETTINGS	
	CALIBRATION-CRACK-GROWTH	
	CORRELATION	
	CRACK-GROWTH-ANALYSIS	
	DISTRIBUTION	
PRINT	EVENT	
	FATIGUE-POINT	
	FUNCTION	
	INSPECTION	
	PARAMETER-STUDY	
	PLAN-INSPECTION	
	RESULT	
	SN-ANALYSIS	
	SN-CURVE	
	STARTING-POIN	
	TRANSFER-FUNCTION	
	UNCERTAINTY	
	VARIABLE	
	WAVE-SPREADING-FUNCTION	
	WAVE-STASTISTICS	
		•

PURPOSE:

To present input data and results graphically.

PARAMETERS:

ANALYSIS-SETTINGS Print all analysis settings related to probability and distribution

analysis.

CALIBRATION-CRACK-GROWTH Print the result of a crack growth model calibration.

CORRELAPTION Print all correlations assigned to a selection of variables.

CRACK-GROWTH-ANALYSIS Print the result of a crack growth analysis.

5-220 01-OCT-2004 Program version 2.2-03

DISTRIBUTION Print the distribution and density function of a variable.

EVENT Print information about a selection of events.

FATIGUE-POINT Print a fatigue point with all its assignments.

FUNCTION Print information about a function or a function value/deriva-

tive.

INSPECTION Print an inspection with all its assignments.

PARAMETER-STUDY Print the assigned parameter study.

PLAN-INSPECTION Print an inspection plan.

RESULT Print an analysis result.

SN-ANALYSIS Print the result of an SN analysis.

SN-CURVE Print data related to a selection of SN curves.

STARTING-POINT Print the starting point assignment for a selection of events.

TRANSFER-FUNCTION Print data for one transfer function.

UNCERTAINTY Print assigned uncertainty and uncertainty definitions.

VARIABLE Print information about a selection of variables.

WAVE-SPREADING-FUNCTION Print information about a wave spreading function.

WAVE-STATISTICS Print information about a selection of wave statistics.

Program version 2.2-03

01-OCT-2004

5-221

PRINT ANALYSIS-SETTINGS

... ANALYSIS-SETTINGS

PURPOSE

Print all analysis options.

PARAMETERS:

None.

NOTES:

1 All analysis options related to probability and distribution analysis are printed, including those for analysis methods that are currently not selected.

See also:

- DEFINE
- SELECT ANALYSIS-METHOD

EXAMPLES:

PRINT ANALYSIS-SETTINGS

5-222 01-OCT-2004 Program version 2.2-03

PRINT CALIBRATION-CRACK-GROWTH

	CALIBRATION-CRACK-GROWTH	fatigue/inspect
--	--------------------------	-----------------

PURPOSE:

Print the result of a calibration crack growth model to the SN reliability result.

PARAMETERS:

fatigue/inspect The name of a fatigue point or an inspection for which the calibration was made.

NOTES:

See also:

- RUN CALIBRATION-CRACK-GROWTH
- DISPLAY CALIBRATION-CRACK-GROWTH

EXAMPLE:

RUN CALIBRATION-CRACK-GROWTH

may generate the following print:

```
Crack growth calibration for Fatigue point: J3220
Parameter 1 : J3220-GFacto-Mean
It Parameter 1 2000.50 2010.50 2030.50 Step Dist
_____
   Not used
             3.576 2.867 2.172 0.0010 0.30
  1.0000E+00 1.173 0.574 0.005 2.2896
                                      2.29
1
  2.2360E-01 6.301
                    5.584 4.876 5.0043
                                      2.72
             4.289
                           2.925 1.9821
  3.9236E-01
                    3.601
              3.618
                    2.942
  4.7592E-01
                           2.282 0.6580
             3.542
                    2.868
  4.8653E-01
                           2.209 0.0742
                                       0.03
  4.8666E-01
              3.541
                    2.867
                           2.208 0.0009
```

Program version 2.2-03

01-OCT-2004

5-223

PRINT CORRELATION

	CORRELATION	univar+
--	-------------	---------

PURPOSE:

Print assigned correlations.

PARAMETERS:

univar+

A selection of variables that are defined as one dimensional distributions with numerical or fixed parameters. All correlations assigned to pairs of these variables are printed. If only one variable is selected, all correlations assigned to this variable will be printed.

NOTES:

See also:

- ASSIGN CORRELATION
- SET TITLE

EXAMPLES:

PRINT CORRELATION *

May generate the following print:

+-----+
! Correlations between variables !
+-----+

Variable 1	Variable 2	Input	Basic	Normalized	
J3220-lnA	J5120-lnA	Basic	CorrStress		

5-224 01-OCT-2004 Program version 2.2-03

PRINT CRACK-GROWTH-ANALYSIS

CRACK-GROWTH-ANALYSIS	FAILURE-PROBABILITY	fatigpnt/inspect
 Cidicia GROWIII ARVIETOIS	LIFE-TIME	fatigpnt/inspect

PURPOSE:

Print the results of a crack growth analysis.

PARAMETERS:

FAILURE-PROBABILITY Print the result of a crack growth analysis of the failure proba-

bility.

LIFE-TIME Print the result of a crack growth analysis of the time to failure.

fatigpnt/inspect The fatigue point or inspection for which the analysis was

made.

NOTES:

See also:

- DEFINE CRACK-GROWTH-ANALYSIS
- RUN CRACK-GROWTH-ANALYSIS
- DISPLAY CRACK-GROWTH-ANALYSIS

EXAMPLE:

PRINT CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220

may generate the following print:

Crack growth analysis result for fatigue point: J3220

Time	Prob	Beta	Remark
1990.5	0		Start of service life
1990.9	1 5.7668E-12	6.7859	
1992.1	5 4.4030E-08	5.3498	
1994.2	22 3.0051E-06	4.5260	
1997.1	1 3.9027E-05	3.9503	
2000.8	3 2.2458E-04	3.5094	
2000.8	3		Inspection: J3220-1 performed
2001.2	25 3.1049E-06	4.5191	
2002.5	2 2.0753E-05	4.0989	
2004.6	3 8.0091E-05	3.7747	
2007.5	8 2.3986E-04	3.4918	Inspection: J3220-2 performed

Program version 2.2-03 01-OCT-2004 5-225

2008.10	2.8980E-06	4.5337	
2009.66	1.9760E-05	4.1103	
2012.26	7.7768E-05	3.7821	
2015.90	2.3563E-04	3.4966	
2015.90			<pre>Inspection: J3220-3 performed</pre>
2016.19	1.0404E-06	4.7454	
2017.05	5.8035E-06	4.3848	
2018.49	1.9260E-05	4.1162	
2020.50	5.0726E-05	3.8871	End of service life

5-226 01-OCT-2004 Program version 2.2-03

PRINT DISTRIBUTION

		LOW-RESOLUTION		
DISTRIBUTION	univar	HIGH-RESOLUTION	n	
 DISTRIBUTION	umvar	FRACTILE	probability*	
		PROBABILITY	fractile*	

PURPOSE:

Print distribution- and density functions and fractile values for the variables assigned distributions with fixed or numerical parameters.

PARAMETERS:

univar+ A variable that is defined as a one dimensional distributions

with numerical or fixed parameters.

LOW-RESOLUTION Print a table of the distribution, complementary distribution and

density function values at 19 fixed probability values ranging

from 0.001 to 0.999.

HIGH-RESOLUTION n Print a table of the distribution, complementary distribution and

density function values at n points ranging from median - 4

standard deviations to median + 4 standard deviations.

FRACTILE probability* Print fractile values at the specified probabilities. Also prints

the complementary distribution and density function at the

specified points.

PROBABILITY fractile* Print probabilities (distribution function values) at the specified

fractiles. Also prints the complementary distribution and densi-

ty function at the specified points.

NOTES:

1If a LOOP is specified in line mode input after DISTRIBUTION, any specified fractiles or probabilities are kept as defaults. Otherwise, the default set of fractiles and probabilities is empty.

See also:

- DISPLAY DISTRIBUTION
- PRINT VARIABLE
- SET TITLE

01-OCT-2004

EXAMPLES:

PRINT DISTRIBUTION StdNormal LOW-RESOLUTION

May generate the following print:

+----+
! Distribution of StdNormal !
+-----

Variable	Туре	Pa	arameter	Value
StdNormal	Norma		ean tand-Dev	0.00000000E+00 1.00000000E+00
Fract	ile	Distr	Compl	Density
-3.0902323 -2.3263478 -1.6448536 -1.2815518 -1.0364333 -8.4162123 -6.7448978 -5.2440053 -2.5334710	374E+00 627E+00 566E+00 389E+00 336E-01 502E-01 127E-01 031E-01	0.010000 0.050000 0.100000 0.150000 0.200000 0.250000 0.300000 0.400000	0.990000 0.950000 0.900000 0.850000 0.800000 0.750000 0.700000 0.600000	3.367090077E-03 2.665214220E-02 1.031356404E-01 1.754983319E-01 2.331587753E-01 2.799619204E-01 3.177765727E-01 3.476926142E-01 3.863425335E-01
5.293868 2.5334710 5.244005 6.744897 8.4162123 1.0364333 1.2815519 1.6448530 2.3263478	031E-01 127E-01 502E-01 336E-01 389E+00 566E+00	0.500000 0.600000 0.700000 0.750000 0.800000 0.950000 0.950000 0.990000	0.500000 0.400000 0.300000 0.250000 0.200000 0.150000 0.100000 0.050000	3.989422804E-01 3.863425335E-01 3.476926142E-01 3.177765727E-01 2.799619204E-01 2.331587753E-01 1.754983319E-01 1.031356404E-01 2.665214220E-02

5-227

5-228 01-OCT-2004 Program version 2.2-03

PRINT EVENT

	EVENT	name+
--	-------	-------

PURPOSE:

Print information about one or more events.

PARAMETERS:

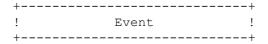
name+ Name(s) of event(s) to be printed.

NOTES:

The printout contains information about the event data, including all assignments except starting point.

See also:

- CREATE EVENT
- CHANGE EVENT
- DISPLAY EVENT
- ASSIGN STARTING-POINT
- ASSIGN MEASURED-VALUE
- SET TITLE


EXAMPLES:

```
PRINT EVENT ( J3220-CGFail J5-I1-INAll )
```

May generate the following print:

+								-+
!			Εv	zent				!
+								-+
!			J3220	O-CGI	Fail			!
!	Crack	growth	failure	for	fatigue	point	J3220	!
+								-+

Event-type	Subevent	Subtype	Contents	
2 ' 1				
Single			J3220-CGFail	0.0

Program version 2.2-03 01-OCT-2004 5-229

! J5-I1-INAll !
! All inspections up to J5-I1!
+------
Event-type Subevent Subtype Contents

Intersection J5-I1-INLen Single J5-I1-INLen = 0.0

5-230 01-OCT-2004 Program version 2.2-03

PRINT FATIGUE-POINT

	FATIGUE-POINT	name+
--	---------------	-------

PURPOSE:

Print information about one or more fatigue points.

PARAMETERS:

name+ Name(s) of fatigue point(s) to be printed.

NOTES:

The printout contains information about the fatigue point data, including all assignments.

See also:

- CREATE FATIGUE-POINT
- DELETE FATIGUE-POINT
- PRINT INSPECTION

EXAMPLES:

PRINT FATIGUE-POINT J5120

May generate the following print:

FatigPnt	Contents	Value	
J5120	Thickness Target Rel.	Joint 5120, Brace 35415, Hotspot 10 in Brace 700.0 Uncertainty: None 20.0 Uncertainty: None Not assigned	
	Insp. Qual. Inspection		
	SCF	SCFax: 2.50000 Uncertainty: None SCFipb: 3.53553 Uncertainty: None SCFopb: 3.53553 Uncertainty: None 1/Area: 2.3405139E-05 z/Iy: -1.0012924E-07 y/Iz: 1.0012924E-07 Common factor: 1.0 Uncertainty: None	
Transfer Func Wax ax Fac Fac		Wave height linearisation axi: J5120TRA ipb: J5120TRI opb: J5120TRO Factor a: 1.0 Uncertainty: None Factor b: 0.0 Uncertainty: None Factor c: 0.0 Uncertainty: None	

Program version 2.2-03 01-OCT-2004 5-231

Stress resp. factor: 1.0 Uncertainty: None

Stress range Sum Rayleigh distribution is calculated

SN Curve DNVX

1K0 : Normal(Mean-StD 15.3801 , 0.4)

m0 : 4.1 Uncertainty: None 1N0 : 8.301 Uncertainty: None

Miner Sum 1.0 Uncertainty: None

5-232 01-OCT-2004 Program version 2.2-03

PRINT FUNCTION

		DESCRIPTION	•••
		FORMULA	
	FUNCTION	GRADIENT	
		LIBRARY	
	VALUE	•••	

PURPOSE:

Print information about the model functions that are available in the program.

PARAMETERS:

DESCRIPTION Print a description of one or more functions.

FORMULA Print a function formula.

GRADIENT Calculate and print a gradient for a function.

LIBRARY Print a description of a selection of function libraries.

VALUE Calculate and print a gradient for a function.

NOTES:

None.

Program version 2.2-03

01-OCT-2004

5-233

PRINT FUNCTION DESCRIPTION

DESCRIPTION	name+
-------------	-------

PURPOSE:

Print a description of a selection of functions.

PARAMETERS:

name+

Name(s) of the function(s) to be printed.

NOTES:

The selection of functions presented is determined by the current selection of sub-libraries (see SELECT FUNCTION-LIBRARY). This is because some libraries may contain a large number of functions and/or not be relevant to the current problem.

See also:

- SELECT FUNCTION-LIBRARY
- PRINT FUNCTION-LIBRARY
- SET TITLE

EXAMPLES:

PRINT FUNCTION DESCRIPTION Difference

Generates the following print:

+-		+
!	Function	!
+-		+
!	Difference	!
!	Difference X1 - X2	!
+-		+

The function belongs to sublibrary: Misc

First and second order derivatives are implemented

Name Description

Arguments: Additive-Arg Additive argument Subtract-Arg Subtractive argument

5-234 01-OCT-2004 Program version 2.2-03

PRINT FUNCTION FORMULA

	FORMULA	name+
--	---------	-------

PURPOSE:

Print a description of a selection of function formulas.

PARAMETERS:

name+ Name(s) of the function formula(s) to be printed.

NOTES:

Prints the name, description, argument list, calculation scheme and definition of a function formula.

See also:

- CREATE FUNCTION FORMULA
- CHANGE FUNCTION FORMULA
- DELETE FUNCTION FORMULA
- RENAME FUNCTION FORMULA
- SET TITLE

Program version 2.2-03

01-OCT-2004

5-235

EXAMPLES:

PRINT FUNCTION FORMULA SYMFUN

Generates the following print:

Gradients must be calculated numerically

Name	DescriptionValue Index
А В	Arg AV1 Arg BV2
Operator	OperandsResult
+	V1 V2V3

Formula: A+B

5-236 01-OCT-2004 Program version 2.2-03

PRINT FUNCTION GRADIENT

Ī				ANALYTICAL		
	 GRADIENT	function	SINGLE-POINT	NUMERICAL	[dim]	arguments
				CHECK		

PURPOSE:

Calculate and print the gradient of a function.

PARAMETERS:

function Name of the function to be printed.

SINGLE-POINT The gradient is to be calculated in a single point.

ANALYTICAL Calculate only analytical gradients (i.e. those that are programmed into the func-

tion). This option is not available if the function cannot calculate gradients.

NUMERICAL Calculate gradients by numerical differentiation only.

CHECK Calculate both analytical and numerical gradients, and print both.

[dim] The dimension of the value calculated by the function. Is not required as input if

the dimension is fixed.

arguments The arguments of the function.

NOTES:

- 1 The selection of functions presented is determined by the current selection of sub-libraries (see SELECT FUNCTION-LIBRARY). This is because some libraries may contain a large number of functions and/or not be relevant to the current problem.
- 2 If a LOOP is specified in line mode input after function, any specified argument values are kept as defaults. Otherwise, the default set of argument values is empty.

See also:

- SELECT FUNCTION-LIBRARY
- PRINT FUNCTION VALUE
- SET TITLE

EXAMPLES:

PRINT FUNCTION GRADIENT Power SINGLE-POINT CHECK 4 3

SESAM

Program version 2.2-03

Profast

01-OCT-2004 5-237

Generates the following print:

+------+
! Function !
+------+
! Power !
! Power function: X1**X2 !

	Function	Argument	Value	Numerical
Argument:		Value Exponent	4.00000000E+00 3.00000000E+00	
Function:	Power		6.400000000E+01	
Gradient:	Power Power	Value Exponent		4.804801600E+01 8.890758910E+01

5-238 01-OCT-2004 Program version 2.2-03

PRINT FUNCTION LIBRARY

	LIBRARY	name+
--	---------	-------

PURPOSE:

Print a description of a selection of function libraries.

PARAMETERS:

name+ Name(s) of the function libraries to be printed.

