
Test Driven .NET Development
with FitNesse

second edition

Gojko Adzic

Test Driven .NET Development with FitNesse: second edition
Gojko Adzic
Copy-editor: Marjory Bisset
Cover picture: Brian Samodra

Published 2009
Copyright © 2008-2009 Neuri Limited

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where these designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author has taken care in the preparation of this book, but makes no expressed or implied warranty
of any kind and assumes no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Neuri Limited
25 Southampton Buildings
London WC2A 1AL
United Kingdom

You can also contact us by e-mail: contact@neuri.com

Register your book online

Visit http://gojko.net/fitnesse and register your book online to get free PDF updates and
notifications about corrections or future editions of this book.

ISBN: 978-0-9556836-2-6 REVISION:2009-12-08

http://gojko.net/fitnesse

Preface to the second edition ... vii
What's new in this version? ... vii

Training and consultancy .. ix
Acknowledgements ... xi
About the author ... xiii
I. Getting started .. 1

1. Introduction ... 3
Who should read this book? .. 3
Why bother with TDD? .. 4
Beyond unit tests .. 6
Getting FIT .. 7
FitNesse or NUnit? ... 9
The next step .. 12

2. Installing FitNesse ... 15
Setting up FitNesse ... 16
A quick test .. 17
How FitNesse connects to .NET classes 22
Don't forget the test .. 23
Playtime ... 25

II. FitNesse and TDD in practice ... 27
3. Our Project ... 29

Lottery rules ... 29
Selected user stories .. 29
Applying TDD to our project .. 30
The next step .. 39

4. Writing basic tests ... 41
ColumnFixture — the Swiss Army knife of FitNesse 43
Testing in plain English .. 47
Playtime ... 51

5. Writing simple test scripts ... 53
Passing values between tables .. 54
Writing a simple test script ... 56
Use data-transfer objects directly 59
Using symbols to check dynamic values 61
Checking for errors ... 62
Playtime ... 64

6. Writing efficient test scripts .. 67
Better test scripts with DoFixture 69

iii

Use DoFixture keywords for better control 73
Keep ActionFixture in mind .. 75
Playtime ... 76

7. Removing duplication ... 79
Group related tests into test suites 79
Include pages and use them as components 82
Reuse entire suites with symbolic links 83
Use markup variables to parameterise test pages 84
Defining common actions ... 85
Remove irrelevant information 86
Acceptance tests should focus on business rules 88
Hide parts of the page ... 88
Playtime ... 88

8. Coordinating fixtures .. 91
Embed fixtures for best results .. 92
Use SetUpFixture to prepare the stage for tests 94
Create test suites in flow mode .. 99
Wrapping business objects with DoFixture 101
Playtime ... 102

9. Working with collections ... 103
Testing lists of objects ... 104
Checking for empty collections 108
Beware of test extensions ... 109
Use RowFixture for better precision 111
Playtime ... 114

III. Advanced FitNesse usage ... 117
10. Working in a team ... 119

Options for team setup .. 119
Organising the files ... 123
Integrating with automated build tools 127

11. Testing web interfaces ... 135
Choosing the right thing to test 135
Introducing Selenium ... 138
Connecting from FitNesse ... 142
Running tests on a remote server 147
More Selenium tests .. 149

12. Testing database code .. 151
Connecting to the database ... 151

iv

Test Driven .NET Development with FitNesse

Working with stored procedures 155
Preparing test data .. 156
Executing statements .. 157
Verifying query results .. 157
Other DbFit features ... 158

13. Testing legacy code .. 161
Covering legacy code with tests 161
Use blank cells to print out results 162
Use show and check with FitLibrary 163
Wrap existing objects for tests 163
Use ArrayFixture and RowFixture to capture data
batches ... 164
Using existing forms for regression tables 165

14. Using business domain objects directly 169
System under test with ColumnFixtures 169
Changing the system under test 170
Using collections directly .. 172
Setting the system under test from FitNesse 174
Using named fixtures .. 175
Don't go too far .. 175

15. Tips and tricks ... 177
What really happens during a test? 177
Attaching the Visual Studio debugger 182
Load non-standard cell operators for simpler comparis-
ons ... 183
Simplify verifications with a custom cell operator 184
Avoid conversions by supporting custom data types 186
Implement domain-specific tests using custom
fixtures ... 187

IV. Appendices ... 191
A. Formatting text .. 193
B. Test smells .. 195
C. Resources ... 197

Web sites .. 198
Blogs with good articles on FitNesse and FitSharp 199
Articles ... 200
Video presentations and slides 201

D. Source code .. 203

v

C# Classes ... 203
FitNesse Tests ... 236
Build scripts ... 253
Web code .. 255

Index .. 257

vi

Test Driven .NET Development with FitNesse

Preface to the second edition
The first edition of Test Driven .NET Development with FitNesse was
released in early 2008 as a result of a small independent publishing effort.
It evolved from a series of guides I wrote for other team members, sharing
tips and tricks I discovered while experimenting with FitNesse.NET code.
I never expected it to make a significant impact on anything. However,
it proved to be the start of a very interesting journey.

For some reason still unknown to me, my clients started referring to me
as “the FitNesse guy”. Very soon after the book was published, I was
invited to speak at many great companies about FitNesse and agile
acceptance testing, from media giants such as the BBC to leaders in the
banking industry such as Goldman Sachs and the HSBC. Almost two
years after the first edition of this book was printed, I spend most of my
time helping people get started with test driven development and agile
acceptance testing. I spoke at dozens of conferences and organised public
and on-site workshops. The book unexpectedly had a major effect on my
work.

I also wrote a follow-up non-technical book on this subject, Bridging the
Communication Gap: Specification by Example and Agile Acceptance
Testing. It was labelled as a must-read for anyone serious about agile
software development by many respected reviewers.

There seems to be a surge of interest in the industry for FitNesse and agile
acceptance testing in general, with teams realising that this is the missing
link they need for successful agile adoption. I want to make this resource
more easily available. The second edition of Test Driven .NET Develop-
ment with FitNesse is free and now available online at
http://gojko.net/fitnesse. I hope you will enjoy it.

What's new in this version?

Since the book was originally released, both FitNesse and the .NET FIT
test runner were improved significantly. All the examples in this book
are now updated to be compatible with the latest releases of FitNesse

vii

http://gojko.net/fitnesse

(20091121) and FitSharp (1.4). I re-wrote parts that are no longer
applicable to the new FitSharp test runner, especially around Cell Oper-
ators (see the section “Cell operators” on page 181). In a classic example
of self-inflicted scope creep, I also wrote a new chapter on using domain
objects directly (Chapter 14, Using business domain objects directly).

I changed the tool used for assembling the book. Instead of Apache FOP,
I used XEP which will hopefully make the layout a bit better. Fonts
(especially the code font) were also changed to make the book easier to
read.

Some of my opinions have changed since the first edition was published,
especially around using FitNesse for integration testing. I think this is
only natural, as I started writing the book more than three years ago.
However, I haven't rewritten those parts in the second edition yet. My
goal with the second edition was mostly to bring the book up-to-date with
recent versions of FitNesse and the FitSharp library and to offer it for
free.

viii

Preface to the second edition

Training and consultancy
My company offers customised on-site workshops and training courses
that help teams start with test driven development and agile acceptance
testing on .NET and Java platforms. Through facilitated exercises and
discussion, these workshops allow teams to experience several days of
working on an agile test-driven team, learn the principles of test driven
development and agile acceptance testing and try them out in practice.
See http://neuri.co.uk/training/ for more information.

In addition to that, we also offer consultancy services to help teams
improve and get the most out of test-driven development and agile
acceptance testing, including process review, workshop facilitation, test
strategy consulting, mentoring and code review.

If you are interested in on-site workshops, training or consultancy, please
contact us using the information provided on http://neuri.co.uk/contact/

ix

http://neuri.co.uk/training/
http://neuri.co.uk/contact/

x

Acknowledgements
This book is a result of a small independent publishing effort, and as such
would not be possible without the help of many people.

In first place, I would like to thank my technical reviewers Andy Glover,
Chris Roff, Cory Foy, Mike Stockdale, Naresh Jain and Ryan McCullough.
Many thanks for many excellent suggestions — your comments really
made this book much better. I guess I need to thank Mike Stockdale once
more for creating FitNesse.NET and FitSharp and giving me such a
wonderful subject for the book.

Marjory Bisset from Pearl Words did a great job as the copy–editor of
this book; thank you for the many hours you spent correcting my grammar
and making the book easier to read.

I'd also like to thank the people from Mikro Knjiga publishing company
in Belgrade. Without all the tricks I learned while working with you, this
book would not have been possible as an independent project.

Bob Stayton from SageHill Enterprises, whom I've never met or exchanged
a single e–mail with, has helped me immensely with this book. I could
never have prepared this book for publishing without Stayton's instruc-
tions on DocBook XSL and his numerous problem–solving messages on
the DocBook mailing list. Bob, I feel like I owe you a few bears, and if you
are ever in London and want to claim that, please contact me.

Brian Samodra kindly allowed me to use his photograph for the cover
picture. Thank you, Brian.

Finally, I'd also like to thank Andy Hunt and Robbie Allen from the
Pragmatic Bookshelf for their excellent advice during the early stages of
this project. Your help is greatly appreciated.

xi

xii

About the author
Gojko Adzic is a software craftsman with a passion for new technologies,
programming and writing. He runs Neuri Ltd, a UK-based consultancy
that helps companies build better software by introducing agile practices
and tools and improving communication between software teams,
stakeholders and clients.

Gojko is the author of several popular printed and online guides on
acceptance testing and more than 200 articles about programming,
operating systems, the Internet and new technologies published in various
online and print magazines. He is a frequent speaker at software develop-
ment conferences.

To get in touch, write to gojko@neuri.com or visit http://www.gojko.net.

xiii

http://www.gojko.net

xiv

Part I. Getting started
In this part of the book, we prepare for our journey. The first chapter intro-
duces FitNesse and test driven development. In the second chapter, we set up
FitNesse and go through a quick test to make sure that everything works OK
before moving on to the real thing.

Chapter 1.

Introduction
Test-driven development (TDD) really shook the world of software
development from the very foundations, much more than any other
extreme programming idea. Ten years ago it may have been some sort of
mystical programming skill only known to true kung-fu masters. Today,
it is becoming common sense, practised even by teams that do not follow
any agile methodology.

Whether test-driven development should or should not be done is no
longer an issue, but there is still an issue about how best to do it. This
book is about doing test-driven development in a .NET environment
better, with the help of two great open source tools: FIT and FitNesse.
These tools allow us to apply TDD principles efficiently and improve
communication with customers and business analysts. FIT and FitNesse
help all team members build a shared understanding and effectively speak
the same language.

Who should read this book?

This book is primarily aimed at .NET developers interested in starting
with TDD and those who already practise unit testing and want to move
beyond that into development driven by acceptance testing. It will also
be useful to Java developers who are experienced with FitNesse, but wish
to use it in a .NET environment. The .NET and Java implementations
differ significantly in some ways, and this book points out all the
important .NET-specific features. Java developers can also benefit from
the third part of this book, where we discuss best practices for using
FitNesse in a team environment and integrating FitNesse into the wider
software development ecosystem, including web and database tests.

You will learn how to write and manage tests effectively, how to integrate
FitNesse into your development process, and how to extend it to meet
particular project needs. You will learn when to use FitNesse, when not
to use it, and when to combine it with unit testing tools. You will also

3

discover how to get customers to help out with testing and how to use
FitNesse to make project requirements clearer.

Why bother with TDD?

If you bought this book to learn about test-driven development, then you
are probably wondering how a single practice can have such a big impact
on our work. In defence of my statement that TDD is now common sense,
here is a brief overview of what it can do for us.

Before the rise of test-driven development, testing and coding were
traditionally two separate activities. Programmers would write code and
forget about it. Quality Assurance people tried to flush out as many bugs
as they could before the release. From time to time, the software would
be so bug-ridden that the QA engineers had to pull the plug. Sometimes
things got even worse: a system would be delivered still full of bugs and
customers would besiege the support staff with angry calls and e-mails.
Problems never started out big, but they were allowed to grow between
coding and testing.

TDD was a conceptual shift from this practice, spreading testing over the
entire development process. Problems are not allowed to grow. Guided
by the “test early, test often” principle, we do a bit more work up front,
but that significantly reduces the effort required to support the code.

The following quotation from “Competing on the Basis of Speed”,1 a
presentation given by Mary Poppendieck at Google Tech Talks on the
15th of December 2006, summarises the benefits of TDD very effectively:

When we started up in our plant...

...we had people in QA who used to try to find defects in our
products, and we moved them all out on to the production line
to figure out how to make stuff without defects in the first
place...You will be amazed at how much faster you go when you
make stuff and defects are caught when they occur instead of
being found later.

1 http://video.google.com/videoplay?docid=-5105910452864283694

4

Introduction

http://video.google.com/videoplay?docid=-5105910452864283694

—Mary Poppendieck

TDD allows us to work amazingly fast, because it improves the whole
process in several ways.

Quality from the start

TDD keeps problems small. Because tests take place early in the develop-
ment process, rather than late, problems surface quickly and get solved
before they grow. We can build quality into our products right from the
start.

Early interface validation

The only way to know if an API makes sense is to use it. TDD makes
developers eat their own dog food because tests are effectively the first
API client. If the API does not make sense or if it is hard to use, the
developers experience this first hand. Tests should be easy to write, and
if they are not, then we need to change the code to make testing easier.
This makes it easier for other people to use our code.

Divide and conquer

In order to test code modules in isolation, developers have to divide them
into small independent chunks. This leads to better interfaces, clear
division of responsibility, and easier management of code.

Safety net for the code

At the beginning of development, changes to software are quick and
simple. As the code base grows, it becomes harder to modify. A simple
change in one area often causes problems in a seemingly unrelated part
of the code. Without tests, it soon becomes too hard and expensive to
change anything. When we test all parts of the code, problems are quickly
identified wherever they are.

5

Quality from the start

Confidence = Productivity

As craftsmen, most developers take pride in their work and want to deliver
quality software. Making changes to production code when we are not
confident in the quality feels like walking on broken glass. Having tests
tell us that we are on the right track, allows us to be more confident in
our work and enables us to change the code faster.

Light at the end of the tunnel

Tests can be an effective way to describe specifications and requirements.
If used properly, they can guide the development process, showing us
what we need to implement. Once all tests pass, the work is done. This
light at the end of the tunnel makes it easier to focus on the development
effort.

Beyond unit tests

One of the main goals of this book is to help people move beyond unit
tests. However, please understand that this is not a book against unit
testing. Unit testing is an incredibly useful practice and I am not trying
to make a case against it. However, it has become a victim of its own
success. Because NUnit and similar tools are now so ubiquitous, they get
abused by being used for component and integration tests or even for
acceptance testing. These tools were never designed for such tasks. The
role of tests has evolved from verifying functionality to guiding develop-
ment, and for this we need a completely different set of tools. Useful as
they are, unit tests are often not enough.

Back in 2002 I worked on configuration management software. That beast
had more edge cases than anything I had seen before. The whole team
wasted enormous effort on manual verification. About the time that we
started to rewrite the engine in Java, I read about JUnit, which came like
a gift from heaven. We automated most of the dull verification tasks.
Problems became smaller and we were no longer wrestling with big issues
that required several days to diagnose.

6

Introduction

A few months later, I could no longer understand how I ever managed to
work without unit testing. Putting requirements into tests turned out to
be a great way to make sure we all agreed on the targets, and provided us
with guidelines on how to hit them. Tests provided an early sanity check
for our APIs. JUnit was magic.

Our software was used by sales teams in several large electrical equipment
manufacturers. The software provided the ability to instantly validate
any configuration — for example, a particular motor with a particular
power supply. It also automatically provided a price quote, a delivery
proposal, and a bill-of-materials list. Rules for an average product took
about a month to model and probably about two more months to test
and clean up. Hierarchical dependencies and connections made the models
very error-prone. People from the modelling department were really not
at ease with making any changes after the initial version was approved.
We solved this issue in our code, so we thought that we could do the same
for the models. We developed a glue between JUnit and configuration
models, which would theoretically allow someone to write and automate
tests for models. This practice never advanced from a proof-of-concept
stage. Configuration modellers did not know Java, did not want to know
it, and could not be bothered to work in an IDE. They could not read
JUnit tests nor understand what went wrong if something failed.

Step by step, I started to see other limitations of unit tests. The target we
set with JUnit was our vision of the goals, which was not necessarily the
same as the client's vision, and there was absolutely no way we could get
clients to read and verify the tests. JUnit was great for small pieces of code,
but quite cumbersome when external systems were involved, especially
when there was work to be done in the database. Knowing what I know
now, I really wish I had had FitNesse in mid-2003.

Getting FIT

Framework for Integrated Testing (FIT) is an acceptance testing framework
originally developed for Java by Ward Cunningham. One of the central
ideas of FIT was to promote collaboration and allow customers and
business analysts to write and verify tests.

7

Getting FIT

FIT makes it easy to run tests, but does not provide a way to create them.
The original idea was to write tests in Word, Excel, or any tool that can
output HTML. FitNesse is a web wiki front-end to FIT developed by
Robert Martin and Micah Martin from ObjectMentor. Today, it is the
most popular choice for running FIT tests. It provides an integrated
environment in which we can write and execute tests and speeds up the
job with quite a few useful shortcuts.

Although FitNesse was also written in Java, it was not heavily integrated
with FIT, but executed it as an external program. This turned out to be a
very good idea, as it was possible to plug in different test runners. After
the FIT/FitNesse combination became popular in the Java world, test
runners were written for other environments including C++, Python and
.NET. The .NET integration was developed by David Chelimsky and Mike
Stockdale; version 1.0 was released in late 2006. Judging from its success
in the Java world, FitNesse will soon become one of the most popular
tools for .NET test-driven development.

How does FitNesse help?

Writing FIT tests does not require any special programming knowledge
or technical proficiency. Modellers who could not use JUnit if their life
depended on it can write tests with FitNesse without any problems. A
typical FitNesse test is shown in Figure 1.1 : test inputs and expected
results are specified in a table, with expected outcomes having a question
mark in the column. The tables can be written in Excel, Word or any
HTML editor. FitNesse even provides a special wiki syntax to build tables
more efficiently than in plain HTML. This tabular form makes it very
easy to write tests and view results.

Figure 1.1. A typical FIT test table

8

Introduction

FIT tables connect to the domain code using a very thin fixture code layer,
which is effectively more an integration API then a testing API. FIT
requires very little extra code for testing, but just enough to provide a
sanity check for the underlying interfaces. Often, FIT fixtures constitute
the first client of our code.

FitNesse is a web-based server, allowing easy collaboration. Business
analysts and other non–technical people do not have to set up any software
in order to use FitNesse. Any browser will do just fine. Additional docu-
mentation, project notes, diagrams and explanations can be easily bundled
with tests in FitNesse, providing deeper insight into the problem domain
and helping people understand and verify test results. All this helps to
evolve tests along with the code.

FIT and FitNesse are much better than unit testing tools for getting
non–technical people involved with the testing process, especially in
defining and verifying acceptance criteria. They allow developers to turn
requirements and email conversations into tests almost instantly. Business
analysts and managers can read the tests, verify results and track progress.

Testing rules are decoupled from the code, so tests can easily evolve along
with the business rules. This also allows us to write tests before any code,
even before the interfaces, without breaking the build. FitNesse tests are
also a good way to pass requirements to external developers and teams;
they act as a technical specification of what needs to be done.

FitNesse or NUnit?

As a relative newcomer to the arena of .NET test tools, FitNesse inevitably
gets compared to NUnit. So let's tackle this issue now.

The primary target of FIT and FitNesse are customer-oriented acceptance
tests, and that is where these tools really excel. NUnit and similar tools
are aimed at code-oriented tests, verifying the functionality and the design
of software from the developer perspective. However, the ease of writing
and managing complex tests with FitNesse makes it also attractive as a
tool for code-oriented tests.

9

FitNesse or NUnit?

The most important technical difference between NUnit tests and FitNesse
(FIT) tests is that FitNesse tests are, for the most part, not in the code.
They are described with HTML tables and run from an external server.
This coin has two sides: it is easy to write FitNesse tests even before we
start coding (so tests can truly guide the code), and half-done tests will
not break the compilation. On the other side, FitNesse tests are somewhat
harder to debug, and are not automatically refactored with the code.

Unit tools are excellent for testing code, but they suffer from a domain
mismatch when we try to describe something outside of their basic
language. Writing database or UI tests in C# can be quite inconvenient.
With FIT/FitNesse, database tests can be described in a tabular form and
UI tests in a story-like list of instructions.

Instead of splitting tests between NUnit and FitNesse by whether they
are code-oriented or customer-oriented, I think that a more useful
criterion is the area of coverage.

Quick basic tests: use NUnit

All developers should run basic tests (and make sure that they work)
before committing code to the main branch. The basic test suite is
normally executed a few times until all the obvious bugs are solved. So
these basic tests have to run as fast as lightning, and they have to run on
developer machines. Such tests typically do not connect to real services,
but use mock objects to simulate the workflow. They should test small
parts of the code, focusing on mistake-proofing in the small. In two words:
unit tests.

From my experience, any unit test suite that runs longer than a minute
is more of an obstacle than an aid. People will start skipping tests, which
pretty much defeats the whole point of having them. This does not mean
that we should not write tests that run longer, just that people should not
be made to run them every time (see section “Don't mix quick and slow
tests” on page 124). Michael Feathers summarised a discussion on the
XP mailing list on a similar subject in this way:2

2 http://www.artima.com/weblogs/viewpost.jsp?thread=126923

10

Introduction

http://www.artima.com/weblogs/viewpost.jsp?thread=126923

A test is not a unit test if

• It talks to the database
• It communicates across the network
• It touches the file system
• It can't run at the same time as any of your other unit tests
• You have to do special things to your environment (such as

editing config files) to run it

Tests that do these things aren't bad. Often they are worth writing,
and they can be written in a unit test harness. However, it is
important to keep them separate from true unit tests so that we
can run the unit tests quickly whenever we make changes.

—Michael Feathers

It works well to keep true unit tests in a tool like NUnit, so that we can
run them from within the IDE. Note the word true: component and
integration tests in disguise are not welcome here. Using NUnit makes
basic tests easier to debug and troubleshoot, giving us a quicker turn-
around time between spotting a problem and fixing it.

Manageable larger tests: use FitNesse

FitNesse has quite a few useful features that make tests easier to write and
manage than with a unit-test tool. This is why I recommend keeping larger
code-oriented tests in FitNesse, in addition to acceptance tests. Categor-
ising tests like this also enables us to execute component and integration
tests separately from the basic test suite, and not worry too much about
their speed. They can then connect to real services, a proper database,
and check larger and longer workflows.

FitNesse is miles better then unit-test tools for regression tests (see
Chapter 13, Testing legacy code). The tabular language for describing tests
in FitNesse makes it a good choice for relational data tests and database
testing (covered in Chapter 12, Testing database code). Also, FitNesse
integrates nicely with various libraries, like Selenium for web user interface
testing (covered in Chapter 11, Testing web interfaces).

11

Manageable larger tests: use FitNesse

Because of its descriptive language, FitNesse can help to turn e-mails
about bug reports into automated tests quickly. It is also a good tool for
getting non–developers involved in the process of testing; it is much easier
to get support people to write a FitNesse test than a NUnit test.

Not a silver bullet

FitNesse is not a general solution to all testing problems. For example,
FitNesse does not support record-and-replay operations, which are a very
effective way of automating GUI tests. It is also not a good tool for load
testing and performance testing.

As explained in the previous section, FitNesse is not a replacement for
unit testing tools, but is an addition to them. Think of it as a bigger
hammer, which can also work on smaller nails, but is better used when
you need more power and best combined with other tools when you need
more precision.

Having said all this, FitNesse is an extremely useful utility in its own
domain. It is an ideal tool for writing and managing story tests, the testing
complement of user stories, which have become the preferred way of
collecting requirements in agile teams. FitNesse truly helps in setting the
target for development, making sure that everyone involved agrees what
the target is, and automating verification to check how the development
is going.

The next step

In the next chapter, you will install FitNesse. After that, in the second
part of the book, you learn about key features of FitNesse while developing
an application guided by TDD principles. In the third part of the book,
you investigate how best to use FitNesse in a team environment. You also
learn how to expand tests to cover more than just .NET code, crossing
the borders into web user interfaces and databases.

12

Introduction

Stuff to remember

• FitNesse provides many shortcuts for efficient test writing.
• No programming knowledge is required to write FIT tests.
• The tabular view makes tests easy to write and results easy

to read.
• FIT requires very little extra code.
• An online server enables the whole team to contribute to

testing.
• Documentation can be bundled easily with tests.
• Customers, business analysts and managers can understand

and verify FitNesse tests.
• Tests can be written before any code.

13

The next step

14

Chapter 2.

Installing FitNesse
FitNesse is a great tool for collaboration and testing, and has many nice
features that will help us work more efficiently and produce better soft-
ware. For a .NET environment, FitNesse works in combination with
several software tools and frameworks, which you'll have to download
and install separately. So, in order to set up a working server, you must
get your hands a bit dirty, but the effort will be well worth it. Before diving
into the world of automated acceptance testing, you'll need to set up
everything and run a quick sanity check to make sure that your new tool
is working correctly.

FitNesse is a web application with its own server written in Java.1 It uses
a .NET version of FIT test runner (a Windows .NET executable) internally
to execute .NET tests. The test runner must be downloaded separately.
So, to use FitNesse for testing .NET code, you need:

• Java VM 6 to support FitNesse. Download and install from
http://java.sun.com.

• Microsoft .NET 3.5 (at least) Framework to support FitSharp, the .NET
test runner for FitNesse. Download and install from
http://msdn.microsoft.com/netframework.

• FitNesse server. Download the latest release from
http://www.fitnesse.org/FrontPage.FitNesseDevelopment.DownLoad.
The file you should look for is fitnesse.jar. FitNesse.org occasionally
goes down for maintenance. If it is not accessible when you try to
download the latest release, go to the alternative download site
http://www.fitnesse.info/download.

• FitSharp binaries for .NET 3.5. Download the latest release from
http://github.com/jediwhale/fitsharp/tree/master/binary/.

1 Actually, while I was writing this, Gennadiy Donchyts published an experimental .NET port
using IKVM. I haven't tried this yet. See http://don.env.com.ua/blog/?p=57 for more information.

15

http://java.sun.com
http://msdn.microsoft.com/netframework
http://www.fitnesse.org/FrontPage.FitNesseDevelopment.DownLoad
http://www.fitnesse.info/download
http://github.com/jediwhale/fitsharp/tree/master/binary/
http://don.env.com.ua/blog/?p=57

Setting up FitNesse

There is no special installation procedure for FitNesse. Just save the JAR
file downloaded from FitNesse.org somewhere on your disk. I suggest
opening a dotnet2 folder next to that JAR file, and unpacking FitSharp
there. This path is used in the examples in this book. If you put .NET
runner somewhere else, remember to change the path in code examples.

Start FitNesse by executing java -jar fitnesse.jar from the main FitNesse
folder (either via command line or double-click). FitNesse works as a web
application with its own web server and tries to open port 80 by default.
If this port is already taken on your machine, add -p 8888 to the end of
the command before executing it. You can replace 8888 with some other
free port on your system. I use 8888 in the examples, so if you use another
one, remember to enter the correct port when you try out the examples.
When FitNesse starts, you should see a command window with this
message:

FitNesse (20091121) Started...
 port: 8888
 root page: FitNesse.wiki.FileSystemPage at ./FitNesseRoot
 logger: none
 authenticator: FitNesse.authentication.PromiscuousAuthenticator html page
 factory: FitNesse.html.HtmlPageFactory
 page version expiration set to 14 days.

Do I have to use .NET 3.5?

FitSharp requires .NET 3.5. You can use the older
FitNesse.NET runner with .NET 2. All the examples in this
book will still run, with some minor configuration changes.
See http://sourceforge.net/projects/fitnessedotnet for more
information.

Open http://localhost:8888/ and you should see the welcome page
(Figure 2.1).

FitNesse is up and running. When you want to shut it down later, just
press Ctrl+C in the command window (or close the command window).

16

Installing FitNesse

http://sourceforge.net/projects/fitnessedotnet
http://localhost:8888/

The command failed. What's wrong?

Read the exception from the command window. If the error
mentions versions, check that you have Java 6 installed and
that the correct version is being executed when you run
java.exe. Run java.exe -version from a command window to
see which version of Java is being executed by default. You
can run FitNesse with a different Java version either by
pointing to the correct JVM in the system executable path
(right-click My computer , select Properties, then go to
Advanced tab, click Environment Variables, and edit the
Path variable), or by entering the full path to a different
java.exe in the command line.

If the error report states that there is a security problem or
the port is unavailable, use a different port number (-p 8888)
and try again.

If the error report is “Unrecognized option: -p”, you must
have added -p 8888 before the jar file name, so put it after
other options.

A quick test

In order to verify that everything works correctly, let's write a quick test.
To make the first example as simple as possible, we will not test a business
object but the string concatenation operator. To test whether it works,
we will join the words “Hello” and “World”, put a blank in between, and
check that the result is “Hello World”. In the process, we write a simple
test page in FitNesse, bind that test page to .NET code and make FitNesse
run .NET tests. We will first create and run this test example very quickly,
but then go back and work through the details.

17

A quick test

Figure 2.1. FitNesse welcome page

FIT is the engine driving FitNesse, responsible for executing tests. It reads
HTML files, looks for tables, and uses data in the tables to execute tests
and compare results to expectations. FitNesse is a wiki2 site with helpful
mark-up shortcuts, designed to help with building the test pages.