NOTES:

See also:

- SELECT FUNCTION-LIBRARY
- PRINT FUNCTION DESCRIPTION

EXAMPLES:

PRINT FUNCTION LIBRARY Misc

May generate the following print:

```
! Sublibrary !

! Misc !
! Miscellaneous general functions!
```

```
Dimen NArg NOp Description
______
Difference 1 2 0 Difference X1 - X2

Division 1 2 0 Division X1 / X2

Identity 1 1 0 Identity: f(x) = x
Division 1 2 0 Division X1 / X2  
Identity 1 1 0 Identity: f(x) = x
Linear-Comb 1 Input 0 Linear combination: x1*x2 + x3*x4 + \dots
Log-Diff 1 2 0 Difference: Log(X1) - Log(X2)
Maximum
Minimum
                     1 Input 0 Maximum of any number of variables
                     1 Input 0 Minimum of any number of variables
                     1 4 0 Polynomium of degree 1
1 5 0 Polynomium of degree 2
1 6 0 Polynomium of degree 3
1 7 0 Polynomium of degree 4
Polynom-1
Polynom-2
Polynom-3
Polynom-4

1 7 0 Polynomium or degree =

Polynom-N

1 Input 0 Polynomium(N,X,X0,C0,...): Sum of Ci*((X-X0)**i)

1 3 0 Difference: X1**X3 - X2**X3
Power-Diff
Product
                     1 Input 0 Product of any number of variables
                    1 3 0 Sign(X1)*(Abs(X1)**X3) - Sign(X2)*(Abs(X2)**X3)
SignPowDiff
Sum
                     1 Input 0 Sum of any number of variables
```

Program version 2.2-03

01-OCT-2004

5-239

PRINT FUNCTION VALUE

	VALUE	function	SINGLE-POINT	[dim]	arguments
--	-------	----------	--------------	-------	-----------

PURPOSE:

Calculate and print the value of a function.

PARAMETERS:

function Name of the function to be printed.

SINGLE-POINT The value is to be calculated in a single point.

[dim] The dimension of the value calculated by the function. Is not required as input if

the dimension is fixed.

arguments The arguments of the function.

NOTES:

- 1 The selection of functions presented is determined by the current selection of sub-libraries (see SELECT FUNCTION-LIBRARY). This is because some libraries may contain a large number of functions and/or not be relevant to the current problem.
- 2 If a LOOP is specified in line mode input after function, any specified argument values are kept as defaults. Otherwise, the default set of argument values is empty.

See also:

- SELECT FUNCTION-LIBRARY
- PRINT FUNCTION GRADIENT
- SET TITLE

EXAMPLES:

PRINT FUNCTION VALUE Polynomial-2 SINGLE-POINT 11 0 4 2 -6

Generates the following print:

+-			-+
!	Function		!
+-			-+
!	Polynom-2		!
!	Polynomium of degree	2	!
+-			-+

Name Value

Profast

Program version 2.2-03 5-240 01-OCT-2004

Arguments:

Argument 1.100000000E+01
Shift 0.00000000E+00
Coef-0 4.00000000E+00
Coef-1 2.00000000E+00
Coef-2 -6.000000000E+00

-7.000000000E+02 Function: Polynom-2

Program version 2.2-03

01-OCT-2004

5-241

PRINT INSPECTION

	INSPECTION	name+
--	------------	-------

PURPOSE:

Print information about one or more inspections.

PARAMETERS:

name+ Name(s) of inspection(s) to be printed.

NOTES:

The printout contains information about the inspection data, including all assignments.

See also:

- CREATE INSPECTION
- ASSIGN STRESS-RANGE
- ASSIGN SCF FATIGUE-POINT
- ASSIGN INFLUENCE-COEFFICIENTS FATIGUE-POINT
- ASSIGN TRANSFER-FUNCTION FATIGUE-POINT
- ASSIGN CRACK-GROWTH-MODEL
- ASSIGN WELD-EFFECT

EXAMPLES:

PRINT INSPECTION J5-I1

May generate the following print:

Inspect	n Contents	Value
J5-I1	Type Description Crack Depth	Inspection of fatigue point J5120 at time 1994.5 First inspection at J5120 Not observed
	Crack length Repair	Crack size is equal to 5.0 (Unc: Stdv 0.2) Not performed

5-242 01-OCT-2004 Program version 2.2-03

PRINT PARAMETER-STUDY

PURPOSE:

Print the currently assigned parameter study.

PARAMETERS:

None.

NOTES:

See also:

- DEFINE PARAMETER-STUDY
- DEFINE ANALYSIS-OPTION PARAMETER-STUDY
- SET TITLE

EXAMPLES:

PRINT PARAMETER-STUDY

May generate the following print:

! Assigned parameter study !

Variable	Parameter	Number	Value
Nyears	Constant	10	2.000000000E+00 4.000000000E+00 6.000000000E+00 8.000000000E+01 1.500000000E+01 2.000000000E+01 3.000000000E+01 5.000000000E+01

Program version 2.2-03 01-OCT-2004 5-243

PRINT PLAN-INSPECTION

	PLAN-INSPECTION	name	CHRONOLOGICAL
•••	TEM MOLECTION	name	POINTWISE

PURPOSE:

Print an inspection plan.

PARAMETERS:

name The name of the plan.

CHRONOLOGICAL Print the plan with inspections in increasing order of time.

POINTWISE Print the plan fatigue point by fatigue point.

NOTES:

See also:

• RUN PLAN-INSPECTION

• DELETE PLAN-INSPECTION

EXAMPLE:

PRINT PLAN-INSPECTION OPT CHRONOLOGICAL

may generate the following print:

Inspection plan : OPT

Description : Optimised plan

Method : Inspect when target reliability is reached

Start Time : 1990.50 End Service Life: 2020.50

FatigPnt	Target	Reliab	Time	POD Curve	Dir Remark	
 J5120	3.000	2.994	1993.58	PODL-MPI-UW	Len Jnt 5120	
J5120	3.000			-	Len Jnt 5120	
J5120	3.000	2.991	1998.48	PODL-MPI-UW	Len Jnt 5120	
J3220	3.500	3.509	2000.83	PODL-MPI-UW	Len Jnt 3220	
J5120	3.000	3.001	2001.85	PODL-MPI-UW	Len Jnt 5120	
J5120	3.000	2.993	2005.93	PODL-MPI-UW	Len Jnt 5120	
J3220	3.500	3.492	2007.58	PODL-MPI-UW	Len Jnt 3220	
J5120	3.000	2.992	2010.66	PODL-MPI-UW	Len Jnt 5120	
J3220	3.500	3.497	2015.90	PODL-MPI-UW	Len Jnt 3220	
J5120	3.000	2.990	2016.06	PODL-MPI-UW	Len Jnt 5120	
PRINT PLAN-INSPECTION OPT POINTWISE						

5-244 01-OCT-2004 Program version 2.2-03

may generate the following print:

Inspection plan : OPT

Description : Optimised plan

Method : Inspect when target reliability is reached

Start Time : 1990.50 End Service Life: 2020.50

FatigPnt	Target	Reliab	Time	POD Curve	Dir Remark
J3220	3.500	3.509	2000.83	PODL-MPI-UW	Len Jnt 3220
		3.492	2007.58	PODL-MPI-UW	Len
		3.497	2015.90	PODL-MPI-UW	Len
J5120	3.000	2.994	1993.58	PODL-MPI-UW	Len Jnt 5120
		3.003	1995.70	PODL-MPI-UW	Len
		2.991	1998.48	PODL-MPI-UW	Len
		3.001	2001.85	PODL-MPI-UW	Len
		2.993	2005.93	PODL-MPI-UW	Len
		2.992	2010.66	PODL-MPI-UW	Len
		2.990	2016.06	PODL-MPI-UW	Len

Program version 2.2-03 01-OCT-2004 5-245

PRINT RESULT

	RESULT	ALL	
		ANALYSIS-SETTINGS	
		IMPORTANCE-FACTORS	
		INTERMEDIATE-RESULTS	
•••		PARAMETER-STUDY	
		SAMPLE	
		SENSITIVITY	
		SUMMARY	

PURPOSE:

Print the currently selected result in tabular form, to screen or to file.

PARAMETERS:

ALL Print all the results from a probability or distribution analysis.

ANALYSIS-SETTINGS Print analysis options applied to the result.

IMPORTANCE-FACTORS Print the importance factors resulting from a probability analy-

SIS.

INTERMEDIATE-RESULTS Print the intermediate (debug) results from a probability or dis-

tribution analysis.

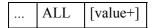
PARAMETER-STUDY Print results as a function of the parameter in a parameter study.

SAMPLE Print the sample resulting from application of a simulation

method.

SENSITIVITY Print parametric sensitivity results.

SUMMARY Print a summary of the results from a probability or distribution


analysis.

NOTES:

None.

5-246 01-OCT-2004 Program version 2.2-03

PRINT RESULT ALL

PURPOSE:

Print all information from the selected result.

PARAMETERS:

value+ This input is only required if the selected result is a parameter study. value is then

a selection of the parameter values for which the study was run. The particular re-

sults from the analysis using the selected value(s) will be printed.

NOTES:

The print does not contain the sample resulting from a simulation. This sample will often be very large, and it can be printed by use of PRINT RESULT SAMPLE.

See also:

- SELECT RESULT
- SET TITLE

EXAMPLE:

```
PRINT RESULT ALL % no parameter study
DISPLAY RESULT ALL * % all results from a study
```

Program version 2.2-03

01-OCT-2004

5-247

PRINT RESULT ANALYSIS-SETTINGS

... ANALYSIS-SETTINGS

PURPOSE:

Print analysis options applied to a probability or distribution analysis.

PARAMETERS:

None.

NOTES:

This print contains the date/time and cpu time consumption for the analysis.

See also:

- DEFINE
- RUN PROBABILITY-ANALYSIS
- RUN DISTRIBUTION-ANALYSIS
- SELECT RESULT
- SET TITLE

EXAMPLES:

PRINT RESULT ANALYSIS-SETTINGS

5-248 01-OCT-2004 Program version 2.2-03

PRINT RESULT IMPORTANCE-FACTORS

	IMPORTANCE-FACTORS	[value+]
--	--------------------	----------

PURPOSE:

Print importance factors.

PARAMETERS:

value+ This input is only required if the selected result is a parameter study. value is then

a selection of the parameter values for which the study was run. The particular re-

sults from the analysis using the selected value(s) will be printed.

NOTES:

The smallest importance factor values may be removed from the print (see DEFINE PRESENTATION RESULT IMPORTANCE-CUTOFF).

See also:

- DEFINE PRESENTATION RESULT IMPORTANCE-CUTOFF
- PRINT RESULT PARAMETER-STUDY IMPORTANCE-FACTOR
- PRINT RESULT
- SELECT RESULT
- SET TITLE

EXAMPLE:

PRINT RESULT IMPORTANCE-FACTORS % no parameter study
DISPLAY RESULT IMPORTANCE-FACTORS * % all results from a study

5-249

PRINT RESULT INTERMEDIATE-RESULTS

... INTERMEDIATE-RESULTS

PURPOSE:

Print all intermediate results from the selected analysis result.

PARAMETERS:

None.

NOTES:

- 1 The intermediate results are generated during the analysis. The amount of intermediate results is controlled by use of the commands DEFINE ANALYSIS-OPTION INTERMEDIATE-RESULTS and DEFINE ANALYSIS-OPTIONS GENERATED-DISTRIBUTION INTERMEDIATE-RESULTS.
- 2 The print may be very long, depending on the amount of intermediate results requested.
- 3 The intermediate results form a parameter study cannot be selected separately. They will be printed in the order in which the parameter study was performed.

See also:

- DEFINE ANALYSIS-OPTION INTERMEDIATE-RESULTS
- DEFINE ANALYSIS-OPTION GENERATED-DISTRIBUTION INTERMEDIATE-RESULTS
- SELECT RESULT
- SET TITL

EXAMPLES:

PRINT RESULT INTERMEDIATE-RESULTS

5-250 01-OCT-2004 Program version 2.2-03

PRINT RESULT PARAMETER-STUDY

	PARAMETER-STUDY	IMPORTANCE-FACTOR	
 •	THICHNILTER STOD I	MAIN-RESULT	

PURPOSE:

Print results as a function of the parameter in a parameter study.

PARAMETERS:

IMPORTANCE-FACTOR Print importance factors as a function of the parameter.

MAIN-RESULT Print one or more main results as a function of the parameter.

NOTES:

None.

Program version 2.2-03

01-OCT-2004

5-25

PRINT RESULT PARAMETER-STUDY IMPORTANCE-FACTOR

	IMPORTANCE-FACTOR	impname+
--	-------------------	----------

PURPOSE:

Print importance factors as a function of the parameter in a parameter study.

PARAMETERS:

impname+ A selection of importance factor names. The segment named "Other" in the pie

chart representation is not used here. All available importance factor names can be

selected.

NOTES:

See also:

- DISPLAY RESULT PARAMETER-STUDY IMPORTANCE-FACTOR
- PRINT RESULT IMPORTANCE-FACTORS
- SELECT RESULT
- SET TITLE

EXAMPLE:

PRINT RESULT PARAMETER-STUDY IMPORTANCE-FACTOR (ONLY Depth ImpGroup-1) PRINT RESULT PARAMETER-STUDY IMPORTANCE-FACTOR ONLY T*

5-252 01-OCT-2004 Program version 2.2-03

PRINT RESULT PARAMETER-STUDY MAIN-RESULT

	MAIN-RESULT	mainres+
--	-------------	----------

PURPOSE:

Print main results as a function of the parameter in a parameter study.

PARAMETERS:

mainres+

A selection of main results. The list of available results depend on the analysis performed. All possible main results are presented in the list, even though they may not all be calculated for all the individual analyses in the parameter study. For deterministic analysis of a variable there will be one result for each coordinate, and for an event there will be one result. These results will be named after the variable or event analysed.

NOTES:

1 All possible main results from probability and distribution analyses are listed in SESAM User's Manual: Proban.

See also:

- DISPLAY RESULT PARAMETER-STUDY MAIN-RESULT
- SELECT RESULT
- SET TITLE

EXAMPLE:

```
PRINT RESULT PARAMETER-STUDY MAIN-RESULT ( ONLY Prob* Conf* ) PRINT RESULT PARAMETER-STUDY MAIN-RESULT ONLY *Mean*
```

Program	version	2.2	-03
110514111	, 61 31011		

01-OCT-2004

5-253

PRINT RESULT SAMPLE

	SAMPLE	[value+]
--	--------	----------

PURPOSE:

Print the simulated sample values.

PARAMETERS:

value+

This input is only required if the selected result is a parameter study. value is then a selection of the parameter values for which the study was run. The particular results from the analysis using the selected value(s) will be printed.

NOTES:

The sample values are printed in the order of sampling as well as in sorted order.

See also:

- DEFINE PROBABILITY-ANALYSIS
- DEFINE DISTRIBUTION-ANALYSIS
- SET TITLE

EXAMPLE:

PRINT RESULT SAMPLE

may generate the following print (the middle part has been deleted):

Simulated observations

SimNo	Observation	Sorted	
1	1.250006452E+00	5.434747166E-01	
2	1.654419430E+00	7.556362734E-01	
3	1.720372986E+00	8.169615974E-01	
etc.	• •		
998	1.855419752E+00	3.855307126E+00	
999	1.595765862E+00	3.974120779E+00	

5-254 01-OCT-2004 Program version 2.2-03

1000 2.576417734E+00 4.111996924E+00

Program version 2.2-03

01-OCT-2004

5-255

PRINT RESULT SENSITIVITY

	SENSITIVITY	[value+]
--	-------------	----------

PURPOSE:

Print the parametric sensitivity values for the selected result.

PARAMETERS:

value+

This input is only required if the selected result is a parameter study. value is then a selection of the parameter values for which the study was run. The particular results from the analysis using the selected value(s) will be printed.

NOTES:

- 1 The sensitivity values are printed for the probability itself, the logarithm of the probability and for the reliability index.
- 2 The sensitivity measure is calculated as the change in the target value resulting from a fixed percentage increase in the parameter. This value is an attempt to provide a dimensionless sensitivity measure. The definition of the sensitivity measure can be changed using the command: DEFINE PRESENTATION RESULT SENSITIVITY-MEASURE.

See also:

- DEFINE PRESENTATION RESULT SENSITIVITY-MEASURE.
- ASSIGN SENSITIVITY
- DEFINE ANALYSIS-OPTION SENSITIVITY
- SELECT RESULT
- SET TITLE

EXAMPLE:

PRINT RESULT SENSITIVITY

may generate the following print:

```
! Probability of : Fatigue 0.0 !
! Fatigue Life, SN II !
! Analysis method: SORM !
```

Parametric sensitivity result for Probability = 1.67162275386E-08

5-256 01-OCT-2004 Program version 2.2-03

Variable	Туре	Parameter	Value	dProb/dPar	Measure		
Scale	Normal	Mean Stand-Dev					
Parametric sensitivity result for Beta = 5.5224397018							
	= =	Parameter					
	Normal		5.048E+00	-7.596E-01	-0.38347		
Parametric sensitivity result for Log10(Prob) = -7.7768617259							
		Parameter		_			
		Mean Stand-Dev	5.048E+00	1.878E+00	0.94814		

Program version 2.2-03

01-OCT-2004

5-257

PRINT RESULT SUMMARY

	SUMMARY	[value+]
--	---------	----------

PURPOSE:

Print a short summary for the selected result.

PARAMETERS:

value+

This input is only required if the selected result is a parameter study. value is then a selection of the parameter values for which the study was run. The particular results from the analysis using the selected value(s) will be printed.

NOTES:

See also:

- SELECT RESULT
- SET PRINT

EXAMPLE:

PRINT RESULT SUMMARY

may generate the following print:

```
! Fatigue by Wave Loading !

! Probability of: Fatigue 0.0 !
! Fatigue Life, SN II!
! Analysis method: SORM !
```

FORM Probability: 1.72486E-08
SORM Probability: 1.67162E-08

FORM Reliability index: 5.5169 SORM Reliability index: 5.5224

5-258 01-OCT-2004 Program version 2.2-03

PRINT SN-ANALYSIS

SN-ANALYSIS	FAILURE-PROBABILITY	fatigpnt/inspect
 SIV MIVILI SIS	LIFE-TIME	fatigpnt/inspect

PURPOSE:

Print the results of an SN analysis.

PARAMETERS:

FAILURE-PROBABILITY Print the result of an SN analysis of the failure probability.

LIFE-TIME Print the result of an SN analysis of the time to failure.

fatigpnt/inspect The a fatigue point or inspection for which the analysis was

made.