FIT requires a thin integration layer on top of our code, which provides
hooks to the methods and properties of business objects so that they can
be mapped to test data and expected results. This integration layer typically
consists of a set of classes derived from fit.Fixture, or some of its standard
subclasses.

Open a new .NET project, and copy this class into it (without the line
numbers):

2 A web-based content management system, typically intended for collaborative use, allowing
people to create and edit pages easily using a simple mark-up syntax. Wikipedia is a popular
example, which you have almost certainly seen by now, so working with FitNesse should not feel
strange.

18

Installing FitNesse

For full code, see HelloWorld/HelloWorld.cs on page 203

1 namespace HelloWorld
2 {
3 public class OurFirstTest : fit.ColumnFixture
4 {
5 public string string1;
6 public string string2;
7 public string Concatenate()
8 {
9 return string1 + " " + string2;
10 }
11 }
12 }

Add a reference to fit.dll and fitsharp.dll (in the dotnet2 FitNesse folder)
to your project and compile it.

Now open http://localhost:8888/HelloWorld in your browser. Because
HelloWorld page does not yet exist, FitNesse opens the page editor: a big
text box with several buttons. Now type the following code into the text
box (without the line numbers) and click Save. Make sure to replace the
DLL path with the full path to your project's DLL. Note that there is a
comma between FitServer and dotnet2, the other separators are dots.

For full code, see HelloWorld on page 241

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\HelloWorld\bin\Release\HelloWorld.dll
4
5 !|HelloWorld.OurFirstTest|
6 |string1|string2|Concatenate?|
7 |Hello|World|Hello World|

FitNesse now creates a new page and displays it (Figure 2.2). Next, you
have to tell FitNesse that this is a test page — click Properties on the left,
select the Test radio-button (Figure 2.3), and click Save Properties. Page
properties define what the user can do with the page — more precisely,
which buttons will be offered in the left-hand menu.

19

A quick test

http://localhost:8888/HelloWorld

Figure 2.2. FitNesse creates a new page for the Hello World test

Figure 2.3. Remember to mark the page as a test

When the page reloads, you will notice a new button on the left: Test.
Click it to make FitNesse run the test. You should see a page similar to
Figure 2.4 , telling you that the test passed.

20

Installing FitNesse

Figure 2.4. Our first test passed!

OK, that was our first FitNesse test in .NET, and it passed. Hurrah! Now
let's go a few steps back and see what really happened.

My test was all yellow — what have I done wrong?

• Double-check the path to your DLL. Due to some strange
Java-Windows issue, the DLL name is case-sensitive.

• Check that the test class and its methods and fields are
public.

• Check that the method and field names match the table
header.

• Check that there is an exclamation mark before the first
row.

• Check that there is a question mark after Concatenate in the
second row of the table.

• Check that you put Runner.exe into the dotnet2 folder under
the main FitNesse directory (the one where you started
fitnesse.jar from).

21

A quick test

How FitNesse connects to .NET classes

By default, FitNesse executes Java tests, so the first thing we have to do is
make it run .NET tests. The first two lines in our test page tell FitNesse
to use the test runner from the dotnet2 folder:

!define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
%p}
!define TEST_RUNNER {dotnet2\Runner.exe}

The third line specifies the location of test classes:

!path D:\work\fitnesse\HelloWorld\bin\Release\HelloWorld.dll

Then comes the test table. FIT uses tables to describe both the tests and
expected results, and binds these tables to our code. Tables may seem like
a strange choice at first, but this turned out to be a very good idea. Rick
Mugridge explains3 that tables provide just enough structure to organise
information properly, without getting in the way. The tabular form also
allows test report and feedback to be given in the same form as the tests,
which makes FIT and FitNesse easy to use. You have probably already
worked out that in FitNesse you create a table by entering rows (lines) in
which you separate cells with the pipe symbol (|). The first line of the table
tells FitNesse which class to load (and how to execute the test):

!|HelloWorld.OurFirstTest|

FitNesse automatically converts CamelCase4 names into page links, but
in this line HelloWorld.OurFirstTest is a test class name, not a page link.
The exclamation mark before the first cell in the table header tells FitNesse
not to convert it to a page link. It is good practice to put an exclamation
mark in front of the table even if the class name is not in CamelCase form.

The test class extends ColumnFixture, which maps public fields, properties
and methods to columns. When you use ColumnFixture, the second row of
the table should contain field, property or method names:

3 see page 28 of Fit for Developing Software[3]
4 Two capitalised words joined together. See section “FitNesse is very strict about the page names”
on page 24.

22

Installing FitNesse

|string1|string2|Concatenate?|

All subsequent rows are data rows: they contain parameter values and
expected results:

|Hello|World|Hello World|

Each data row in a ColumnFixture table defines one test execution. Notice
that both parameter values and expected results appear in the same row.
Columns that define an expected outcome have a question mark after the
method name. Fields and properties can also be used to check expected
outcomes in the same way. If a column header does not end with a ques-
tion mark, FitNesse uses the corresponding data in the next row as test
input, setting the parameter or field value. If the column header does have
a question mark, the method is executed or the current field or property
value is read, and the result is compared to cell contents. So, the first data
row in our table would be equivalent to the following NUnit test code:

HelloWorld h=new HelloWorld();
h.string1="Hello";
h.string2="World";
AssertEqual("Hello World",h.Concatenate());

Here's an interesting experiment. Edit the test page (click Edit on the left),
add a new data row with a wrong value in the expected results column,
then run the test again. This time, the test fails (Figure 2.5), clearly
marking a problem both in the page header and in the table. Test results
show both the expected and actual value for the failed test, so you can
quickly see what went wrong.

Don't forget the test

The new test is now available on http://localhost:8888/HelloWorld and
you can browse to this URL at any time to repeat the test. However, URLs
like this are easy to forget, especially when you start writing more tests.
Luckily, FitNesse has a feature that makes it easier for you to find tests
later. Go to the home page of the test site, click Edit, and add HelloWorld
anywhere in the page. Save the page and when it reloads, you will see a
link to the “Hello World” test.

23

Don't forget the test

http://localhost:8888/HelloWorld

FitNesse automatically converts CamelCase names into links, and all test
pages in FitNesse should have CamelCase names (which is why we called
the test HelloWorld). You can even add a link before you create the page:
FitNesse displays a question mark next to the link and allows you to build
the new page. When the page is finally created, the question mark disap-
pears.

Figure 2.5. Failed tests are clearly marked — and both actual and expected values
are displayed

FitNesse is very strict about the page names

If you created a page (or tried to create one) and got a NullPointerException
error, or the page is just not appearing, you chose a wrong name. FitNesse
considers only CamelCase words as valid page names and is strict about
this. The page name must start with a capital letter and contain at least
one more capital letter. There is one more issue to watch out for: consec-
utive capital letters. FitNesse does not like them. So the capital letters in
a page name must be separated by at least one lower-case letter. This
convention causes a lot of headaches to FitNesse newbies, but after a while
you'll get used to it. Here are some good page names:

• HelloWorld

24

Installing FitNesse

• TestFluxCapacitor
• IsPaymentWorkingCorrectly

Here are some page names that will get you in trouble:

• helloworld (no capital letters)
• Testfluxcapacitor (just one capital letter)
• isPaymentWorkingCorrectly (starts with a lower-case letter)
• TestFCapacitor (two consecutive capital letters)

Playtime

Here's some stuff to try on your own:

• Fix the test in Figure 2.5 .
• Create a class that counts words and characters in a string, then write

a ColumnFixture wrapper and a test page to verify that it works correctly.

Stuff to remember

• In order to connect to .NET projects, you have to tell
FitNesse to use a .NET test runner (Runner.exe) and specify
the path of your project DLLs.

• We describe tests in tables containing both test parameters
and expected results.

• The table header specifies the test class name.
• Put an exclamation mark at the beginning of every table

to protect table data from wiki formatting.
• If a test fails, FitNesse shows both expected and actual

outcome.

25

Playtime

26

Part II. FitNesse and TDD in
practice

In this part we find out how FitNesse can make our work easier by developing
an application. In doing so, we explore key features of FitNesse and apply
TDD practices and principles to produce better software.

The task ahead of us is a (very) simplified version of a real application I worked
on while I was learning how to use FitNesse in a .NET environment. (As they
say in the movies, names and places have been changed to protect the inno-
cent.) Although we go through just one iteration of the application, we will
stumble upon all the obstacles my team experienced with FitNesse and find
out how to overcome them.

Chapter 3.

Our Project
Let's build an online lottery system. Imagine that our client is a lottery
operator from Tristan da Cunha, and they want to open their lottery to
the world.1

Lottery rules

The lottery operator organises weekly draws, in which punters pick six
out of forty possible balls. All the money from lottery tickets goes into
the draw pool before the draw. The lottery operator takes a large part of
the money for operational costs and the rest is divided amongst the
winners. (Money available for prizes is called the payout pool). Several
prizes are allocated from this pool, typically grouped by the winning
combination. So, for example, 68% of the payout pool is reserved for
people who guess correctly all six numbers — they all get a share of the
6-out-of-6 prize. All the winners in the 5-out-of-6 category share 10% of
the payout pool, and so on.

Our task is to develop a system that will enable players to purchase tickets
and participate in lottery draws. Players will have an online account where
they will be able to deposit money with their credit card or by wire
transfer. All winnings will be paid into this account automatically when
the operator enters draw results into the system , and the players will be
able to spend money from the account to buy new tickets or withdraw
the money by wire transfer. The operators will typically offer draws for
the next two months online.

Selected user stories

After a short discussion with the customers, we agree that our first itera-
tion should include the following stories:

1 Tristan de Cunha is the most remote inhabited archipelago in the world. They probably don't
have Internet access or a local lottery on the island, but with a bit of imagination, this application
will serve well as an example. See http://en.wikipedia.org/wiki/Tristan_da_Cunha.

29

http://en.wikipedia.org/wiki/Tristan_da_Cunha

Calculate expected winnings

As an operator, I want the system to display expected winnings,
so that players will be enticed to buy tickets.

Register player

As an operator, I want players to register and open accounts before
purchasing tickets, so that I have their details for marketing
purposes and to prevent fraud.

Buy tickets

As a player, I want to buy tickets so that I can participate in lottery
draws and win prizes.

Pay out winnings

As an operator, I want the system to locate the winning tickets,
calculate winnings and pay money into ticket holders' accounts
when I enter draw results.

View tickets

As a player, I want to view my tickets, so that I can find out if I
have won and how much.

We implement these stories in the following chapters, writing functional
and acceptance tests as we go along.

Applying TDD to our project

Test-driven development is just a set of simple practices supported by a
few lightweight tools, most of which are free. On the surface, these prac-
tices and tools aim to improve the quality of software with more rigorous
and more efficient code checking. However, that is just the tip of the
iceberg. There is much more to TDD then verifying code. As the name
suggests, in test-driven development, tests play a proactive, leading role
in the development process, rather than the reactive role of checking
software after it is written.

30

Our Project

Guiding the development

A strict implementation of a feature with TDD consists of three stages:

1. Write a test for the feature and write just enough code to make the test
compile and run, expecting it to fail the first time.

2. Change the underlying code until the test passes.
3. Clean up the code, integrate it better with the rest of the system and

repeat the tests to check that we have not have broken anything in the
process.

This sequence is often called “red-green-refactor” or “red bar-green bar-
refactor”. The name comes from the status icon or status bar in most GUI
test runners, which is red when tests fail and green when they pass.

Once the first test passes, we write another test, write more code, make
the new test run, clean up again and retest. After we have repeated this
cycle for all the tests for a specific feature, our work on the feature is done
and we can move on to the next feature. Robert C. Martin summarised
this connection between tests and production code in his Three Rules of
TDD:2

The Three Rules of TDD

Over the years I have come to describe test driven development
in terms of three simple rules. They are:

1. You are not allowed to write any production code unless it is
to make a failing unit test pass.

2. You are not allowed to write any more of a unit test than is
sufficient to fail; and compilation failures are failures.

3. You are not allowed to write any more production code than
is sufficient to pass the one failing unit test.

—Robert C. Martin

2 http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

31

Guiding the development

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

User stories

In the last few years, user stories have emerged as the best way to
collect requirements and guide deliveries for agile projects. Stories
are different from use cases in their focus on customer benefit: each
story should ideally describe a system behaviour that brings value
to the users. A typical story template is “as a role, I want behaviour”,
ideally with an additional “so that benefit”. This is not a book on
writing user stories, so I'll keep this block short. If you are interested
in learning more about the subject, I suggest you read User Stories
Applied by Mike Cohn [8].

Stories are important for this book because they are a natural
starting point for defining acceptance tests. Acceptance tests based
on user stories are called story tests. Because each story describes a
system behaviour with direct impact on the customer, not one
wrapped in layers of technical abstractions, business analysts and
customers should easily be able to define how to check whether the
system behaves as they expect. A good starting point is the question
“how do we verify that this story has been implemented correctly
and completely?”

Even if you are not using an agile methodology, identifying such
key system behaviours and talking to the customer about how to
verify that they are correctly implemented is good practice. You can
then use these validations as a target for development and a signal
to tell you when the job is done.

Requirements change as the project moves on, as concepts and ideas
mature. As a general rule of thumb, it is best to discuss how to verify
a story in detail just before it is scheduled to be developed.

This approach may seem too strict or radical at first. Additional tests are
often written after the first version of the code has been developed. Some
people write the code first, then do the tests and modify the code until all
the tests pass. This technique also works, as long as the tests are written

32

Our Project

in the same development cycle as the code, and extra care is taken to focus
on the user stories, not the code.

Think about the intention, not the implementation

A test is pointless as a quality check for the code if it just
replicates what the code does. Any bugs that found their way
into the code will just be replicated in the test. Tests that just
replicate code are very dangerous because they will give you
a feeling of comfort, thinking that the code is tested properly,
while bugs are waiting round the corner. Do not write the
test by looking at the code, as you may get blinded by the
implementation details. This is one of the reasons why it is
better to write tests before the code, not after.

Tests that guide the development should always reflect the
intention, not the implementation.

If you are just getting to know TDD, I strongly recommend doing it first
by the book, as described above. Once you get accustomed to practices
and underlying principles and see how they fit into your particular way
of working, you can optimise and adjust the process.

Automated acceptance testing

Although the three rules of TDD deal with unit tests, they apply equally
to tests that operate on a much larger scale. Iteration goals and business
rules can also be translated into automated tests and used to help
programmers focus their development effort. Tests that describe these
goals are known as acceptance tests or customer-oriented tests. They do
not focus on the code, but on the customer's expectations. Unit tests check
whether the code does what programmers wanted it to do. Acceptance
tests check whether the product satisfies the customer's requirements. In
the same way that unit tests act as a target for code functionality, accept-
ance tests act as a target for the whole project. So, the first step of devel-
opment is to ask business analysts or customers how we can verify that
the code we are about to write works correctly. Having the acceptance
criteria written down helps to flush out any inconsistencies and unclear

33

Automated acceptance testing

requirements. Having the criteria in the form of an automated test makes
it easy to check that we are on the right track.

The name “acceptance test” is a bit misleading. When used properly, an
acceptance test is more a specification for development than a test. Naresh
Jain suggested that I should use “executable specification” instead of
“acceptance test” in this book. I like that name much more because it
truly reflects the role of acceptance tests in modern programming, and
clears up a lot of questions that I often get. In spite of being misleading,
“acceptance test” is an established name for this concept, and I decided
to stay with it in this book. However, keep in mind that we are actually
talking more about specifications than tests.

Who should write acceptance tests?

Acceptance tests should reflect the customers' perception of when the
system meets requirements, so they must be defined by a customer or a
business analyst. This still leaves us with the question of who should
translate this definition into FitNesse tables. There was an interesting
discussion on this topic at the XPDay 2007 conference in London, during
a workshop called “Working With Customers towards Shared Understand-
ing”. Several participants noted that if developers are left to write
acceptance tests on their own, the tests turn out too technical and task-
oriented. Acceptance tests are more effective if they are focused on larger
activities and expressed in the language of the business domain. Although
FitNesse allows customers and business analysts to write tests directly
without involving developers, that may be a step too far. Customers often
forget about edge cases and focus only on general rules. Antony Marcano,
one of the maintainers of TestingReflections.com, pointed out that
discussions between developers and customers during test writing help
a lot to clarify the domain and enable developers to understand the
problem better. If tests are written by customers on their own, then the
value of these discussions is lost. So, ideally, a developer and a customer
representative, or a business analyst, should write the tests together.

34

Our Project

Is it better to use acceptance or unit tests?

When acceptance tests drive the development, large parts of
the production code are covered by these tests. Some people
tend to write fewer unit tests because acceptance tests already
check the functionality. Although this practice does save some
time, it may make it harder to pinpoint problems later. Failed
acceptance tests signal that there is a problem, but do not
locate the source as clearly as unit tests do. Acceptance tests
also rarely check edge cases so unit tests have to be written at
least to cover those issues. Infrastructural parts of the code,
not especially related to any user story, will also not be prop-
erly covered with acceptance tests.

In my experience, it's best to use both unit and acceptance
tests. One group does not exclude the other. If this question
bothers you, ask it again but use executable specification
instead of acceptance test. You need both the specification
and tests for your code, and should not choose between one
of them.

Looking at the bigger picture, James Shore offers his “Describe-Demon-
strate-Develop” best practice for using FitNesse:3

Describe-Demonstrate-Develop

Now I draw a very sharp distinction between FIT and TDD. I use
FIT at a higher level than TDD. If TDD is “red-green-refactor”,
then my use of FIT (“Example-Driven Requirements”) is
“describe-demonstrate-develop“. The “develop” step includes all
of TDD.

1. Describe. In the FIT document, use a short paragraph to
describe part of the functionality that the software supports.
(This should be done by business experts.)

2. Demonstrate. Provide some examples of the functionality,
preferably examples that show the differences in possibilities.

3 http://www.jamesshore.com/Blog/How-I-Use-Fit.html

35

Automated acceptance testing

http://www.jamesshore.com/Blog/How-I-Use-Fit.html

Sometimes only one or two examples is enough. (This should
be done by business experts, too, possibly with help from testers
and programmers.)

3. Develop. Develop the functionality using TDD. Use the
structure and terms of the examples to provide direction for
the domain model, per Eric Evans' Ubiquitous Language. Turn
each kind of concept in the examples (such as “Currency”) to
drive the creation of new types, per Ward Cunningham's Whole
Value. (This should be done by programmers.) Don't run FIT
during this stage until the small increment of functionality is
done. When it is, create the FIT fixture and hook it up. Use
your Whole Value classes rather than primitive types. When
you run FIT, the examples should pass.

4. Repeat. Continue with the next section of the document. Often,
the business experts can go faster than the developers and
finish several more Describe/Demonstrate sections before the
programmers finish Developing the first section. That's okay
and I encourage that they do so. There's no need for the
business experts to wait for the programmers to finish
Developing a section before the business experts Describe and
Demonstrate the next one.

As you expand the FIT document, you should see opportunities
to reorganize, change, and improve sections. Please do. You'll
end up with a much better result.

—James Shore

Testing to prevent defects, not to find them

TDD brings into the software world a lot of ideas from zero quality control
(ZQC), Toyota’s approach to achieving product quality. Understanding
the principles of ZQC and applying them while writing tests can signific-
antly improve the effectiveness of TDD.

The basic idea of zero quality control is that quality has to be built into
the product, and does not come from controlling and sorting out defects
at the end. Toyota’s solution consists of a design approach that aims to

36

Our Project

create mistake-proof products and uses successive inexpensive tests to
detect problems at the source.

Poka-Yoke design

The Poka-Yoke design approach seeks to prevent problems by
making products less prone to misuse. “A Brief Tutorial on Mistake-
proofing, Poka-Yoke, and ZQC” by John R. Grout and Brian T.
Downs4 is a good introduction to ZQC, and contains some very
interesting examples from everyday life.

Monitor cables are a common example of Poka-Yoke design. The
connectors are asymmetric, so that it’s obvious how to plug them
in. Of course, with the right application of brute force, cables can
be plugged in wrongly, but it is much easier to use them correctly.
Grout and Downs also mention the interesting example of fire
alarms that cannot be fitted on to the ceiling if a battery is not
installed. Another very interesting example given by Grout and
Downs is the Bathyscaphe Trieste,5 a deep-sea submersible used to
explore the ocean bed. Normally, if there was an electrical failure,
anyone inside such a vehicle would be doomed. However, when
Poka-Yoke desgn methods are applied, the submersible's ballast
silos are held by electromagnets, so that an electric failure causes
the craft to start rising to the surface immediately.

Poka-Yoke, or mistake-proofing, is one of the most important principles
of zero quality control.6 It is an approach to manufacturing that aims to
prevent problems by either making products error-proof by design or by
providing early warning signals for problems. Although Toyota made
these practices famous, other designers have been applying them for quite
a while. For example, any average elevator checks the load before
departing and stops working if it is overcrowded. Some also give a clear

4 http://csob.berry.edu/faculty/jgrout/tutorial.html
5 http://en.wikipedia.org/wiki/Bathyscaphe_Trieste
6 see http://gojko.net/2007/05/09/the-poka-yoke-principle-and-how-to-write-better-software/
for a more detailed discussion of how Poka-Yoke applies to programming.

37

Testing to prevent defects, not to find them

http://csob.berry.edu/faculty/jgrout/tutorial.html
http://en.wikipedia.org/wiki/Bathyscaphe_Trieste
http://gojko.net/2007/05/09/the-poka-yoke-principle-and-how-to-write-better-software/

warning using a flashing light or sound. This is how an elevator stops a
potential problem by design.

Checking at the source, rather than at the end, was one of the most
important ideas described by Shigeo Shingo (1909-1990) in his book on
zero quality control [9]. Mary Poppendieck often comments on the idea
that “inspection to find defects is waste, inspection to prevent defects is
essential”.

On production lines, the mistake-proofing principles are applied using
Poka-Yoke devices: test tools used to check, inexpensively, whether a
produced item is defective. Poka-Yoke devices enable the workers to
identify problems straightaway on the manufacturing line. They allow
quick and cheap checking, so that they can be used often to verify the
quality at different stages.

Exterminating bugs

Nothing makes a developer look more incompetent than bugs that
reappear. We can use TDD tools to make sure that dead bugs stay
dead.

Ideally, every time someone finds a bug, a developer or support
engineer should write a test to confirm it. This will help us aim at
the right target while solving the problem and make sure that the
bug is fixed. It will also help us to check whether the bug has resur-
faced in the future.

This also holds for suspected bugs. If you have any doubts about
the functionality in an edge case, you can remove it by writing a
quick test. Tests to check for bugs are different from red-green-
refactor tests because they are written after the code, based on
expected problems arising from a particular implementation. Such
tests should be written to break the code intentionally.

Software tests and testing tools are our Poka-Yoke devices, allowing us
to check quickly whether procedures and classes are defective, straight

38

Our Project

after we write them. Tests are automated so that they can be quickly and
effectively executed later to confirm that the code is still working.

The next step

In the next chapter, we will take a detailed look at a basic FitNesse test.
Then in Chapters 5 to 9 we'll focus more on practical features and prob-
lems than on technical details — you'll find out how best to write test
scripts, how to organise and manage groups of related tests, how to save
time and effort by using specialised test types and how to combine various
test classes to get the best effect.

Since this book is about test-driven development and not about how to
build .NET applications in general, we focus mostly on the test classes,
not on the classes being tested. The primary aim with the application we
develop is to demonstrate and try out features of FitNesse, not to build a
production-quality system, so we will sacrifice some best practices in the
code for the sake of clarity and simplicity. We will also skip over less
important parts of the code. However, should you want to dive deeper
into the rest of the code, download it from the book's website
http://gojko.net/fitnesse or see the full listings in Appendix D, Source
code.

Stuff to remember

• First write a test that fails, then write code to make it pass,
then clean up and retest.

• The first step in development is to describe acceptance tests
that define when the work is done.

• Test to prevent defects, not to find them.
• Guidance tests should always reflect the intention, not the

implementation.
• Unit tests focus on the code, acceptance tests focus on

customer benefits.
• When you hear “acceptance test”, think about “executable

specification”.

39

The next step

http://gojko.net/fitnesse

40

Chapter 4.

Writing basic tests
In Chapter 2, Installing FitNesse, you had a brief introduction to FitNesse
tests. Now is the time to take a deeper look at the bridge between test and
domain code. In this chapter you also learn why FitNesse tests are more
understandable than unit tests. Our task for this chapter is to implement
the first user story:

Calculate expected winnings

As an operator, I want the system to display expected winnings,
so that players will be enticed to buy tickets.

To implement the story, we will write a WinningsCalculator class, which
will be responsible for calculating expected winnings for a given draw
pool value.

Instead of writing the WinningsCalculator immediately, we take a step back.
Remember section “Guiding the development” on page 31? The first step
of implementation is to decide how we are going to verify that the result
behaves correctly. Just to make sure you did not jump over this idea,
repeat out loud: The first step of implementation is to decide how we are
going to test the result! And we need to agree on that with someone from
the business side, to be sure that the result is really what they want. So,
after a short discussion with our business analysts, we decide that the best
way to test the winnings calculator is to take the results from the last
month's draw (Figure 4.1), put the pool size into the calculator and check
whether the numbers match.

Test-driven development by the book advocates writing the test before
we actually write the production code whenever possible. The test then
serves as a target for development. So, let's write just enough of the
WinningsCalculator class to be able to compile the test. We need to test two
things: calculating the pool percentage, and calculating the prize pool.

41

Figure 4.1. Last month's results

ValuePool allocationWinning combination
$4,000,000100%Total pool
$2,000,00050%Payout pool (PDP)
$1,360,00068% of the PDP6 out of 6
$200,00010% of the PDP5 out of 6
$200,00010% of the PDP4 out of 6
$240,00012% of the PDP3 out of 6

Write the FitNesse page before you write code

In order to explain the syntax of various FitNesse tables in
this book, we typically write the fixture code first and then
look at how that code maps to FitNesse tables. But once you
learn what those fixtures can do for you, it is actually much
better to create the FitNesse page first and let that lead you
while writing the fixture class and changing the underlying
business interfaces.

Writing the FitNesse test page first will allow you to make
sure that programmers and customers have the same under-
standing of the problem. Keep working on the FitNesse pages
until both you and the customer think that you have sufficient
examples to start programming.

For full code, see Tristan/src/InitialWinningsCalculator.cs on page 207

1 namespace Tristan
2 {
3 public class WinningsCalculator
4 {
5 public int GetPoolPercentage(int combination)
6 {
7 throw new Exception("Not implemented");
8 }
9 public decimal GetPrizePool(int combination, decimal payoutPool)
10 {
11 throw new Exception("Not implemented");

42

Writing basic tests

12 }
13 }
14 }

ColumnFixture — the Swiss Army knife of FitNesse

The section “A quick test” on page 17 touched upon the subject of the
thin integration layer built on top of business code that FIT requires. This
is the integration class fit.Fixture, which provides hooks to relevant
properties and methods of business objects and tells FIT how to run the
test. Although fit.Fixture is always the base class for all integration classes,
it does not specify how to run the test. Instead, we typically extend a
subclass of Fixture for our tests. In the rest of the book, we'll call such
subclasses fixtures. There are many ready-made fixtures in the basic FIT
package (fit.dll) and the popular extension FitLibrary1 (fitlibrary.dll).
Also, you can develop your own fixtures to extend the functionality of
FitNesse (see section “Implement domain-specific tests using custom
fixtures” on page 187) so there are quite a few candidates to choose from.
Which fixture class should we use in this case?

To test the WinningsCalculator class, we need to check that the allocated
percentage of the payout pool and prize value are correct for all winning
combinations (and a given value of the payout pool). If the test is a
calculation, described in the form of “check that results are correct for
given inputs” and there are a few known inputs to try out, we should use
ColumnFixture as the base for the integration class.

The fixture class should allow us to define the total value of the payout
pool and the winning combinations, and check allocated percentages and
prize pool values. So let's create two properties for the inputs and two
methods to calculate results:

1FitLibrary is a set of extensions developed by Rick Mugridge, now considered part of the
standard set of fixtures, although it is technically a separate library. The FitSharp package already
contains the FitLibrary, so you do not have to download it separately. We use FitLibrary fixtures
in Chapter 6, Writing efficient test scripts and Chapter 8, Coordinating fixtures.

43

ColumnFixture — the Swiss Army knife of FitNesse

What else can I use ColumnFixture for?

The ColumnFixture class can be used to perform almost any
test. It can also be used to set up data for other tests and
execute methods to clean up after the tests. In fact, ColumnFix-
ture is so easy to understand and use and can be used in so
many situations, that it is like a Swiss Army knife for FitNesse
tests.

ColumnFixture is a good choice if the same tests should be
repeated for a specified number of different combinations of
input parameter values. When you don't know the number
of tests in advance, or there is only one check to perform,
there are better solutions that can save you a lot of time and
effort. These solutions are described in later chapters.

For full code, see Tristan/test/PayoutTable.cs on page 217

1 namespace Tristan.Test
2 {
3 public class PayoutTable:fit.ColumnFixture
4 {
5 private WinningsCalculator wc=new WinningsCalculator();
6 public int winningCombination;
7 public decimal payoutPool;
8 public int PoolPercentage()
9 {
10 return wc.GetPoolPercentage(winningCombination);
11 }
12 public decimal PrizePool()
13 {
14 return wc.GetPrizePool(winningCombination, payoutPool);
15 }
16 }
17 }

Now we write the test page. Add a link to PrizeCalculation from the home
page (as explained in section “Don't forget the test” on page 23), then
click this link and create a new page. Add the three setup lines, described
in section “How FitNesse connects to .NET classes” on page 22, defining
the test runner and location of the project DLL. Make sure to enter the

44

Writing basic tests

correct path to DLLs on your system; it may differ from the one in this
book.