NOTES:

See also:

- RUN SN-ANALYSIS
- DISPLAY SN-ANALYSIS

EXAMPLE:

PRINT SN-ANALYSIS FAILURE-PROBABILITY J3220

may generate the following print:

SN analysis result for fatigue point: J3220

Time	Prob	Beta	Remark
1990.50			Start of service life
1990.80	2.3710E-13	7.2325	
1991.70	3.7082E-09	5.7812	
1993.20	4.0251E-07	4.9341	
1995.30	7.2810E-06	4.3352	
1998.00	5.3823E-05	3.8727	
2001.30	2.3552E-04	3.4967	
2005.20	7.3477E-04	3.1806	
2009.70	1.8157E-03	2.9085	
2014.80	3.7915E-03	2.6701	
2020.50	6.9805E-03	2.4583	End of service life

Program version 2.2-03

01-OCT-2004

5-259

PRINT SN-CURVE

... SN-CURVE name+

PURPOSE:

Print information about one or more SN curves.

PARAMETERS:

name+ Name(s) of SN-curve(s) to be printed.

NOTES:

See also:

- CREATE SN-CURVE
- CHANGE SN-CURVE
- DISPLAY SN-CURVE
- SET GRAPH

EXAMPLES:

PRINT SN-CURVE DNV*

may generate the following print:

Name	Branch	m	S	LogN	LogA	logK	Std(lK)
DNV-X	Det Nors	ke Verita	s X-curve	(Units: N	/m**2)		
		4.100 Horisont	3.400E+07 al tail	8.301	39.180	39.980	0.400
	Thicknes	s correct	ion: None				
DNVX	DNV-X cu	rve in N/	mm2				
		4.100 Horisont	3.400E+01 al tail	8.301	14.580	15.380	0.400
	Thicknes	s correct	ion: None				

5-260 01-OCT-2004 Program version 2.2-03

PRINT STARTING-POINT

	STARTING-POINT	event+		
•••	Sharmo Fonti	VARIABLE	variable+	

PURPOSE:

Print assigned starting points.

PARAMETERS:

event A selection of events with starting point assigned.

VARIABLE Print starting point for one or more variables.

variable+ A selection of variables with starting point assigned.

NOTES:

See also:

- ASSIGN STARTING-POINT
- DEFINE FORM-SORM STARTING-POINT INITIAL
- SELECT RESULT
- SET TITLE

EXAMPLES:

PRINT STARTING-POINT J5120-CGFail

Program version 2.2-03

01-OCT-2004

5-261

PRINT TRANSFER-FUNCTION

	TRANSFER-FUNCTION	name+	dir+	
--	-------------------	-------	------	--

PURPOSE:

Print one or more transfer functions at one or more directions.

PARAMETERS:

name+ Name(s) of transfer function(s) to be printed.

dir+ Selection of directions for which the function(s) is printed.

NOTES:

Illegal combinations of transfer function names and directions are ignored.

See also:

- CREATE TRANSFER-FUNCTION
- CHANGE TRANSFER-FUNCTION
- DISPLAY TRANSFER-FUNCTION

EXAMPLES:

PRINT TRANSFER-FUNCTION TRF* (0 45)

5-262 01-OCT-2004 Program version 2.2-03

PRINT UNCERTAINTY

	LINCERTAINTY	DEFINITION	
•••	OIVELKII IIIVI I	VALUE	

PURPOSE:

Print uncertainty definition and settings.

PARAMETERS:

DEFINITION Print the uncertainty definitions.

VALUE Print assigned uncertainty values.

NOTES:

All sub-commands and data are fully explained on the following pages.

Program version 2.2-03

01-OCT-2004

5-263

PRINT UNCERTAINTY DEFINITION

DEFINITION	DESCRIPTION	name+
 DEFINITION	OVERVIEW	Tidille '

PURPOSE:

Print uncertainty definitions.

PARAMETERS:

DESCRIPTION Print the full description of the uncertainty definition.

OVERVIEW Print an overview (one line) of the uncertainty definition.

name+ The name of one or more parameter types, to which uncertainty can be applied.

NOTES:

Each parameter type (e.g. the width of the of the plate in which the fatigue point sits) has a default safety level definition and uncertainty definition. These definitions are printed by use of this command.

See also:

- ASSIGN UNCERTAINTY VALUE
- DEFINE UNCERTAINTY

EXAMPLE:

PRINT UNCERTAINTY DEFINITION OVERVIEW Inspection*

may generate the following print:

Parameter	Description	Distribution
Inspection-Depth Inspection-Grind Inspection-Length Inspection-Thick Inspection-Time	Depth of crack at inspection Depth of grind at inspection Length of crack at inspection Thickness after repair Time of inspection	Exponential Exponential Exponential Normal

PRINT UNCERTAINTY DEFINITION DESCRIPTION Inspection-Length

may generate the following print:

Parameter	Content	Value
Inspection-Length	-	Length of crack at inspection Exponential, 0.0
	Default	Uncertainty: None

5-264 01-OCT-2004 Program version 2.2-03

Safety level: Margin 0.0

5-265

PRINT UNCERTAINTY VALUE

VALUE	name+
-------	-------

PURPOSE:

Print assigned uncertainty values.

PARAMETERS:

name+

The name of one or more parameters, that can have uncertainty assigned (See note 1 below). Such a parameter has its own name, if it is a global parameter (e.g. Final-Time or a derived name if it belongs to a named object. The derived name is composed of the name of the object (e.g. MEMB3501) and an identification of the parameter (e.g. Width), connected by a hyphen (e.g. MEMB3501-Width).

NOTES:

- 1 All parameters that can have safety level and uncertainty assigned are documented with the commands where they are being used.
- 2 The uncertainty representation is stored in a variable, with the same name as the parameter, but truncated to 12 characters (e.g. MEMB3501-Wid).
- 3 The variable associated with the parameter can be examined using the commands PRINT VARIABLE, PRINT DISTRIBUTION and DISPLAY DISTRIBUTION.
- 4 Each parameter type (e.g. the width of the of the plate in which the fatigue point sits) has a default uncertainty definition. This definition consists of a random distribution (e.g. Normal), and definition of LOW, MEDIUM and HIGH uncertainty in terms of standard deviation and/or coefficient of variation (when both of these are specified, the one that generates the highest standard deviation for a given mean value takes effect). The mean value of the variable will be the input value of the parameter. All available parameter types can be printed by use of the command PRINT UNCERTAINTY DEFINITION OVERVIEW. The default distribution and uncertainty can be printed by use of PRINT UNCERTAINTY DEFINITION DESCRIPTION.

See also:

- ASSIGN UNCERTAINTY VALUE
- DEFINE UNCERTAINTY
- PRINT UNCERTAINTY DEFINITION

EXAMPLE:

PRINT UNCERTAINTY VALUE J3220*

may generate the following print:

5-266 01-OCT-2004 Program version 2.2-03

	Uncertainty value
	0.881152 (no uncertainty)
	Exponential (Mean-Low: 0.1, 0.0)
CoV	Normal(Mean-CoV: 0.1, 0.1)
None	20.0 (no uncertainty)
Medium	Normal(Mean-CoV: 2.5, 5.0E-02)
None	1.0 (no uncertainty)
None	0.0 (no uncertainty)
None	-
CoV	Normal(Mean-CoV: 0.486663, 0.1)
None	1.0 (no uncertainty)
Medium	Normal(Mean-CoV: 3.53553, 5.0E-02)
	0.0 (no uncertainty)
Medium	Normal(Mean-CoV: 8.301, 5.0E-02)
Stdv	Normal(Mean-StD: 2.9032, 3.19641E-02)
Stdv	Normal(Mean-StD: -31.0, 0.77)
Low	
None	0.2 (no uncertainty)
None	3.5 (no uncertainty)
	Normal(Mean-CoV: 0.127833, 5.0E-02)
None	700.0 (no uncertainty)
Medium	Normal(Mean-CoV: 3.53553, 5.0E-02)
None	1.0 (no uncertainty)
None	· · · · · · · · · · · · · · · · · · ·
None	20.0 (no uncertainty)
	None Known CoV None Medium None None None CoV None Medium None Medium Stdv Stdv Low High None None Medium None Medium None Medium None Medium None

Program	version	2.2	-03
110514111	, 61 31011		

01-OCT-2004

5-267

PRINT VARIABLE

	VARIABLE	name+
--	----------	-------

PURPOSE:

Print information about one or more variables.

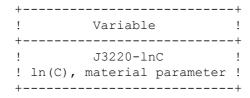
PARAMETERS:

name+

Name(s) of variable(s) to be printed.

NOTES:

The printout contains information about the variable data, including all assignments except starting point and correlation.


See also:

- CHANGE VARIABLE
- CREATE VARIABLE
- DISPLAY VARIABLE
- ASSIGN CONDITIONING
- ASSIGN EXTREME-VALUE
- ASSIGN FUNCTION-OPTION
- ASSIGN OPTIMISATION-BOUNDS
- ASSIGN SENSITIVITY-CALCULATION
- SET TITLE

EXAMPLES:

```
PRINT VARIABLE ( J3220-lnC J3220-m )
```

May generate the following print:

Type Name Dim Parameter Value Sens

5-268	01-OCT-2004	Program version 2.2-03

Distribution	n Normal	1	Mean	-31.0	Off
			Stand-Dev	0.77	Off
Calculated p	oarameters:		Skewness	0.0	
•	-		Kurtosis	3.0	
				-31.0	
			nearan	31.0	
	+			+	_
	· 1		Variable	'	
	·		variable	: 	
	T		J3220-m		
	:				
			material para		
	+			+	
m	27	Б'		77-7 -	0
Туре	Name	מבע	n Parameter	Value	Sens
Fixed				3.5	
1 11100				J • J	

Program version 2.2-03

01-OCT-2004

5-269

PRINT WAVE-SPREADING-FUNCTION

	WAVE-SPREADING-FUNCTION	name	[space]
--	-------------------------	------	---------

PURPOSE:

Print information about one wave spreading function.

PARAMETERS:

name Name of a wave spreading function.

space Space between each wave direction angle for which the function is displayed. This

value is independent of what the program will use in calculations. This value is

only required when a cosine power function is displayed.

NOTES:

See also:

- CREATE WAVE-SPREADING-FUNCTION
- CHANGE WAVE-SPREADING-FUNCTION
- DISPLAY WAVE-SPREADING-FUNCTION

EXAMPLES:

PRINT WAVE-SPREADING-FUNCTION COS2 30

may generate the following print:

Name	Direction	Weight	Description
cos2	-90.000 -60.000 -30.000 0.000 30.000 60.000 90.000	3.756E-03 8.709E-02 2.462E-01 3.258E-01 2.462E-01 8.709E-02 3.756E-03	ANALYTICAL COS**2

5-270 01-OCT-2004 Program version 2.2-03

PRINT WAVE-STATISTICS

WAV	/E-STASTICS	name+
-----	-------------	-------

PURPOSE:

Print information about a selection of wave statistics.

PARAMETERS:

name+ Name(s) of a wave statistics to be printed.

NOTES:

Any assigned wave spreading function and wave spectrum shape is printed also.

See also:

- CREATE WAVE-STATISTICS
- CHANGE WAVE-STATISTICS
- ASSIGN WAVE-PSREADING-FUNCTION
- ASSIGN WAVE-SPECTRUM-SHAPE

EXAMPLES:

PRINT WAVE-STATISTICS SCATTER

may generate the following print:

Name: SCATTER

Decription: ARBITRARY DATA

Hs	Tz	Prob	Тур	L-param	N-param	Gamma	SigmaA	SigmaB	WaveSpr
1.750E+03 1.750E+03 1.250E+03 3.250E+03 4.750E+03 4.750E+03	7.750 8 6.250 2 6.250 2 7.750 1	.490E-01 .600E-02 .360E-01 .060E-01 .170E-01	P-M						COS2

Total probability: 1.0

Program version 2.2-03 01-OCT-2004 5-271

RENAME

	EVENT	
RENAME	FUNCTION	
KLIVAIVIL	RESULT	
	VARIABLE	

PURPOSE:

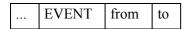
Rename a named object.

PARAMETERS:

EVENT Rename an event.

FUNCTION Rename a function.

RESULT Rename an analysis result.


VARIABLE Rename a random variable.

NOTES:

None.

5-272 01-OCT-2004 Program version 2.2-03

RENAME EVENT

PURPOSE:

To change the name of an event.

PARAMETERS:

from The original name of the event.

to The new name of the event. This cannot be the name of an existing event.

NOTES:

Renaming of an event does not affect the usage of the event in other events.

See also:

- CHANGE EVENT
- CREATE EVENT
- DELETE EVENT
- COPY EVENT
- PRINT EVENT
- DISPLAY EVENT

EXAMPLES:

RENAME EVENT Moment-1 Moment-2

Program version 2.2-03

01-OCT-2004

5-273

RENAME FUNCTION

FUNCTION	from	to
----------	------	----

PURPOSE:

To change the name of a function formula or function integral.

PARAMETERS:

from The original name of the function.

to The new name of the function. This cannot be the name of an existing function.

NOTES:

If the renamed function is referenced in other function formulas or function integrals, then the name must be changed in these functions too.

See also:

- CHANGE FUNCTION
- CREATE FUNCTION
- DELETE FUNCTION
- PRINT FUNCTION
- DISPLAY FUNCTION

EXAMPLES:

RENAME FUNCTION SYMFUN SYMFOR

5-274 01-OCT-2004 Program version 2.2-03

RENAME RESULT

	RESULT	from	to	
--	--------	------	----	--

PURPOSE:

To change the name of a result.

PARAMETERS:

from The original name of the result.

to The new name of the result. This cannot be the name of an existing result.

NOTES:

See also:

- SAVE RESULT
- DELETE RESULT
- RUN
- PRINT RESULT
- DISPLAY RESULT

EXAMPLES:

RENAME RESULT SORM-Result Global-Fail

Program version 2.2-03

01-OCT-2004

5-275

RENAME VARIABLE

VARIABLE	from	to
----------	------	----

PURPOSE:

To change the name of a variable.

PARAMETERS:

from The original name of the variable.

to The new name of the variable. This cannot be the name of an existing variable.

NOTES:

Renaming a variable does not affect the usage of the variable in other variables or in single events, nor does it affect any correlation assignments.

See also:

- CHANGE VARIABLE
- CREATE VARIABLE
- DELETE VARIABLE
- COPY VARIABLE
- PRINT VARIABLE
- DISPLAY VARIABLE

EXAMPLES:

RENAME VARIABLE Width1 Width2

5-276 01-OCT-2004 Program version 2.2-03

RUN

	CALIBRATION-CRACK-GROWTH	
	CRACK-GROWTH-ANALYSIS	
	DETERMINISTIC-ANALYSIS	
	DISTRIBUTION-ANALYSIS	
RUN	INPUT-CHECK	
	PLAN-INSPECTION	
	PROBABILITY-ANALYSIS	
	RESTART	
	SN-ANALYSIS	

PURPOSE:

Run an analysis.

PARAMETERS:

CALIBRATION-CRACK-GROWTH Calibrate the crack growth reliability curve to the SN reliability

curve.

CRACK-GROWTH-ANALYSIS Run a crack growth analysis.

DETERMINISTIC-ANALYSIS Run a deterministic analysis.

DISTRIBUTION-ANALYSIS Run an analysis of the distribution of a variable.

INPUT-CHECK Check the input for a probability analysis or distribution analy-

sis.

INSPECTION-ANALYSIS Run an analysis of the probability of failure for a fatigue point

throughout the service life, taking all inspections into account.

PLAN-INSPECTION Calculate an inspection plan for a selection of fatigue points.

PROBABILITY-ANALYSIS Run an analysis of the probability of an event, possibly condi-

tioned on another event, or of the probability of failure for a fa-

tigue point throughout the service life.

SN-ANALYSIS Run an SN analysis.

RESTART Restart a probability or distribution simulation from the results

obtained.

Program version 2.2-03 01-OCT-2004 5-277

NOTES:

None.

5-278 01-OCT-2004 Program version 2.2-03

RUN CALIBRATION-CRACK-GROWTH

	CALIBRATION-CRACK-GROWTH	fatigpnt/inspect	param+
--	--------------------------	------------------	--------

PURPOSE:

Run a calibration of the crack growth model to the SN reliability result.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection with a repair assigned.

param+ A selection of parameters that are to be adjusted in order to make the calibration.

Up to three parameters can be used. The available parameters are a subset of all pa-

rameters defining the crack growth model.

NOTES:

- 1 The selected parameters will be adjusted, by use of sensitivity results from the probability analysis of the crack growth model, to provide reliability indexes as close as possible to those calculated from the SN analysis at the chosen time points.
- 2 The calibration always uses the FORM analysis method.
- 3 The command DEFINE CALIBRATION-CRACK-GROWTH is used to set options for the calibration and the times at which the calibration is performed.
- 4 After an inspection with repair assigned, calibration is performed on the unconditional failure probability, not conditioned on the previous inspection result(s).

See also:

- DEFINE CALIBRATION-CRACK-GROWTH
- DISPLAY CALIBRATION-CRACK-GROWTH
- PRINT CALIBRATION-CRACK-GROWTH
- ASSIGN CRACK-GROWTH-MODEL
- ASSIGN GEOMETRY-FUNCTION
- ASSIGN WELD-EFFECT

EXAMPLE:

RUN CALIBRATION-CRACK-GROWTH C3501 (C3501-lnC-Mean C3501-Gfactor)

Program version 2.2-03

01-OCT-2004 5-279

RUN CRACK-GROWTH-ANALYSIS

		FAILURE-PROB	fatigpnt/inspect	
	CRACK-GROWTH-ANALYSIS	I IFF-TIME	fatigpnt/inspect	DETERMINISTIC
•••	CIAICK-GROW III-AIMILI SIS	En E-ThviE	ratigpite inspect	PROBABILISTIC
		UPDATE-MODEL	fatigpnt/inspect	

PURPOSE:

Run a crack growth analysis.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection with a repair as-

signed.