Wait a moment... are those public fields?

Yes! It is bad practice to expose public fields in API classes,
but PayoutTable class is not a part of the API; it will be used
just for testing.

Using public fields in test classes makes them easier to write
and read. We often use public properties in test classes in this
book, to keep them short. Anyway, if you are picky about this
issue, go ahead and implement them as properties or setter
methods, FitNesse will not care.

The table for ColumnFixture tests has at least three rows: the first row
specifies the fixture class name, the second names input and output
methods and properties, and the following rows specify test data and
expected results. In this case, payoutPool and winningCombination are inputs,
and methods PoolPercentage and PrizePool calculate output values. (Fields
and properties with a getter can also be used for test outputs.) To differ-
entiate between inputs and outputs, PoolPercentage and PrizePool end with
a question mark in the second row. Parentheses () can also be used to
specify outputs, but to keep things consistent when properties are used
for outputs, and to make tables easier to read, I recommend that you just
use the question mark. Rows after the second row just contain last month's
draw results. Here is the table that you should copy into the page:

For full code, see PrizeCalculationFirstTry on page 244

4 !|Tristan.Test.PayoutTable|
5 |payoutPool|winningCombination|PoolPercentage?|PrizePool?|
6 |2000000|6|68|1360000|
7 |2000000|5|10|200000|
8 |2000000|4|10|200000|
9 |2000000|3|12|240000|

Save the page, then tell FitNesse that this is a test page (using page prop-
erties). You can run the test by clicking Test. Because we have not yet
written the whole WinningsCalculator class, the test fails. Now that we have

45

ColumnFixture — the Swiss Army knife of FitNesse

a clear understanding of what the class should do, let's write it to satisfy
the test.

For full code, see Tristan/src/WinningsCalculator.cs on page 207

1 namespace Tristan
2 {
3 public class WinningsCalculator
4 {
5 public int GetPoolPercentage(int combination)
6 {
7 switch(combination) {
8 case 6: return 68;
9 case 5: return 10;
10 case 4: return 10;
11 case 3: return 12;
12 default: return 0;
13 }
14 }
15 public decimal GetPrizePool(int combination, decimal payoutPool)
16 {
17 return payoutPool * GetPoolPercentage(combination) / 100;
18 }
19 }
20 }

Recompile the project, run the test again, and it passes (Figure 4.2).

46

Writing basic tests

Figure 4.2. Winnings Calculator works!

Testing in plain English

Having written this test, you might wonder why this is any better than
using NUnit. We have written almost as much code as we would have to
write for NUnit, and it is not any more readable to non-programmers
than the NUnit test would be.

FitNesse is not just for unit testing. In fact, it is not intended for unit
testing at all, although it can be quite good for describing functional tests.
The primary target of FIT and FitNesse are acceptance tests — turning
what the customer actually wants into tests and automating them. And
yes, the table does not look any better than a NUnit test right now, but
this is just the beginning.

One of the original goals of FIT was to enable non-technical users to
collaborate on writing tests. Several syntax tricks and a bit of smart
formatting can make test pages much more readable and closer to the
English language than to C#. Here are a few tricks to start with.

47

Testing in plain English

Use names that are easy to read – FitNesse will find the correct .NET
equivalent

When mapping tables to classes, properties, variables and methods,
FitNesse does a case-insensitive search and ignores blanks. So, instead of:

|payoutPool|winningCombination|PoolPercentage?|PrizePool?|

we can write:

|Payout Pool|Winning Combination|Pool Percentage?|Prize Pool?|

The test looks much better on the screen, is easier to read, and splitting
names into several words solves the problem of automatic CamelCase
conversion into links.

Import namespaces and clean up table headers

To make the test class header simpler, remove the namespace, and import
it using the Import table. Start the table with a single word: import. Then
specify namespaces in the following rows.

!|import|
|Tristan.Test|

We need to import the namespace only once for the entire page (actually,
once for the entire test suite, which I'll explain later). We can even divide
the class name into several words.

Replace repetitive values with arguments

The payout pool in your test is always the same, and repeating it in every
table row just clutters up the screen. You can initialise it once for the
entire table by using fixture arguments. Rather like the Main method of a
console application, a fixture can have a number of optional string argu-
ments, which are stored in a protected array Args. So we can change the
class to read the payout pool from a fixture argument:

48

Writing basic tests

For full code, see Tristan/test/TotalPoolValue.cs on page 227

12 public decimal? payoutPool;
13 public decimal PrizePool()
14 {
15 if (payoutPool == null) payoutPool = Decimal.Parse(Args[0]);
16 return wc.GetPrizePool(winningCombination, payoutPool.Value);
17 }

Specify arguments in the first row of the test table, after the class name.

FitNesse cannot find the Import table — why?

The import command is, in fact, a special test table defined in
fit.dll. Although the online documentation does not mention
any specific preconditions for the import command, some
versions of the .NET runner do not automatically include
standard test classes. If FitNesse cannot find the import table,
add a line containing

!path dotnet2/fit.dll

to the start of the page. This will make sure that the basic FIT
library is included in the search for fixtures.

Talk to the customer

Generally, we can call our test classes and variables anything we like, so
let's use this flexibility to make sure the customer also understands what
is going on. Let's rename the test class to make it more understandable
to the customers, for example, “Prize Distribution for Payout Pool”.

Use comments to describe tables

Any text outside of tables is just ignored. You can write explanations,
include images, provide links to more information, or modify the test
pages in any way you feel would improve understanding. This is one of
the best features of FitNesse. Most testing frameworks do not allow for
the provision of varied contextual information easily. So, let's add a short
description of what this test does, to make it even clearer.

49

Talk to the customer

What if I want to provide a table with additional details?

FitNesse executes all tables as tests, but there is a simple
solution for providing non-test tables. Just put Comment as the
table header and the table will be ignored. Comment is actually
a test class that does nothing.

Use .NET formatting to make values easier to read

Counting those zeroes on the screen is really not fun. Big numbers are
pretty ugly, but FitNesse uses .NET number formatting internally, which
enables us to use separators for digit groups. For example, we can specify
the pool size as 2,000,000 instead of 2000000.

Customer-friendly table

The end result in Figure 4.3 looks much like the original winnings table
in Figure 4.1 . If we could only insert the dollar sign, it would look exactly
like the table. This can also be done easily, but let's leave the gold-plating
for later (see section “Simplify verifications with a custom cell operator”
on page 184).

Figure 4.3. This table looks much more customer-friendly

50

Writing basic tests

The clients and business analysts should have no problem understanding
the results and verifying that the system actually does what they want.
The business analysts can now use the page to discuss and review the
requirements if and when the clients change their minds, and we can run
automated tests and easily check what works and what is broken.

Playtime

Here's some stuff to try on your own:

• Use properties with a getter instead of methods for test outputs.
• Use properties with a setter instead of fields for test inputs.
• Modify the tests to use the total pool value (before operators take their

cut) for input instead of the payout pool value.

51

Playtime

Stuff to remember

• Write FitNesse pages first, and use them as a target for the
production code.

• Use ColumnFixture when you want to repeat the same check
for several different combinations of input values.

• The ColumnFixture class maps properties, methods and fields
to table columns.

• You specify that a column contains expected results by
ending the column name (in the second row) with a ques-
tion mark.

• A table can have more than one column for expected
results, enabling us to perform several verifications for the
same combination of input values in a single table row.

• FitNesse allows you to use names that are easy to read. It
finds the correct .NET equivalent by joining words and
ignoring character case.

• Any text outside of tables is just ignored, so you can provide
explanations and comments along with your tests and make
them easier to verify and understand.

• If you want non-technical people to understand and verify
tests, then you should make sure the test tables are as close
as possible to their natural language.

52

Writing basic tests

Chapter 5.

Writing simple test scripts
Tests are rarely as simple as the one described in Chapter 4, Writing basic
tests. Generally, they involve several steps and verifications. FitNesse
allows us to write multi-step test scripts as easily as simple verifications.
In this chapter we develop the next story, and learn how to write test
scripts and pass values between tables. Our task for this chapter is to
implement the second user story:

Register player

As an operator, I want players to register and open accounts before
purchasing tickets, so that I have their details for marketing
purposes and to prevent fraud.

Again, we speak to our business analysts about what to test and how to
verify that the story has been implemented correctly. The first thing they
say is that, upon successful registration, personal details should be stored
correctly in the system and the player should be able to log in with their
registered username and password. Also, the balance for new accounts
in the system should always be zero.

Focus on fixture code

To keep things simple, we will focus on test fixtures and test-
specific code in this and the following chapters. Business
classes will be discussed just enough to support the story. You
can see the implementations of these classes in Appendix D,
Source code. You can also download them from
http://gojko.net/fitnesse.

To implement the story, we need to allow players to register and log in.
Each player will have a unique numeric ID, which should be returned
from the registration method (let's call it RegisterPlayer) if the operation
is successful. Let's create a data-transfer interface where we will store all
the personal details of the player required for the registration — we will

53

http://gojko.net/fitnesse

call it IPlayerRegistrationInfo. The LogIn method should return the
corresponding player ID, if the username and password are correct. If
not, an exception is thrown. We also need a way to retrieve player details
to verify that they are stored correctly.

So, let's create a PlayerManager class, responsible for managing players in
our system. To begin with, we give it this API:

For full code, see Tristan/src/IPlayerManager.cs on page 205

30 int RegisterPlayer(IPlayerRegistrationInfo p);
31 IPlayerInfo GetPlayer(int id);
32 IPlayerInfo GetPlayer(String username);
33 int LogIn(String username, String password);

Passing values between tables

The test that we need to write for this chapter actually involves a few
stages:

1. Register a new player.
2. Check that user details were stored correctly and that the balance on

the new account is 0.
3. Try to log in with the username and password provided during regis-

tration.

Although everything could be described by one (huge) table, the resulting
test page would be completely unreadable, which defeats the whole point
of using FitNesse. We can put more than one table on a single page and
they will be executed in sequence. This allows us to create a test script
that describes the steps with small and focused tables.

Use setup fixtures to store static context

Once we divide the test into several tables, we have to handle issues asso-
ciated with their interdependence. The first one is that the tables must
work with the same PlayerManager instance. A typical solution for sharing
this kind of information between tables is to use a separate fixture to set
up the test environment.

54

Writing simple test scripts

This setup fixture stores the contextual information into static properties.
(There is also a standard fixture class called SetUpFixture, which will be
explained in section “Use SetUpFixture to prepare the stage for tests” on
page 94 . In this case, we are talking about generic setup fixtures that
prepare the stage for other fixtures, not necessarily of any particular class).
Let's call this class SetUpTestEnvironment.

For full code, see Tristan/test/PlayerRegistration.cs on page 217

6 public class SetUpTestEnvironment : Fixture
7 {
8 internal static IPlayerManager playerManager;
9 public SetUpTestEnvironment()
10 {
11 playerManager = new PlayerManager();
12 }
13 }

This class would typically be responsible for initialising service objects,
connecting to the database, and anything else our test environment
requires to run correctly. In the example we extend fit.Fixture directly,
because no parameters are being passed to the class. When you need to
pass connection strings or other setup information, you can use any other
fixture class. ColumnFixture is a good candidate.

Use symbols to pass dynamic information

Static values and singletons1 are fine for storing resources that we can
anticipate while writing the FIT integration class, like database connec-
tions and service objects. However, tables in the same script often have
to share dynamic information. By dynamic, I mean values created on the
fly in the tests. For example, we might write a table that registers a new
player, and another one that verifies that the player data was stored
correctly. The second table needs to know the ID of the player created by
the first table. If we were to use a static variable for this, the two test tables
would be coupled quite strongly. As soon as we need to perform checks
on two players, we would have to modify the registration test class code

1 A design pattern that restricts classes to only one instance, see http://en.wikipe-
dia.org/wiki/Singleton_pattern

55

Use symbols to pass dynamic information

http://en.wikipedia.org/wiki/Singleton_pattern
http://en.wikipedia.org/wiki/Singleton_pattern

and add another static variable, making the verification class even more
complex, as it would need a switch to indicate which variable to use as
the ID.

A better solution for passing dynamic information between tables is to
use FitNesse symbols. Symbols are global variables that can be accessed
using a simple syntax. To store a value of an output column into a symbol
named player, write >>player into the cell. To read a symbol value, and
store it into an input column, use <<player. Think of << and >> as arrows
pointing the way.

What is the scope of a symbol?

Symbols are stored in a static collection inside the Fixture
class, so their scope is global from the point where they are
defined until the test runner stops. So far, we have only
executed a single page at a time, so the scope of a symbol is
from its first use until the end of the current page. You will
learn how to run multiple pages within a single test runner
in section “Group related tests into test suites” on page 79. A
symbol scope will effectively extend to all pages executed after
the page where it is defined. However, do not count on sharing
symbols between pages because the order of page execution
is not guaranteed — it is best to define and use the symbol
on the same page.

Writing a simple test script

Let's first check the registration. We start with the bare minimum, user-
name and password, and add other personal details later. Building on the
skills gained with the previous story test, we write two ColumnFixture classes:
one to register a player and one to verify the stored username and new
account balance.

For full code, see Tristan/test/PlayerRegistration.cs on page 217

17 public class PlayerRegisters : ColumnFixture
18 {
19 public string Username;

56

Writing simple test scripts

20 public string Password;
21 public int PlayerId()
22 {
23 PlayerRegistrationInfo reg = new PlayerRegistrationInfo();
24 reg.Username = Username;
25 reg.Password = Password;
26 return SetUpTestEnvironment.playerManager.RegisterPlayer(reg);
27 }
28 }
29 public class CheckStoredDetails : ColumnFixture
30 {
31 public int PlayerId;
32 public string Username
33 {
34 get
35 {
36 return SetUpTestEnvironment.playerManager.
37 GetPlayer(PlayerId).Username;
38 }
39 }
40 public decimal Balance
41 {
42 get
43 {
44 return SetUpTestEnvironment.playerManager.
45 GetPlayer(PlayerId).Balance;
46 }
47 }
48 }

To check whether a player can log in, we can wrap the PlayerManager.LogIn
method into a bool function.

For full code, see Tristan/test/PlayerRegistration.cs on page 217

49 public class CheckLogIn:ColumnFixture{
50 public string Username;
51 public string Password;
52 public bool CanLogIn()
53 {
54 try
55 {
56 SetUpTestEnvironment.playerManager.LogIn(Username, Password);
57 return true;
58 }
59 catch (ApplicationException)
60 {

57

Writing a simple test script

61 return false;
62 }
63 }
64 }

Now we can write the test tables, simply connecting them with symbols.
In order to make the test more customer-friendly, use keywords yes and
no instead of true and false in test tables. Remember to add the setup for
.NET test runner and your DLL path.

Use ready-made classes to set symbol values

Symbols can also be used to parameterise tests. For example, when
you know that a certain value might change in the future, store it
into a symbol and use the symbol in tests. When the value changes,
you need to update it just in one place.

You can use a set of very useful classes from an internal FitNesse
test suite to manipulate symbols directly. They are: StringFixture,
IntFixture, DoubleFixture, LongFixture, BoolFixture, FloatFixture and
DecimalFixture. All these classes manage symbols of the correspond-
ing type, and have a field called Field that you can use to set and test
symbol values. Here is an example that puts “Vogon Constructor
Fleet” into a symbol named what:

!|StringFixture|
|field|field?|
|Vogon Constructor Fleet|>>what|

The first column sets the value of the internal Field inside StringFix-
ture. The second column puts the current Field value into the
symbol.

For full code, see PlayerRegistrationFirstTry on page 242

9 !|Set Up Test Environment|
10
11 !|Player Registers|
12 |username|password|player id?|

58

Writing simple test scripts

13 |johnsmith|test123|>>player|
14
15 !|Check Stored Details|
16 |player id|username?|balance?|
17 |<<player|johnsmith|0|
18
19 !|Check Log In|
20 |username|password|can log in?|
21 |johnsmith|test123|yes|

Notice that FitNesse shows actual values next to symbol names when the
test is executed (Figure 5.1), enabling us to review what really went on
during the test run.

Figure 5.1. Registration tests - first attempt

Use data-transfer objects directly

Mapping columns to properties becomes quite cumbersome with more
complex objects. In real-life projects, domain packages probably already
have a good data-transfer object (DTO), so this direct mapping just
complicates test classes unnecessarily. FitNesse allows us to use a data-
transfer object directly without declaring all its properties in a fixture
class. In order to do that, we override the GetTargetObject method of the

59

Use data-transfer objects directly

Fixture class to specify our DTO. In this case, we use the PlayerRegistra-
tionInfo class,2 which implements the IPlayerRegistration data-transfer
interface.

When GetTargetObject is overriden, the fixture class tells FitNesse how to
execute tests, but does not directly provide the test implementation. For
example, our fixture can just tell FitNesse to execute a ColumnFixture test,
but the target object has to implement properties and methods for table
columns. When a target object is provided, all table columns must be
bound to this object. You cannot mix and match — the whole table is
mapped either to the fixture or to the target object. This includes test
methods and additional setup columns, which do not exist in the DTO
object. I typically solve this by creating an inner class in the fixture that
extends the DTO class with test methods.

For full code, see Tristan/test/PlayerRegistration.cs on page 217

68 public class PlayerRegisters : ColumnFixture
69 {
70 public class ExtendedPlayerRegistrationInfo: PlayerRegistrationInfo
71 {
72 public int PlayerId()
73 {
74 return SetUpTestEnvironment.playerManager.RegisterPlayer(this);
75 }
76 }
77 private ExtendedPlayerRegistrationInfo to =
78 new ExtendedPlayerRegistrationInfo();
79 public override object GetTargetObject()
80 {
81 return to;
82 }
83 }

We can use this technique to fill in all the PlayerRegistrationInfo properties
without redeclaring them in fixture code, and then use a ready-made DTO
as an input for test methods. We can use a similar approach for binding
DTO properties to columns that contain expected test results. Theoretic-
ally, we could use the same table row to store the player ID and read other
properties into the DTO, but this would require copying values from one

2 see section “Tristan/src/inproc/PlayerRegistrationInfo.cs” on page 215

60

Writing simple test scripts

DTO object to another. The target object can be switched at run time,
which is a good way to solve this problem in Java, but because C# inner
classes do not have access to outer class instances, this would not be a
clean solution. It is much better to use a fixture argument (see section
“Replace repetitive values with arguments” on page 48) to load the DTO.
Sometimes it is quite convenient to use a FitNesse symbol value as the
argument, as in this case, because the new player ID is already in a symbol.
However, symbols cannot be directly used as arguments.3 We can pass
the symbol name as an argument and read it in the test class, using
Fixture.Recall(symbolName). Note that you should not use >> or << in this
case, just the plain symbol name.

For full code, see Tristan/test/PlayerRegistration.cs on page 217

84 public class CheckStoredDetailsFor : ColumnFixture
85 {
86 public override object GetTargetObject()
87 {
88 int newid=(int)Fixture.Recall(Args[0]);
89 return SetUpTestEnvironment.playerManager.GetPlayer(newid);
90 }
91 }

Using symbols to check dynamic values

We can reduce the test code even further. Instead of just checking whether
a player can log in, we can use the fact that the login procedure returns a
player ID and compare this ID with the stored value. If the cell containing
<<symbol is in an input column, as in the first test, the current symbol value
is written into the text fixture property. If the cell is in an output column,
actual test results are compared to the current symbol value. We can use
this to trim part of the code in the CheckLogIn class. Let's change that
method to return the actual result of LogIn directly, and then compare it
with the player symbol in the table:

3 There is a patch that provides this functionality, see http://gojko.net/fitnesse.

61

Using symbols to check dynamic values

http://gojko.net/fitnesse

For full code, see Tristan/test/PlayerRegistration.cs on page 217

92 public class CheckLogIn : ColumnFixture
93 {
94 public string Username;
95 public string Password;
96 public int LoggedInAsPlayerId()
97 {
98 return SetUpTestEnvironment.playerManager.
99 LogIn(Username, Password);
100 }
101 }

The new test page can now check for all player properties more easily (see
Figure 5.2). The technique of using symbols for comparison can make
test results harder to read for customers, so use it cautiously.

Checking for errors

A business analyst comes in with two new requests:

• Can we verify that a player cannot log in with a wrong password?
• Can we verify that a player will not be able to register if the username

is already taken?

The .NET FIT runner has a non-standard extension that allows us to
check exceptions and errors. Just write error in the cell to signal that an
exception should be thrown during the test.

We can even check for a particular exception message or code. In order
to do that, we use a different keyword, exception. The syntax is excep-
tion[ExceptionType], exception["Exception Message"] (note the quotes) or
exception[ExceptionType:"Exception Message"].

62

Writing simple test scripts

Figure 5.2. Registration tests - second attempt

Fixture keywords

In addition to exception, there are a few other fixture keywords you
should know:

fail[] Expects that a comparison will fail - put the expected
value in the square brackets. For example, fail[3] will
pass if the actual result is not 3.

null Equal to .NET null. Can be used both as input and for
a value check.

blank Equal to a .NET empty string. Can be used both as input
and for a value check.

Note that leaving the cell empty does not automatically check that
the result is either null or an empty string. An empty cell makes
FitNesse print out the actual result without comparing it to anything,
and is a useful trick when you just want to see the result of a method
(see section “Use blank cells to print out results” on page 162).

63

Checking for errors

Programmers would typically like to check for an exact exception type or
message, but this makes tables less readable for business analysts and
customers. My advice is to use the level of detail appropriate for the type
of test. In customer-oriented tests, error keyword might be quite sufficient.
In internal functional tests, full type and message checks provide the
greatest level of regression-test safety. A compromise is to use just the
exception keyword and a human-understandable4 message.

Figure 5.3. Registration tests - checking for errors

Note that in Figure 5.3 we have just joined the data rows for two registra-
tions and two login checks. There is no need to repeat the table header
each time.

Playtime

Here's some stuff to try on your own:

• Implement a check to verify that username has to consist of at least six
and no more than ten letters and digits. No other characters are allowed.

4 Yes, programmers are humans too, but I mean understandable by an average English-speaking
human, not someone who has nightmares in C#.

64

Writing simple test scripts

• Register three players and write a test class to verify that their IDs are
different (hint: store their IDs into different symbols).

Stuff to remember

• If a page contains several tables, FitNesse executes them in
a sequence.

• Symbols are global variables in FitNesse. You can use them
to pass dynamic values between tables and connect interde-
pendent tests.

• The current symbol value is shown next to the symbols in
test results.

• Use GetTargetObject to bind test tables directly to your
business class.

• Use Fixture.Recall to read a symbol value from your code.
• Use the error keyword to verify that an exception is thrown.

Use the exception keyword to check for a particular excep-
tion code or message.

65

Playtime

66

Chapter 6.

Writing efficient test scripts
In Chapter 5, Writing simple test scripts we wrote a simple test script,
creating a table for each step. When the number of test steps grows,
especially if each step is executed only once, the ColumnFixture class no
longer seems like a good solution. There is simply too much unnecessary
work, both in the class code and in test tables. Now is the time to learn
how to write test scripts more efficiently.

Our task for this chapter is to implement the following user story:

Buy tickets

As a player, I want to buy tickets so that I can participate in lottery
draws and win prizes.

Again, the first question to ask is “How do we test that this is done?”
Talking to our business analysts, we agree that the story is implemented
correctly when the following tests pass:

• A player registers, transfers money into the account and buys a ticket.
We need to verify that the ticket is now registered for the correct draw
in the system, that the player's account balance has been reduced by 10
dollars, the cost of one ticket, and that the lottery prize fund has
increased by the same amount, 10 dollars.

• If the player does not have enough money in the account, the ticket
purchase should be refused. The ticket should not be registered, and
the player's account balance and the lottery's prize fund should remain
unchanged.

This discussion sheds new light on the problem domain. First, we need a
way to track active lottery draws and their prize funds and tickets. We
create an IDraw interface to represent lottery draws:

67

For full code, see Tristan/src/IDraw.cs on page 204

7 public interface IDraw
8 {
9 DateTime DrawDate { get; }
10 bool IsOpen { get; }
11 decimal TotalPoolSize { get;}
12
13 ITicket[] Tickets { get;}
14 void AddTicket(ITicket ticket);
15 }

Also, we create an ITicket interface to represent lottery tickets:

For full code, see Tristan/src/ITicket.cs on page 207

7 public interface ITicket
8 {
9 int[] Numbers { get;}
10 IPlayerInfo Holder { get;}
11 decimal Value {get;}
15 }

In order to test ticket purchase, we create a lottery draw and open it. For
this, we need a class responsible for keeping track of lottery draws in the
system, which also serves as a factory for creating new draws. Call the
interface IDrawManager:

For full code, see Tristan/src/IDrawManager.cs on page 204

14 interface IDrawManager
15 {
16 IDraw GetDraw(DateTime date);
17 IDraw CreateDraw(DateTime drawDate);
18 void PurchaseTicket(DateTime drawDate, int playerId,
19 int[] numbers, decimal value);
24 }

Next, we need to provide a way for players to transfer money into their
accounts. Add two methods for this to IPlayerManager:

68

Writing efficient test scripts

For full code, see Tristan/src/IPlayerManager.cs on page 205

34 void AdjustBalance(int playerId, decimal amount);
35 void DepositWithCard(int playerId, String cardNumber,
36 String expiryDate, decimal amount);

DepositWithCard is responsible for general card payment workflow.
AdjustBalance is responsible for modifying the actual player balance in the
system.

Better test scripts with DoFixture

We discuss the test with our business analysts in a bit more detail, and
agree on the following script:

1. Open a lottery draw for 01/01/2008.
2. Player John registers.
3. Player John deposits 100 dollars with card 4111 1111 1111 1111 and

expiry date 01/12.
4. Player John buys a ticket with numbers 1,3,4,5,8,10 for the draw on

01/01/2008.
5. Check that the pool value for the draw on 01/01/2008 is now 10 dollars.
6. Check that John's account balance is now 90 dollars
7. Check that a 10-dollar ticket with numbers 1,3,4,5,8,10 is registered

for John for the draw on 01/01/2008.

As this test involves depositing money with a credit card, we need to
connect our classes to an external payment system. We decide to imple-
ment our own test payment system that just allows all transactions. This
is an example of a test stub, a simple implementation of a component or
an external system that allows us to test code more easily.

Column fixtures are great when tests have a repetitive structure, as we
can easily add tests by appending data rows to an existing table. However,
they are a bit clumsy when dealing with a large data set. Too many columns
make a test table unreadable and a column fixture test cannot be split
into several rows. Column fixtures are also not ideal when each step of
the test is essentially a separate operation. If the script does not have a

69

Better test scripts with DoFixture

repetitive structure, we would end up with a separate three-row table for
each test step. The solution for all these problems is DoFixture, part of the
FitLibrary extension developed by Rick Mugridge.

DoFixture uses a less strict table format and allows test steps to look much
like English sentences. Apart from the first row, which specifies the class
name, each row executes a single fixture method. Odd cells are joined
together to create the method name, and even cells are passed as method
parameters. So, for example:

| Player | john | buys a ticket with numbers | 1,3,4,5,8,10 |

would call method PlayerBuysATicketWithNumbers, passing John and
1,3,4,5,8,10 as arguments

If the method returns a boolean value, it is considered a test: returning
true makes the test pass, and returning false makes it fail. All other
methods are just executed and, unless they throw an exception, they do
not influence whether the test passes or fails.

Writing the story in a test table

We can easily rewrite the script as a test table. Let's re-use the test class
from Chapter 5, Writing simple test scripts to register a player. The rest
of the script looks like this:

For full code, see PurchaseTicketFirstTry on page 245

18 |Purchase Ticket|
19 |Player|john|Deposits|100|dollars with card|4111111111111111|and expiry
date|01/12|
20 |Player|john|has|100|dollars|
21 |Player|john|buys a ticket with numbers|1,3,4,5,8,10| for draw on
|01/01/2008|
22 |Pool value for draw on |01/01/2008|is|10|dollars|
23 |Player|john|has|90|dollars|
24 |Ticket with numbers|1,3,4,5,8,10| for |10| dollars is registered for
player|john| for draw on |01/01/2008|

Now let's write the fixture code. First, we need to change the setup class
and add a static IDrawManager resource, so that other test classes can share

70

Writing efficient test scripts

it. As we need to open a lottery draw, change the setup class to a ColumnFix-
ture class and add a property for opening new draws. Also implement a
setter for this property.

For full code, see Tristan/test/PurchaseTicket.cs on page 219

8 public class SetUpTestEnvironment : ColumnFixture
9 {
10 internal static IPlayerManager playerManager;
11 internal static IDrawManager drawManager;
12 public SetUpTestEnvironment()
13 {
14 playerManager = new PlayerManager();
15 drawManager = new DrawManager(playerManager);
16 }
17 public DateTime CreateDraw {
18 set
19 {
20 drawManager.CreateDraw(value);
21 }
22 }
23 }

Now we'll write the new test class. It has some important differences from
the previous test classes, so look at the code closely. First, it extends
DoFixture from the fitlibrary package, not from fit like all previous classes.
So you might need to add a new reference to your .NET project (use
fitlibrary.dll). Second, notice how the array arguments are used: FitNesse
automatically converts comma-separated lists of values into an array.