FAILURE-PROBABILITY Analyse the probability of failure as a function of time.

LIFE-TIME Calculate the time to failure, either DETERMINISTIC (i.e. as

a single value) or PROBABILISTIC (i.e. as a distribution).

UPDATE-MODEL Update all variables and events that are used in either a failure

probability analysis or a probabilistic life time analysis.

NOTES:

- 1 The update option may be used to ensure that the variables and events contain the last updated information about the fatigue point or inspection with all following inspections. These variables and events may then be used for analysis executed by the user.
- 2 The failure probability analysis calculates the failure probability (and the reliability) as a function of time, from the start of the service life (for a fatigue point) or from the inspection time (for an inspection). All inspections after the starting point are taking into account during the analysis when needed.

See also:

- DEFINE CRACK-GROWTH-ANALYSIS
- DISPLAY CRACK-GROWTH-ANALYSIS
- PRINT CRACK-GROWTH-ANALYSIS
- RUN PROBABILITY-ANALYSIS
- RUN DISTRIBUTION-ANALYSIS
- RUN DETERMINISTIC-ANALYSIS

5-280 01-OCT-2004 Program version 2.2-03

EXAMPLE:

RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120

Program version 2.2-03 01-OCT-2004 5-281

RUN DETERMINISTIC-ANALYSIS

•••	DETERMINIS	TIC-ANAI	LYSIS					
	VARIABLE	variable	MEAN-VALUE MEDIAN-VALUE	3				
	VARIABLE	variable	MODIFIED	MEAN-BASED MEDIAN-BASED	{	name	value	}*
	EVENT	event	STARTING-POIN USPACE-ORIGIN			•	•	

PURPOSE:

Run a deterministic analysis.

PARAMETERS:

VARIABLE Calculate the value of a variable.

variable The name of the variable for which the analysis is made.

MEAN-VALUE Use the mean value of all distribution variables (the median will be used if the

mean cannot be calculated).

MEDIAN-VALUE Use the median value (50% fractile) of all distributions.

MODIFIED Use the mean or median as basis.

MEAN-BASED Use the mean value of all distribution variables as basis, excepting the specified

modifications (the median will be used if the mean cannot be calculated).

MEDIAN-BASED Use the median value (50% fractile) of all distributions as basis, excepting the

specified modifications.

{name, value}* Input of values that are to overwrite values specified elsewhere. Name is a one-di-

mensional variable of distribution type and value is either a single numerical value or -fracxx, the fractile at xx% probability level, followed by a numerical value. The

-frac is case insensitive. Notice the preceding hyphen.

EVENT Calculate the limit state value of an event. The limit state value is: left hand side -

right hand side for a single event, minimum of all subevent values for an intersection, maximum of all subevent values for a union. Conditional events cannot be

used here.

event The name of the event for which an analysis is made.

5-282 01-OCT-2004 Program version 2.2-03

STARTING-POINT Use the starting point for the event, if assigned. If no starting point is assigned, the

default starting point is used.

USPACE-ORIGIN Calculate the value at the U-space origin (identical to the median values).

NOTES:

1 The result is stored under the name "LastAnalysis" and is overwritten the next time an analysis is performed unless saved under another name using the SAVE RESULT command.

2 The results are examined by use of the commands PRINT RESULT or DISPLAY RESULT.

See also:

- ASSIGN STARTING-POINT
- SAVE RESULT
- PRINT RESULT
- DISPLAY RESULT

EXAMPLES:

RUN DETERMINISTIC-ANALYSIS VARIABLE P-SNTime MEAN-VALUE

Program version 2.2-03 01-OCT-2004

5-283

RUN DISTRIBUTION-ANALYSIS

	DISTRIBUTION-A	1d	l-variable					
•••	DISTRIBUTION-A	CONDITIONED 1d-va		riable				
	event							
•••	SINGLE-EVENT	1d-condvar		IN(EQ)	thresh	nold		

PURPOSE:

Run a distribution analysis.

PARAMETERS:

1d-variable The name of a one-dimensional variable (can be a coordinate of a multidimensional

variable).

CONDITIONED Analyse the conditioned distribution of 1d-variable given an event.

event The name of the conditioning event. This event cannot be of the conditioned type.

SINGLE-EVENT The conditioning event is specified directly as a simple (in)equality.

1d-condvar The name of the one dimensional variable that is forming the left hand side if the

(in)equality.

(IN)EQ The type of (in)equality. One of: <, = and >

threshold The numerical right hand side of the conditioning single event.

NOTES:

- 1 The type of analysis being run is selected by use of the SELECT ANALYSIS-METHOD DISTRIBUTION-ANALYSIS command. The options to be used for the analysis are set by use of the DEFINE command.
- 2 The result is stored under the name "LastAnalysis" and is overwritten the next time an analysis is performed unless saved under another name using the SAVE RESULT command.
- 3 The results are examined by use of the commands PRINT RESULT or DISPLAY RESULT.

See also:

- DEFINE DISTRIBUTION-SIMULATION
- DEFINE MEAN-VALUE-FORM
- DEFINE PARAMETER-STUDY

5-284 01-OCT-2004 Program version 2.2-03

- SELECT ANALYSIS-METHOD DISTRIBUTION-ANALYSIS
- SAVE RESULT

EXAMPLE:

RUN DISTRIBUTION-ANALYSIS NPV
RUN DISTRIBUTION-ANALYSIS CONDITIONED NPV SINGLE-EVENT Expense 100000

Program version 2.2-03 01-OCT-2004 5-285

RUN INPUT-CHECK

	INPUT-CHECK	DISTRIBUTION-ANALYSIS
•••	INFOI-CHECK	PROBABILITY-ANALYSIS

PURPOSE:

Run a check of the input to an analysis.

PARAMETERS:

DISTRIBUTION-ANALYSIS Run a check of an analysis of the distribution of a variable.

PROBABILITY-ANALYSIS Run a check of an analysis of the probability of an event, pos-

sibly conditioned on another event.

NOTES:

The sub-commands are identical in syntax to RUN DISTRIBUTION-ANALYSIS and RUN PROBABIL-ITY-ANALYSIS. The only difference is that they only check the input to the analysis, they do not run the analysis.

5-286 01-OCT-2004 Program version 2.2-03

RUN PLAN-INSPECTION

	PLAN-INSPECTIONNING	fatigpnt+	start	name	descr	
--	---------------------	-----------	-------	------	-------	--

PURPOSE:

Compute an inspection plan for a selection of fatigue points.

PARAMETERS:

fatigpnt+ The name(s) of the fatigue point(s) for which the plan is made.

start The start time for the plan. The plan will continue to the end of the service life.

name The name under which the inspection plan is stored.

descr A descriptive text for the inspection plan.

NOTES:

The command DEFINE PLAN-INSPECTION is used to define the way the planning is performed.

See also:

- DEFINE PLAN-INSPECTION
- DISPLAY PLAN-INSPECTION
- PRINT PLAN-INSPECTION

EXAMPLE:

DEFINE PLAN-INSPECTIONNING PRESCRIBED GROUP 4 32 4

RUN PLAN-INSPECTIONNING * FourYearPlan 'Prescribed inspection every four years'

DEFINE PLAN-INSPECTIONNING OPTIMISED

RUN PLAN-INSPECTIONNING C35* C35Opt 'Optimised inspection for all C35 points'

Program version 2,2-03 01-OCT-2004

RUN PROBABILITY-ANALYSIS

			ev	rent					
	PROBABILITY-ANALYSIS		SINGLE-EVENT		1d-va	riable	< , = ,>	threshold	
			C	ONDITION	IED	•••			
	event								
•••	SINGLE-EVENT	1d-variab	le	< , = ,>	thres	hold			
	conditioning event								
	SINGLE-EVENT	1d-variab	le	< , = ,>	thres	hold			

PURPOSE:

Run a probability analysis.

PARAMETERS:

event The name of the event to be analysed.

SINGLE-EVENT The event is specified directly as a simple (in)equality.

1d-variable The name of a one-dimensional variable (can be a coordinate of

a multidimensional variable).

<, =, > One of: < less than, = equal, > greater than.

threshold The numerical right hand side of the single event.

CONDITIONED Analyse the conditioned probability of one event given another.

conditioning event. This event cannot be of the

conditioned type.

NOTES:

- 1 The type of analysis being run is selected by use of the SELECT ANALYSIS-METHOD PROBABIL-ITY-ANALYSIS command. The options to be used for the analysis are set by use of the DEFINE command
- 2 The result is stored under the name "LastAnalysis" and is overwritten the next time an analysis is performed unless saved under another name using the SAVE RESULT command.
- 3 The results are examined by use of the commands PRINT RESULT or DISPLAY RESULT.

See also:

5-288 01-OCT-2004 Program version 2.2-03

- DEFINE ANALYSIS-OPTION
- DEFINE FORM-SORM
- DEFINE PROBABILITY-SIMULATION
- DEFINE PARAMETER-STUDY
- SELECT ANALYSIS-METHOD PROBABILITY-ANALYSIS
- SAVE RESULT
- PRINT RESULT
- DISPLAY RESULT

EXAMPLES:

RUN PROBABILITY-ANALYSIS Beam-Fail
RUN PROBABILITY-ANALYSIS SINGLE-EVENT NPV > 100000
RUN PROBABILITY-ANALYSIS CONDITIONED Failure NoFind
RUN PROBABILITY-ANALYSIS CONDITIONED Loss SINGLE-EVENT Expense > 100000

Program version 2.2-03	
------------------------	--

01-OCT-2004

-289

RUN RESTART

RESTART

PURPOSE:

Continue a simulation.

PARAMETERS:

None.

NOTES:

- 1 The selected result defines the analysis to be restarted.
- 2 Only simulation resulting from RUN PROBABILITY-ANALYSIS or RUN DISTRIBUTION-ANALY-SIS can be restarted. The simulation will add to the previously established sample. The stop criteria for the simulation can be modified before the analysis is restarted.
- 3 The new result will be stored under the default name "LastAnalysis". The previous result is deleted if it was also stored under this name.

See also:

- RUN DISTRIBUTION-ANALYSIS
- RUN PROBABILITY-ANALYSIS
- DEFINE DISTRIBUTION-SIMULATION
- DEFINE PROBABILITY-SIMULATION
- SAVE RESULT
- PRINT RESULT
- DISPLAY RESULT

EXAMPLE:

RUN RESTART

5-290 01-OCT-2004 Program version 2.2-03

RUN SN-ANALYSIS

		FAILURE-PROBABILITY	fatigpnt/inspect	
	SN-ANALYSIS	I IFF-TIME	fatigpnt/inspect	DETERMINISTIC
•••	SIN-AINALISIS	EII E-THVIE	ratigpin inspect	PROBABILISTIC
		UPDATE-MODEL	fatigpnt/inspect	

PURPOSE:

Run an SN analysis.

PARAMETERS:

fatigpnt/inspect The name of a fatigue point or an inspection with a repair as-

signed.

FAILURE-PROBABILITY Analyse the probability of failure as a function of time.

LIFE-TIME Calculate the time to failure, either DETERMINISTIC (i.e. as

a single value) or PROBABILISTIC (i.e. as a distribution).

UPDATE-MODEL Update all variables and events that are used in either a failure

probability analysis or a probabilistic life time analysis.

NOTES:

- 1 The update option may be used to ensure that the variables and events contain the last updated information about the fatigue point or inspection. These variables and events may then be used for analysis executed by the user.
- 2 The failure probability analysis maps the failure probability (and the reliability) as a function of time, from the start of the service life (for a fatigue point) or from the inspection time (for an inspection).

See also:

- DEFINE SN-ANALYSIS
- DISPLAY SN-ANALYSIS
- PRINT SN-ANALYSIS
- RUN PROBABILITY-ANALYSIS
- RUN DISTRIBUTION-ANALYSIS
- RUN DETERMINISTIC-ANALYSIS

Program version 2.2-03 01-OCT-2004 5-291

EXAMPLE:

RUN SN-ANALYSIS FAILURE-PROBABILITY J5120

5-292 01-OCT-2004 Program version 2.2-03

SAVE

PURPOSE:

Save an analysis result under a name.

PARAMETERS:

RESULT Save an analysis result.

NOTES:

None.

Program	v CI SIUII	4.4	"

01-OCT-2004

5-293

SAVE RESULT

	RESULT	name	desc
--	--------	------	------

PURPOSE:

Save a result under a name.

PARAMETERS:

name Name of the result. This cannot be the name of an existing result. Result names are

matched case insensitively and can not be longer than 12 characters.

desc Descriptive text for the result. It can be up to 50 characters long.

NOTES:

1 Only results from RUN DETERMINISTIC-ANALYSIS, RUN PROBABILITY-ANALYSIS and RUN DISTRIBUTION-ANALYSIS can be saved using this command. These results are by default stored under the name "LastAnalysis" and will be overwritten by the next analysis if they are not saved.

2 The results created by this program should not be modified by the user.

See also:

- RUN DISTRIBUTION-ANALYSIS
- RUN PROBABILITY-ANALYSIS
- DELETE RESULT
- RENAME RESULT
- DISPLAY RESULT
- PRINT RESULT

EXAMPLES:

SAVE RESULT Fail-444S 'SORM: Failure of joint 444'

5-294 01-OCT-2004 Program version 2.2-03

SELECT

	ANALYSIS-METHOD	
SELECT	FUNCTION-LIBRARY	
	RESULT	

PURPOSE:

Select objects or methods for use in other commands.

PARAMETERS:

ANALYSIS-METHOD Select a method for use in probability and distribution analysis.

FUNCTION-LIBRARY Select the function libraries to be available in other commands.

RESULT Select the result to be used for presentation (PRINT or DIS-

PLAY).

NOTES:

None.

SELECT ANALYSIS-METHOD

				MONTE-CARLO-SIMULATION	
		DISTRIBUTION-ANALYSIS	LATIN-H	LATIN-HYPERCUBE-SIMULATION	
			MEAN-V	MEAN-VALUE-FORM	
			FORM		
		PROBABILITY-ANALYSIS	SORM	PARABOLIC	
	ANALYSIS-METHOD			DIAGONAL	
				FULL-EXPANSION	
				ASYMPTOTIC	
			AXIS-ORTHOGONAL-SIMULATION		
			DIRECTIONAL-SIMULATION		
			MONTE-	CARLO-SIMULATION	

PURPOSE:

Select analysis method for probability and distribution analyses.

PARAMETERS:

DISTRIBUTION-ANALYSIS Select the method used for distribution analysis.

MONTE-CARLO-SIMULATION The simplest simulation method where points are picked ran-

domly and sample values are kept (distribution analysis) or the

frequency of occurrences counted (probability analysis).

LATIN-HYPERCUBE-SIMULATION A stratified simulation technique where the sampling points are

spread systematically over the sample space.

MEAN-VALUE-FORM A simple FORM estimation of a distribution. Quick, but not

generally reliable.

PROBABILITY-ANALYSIS Select the method used for probability analysis.

FORM First Order Reliability method.

SORM Second Order Reliability Method.

PARABOLIC Uses a parabolic approximation to the failure surface. If the U-

space dimension is \hat{n} , this method requires $(n-1)^2$ second order

derivations.

5-296 01-OCT-2004 Program version 2.2-03

DIAGONAL Uses an approximation to the failure surface based on the diag-

onal of the second order differential matrix. If the U-space dimension is n, this method requires n second order derivations.

FULL-EXPANSION Uses a full second order approximation to the failure surface. If

the U-space dimension is n, this method requires n² second order derivations. Note that this method is not invariable wt. different formulations of the problem that give the same failure

surface.

ASYMPTOTIC Asymptotic second order approximation. Not necessarily accu-

rate, but fast.

DIRECTIONAL-SIMULATION Directional simulation of a probability. Samples directions in

U-space instead of points.

AXIS-ORTHOGONAL-SIMULATION A simulation method based on a FORM result. It simulates the

difference between the correct probability and the FORM ap-

proximation.

NOTES:

1 The current analysis selection may be printed by use of the PRINT ANALYSIS-SETTINGS command.

2 Both a probability and a distribution analysis method is selected at the same time.

See also:

- PRINT ANALYSIS-SETTINGS
- DEFINE ANALYSIS-OPTIONS
- DEFINE DISTRIBUTION-SIMULATION
- DEFINE MEAN-VALUE-FORM
- DEFINE DISTRIBUTION-SIMULATION
- DEFINE PROBABILITY-SIMULATION
- RUN PROBABILITY-ANALYSIS
- RUN DISTRIBUTION-ANALYSIS
- DEFINE CRACK-GROWTH-ANALYSIS FAILURE PROBABILITY ANALYSIS-METHOD
- DEFINE SN-ANALYSIS FAILURE-PROBABILITY ANALYSIS-METHOD

EXAMPLE:

The following values are default when the program starts up with a new database:

SELECT ANALYSIS-METHOD PROBABILITY-ANALYSIS FORM

Program version 2.2-03 01-OCT-2004 5-297

SELECT ANALYSIS-METHOD DISTRIBUTION-ANALYSIS MONTE-CARLO-SIMULATION

5-298 01-OCT-2004 Program version 2.2-03

SELECT FUNCTION-LIBRARY

	FUNCTION-LIBRARY	name+
--	------------------	-------

PURPOSE:

Select one or more function libraries in order to limit the selection of functions presented in other commands.

PARAMETERS:

name+ A selection of function library names.

NOTES:

- 1 This command serves to mask off some function libraries temporarily. This can be useful as some function libraries may have a large number of functions and/or be irrelevant for the current modelling.
- 2 The program starts on a new database with two libraries masked off: "Distribution" and "Verification".

See also:

- PRINT FUNCTION
- CREATE VARIABLE ... FUNCTION
- CHANGE VARIABLE ... FUNCTION

EXAMPLES:

SELECT FUNCTION-LIBRARY *

Program version 2.2-03

01-OCT-2004

5-299

SELECT RESULT

RI	ESULT	name
----	-------	------

PURPOSE:

Select a result from probability or distribution analysis for presentation.

PARAMETERS:

name

The name of a result.

NOTES:

Only one result from probability analysis or distribution analysis can be presented at one time. Other types of result presentations are not affected by this command.

See also:

- PRINT RESULT
- · DISPLAY RESULT
- DELETE RESULT
- RUN PROBABILITY-ANALYSIS
- RUN DISTRIBUTION-ANALYSIS
- SAVE RESULT

EXAMPLES:

SELECT RESULT Fail-444S

5-300 01-OCT-2004 Program version 2.2-03

SET

	COMPANY-NAME	
	DISPLAY	
SET	DRAWING	
SEI	GRAPH	
	PLOT	
	PRINT	

PURPOSE:

Set or reset global file and device environment characteristics.

PARAMETERS:

COMPANY-NAME Set company name on display and plot.

DISPLAY Set display characteristics.

DRAWING Set drawing characteristics.

GRAPH Set graph characteristics.

PLOT Set plot file characteristics.

PRINT Set print characteristics.

NOTES:

All sub-commands and data are fully explained subsequently as each command is described in detail.

Program version 2.2-03

01-OCT-2004

5-301

SET COMPANY-NAME

	COMPANY-NAME	text
--	--------------	------

PURPOSE:

To set the company name for use with result presentation.

PARAMETERS:

text The name of the company.

NOTES:

The text is used at the top of a display or a plot. It is not used with printed results.

See also:

- DISPLAY
- PLOT

EXAMPLES:

SET COMPANY-NAME 'Det Norske Veritas'

5-302 01-OCT-2004 Program version 2.2-03

SET DISPLAY

		COLOUR	ON			
	COLOGIC	OFF				
	DISPLAY	DESTINATION	FILE			
DISPLAT	DESTRIVATION	SCREEN				
		DEVICE	device			
		WORKSTATION-WINDOW	left	right	bottom	top

PURPOSE:

Set display characteristics.

PARAMETERS:

COLOUR Sets the output to the display device to be in colours (ON) or

monochrome (OFF).

DESTINATION Set the destination of the graphics produced in the DISPLAY

command to the current plot file (FILE) or to the screen

(SCREEN).

DEVICE Set the current screen display device type. The available device

types depend on the computer on which the program runs. Here is a selection of the some device types that may be available: VGA PC with VGA resolution, X-WINDOW for X windows, VT340 (Digital VT 340 screen), DUMMY used to dump dis-

play output to nowhere.

WORKSTATION-WINDOW Set the size and position of the display window when using a

workstation device. This command will only be taken into account if issued prior to any DISPLAY command. Otherwise, the settings will not be valid until the user has exited from Proban and entered again. Please note that the window can be

re-sized using the mouse under X Windows.

left Position of left display window border.

right Position of right display window border.

bottom Position of bottom display window border.

top Position of top display window border.

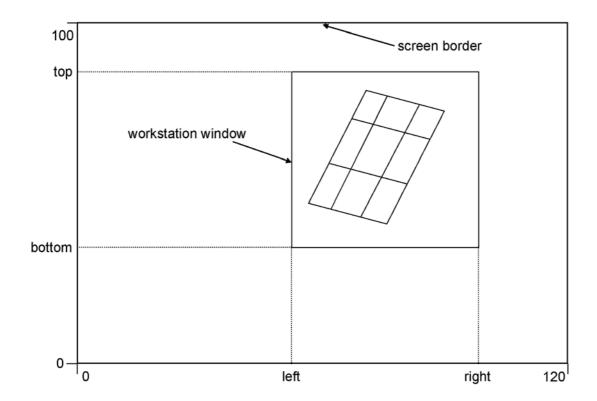


Figure 5.3 Setting the initial size of a workstation window

NOTES:

- 1 The destination is always set to SCREEN when the program starts up, also with an existing database.
- 2 The DUMMY device is useful for effectively disabling all DISPLAY commands in a command input file, when the displays themselves are not needed.

See also:

- DISPLAY
- PLOT

EXAMPLES:

The following is default when the program starts with a new database:

SET DISPLAY COLOUR ON

5-304 01-OCT-2004 Program version 2.2-03

SET DISPLAY DESTINATION SCREEN
SET DISPLAY WORKSTATION-WINDOW <To be completed>

The default DEVICE depends on the computer system.

Program version 2.2-03 01-OCT-2004 5-305

SET DRAWING

		CHARACTER-TYPE	HARDWARE	
			SOFTWARE	
		FONT-SIZE	ABSOLUTE	size
		TONI-SIZE	RELATIVE	factor
	DRAWING		SIMPLE	
		FONT-TYPE	GROTESQUE	
			ROMAN-NORMAL	
			ROMAN-ITALIC	
			ROMAN-BOLD	
		FRAME	ON/OFF	
		GRID	ON/OFF	

PURPOSE:

To set drawing characteristics.

PARAMETERS:

CHARACTER-TYPE Set the character type to SOFTWARE (i.e. scalable) or HARD-

WARE (i.e. fixed).

FONT-SIZE Set the font size. This affects all text.

ABSOLUTE size Set the font size to an ABSOLUTE size in mm.

RELATIVE factor Set the font size to a RELATIVE value scalable by a factor,

where 40*80 characters are fitted into the window when the

factor is 1.

FONT-TYPE Select the font to be used. The list of fonts may be machine de-

pendent.

FRAME ON/OFF Set frame on drawing ON or OFF. This command has currently

no effect.

GRID ON/OFF Set grid on a graph drawing ON or OFF.

NOTES:

See also:

DISPLAY

5-306 01-OCT-2004 Program version 2.2-03

• PLOT

EXAMPLES:

The following is default when the program starts with a new database:

SET DRAWING CHARACTER-TYPE SOFTWARE SET DRAWING FONT-SIZE RELATIVE 1.0

SET DRAWING FONT-TYPE SIMPLE

SET DRAWING GRID ON

Program version 2.2-03 01-OCT-2004 5-307

SET GRAPH

		HISTOGRAM	
	LINE-OPTIONS		
	GRAPH	PIE-CHART	
•••		XAXIS-ATTRIBUTES	
		YAXIS-ATTRIBUTES	
		ZAXIS-ATTRIBUTES	

PURPOSE:

To set plot file characteristics.

PARAMETERS:

HISTOGRAM Set options for display of a histogram.

LINE-OPTIONS Set the options controlling how lines are drawn and marked.

PIE-CHART Set options for display of a pie chart.

XAXIS-ATTRIBUTES Set the options controlling the drawing and scale of the x-axis.

YAXIS-ATTRIBUTES Set the options controlling the drawing and scale of the y-axis.

ZAXIS-ATTRIBUTES Set the options controlling the drawing and scale of the z-axis.

NOTES:

All sub-commands and data are fully explained subsequently as each command is described in detail.

5-308 01-OCT-2004 Program version 2.2-03

SET GRAPH HISTOGRAM

	GRAPH HISTOGRAM	COLUMNS	ncol
			HATCHED
•••		FILLING	HOLLOW
			SOLID

PURPOSE:

Set options controlling display of a histogram.

PARAMETERS:

COLUMNS Set the number of columns in the histogram.

ncol The number of columns in the histogram.

FILLING The columns in the histogram can be filled with a HATCHED pattern, or not filled

at all (HOLLOW), or be filled with a SOLID pattern.

NOTES:

- 1 To present a smooth histogram, the number of columns should be about 1/10 of the sample size or smaller.
- 2 When running the program on a black and white screen, it the it usually a good idea to change the default SOLID filling to a HOLLOW or HATCHED.

See also:

- DISPLAY RESULT DISTRIBUTION
- PLOT

EXAMPLES:

The following is default when the program starts with a new database:

```
SET GRAPH HISTOGRAM COLUMNS 20
SET GRAPH HISTOGRAM FILLING SOLID
```

Program version 2,2-03 01-OCT-2004 5-309

SET GRAPH LINE-OPTIONS

		LINE-TYPE	line	LINE-TYPE
		MARKER	ON	
	GRAPH LINE-OPTIONS	WINTER	OFF	
		MARKER-TYPE	line	MARKER-TYPE
		MARKER-SIZE	size	

PURPOSE:

To set options controlling how lines are drawn and marked.

PARAMETERS:

LINE-TYPE Controls how lines are drawn. Only six lines can be controlled.

line A line number, from 1 to 6.

LINE-TYPE The line type to use. One of: BLANK, END-POINT,

DASHED, DASH-DOT, DEFAULT, DOTTED, SOLID.

MARKER Turn usage of markers ON or OFF.

MARKER-TYPE Control the marker type.

MARKER-TYPE The type of marker to use. One of: CROSS, DEFAULT, DEL-

TA, DIAMOND, NABLA, PLUS, SQUARE, STAR

MARKER-SIZE Set the size of the markers.

NOTES:

Even when the MARKER option is ON, not all points on the curve need be marked. If more than 20 points are drawn and the line type is not BLANK, only a few points are marked in order to not clutter the curve with markers.

See also:

- DISPLAY
- PLOT

EXAMPLES:

The following is default when the program starts with a new database:

SET GRAPH LINE-OPTIONS LINE-TYPE DEFAULT % for all lines SET GRAPH LINE-OPTIONS MARKER ON

5-310 01-OCT-2004 Program version 2.2-03

SET GRAPH LINE-OPTIONS MARKER-TYPE DEFAULT $\ \%$ for all lines SET GRAPH LINE-OPTIONS MARKER-SIZE 2.0

Program version 2,2-03 01-OCT-2004 5-3

SET GRAPH PIE-CHART

		EXPLODED-SEGMENT	OFF	OFF	
		EXPLODED-SEGMENT	SEGMENT-NAME	name	
			HATCHED		
		FILLING	HOLLOW		
			SOLID		
		LABEL	VISIBILITY	HIDE	
	GRAPH PIE-CHART		VISIBILITI	SHOW	
			ORIENTATION	HORIZONTAL	
			ORIENTATION	ROTATED	
				OUTSIDE	
			POSITION	AUROMATIC	
				INSIDE	
			VALUE	ON/OFF	

PURPOSE:

Set options controlling display of a pie chart.

PARAMETERS:

EXPLODED-SEGMENT Controls if a segment of the pie is to be shown exploded (i.e.

detached from the rest).

OFF No segment is to be exploded.

SEGMENT-NAME name Explode the segment with the given name. No segment will be

exploded if the name does not match any of the segment names in the pie to be displayed. The name can be abbreviated and the

matching of names disregards the text case.

FILLING The columns in the histogram can be filled with a HATCHED

pattern, or not filled at all (HOLLOW), or be filled with a SOL-

ID pattern.

LABEL Define the drawing of the pie segment labels.

VISIBILITY HIDE or SHOW the pie segment labels.

ORIENTATION Draw the pie segment labels HORIZONTAL or ROTATED to

follow the segment angle.

5-312 01-OCT-2004 Program version 2.2-03

POSITION Draw the pie segment labels OUTSIDE the pie, INSIDE the pie

or use an AUTOMATIC placement, where they are drawn in-

side if possible.

VALUE ON/OFF Show the value (size) of the pie segment (ON) or hide it (OFF).

NOTES:

When running the program on a black and white screen, it the it usually a good idea to change the default SOLID filling to a HOLLOW or HATCHED.

See also:

- DISPLAY RESULT IMPORTANCE-FACTORS
- PLOT

EXAMPLES:

The following is default when the program starts with a new database:

```
SET GRAPH PIE-CHART EXPLODED-SEGMENT OFF
SET GRAPH PIE-CHART FILLING SOLID
SET GRAPH PIE-CHART LABEL VISIBILITY SHOW
SET GRAPH PIE-CHART LABEL ORIENTATION HORIZONTAL
SET GRAPH PIE-CHART LABEL POSITION AUTOMATIC
SET GRAPH PIE-CHART LABEL VALUE ON
```

Program version 2.2-03 01-OCT-2004 5-313

SET GRAPH XAXIS-ATTRIBUTES

				EXPONENTIAL	
			DECIMAL-FORMAT	FIXED	
			DECIMAL-FORMAT	GENERAL	
		XAXIS-ATTRIBUTES		INTEGER	
	GRAPH		LIMITS	FIXED	xmin, xmax
•••	ORATTI			FREE	
			SPACING	LINEAR	
			SIACING	LOGARITHMIC	
			TITLE	DEFAULT	
	IIILE		IIIDL	SPECIFIED	xtitle

PURPOSE:

Control the drawing of the X axis in a graph display.

PARAMETERS:

DECIMAL-FORMAT Controls the presentation of numbers labelling the x axis.

EXPONENTIAL The numbers are presented in exponential format (e.g.

1.233E+01).

FIXED The numbers are presented in fixed format (e.g. 12.33)

GENERAL The numbers are presented in general (free) format.

INTEGER The numbers are presented as integers.

LIMITS Controls the limits of the x axis.

FREE The limits are determined by the data that are being presented.

FIXED xmin xmax

The limits are fixed to the minimum value xmin and the maxi-

mum value xmax.

SPACING Controls the spacing of numbers along the axis.

LINEAR The axis has a LINEAR spacing.

LOGARITHMIC The axis has a logarithmic spacing with base 10.

TITLE Set the title at the x axis.

5-314 01-OCT-2004 Program version 2.2-03

DEFAULT The title is specified by Profast according to the current graphs

being drawn.

SPECIFIED xtitle The specified title text is used.

NOTES:

In some cases the settings provided here may be overridden, for example SN-curves are always displayed with a log-log spacing.

See also:

- DISPLAY
- PLOT
- SET GRAPH YAXIS-ATTRIBUTTES
- SET GRAPH ZAXIS-ATTRIBUTTES

EXAMPLES:

The following is default when the program starts with a new database:

```
SET GRAPH XAXIS-ATTRIBUTES DECIMAL-FORMAT GENERAL SET GRAPH XAXIS-ATTRIBUTES LIMITS FREE SET GRAPH XAXIS-ATTRIBUTES SPACING LINEAR SET GRAPH XAXIS-ATTRIBUTES TITLE DEFAULT
```

Program version 2.2-03 01-OCT-2004 5-315

SET GRAPH YAXIS-ATTRIBUTES

				EXPONENT	EXPONENTIAL	
			DECIMAL-FORMAT	FIXED		
			DECIMAL-FORMAI	GENERAL		
				INTEGER		
	GRAPH	YAXIS-ATTRIBUTES	LIMITS	FIXED	ymin, ymax	
	OKAIII			FREE		
			SPACING	LINEAR		
			SIACING	LOGARITHMIC		
			TITLE	DEFAULT		
			TITLE	SPECIFIED	ytitle	

PURPOSE:

Control the drawing of the Y axis in a graph display.

PARAMETERS:

DECIMAL-FORMAT Controls the presentation of numbers labelling the y axis.

EXPONENTIAL The numbers are presented in exponential format (e.g.

1.233E+01).

FIXED The numbers are presented in fixed format (e.g. 12.33)

GENERAL The numbers are presented in general (free) format.

INTEGER The numbers are presented as integers.

LIMITS Controls the limits of the y axis.

FREE The limits are determined by the data that are being presented.

FIXED ymin ymax The limits are fixed to the minimum value ymin and the maxi-

mum value ymax.

SPACING Controls the spacing of numbers along the axis.

LINEAR The axis has a LINEAR spacing.

LOGARITHMIC The axis has a logarithmic spacing with base 10.

TITLE Set the title at the y axis.

5-316 01-OCT-2004 Program version 2.2-03

DEFAULT The title is specified by Profast according to the current graphs

being drawn.

SPECIFIED ytitle The specified title text is used.

NOTES:

In some cases the settings provided here may be overridden, for example SN-curves are always displayed with a log-log spacing.

See also:

- DISPLAY
- PLOT
- SET GRAPH XAXIS-ATTRIBUTTES
- SET GRAPH ZAXIS-ATTRIBUTTES

EXAMPLES:

The following is default when the program starts with a new database:

```
SET GRAPH YAXIS-ATTRIBUTES DECIMAL-FORMAT GENERAL SET GRAPH YAXIS-ATTRIBUTES LIMITS FREE SET GRAPH YAXIS-ATTRIBUTES SPACING LINEAR SET GRAPH YAXIS-ATTRIBUTES TITLE DEFAULT
```

Program version 2.2-03 01-OCT-2004 5-317

SET GRAPH ZAXIS-ATTRIBUTES

				EXPONENTIAL	
			DECIMAL-FORMAT	FIXED	
			DECIMAL-FORMAT	GENERAL	
				INTEGER	
	GRAPH	ZAXIS-ATTRIBUTES	LIMITS	FIXED	zmin, zmax
•••	UKAFII			FREE	
			SPACING	LINEAR	
			SIACING	LOGARITHMIC	
			TITLE	DEFAULT	
	IIILE		IIIDD	SPECIFIED	ztitle

PURPOSE:

Control the drawing of the Z axis in a graph display.

PARAMETERS:

DECIMAL-FORMAT Controls the presentation of numbers labelling the z axis.

EXPONENTIAL The numbers are presented in exponential format (e.g.

1.233E+01).

FIXED The numbers are presented in fixed format (e.g. 12.33)

GENERAL The numbers are presented in general (free) format.

INTEGER The numbers are presented as integers.

LIMITS Controls the limits of the z axis.

FREE The limits are determined by the data that are being presented.

FIXED zmin zmax

The limits are fixed to the minimum value and the maximum

value zmax.

SPACING Controls the spacing of numbers along the axis.

LINEAR The axis has a LINEAR spacing.

LOGARITHMIC The axis has a logarithmic spacing with base 10.

TITLE Set the title at the z axis.

5-318 01-OCT-2004 Program version 2.2-03

DEFAULT The title is specified by Profast according to the current graphs

being drawn.