Don't type method names, copy them

DoFixture method names, especially with a large number of
arguments, can be a bit hard to type in correctly when you
are coding. So don't do it at all: just create a test table and run
the test to make it fail. FitNesse then displays an error message
to the effect that it could not find appropriate methods and
shows you the names it looked for. Just copy and paste them
into the class code.

71

Writing the story in a test table

For full code, see Tristan/test/PurchaseTicket.cs on page 219

42 public class PurchaseTicket : fitlibrary.DoFixture
43 {
44 public void PlayerDepositsDollarsWithCardAndExpiryDate(
45 string username, decimal amount, string card, string expiry)
46 {
47 int pid = SetUpTestEnvironment.playerManager.
48 GetPlayer(username).PlayerId;
49 SetUpTestEnvironment.playerManager.DepositWithCard(
50 pid, card, expiry, amount);
51 }
52 public bool PlayerHasDollars(String username, decimal amount)
53 {
54 return (SetUpTestEnvironment.playerManager.
55 GetPlayer(username).Balance == amount);
56 }
57 public void PlayerBuysATicketWithNumbersForDrawOn(
58 string username, int[] numbers, DateTime date)
59 {
60 PlayerBuysTicketsWithNumbersForDrawOn(
61 username, 1, numbers, date);
62 }
63 public void PlayerBuysTicketsWithNumbersForDrawOn(
64 string username, int tickets, int[] numbers, DateTime date)
65 {
66 int pid = SetUpTestEnvironment.playerManager.
67 GetPlayer(username).PlayerId;
68 SetUpTestEnvironment.drawManager.PurchaseTicket(
69 date, pid, numbers, 10*tickets);
70 }
71 public bool PoolValueForDrawOnIsDollars(DateTime date,
72 decimal amount)
73 {
74 return SetUpTestEnvironment.drawManager.GetDraw(date).
75 TotalPoolSize == amount;
76 }
77 private static bool CompareArrays(int[] sorted1, int[] unsorted2)
78 {
79 if (sorted1.Length != unsorted2.Length) return false;
80 Array.Sort(unsorted2);
81 for (int i = 0; i < sorted1.Length; i++)
82 {
83 if (sorted1[i] != unsorted2[i]) return false;
84 }
85 return true;
86 }
87 public bool

72

Writing efficient test scripts

88 TicketWithNumbersForDollarsIsRegisteredForPlayerForDrawOn(
89 int[] numbers, decimal amount, string username, DateTime draw)
90 {
91 ITicket[] tck = SetUpTestEnvironment.
92 drawManager.GetDraw(draw).Tickets;
93 Array.Sort(numbers);
94 foreach (ITicket ticket in tck)
95 {
96 if (CompareArrays(numbers, ticket.Numbers) &&
97 amount == ticket.Value &&
98 username.Equals(ticket.Holder.Username))
99 return true;
100 }
101 return false;
102 }
118 }

Figure 6.1. DoFixture script looks like a story

Use DoFixture keywords for better control

Although the test table in Figure 6.1 looks nice, it has one serious flaw.
Change the test to check that John has 50 dollars at the end and run it
again. You see that the test failed, but not how much money John actually
had. If you used ColumnFixture for this, it would print both the expected

73

Use DoFixture keywords for better control

and actual values. Having this extra bit of information is very helpful for
troubleshooting.

DoFixture can do something similar: prefix the row content with check and
put the expected value in the last cell. Then change the comparison method
to return the actual value, instead of just true/false:

For full code, see Tristan/test/PurchaseTicket.cs on page 219

103 public int TicketsInDrawOn(DateTime date)
104 {
105 return SetUpTestEnvironment.drawManager.
106 GetDraw(date).Tickets.Length;
107 }
108 public decimal PoolValueForDrawOnIs(DateTime date)
109 {
110 return SetUpTestEnvironment.drawManager.
111 GetDraw(date).TotalPoolSize;
112 }
113 public decimal AccountBalanceFor(String username)
114 {
115 return SetUpTestEnvironment.playerManager.
116 GetPlayer(username).Balance;
117 }

Run the test again, and FitNesse displays both expected and actual results
(see Figure 6.2). The new comparison method even has a bit less code
than the old one.

If you just want to see the result of a method or property value without
actually testing anything (equivalent of an empty cell in ColumnFixture),
prefix the row with show without appending anything to the end. FitNesse
adds a cell to the test results showing the current value.

We can use keywords not and reject to check for errors or failed tests. We
can now complete our tasks for this chapter by checking what happens
when the player does not have enough money.

For full code, see PurchaseTicketNotEnoughMoney on page 245

16 |Purchase Ticket|
17 |Player|john|Deposits|50|dollars with card|4111111111111111|and expiry

74

Writing efficient test scripts

date|01/12|
18 |reject|Player|john|buys|10| tickets with numbers|1,3,4,5,8,10| for draw
 on |01/01/2008|
19 |Check|Pool value for draw on |01/01/2008|is|0|
20 |Check|Account balance for |john|50|
21 |Check|Tickets in draw on |01/01/2008|0|
22 |not|Ticket with numbers|1,3,4,5,8,10| for |100| dollars is registered
for player|john| for draw on |01/01/2008|

There is one more interesting DoFixture keyword: note. Prefix a row with
note to turn it into a comment.

Figure 6.2. Use the check keyword to see both expected and actual results in case
of problems

Keep ActionFixture in mind

DoFixture does not currently support checking for a detailed exception
type or error message. If you want this, use ActionFixture instead. Action-
Fixture was originally intended for tests that do not have a repetitive
structure, and it is a part of the basic FIT library. It uses a GUI metaphor
with actions to Enter (set value), Press (call method) and Check (read value).
Some developers like it because it is straightforward and does not require
writing cumbersome method names like PlayerEntersAndIntoAndToRegister.

75

Keep ActionFixture in mind

DoFixture makes tests much more readable and compact than ActionFixture,
and also has some nice test flow-control features (discussed in Chapter 8,
Coordinating fixtures), so generally you should use DoFixture instead of
ActionFixture if you can. However, there are a few cases where you might
want to use ActionFixture instead. For example, with ActionFixture, you
can check for detailed exception types and error messages (see section
“Checking for errors” on page 62). DoFixture does not support this yet.

To use ActionFixture, you should not inherit this class directly, but extend
fit.Fixture. Put your class name after the keyword start, and then use
enter, press and check to define the test. Here is a simple example of a class
automated using ActionFixture:

class TestConcatenation:fit.Fixture{
 public string FirstString;
 public string SecondString;
 public string Concatenate(){
 return FirstString+SecondString;
 }
 public void Clear(){
 FirstString="";
 }
}

Here is the test code:

!|ActionFixture|
start	TestConcatenation	
enter	first string	Hel
enter	second string	lo
check	concatenate	Hello
press	clear	
check	first string	blank

Playtime

Here's some stuff to try on your own:

• Add tests to check that a purchase fails if the player selects more or less
than six numbers.

• Add tests to check that the purchase fails if the player tries to buy a
ticket for a negative amount.

76

Writing efficient test scripts

• Write a utility fixture that creates a new player and pays some initial
sum of money into the account. Use this in test pages for this chapter
instead of the deposit and player registration. Here is a hint:

|New Player|john|50|

Stuff to remember

• If each step is executed only once, ColumnFixture is not a
good solution

• DoFixture is a good choice for test scripts when the steps do
not repeat or do not follow the same structure.

• DoFixture rows (if there are no keywords on start) are
mapped to methods by joining the content of odd cells,
and arguments are defined in even cells.

• DoFixture keywords like check, show and reject change the
behaviour of a row if they appear in the first cell.

• Arrays can be passed to fixtures simply by listing members
separated by commas.

77

Playtime

78

Chapter 7.

Removing duplication
So far, we have built five or six test pages with quite a few things in
common. All the test pages start with the same three lines that define the
.NET2 runner and the project DLLs. The test pages in the two previous
chapters all include a “Set Up Test Environment” table and some of them
also have a common player registration. Repeating the same content in
several places is one of the first test smells1 you should watch out for. We
need to remove this duplication and make test pages simpler. This enables
us to work faster in several ways:

• If we can avoid repeating boilerplate code, we do not have to worry
about getting it right every time.

• Duplicated content may slow us down when we need to change code
or adjust tests.

• If the common content is in one place then we can easily change it.

In this chapter, we do not implement a new user story, but take a step
back and find out how to organise our tests better.

Group related tests into test suites

So, let's remove the unnecessary duplication. In FitNesse, subwikis are
the equivalent of web folders or C# namespaces. They can be used to
manage related pages more easily as a group. Instead of a slash (/), which
is the separator in a web folder name, the dot symbol (.) is used to separate
levels of hierarchy in FitNesse.

For example, URL PurchaseTicketSuite.NotEnoughFunds leads to the
NotEnoughFunds page in the PurchaseTicketSuite subwiki. Just as a page
can be turned into a test with page properties, a subwiki can be turned

1 Code smells are symptoms of problems rotting in code, which should be tended to and refactored
(See http://c2.com/xp/CodeSmell.html). Martin Fowler attributes the idea of Code Smells to
Kent Beck in Refactoring[7]. I use the term “test smells” for similar problems in test pages. See
Appendix B, Test smells for a list of all test smells mentioned in this book.

79

http://c2.com/xp/CodeSmell.html

into a test suite. A test suite is a group of related tests that allows us to
control their common properties from one place. So, let's create a new
test suite with the pages in this chapter.

First, create the PurchaseTicketSuite page, just as you would create any
other normal page. You can put the definition of the .NET test runner
and your project DLL path there. Instead of defining any test tables, just
enter !contents -R as the page content. This automatically builds and
shows a table of contents for the subwiki.

For full code, see PurchaseTicketSuite on page 248

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !contents -R

There are no subpages yet so the table of contents is blank, but not for
long. Go to page properties, but instead of Test, mark this page as a Suite.

Copy the common code (namespace import, test environment set-up and
the player registration) and paste it into the contents of a new page called
PurchaseTicketSuite.SetUp. SetUp is a special page, and is included auto-
matically at the beginning of all test pages in the test suite. Do not mark
this page as a test.

For full code, see PurchaseTicketSuite.SetUp on page 247

1 !|import|
2 |Tristan.Test.PurchaseTicket|
3
4 |Set Up Test Environment|
5 |Create Draw|
6 |01/01/2008|
7
8 |Player Registers|

80

Removing duplication

9 |username|password|name|address|city|postcode|country|player id?|
10 |john|test123|John Smith|44 Ranelagh Way|London|NN1EE1|UK|>>player|

Then take the rest of the test pages, which describe actual business rules,
from section “Writing the story in a test table” on page 70 and section
“Use DoFixture keywords for better control” on page 73 and put them in
separate pages below PurchaseTicketSuite. Call the first something like
BasicCase, and the second NotEnoughMoney. Mark them both as tests.
Once the pages are marked as tests, SetUp is automatically included into
them (Figure 7.1).

Figure 7.1. SetUp is automatically included in all tests in a test suite

When you look at the PurchaseTicketSuite page now, it should list three
child pages and have a Suite button on the left. Click Suite to run all the
tests in the suite. The page starts with a test summary, followed by indi-
vidual test reports (Figure 7.2).

81

Group related tests into test suites

Figure 7.2. Fitnesse shows a summary at the beginning of the test suite report

In what order are suite pages executed?

The order of pages is not guaranteed, so do not depend on it.
Extract all common functionality into the SetUp page so that
the order is not important.

While refactoring your test pages to extract common things to a SetUp
page, be careful not to lose the expressiveness of the page. The important
thing is that everyone has the same understanding of what the test page
describes — so do not make the page too technical.

Include pages and use them as components

You can create as many levels of subwiki hierarchies as you like: sublevels
automatically inherit the parent SetUp pages. However, once you create
a SetUp page in a subwiki, the parent SetUp is no longer called automatic-
ally. To execute the parent SetUp page, include it in the subwiki SetUp
with an !include directive, followed by the page name.

82

Removing duplication

We can also use this trick to include other pages. This allows us to create
a set of utility fixtures (such as register customer, process order) and use
them as components in other tests.

If the output of utility tables is not important for the particular test,
consider putting them in a collapsed block using !include -c. A collapsed
block is hidden by default, so it saves some screen space.

How do I hide SetUp and TearDown?

SetUp and TearDown are included automatically in test suite
pages, so you cannot use the !include -c trick or !*> syntax .
However, FitNesse enables us to hide these two components
by defining two special markup variables:

!define COLLAPSE_SETUP {true}
!define COLLAPSE_TEARDOWN {true}

You can define these two variables in the main test suite page,
and they will affect all subpages.

Links within a subwiki

A subwiki hierarchy is considered a namespace for links. So, for example,
link BasicCase from the PurchaseTicketSuite.SetUp page leads directly to
PurchaseTicketSuite.BasicCase. However, the main suite page
PurchaseTicketSuite is not in the same namespace, but one level above.
If you put a link named BasicCase in the main suite page, it will lead to a
top-level BasicCase page. To reach a subpage, prefix the name with a caret
(^BasicCase). In FitNesse release 20070619, symbols < and > are also used
to point one level up or down in the hierarchy. To go to the top level,
prefix a page name with a dot. So the link to .FrontPage always leads to
the home page of the site. This is a good candidate to put in the common
page footer (see section “Defining common actions” on page 85).

Reuse entire suites with symbolic links

FitNesse tables do not specify the code implementation, just the class and
method names for the fixtures. We can reuse the whole test suite with a

83

Links within a subwiki

different set-up to verify two different implementations of the same
interface. For example, we can use the same tables to check a web service
layer and a local implementation by importing a different namespace.

Including individual pages is not effective in this case, because we have
to remember to include new pages when they are created. A better
approach is to use symbolic links, which are effectively aliases for existing
pages. To include entire test suites, create a top-level page with a different
set-up, and then open properties for this page. In the Symbolic Links
section, enter the link label in the Page Name field and enter the destina-
tion page reference2 in the Path To Page field. It is best to use !contents
-R to build the contents for the top-level page, so there's no need to worry
about listing individual links.

This approach is also very effective when you want to run the same test
suite against several environments, for example, two databases.

Use markup variables to parameterise test pages

In addition to symbols (described in section “Use symbols to pass dynamic
information” on page 55), FitNesse supports simpler parameters called
markup variables. Markup variables are similar to preprocessing macros,
and we can use them to parameterise a test page (or a set of pages). For
example, if the tests depend on a file system path or URL of some internal
test server, which can change in the future, we can store this URL in a
markup variable. When the URL changes, we just need to modify it in
one place.

We can specify markup variables with the !define directive. You have
already used variables to specify the test runner and DLL path. Once
defined, variables can be used anywhere in the wiki page by enclosing the
variable name in ${}. Here is an example that shows how a variable might
be used in the PurchaseTicket test:

2 Page reference syntax is explained in section “Links within a subwiki” on page 83

84

Removing duplication

For full code, see PurchaseTicketWithVariable on page 248

5 !define username {john}
19 |Purchase Ticket|
20 |Player|${username}|Deposits|100|dollars with card|4111111111111111|and
expiry date|01/12|
21 |Player|${username}|has|100|dollars|
22 |Player|${username}|buys a ticket with numbers|1,3,4,5,8,10| for |10|
dollars for draw on |01/01/2008|

You can use markup variables in combination with the !include directive
to parameterise included pages. You can even include the same page
several times, changing variable values in between. See
http://fitnesse.org/FitNesse.UserGuide.ParameterizedIncludes for an
example.

What is the difference between variables and symbols?

Markup variables are processed by the wiki, before running
tests. Symbols are processed by the FIT engine while running
tests. Because of that, variables can be used even as a part of
cell content. This will not work:

|StringFixture|
|field|field?|
|acrobat <<reader|acrobat reader|

but you can use a markup variable:

|StringFixture|
|field|field?|
|acrobat ${reader}|acrobat reader|

Symbols are also available to fixtures at runtime, and variables
are not.

Defining common actions

In addition to SetUp, you can also create a TearDown page that will be
executed after each test. SuiteSetUp and SuiteTearDown pages, if they
exist, are executed when the entire suite starts and ends respectively. You

85

Defining common actions

http://fitnesse.org/FitNesse.UserGuide.ParameterizedIncludes

can define common content that is not test related with PageHeader and
PageFooter special pages in each subwiki. The suite page can also contain
common path definitions. In addition, there is a special root page that
defines global definitions for the entire system. So there are quite a few
options for defining common content for several pages. Here are a few
simple guidelines on what to use and when:

• Put common HTML content like documentation links into PageHeader
and PageFooter, as they are pasted directly into the page code. SetUp
and TearDown are not good for this because they will have a border
when displayed on screen.

• If you use FitNesse only for .NET testing, add global path and runner
definitions for including basic FIT libraries and setting up a .NET 2
runner to /root.

• Put project-specific DLL paths in the main test suite page. FitNesse
looks for path definitions up the hierarchy, so this ensures that correct
DLLs will be loaded for all the tests.

• Put package includes and initialisations such as the setup of a database
connection pool in either SuiteSetUp or SetUp. The difference is that
SetUp is executed before each test, and SuiteSetUp is executed once only
for the entire test suite. Also, in FitNesse releases before 20070619
SuiteSetUp does not run when you execute individual test pages from
a suite.

• Add actions that have to be executed once and only once for the entire
suite run to SuiteSetUp.

• Extract utility tables that perform common processing or tests into
pages outside the test hierarchy, and then include them in tests with
the !include directive.

Remove irrelevant information

We reused a registration table from Chapter 5, Writing simple test scripts,
to create a new player for tests in this chapter. Although every programmer
knows that it is nice to reuse existing code, watch out for this kind of
reuse, especially when you copy several tables from another page just to
set the stage for a new test.

86

Removing duplication

As the project advances, you often add new tests as extensions of previous
tests, continuing a bigger story or checking an alternative scenario. In
these cases, you might just copy parts of existing pages or even complete
pages into the new setup. Chances are that these new tests don't need that
much detail. Having five large tables up front that check irrelevant
conditions, just to prepare the stage for another test, only makes the pages
harder to read and maintain.

Treat your test pages like code. When you see duplication, refactor it.
Having copies of groups of tables in various pages, or used together to
set up tests, is a good signal that they should be consolidated into a
smaller utility table. It might also be a signal that you are not testing the
business rules directly.

Don't test workflow, get to business rules

Having a lot of similar tests might signal that you are focusing too
much on the workflow, not on the underlying rules. This is, in most
cases, a waste of time. Rick Mugridge3 warns that you can easily get
disillusioned with automated testing if you write a lot of workflow
tests, because they will be a pain to maintain. Rick suggests that
maintenance problems are a sign that business rules are not being
expressed directly. Looking for the common features of the tests
and cutting to the essentials is a way to reduce significantly the effort
of writing and maintaining tests. It also makes clearer any parts of
business rules that are not being tested.

All the user details in this chapter are unimportant. The full registration
table is relevant only for the original test, where we had to verify that
correct data is stored in the system. All we want to do in this case is to
create a new user called John. We can write a new fixture that quickly
creates a new user and use this instead of the big table in tests from this
chapter. Because we are not interested in user details, we can just randomly
create user properties.

3 see page 133 of Fit for Developing Software[3]

87

Remove irrelevant information

Acceptance tests should focus on business rules

We can even go a bit further and throw out deposits from ticket purchase
tests. In the tests in this chapter, depositing money is not really part of
the relevant business rule. This step is just a utility to get some money
into the account, so that we can check actual business rules. If the new
utility fixture pays some money directly into the account after creating
the player, then we can delete the deposit step, and skip the payment
provider and mock object issue completely.

As a project evolves, you might often notice that parts of tests can be
thrown out without any loss of the meaning. When the problem domain
becomes clearer and after refactoring exercises that clean up the design,
check whether some parts of tests can be removed to make them more
focused on business rules.

Hide parts of the page

Sometimes you can make test pages easier to read by hiding unimportant
parts. To mark part of the page as a collapsible block, put a line containing
!* and the section name before the start of a block, and a line containing
*! after the end of the block. People viewing the page can then hide the
block by clicking its name. If you start the block with !*> it is automatically
hidden. Here is an example:

!* Block 1
This block is collapsible, but open by default
*!

!*> Block 2
This block is collapsible, but hidden by default
*!

Playtime

Here is some stuff to try on your own:

• Define the username as a variable in the SetUp page and replace all
occurrences of John in test pages with this variable. Change the variable
value to Arthur and see whether tests still pass.

88

Removing duplication

Stuff to remember

• !contents -R automatically builds a table of contents for a
test suite.

• !include embeds the contents of another page.
• Symbolic links are page aliases, and you can use them to

import entire suites.
• Markup variables are preprocessing macros that you can

use to replace parts of cell contents.
• You can group related tests into test suites to remove

duplication.
• Tests evolve during a project, and like code, they need

occasional housekeeping. Watch out for duplication and
irrelevant content.

89

Playtime

90

Chapter 8.

Coordinating fixtures
In Chapter 6, Writing efficient test scripts, we saw how we can write tests
almost in plain English with DoFixture. However, for some test steps it is
better to use a more compact format, especially when actions or data have
a repetitive structure. Luckily, we can mix and match with DoFixture: use
story-like rows when this makes sense, and use other fixtures when we
need a more compact structure. Let's see how DoFixture can embed other
fixtures.

In this chapter, we'll implement the following user story:

Pay out winnings

As an operator, I want the system to find winning tickets, calculate
winnings and pay money into ticket holders' accounts when I
enter draw results.

Just as with previous stories, our first concern is how to test that the system
works as expected. Our business analysts come up with a few ideas:

• Let's put four tickets in a draw, each worth 50 dollars, for completely
different numbers. Then let's enter draw results that match all six
numbers on one of the tickets. Other tickets do not match any drawn
numbers. The owner of the winning ticket should take 68% of the payout
pool. The total pool value is 200 dollars and the operator takes 50%,
which leaves 100 for prizes. The prize for six winning numbers is 68
dollars. So the owner of this ticket should have 18 dollars more than
he had before (68 in prize money minus 50 paid for the ticket). The
other three players should have 50 dollars less than they started with.

• Let's register four tickets as before, but have two tickets with four
common numbers, and then draw these numbers along with two others
not appearing on any ticket. The owners of two winning tickets should
split 10% of the payout pool in proportion to their ticket values. To
test the proportional split, let's have one ticket at 80 dollars and the
other at 20 dollars, so the prize should be split 4/1.

91

The first thing that these tests signal is that tickets can have different
values. Luckily, our ITicket interface already provides this, so we don't
have to refactor. Also, the test scripts hint that some parts of the tests
need a story-based structure (draw results) and other parts need a repet-
itive structure (buy multiple tickets, check winnings for each ticket). So
we have to combine what we learned in the previous two chapters.

Embed fixtures for best results

DoFixture allows us to embed other fixtures into tests. To embed fixtures,
we first need to split one big table into several smaller ones. DoFixture
allows this with a feature called flow: if the first test class on a page is a
subclass of DoFixture, it takes over the whole page, and allows us to split
the rows into individual tables.

When the page is in flow mode, the test rows are first matched to flow
fixture methods. If no corresponding method exists, then a fixture is
created normally, taking the class name from the first row. So, we can
keep using tables for test steps where needed. If a method of a flow test
returns a Fixture instance, the rest of the current table is then analysed as
if it was specified for this fixture. So we can use a DoFixture method to
prepare a ColumnFixture for execution. In flow mode we can embed and
reuse fixtures without depending on them to read the context. This is the
FitNesse version of dependency injection,1 which makes writing and
combining fixtures much easier.

Flow scripts are much easier to read, as the first row of a table does not
have to be devoted to specifying the class name. Also, flow mode allows
us to define and store the context of a test script in private variables of a
test fixture, rather than static global variables.

1 A software pattern in which service references and configuration are passed to the object by
the framework, without any code in the object to request or locate the services and configuration.
This pattern leads to loose coupling and objects that are much easier to test and combine. Objects
using this pattern also have less code because they are not responsible for reaching out to services
or reading the configuration.

92

Coordinating fixtures

Settlement tests in flow mode

We'll use a DoFixture in flow mode for the settlement test script. This
fixture provides context to other fixtures. We'll need to give other fixtures
a reference to a player manager and a draw manager, so that they can
work on the same accounts and tickets. In addition, we'll need to open a
draw in order to register tickets. Because draw details are not really
important for this test, let's just create a draw in the background, without
requiring anything to be done explicitly in the test. This is an example of
simplifying tests as explained in section “Remove irrelevant information”
on page 86. Our flow fixture initialises these “service objects” and other
fixtures use them later:

For full code, see Tristan/test/Settlement.cs on page 225

62 public class SettlementTest:DoFixture
63 {
64 private IDrawManager drawManager;
65 private IPlayerManager playerManager;
66 private DateTime drawDate;
67 public SettlementTest()
68 {
69 playerManager = new PlayerManager();
70 drawManager = new DrawManager(playerManager);
71 drawDate = DateTime.Now;
72 drawManager.CreateDraw(drawDate);
73 }
90 }

To start a test in flow mode, create a table for the flow fixture class at the
top of the page. This table typically contains just the class name. Because
this must be the first table on the page, the class name must be fully
qualified (with the namespace). We cannot even use the import directive
before a flow table.

For full code, see SettlementTests.SetUp on page 249

1 !|Tristan.Test.Settlement.SettlementTest|

If this first table, which just holds the test name, starts confusing your
non-technical users or customers, put a short test description after the

93

Settlement tests in flow mode

initial setup (use !3 before it to create a third-level heading). Then tell
customers to ignore everything above the heading and focus on the part
below the title.

Use SetUpFixture to prepare the stage for tests

Next, let's create four players to buy tickets. Although player details are
not relevant for the test, having named players makes it easier to verify
test results. Since we want to check the player balances at the end, explicitly
specifying the starting balances also makes results easier to verify. Ideally,
we would like to use a table with player name and initial balance, and hide
all other properties:

For full code, see SettlementTests.SetUp on page 249

3 |Accounts before the draw|
4 |player|balance|
5 |Arthur|100|
6 |Ford|100|
7 |Trisha|100|
8 |Marvin|100|

We could use a column fixture with two fields and a create method to set
up the players. However, there is a better solution called SetUpFixture.

SetUpFixture is another one of Rick Mugridge's classes from FitLibrary. It
is a good replacement for ColumnFixture when we just want to prepare data,
not to test anything. Instead of populating ColumnFixture properties and
then calling a method to create a player, SetUpFixture requires us to
implement just one method, and does not have the additional utility
column on the screen. Join column headers to get the method name (the
trick from tip “Don't type method names, copy them” on page 71 also
works on SetUpFixture), and declare method parameters to match column
values. Here is a quick way to create a player and assign an initial balance:

For full code, see Tristan/test/Settlement.cs on page 225

26 internal class CreatePlayerFixture : SetUpFixture
27 {
28 private IPlayerManager _playerManager;

94

Coordinating fixtures

29 public CreatePlayerFixture(IPlayerManager pm)
30 {
31 _playerManager = pm;
32 }
33 public void PlayerBalance(String player, decimal balance)
34 {
35 PlayerRegistrationInfo p = new PlayerRegistrationInfo();
36 p.Username = player; p.Name = player;
37 p.Password = "XXXXXX";
38 // define other mandatory properties
39 int playerId = _playerManager.RegisterPlayer(p);
40 _playerManager.AdjustBalance(playerId, balance);
41 }
42 }

Method PlayerBalance is used to execute our table rows, because the table
has two columns: player and balance. We now need to connect this fixture
to prepared service objects. We do this in a new method in our Settlement-
Test. The method is named AccountsBeforeTheDraw, because our business
analysts named the intial table “Accounts before the draw”:

For full code, see Tristan/test/Settlement.cs on page 225

86 public Fixture AccountsBeforeTheDraw()
87 {
88 return new CreatePlayerFixture(playerManager);
89 }

The first row in the test table does not specify a fixture class name, but a
method of the DoFixture instance in flow mode. This gives us more freedom
over fixture class names. They no longer have to be customer-friendly,
because customers never see the class names of utility fixtures directly.
All rows after the first are used just as if they were part of a normal
SetUpFixture table.

Next, we need to put some tickets into the draw. Again, let's use an
embedded SetUpFixture. We are not concerned with exact draw details, so
let's hide the draw completely from the test tables and pass it directly from
the enclosing DoFixture. This leaves us with player name, selected numbers
and the ticket value for the ticket table.

95

Use SetUpFixture to prepare the stage for tests

For full code, see SettlementTests.OneWinnerSixBallsFirstTry on page 249

3 |Tickets in the Draw|
4 |player|numbers|value|
5 |Ford|2,11,22,33,39,18|50|
6 |Arthur|1,5,4,7,9,20|50|
7 |Trisha|10,21,30,6,16,26|50|
8 |Marvin|12,13,14,15,16,17|50|

FIT calls the PlayerNumbersValue method for each row of the table:

For full code, see Tristan/test/Settlement.cs on page 225

43 internal class TicketPurchaseFixture: SetUpFixture
44 {
45 private IDrawManager _drawManager;
46 private DateTime _drawDate;
47 private IPlayerManager _playerManager;
48
49 public TicketPurchaseFixture(IPlayerManager pm, IDrawManager dm,
50 DateTime drawDate)
51 {
52 _drawManager = dm;
53 _playerManager = pm;
54 _drawDate = drawDate;
55 }
56 public void PlayerNumbersValue(String player, int[] numbers, decimal
 value)
57 {
58 _drawManager.PurchaseTicket(_drawDate,
59 _playerManager.GetPlayer(player).PlayerId, numbers, value);
60 }
61 }

To initialise this fixture, let's add a TicketsInTheDraw method to Settlement-
Test:

96

Coordinating fixtures

For full code, see Tristan/test/Settlement.cs on page 225

74 public Fixture TicketsInTheDraw()
75 {
76 return new TicketPurchaseFixture(playerManager, drawManager,
drawDate);
77 }

The next step is to enter draw results and settle the draw.