SPECIFIED ztitle The specified title text is used.

NOTES:

In some cases the settings provided here may be overridden, for example SN-curves are always displayed with a log-log spacing.

See also:

- DISPLAY
- PLOT
- SET GRAPH XAXIS-ATTRIBUTTES
- SET GRAPH YAXIS-ATTRIBUTTES

EXAMPLES:

The following is default when the program starts with a new database:

```
SET GRAPH ZAXIS-ATTRIBUTES DECIMAL-FORMAT GENERAL SET GRAPH ZAXIS-ATTRIBUTES LIMITS FREE SET GRAPH ZAXIS-ATTRIBUTES SPACING LINEAR SET GRAPH ZAXIS-ATTRIBUTES TITLE DEFAULT
```

Program version 2.2-03 01-OCT-2004 5-319

SET PLOT

		COLOUR	ON
			OFF
			SESAM-NEUTRAL
	PLOT	FORMAT	HPGL-2
			HPGL-7470
•••			HPGL-7550
			LN03-PLUS
			POSTSCRIPT
		FILE	prefix, name
		PAGE-SIZE	SIZE

PURPOSE:

To set plot file characteristics.

PARAMETERS:

COLOUR Sets the output to the plot file to be in colours (ON) or mono-

chrome (OFF).

FORMAT Set the type of plot file to be used. Please note that the actual

range of devices is machine dependent.

SESAM-NEUTRAL SESAM Neutral format. This is the default format. It can be

converted to other formats and/or manipulated by use if the

utility program PLTCNV.

POSTSCRIPT PostScript format (PostScript is a trademark of Adobe Systems

Incorporated). Note that this requires access to a printer that ac-

cepts PostScript files.

HPGL-2 HP Laserjet printer.

HPGL-7550 HP 7550 plotter.

HPGL-7470 HP 7470 plotter.

LN03-PLUS Digital LN03 Plus laser printer/plotter (or other device with

Tektronix 4014 emulation).

5-320 01-OCT-2004 Program version 2.2-03

FILE prefix name Set the prefix and name of the plot file. The prefix and name are

concatenated. The suffix of the file will depend on the format

of the file.

PAGE-SIZE Sets the size of the plot.

SIZE One of: A1, A2, A3, A4 or A5.

NOTES:

1 When one of these settings is changed, a new plot file will be opened the next time a plot is written.

- 2 One plot file may contain more than one plot.
- 3 There is two ways of generating a plot:

By use of the PLOT command.

By use of SET DISPLAY DESTINATION FILE followed by a DISPLAY command.

See also:

- SET DISPLAY DESTINATION
- PLOT

EXAMPLES:

The following is default when the program starts with a new database:

```
SET PLOT COLOUR ON SET PLOT FILE % same prefix and name as the database and journal file SET PLOT FORMAT SESAM-NEUTRAL SET PAGE-SIZE A4 \,
```

Program version 2.2-03 01-OCT-2004 5-321

SET PRINT

	DESTINATION	FILE		
	DESTINATION	SCREEN		
	FILE	prefix	name	
•••	PAGE-ORIENTATION	LANDSCAPE		
	TAGE-ORIENTATION	PORTRAIT		
	SCREEN-HEIGHT	nlines		

PURPOSE:

To set print characteristics.

PARAMETERS:

DESTINATION Set the destination of the printed output to the SCREEN or to a

FILE.

FILE prefix name Set the prefix and name of the print file. The prefix and name

are concatenated. The suffix of the file will be .LIS.

PAGE-ORIENTATION Set the page orientation for the print file. See note 2 below:

LANDSCAPE The print page is 132 characters wide.

PORTRAIT The print page is 80 characters wide.

SCREEN-HEIGHT nlines Set number of lines in one screen page to nlines. The purpose

of this is to be able to pause the printout at the correct time

when printing to SCREEN in a line mode run.

NOTES:

1 The print DESTINATION is reset to SCREEN each time the program starts up, even if it is on an existing database.

2 The following figure illustrates the print layout:

5-322 01-OCT-2004 Program version 2.2-03

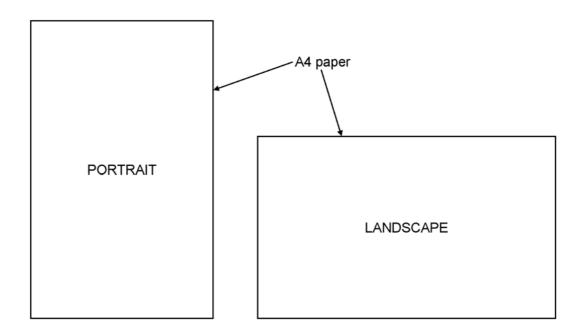


Figure 5.4 Setting PORTRAIT and LANDSCAPE print page orientation

See also:

- SET DISPLAY DESTINATION
- PLOT

EXAMPLES:

The following is default when the program starts with a new database:

- SET PRINT DESTINATION SCREEN
- SET PLOT FILE % same prefix and name as the database and journal file
- SET PLOT PAGE-ORIENTATION LANDSCAPE
- SET SCREEN-HEIGHT 24 % On VMS, Proban sets the correct height.

Program version 2.2-03 01-OCT-2004 5-323

VIEW

	FRAME	
	PAN	
VIEW	POSITION	
	ROTATE	
	ZOOM	

PURPOSE:

To control the appearance of the 3D view, by specification of view angles, zoom and pan.

PARAMETERS:

FRAME Perform an automatic zoom to fit the current view within the frame of the display.

PAN Pan (shift) the current view in the plane of the screen.

POSITION Define the view angles by specifying a point in space which, together with the cen-

tre of the model's coordinate system, defines the direction of the user's observation.

ROTATE Rotate view by specifying rotation angles.

ZOOM Zoom in or out.

NOTES:

- 1 All sub-commands and data are fully explained subsequently as each command is described in detail.
- 2 This command is not journalled.
- 3 The VIEW command works differently in the graphics user interface. It is collected into one dialog, and is available through the Structure menu. The manipulations are performed by typing in the relevant numbers, then clicking on the buttons in the dialog box. See figure below.

5-324 01-OCT-2004 Program version 2.2-03

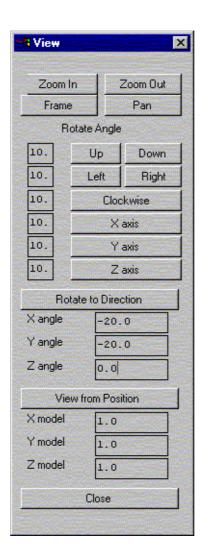


Figure 5.5 The graphics user interface View dialog

- DISPLAY MEMBER
- DISPLAY JOINT
- DISPLAY SUPERELEMENT

Program	

01-OCT-2004

5-325

VIEW FRAME

PURPOSE:

Perform an automatic zoom to fit the current view within the frame of the display.

PARAMETERS:

None:

NOTES:

This command is not journalled.

- DISPLAY MEMBER
- DISPLAY JOINT
- DISPLAY SUPERELEMENT

5-326 01-OCT-2004 Program version 2.2-03

VIEW PAN

]	PAN	pick_	from	pick_	to
---	-----	-------	------	-------	----

PURPOSE:

Pan (shift) the current view in the plane of the screen. The view is shifted by defining a vector in the plane of the screen. The vector is defined by picking the "from" and the "to" positions, see below.

PARAMETERS:

pick from Pick (using mouse or cross-hair) a point on the screen to define the "from" position.

pick to Pick (using mouse or cross-hair) a point on the screen to define the "to" position.

NOTES:

This command is not journalled.

- DISPLAY MEMBER
- DISPLAY JOINT
- DISPLAY SUPERELEMENT

Program version 2.2-03 01-OCT-2004

VIEW POSITION

	POSITION	x-model	y-model	z-model
--	----------	---------	---------	---------

PURPOSE:

Define the view angles by specifying a point in space. The imaginary line from this point towards the origin of the model's coordinate system defines the direction of the user's observation.

PARAMETERS:

x-model x-coordinate in the model's coordinate system.

y-model y-coordinate in the model's coordinate system.

z-model y-coordinate in the model's coordinate system.

NOTES:

1 This command is not journalled.

2 This command is independent of any previously entered rotations, and can therefore be used to "reset" the viewing direction.

- DISPLAY MEMBER
- DISPLAY JOINT
- DISPLAY SUPERELEMENT

5-328 01-OCT-2004 Program version 2.2-03

VIEW ROTATE

	TO	angle-x, angle-y, angle-z	
	UP	angle-x-screen	
	DOWN	angle-x-screen	(Screen mode)
	LEFT	angle-y-screen	(Sereen mode)
 ROTATE	RIGHT	angle-y-screen	
	CLOCKWISE	angle-z-screen	
	X-AXIS	angle-x-model	
	Y-AXIS	angle-y-model	(Space mode)
	Z-AXIS	angle-z-model	

PURPOSE:

Rotate view by specifying rotation angles. Note that this command operates in two basic modes, screen mode and space mode.

Screen mode (TO, UP, DOWN, LEFT, RIGHT & CLOCKWISE alternatives): Here, all angles are relative to the screen axes, which remains fixed, no matter how many rotations are entered. The angles should be interpreted such that it is the observer (the user) that revolves around a stationary model.

The origin of the screen axis system lies in the centre of the screen. The x-axis is horizontal and points from the origin towards the right hand side of the screen. The y-axis is vertical and points from the origin towards the top of the screen. The z-axis is horizontal and points from the origin and out of the screen (towards the user).

Space mode (X-AXIS, Y-AXIS & Z-AXIS alternatives). Here, all angles are relative to the model axes, which follow the rotations. The angles should be interpreted such that it is the model coordinate system that rotates relative to the observer.

PARAMETERS:

TO angle-x angle-y angle-z	This alternative is independent of all previously entered rotations. At the execution of this command, the program first reinitialises the rotations, such that the model and screen axes overlap. Then, the x, y and z rotations specified by the user are applied, in the same order.
UP angle-x-screen	Rotate the view position angle-x-screen degrees UP, relative to the screen x-axis, from the current position.
DOWN angle-x-screen	Rotate the view position angle-x-screen degrees DOWN, rela-

tive to the screen x-axis, from the current position.

SESAM Profast

Program version 2.2-03	01-OCT-2004	5-329

LEFT angle-y-screen Rotate the view position angle-y-screen degrees LEFT, relative

to the screen y-axis, from the current position.

RIGHT angle-y-screen Rotate the view position angle-y-screen degrees RIGHT, rela-

tive to the screen y-axis, from the current position.

CLOCKWISE angle-z-screen Rotate the view position angle-z-screen degrees CLOCK-

WISE, relative to the screen z-axis, from the current position.

X-AXIS angle-x-model Rotate the model coordinate system angle-x-model around the

model x-axis.

Y-AXIS angle-y-model Rotate the model coordinate system angle-x-model around the

model y-axis.

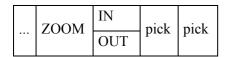
Z-AXIS angle-z-model Rotate the model coordinate system angle-x-model around the

model z-axis.

NOTES:

This command is not journalled.

See also:


DISPLAY MEMBER

DISPLAY JOINT

DISPLAY SUPERELEMENT

5-330 01-OCT-2004 Program version 2.2-03

VIEW ZOOM

PURPOSE:

To zoom the current view in or out.

PARAMETERS:

IN Zoom out by pointing to two diagonal corners in a square on the screen. The part

of the view within the square will then be enlarged and fitted within the whole

screen, causing an illusion of movement towards the model.

OUT Zoom out by pointing to two diagonal corners in a square on the screen. The current

view will then be compressed and fitted within the smaller square, causing an illu-

sion of movement away from the model.

NOTES:

This command is not journalled.

See also:

- DISPLAY MEMBER
- DISPLAY JOINT
- DISPLAY SUPERELEMENT

APPENDIX A TUTORIAL EXAMPLES

The tutorial is based on a relatively simple structure. The example is based on the model shown below.

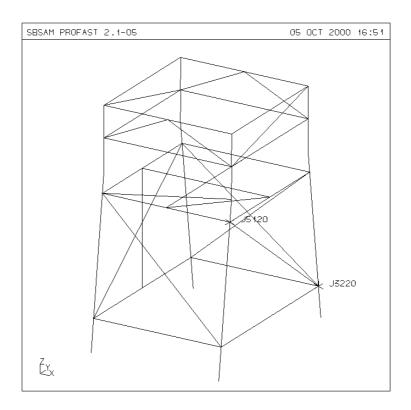


Figure A.1 The structure used in the tutorial with the critical points marked

A-2 01-OCT-2004 Program version 2.2-03

Input to the example is a SESAM interface (SIN) file for the model, a command input file for Framework and a command input file for Profast. The Framework analysis produces a FRAMEWORK.MOD model file, which is then used by Profast.

This appendix contains the command input files and some results produced by the runs.

A 1 The Initial Framework Analysis

The purpose of this analysis is to identify the critical hotspots to be used in Profast by calculating the stochastic fatigue life for a selected number of joints.

A 1.1 Framework Command Input File

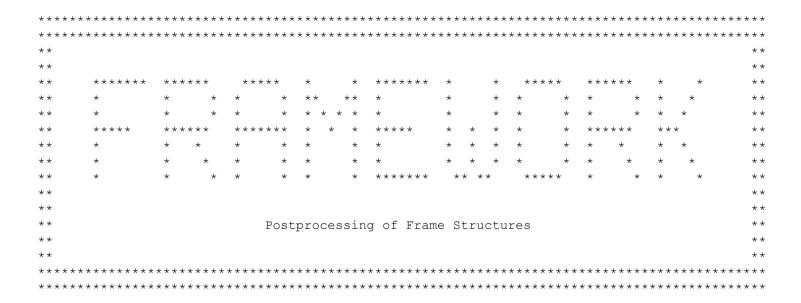
```
TUTORIAL FOR PROFAST USER'S MANUAL
% Local and parametric SCFs are used.
% Only a subset of elements are checked
% Working units are Newtons and mm
% In this example no CAN or STUB sections are used. For all calculations
% nominal section properties are used.
% Let us start by opening a Results Interface file called X108CR1.SIN
FILE OPEN SIN X108C R1
응
% Where X108C..... is the Results file prefix
      R1..... is the Results file name
% Transfer superelement number 1
FILE TRANSFER 1 JACKET WAVE LOADS 'loads for stochastic fatigue'
응
% Where 1..... is the key identifying the superelement read
      JACKET..... is the name given to the superelement
응
      WAVE LOADS..... is the loadset name
% Youngs modulus is now read from the Results Interface File and does
% not need to be assigned. Its value is 200000 N/mm**2
% Assign environmental data
% Create scatter diagram
CREATE WAVE-STATISTICS SCATTER 'ARBITRARY DATA'
```

```
SCATTER-DIAGRAM PROBABILITY
    (
응응응
      Нs
             Tz
                    Prob
     1750.0 4.75 0.249
     1750.0 7.75
                   0.086
     1250.0 6.25
                    0.236
     3250.0 6.25
                    0.206
     4750.0 7.75
                   0.117
     4750.0 7.75
                   0.106
응
% Create a wave spreading function
CREATE WAVE-SPREADING-FUNCTION DIS2 'DISCRETE COS**2' USER-DEFINED
%% Dir Weigth
    -45 0.25
     0 0.50
     45 0.25
    )
응
% Assign the wave spreading function.
ASSIGN WAVE-SPREADING-FUNCTION SCATTER DIS2 ALL
% Assign a Pierson-Moskowitz spectrum for all seastates.
ASSIGN WAVE-SPECTRUM-SHAPE SCATTER PIERSON-MOSKOWITZ ALL
응
\ensuremath{\$} Assign scatter diagrams for each of the main wave directions.
ASSIGN WAVE-STATISTICS
  LOOP
응응응
    Dir
          Name
          SCATTER
     -45
          SCATTER
       0
      45
          SCATTER
      90
          SCATTER
     135
          SCATTER
  END
% Assign the probability of ocurrence for each of the main wave directions.
ASSIGN WAVE-DIRECTION-PROBABILITY
  LOOP
응응응
     Dir
          Prob
          0.0
     -45
          0.9
       0
      45
          0.0
          0.1
      90
     135
          0.0
  END
```

A-4 01-OCT-2004 Program version 2,2-03

```
응
% Create a modified SN-curve. This is necessary because the units in
% the model are in N/mm2 and because the E modulus is different from
% 2.0E5 \text{ N/m2} (if the E modulus had been 2.1E5 \text{ N/m2} the predefined
% DNV-X curve could have been used because Framework and Profast is
% then able to scale it to the correct units).
CREATE SN-CURVE DNVX USER 'DNV-X curve in N/mm2'
                      4.1 34.0 8.301 HORISONTAL-TAIL
% Assign SN-CURVE for element 33115
ASSIGN SN-CURVE JOINT 33115 CONNECTED-TO-MEMBER 33115 DNVX
% Assign LOCAL SCF's for elements 33115
ASSIGN SCF JOINT 33115 ONLY 3110 ' ' LOCAL BOTH-SIDES
    NON-SYMMETRIC
%%% Hot Ax Ipb Opb
   ( 1 1.00 0.00 1.00
     4 0.00 0.00 0.00
    7 1.00 1.00 0.00
   10 0.00 0.00 0.00
    13 1.00 0.00 1.00
   16 0.00 0.00 0.00
    19 1.00 1.00 0.00
    22 0.00 0.00 0.00 )
ASSIGN SCF JOINT 33115 ONLY 3120 ' ' LOCAL BOTH-SIDES
    NON-SYMMETRIC
%%% Hot Ax
           Ipb Opb
   ( 1 1.00 0.00 1.00
    4 0.00 0.00 0.00
    7 1.00 1.00 0.00
    10 0.00 0.00 0.00
    13 1.00 0.00 1.00
    16 0.00 0.00 0.00
   19 1.00 1.00 0.00
    22 0.00 0.00 0.00 )
엉
% Assign SN-CURVE and SCFs for element 33215
ASSIGN SN-CURVE JOINT 33215 CONNECTED-TO-MEMBER 33215 DNVX
ASSIGN SCF JOINT 33215 CONNECTED-TO-MEMBER 33215 None PARAMETRIC WORDSWORTH
ASSIGN JOINT-TYPE 33215 CONNECTED-TO-MEMBER 33215 X
% Assign SN-CURVE and SCFs for element 33415
ASSIGN SN-CURVE JOINT 33415 CONNECTED-TO-MEMBER 33415 DNVX
ASSIGN SCF JOINT 33415 CONNECTED-TO-MEMBER 33415 None PARAMETRIC KUANG
ASSIGN JOINT-TYPE 33415 CONNECTED-TO-MEMBER 33415 KTT
ASSIGN JOINT-GAP 33415 CONNECTED-TO-MEMBER 33415 1.
```