For full code, see SettlementTests.OneWinnerSixBallsFirstTry on page 249

10 |Draw results are|1,5,4,20,9,7|

In this case there is no embedded fixture: we process the test step in a
single method of SettlementTest. Again, we use the automatic conversion
from a comma-separated value list to a .NET array:

For full code, see Tristan/test/Settlement.cs on page 225

78 public void DrawResultsAre(int[] numbers)
79 {
80 drawManager.SettleDraw(drawDate, numbers);
81 }

To complete our test script, we have to verify player account balances.
We can use a ColumnFixture for this:

For full code, see SettlementTests.OneWinnerSixBallsFirstTry on page 249

12 |Accounts after the Draw|
13 |Player|Balance?|
14 |Arthur|118|
15 |Ford|50|
16 |Trisha|50|
17 |Marvin|50|

The embedded ColumnFixture is relatively simple:

97

Use SetUpFixture to prepare the stage for tests

For full code, see Tristan/test/Settlement.cs on page 225

10 internal class BalanceCheckFixture : ColumnFixture
11 {
12 private IPlayerManager _playerManager;
13 public BalanceCheckFixture(IPlayerManager pm)
14 {
15 _playerManager = pm;
16 }
17 public String player;
18 public decimal Balance
19 {
20 get
21 {
22 return _playerManager.GetPlayer(player).Balance;
23 }
24 }
25 }

Can I use flow mode without weird method names?

SequenceFixture from FitLibrary allows you to use most
DoFixture features, such as flow control, embedding other
fixtures and wrapping business objects (see section “Wrapping
business objects with DoFixture” on page 101), but uses a
different convention for method calls: the first cell of a row
is used for the method name, and all other cells define para-
meters. So using SequenceFixture makes more sense for func-
tional regression tests, where you don't care much about how
pages look.

SettlementTest initialises this new class just as it does other embedded
fixtures:

98

Coordinating fixtures

For full code, see Tristan/test/Settlement.cs on page 225

82 public Fixture AccountsAfterTheDraw()
83 {
84 return new BalanceCheckFixture(playerManager);
85 }

The end result is shown in Figure 8.1 . SettlementTest controls the whole
page, but individual methods return embedded fixtures enabling us to
benefit from the features of DoFixture and other fixtures.

Figure 8.1. DoFixture allows us to embed other fixtures

Create test suites in flow mode

The second test in this chapter has two winners splitting the 4-out-of-6
prize. It follows the same basic script, with some different parameters.
Let's make Arthur and Trisha guess four balls correctly (1,5,4,20). Arthur
bets 80 dollars, Trisha bets 20, so the prize is split 4/1. The 4-out-of-6
prize is 10% of the payout pool (see Chapter 4, Writing basic tests), so
Arthur should win 8 dollars, Trisha should win 2. If we use the same initial
setup (giving each player 100 dollars up front), Arthur ends up with 100
(initial) - 80 (bet) + 8 (winnings)= 28 dollars. Trisha ends up with 100-
20+2=82.

99

Create test suites in flow mode

The initial setup is the same, so we don't want it in two places. Even though
SetUp and TearDown (see section “Group related tests into test suites”
on page 79) are separate pages in FitNesse, they are included in the body
of test pages before the test runs. If we start the flow mode in SetUp, it
will affect the entire test. We can split a flow script into several compon-
ents. Let's delete the first two tables from the previous test, and put them
in a common setup:

For full code, see SettlementTests.SetUp on page 249

1 !|Tristan.Test.Settlement.SettlementTest|
2
3 |Accounts before the draw|
4 |player|balance|
5 |Arthur|100|
6 |Ford|100|
7 |Trisha|100|
8 |Marvin|100|

This now allows us to write the second test more easily: we specify just
tickets, results and expected account balances.

For full code, see SettlementTests.TwoWinnersFourBalls on page 249

1 !3 Arthur and Trisha guess 4 balls correctly (1,5,4,20). Arthur bet 80
dollars, Trisha bet 20, so the prize is split 4/1
2
3 |Tickets in the Draw|
4 |player|numbers|value|
5 |Ford|2,11,22,33,39,18|50|
6 |Arthur|1,5,4,7,9,20|80|
7 |Trisha|10,1,20,5,4,11|20|
8 |Marvin|12,13,14,15,16,17|50|
9
10 |Draw results are|1,5,4,20,38,37|
11
12 |Accounts after the Draw|
13 |Player|Balance?|
14 |Arthur|28|
15 |Ford|50|

100

Coordinating fixtures

16 |Trisha|82|
17 |Marvin|50|

Wrapping business objects with DoFixture

Dofixture can wrap business objects and expose their methods and prop-
erties directly to test tables. This feature is similar to the target object of
basic fixtures, but more powerful. In FitLibrary, the wrapped object is
called System under test, and is defined by setting the protected mySystemUn-
derTest property.

Unlike the target object of a ColumnFixture (see section “Use data-transfer
objects directly” on page 59), a system under test is not required to take
over all responsibility for the test, so you do not have to put testing
methods into data transfer objects. Even when a system under test is
defined, test table rows can be mapped to enclosing DoFixture methods,
so you can mix and match. Here is a DoFixture that exposes an internal
Queue object, and adds a method to generate messages:

public class MessageLog:fitlibrary.DoFixture {
 Queue<string> queue=new Queue<string>();
 public MessageLog() {
 mySystemUnderTest=queue;
 }
 public void GenerateMessages(int count) {
 for (int i = 0; i < count; i++)
 queue.Enqueue("M" + i);
 }
}

We can now call methods of the embedded queue directly, and use
DoFixture keywords (see section “Use DoFixture keywords for better control”
on page 73) to check and control public properties. In the following table
we access methods Enqueue and Dequeue and the Count property of the Queue
class directly, without explicitly wrapping them into fixture methods.

101

Wrapping business objects with DoFixture

!|MessageLog|
Enqueue	directly to the queue	
check	count	1
Generate	12	Messages
check	count	13
check	dequeue	directly to the queue

This feature is very useful for functional tests, but is not so well suited to
customer-oriented story tests.

Playtime

Here's some stuff to try on your own:

• Add a table to verify expected winnings to the tests in this chapter (hint:
modify the table from Chapter 4, Writing basic tests and embed it into
the SettlementTest).

Stuff to remember

• If DoFixture is the first table on the page, it takes over page
processing (flow mode), and allows rows to be separated
into different tables.

• DoFixture in flow mode can embed other fixtures for easier
testing and better re-use. Just return the Fixture from a test
method and then use the rest of the current table as if it
described a test for this fixture.

• In flow mode, DoFixture can initialise embedded fixtures,
allowing you to use private instance variables for test script
context instead of global static variables.

• SetUpFixture is cleaner than ColumnFixture for preparing test
data.

• To write test scripts in flow mode, put the common part
of the test script into a SetUp page.

• A flow mode test must begin with the flow fixture class
name. Not even import can be used before the test class
name in flow mode.

102

Coordinating fixtures

Chapter 9.

Working with collections
Testing lists of objects is usually a pain, but FitNesse makes it very easy.
So far, we have always been testing a predefined number of items or steps.
Now we'll learn how to verify a bunch of objects at once using ArrayFixture
and RowFixture.

In this chapter, we'll implement the following user story:

View tickets

As a player, I want to view my tickets, so that I can find out if I
have won and how much.

The customers tell us that a player should be able to view all his open
tickets (tickets for open draws) and all his tickets for any particular draw.
For open draws, we need to show selected numbers, ticket value and draw
date. When the player views tickets by draw, we should display selected
numbers, ticket value and winnings.

Our job is done when the following test cases run correctly:

• A draw on 01/01/2008 is open, and player John has 100 dollars in his
account. He buys a single ticket for numbers 1, 3, 4, 5, 8, 10; another
single ticket for 2, 4, 5, 8, 10, 12; and five tickets for numbers 3, 6, 9,
12, 15, 18. When he views his open tickets, he should see three tickets
for the draw on 01/01/2008, with 10 dollars on the first two sets of
numbers and 50 dollars on the third set of numbers.

• Two players have tickets in the same draw. Tom buys a ticket with
numbers 2, 4, 5, 8, 10, 12 for the draw on 01/01/2008. John buys a ticket
with numbers 1, 3, 4, 5, 8, 10 for the same draw. When Tom views
tickets for the draw on 01/01, he should see only his ticket, not John’s.
Likewise for John.

• Draws on 01/01, 02/01 and 03/01 are open. Player John has 100 dollars
in his account. He buys a ticket with the numbers 1, 3, 4, 5, 8,10 for the
draws on 01/01 and 02/01, and five tickets with numbers 3, 6, 9, 12, 15,

103

18 for the draw on 01/01. When he views his tickets for the draw on
01/01, he should see 10 dollars on 1, 3, 4, 5 ,8, 10 and 50 dollars on 3,
6, 9, 12, 15, 18. For the draw on 02/01, he should see just 10 dollars on
1, 3, 4, 5, 8, 10. All tickets are open. For the draw on 03/01, he should
see no tickets.

• Continuing the third test, numbers 1, 3, 4, 5, 31, 32 are drawn on
01/01/2008, and John has a winning ticket with four correct numbers.
Now, when he lists tickets for the draw on 01/01, he should see that
both tickets are closed, and that the 10-dollar ticket has three dollars
of associated winnings (the total pool was 60 dollars, the payout pool
was 30 dollars, and the 4-out-of-6 prize is 10% of this). When John lists
his open tickets, he should only see the ticket for 02/01.

These test scripts give us some new ideas about the problem domain. As
we learned in the previous chapter, tickets can have different values. But
in this case, our clients want five tickets for 10 dollars on the same set of
numbers and for the same draw to appear as one 50-dollar ticket. The
test scripts also call for a new kind of test: checking the contents of a list
of objects (tickets a player has in a draw).

Testing lists of objects

All four tests for this chapter use a draw on 01/01 and a player called John.
So let's start the test, open the draw and create this player in a common
setup page:

For full code, see TicketReviewTests.SetUp on page 250

1 !|Tristan.Test.ReviewTickets|
2
3 |Draw on |01/01/2008| is open|
4
5 |Player | john | opens account with | 100 | dollars|

The first test should look like this:

104

Working with collections

For full code, see TicketReviewTests.SeveralTicketsOneDraw on page 250

1 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|01/01/2008|
2
3 |Player|john|buys a ticket with numbers|2,4,5,8,10,12|for draw
on|01/01/2008|
4
5 |Player|john|buys|5|tickets with numbers|3,6,9,12,15,18|for draw
on|01/01/2008|
6
7 |Player|john|lists open tickets|
8 |draw|numbers|value|
9 |01/01/2008|1,3,4,5,8,10|10|
10 |01/01/2008|2,4,5,8,10,12|10|
11 |01/01/2008|3,6,9,12,15,18|50|

To implement this test, we need to find open tickets of a particular player.
Let's add a method for this to DrawManager:

For full code, see Tristan/src/IDrawManager.cs on page 204

22 List<ITicket> GetOpenTickets(int playerId);

Everything except the last table in the test looks very similar to methods
and tables from the previous two chapters. The last table presents us with
a new problem, because we need to check a list of elements. In section
“Embed fixtures for best results” on page 92 we used a ColumnFixture to
check several accounts at once, but the situation here is a bit different.
This test can return more or less rows than expected. Implementing this
test with ColumnFixture would be relatively tricky. We would need separate
checks for collection size and collection contents. In the collection contents
test, we would have to create a wrapper to fetch an element by some key
property (assuming that there is a key property), and then test other
properties. DoFixture has a very useful shortcut for tests like these: it just
returns the whole list. See the method PlayerListsOpenTickets below.

For full code, see Tristan/test/ReviewTickets.cs on page 222

9 public class ReviewTickets:fitlibrary.DoFixture
10 {
11 private IDrawManager _drawManager;
12 private IPlayerManager _playerManager;

105

Testing lists of objects

13 public ReviewTickets()
14 {
15 _playerManager = new PlayerManager();
16 _drawManager = new DrawManager(_playerManager);
17 }
18 public void DrawOnIsOpen(DateTime drawDate)
19 {
20 _drawManager.CreateDraw(drawDate);
21 }
22 public void PlayerOpensAccountWithDollars(String player, decimal
balance)
23 {
24 PlayerRegistrationInfo p = new PlayerRegistrationInfo();
25 p.Username = player; p.Name = player;
26 p.Password = "XXXXXX";
27 // define other mandatory properties
28 int playerId = _playerManager.RegisterPlayer(p);
29 _playerManager.AdjustBalance(playerId, balance);
30 }
31 public void PlayerBuysATicketWithNumbersForDrawOn(
32 string username, int[] numbers, DateTime date)
33 {
34 PlayerBuysTicketsWithNumbersForDrawOn(username, 1, numbers, date);
35 }
36
37 public void PlayerBuysTicketsWithNumbersForDrawOn(
38 string username, int tickets, int[] numbers, DateTime date)
39 {
40 int pid = _playerManager.GetPlayer(username).PlayerId;
41 _drawManager.PurchaseTicket(date, pid, numbers, 10 * tickets);
42 }
43 public IList<ITicket> PlayerListsOpenTickets(String player)
44 {
45 return _drawManager.GetOpenTickets(
46 _playerManager.GetPlayer(player).PlayerId);
47 }
58 }

If a DoFixture method returns an array or an IEnumerable collection, the
result is automatically wrapped into an ArrayFixture for testing. ArrayFix-
ture is a FitLibrary class for testing arrays and collections. It can check
contents of an array and verify that there are no additional or missing
elements. The second row of an ArrayFixture table lists element properties,1

and all the following rows contain the expected contents of the array.

1 Properties in a general sense: fields and methods (without parameters) can also be used.

106

Working with collections

Properties not included in the table are just ignored when comparing
actual results with expected results, so you can hide unimportant details.
ArrayFixture compares the array or collection with the table by checking
all the given properties, in the order of the elements listed in the table. It
reports any elements out of order, elements that were not in the test
method result (marked as missing), and elements returned by the test
method that were not expected in the table (marked as surplus).

The first test is now complete (Figure 9.1). Now that we know how to test
lists of objects, we can easily write the second and third test cases for this
chapter. Let’s check for the tickets using the table header “Player XXX lists
tickets for draw on YYY”. The second test looks like this:

For full code, see TicketReviewTests.TwoAccountsOneDraw on page 251

1 |Player|tom|opens account with|50|dollars|
2
3 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|01/01/2008|
4
5 |Player|tom|buys a ticket with numbers|2,4,5,8,10,12|for draw on|01/01/2008|
6
7 |Player|john|lists tickets for draw on|01/01/2008|
8 |value|numbers|
9 |10|1,3,4,5,8,10|
10
11 |Player|tom|lists tickets for draw on|01/01/2008|
12 |value|numbers|
13 |10|2,4,5,8,10,12|

To implement it, we’ll need a method in the main test fixture that returns
a list of tickets in a draw for a player:

For full code, see Tristan/test/ReviewTickets.cs on page 222

48 public IList<ITicket> PlayerListsTicketsForDrawOn(
49 String player, DateTime date)
50 {
51 return _drawManager.GetTickets(
52 date,_playerManager.GetPlayer(player).PlayerId);
53 }

And a corresponding method in DrawManager:

107

Testing lists of objects

For full code, see Tristan/src/IDrawManager.cs on page 204

23 List<ITicket> GetTickets(DateTime drawDate, int playerId);

Checking for empty collections

The third test case presents us with a new problem: the draw on 03/01
should have no tickets. Testing empty collections is similar to testing
collections with elements, but the table syntax might seem a bit strange.
Even for empty collections, we have to describe the structure of the element
object in the second table row, but there are no element rows below it.

For full code, see TicketReviewTests.SeveralTicketsTwoDraws on page 251

1 |Draw on|02/01/2008|is open|
2
3 |Draw on|03/01/2008|is open|
4
5 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|02/01/2008|
6
7 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|01/01/2008|
8
9 |Player|john|buys|5|tickets with numbers|3,6,9,12,15,18|for draw
on|01/01/2008|
10
11 |Player|john|lists tickets for draw on|01/01/2008|
12 |value|numbers|
13 |10|1,3,4,5,8,10|
14 |50|3,6,9,12,15,18|
15
16 |Player|john|lists tickets for draw on|02/01/2008|
17 |value|numbers|
18 |10|1,3,4,5,8,10|
19
20 |Player|john|lists tickets for draw on|03/01/2008|
21 |value|numbers|

If the draw on 03/01 had any tickets, FitNesse would display them in the
last table and fail the test.

108

Working with collections

How do I test arrays of strings or ints?

Although embedded types don’t have any properties you can
put into the table header, they all have a ToString method,
which will do just fine for this purpose. So your table might
look like this:

!|Some method returning array of ints |
| ToString |
| 1 |
| 2 |
| 5 |

Remember the exclamation mark at the beginning of the table
to prevent CamelCase formatting of ToString.

Figure 9.1. DoFixture automatically wraps arrays and IEnumerable collections into
ArrayFixture, allowing us to easily verify their contents.

Beware of test extensions

Although the fourth test our clients requested seems like an extension of
the third test, in fact all they share is a common setup. Verifications in
the third test are irrelevant to the fourth one. Beware of tests that seem

109

Beware of test extensions

like extensions of some other test cases. Instead of blindly including the
contents of another test page, think about extracting a common setup
and focusing on the actual business rules that are being tested.

In order to check that winnings are correctly recorded against tickets,
let’s set up draws, enter results for the draw on 01/01, and then check the
tickets.

For full code, see TicketReviewTests.WinningsRecordedCorrectly on page
252

1 |Draw on|02/01/2008|is open|
2
3 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|01/01/2008|
4
5 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|02/01/2008|
6
7 |Player|john|buys|5|tickets with numbers|3,6,9,12,15,18|for draw
on|01/01/2008|
8
9 |Numbers|1,3,4,5,31,32|are drawn on|01/01/2008|
10
11 |Player|john|lists tickets for draw on|01/01/2008|
12 |value|numbers|is open|winnings|
13 |10|1,3,4,5,8,10|false|3|
14 |50|3,6,9,12,15,18|false|0|
15
16 |Player|john|lists open tickets|
17 |draw|value|numbers|
18 |02/01/2008|10|1,3,4,5,8,10|

To display winnings along with tickets, we have to modify the settlement
to store calculated winnings for individual tickets. Luckily we already
have tests for this, developed in Chapter 8, Coordinating fixtures, so we
can refactor them easily.

The settlement process for a single draw can take a long time, so a player
could theoretically view his tickets during the process. This might be a
problem, because some tickets will be settled and some will still be open,
but this will not be obvious to the player. To avoid inconsistencies, we’ll
add a new field to the ticket specifying whether or not it is open. We’ll

110

Working with collections

also need to add a draw date to the ticket, so that we can show it. Our
ITicket interface gets these new fields:

For full code, see Tristan/src/ITicket.cs on page 207

12 bool IsOpen { get;}
13 decimal Winnings { get; }
14 DateTime draw { get; }

To complete the test code, we just need one more method in the main test
fixture to enter the draw results:

For full code, see Tristan/test/ReviewTickets.cs on page 222

54 public void NumbersAreDrawnOn(int[] numbers, DateTime date)
55 {
56 _drawManager.SettleDraw(date, numbers);
57 }

Can I use a Draw object instead of DateTime?

You can use any business-domain object in FitNesse cells as
long as it can be uniquely represented by a string. Define a
static method Parse to convert from a string to your business
class, override ToString in the class for the opposite conversion
and override Equals to provide comparisons. Then, use the
class just as you would use numbers or strings in FitNesse. If
you want to use a system or third-party class to which you
cannot add the Parse method, you can tell FitNesse how to
use it by implementing a custom cell handler. See section
“Simplify verifications with a custom cell operator” on page
184 for instructions on how to do this.

Use RowFixture for better precision

Here is a quick task for you: modify any ArrayFixture test table from this
chapter to contain a wrong value, for example change the ticket value 10
to 11. The report gives you quick feedback that something is wrong, but
it’s not very easy to tell exactly what (Figure 9.2).

111

Use RowFixture for better precision

Figure 9.2. We just changed one digit, but ArrayFixture shows a lot of errors

There is a better solution: RowFixture is a test class from the main FIT set
of Fixtures, and is a good replacement for ArrayFixture when you want
better precision.2 Although these two classes have many similar features,
RowFixture is much better at matching objects to table rows. For example,
if we put a question mark after ticket value in the second row of the table,
this tells FitNesse not to use this column for matching objects. FitNesse
still compares the actual ticket value with the expected one, but does not
complain about missing and additional objects. As you can see in
Figure 9.3 , the problem is much easier to spot than in Figure 9.2 .

Figure 9.3. A single wrong value can be spotted much easier with RowFixture

RowFixture allows us to split the properties into properties that define an
identity (equivalent to a database primary key), and auxiliary values that

2 Actually, ArrayFixture was built as a replacement for RowFixture, and is used perhaps more
often today because of its tight integration with DoFixture.

112

Working with collections

are not used to decide whether an object appears in the results or not.
Just put a question mark after each auxiliary value in the table header. It
is good practice to keep identity columns on the left and auxiliary values
on the right for clarity.

So, we can replace the ArrayFixture with a RowFixture and get better error
reports. DoFixture does not wrap an array automatically into a RowFixture,
so we'll have to do a bit of work ourselves. The new test table can also be
embedded into the main DoFixture, in a similar way to the ColumnFixture
example in Chapter 8, Coordinating fixtures. RowFixture is an abstract
class, so we have to override two methods to implement it:

public override Type GetTargetClass()
public override object[] Query()

GetTargetClass is used to map table columns to properties and should
return the collection element type (in this case, ITicket). Query should
return the array of elements we want to test. So let’s write a generic
RowFixture that wraps ITicket lists:

For full code, see Tristan/test/ReviewTickets.cs on page 222

112 public class TicketRowFixture : fit.RowFixture
113 {
114 private List<ITicket> _internalList;
115 public TicketRowFixture(List<ITicket> tickets)
116 {
117 _internalList = tickets;
118 }
119 public override Type GetTargetClass()
120 {
121 return typeof(ITicket);
122 }
123
124 public override object[] Query()
125 {
126 return _internalList.ToArray();
127 }
128 }

We'll use this class instead of directly returning a list from the main fixture
class:

113

Use RowFixture for better precision

For full code, see Tristan/test/ReviewTickets.cs on page 222

94 public RowFixture PlayerListsOpenTickets(String player)
95 {
96 return new TicketRowFixture(
97 _drawManager.GetOpenTickets(
98 _playerManager.GetPlayer(player).PlayerId));
99 }
100 public RowFixture PlayerListsTicketsForDrawOn(
101 String player, DateTime date)
102 {
103 return new TicketRowFixture(
104 _drawManager.GetTickets(date,
105 _playerManager.GetPlayer(player).PlayerId));
106 }

Another important difference is that RowFixture ignores the order of
elements, while ArrayFixture expects the objects to appear in the same
order as in the table. FitLibrary also has a SetFixture, which is automatic-
ally used to wrap Set collections. SetFixture also ignores the order of
elements.

Can I use RowFixture when element order is important?

Yes. A common trick is to add a field to the data class,
specifying the index of an element in the array. This element
is then listed in the table, and is typically used for row-key
mapping (all other columns would have a question mark in
this case).

Playtime

Here's some stuff to try on your own:

• Change the test class in this chapter to re-use CreatePlayerFixture from
Chapter 8, Coordinating fixtures, to open accounts.

• Revisit the tests in Chapter 6, Writing efficient test scripts, and check
the actual tickets, not just the number of tickets in a draw

114

Working with collections

Stuff to remember

• You can use ArrayFixture from FitLibrary and RowFixture
from the basic FIT package to test lists of elements.

• If a DoFixture method returns an array or an IEnumerable
collection, the result is automatically wrapped into an
ArrayFixture for testing.

• RowFixture can use symbols, keywords and partial row-key
mapping, so it is better then ArrayFixture when you need
more precision.

• ArrayFixture checks for missing and additional elements.
• You must specify element structure (second row) even

when checking for an empty collection.
• Columns with a question mark in RowFixture are excluded

from the “primary key”.

115

Playtime

116

Part III. Advanced FitNesse usage
Now that you've mastered basic FitNesse skills, it's time to learn how FitNesse
cooperates with other tools in a typical software project ecosystem.

In this part we look at how to set up FitNesse for a team of developers and
how to utilise it for testing web and database code. We also review some nice
FitNesse features that help with legacy code maintenance.

Finally, we dive deeper into the heart of FIT to see how things really work,
and how we can customise FIT and FitNesse to particular project needs.

Chapter 10.

Working in a team
One of the best features of FitNesse is that it promotes a collaborative
way of working. Now is the time to learn how to set up and use FitNesse
in a team environment. In this chapter we also consider various options
for server deployment and configuration and discuss how to integrate
FitNesse with automated build tools and build servers.

Options for team setup

There is no general agreement on how best to use FitNesse as a team tool
so we review pros and cons for the three most popular options rather than
suggest a one-size-fits-all solution.

• Using a single central server
• Importing tests from a remote wiki
• Storing tests in a version control system

Choose the one that fits your team the best.

Using a single central server

In view of the fact that FitNesse works like a web server, it's only natural
to think about setting up a single central test server so that team members
can use the server from any machine in the network with a browser.

Technically, a single FitNesse server is capable of supporting a multi-user
environment. FitNesse has an internal version control system that keeps
track of test revisions, and it automatically saves a backup when pages
change. Old versions are archived into ZIP files. It can also track and
authenticate named users.1 However, FitNesse cannot automatically pull
files from an external repository and commit them - you will have to write
scripts for that yourself. So, if you want a central test system, you will
probably want to set up a periodic build on the same machine, so that the

1 see http://fitnesse.org/FitNesse.UserGuide.PasswordFile

119

http://fitnesse.org/FitNesse.UserGuide.PasswordFile

latest code is always available for testing. Because tests are executed using
an external program, no object code is cached and you just need to update
the DLLs for tests to pick up the latest version of your code.

How secure is FitNesse?

I find that it is easier to secure FitNesse at the firewall or load
balancer level than at the application level. FitNesse is not a
high-load general-purpose web server: it is a specialised web
server intended to help people to write tests more easily in a
collaborative environment. So I recommend that you do not
count too much on the service itself providing top-notch
security.

Although this setup might seem like the natural choice, in practice it
works only for small teams. FitNesse does not perform well when people
are running tests simultaneously. It was designed to make test manage-
ment easier, not to be a scalable and robust general-purpose web server.
If the central system has a separate build process then developers have to
commit incomplete or untested code into the main branch for the server
to see it. Another option would be to allow developers to upload their
DLLs to the test server, but this is only practical for the smallest teams.
Even with only three or four people uploading DLLs, there can be a lot
of problems due to version conflicts.

Importing tests from a remote wiki

Another option is to use one central server for collaboration but execute
tests on local FitNesse installations on developer machines. The central
server coordinates updates and allows FitNesse on developer machines
to take the latest test scripts using a wiki import. Tests are never executed
on the central server, so there are no issues with server code builds nor
with concurrent test runs. Developers can import test pages to a local
server. Instead of one Edit button on the left, FitNesse shows two buttons
for imported pages: Edit Locally and Edit Remotely. These two buttons
enable developers to update a test script just on their machine or globally.

To import tests from a remote wiki you first create the page to serve as a
root for the import hierarchy (putting !contents -R as the page content

120

Working in a team

might be a good idea; see section “Group related tests into test suites” on
page 79). Then go to page properties and enter the remote wiki URL in
the URL field in the “Import Wiki” section. You can import an entire
hierarchy or any sublevel (just point to the correct subwiki URL). For
more details of this feature, see http://fitnesse.org/FitNesse.User-
Guide.WikiImport

This approach requires an identical setup for local FitNesse servers on
all developer systems, in order to avoid problems with different disk paths
to DLLs on various machines.

Since different version control systems are used for the test scripts (central
FitNesse server) and project code, occasionally there are version conflicts
between code and tests if several people are working on the same modules
at the same time. So developers should edit the test scripts locally and
then, when all code changes are complete, send the updates to the central
server. In practice, local test updates often do not find their way back to
the central server. However, with a bit of discipline, this can be a good
setup for a smaller team.

Storing tests in a version control system

Since most team projects use a version control system for code anyway,
another common approach is to use the version control repository for
storing tests instead of the central server. Test files (and often the entire
FitNesse server setup) are stored in the main version control system, along
with the source code. Developers start FitNesse from the local copy of the
repository, and run tests locally on their machines.

The benefit of this method is that there is no conflict between code and
test script versions. Everything is in the same repository. When the project
folder is committed to the version control system, test scripts are
committed too. Test scripts are plain text files, so modern version control
systems can merge most concurrent changes correctly. This also makes
maintenance easier, because there is just one code repository to back up.
Finally, because the FitNesse server is also included in the repository,
relative paths to project DLLs are always the same. These issues may not

121

Storing tests in a version control system

http://fitnesse.org/FitNesse.UserGuide.WikiImport
http://fitnesse.org/FitNesse.UserGuide.WikiImport

be important for a smaller team, but make a huge difference for larger
teams.

The downside of this method is that the internal version control system
in FitNesse starts getting in the way. Automatic archiving just causes
headaches by polluting the version control with hundreds of ZIP files.
Some very useful FitNesse functions like test refactoring simply cannot
be used in a folder-based system like CVS or Subversion. FitNesse deletes
and moves complete test folders during refactoring, including hidden
.cvs and .svn files, which completely confuses folder-based version control
systems.

Also, not having a central server leaves people like business analysts and
customers outside the loop, because they typically do not have tools to
access the version control system (or cannot be bothered to start FitNesse
locally on their machines). This can be solved with an additional “central”
test server for people who cannot run FitNesse on their machines. The
central server is not used for wiki imports, but acts as a documentation
reference. It can also be used by the continuous integration server to verify
the build (see sidebar “Continuous integration” on page 129).

In any case, if tests are kept in an external version control repository, you
should turn off internal archiving by adding -e 0 to the command used
for starting FitNesse. To avoid lots of reports about conflicting changes,
it is also a good idea to exclude ErrorLogs and RecentChanges directories (in
the wiki) from version control.

If you use a central server backed by an external version control system,
it is a good idea to restart FitNesse after tests are updated. Although the
DLL code is not cached, FitNesse caches test scripts and other page
content. Unless the server is restarted you might not see some updates
straight away.

It might also be a good idea to configure the central server as a Windows
service (see tip “Can FitNesse start automatically with Windows?” on page
125), so that it loads automatically and that other services can restart it
when needed.

122

Working in a team

Organising the files

For development tests, it seems easiest to point FitNesse at the project
DLLs directly (if you are using Visual Studio they are typically in bin\debug
inside the project folder). Using absolute paths can be problematic in a
team environment, because people might store the same projects in
different places on their local disks. But, if you put FitNesse files and tests
in the same version control repository as project code, you can use a path
relative to the main FitNesse folder (the one containing fitnesse.jar).
This allows all developers to run tests locally and still use the same path
to reference DLLs in the project build folders.

Why can't FitNesse find my .NET libraries?

If everything compiles fine, but FitNesse complains about
missing assemblies or libraries (a typical error would be
System.Runtime. Serialization.SerializationException: Cannot

find the assembly [myAssembly]), try putting all the DLLs in
the folder with the .NET test runner. If you installed FitSharp
integration as suggested in section “Setting up FitNesse” on
page 16, this is the dotnet2 directory.

Paths specified in the !path directive are just used to specify
assemblies to be searched for fixtures; they are not paths for
loading classes. So they are not used for creating objects with
reflection or deserialisation. Assemblies in the same folder
as Runner.exe are used for creating objects with reflection or
deserialisation.

However, if your project involves remote access or depends on reflection,
it might be necessary to put your DLLs in the same folder as .NET runner
(Runner.exe). Here you have two choices: either put the test runner into
your project build folder, or move the DLLs into the dotnet2 directory in
the FitNesse installation. The second approach is better when your tests
span multiple Visual Studio projects. You don't have to copy the DLLs
manually: Visual Studio can do all the dirty work. Just add the following
block to csproj project files, right before the closing Project tag:

123

Organising the files

<PropertyGroup>
<PostBuildEvent>copy "$(TargetPath)*" "Your FitNesse DotNet2
Folder"</PostBuildEvent>
</PropertyGroup>

Replace Your FitNesse DotNet2 Folder with your dotnet2 folder path. You
can use the $(SolutionDir) macro to specify a path relative to the solution
folder.

Don't mix quick and slow tests

It is good practice to run as many tests as possible before committing a
change to the main branch, so that potential problems get flushed out
earlier rather than later.

One of the key techniques for making this principle work is to separate
quick and slow tests, so that one sluggish test does not prevent a developer
from running dozens of quick ones.

What works quite well is to put fast and slow tests into different suites
(or even different tools) so that they can be executed separately. This way,
we run only the fast suites on every change. A build automation server
runs slower tests every couple of hours and lets us know when something
is broken (see section “Scheduling tests and alerts” on page 133).

Separate code-oriented and customer-oriented tests

FIT and FitNesse are essential tools for customer-oriented tests and
validation of business rules, so acceptance tests natually sit in FitNesse.
If you also use FitNesse for component or bug tests, make sure to separate
customer-oriented and code-oriented groups of tests into different
subwikis so that they can be executed separarately. Otherwise, customers
and business analysts might start getting confused with code-related or
bug-prevention tests.

124

Working in a team

Can FitNesse start automatically with Windows?

If you don't mind a bit of registry editing, you can easily set
up FitNesse as a system service. This enables FitNesse to run
in the background and start automatically with Windows.
This is probably the best way to run FitNesse on a dedicated
central server.

You can use srvany.exe and instsrv.exe from the Windows
resource kit to run any Java program as a service, including
FitNesse. First, get the appropriate resource kit for your
system from http://www.microsoft.com/windows/reskits/,
install it and run instsrv.exe FitNesse c:\reskit\srvany.exe
(replace c:\reskit\srvany.exe with the full path of srvany.exe
on your system).

Then, run the registry editor (regedit.exe), and open the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\FitNesse

key. Create a subkey called Parameters and enter three string
values into it. The first should be named Application and point
to java.exe on your system. The second should be named
AppDirectory and point to the main FitNesse folder. The third
should be named AppParameters and contain everything after
java.exe in the command used to start FitNesse (fitnesse.jar).
The registry key should look the same as on the image below:

After you have done this, you can control FitNesse like any
other Windows service. For more information on srvany.exe
and a few tips on troubleshooting potential problems, see
http://support.microsoft.com/kb/137890.

125

Separate code-oriented and customer-oriented tests

http://www.microsoft.com/windows/reskits/
http://support.microsoft.com/kb/137890

Start with a fresh wiki

When you download and install FitNesse, it comes with the Java user
guide, acceptance tests for the server and a lot of other things you don't
really need for a .NET project, especially if you want to keep your test
files in the version control system. Start with a clean slate by creating a
new wiki. Just delete the FitNesseRoot directory in your FitNesse installation
and restart the server: FitNesse automatically creates a new empty wiki.
If you want to keep the default wiki and run your test server in parallel
or on a different port, then add -r NewWiki to the command used to start
the server (either fitnesse.jar or the windows service parameters). Replace
NewWiki with the name of your new wiki directory.

Configure FitNesse to run .NET tests by default

By default, FitNesse runs Java tests. In section “How FitNesse connects to
.NET classes” on page 22, we learned how to override the test runner
parameters to run .NET tests. As this is a .NET testing book, it is highly
probable that you will be using FitNesse mostly for .NET testing, so let's
change these parameters globally. There is a special page called /root that
defines global properties. Open it for editing. (If you don't see the Edit
button, then browse directly to /root?edit.) Markup variables on this page
are included automatically in all test suites and tests. Add the .NET test
runner definitions there so that you do not have to think about this when
creating individual tests and new test suites.

!define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
%p}
!define TEST_RUNNER {dotnet2\Runner.exe}
!define PATH_SEPARATOR {;}

You can even specify paths to common DLLs with fixtures in this file so
that they are automatically available for all tests. However, I think that
in practice it is cleaner to keep DLL paths in test suites. When you start
testing more than one DLL, it makes more sense to open a subwiki for
each project and keep DLL paths in the project subwikis to avoid conflicts.

126

Working in a team

Integrating with automated build tools

Developers should run the tests and make sure that they all pass before
committing code into the source code repository, so in theory the main
code branch should always be stable and ready for deployment. In practice,
unchecked code does get into the repository from time to time and
changed dependencies cause tests and even compilations to fail. The larger
the team the more often this happens. We need one more safety net to
keep our code clean, something that runs all the tests without anyone
pushing the button.

Automated build and integration tools can verify that the repository code
can compile correctly. Luckily, FitNesse can be integrated with with such
tools easily, so that tests can also be executed automatically.

Using TestRunner

When FitNesse is running as a Windows service or on a dedicated server,
it is easy to integrate testing into automated build tools. FitSharp package
also contains a test runner intended for running tests externally, using
local DLLs and a remote FitNesse server.

To run a FitNesse test or suite with TestRunner, execute the following
command:

Runner.exe -r fitnesse.fitserver.TestRunner,dotnet2\fit.dll Server Port TestPage

Server is the name or IP address of the machine where FitNesse is running;
if you are running FitNesse on the same computer as the tests, it is local-
host. Port is the port on which FitNesse is running; if you installed FitNesse
as suggested in section “Setting up FitNesse” on page 16 this is 8888.
TestPage is a test name or a test suite. For example, the following command
executes the TicketReviewTests suite:

C:\services\FitNesse> dotnet2\Runner.exe -r
fitnesse.fitserver.TestRunner,dotnet2\fit.dll localhost 8888 TicketReviewTests

127

Integrating with automated build tools

Always execute TestRunner from the main FitNesse folder so that relative
paths to DLLs in test scripts point to the same files as when running from
FitNesse.

Why does TestRunner not see my DLLs?

If you start TestRunner on a remote machine, it may have
problems finding DLLs from the paths specified in the
FitNesse page. Double-check first that tests work OK from
FitNesse. If they do, then try putting DLLs into the same
folder as Runner.exe. Another option is to specify additional
DLLs after the test page name, as the last argument of
Runner.exe (include a semi-colon on the end).

Running tests with NAnt

To run FitNesse tests from a NAnt2 script, use the exec task to start
Runner.exe. The server name and port probably won't change often, so
I suggest creating a utility NAnt script that expects the test name to be
passed as a parameter and has other arguments defined as local properties.
Here is what the script looks like:

For full code, see scripts/runfitnesse.build on page 253

2 <property name="fitnesse.dir" value="c:\services\fitnesse" />
3 <property name="fitnesse.server" value="localhost" />
4 <property name="fitnesse.port" value="8888" />
5 <target name="test">
6 <exec program="${fitnesse.dir}\dotnet2\Runner.exe"
7 commandline="-r fitnesse.fitserver.TestRunner,dotnet2\fit.dll
${fitnesse.server} ${fitnesse.port} ${fitnesse.test}"

2 A free build automation tool for .NET. See http://nant.sourceforge.net

128

Working in a team

http://nant.sourceforge.net

8 workingdir="${fitnesse.dir}"/>
9 </target>

Continuous integration

Continuous integration (CI) is a software development practice
that requires team members to put code changes into the version
control system often and try to build the whole product from source
frequently, and to run tests to verify that the build is correct.
Continuous integration practice leads to the holy grail of agile
development: having production-quality code ready for release at
almost any time. Incompatibilities between components, resurrected
bugs and test failures are flushed out quickly. Because the increments
are small, the problems introduced by the changes are small and
they can be fixed quickly.

Early agile books, such as XP Installed[10] and the first edition of
XP Explained[2], suggest having a different pair of people try the
integration a few times every day and do any housekeeping required
to make it run. In the last few years, a big part of the process has
been automated by continuous integration servers. These tools
check for source code modifications, attempt to build the whole
system, run tests and warn team members about problems by email
or over the web. The most popular continuous integration server
for .NET is CruiseControl.NET, an open-source tool from
ThoughtWorks. It even has a convenient system tray icon that uses
a traffic light system to notify developers quickly that the build is
failing. Microsoft has its own continuous integration solution, Team
Foundation Server, which is part of the Team System version of
Visual Studio. For a more detailed introduction to continuous
integration, see http://www.martinfowler.com/articles/continuous-
Integration.html.

Integrating FitNesse with CruiseControl.NET

It is fairly easy to integrate FitNesse with CruiseControl.NET, the most
popular continuous integration server for .NET. However, there is a trick

129

Integrating FitNesse with CruiseControl.NET

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

involved in formatting results. The .NET test runner does not support
the XML format required by CruiseControl.NET out of the box, so we
first have to run the tests and store results into a file. Then we have to
format the results using the java test runner, which produces something
CruiseControl.NET can read. Runner.exe has an additional option,
-results outfile.txt, which causes it to store the output into outfile.txt.
We need to execute the following two commands within
CruiseControl.NET to integrate FitNesse tests:

C:\services\FitNesse> dotnet2\Runner.exe -r
fitnesse.fitserver.TestRunner,dotnet2\fit.dll -results c:\temp\fitnesseres.txt
 localhost 8888 TicketReviewTests.WinningsRecordedCorrectly
C:\services\FitNesse> java -cp fitnesse.jar fitnesse.runner.FormattingOption
 c:\temp\fitnesseres.txt xml c:\temp\fitnesseres.xml localhost 8888
TicketReviewTests.WinningsRecordedCorrectly

Although we could use the executable3 task from the CruiseControl.NET
tasks block directly, it is better to wrap these steps into a NAnt script
instead. This allows us to control whether the build should break or not
(acceptance tests should typically not break the build, but unit and
component tests should). Using NAnt also allows us to print some debug
messages and automatically record test execution timings.

We need to create two NAnt tasks that run tests and filter results:

For full code, see scripts/runfitnesse.build on page 253

10 <target name="test">
11 <echo message="running tests ${fitnesse.test}" />
12 <delete file="${output.file}" />
13 <delete file="${format.file}" />
14 <exec program="${fitnesse.dir}\dotnet2\TestRunner.exe"
15 commandline="-results ${output.file} -r
fitnesse.fitserver.TestRunner,dotnet2\fit.dll ${fitnesse.server}
${fitnesse.port} ${fitnesse.test}"
16 workingdir="${fitnesse.dir}"
17 failonerror="true"/>
18 <echo message="tests ${fitnesse.test} complete" />
19 </target>
20 <target name="format">
21 <echo message="formatting ${fitnesse.test} results" />

3 http://confluence.public.thoughtworks.org/display/CCNET/Executable+Task

130

Working in a team

http://confluence.public.thoughtworks.org/display/CCNET/Executable+Task

22 <delete file="${format.file}" />
23 <exec program="java.exe"
24 workingdir="${fitnesse.dir}"
25 commandline="-cp ${fitnesse.dir}\fitnesse.jar
fitnesse.runner.FormattingOption ${output.file} xml ${format.file}
${fitnesse.server} ${fitnesse.port} ${fitnesse.test}" failonerror="false"/>
26 <echo message="formatting ${fitnesse.test} results into ${format.file}
complete" />
27 </target>

Notice the failonerror="true" part in the first task. Set the value to false
for acceptance tests, so that they do not break your build.

The first step should be executed from the tasks block and the second
from the publishers block, because we want the results to be formatted
even when a test fails (even more in this case, because we want to know
what went wrong). The results can then be included into the build report
in the merge4 block. Remember to include the xmllogger publisher at the
end of the publishers block,5 to enable CruiseControl.NET to display
regular build results.

FitNesse was designed to allow easy collaboration and testing, not really
to be a 24/7 Internet server. At first it typically froze in our environment
after a day or two of continuous testing, so we included a service restart
before tests. Restarting the server also makes sure that FitNesse is using
the latest versions of test scripts and not the ones cached in memory.
When FitNesse is installed as a service (see tip “Can FitNesse start auto-
matically with Windows?” on page 125), you can use net.exe to stop and
re-start it. Don't use sc.exe because this command is asynchronous, and
you definitely don't want the tests to start executing before the server is
up.

Here is a complete CruiseControl.NET project configuration:

4 See http://confluence.public.thoughtworks.org/display/CCNET/File+Merge+Task for more
information on result file merging.
5 http://confluence.public.thoughtworks.org/display/CCNET/Xml+Log+Publisher

131

Integrating FitNesse with CruiseControl.NET

http://confluence.public.thoughtworks.org/display/CCNET/File+Merge+Task
http://confluence.public.thoughtworks.org/display/CCNET/Xml+Log+Publisher

For full code, see scripts/ccnet.config on page 254

1 <cruisecontrol>
2 <project name="Continuous-Test">
3 <workingDirectory>w:\ccnetbuild\source\test</workingDirectory>
4 <artifactDirectory>w:\ccnetbuild\artifact-cont\test</artifactDirectory>
5 <tasks>
6 <exec>
7 <executable>net.exe</executable>
8 <buildArgs>stop ccnetfitnesse</buildArgs>
9 </exec>
10 <exec>
11 <executable>net.exe</executable>
12 <buildArgs>start ccnetfitnesse</buildArgs>
13 </exec>
14 <nant>
15 <buildFile>w:\ccnetbuild\source\build\runfitnesse.build</buildFile>

16 <buildTimeoutSeconds>300000</buildTimeoutSeconds>
17 <buildArgs>-D:output.file=c:\temp\fitnesse-tx.log
-D:format.file=c:\temp\fitnesse-tx.xml
-D:fitnesse.test=TicketReviewTests</buildArgs>
18 <targetList><target>test</target></targetList>
19 </nant>
20 </tasks>
21 <publishers>
22 <nant>
23 <buildFile>w:\ccnetbuild\source\build\runfitnesse.build</buildFile>

24 <buildTimeoutSeconds>300000</buildTimeoutSeconds>
25 <buildArgs>-D:output.file=c:\temp\fitnesse-tx.log
-D:format.file=c:\temp\fitnesse-tx.xml
-D:fitnesse.test=TicketReviewTests</buildArgs>
26 <targetList><target>format</target></targetList>
27 </nant>
28 <merge>
29 <files>
30 <file>c:\temp\fitnesse-tx.xml</file>
31 </files>
32 </merge>
33 <xmllogger />
34 </publishers>
35 </project>
36 </cruisecontrol>

If you build code and run tests in the same CruiseControl.NET project,
remember to delete FitNesse results (both raw and and formatted) before

132

Working in a team

the build. If you do not do this, when a build fails, the publishers block
merges old FitNesse results with the failed build report. This gives a
misleading report that the build failed but tests passed.

Scheduling tests and alerts

Automated build tools can signal errors and notify developers when the
build fails. We can use this feature to keep track of the health of the
repository code automatically. However, different types of tests call for
different notifications.

Basic tests should ideally be executed on every source code change without
anyone pushing the button, so it is a good idea to have these tests run as
part of the basic build. This calls for basic tests to run quickly, as explained
in section “Don't mix quick and slow tests” on page 124. If basic tests are
not passing, the complete build should fail. Ideally, this should stop people
from committing unchecked code into the repository. In practice, however,
unchecked code does somehow find its way into the source code repository
from time to time. I strongly suggest setting the build server to run all
quick tests after any code change in the repository, to get the fastest
feedback.

Component and integration tests run more slowly so it is not practical to
run them on every change. We typically execute them every couple of
hours on a central system, so developers don't have to care about them.
The build system should, however, fail and notify developers when one
of these tests fail (and it is when, not if).

Tests that guide the development process typically do not pass for most
of the time. When they all pass, the work is done. So, there's no reason to
sound the fire alarm when an acceptance test fails. However, publishing
acceptance test results periodically is a good idea, because it helps to
answer the most frequent question we get from project managers: “how
are we doing?”.

133

Scheduling tests and alerts

Stuff to remember

• There are several options to set up FitNesse for a team
environment. You can use a single central server, remote
wiki import with local FitNesse instances or store test files
in an external version control system.

• Having a central server makes sense even if you store files
in an external version control system, so that business
people can use FitNesse without installing anything.

• Use Windows resource kit utilities to set up FitNesse as a
system service on the central server.

• Deploy DLLs in the folder where your test runner is to
make sure that reflection and serialisation works.

• Integrate FitNesse into your automated build process so
that tests are executed even when people forget to do that.

• Don't mix quick and slow tests so that developers can run
through basic verifications on every change.

• Separate code-oriented and customer-oriented tests so that
non-technical people do not get confused.

• Use the root page to configure FitNesse for running .NET
tests by default.

• When integrating with continuous build tools, make sure
to delete old test results so that they do not get mixed with
new ones.

• FitNesse.NET test runner does not produce XML results
in the format that CruiseControl expects, so you have to
reformat them using the Java test runner.

134

Working in a team

Chapter 11.

Testing web interfaces
FitNesse allows clients and non-technical people to contribute to testing.
Since they mostly deal with end-user interfaces, the question of writing
user interface tests with FitNesse comes up often. FitNesse and FIT do
not support the testing of user interfaces out of the box, but they can
integrate nicely with other tools for this job. This allows us to use the
functionality of UI-specific test frameworks, but keep all the benefits of
FitNesse such as being able to write tests in plain English. In this chapter
we find out how one such framework can be integrated with FIT and
FitNesse to automate web user interface testing.

Choosing the right thing to test

The user interface is typically the most volatile part of a software package.
It is heavily influenced by workflow rules and usability constraints, not
to mention all the eye candy intended to seduce potential buyers. Main-
taining UI-specific tests and keeping up with all the layout changes
requires a lot of effort, so the benefits of user interface tests are rarely on
the same level as the benefits of business domain tests.

This chapter has grown into a separate project

Since the first edition of this book was published, I expanded
the idea described in this chapter and released it as an open-
source project. See http://fitnesse.info/webtest for more
information.

However, a few cleverly chosen web UI tests can make our work a lot
easier. The trick is to focus on the right things to test. Because of the
workflow constraints, it is hard to peel the onion and get to business rules
and objects. Testing the business domain through the UI is probably not
the best choice. Acceptance tests for business rules are much easier to
write and maintain when they work beneath the user interface. Usability
and exploratory tests are typically done on the user interfaces, but they
are hard to automate. Checking whether something is usable or not

135

http://fitnesse.info/webtest

requires a human touch, because usability is subjective. Exploratory tests
are random in nature and are not a good candidate for automation.

There are, however, two types of GUI tests that it makes sense to automate:

• Workflow and session control tests
• Face-saving tests

User interface tests should mostly be focused on the customer experience
and benefits. With FitNesse they can look almost like a user manual. These
tests are good candidates for your clients to write on their own, if you can
get them involved.

Don't waste too much time on UI tests

It makes no sense to go into unit-level detail with UI tests for
most applications. Business logic and all functionality should
typically be enclosed (and tested) in the lower layers of the
system. Having said that, there are examples of applications
where UI logic and the workflow are major selling points (like
video games). It’s up to you to decide how much of the user
interface should be covered by tests. In general, the more tests
the better, but don’t waste your time. In most cases, it is better
to spend time cleaning up the code or writing more business
rule tests than to spend time trying to get 100% UI test
coverage.

With web UIs, tests run significantly slower then if they were
connecting directly to business classes. So these tests should
definitely be avoided in the basic test suite that people must
run on every code change. This is one more argument for
testing business logic beneath the UI, not with it.

Workflow and session control

Workflow control is typically handled in a layer above business rules, so
we have to use a test suite focused on the user interface to verify important
parts of the workflow. This includes session control: checking whether

136

Testing web interfaces

pages refuse access if a user is not logged in or does not have a certain
security role.

Face-saving tests

In practice, the UI layer is not subject to as many tests as other layers,
because we focus on testing business rules. But the user interface is the
only thing that customers actually see and experience. A silly UI problem,
like a misspelled URL in the login form, can effectively prevent people
from doing anything useful with the system. Although such mistakes can
be corrected relatively quickly, they are quite embarrassing. Mistakes like
this do happen. That's why I recommend always running a quick human
test on a system before the release, even if the code is completely covered
by tests. Automating key usage scenarios to verify the full path from the
GUI down to the database also helps, because automated scripts can be
checked every day. These tests should not replace the half-hour human
test before the release, but they are a useful aid that can provide early
warnings of problems. I call these tests face-saving,1 because their primary
goal is to prevent embarrasment.

In our test application, key business scenarios might be logging in from
the home page and purchasing a ticket for the next draw.

Web site code

Web development is not the subject of this book, so I am not
going to explain how to develop web sites or actually go
through building one for this chapter. The goal of this chapter
is to show how to test web pages in practice. So we are going
to use a very simple web page with a login form, and a
dynamic handler that verifies the username and password. If
you want to look at the code actually used in this example,
see section “Web code” on page 255.

1 See http://gojko.net/2007/09/25/effective-user-interface-testing/ for a more detailed discussion
of face-saving tests.

137

Face-saving tests

http://gojko.net/2007/09/25/effective-user-interface-testing/

Test a key business workflow

So, let’s do a test for one of our key business workflows. Here’s what we
want to automate:

1. User opens URL http://localhost:7711/ (which is where our test site is)
2. User types testuser into username field
3. User types testpassword into password field
4. User clicks Login
5. Page reloads in less than three seconds
6. Page contains text You have logged in

Introducing Selenium

Web user interfaces have traditionally been hard to integrate into an
automated test process. Selenium and FitNesse together solve this task
incredibly well.

Selenium is an opensource browser automation and testing library,
written by the people at ThoughtWorks. It can load pages into the browser,
type text into fields, click buttons and links and check page contents.

The core of Selenium is written in JavaScript and HTML and it is
compatible with all major browsers, including Internet Explorer and
Firefox on Windows,2 Linux and Mac.

Selenium Remote Control provides the glue between the browser automa-
tion engine and .NET, Java or Python code and enables us to write and
run Selenium tests in almost all popular test frameworks. FitNesse is a
good choice for the second side of this coin because it enables tests to be
written almost in English. As the UI is what the clients see, tests can and
should be written so that they can verify them.

2 Selenium works with XP and 2003 straight out of the box, but in Windows 2000 you'll have to
t w e a k t h e r e g i s t r y t o o p e r a t e I n t e r n e t E x p l o r e r . S e e
http://wiki.openqa.org/display/SRC/Windows+Registry+Support for more information. Selenium
works with Firefox on all platforms.

138

Testing web interfaces

http://wiki.openqa.org/display/SRC/Windows+Registry+Support

Setting up Selenium and Remote Control

First, download Selenium Remote Control (it contains the Selenium
package as well) from http://www.openqa.org/selenium-rc. Unpack the
Remote Control files somewhere on your disk and then start the server
by executing java -jar selenium-server.jar from the server folder of the
package. The server starts on port 4444 by default. If this port is already
taken, change it by adding -port number to the command line.

It might be convenient to put Selenium Remote Control on a separate
server and run it as a windows service, so that developers do not have to
start it on their machines. See tip “Can FitNesse start automatically with
Windows?” on page 125 for instructions on how to do this.

Selenium works by embedding control scripts into an HTML frame and
automating actions in another frame with these scripts. This may clash
with Internet Explorer and Firefox security rules if the frames do not
come from the same domain. Selenium Remote Control works around
this limitation by tweaking browser security settings on start-up.

If you do not want to use cross-domain scripting (or want to use a browser
that Remote Control cannot tweak), download the Selenium core scripts
from http://www.openqa.org/selenium-core and install them into your
test web site. Map the core directory from the archive to the selenium-server
virtual path on the server so that RemoteRunner.html is available on
/selenium-server/RemoteRunner.html.

What is cross-domain scripting?

Cross-domain scripting means allowing a script from one
domain to access page details from another domain and is
typically considered a security threat3 However, this is the
easiest way to get a browser to perform automatic actions for
any web site.

3 see http://en.wikipedia.org/wiki/Cross_site_scripting.

139

Setting up Selenium and Remote Control

http://www.openqa.org/selenium-rc
http://www.openqa.org/selenium-core
http://en.wikipedia.org/wiki/Cross_site_scripting

A quick Selenium example

Let's do a quick test to make sure that Selenium Remote Control (RC) is
working, before we integrate it with Fitnesse. We'll write a small console
application that calls Remote Control, which then opens Google in a
browser window, types “Fitnesse” in the search field and clicks the Search
button.

Create a new .NET project, add a reference to thoughtworks.selenium.
core.dll, which you can find in the dotnet folder of Remote Control
installation, and then create this class:

For full code, see SeleniumTest/Console.cs on page 203

1 using System;
2 using Selenium;
3 namespace SeleniumTest
4 {
5 class Console
6 {
7 static void Main(string[] args)
8 {
9 ISelenium sel = new DefaultSelenium("localhost",
10 4444, "*iehta", "http://www.google.com");
11 sel.Start();
12 sel.Open("http://www.google.com/");
13 sel.Type("q", "FitNesse");
14 sel.Click("btnG");
15 sel.WaitForPageToLoad("3000");
16 }
17 }
18 }

Make sure that Selenium RC is running, close all Internet Explorer
windows and then execute the program. Selenium RC opens a new IE
window (it may be minimised on start, but you should see a new button
in the task bar), goes to Google and executes a search.

The Selenium window (Figure 11.1) has three frames. The top-left frame
enables you to view the log and debug the execution by examining the
DOM tree. The top-right frame displays the last four executed Selenium

140

Testing web interfaces

commands; this comes in useful when troubleshooting tests. The central
frame contains the tested page.

Figure 11.1. Selenium Test Window

Using ISelenium

The first statement in the Google example initialises an ISelenium instance.
This object is used to control the browser. The first two arguments of the
constructor specify the host and port of the Remote Control server. In
this case the Remote Control server is on localhost port 4444. The third
constructor argument is a browser string. In this case it is *iehta, the code
for Internet Explorer tweaked to allow cross-domain scripting. Use *chrome
for Firefox with cross-domain scripting, or *iexplore, *firefox and *opera
for Internet Explorer, Firefox and Opera without cross-domain security
tweaks. You can also specify a full path to the executable instead of these
special keywords. The fourth constructor argument is the URL to the test
site. It is important only if you do not use cross-domain scripting, but
want Selenium to run the scripts from the local domain. In this case, since
http://www.google.com is the fourth parameter, Selenium tries to get the
files from http://www.google.com/selenium-server/RemoteRunner.html.
Since Google does not host a Selenium installation, it runs the local scripts

141

Using ISelenium

http://www.google.com
http://www.google.com/selenium-server/RemoteRunner.html

instead. You always need to specify this argument, so just set it to some
existing site if you use cross-domain scripting.

As you can guess from the names, method Type simulates the entry of data
from the keyboard into a text field and Click simulates a mouse click. We
access the text field and the button by their names, q and btnG. Selenium
can also find elements by their ID (prefix with identifier=), XPath
expression (prefix with xpath=), a DOM path or a CSS property. See
http://seleniumhq.org/docs/ for more information on locators.