Program version 2.2-03


01-OCT-2004

```
A-5
```

```
% Assign SN-CURVE and SCFs for element 35415
ASSIGN SN-CURVE JOINT 35415 CONNECTED-TO-MEMBER 35415 DNVX
ASSIGN SCF JOINT 35415 CONNECTED-TO-MEMBER 35415 None PARAMETRIC KUANG
ASSIGN JOINT-TYPE 35415 CONNECTED-TO-MEMBER 35415 KTK
ASSIGN JOINT-GAP 35415 CONNECTED-TO-MEMBER 35415 1.
% Define the target fatigue life
DEFINE FATIGUE-CONSTANTS TARGET-FATIGUE-LIFE 20.0
% Perform fatigue check
RUN FATIGUE-CHECK STOFAT 'STOCHASTIC FATIGUE ANALYSIS' ALL
   ( ONLY 33115 33215 33415 35415 )
% Print the results
SET PRINT DESTINATION FILE
SET PRINT FILE X108C STOFAT
SET PRINT PAGE-ORIENTATION LANDSCAPE
PRINT FATIGUE-CHECK-RESULTS STOFAT
    SELECTED-MEMBERS CURRENT FULL ABOVE 0.0
% Make the critical joints displayable in Profast
SELECT SET JOINT CRITICAL ( ONLY 3220 5120 )
% End of fatigue checks.
```

A 1.2 Print File from Framework Analysis

***	* * *	***	***	***	***	***	***	** *	** **	* *
***	***	***	***	***	***	****	***	***	*****	***
**	**	**	**	**	**	**	**	**	**	**
**		**	**	**			**	**	**	**
****	* * *	****	****	***	* * *	****	****	* *	**	**
***	***	****	***	***	***	****	****	* *	**	**
	**	**			**	* *	**	* *	**	* *
* *	**	**	**	**	**	* *	**	* *	**	**
****	***	***	***	***	***	****	****	* *	**	**
***	* * *	***	***	***	***	***	*** **	**	**	**

Marketing and Support by DNV Sesam

Program id : M2.1-05 Computer : DEC 3000 - M300LX Release date : 11-JAN-1996 Impl. update :

Access time : 11-JAN-1996 08:44:22 Operating system : VMS V6.1

User id : OLES CPU id : 0992692168
Installation : DNVS SIV

Copyright DET NORSKE VERITAS SESAM AS, P.O.Box 300, N-1322 Hovik, Norway

DATE: 11-JAN-1996 TIME: 08:44:22 PROGRAM: SESAM FRAMEWORK M2.1-05 11-JAN-1996 PAGE: 1

STOCHASTIC fatigue check results
Run: Superelement: Loadset:
STOFAT JACKET WAVE LOADS

Priority....: Selected Members

Usage factor: Above 0.00 SUB PAGE: 1

NOMENCLATURE:

Member Name of member Type Section type

 ${\tt Joint/Po} \qquad {\tt Joint \ name \ or \ position \ within \ the \ member}$

Outcome Outcome message from the code check

Damage Accumulated damage

Life Fatigue life WeldSide Side of weld

Hot Hotspot (stress point) with maximum damage

SCFrule Method used for SCF calculation

SCFax SCF for axial force
SCFipb SCF for in plane bending
SCFopb SCF for out of plane bending

SNcurve SN curve name SctNam Section name

Alpha Moment transformation angle from local to in/out-of-plane co. system

Symmet Symmetry in SCF specifiation

DiaBra Brace diameter
ThiBra Brace thickness
Gap Gap between braces

ThiFac	Thickness correction factor on SN-curve						
QR	Marchall reduction factor applied on SCFs						
Cycles	Total number of stress cycles						
Theta	Angle between brace and chord in degrees						
Jtype	Joint type						
DiaCho	Chord diameter						
ThiCho	Chord thickness						
LenCho	Chord length						
FixCho	Chord end fixity parameter						
SCFaxC	SCF for axial force at Crown (Hotspot 7)						
SCFaxS	SCF for axial force at Saddle (Hotspot 1)						
SCFaxS	SCF for axial force at Saddle (Hotspot 1)						

DATE: 11-JAN-1996 TIME: 08:44:22 PROGRAM: SESAM FRAMEWORK M2.1-05 11-JAN-1996

STOCHASTIC fatigue check results
Run: Superelement: Loadset:
STOFAT JACKET WAVE_LOADS

Priority....: Selected Members
Usage factor: Above 0.00

Member	Type SctNam	Joint/Po Outcome	Damage	Life Alpha Theta	WeldSide Symmet Jtype	Hot DiaBra DiaCho	SCFrule ThiBra ThiCho	SCFax Gap LenCho	SCFipb ThiFac FixCho	SCFopb QR SCFaxC	SNcurve Cycles SCFaxS
33115	PIPE	3110	1.12E-04	1.78E+05	BOTH-SIDE	19	LOCAL	1.000	1.000	0.000	DNVX
	50025			7.125	NON-SYMME	5.00E+02	2.50E+01	0.00E+00	1.000	1.000	9.21E+07
				90.000	YT	1.60E+03	6.00E+01	3.63E+04	1.000	1.000	1.000
		3120	1.86E-04	1.07E+05	BOTH-SIDE	7	LOCAL	1.000	1.000	0.000	DNVX
				7.125	NON-SYMME	5.00E+02	2.50E+01	0.00E+00	1.000	1.000	9.18E+07
				90.000	YT	1.60E+03	6.00E+01	3.63E+04	1.000	1.000	1.000
33215	PIPE	3210	1.51E-01	1.33E+02	CHORD-SID	22	WORDSWORT	5.991	2.500	2.602	DNVX
	50025			352.875	CROWN-SAD	5.00E+02	2.50E+01	0.00E+00	1.000	1.000	8.47E+07
				90.000	YT	1.60E+03	6.00E+01	3.63E+04	1.000	5.991	5.991
		3210	1.97E-01	1.01E+02	BRACE-SID	22	WORDSWORT	8.081	2.500	2.909	DNVX
				352.875	CROWN-SAD	5.00E+02	2.50E+01	0.00E+00	1.000	0.800	8.45E+07
				90.000	YT	1.60E+03	6.00E+01	3.63E+04	1.000	8.081	8.081
		3220	1.80E-01	1.11E+02	BRACE-SID	10	WORDSWORT	8.081	2.500	2.909	DNVX
				352.875	CROWN-SAD	5.00E+02	2.50E+01	0.00E+00	1.000	0.800	8.41E+07

PAGE:

SUB PAGE:

	3220	1.34E-01	1.49E+02 CHORD-SID 352.875 CROWN-SAD	1.60E+03 6.00E+01 10 WORDSWORT 5.00E+02 2.50E+01 1.60E+03 6.00E+01	3.63E+04 5.991 0.00E+00 3.63E+04	1.000 2.500 1.000 1.000	8.081 8.081 2.602 DNVX 1.000 8.44E+07 5.991 5.991
33415 PIPE 50025	3220	6.06E-02		10 KUANG 5.00E+02 2.50E+01 1.60E+03 6.00E+01	2.500 1.00E+00 3.63E+04	2.500 1.000 1.000	2.571 DNVX 1.000 8.17E+07 2.500 2.500
	3220	1.09E-01	1.83E+02 BRACE-SID		3.182 1.00E+00 3.63E+04	2.692 1.000	2.866 DNVX 0.800 8.21E+07 3.182 3.182
	3120	3.43E-01	5.82E+01 BRACE-SID 0.000 CROWN-SAD	22 KUANG 5.00E+02 2.50E+01	7.964 0.00E+00	2.500	2.866 DNVX 0.800 8.73E+07
	3120	1.70E-01	82.875 YT 1.17E+02 CHORD-SID 0.000 CROWN-SAD 82.875 YT		3.63E+04 5.913 0.00E+00 3.63E+04	1.000 2.500 1.000	7.964 7.964 2.571 DNVX 1.000 8.63E+07 5.913 5.913
35415 PIPE 70020	3220	3.65E-01	5.47E+01 CHORD-SID 0.000 CROWN-SAD	10 KUANG		2.500 1.000 1.000	2.500 DNVX 1.000 8.06E+07 2.500 2.500
	3220	3.65E-01	5.47E+01 BRACE-SID 0.000 CROWN-SAD 44.468 K	10 KUANG	2.500 1.00E+00 3.63E+04	2.500 1.000 1.000	2.500 DNVX 0.800 8.06E+07 2.500 2.500
	5120 **Fail**	1.76E+00	1.14E+01 BRACE-SID 0.000 CROWN-SAD 58.718 K	10 KUANG	2.500 1.00E+00 3.93E+04	2.500 1.000 1.000	2.500 DNVX 0.800 8.65E+07 2.500 2.500
	5120 **Fail**	1.76E+00	1.14E+01 CHORD-SID 0.000 CROWN-SAD		2.500 1.00E+00 3.93E+04	2.500 1.000 1.000	2.500 DNVX 1.000 8.65E+07 2.500 2.500

A-10 01-OCT-2004 Program version 2,2-03

A 1.3 The Profast Analysis

The command input file is presented here in full.

The print file becomes too large, and it is therefore not presented here. Examples of printed output can be found in chapter 3 and with the PRINT command descriptions in chapter 5.

Similarly, the plots written by execution of this command input file are not presented in this appendix. Several of these plots can be found in chapter 2 and 3.

A 1.3.1 Profast Command Input File

```
읒
                 TUTORIAL FOR PROFAST USER'S MANUAL
% The default stress range assignment is Sum-Rayleigh.
% Check the deterministic life time with the FRAMEWORK results.
RUN SN-ANALYSIS LIFE-TIME J5120 DETERMINISTIC
RUN SN-ANALYSIS LIFE-TIME J3220 DETERMINISTIC
% What would happen to the deterministic fatigue life if a fit
% was made to the scatter distribution?
ASSIGN WAVE-SCATTER-DISTRIBUTION SCATTER LOGNORMAL
RUN SN-ANALYSIS LIFE-TIME J3220 DETERMINISTIC
RUN SN-ANALYSIS LIFE-TIME J5120 DETERMINISTIC
ASSIGN WAVE-SCATTER-DISTRIBUTION SCATTER FANG-HOGBEN
RUN SN-ANALYSIS LIFE-TIME J3220 DETERMINISTIC
RUN SN-ANALYSIS LIFE-TIME J5120 DETERMINISTIC
% Reset:
ASSIGN WAVE-SCATTER-DISTRIBUTION SCATTER NONE
% Now apply some uncertainties, in addition to the uncertainty
% on log(K) that has been defined already:
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-m0 ) LOW
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-1N0 ) MEDIUM
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-ISCF ) MEDIUM
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-OSCF ) MEDIUM
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-ASCF ) MEDIUM
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-MinerS ) HIGH
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-m0 ) LOW
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-1N0 ) MEDIUM
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-ASCF ) MEDIUM
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-OSCF ) MEDIUM
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-ISCF ) MEDIUM
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-MinerS ) HIGH
% Verification of the uncertainty application:
```

Program version 2.2-03

01-OCT-2004

A-11

```
PRINT UNCERTAINTY VALUE *
% Find the distribution of the fatigue life. The deterministic fatigue
% life should be in the lower tail of this distribution, because it
% incorporates a safety factor (on log(K) of the SN curve).
% The upper tail of the distribution is quite large, thus the use of
% a logarithmic x axis on the graph of the distribution.
RUN SN-ANALYSIS LIFE-TIME J5120 PROBABILISTIC
RUN SN-ANALYSIS LIFE-TIME J3220 PROBABILISTIC
SET GRAPH XAXIS-ATTRIBUTES SPACING LOGARITHMIC
SET TITLE 'Deterministic lifetime is 11.1 years' ' ' '
DISPLAY SN-ANALYSIS LIFE-TIME J5120 DISTRIBUTION
SET PLOT FILE J5120 SNLIFE
PLOT
SET TITLE 'Deterministic lifetime is 55.4 years' ' ' ' ' '
DISPLAY SN-ANALYSIS LIFE-TIME J3220 DISTRIBUTION
SET PLOT FILE J3220 SNLIFE
PLOT
SET GRAPH XAXIS-ATTRIBUTES SPACING LINEAR
PRINT SN-ANALYSIS LIFE-TIME J3220
% The SN failure probability (and reliability index) may also be
% calculated. By default, it is calculated at 10 time points through
% the service life.
RUN SN-ANALYSIS FAILURE-PROBABILITY J5120
RUN SN-ANALYSIS FAILURE-PROBABILITY J3220
SET TITLE 'Sum-Rayleigh long term stress range' ' ' ' ' '
DISPLAY SN-ANALYSIS FAILURE-PROBABILITY J5120 RELIABILITY-INDEX
SET PLOT FILE J5120 SNFAIL
PLOT
DISPLAY SN-ANALYSIS FAILURE-PROBABILITY J3220 RELIABILITY-INDEX
SET PLOT FILE J3220 SNFAIL
PT.OT
SET TITLE ' ' ' ' ' ' '
% The events J3220-SNFail and J5120-SNFail were created by PROFAST
% when running the SN failure analyses above. By doing a probability
% analysis of these events, the failure probability at the end of the
% service life is calculated, and importance factors may be examined.
RUN PROBABILITY-ANALYSIS J3220-SNFail
DISPLAY RESULT IMPORTANCE-FACTORS
RUN PROBABILITY-ANALYSIS J5120-SNFail
DISPLAY RESULT IMPORTANCE-FACTORS
% Now change the stress range definition to a Weibull distribution,
% fitted to the Sum-Rayleigh distribution that has been used up till
```

A-12 01-OCT-2004 Program version 2,2-03

```
% now. The Sum-Rayleigh distribution cannot be used directly for a
% crack growth analysis.
% Three different fit options are used here and plotted, for comparison.
ASSIGN STRESS-RANGE J3220 WEIBULL-FIT FRACTILE-95-99
SET GRAPH YAXIS-ATTRIBUTES SPACING LOG
DISPLAY STRESS-RANGE J3220
SET PLOT FILE J3220 WBLF99
PLOT
ASSIGN STRESS-RANGE J3220 WEIBULL-FIT DETERMINISTIC
DISPLAY STRESS-RANGE J3220
SET PLOT FILE J3220 WBLDET
ASSIGN STRESS-RANGE J3220 WEIBULL-FIT PROBABILISTIC
DISPLAY STRESS-RANGE J3220
SET PLOT FILE J3220 WBLPRO
PLOT
SET GRAPH YAXIS-ATTRIBUTES SPACING LINEAR
% The probabilistic fir is to be used in the following.
ASSIGN STRESS-RANGE J5120 WEIBULL-FIT PROBABILISTIC
% Recalculate the deterministic SN fatigue life time for comparison.
RUN SN-ANALYSIS LIFE-TIME J3220 DETERMINISTIC
RUN SN-ANALYSIS LIFE-TIME J5120 DETERMINISTIC
PRINT SN-ANALYSIS LIFE-TIME J3220
% The number of load cycles per second (NuO) is calculated by PROFAST
% during the Weibull fit process. It will be treated as an uncertain
% parameter here:
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-Nu0 ) MEDIUM
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-Nu0 ) MEDIUM
% Now recalculate the SN failure probability as a function of time:
RUN SN-ANALYSIS FAILURE-PROBABILITY J3220
PRINT SN-ANALYSIS FAILURE-PROBABILITY J3220
RUN SN-ANALYSIS FAILURE-PROBABILITY J5120
PRINT SN-ANALYSIS FAILURE-PROBABILITY J3220
% An initial crack growth model is assigned. The one dimensional
% tube surface geometry function is used with no weld magnification
% factor (this is the default).
ASSIGN CRACK-GROWTH-MODEL J3220 0 PARIS-1DIM 3.5 -31 NO-THRESHOLD
ASSIGN CRACK-GROWTH-MODEL J5120 0 PARIS-1DIM 3.5 -31 NO-THRESHOLD
ASSIGN GEOMETRY-FUNCTION J5120 TUBE-SURFACE DEPTH 0.1 20.0 0.1 .2
```