Connecting from FitNesse

Instead of writing a new fixture type for every page or web site, let's write
a generic WebTest fixture and then describe the test scripts in FitNesse
pages. We'll extend DoFixture, so that other fixtures can be easily embedded
into it, for checking the back-end data after a web script, or preparing the
stage for the web test. I break the class into smaller parts to explain it in
detail. See all the code in section “webfixture/WebTest.cs” on page 234 or
download it from http://gojko.net/fitnesse.

Starting and stopping the browser

At the start of a test, we have to open a browser and set up the Selenium
environment from the test fixture. To keep the test script format in
English-like prose, we'll use the following syntax:

For full code, see LoginTest on page 241

3 !|Start Browser|*iehta|With Selenium Console On| localhost| At Port
|4444|And Scripts At|http://localhost:7711|

We'll keep the active ISelenium instance as a local instance field in our
WebTest fixture, so this method starts the browser:

For full code, see webfixture/WebTest.cs on page 234

11 public void StartBrowserWithSeleniumConsoleOnAtPortAndScriptsAt(
12 String browser, String rcServer, int rcPort, String seleniumURL)
13 {
14 instance = new DefaultSelenium(rcServer,

142

Testing web interfaces

http://seleniumhq.org/docs/
http://gojko.net/fitnesse

15 rcPort, browser, seleniumURL);
16 instance.Start();
17 }

At the end of each test, we need to shut down the browser, so that Selenium
RC does not run out of resources. For this, we'll call the Selenium Stop
method:

For full code, see webfixture/WebTest.cs on page 234

18 public void ShutdownBrowser()
19 {
20 instance.Stop();
21 }

These two methods can be called from SetUp and TearDown pages, so
that individual tests can focus on the actual workflow under test.

Hide browser codes

To make web test pages really customer-friendly, you can use
browser names or shortcuts in the page, and then map those
to browser codes like *iehta in the fixture class.

Simulating client interaction

The first action in our test script is to navigate to the test page. As in the
Google example, we can use the Selenium method Open to point the browser
in the right direction:

For full code, see webfixture/WebTest.cs on page 234

47 public void UserOpensURL(String s)
48 {
49 instance.Open(s);
50 }

Next, we need to implement methods that simulate button clicks and text
input. To achieve the best effect, the script must relate to what users see
on the screen. However, this is easier said than done. Text fields, check
boxes and buttons are all instances of input elements. Although text fields

143

Simulating client interaction

are mostly distinguished by their names, button names are typically not
important and users only see the value attribute of a button. So, our WebTest
fixture must look for various combinations of attributes. For example,
when searching for a button it should first look for an input element with
type submit or button and a name attribute matching the query. If no
such element is found, it should look for a similar element with a value
attribute matching the query. Finally, it should look for a button with a
matching DOM ID. We can use XPath to describe expressions for all these
combinations and then check them in sequence:

For full code, see webfixture/WebTest.cs on page 234

22 public static readonly string[] buttonLocators = new String[] {
23 "xpath=//input[@type='submit' and @name='{0}']",
24 "xpath=//input[@type='button' and @name='{0}']",
25 "xpath=//input[@type='submit' and @value='{0}']",
26 "xpath=//input[@type='button' and @value='{0}']",
27 "xpath=//input[@type='submit' and @id='{0}']",
28 "xpath=//input[@type='button' and @id='{0}']"};

Although looking for an element by ID or name would be quicker, we
intentionally use XPath and add extra information to catch errors caused
by wrong element types. This means that tests run more slowly, but have
more precision. To check whether an element exists in the page, we can
use the IsElementPresent method of ISelenium. Here is code that uses
IsElementPresent to run through an array of locators and return the first
matching element:

For full code, see webfixture/WebTest.cs on page 234

34 private String GetLocator(String caption, String[] possibleFormats)
35 {
36 foreach (String s in possibleFormats)
37 {
38 String locator = String.Format(s, caption);
39 if (instance.IsElementPresent(locator))
40 {
41 return locator;
42 }
43 }
44 throw new ApplicationException(

144

Testing web interfaces

45 "Cannot find element by " + caption);
46 }

We already know how to use the Click method from the Google example,
so let's just wrap it into a nice DoFixture procedure:

For full code, see webfixture/WebTest.cs on page 234

64 public void UserClicksOn(String buttonCaption)
65 {
66 instance.Click(GetLocator(buttonCaption, buttonLocators));
67 }

The value attribute of a button is visible on the screen, but there is no
such property for text fields. Generally we'll have to rely on the name
attribute. Since HTML names and IDs cannot contain blanks, let's strip
the blanks from the required name. This allows us to map a command
like User types 10109 into security number field to an element named
securitynumber.

For full code, see webfixture/WebTest.cs on page 234

51 public static readonly string[] textFieldLocators = new String[]
 {
52 "xpath=//input[@type='text' and @name='{0}']",
53 "xpath=//input[@type='password' and @name='{0}']",
54 "xpath=//textarea[@name='{0}']",
55 "xpath=//input[@type='text' and @id='{0}']",
56 "xpath=//input[@type='password' and @id='{0}']",
57 "xpath=//textarea[@id='{0}']"};
58
59 public void UserTypesIntoField(String what, String where)
60 {
61 instance.Type(GetLocator(
62 where.Replace(" ", ""), textFieldLocators), what);
63 }

Inspecting results

With web tests, we typically want to check that the result was correct and
that the site responded quickly enough. The Selenium method WaitForPa-
geToLoad can be used to check whether a page loads in any given amount

145

Inspecting results

of time. The API is a bit weird, as it expects a string containing the number
of milliseconds. Let's wrap it into a DoFixture method:

For full code, see webfixture/WebTest.cs on page 234

68 public void PageReloadsInLessThanSeconds(String sec)
69 {
70 instance.WaitForPageToLoad(sec + "000");
71 }

Finally, we need a method to verify that page contents are correct. The
Selenium method IsTextPresent can help with this:

For full code, see webfixture/WebTest.cs on page 234

72 public bool PageContainsText(String s)
73 {
74 return instance.IsTextPresent(s);
75 }

Completing the test

Now we can turn the script from section “Test a key business workflow”
on page 138 into a FitNesse test:

For full code, see LoginTest on page 241

1 !|webfixture.WebTest|
2
3 !|Start Browser|*iehta|With Selenium Console On| localhost| At Port
|4444|And Scripts At|http://localhost:7711|
4
5 |User Opens URL|http://localhost:7711/login.aspx|
6 |User types|testuser|into|username|field|
7 |User types|testpassword|into|password|field|
8
9 |User clicks on|Log In|
10 |Page reloads in less than|3|seconds|
11 |Page contains text|You have logged in|

146

Testing web interfaces

12
13 |Shutdown browser|

When you execute this test, it connects to Selenium RC, opens a browser
window, tries to log in and checks the page content to verify results
(Figure 11.2).

Figure 11.2. A Selenium test works straight from FitNesse

Running tests on a remote server

Selenium RC tries to open a new browser session with different security
settings, but under the profile of the current user (in fact, the user that
started Remote Control). This may cause problems when you already
have an open browser on the same machine. The workaround is to use a
different browser for testing. For example, I use Firefox for normal
browsing, so Remote Control can start Internet Explorer and play with
it. But, there is a much better solution.

As the name suggests, Remote Control can run on a remote dedicated
test server and be accessed by developers from their own machines. In
that case, Remote Control opens browsers on the remote (dedicated)
server, not on developer machines. This enables us to continue using

147

Running tests on a remote server

browsers for other tasks on our machines while running UI tests. It also
enables us to re-use the same FitNesse scripts to check how various
browsers behave on different platforms. We can use symbolic links (see
section “Reuse entire suites with symbolic links” on page 83) to create test
suites for different browsers and environments but maintain scripts in
one place.

Why did IE stop working after the test?

If Selenium Remote Control does not shut down correctly,
or you don't close the browser window, IE might keep the
connection settings set by Selenium during tests. This can
also affect MSN messenger and other programs that use an
embedded IE browser. Go to Tools, Internet Options,
Connections, LAN Settings and check whether the Selenium
file is still being used as the automatic configuration script
(see image below). Uncheck the box and IE should start
working again.

148

Testing web interfaces

More Selenium tests

This example was just to get you started with Selenium. This tool can
simulate quite a few operations and inspect various page properties. For
example, use the Select method to choose options from a dropdown menu
(select HTML tag), or GetLocation to inspect the current page URL. See
dotnet/doc/index.html in your Remote Control installation for more
information on the ISelenium interface.

Stuff to remember

• Web UI tests can be quite brittle and it may take a lot of
effort to maintain them and keep up with all the changes,
so they are best used to automate a few key scenarios.

• Selenium can be used to simulate user actions and inspect
Web page details and content.

• Remote Control can execute Selenium tests on various
platforms.

149

More Selenium tests

150

Chapter 12.

Testing database code
Even for projects where the database is used just as a simple persistence
layer, it has an impact on automated tests. Integration and acceptance
tests should run in an environment as close to the production environment
as possible, which today often involves a database. This means that data
needs to be set up before the test, cleaned up after, and that changes to
data may need to be verified in the database. Writing code to do this in
.NET is not rocket science, but it is dull and error-prone, and I'd rather
avoid it.

DbFit is an extension library to FIT that enables tests to be executed
directly against a database. DbFit fixtures take care of all the database
integration plumbing, including automated transaction management,
parameter declarations and selecting the right column or parameter type.
Because of this, it is easier to write database tests with DbFit than it is to
implement manual validations.

To use DbFit fixtures in your tests, download the dbfit-dotnet-binaries
package from http://sourceforge.net/projects/dbfit. To install it, unpack
the ZIP and copy dbfit.dll into the folder with the .NET test runner. If
you installed FitNesse as suggested in section “Setting up FitNesse” on
page 16, this is the dotnet2 folder in your main FitNesse directory.

Version issues

While I was working on the second edition of this book, DbFit
was still compiled against the old Fitnesse.NET libraries, not
FitSharp.

Connecting to the database

DbFit fixtures can work in two modes:

• In flow mode: a DatabaseTest fixture controls the whole page and
coordinates testing. You can use other fixtures as well, but no other

151

http://sourceforge.net/projects/dbfit

fixture can take over flow mode processing. In flow mode, DbFit
automatically rolls back the current transaction at the end to make
tests repeatable, and provides some additional options such as inspec-
tions of stored procedure error results.

• Standalone: you can use individual fixtures without having DatabaseTest
coordinate the whole page. In this case, you are responsible for trans-
action management. This enables you to have more control over the
database testing process, and even supply your own database connection
to make sure that .NET integration tests are running in the same
transaction.

The mode in which you are using DbFit fixtures affects how you connect
to the database.

Which mode should I use?

If you can, use flow mode. It gives you automatic transaction
management and some other shortcuts. If your test relies on
some other fixture controlling the page in flow mode, use
standalone fixtures. The syntax is, in most cases, absolutely
the same.

Connecting in flow mode

In flow mode, the current database connection is kept in a protected field
of the DatabaseTest instance. SqlServerTest is a subclass of DatabaseTest that
just initialises it to work with SqlServer 2005.

Use the Connect method to initialise the database connection. Pass the
server (optionally followed by the instance name), username, password
and the database name as arguments. This is how I connect to a SqlServer
2005 Express1 instance on my laptop:

!|dbfit.SqlServerTest|

!|Connect|LAPTOP\SQLEXPRESS|FitNesseUser|Password|TestDB|

1 f r e e v e r s i o n o f S q l S e r v e r 2 0 0 5 f o r d e v e l o p e r s . S e e
http://www.microsoft.com/sql/editions/express/.

152

Testing database code

http://www.microsoft.com/sql/editions/express/

If you are connecting to a default database, you can omit the fourth
parameter. If you want to use non-standard connection properties, or
initialise your connection differently (for example, using Windows
integrated authentication), call Connect with a single argument — the full
.NET connection string. Here is an example:

|Connect|data source=Instance;user id=User;password=Pwd;database=TestDB;|

For flow mode to work correctly, the SqlServerTest fixture must be the
first one on the page — not even import can be before it. This is why we
explicitly specify the namespace.

Connecting in standalone mode

In standalone mode, the connection properties are stored in the public
DefaultEnvironment singleton field inside dbfit.DbEnvironmentFactory. You
can initialise it from your own fixtures if you want to pass an existing
database connection (to make sure that your .NET tests are using the
same transaction as DbFit fixtures). Alternatively, you can use the Data-
baseEnvironment fixture from the dbfit.fixture package to define the
connection. To change the default environment (or initialise it for the
first time), pass the new environment type as the first argument to the
fixture. For SqlServer 2005, the value of this argument should be
SQLSERVER. DatabaseEnvironment is a SequenceFixture (see tip “Can I use
flow mode without weird method names?” on page 98) that wraps the
DefaultEnvironment singleton as a system under test, so that you can then
call all its public methods directly — including the Connect method
explained earlier.

|import|
|dbfit.fixture|

!|DatabaseEnvironment|sqlserver|
|Connect|LAPTOP\SQLEXPRESS|FitNesseUser|Password|TestDB|

Notice that there is no space between DatabaseEnvironment and Connect —
they have to be in the same table. Because we are not using flow mode,
we can use the import fixture as well. Most DbFit fixtures are in
dbfit.fixture namespace, so it is good practice to include this namespace.

153

Connecting in standalone mode

Can I use both modes in the same test suite?

Yes, in different tests. Note that the imported namespace may
give you some problems in flow mode. If you want to mix
and match, then either do not import the dbfit.fixture
namespace for standalone tests, or use the utility Export fixture
to cancel the namespace import after the standalone test.

!|dbfit.util.Export|
|dbfit.fixture|

Transaction management

In flow mode, the current transaction is automatically rolled back at the
end of the page. If you want to commit it to make changes permanent,
put the Commit table into the page. There are no arguments or additional
parameters — the table contents contain just this one word. Likewise,
you can roll back manually in your test using the Rollback table.

In standalone mode, use the DatabaseEnvironment fixture again, but do not
specify a fixture argument. This tells the DatabaseEnvironment to use the
current default database connection, without attempting to initialise it.
Call Commit or Rollback in the second row.

!|DatabaseEnvironment|
|rollback|

It is a very good idea to put this table in a TearDown page for your test
suite when you use standalone DbFit fixtures. This will make sure that
your tests are repeatable.

154

Testing database code

Fixtures and methods

All the fixtures described in the rest of this chapter are in the
dbfit.fixture namespace. In flow mode, do not use the fixtures
directly, but instead call methods of the DatabaseTest class.
The appropriate methods have the same names as the fixtures
they relate to. If you import the namespace for standalone
fixtures, the table syntax in both modes is absolutely the same.

Working with stored procedures

To test or execute a stored procedure, use the ExecuteProcedure fixture.
ExecuteProcedure works like a ColumnFixture, and expects the procedure
name as the first argument. Input and output parameters are listed in the
second table row. As usual with ColumnFixture, each output parameter
must be followed by a question mark. All rows after the second one specify
test values for input parameters and expected values for output paramet-
ers. When we run the test, DbFit calls the procedure for every combination
of input parameters, and verifies that output parameter values match
what we expect. Here is a simple example. If the word concatenation in
the Hello World example (section “A quick test” on page 17) was imple-
mented as a stored procedure, this would be the test for it:

!|Execute Procedure|ConcatenateStrings|
|firststring|secondstring|concatenated?|
|Hello|World|Hello World|

Now you can see how easy it is to write a stored procedure test. The boil-
erplate code is absolutely minimal. There are no variable declarations
and no exception handlers. You don't have to know the data type of
parameters. You can use this fixture to test database stored procedures,
but also to call a stored procedure quickly during a .NET data-driven test.
To test or call stored functions, create a column with only a question mark
in the header. Use this column for the function result, just as you use
other columns for parameters.

Note that all other FitNesse features, such as symbols and markup vari-
ables, work with DbFit fixtures as well.

155

Working with stored procedures

Can I use DbFit with a different database?

In this book, I use Sql Server 2005 examples because this is
what most people use with .NET. DbFit also supports Oracle
9 and later versions and MySql 5 (only in the Java version)
out of the box. If your database is not one of these, you can
still use DbFit with a bit of effort.

DbFit fixtures use an abstraction for the database engine
represented by the dbfit.IDBEnvironment interface. This inter-
face is relatively simple and it should not take you more than
four to five hours to implement it for your particular database.
DbFit is open-source so you can even take a peek at
SqlServerEnvironment and OracleEnvironment implementations
to help you get started with the task.

Preparing test data

Insert is the database equivalent of SetUpFixture (see section “Use SetUp-
Fixture to prepare the stage for tests” on page 94), and can be used to
populate tables with data quickly. Specify the table name as the first fixture
argument, then define the data structure in the second row and specify
data in subsequent rows:

!|Insert|Users|
username	name
pete	Peter Pan
mike	Michael Jordan

The Insert fixture can also return automatically generated columns, such
as primary key values. Use a question mark after the column name to
specify that a column should be read from the database. You can store
the output into fixture symbols for later use:

156

Testing database code

!|Insert|Users|
username	name	userid?
pete	Peter Pan	>>user1
mike	Michael Jordan	>>user2

Executing statements

To execute an SQL statement quickly, use the Execute fixture and specify
the statement in the second cell. This fixture does not have any additional
rows. Bound variables in statements are automatically linked to fixture
symbols. For example, the following table updates the user whose ID is
stored into the user2 symbol. Note that a different syntax is used to access
symbols — SQLServer uses @ to mark bound variables, and you should
use this instead of << and >>.

!|Execute| Update Users set name='Michael Jackson' where userid=@user2|

To execute multi-line statements, enclose them inside !- and -! so that
FitNesse knows to treat the whole statement as one cell.

Verifying query results

The Query fixture is the database equivalent of RowFixture. Specify the query
statement as the first fixture argument, then put the output structure in
the second row and list expected results in subsequent rows. You can use
partial row-key mapping (see section “Use RowFixture for better precision”
on page 111) by putting a question mark next to columns that do not
belong to the primary key. Just as with SQL statements, bound variables
are automatically read from fixture symbols. You can also use symbols
for data comparisons.

157

Executing statements

Query	Select * from users where userid<@lastid	
userid	username?	name?
<<user1	pete	Peter Pan
<<user2	mike	Michael Jordan

Other DbFit features

DbFit has more useful fixtures. The Inspect fixture can be used to quickly
build a regression test for a query, or to read out metadata from the
database and create a test template based on a stored procedure, table or
view. The Update fixture allows you to modify existing records in a tabular
form, without writing the statement manually. Clean helps with deleting
data and QueryStats allows you to inspect statistics about a query without
actually specifying the result data. StoreQuery and CompareStoredQueries
allow you to compare the results of two queries dynamically.

This is as far as we will go in explaining DbFit, because this book is not
about database testing. However, if this topic interests you, see the Dbfit
project web site http://www.dbfit.org for more examples and a reference
guide to other DbFIt fixtures. Scott W. Ambler also has a lot of good
advice on applying agile practices to databases on
http://www.agiledata.org.

158

Testing database code

http://www.dbfit.org
http://www.agiledata.org

Database unit testing

Although FitNesse is generally intended for story tests and accept-
ance testing and not unit-level functional verifications, with the
assistance of DbFit it becomes an easy-to-use tool for database unit
tests. Because the tabular test format is very close to the relational
data model, FIT tests do not suffer from the object model-relational
data model mismatch that renders most xUnit-style tools effectively
unusable for database testing. In fact, one of the goals of DbFit is
to enable the use of FitNesse for effective database acceptance and
unit testing by database developers with no .NET or Java knowledge.

To help database developers get started with unit testing, DbFit
releases contain a dbfit-complete package as well. This package brings
together the a release of FitNesse, .NET test runner, and the DbFit
binaries, ready to use. The default wiki site in this package contains
a lot of examples of how to use DbFit fixtures. If you are interested
in DbFit, I suggest that you download this package first and browse
through the wiki pages — especially the DotNet.AcceptanceTests
test suite.

There is also a PDF guide intended to help database developers
make the most of DbFit without learning any .NET or Java skills.
You can download it from http://gojko.net/fitnesse/dbfit.

159

Other DbFit features

http://gojko.net/fitnesse/dbfit

Stuff to remember

• DbFit fixtures can work in flow mode or in standalone
mode. Flow mode automatically controls transactions and
has some other helpful shortcuts. Standalone mode gives
you more control.

• Use the Insert fixture to prepare the stage quickly for data-
driven .NET integration tests.

• Use the Query fixture to verify the database state after a data-
driven .NET integration test or the execution of a stored
procedure.

• Use the ExecuteProcedure fixture to test stored procedures
or quickly script a stored procedure call for a .NET integ-
ration test.

• Use the Execute fixture to execute any database statement.
• FitNesse symbols are automatically mapped to database

bound variables.

160

Testing database code

Chapter 13.

Testing legacy code
Maintaining a legacy system is often compared to walking through a
swamp. Any move we make is incredibly slow and we don't really know
what we are stepping into. Being afraid of the next step and unwilling to
make any changes is the essence of working with legacy for me. Although
the primary goal of FIT and FitNesse is to help with acceptance tests, these
tools have some great features for testing legacy code.

Covering legacy code with tests

Michael Feathers1 suggests that the first step when dealing with legacy
code is to cover it with tests, so that we will not be afraid to change it.
Feathers goes so far as to call any code without test support legacy: “The
main thing that distinguishes legacy code from non-legacy code is tests,
or rather a lack of tests.” Although the word legacy has a different meaning
for me, I still have a very uneasy gut feeling when new software is being
developed without proper test support.

When TDD practices are used, tests represent what Feathers calls an
“invariant on the code”, something we can rely on to tell us when the
functionality has changed. We should first build this invariant and then
get on with improving the code. So, the first step is actually getting some
useful test cases for the code. Don't bother too much with calculating
correct test outputs. As Feathers puts it, “The key thing is that correct
behaviour is defined by what the set of classes did yesterday, not by any
external standard of correctness”. We need to create tests that verify
current functionality and then use them to check future changes.

FitNesse can help a lot in this task, by allowing us to take a quick snapshot
of the current functionality and convert it into tests.

1 See his book Working Effectively With Legacy Code [6]. A short online introduction into this
subject is on http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacy-
Code.pdf

161

http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf
http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf

Use blank cells to print out results

Fixture classes from the basic FIT package (including ColumnFixture,
ActionFixture and RowFixture) handle a blank check cell by printing out
the actual result, without comparing it to anything. We can write a test
without actually specifying the results and FitNesse will print current
values when we run this test. We can now quickly turn these results into
a new test and use the values as expected outcome for the future.

To convert the results into a test, select the entire table in the browser,
directly from the rendered results page, not from the HTML source nor
wiki source, and copy it. Internet Explorer allows you to get just a few
rows at a time, while in some versions of Firefox you have to select the
entire table in order to copy it properly. Edit the test page, delete the old
table and paste the contents of the clipboard into the page editor. You
should see the results table with column values separated by tabs. Click
the Spreadsheet to FitNesse button below the editor text box. This turns
the tab-separated results table into a FitNesse test table, converting the
tabs into pipes to separate cells and even putting the exclamation mark
before the first row automatically. Simply save the page and you have a
snapshot test.

Use Word and Excel to write tests

The Spreadsheet to FitNesse button is used in the examples in this
chapter to convert tables on the clipboard into FitNesse tests. It was
originally included to allow non-technical people such as clients
and business analysts to write tests without learning wiki markup
syntax; they tend to appreciate the option to write tests in Excel or
Word. You can just copy tables from Excel and paste them into the
FitNesse page editor (or, even better, get business analysts to do
this) and click that magic button to get an instant test. To edit a test
in Excel, first click FitNesse to Spreadsheet to convert pipes into
tabs, then copy the content back into Excel and fire away.

162

Testing legacy code

Use show and check with FitLibrary

FitLibrary fixtures (DoFixture and SequenceFixture) do not handle blank
cells like basic FIT fixtures. Trying to compare with a blank string will
probably cause an “Input string was not in correct format” error. However,
creating a snapshot of the current functionality with FitLibrary classes is
not much harder than with FIT fixtures. First use the show keyword in the
test, run it to display the actual results of test methods, then copy the
results into any text editor (Notepad will do just fine). Replace show with
check. Then just convert the result into a a test table with Spreadsheet to
FitNesse.

Although you don't need to use the check keyword to test boolean methods
with DoFixture and SequenceFixture (see section “Use DoFixture keywords
for better control” on page 73), you do need the show/check combination
to snapshot the functionality correctly. Using these keywords makes
FitNesse explicitly display the result instead of just checking whether it
is true.

Wrap existing objects for tests

FitNesse allows us to use existing business objects straightaway with
fixtures. Using ready-made objects can save a lot of time and effort when
testing an existing code base. We can use GetTargetOject to wrap a business
interface with basic FIT fixtures (see section “Use data-transfer objects
directly” on page 59), or use mySystemUnderTest to do the same with FIT
library fixtures (see section “Wrapping business objects with DoFixture”
on page 101). You can then use the methods and properties of business
objects directly in your test tables. SequenceFixture is perhaps the best
choice for wrapping service classes, and ColumnFixture would probably be
the best for data-oriented classes. Of course, mix this with automatic array
and list conversion into ArrayFixture to get the best results (see section
“Testing lists of objects” on page 104).

163

Use show and check with FitLibrary

Don't reimplement business interfaces

When covering legacy code with FitNesse tests, watch out for fixtures
that reimplement your business interfaces (especially data-transfer
interfaces) and always refactor them to wrap around appropriate
default implementations (see section “Use data-transfer objects
directly” on page 59). You might be able to drop most fixture
methods completely and use automatic method wrapping with
DoFixture and SequenceFixture (see section “Wrapping business objects
with DoFixture” on page 101 and tip “Can I use flow mode without
weird method names?” on page 98). Also see section “Avoid
conversions by supporting custom data types” on page 186 for further
ideas on how to reduce the amount of your fixture code.

Treat fixtures like the rest of your code and fight against unnecessary
duplication. Having ten additional fields and methods in a fixture
only makes it harder to maintain. If the fixture just acts as a wrapper
over the business class, the code is much easier to maintain.

Use ArrayFixture and RowFixture to capture data batches

To snapshot data batches with ArrayFixture and RowFixture, write tests
without putting in any expected results. You still have to set up the object
structure in the second row (see section “Use RowFixture for better preci-
sion” on page 111). Run the test to make it fail; FitNesse prints the current
results of test methods as surplus rows. Just copy the results into a text
editor and remove the surplus keyword (by globally replacing it with an
empty string). Then copy the new table into the page, again using
Spreadsheet to FitNesse to convert it into a test automatically.

Remember that the order of elements is important with ArrayFixture. If
the order can change, for example if data is read from a database without
the order by clause, it is better to use RowFixture or SetFixture instead (see
sidebar “Beware of unstable tests” on page 165).

164

Testing legacy code

Beware of unstable tests

Tests that pass under some circumstances and fail under others
cause more harm than good. You really don't want to spend time
reading the code and test pages to check whether a test failed because
there really was a bug, or because it was raining outside. Avoid
writing such tests. When you spot such behaviour, change the tests
straight away to be deterministic and reliable or delete them.

Fight against entropy in tests regardless of where it comes from. If
the order of elements can change, do not use ArrayFixture but
RowFixture or SetFixture, because they ignore element order. A
different example of entropy is the false alarm you can get from a
continuous integration server when FitNesse freezes. This is why
we added a service restart before tests in section “Integrating FitNesse
with CruiseControl.NET” on page 129, to make test runs more reli-
able.

Take particular care with tests that depend on the order of execution
in a test suite. Although tables on a single page are executed in
sequence, there is no guaranteed order for a number of pages in a
suite. Move inter-page dependencies into a common setup. This
enables you to run tests individually and protect against changes in
future FitNesse implementations.

Using existing forms for regression tables

If you already have correct outputs of the business process in forms that
can be easily converted to HTML tables, you can use them as FitNesse
tests almost straight away. Common examples are MS Word invoices and
Excel calculations. You can copy HTML code directly into FitNesse pages
(enclose it within !- and -! to prevent wiki formatting). Alternatively,
you can use the Spreadsheet to FitNesse button to create test tables from
old forms in tab-separated format.

Here is a simple example: we want to use an old invoice (Figure 13.1) as
a regression test for calculating tax. To connect the invoice to our business

165

Using existing forms for regression tables

code, we can use TableFixture, a fixture class for testing free-form tables.
Note that it is in the fitnesse.fixtures namespace, not in fit or fitlibrary
like all the classes we have seen so far. To use a TableFixture, we need to
implement the DoStaticTable(int rows) method and process our table
there. We can get a string or integer in any cell using GetString(int row,
int column) and GetInt(int row, int column). Tests that pass should be
marked by calling the Right(int row, int column) method and tests that
fail should be marked by calling Wrong(int row, int column, string actu-
alValue).

Figure 13.1. We can turn this invoice into a FitNesse test

PriceProduct codeItem
34.03B978-0201616224Pragmatic Programmer
94.80ERDR-GX330Sony RDR-GX330
32.39B978-0321146533Test Driven Develop-

ment By Example
161.22Net Total
9.48Tax (10% on applicable

items)
170.70Total

We are interested only in the final tax calculation, so we just disregard
the rest of the table. Let's check whether the value in the second row from
the bottom matches what our tax calculator works out based on the rows
in the middle.