A-13

```
ASSIGN GEOMETRY-FUNCTION J3220 TUBE-SURFACE DEPTH 0.1 20.0 0.1 .2
% Uncertainty is applied to some of the crack growth model parameters.
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-lnC ) STDV .77
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-GFactor ) COV .1
ASSIGN UNCERTAINTY VALUE ( ONLY J3220-acRatio ) COV .1
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-lnC ) STDV .77
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-GFactor ) COV .1
ASSIGN UNCERTAINTY VALUE ( ONLY J5120-acRatio ) COV .1
PRINT UNCERTAINTY VALUE *
PRINT VARIABLE ( J3220-lnC J3220-m )
% Calculate and plot the crack growth failure probability as a
% function of time.
% Plot the SN reliability curve with the crack growth reliability curve
DEFINE PRESENTATION CRACK-GROWTH-ANALYSIS SN-FAILURE-CURVE ON
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120
SET TITLE 'Before Calibration' ' ' ' ' '
PRINT CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
PRINT CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220 RELIABILITY-INDEX
SET PLOT FILE J3220 CGF BEF
PLOT
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120 RELIABILITY-INDEX
SET PLOT FILE J5120 CGF BEF
PLOT
SET TITLE ' ' ' ' ' ' '
% In order to make the crack growth result conform to the SN result,
% a calibration of the crack growth model parameters is made. In this
% case one parameter (the geometry function factor) and three time
% points is used.
DEFINE CALIBRATION-CRACK-GROWTH TIME-POINTS ( ONLY 2000.5 2010.5 2030.5 )
RUN CALIBRATION-CRACK-GROWTH J3220 ( ONLY J3220-GFacto-Mean )
DISPLAY CALIBRATION-CRACK-GROWTH J3220 FINAL
DISPLAY CALIBRATION-CRACK-GROWTH J3220 START-AND-FINAL
DISPLAY CALIBRATION-CRACK-GROWTH J3220 ALL-ITERATIONS
SET PLOT FILE J3220 CALIBR
PLOT
PRINT CALIBRATION-CRACK-GROWTH J3220
RUN CALIBRATION-CRACK-GROWTH J5120 ( ONLY J5120-GFacto-Mean )
DISPLAY CALIBRATION-CRACK-GROWTH J5120 ALL-ITERATIONS
DISPLAY CALIBRATION-CRACK-GROWTH J5120 START-AND-FINAL
```

A-14 01-OCT-2004 Program version 2,2-03

```
DISPLAY CALIBRATION-CRACK-GROWTH J5120 ALL-ITERATIONS
SET PLOT FILE J5120 CALIBR
PLOT
% Recalculate the crack growth failure probability after calibration.
% This time importance factors are also calculated. By default they
% are turned off in this type of analysis in order to save computation
% time.
DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY IMPORTANCE ON
SET TITLE 'After Calibration' ' ' ' ' '
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
PRINT CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220 RELIABILITY-INDEX
SET PLOT FILE J3220 CGF CAL
PLOT
PRINT RESULT PARAMETER-STUDY IMPORTANCE *
% The importance factors are displayed as a function of time, and
% for three selected time points
DISPLAY RESULT PARAMETER-STUDY IMPORTANCE *
SET PLOT FILE J3220 CGF IMPGRA
PLOT
SET DRAWING FONT-SIZE RELATIVE 1.3
DISPLAY RESULT IMPORTANCE ( 1990.8 2005.2 2020.5 )
SET PLOT FILE J3220 CGF IMPPIE
PLOT
SET DRAWING FONT-SIZE RELATIVE 1.5
% Reset:
DEFINE CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY IMPORTANCE OFF
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120
PRINT CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120 RELIABILITY-INDEX
SET PLOT FILE J5120 CGF CAL
PLOT
오
SET TITLE ' ' ' ' ' ' '
% Do not clutter the coming crack growth failure curves with the
% SN failure curve:
DEFINE PRESENTATION CRACK-GROWTH-ANALYSIS SN-FAILURE OFF
% An inspection plan is to be made. The target reliability at the two
% points are different, but the same inspection quality is used.
ASSIGN TARGET-RELIABILITY J3220 3.5
ASSIGN TARGET-RELIABILITY J5120 3.0
```

Δ_15

```
ASSIGN INSPECTION-QUALITY (ONLY J3220 J5120 ) LENGTH PODL-MPI-UW
% First, an optimised plan is constructed.
RUN PLAN-INSPECTION (ONLY J3220 J5120 ) 1990.5 OPT 'Optimised plan'
% and printed:
PRINT PLAN-INSPECTION OPT CHRONOLOGICAL
PRINT PLAN-INSPECTION OPT POINTWISE
% Then, to show the difference in the messages displayed, the same
% plan is calculated with different options:
DEFINE PLAN-INSPECTION MONITOR-CALCULATION ON
DEFINE PLAN-INSPECTION KEEP-INSPECTIONS ON
DELETE PLAN-INSPECTION OPT
RUN PLAN-INSPECTION (ONLY J3220 J5120 ) 1990.5 OPT 'Optimised plan'
% Since the inspections were kept, a crack growth analysis can be
% performed using the planned inspections:
SET TITLE 'Optimised Inspection Plan' ' ' ' ' '
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
PRINT CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220 RELIABILITY-INDEX
SET PLOT FILE J3220 CGF OPT
PLOT
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120
PRINT CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120 RELIABILITY-INDEX
SET PLOT FILE J5120 CGF OPT
PLOT
SET TITLE ' ' ' ' ' ' '
% Need to delete the plan before another can be made.
DELETE PLAN-INSPECTION OPT
% Now, do another plan with prescribed inspection times at four
% year intervals, using the same procedure as above.
DEFINE PLAN-INSPECTION METHOD PRESCRIBED (GROUP 1994.5 2018.5 4 2020.5)
DEFINE PLAN-INSPECTION MONITOR-CALCULATION OFF
DEFINE PLAN-INSPECTION KEEP-INSPECTIONS OFF
RUN PLAN-INSPECTION ( ONLY J3220 J5120 ) 1990.5 PRE
                                         'Inspection every fourth year'
PRINT PLAN-INSPECTION PRE CHRONOLOGICAL
PRINT PLAN-INSPECTION PRE POINTWISE
DEFINE PLAN-INSPECTION MONITOR-CALCULATION ON
DEFINE PLAN-INSPECTION KEEP-INSPECTIONS ON
DELETE PLAN-INSPECTION PRE
RUN PLAN-INSPECTION (ONLY J3220 J5120 ) 1990.5 PRE
```

A-16 01-OCT-2004 Program version 2.2-03

```
'Inspection every fourth year'
엉
SET TITLE 'Prescribed Inspections, every fourth year' ' ' ' '
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J3220 RELIABILITY-INDEX
SET PLOT FILE J3220 CGF PRE
PLOT
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120 RELIABILITY-INDEX
SET PLOT FILE J5120 CGF PRE
% Cleanup:
DELETE PLAN *
% Add an inspection at Joint 5120 after 4 years.
% The length was inspected, and a crack was found with length 5mm.
응
CREATE INSPECTION J5-I1 'First inspection at J5120' J5120 1994.5
                        NOT-OBSERVED CRACK-FOUND EQUAL-TO 5
% The observation is uncertain. The distribution is assumed to be
% Normal instead of the default Exponential distribution.
DEFINE UNCERTAINTY Inspection-Length Normal NONE
                                     NOT-USED NOT-USED NOT-USED .01 .05 .1
ASSIGN UNCERTAINTY VALUE J5-I1-Length STDV 0.2
% Print the inspection input:
PRINT INSPECTION J5-I1
% Calculate the crack growth failure reliability as a function of
% time during the service life, taking the observed crack into account:
RUN CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120
SET TITLE 'Crack found, Length 5mm' ' ' ' ' '
SET DRAWING FONT-SIZE RELATIVE 1.5
DISPLAY CRACK-GROWTH-ANALYSIS FAILURE-PROBABILITY J5120 RELIABILITY-INDEX
SET PLOT FILE J5120 CRACK
PLOT
% Now examine the effect of grinding the found crack away.
% The grind depth is assumed Normal distributed with a mean of
% 2mm and a standard deviation of 0.2mm.
ASSIGN REPAIR J5-I1 GRIND 2
DEFINE UNCERTAINTY Inspection-Grind Normal NONE
                                    NOT-USED NOT-USED NOT-USED .01 .05 .1
ASSIGN UNCERTAINTY VALUE J5-I1-Grind STDV 0.2
```

SESAM Profast

Program version 2.2-03 01-OCT-2004 A-17

A-18 01-OCT-2004 Program version 2.2-03

B-

APPENDIX B VARIABLES AND EVENTS MAIN-TAINED BY PROFAST

This appendix contains a list of all variables and events created and maintained by PROFAST. All these variables and events are write protected, i.e. they cannot be deleted or changed directly by the user. They may only be affected indirectly through another action, e.g. changing an uncertainty.

Most of the variables and events are attached to a fatigue point, inspection or scatter diagram. In such a case the name of the variable is derived from the name of the parent object (e.g. NAME) and a suffix denoting the derivation, separated by a hyphen (e.g. NAME-CGFail). Note that names of variables and events are limited to 12 characters. Thus, the name of the derived variable or event will be truncated if necessary. As the parent name can be up to 8 characters long, the first three characters in the suffix will be unique.

Variables and events may come from two sources:

- 1 They may be maintained in order to perform an analysis. These are failure events, inspection events, limit state variables and variables giving the life time using a specific analysis type.
 - Each stochastic parameter in PROFAST maintains a variable with a name as described above. This variable is used to contain the uncertainty description of the parameter.

Note that, as PROFAST develops, more names than are specified here may be added. The full list of sto-chastic parameters may always be printed using the command PRINT UNCERTAINTY DEFINITION.

All variables and events are listed alphabetically.

B 1 Independent Values

There are only two independent values in PROFAST, denoting the service life:

LifeBegin Start of the service life

LifeEnd End of the service life

B-2 01-OCT-2004 Program version 2.2-03

B 2 Attached to a Fatigue Point

The following variables and events may be attached to a fatigue point. Not all of these will exist at any one time. The active subset depends on the modelling and on the analyses performed.

B 2.1 Analysis Variables

These variables are created/updated when the RUN SN-ANALYSIS and RUN-CRACK-GROWTH-ANALYSIS commands are used.

NAME-CGFail Crack growth failure limit state function

NAME-CGLife Time to crack growth failure

NAME-SNFail SN failure limit state function

NAME-SNLife Time to SN failure

B 2.2 Events

These events are created/updated when the RUN SN-ANALYSIS and RUN-CRACK-GROWTH-ANALY-SIS commands are used.

NAME-CGFail Crack growth failure event

NAME-SNFail SN failure event

B 2.3 Stochastic Parameters

These variables are created/updated when the value they contain is created or changed, or when an uncertainty specification is changed.

NAME-1dB 1/B, B: Weibull shape parameter

NAME-a0 Initial crack depth

NAME-acRatio Aspect ratio (a/c)

NAME-acrit Critical crack depth

NAME-ASCF SCF value, Axial

NAME-AtLen Length of attachment at weld

NAME-aTRF Transfer function factor = $a + b*Hs + c*Hs^2$

NAME-bTRF Transfer function factor = $a + b*Hs + c*Hs^2$

NAME-c0 Half initial crack length

Program version 2.2-03	01-OCT-2004	B-3

NAME-c1Pol	Polynomial geometry function, coefficient 1
NAME-c2Pol	Polynomial geometry function, coefficient 2
NAME-c3Pol	Polynomial geometry function, coefficient 3
NAME-c4Pol	Polynomial geometry function, coefficient 4
NAME-c5Pol	Polynomial geometry function, coefficient 5
NAME-c6Pol	Polynomial geometry function, coefficient 6
NAME-c7Pol	Polynomial geometry function, coefficient 7
NAME-c8Pol	Polynomial geometry function, coefficient 8
NAME-CaCc	$(Ca/Cc)^{(1/m)}$
NAME-ccrit	Half critical crack length
NAME-cTRF	Transfer function factor = $a + b*Hs + c*Hs^2$
NAME-DK0	Delta K0, threshold value
NAME-GFactor	Factor on geometry function
NAME-I01	Influence coefficient 01
NAME-I02	Influence coefficient 02
NAME-I03	Influence coefficient 03
etc.	Influence coefficient xx
NAME-I98	Influence coefficient 98
NAME-I99	Influence coefficient 99
NAME-IFactor	Common factor on influence coef
NAME-ISCF	SCF value, In plane bending
NAME-ITime	Crack initiation time
NAME-lCa	ln(Ca), material parameter
NAME-IN0	SN curve, Log cycles at first slope change
NAME-IN1	SN curve, Log cycles, second slope change

ln(A), A: Weibull scale parameter

ln(C), material parameter

NAME-lnA

NAME-InC

B-4 01-OCT-2004 Program version 2.2-03

NAME-m0 First slope in SN Curve

NAME-m1 Second slope in SN Curve

NAME-m2 Third slope in SN Curve

NAME-MSRatio Membrane stress ratio: m/(m+b)

NAME-m m, material parameter

NAME-MinerSum Critical Miner sum

NAME-nu0 Number of load cycles per second

NAME-ODiam Outer diameter

NAME-OSCF SCF value, Out of plane bending

NAME-RSP Factor on square modulus of Transfer function

NAME-SFactor Common factor on all SCF values

NAME-SRange Constant stress range value

NAME-ThFac SN curve, Thickness correction factor

NAME-Thick Thickness

NAME-WFactor Factor on Weld effect

NAME-Width Width

B3 Attached to an Inspection

The following variables and events may be attached to an inspection. Not all of these will exist at any one time. The active subset depends on the modelling and on the analyses performed.

B 3.1 Analysis Variables

These variables are created/updated when the RUN SN-ANALYSIS and RUN-CRACK-GROWTH-ANALYSIS commands are used.

NAME-CGFail Crack growth failure limit state function

NAME-CGLife Time to crack growth failure

NAME-INDep Depth inspection limit state function

NAME-INLen Length inspection limit state function

NAME-SNFail SN failure limit state function

SESAM Profast

Program version 2.2-03 01-OCT-2004 B-5

NAME-SNLife Time to SN failure

B 3.2 Events

These events are created/updated when the RUN SN-ANALYSIS and RUN-CRACK-GROWTH-ANALY-SIS commands are used.

NAME-CGFail Crack growth failure event

NAME-INAll Intersection of all inspection events up to this for the relevant fatigue point.

NAME-INDep Depth inspection event

NAME-INLen Length inspection event

NAME-SNFail SN failure event

B 3.3 Stochastic Parameters

These variables are created/updated when the value they contain is created or changed, or when an uncertainty specification is changed.

The following values are created for an inspection when needed, regardless of the assignment of a repair to the inspection:

NAME-Depth Depth of crack at inspection

NAME-DPOD Depth POD curve

NAME-Length Length of crack at inspection

NAME-LPOD Length POD curve

NAME-Time Time of inspection

The following values may appear after a grind repair has been assigned to the inspection:

NAME-1dB 1/B, B: Weibull shape parameter

NAME-a0 Initial crack depth

NAME-acRatio Aspect ratio (a/c)

NAME-acrit Critical crack depth

NAME-ASCF SCF value, Axial

NAME-AtLen Length of attachment at weld

NAME-aTRF Transfer function factor = $a + b*Hs + c*Hs^2$

NAME-bTRF Transfer function factor = $a + b*Hs + c*Hs^2$

B-6 01-OCT-2004 Program version 2.2-03

NAME-c0 Half initial crack length

NAME-c1Pol Polynomial geometry function, coefficient 1

NAME-c2Pol Polynomial geometry function, coefficient 2

NAME-c3Pol Polynomial geometry function, coefficient 3

NAME-c4Pol Polynomial geometry function, coefficient 4

NAME-c5Pol Polynomial geometry function, coefficient 5

NAME-c6Pol Polynomial geometry function, coefficient 6

NAME-c7Pol Polynomial geometry function, coefficient 7

NAME-c8Pol Polynomial geometry function, coefficient 8

NAME-CaCc $(Ca/Cc)^(1/m)$

NAME-cerit Half critical crack length

NAME-cTRF Transfer function factor = $a + b*Hs + c*Hs^2$

NAME-DK0 Delta K0, threshold value

NAME-GFactor Factor on geometry function

NAME-Grind Depth of grind at inspection

NAME-GThick Stochastic representation of thickness after repair as the difference between the

previous thickness and the grind depth.

NAME-I01 Influence coefficient 01

NAME-I02 Influence coefficient 02

NAME-I03 Influence coefficient 03

etc. Influence coefficient xx

NAME-I98 Influence coefficient 98

NAME-I99 Influence coefficient 99

NAME-IFactor Common factor on influence coef

NAME-ISCF SCF value, In plane bending

NAME-ITime Crack initiation time

NAME-lCa ln(Ca), material parameter

SESAM Profast

Program version 2.2-03 01-OCT-2004 B-7

NAME-INO SN curve, Log cycles at first slope change

NAME-IN1 SN curve, Log cycles, second slope change

NAME-lnA ln(A), A: Weibull scale parameter

NAME-lnC ln(C), material parameter

NAME-m0 First slope in SN Curve

NAME-m1 Second slope in SN Curve

NAME-m2 Third slope in SN Curve

NAME-MSRatio Membrane stress ratio: m/(m+b)

NAME-m m, material parameter

NAME-MinerSum Critical Miner sum

NAME-nu0 Number of load cycles per second

NAME-ODiam Outer diameter

NAME-OSCF SCF value, Out of plane bending

NAME-RSP Factor on square modulus of Transfer function

NAME-SFactor Common factor on all SCF values

NAME-SRange Constant stress range value

NAME-ThFac SN curve, Thickness correction factor

NAME-Thick Thickness after repair

NAME-WFactor Factor on Weld effect

NAME-Width Width

B 4 Attached to a Scatter Diagram

The following variables may be attached to a scatter diagram Not all of these will exist at any one time. The active subset depends on the modelling used.

These variables are created/updated when the value they contain is created or changed, or when an uncertainty specification is changed.

NAME-AWS Factor on sigmaA in Jonswap spectrum

NAME-BWS Factor on sigmaB in Jonswap spectrum

B-8 01-OCT-2004 Program version 2.2-03

NAME-CHT Factor on correlation (Hs,Tz)

NAME-EHS Factor on mean of Hs

NAME-ETZ Factor on mean of Tz

NAME-FHS Factor on Fang & Hogben skewness

NAME-GWS Factor on Gamma in Jonswap spectrum

NAME-LWS Factor on L (Ksi) in General Gamma spectrum

NAME-NWS Factor on N (Zeta) in General Gamma spectrum

NAME-PWS Factor on Power in wave spreading function

NAME-SHS Factor on standard deviation of Hs

NAME-STZ Factor on standard deviation of Tz