For full code, see extended/Invoice.cs on page 233

15 public class Invoice:fitnesse.fixtures.TableFixture
16 {
17 protected override void DoStaticTable(int rows)
18 {
19 TaxCalculator tc=new TaxCalculator();
20 decimal totaltax = 0;
21 for (int row = 1; row < rows - 3; row++)
22 {
23 totaltax += tc.GetTax(GetString(row, 1),

166

Testing legacy code

24 Decimal.Parse(GetString(row, 2)));
25 }
26 decimal taxintable = Decimal.Parse(GetString(rows - 2, 2));
27 if (taxintable == totaltax)
28 Right(rows - 2, 2);
29 else
30 Wrong(rows - 2, 2, totaltax.ToString());
31 }
32 }

The cell that holds the calculated tax (third cell in the second row from
below) is used as a test, while the others are ignored. We can use the
invoice table to run the test (see Figure 13.2).

Figure 13.2. We can test free-form tables with TableFixture

167

Using existing forms for regression tables

Stuff to remember

• The first step when dealing with legacy code is to cover it
with tests.

• FitNesse enables you to build regression tests for current
functionality quickly.

• Basic FIT fixtures show the current result when the cell is
blank.

• Results can be quickly converted to tests with Spreadsheet
to FitNesse.

• Show and check keywords must be used with DoFixture to
snapshot functionality.

• FitNesse can also take plain HTML tables as tests.
• TableFixture is used to test free-form tables.

168

Testing legacy code

Chapter 14.

Using business domain
objects directly

DoFixture in Java FitLibrary introduced a concept of the system under test,
which was extended and expanded in the .NET version of FIT. Since
release 1.7 of the old FitNesse.NET runner, almost all fixtures support
this feature, which was kept in FitSharp. System under test defines a target
object for a fixture, which will be used to execute table cell operations if
no matching method, field or property exists on the fixture itself. This
allows us to use composition rather than inheritance to execute FitNesse
tables. It also allows us to directly use anything that already exists on a
business domain object without replicating it in a fixture or wrapping it
into a fixture method. This allows our fixtures to be very thin, effectively
focused only on test-specific code. It also promotes consistent use of
business domain names, as it makes us give business domain object fields
and methods the names that are used in the acceptance tests.

System under test with ColumnFixtures

Use the SetSystemUnderTest method to set the system under test for a fixture.
For example, we can create a simple column fixture that forwards all cell
operations to a domain object:

For full code, see domain/SystemUnderTestColumnFixture.cs on page 231

7 public class LinkValidityCheck:fit.ColumnFixture
8 {
9 public LinkValidityCheck()
10 {
11 SetSystemUnderTest(new Link());
12 }
13 public String comment;
14 }

We can now use all methods, properties and fields of the Link class directly
in the FitNesse page:

169

For full code, see DomainWrapper.SystemUnderTestColumnFixture on
page 238

1 |import|
2 |info.fitnesse.sut|
3
4 Link validity check
5
6 Valid links have to contain a URL and a name, and the URL must contain
the sequence ://
7
8 Examples
9
10 !|Link validity check|
11 |name|url|valid?|comment|
12 |google|http://www.google.com|true|both set, correct|
13 |blank|http://www.google.com|false|name not set|
14 |google|blank|false|url not set|
15 |google|www.google.com|false|url not in correct format|
16

Changing the system under test

Unlike objects created with compile-time class extension, composed
objects can be changed at runtime. This means that we can use the
SetSystemUnderTest method to change the system under test for a fixture
at any time. This allows us to work even more efficiently with FitNesse
tables, mixing the functionality to select or create a domain objects with
operations on that object in the same table. For example, a fixture that
creates new links can set a new, clean Link as the system under test for
every row and all column operations will execute directly on that new
object. Any methods that exist on a fixture will have precedence over
system under test methods, so we can add a method that saves that new
link directly to the fixture. The resulting FitNesse table could look similar
to the following:

170

Using business domain objects directly

For full code, see DomainWrapper.AlternatingSystemUnderTest on page
237

3 !|Define Links|
4 |Name|Url|Id?|
5 |Google|http://www.google.com|>>google|
6 |Yahoo|http://www.yahoo.com|>>yahoo|
7 |Microsoft|http://www.microsoft.com|>>msft|

All we need to do to implement the fixture for this table is to create the
Id getter which saves the current object. We also create a new clean Link
object for every row in the Reset method which gets called before each
row is processed.

For full code, see domain/AlternatingSUT.cs on page 227

9 public class LinkInsertFixture : ColumnFixture
10 {
11 private ILinkRepository repo;
12 Link l;
13 public LinkInsertFixture(ILinkRepository repo)
14 {
15 this.repo = repo;
16 }
17 public int Id
18 {
19 get
20 {
21 return repo.Save(l);
22 }
23 }
24 public override void Reset()
25 {
26 l = new Link(); SetSystemUnderTest(l);
27 }
28
29 }

This is a very useful trick because it allows us to add fields and methods
to domain objects and use them in FitNesse pages without changing the
fixture.

A similar use case for changing the system under test is to get a domain
object from some persistent repository for every row. For example, if we

171

Changing the system under test

are inspecting only a small subset of link objects, there is no reason to
load the whole collection from the database (that might not even be
possible). Instead, we can use the first column of the fixture to load the
appropriate Link and set it as the system under test. All remaining columns
will be directly executed using that Link object.

For full code, see DomainWrapper.AlternatingSystemUnderTest on page
237

8 !|Check Links|
9 |Id|Name?|Url?|
10 |<<google|Google|http://www.google.com|

In this case, we define the setter for the Id property in the fixture, which
will load and set the system under test.

For full code, see domain/AlternatingSUT.cs on page 227

30 public class LinkCheckFixture : ColumnFixture
31 {
32 private ILinkRepository repo;
33 public LinkCheckFixture(ILinkRepository repo)
34 {
35 this.repo = repo;
36 }
37 public int Id
38 {
39 set
40 {
41 SetSystemUnderTest(repo.FindById(value));
42 }
43 }
44 }

Using collections directly

Collections are automatically wrapped into ArrayFixture with DoFixture
and other fixtures in flow mode. If we don't mind actually using the entire
collection returned by a repository method, we can reduce the fixture
code even more. For example, our Link repository might have a FindAll
method.

172

Using business domain objects directly

For full code, see domain/Domain.cs on page 229

31 public interface ILinkRepository
32 {
33 Link FindById(int id);
34 IEnumerable<Link> FindAll();
35 int Save(Link l);
36
37 }

When the page is in flow mode, we can just set the entire repository to be
the system under test and use that method directly without writing any
fixtures. The collection will be wrapped into an ArrayFixture automatically.

For full code, see domain/FlowCollections.cs on page 230

31 public class FlowSystemUnderTest : DoFixture
32 {
33 private ILinkRepository repo = new MemoryLinkRepository();
34 public Fixture DefineLinks()
35 {
36 return new LinkSetupFixture(repo);
37 }
38 public FlowSystemUnderTest()
39 {
40 SetSystemUnderTest(repo);
41 }
42 }
43 public class WithSystemUnderTest : DoFixture
44 {
45 public Fixture DefineLinks()
46 {
47 return new LinkSetupFixture((ILinkRepository)
this.mySystemUnderTest);
48 }
49 }
50 }

The only thing that changes in the test page is the name of the table used
to list links. In this case, it has to match the method name of the repository.

173

Using collections directly

For full code, see DomainWrapper.SystemUnderTest on page 238

1 !|info.fitnesse.FlowSystemUnderTest|
2
3 !|Define Links|
4 |Name|Url|
5 |Google|http://www.google.com|
6 |Yahoo|http://www.yahoo.com|
7
8
9 !|Find All|
10 |Name|Url|
11 |Google|http://www.google.com|
12 |Yahoo|http://www.yahoo.com|

Setting the system under test from FitNesse

With FitSharp, you can also set the system under test directly from the
FitNesse test page, using the With keyword. For example, the following
page does that:

For full code, see DomainWrapper.WithSystemUnderTest on page 239

1 !|info.fitnesse.WithSystemUnderTest|
2
3 !|with|new|info.fitnesse.MemoryLinkRepository|
4
5 !|Define Links|
6 |Name|Url|
7 |Google|http://www.google.com|
8 |Yahoo|http://www.yahoo.com|
9
10 !|Find All|
11 |Name|Url|
12 |Google|http://www.google.com|
13 |Yahoo|http://www.yahoo.com|

Now we can reduce the fixture code even more, removing the method to
set the system under test:

For full code, see domain/FlowCollections.cs on page 230

43 public class WithSystemUnderTest : DoFixture
44 {

174

Using business domain objects directly

45 public Fixture DefineLinks()
46 {
47 return new LinkSetupFixture((ILinkRepository)
this.mySystemUnderTest);
48 }
49 }

Using named fixtures

Two additional keywords allow us to take this approach even further. Name
keyword can be used in combination with the With keyword to instantiate
several target objects and give them meaningful names, effectively creating
variables in the test page. In the FitSharp language, these are called Named
Fixtures. We can then set any of the named fixtures as our system under
test with the Use keyword and operate on them using other flow keywords
such as Check or Show (see the section “Use DoFixture keywords for better
control” on page 73).

For full code, see DomainWrapper.NamingSystemUnderTests on page 238

1 !*> setup
2 !|info.fitnesse.AutomaticDomainObjectWrapping|
3
4 |import|
5 |info.fitnesse|
6
7 !|name|google|with|new|Link|Google|http://www.google.com|
8
9 !|name|yahoo|with|new|Link|Yahoo|http://www.yahoo.com|
10
11 *!
12
13 |use|google|
14 |check|valid|true|
15
16 |use|yahoo|
17 |check|valid|true|

Don't go too far

FitSharp flow keywords, named fixtures and system under test function-
ality allow us to efficiently reuse domain objects and reduce the fixture
code significantly. Note, however, that it is easy to go too far with this

175

Using named fixtures

and start programming test-specific functionality in test pages for the
sake of reducing fixture code. I think that this is wrong and that FitNesse
pages should work more as specifications than scripts. You shouldn't
sacrifice clarity in order to not have five more lines of code. Test specific
functionality and coordination should stay in fixtures, that is where it
belongs. Describing how a test is executed rather than what is being tested
is one of the most common reasons why teams fail to get the full benefits
of FitNesse. I wrote a lot more on this subject in Bridging the Communic-
ation Gap [1].

176

Using business domain objects directly

Chapter 15.

Tips and tricks
Understanding what really happens during a test allows you to customise
FIT and FitNesse to your particular project needs and troubleshoot tests.
Now that we've learnt how to use FitNesse, we take a peek under the hood
and examine how the FIT engine really works and look at some more
advanced usages of FitSharp.

What really happens during a test?

FitNesse is just a user interface to FIT. It prepares test pages by converting
wiki syntax to HTML, but it does not execute tests internally. Instead, it
calls an external FIT runner to execute the tests. FitNesse starts a Java
FIT runner by default, but we can change this by modifying the TEST_RUNNER
variable. (We did this in section “How FitNesse connects to .NET classes”
on page 22: we changed the runner to dotnet2\Runner.exe.) In a .NET
environment, FitNesse starts an external Runner.exe process and passes
the runner class name, test name and FitNesse port as parameters. The
Runner process then connects to FitNesse, downloads the page and
executes tests. The results are passed back to FitNesse, which displays
them to the user. This is why, when tests are hanging and locking
resources, you should look for Runner.exe processes to kill rather than
stopping the Java process that runs FitNesse.

There are a few other test runners classes that you can use. In Chapter 10,
Working in a team, we used TestRunner to execute tests from a NAnt script.
You can also use FolderRunner to execute tests from HTML files stored on
disk (see http://www.syterra.com/Fit/UsingFitnesse.html).

The parse tree

The test runner first breaks the page into HTML tables, then analyses the
tables and creates a parse tree. A parse tree is a dynamic representation
of the test tables. As the tests are executed, fixtures modify the tree by
adding comments (“expected something, actual something else”) or creating

177

http://www.syterra.com/Fit/UsingFitnesse.html

completely new cells (surplus elements in a RowFixture query). At the end
of the tests, FitNesse uses the tree contents to display the results.

Important

You can see the full source code for all FitSharp classes
described in this chapter on http://github.com/jedi-
whale/fitsharp

Parse tree elements are instances of the Parse class. These elements build
a tree by creating linked lists with two properties: More and Parts. More
points to the next element on the same level of the hierarchy and Parts
points to the first child element. The Tag property contains the HTML tag
name, for example table, tr and td. The Body property contains the cell
content for td tags, and is typically empty for all other tags. The parse tree
for the table from Figure 2.2 is shown in Figure 15.1 .

Figure 15.1. Typical table parse tree

178

Tips and tricks

http://github.com/jediwhale/fitsharp
http://github.com/jediwhale/fitsharp

Executing tables

The Fixture class is the main workflow controller and coordinator for
tests. It also defines the standard interface for test classes and provides
default method implementations. In order to enable subclasses to adjust
the test execution, this class contains a lot of virtual methods. Fixtures
can implement their own table format and test workflow by overriding
these methods.

After the test runner has created the parse tree, an instance of the Fixture
class is created and the tree is passed to its DoTables method. The main
Fixture then takes the class name from the first cell in the first table and
creates an instance of this class. The ProcessTables method of this instance
is then called, and the whole parse tree is passed to it. Instantiating another
Fixture and then passing the whole tree may seem a bit weird, but this is
how DoFixture and similar flow-mode FitLibrary fixtures take over page
processing.

In the default implementation, which most fixtures do not override,
ProcessTables just iterates over tables (first level of the tree). Each table is
processed by loading the class name from the first cell, instantiating the
class, loading arguments from the remaining cells in the first row and
calling the DoTable method of the new fixture. The appropriate table subtree
is passed to this DoTable method.

Note that arguments are not passed to the constructor, so they have to be
loaded after the instantiation. If you create your own Fixture subclass,
remember that fixture arguments are not accessible to the class constructor
so you have to check for them later. DoTable is a good candidate for this.

FitLibrary fixtures turn on flow mode (see section “Embed fixtures for
best results” on page 92) by overriding ProcessTables and then processing
the rest of the page as a single big table.

The default implementation of the DoTable method calls the DoRows method,
passing the pointer to the second table row (so DoRows does not receive the
first row with fixture type and arguments). The default DoRows implement-
ation iterates through child elements of the parse subtree, which represent
table rows, and calls DoRow for each one of them. The default DoRow calls

179

Executing tables

the DoCells method, and this iterates through cells and calls DoCell for
each one of them. DoCells also checks whether there was an exception
during cell processing or not. Exceptions are recorded in the parse tree
by calling the Exception method. By default, DoCell just marks the cell as
ignored, by calling the Ignore method.

As you can see, there are quite a few opportunities for subfixtures to take
over and implement their particular test workflow. This is why FIT and
FitNesse are so flexible.

In addition to Exception and Ignore, there are two more methods that can
be called to mark part of a parse tree: Right should be called if a test
succeeds, and Wrong should be called if a test fails, optionally passing the
actual results, so that they can be displayed.

Binding columns to class members

Let's examine one use case in a bit more detail. ColumnFixture is a general
purpose testing class, which we introduced in Chapter 2, Installing
FitNesse, and explained in more detail in Chapter 4, Writing basic tests.
It uses the second table row to map columns to properties, methods and
fields. The other rows are used as test inputs and expected results. Several
other classes, including RowFixture, also use the header row to map test
object properties to columns. This common functionality that binds
columns to object properties is encapsulated into a common superclass,
BoundFixture .

BoundFixture provides a way to bind columns to class members and over-
rides DoCell to execute the appropriate cell operation. It does not specify
how the columns are bound to fields, but expects subclasses to fill in the
required mapping. BoundFixture also overrides DoRow in order to provide
one more extension point: Reset. This method is called before each row
is processed, allowing subclasses to clear temporary data before the next
test execution.

ColumnFixture takes over after the first table row is processed, so it overrides
the DoRows method. It uses the current row (second row in the table) to
bind columns to properties of the target class and then calls the BoundFix-
ture DoRows method. However, it passes the next row (third one in the

180

Tips and tricks

table) as the argument. From this point on, the method DoCell method of
BoundFixture is called for each cell, and it either puts in data to set up tests
or compares expected and actual values to verify results.

Cell operators

Fixtures use cell operators to access target class properties, methods and
fields. This is where symbols (see section “Use symbols to pass dynamic
information” on page 55) and keywords like exception or blank (see section
“Checking for errors” on page 62 and sidebar “Fixture keywords” on page
63) come into play.

fit.Service.Service class has a static list of cell operators. In order to
execute a cell operation, the test runner examines the list and asks operat-
ors whether they match cell content and data type. The first matching
handler is used to execute the cell. For example, ParseSymbol matches cells
starting with << and ExecuteException matches cells with the exception
keyword.

You can load and unload operators dynamically to change the way cells
are processed (see section “Load non-standard cell operators for simpler
comparisons” on page 183).

Because FitLibrary classes do not use CellOperation handlers by default,
these features are not available in DoFixture and similar classes unless you
specifically ask for them.

Handling data types

By default, FitSharp looks for a public static Parse method in the target
class and uses it to perform the conversion from a string in test tables to
a typed .NET value. It also handles arrays of objects by splitting the
comma-separated contents into individual objects and then calling the
Parse method to process them.

So all you need to do to make FitNesse understand your new data type as
a cell value is implement a public static Parse(String value) method on it.
Of course, making ToString an inverse operation will simplify
troubleshooting and make reports nicer.

181

Cell operators

Attaching the Visual Studio debugger

Although spending less time in the debugger is one of the greatest benefits
of automated tests, sometimes you'll have to troubleshoot problems with
your fixtures, especially while you're learning how to use FitNesse.
Attaching the Visual Studio debugger to the FitNesse process might seem
like an obvious solution, but it does not do the trick. FitNesse executes
tests by starting an external program (Runner.exe), which vanishes after
the test, so you will not be able to find it in the list of active processes or
connect to it. Instead, you can use TestRunner test runner class, which
we used for NAnt integration in section “Running tests with NAnt” on
page 128.

Open project properties in Visual Studio, go to the debug tab, and choose
“start external program” as the start action. Select your main FitNesse
folder as the working directory and specify the server name, port and test
name as command line arguments. An example of the debug configuration
is shown on Figure 15.2 . Then start the tests in the debugger normally,
by pressing F5. You can use breakpoints, watches and other Visual Studio
debugger features to inspect your test fixtures at run time. Using the main
FitNesse folder as the working directory for debugging makes sure that
all the relative paths in the tests keep working correctly. Visual Studio
can pick up fixture DLLs even if you move them to a deployment folder,
as suggested in section “Organising the files” on page 123, but make sure
that you also copy the debug information files (pdb).

When in doubt, just print to the console

When you just want to see what's going on quickly, instead of loading the
project in the debugger, write to the console as you would do in any .NET
console application. FitNesse captures the output and displays an “Output
Captured” icon in the top left corner of the test results. Click the icon to
view everything that your test classes wrote during tests.

182

Tips and tricks

Figure 15.2. Use TestRunner to debug tests

Load non-standard cell operators for simpler comparisons

Basic FIT fixtures use cell operators to understand what you write in table
cells. For example, the default cell operator just interprets the data literally,
but the symbol parsing operator looks up the symbol value and uses this
instead of the cell contents.

Non-standard cell operators allow you to write comparisons more easily.
For example, sometimes you don't care about the whole string, but just
want to check the last few characters. CompareEndsWith allows you to specify
the expected results by prefixing the ending with two dots.

CompareEndsWith is not in the list of default operators, so it must be loaded
manually. To load a non-standard operator, create a ConfigurationSetup
table. Add a row with just the keyword Service and then rows with the
keywords add operator in the first cell and the class name in second cell.
Here is an example:

!|configuration setup|
|service|
|add operator|CompareEndsWith|

183

Load non-standard cell operators for simpler comparisons

|String Fixture|
field	field?
Ford Prefect	..ect
Marvin	..vin

Non-standard operators have to be loaded on demand because they can
alter the expected behaviour of other functions. When CompareEndsWith is
active, two dots at the beginning of a string have a special meaning and
they are no longer interpreted literally. To avoid problems, you might
want to unload non-standard operators when the test is over. To do this,
use the remove operator keywords in the ConfigurationSetup

Here are some other interesting non-standard cell operators you can use:

CompareIntegralRange Checks if a number is in a numeric
interval given as min..max

CompareStartsWith similar to CompareEndsWith, but checks for
strings from the left; the syntax is
substring..

CompareSubstring Checks for substrings anywere; allowed
syntax is ..substring, substring.. or
..substring..

Simplify verifications with a custom cell operator

Fixtures from the basic FIT package use cell operators to understand the
contents of table cells. By implementing a custom operator, you can teach
FitNesse how to understand new forms of expressions or different formats
for data types where you cannot change the Parse method. For example,
let's teach FitNesse to understand decimal currency values with a $ prefix.

We'll create a class which extends CellOperator and ParseOperator and
implement methods CanParse (should our handler be used?) and Parse (does
the actual result match expected?). Cell operators are selected based on
cell data type and content. Our operator will act on decimal types when
the cell content starts with a dollar sign.

184

Tips and tricks

For full code, see extended/CurrencyParser.cs on page 232

1 ï»¿using fitSharp.Fit.Operators;
2 using fitSharp.Machine.Engine;
3 using fitSharp.Fit.Model;
4 using fitSharp.Machine.Model;
5 using System;
6
7 namespace extended
8 {
9 public class CurrencyParser: CellOperator, ParseOperator<Cell>
10 {
11
12 public bool CanParse(Type type, TypedValue instance, Tree<Cell>
parameters)
13 {
14 return type == typeof(decimal) &&
parameters.Value.Text.StartsWith("$");
15 }
16
17 public TypedValue Parse(Type type, TypedValue instance, Tree<Cell>
 parameters)
18 {
19 return new TypedValue
(Decimal.Parse(parameters.Value.Text.Substring(1)));
20 }
21 }
22 }

We can now use expressions such as $44 directly from the tables.
Remember that you have to load non-standard operators explicitly.

FitNesse also uses cell handlers to understand keywords like null and
blank. If it makes sense to introduce new domain-specific keywords for
your project, you can write cell operators so that FitNesse can understand
them.

This technique can also be used to make tables more customer-friendly.
In section “Customer-friendly table” on page 50 we implemented a test
that looked almost exactly like a part of the customer requirements
specification. The only thing missing was the currency symbol, which we
added in this example.

185

Simplify verifications with a custom cell operator

Figure 15.3. A custom cell operator can simplify comparisons

Avoid conversions by supporting custom data types

DoFixture and SequenceFixture allow you to call business domain methods
directly from tables (see section “Wrapping business objects with DoFix-
ture” on page 101 and tip “Can I use flow mode without weird method
names?” on page 98) without re-implementing these methods in the
fixture. This significantly shortens the effort required to write and
maintain tests. However, methods from business classes often handle
other business objects, not just basic .NET types. In the second part of
the book, we often use a username as a parameter of fixture methods and
look for matching Player objects in the fixture code. If our fixture methods
mostly convert table contents into business types, we can often simplify
the code significantly by telling FitNesse how to create business objects
directly. Instead of looking for the Player object every time, a fixture can
receive it from the framework. We just need to provide a public static
method Parse(String value) that converts strings into our business objects
and override ToString and Equals methods to provide consistent conversion
to and from strings. FitNesse can then create our business objects on the
fly and pass them to methods directly.

Obviously, this cannot be done if the business method arguments are
specified by interface, not by class.

186

Tips and tricks

What if Parse is not available?

If you want to tell FitNesse how to use a third-party or system
object, where you cannot add a Parse method, then you can
implement a custom cell handler to provide the conversion.

Implement domain-specific tests using custom fixtures

Most of the time you can extend one of the standard fixtures to define
the test workflow, such as ColumnFixture or DoFixture. However, if you find
that no existing fixture covers exactly what you need, you might want to
implement a completely new table type and use this to describe your
domain tests.

For tables without a repetitive structure, extending TableFixture is probably
the best solution (see section “Using existing forms for regression tables”
on page 165). For tables with a clearly repetitive form, it can be more
efficient to extend Fixture and just hook in somewhere during the
processing, depending on what you want to take over. For processing
before the first data row gets executed (for example, connecting to a
database specified in Fixture arguments), override DoRows and set up the
environment before passing control to the DoRows method of the base class.
If you want to process the entire row as a batch, instead of processing
individual cells, then override DoRow.

Generally, try to reuse as much as you can. If columns map to object
methods and fields in some way, extend BoundFixture (see section “Binding
columns to class members” on page 180) and implement the correct
binding. Try to reuse the cell handler mechanism, so that symbols and
keywords work automatically for your fixture.

To iterate through a list of Parse objects, use the More property. Here is an
example from Fixture source code:

1 private void AddRowToTable(Parse cells, Parse rows)
2 {

187

Implement domain-specific tests using custom fixtures

3 rows.Last.More = new Parse("tr", null, cells, null);
4 }

Use the Parts property to traverse child elements of rows or tables.
Although the property is called Parts, it actually points to the first child
element, that is, the first cell in the row, not to a list of cells.

1 public virtual void DoRow(Parse row)
2 {
3 DoCells(row.Parts);
4 }

Tables are represented by linked lists that can change during the test. For
example, by changing the value of the More property, you can dynamically
append cells and rows to the table during the test. Here is how RowFixture
adds surplus rows:

1 private void AddRowToTable(Parse cells, Parse rows)
2 {
3 rows.Last.More = new Parse("tr", null, cells, null);
4 }

Use the methods Right(Parse p) and Wrong(Parse p, String actualValue) to
mark parts of the table as correct or wrong. You can use the Exception
(Parse cell, Exception exception) method to signal an exception during
processing. Exceptions are handled automatically if you reuse DoCell.

To read cell contents, use the Parse.Text property rather than Parse.Body,
as this will strip all HTML tags and give you a pure string. To modify a
cell, call Parse.AddToBody. This is how the symbol recall cell handler displays
the current symbol value during processing. Consider using Fixture.Gray
to format notes and annotations or Fixture.Label to format important
messages, to keep your code consistent with other fixtures. For example,
here is how RowFixture marks a row as missing:

1 private void MarkRowAsMissing(Parse row)
2 {
3 Parse cell = row.Parts;
4 cell.AddToBody(Label("missing"));

188

Tips and tricks

5 Wrong(cell);
6 }

Stuff to remember

• When tests are hanging and locking resources, you should
look for FitServer.exe processes to kill rather than stopping
the Java process that runs FitNesse.

• The parse tree represents the test script in memory. Fixtures
modify it to display results.

• The Fixture class is the main workflow controller and
coordinator for tests.

• Fixture arguments are not accessible to the class constructor
so you have to check for them later.

• Symbols and keywords are handled by CellOperation hand-
lers.

• The Accessor interface provides an abstraction that allows
us to use methods, interfaces and properties in the same
way.

• Most fixtures use the TypeAdapter to convert cell contents
into objects. This class looks for a public static Parse method
to perform the conversion.

• Use Runner.exe to debug fixtures from Visual Studio.

189

Implement domain-specific tests using custom fixtures

190

Part IV. Appendices

Appendix A.

Formatting text
FitNesse is a wiki, a relatively free-form content management system that
allows users to build pages and link them together. Instead of using HTML
directly, wikis use a special mark-up syntax. Here is a short summary of
the markup symbols:

EffectMarkup
Apply Heading 1 style to the rest of the line!1
Apply Heading 2 style to the rest of the line!2
Apply Heading 3 style to the rest of the line!3
Align to centre!c
Horizontal line (four or more dashes)----
Display image from the URL url!img url
Display image, left aligned!img-l url
Display image, right aligned!img-r url
Bold (three single quotes enclosing text on each
side).

'''text'''

Italics (two single quotes enclosing text on each
side).

''text''

Comment – ignore the rest of the line#
Include another page as a component!include Page Link
Include another page with the block collapsed by
default

!include -c Page Link

Collapsible block, open by default!* Block name
block content

*!
Collapsible block, closed by default (note > after
the * in the first line)

!*> Block name
block content

*!

193

Show links to all subpages!contents
Show links to all subpages and their subpages
(recursively)

!contents -R

Explicit link: can be used to create links that
FitNesse does not recognise (if the word is not in

[[label][url]]

CamelCase), or to change the default label for the
link.
Link to the top level page (prefixed by a dot).PageName
Link to the parent-level page (< in front)<PageName
Link to the child-level page (> in front)>PageName
Preformatted text (does not prevent formatting
links and special characters)

{{{
block content

}}}
No formatting (can be inline or multi-line).
Prevents all formatting. Can be used to include

!-
block content

HTML code or put multi-line content into table
cells.

-!

See http://FitNesse.org/FitNesse.UserGuide.MarkupLanguageReference
for more detailed reference information on the wiki markup language of
FitNesse.

194

Formatting text

http://FitNesse.org/FitNesse.UserGuide.MarkupLanguageReference

Appendix B.

Test smells
Here is a brief summary of things you should watch out for in your tests,
and ideas on how to fix them. Use this page as a check list to see whether
it is time to do some housekeeping on your FitNesse pages.

• Repetitive values in table cells, especially if the whole column is the
same. See section “Replace repetitive values with arguments” on page
48.

• Lot of similar tests with minor differences in workflow. See side-
bar “Don't test workflow, get to business rules” on page 87.

• Test pages containing complex tables that are not really important for
the particular test (often just used to set up the stage for the test, and
copied from an different test page). See section “Remove irrelevant
information” on page 86.

• Tests that don't belong to a test suite but have the same setup as other
tests. See section “Group related tests into test suites” on page 79.

• Parts of test pages or even complete pages used as setup for other tests.
Tests that are extensions of other tests. See section “Beware of test
extensions” on page 109.

• Fixtures implementing a business interface or providing setters and
getters to properties of a complex business object. See sidebar “Don't
reimplement business interfaces” on page 164.

• Tests that reflect the way code was written (you can spot them by
looking if tables are too detailed or step-oriented when they should
really be focused on higher-level activities). See tip “Think about the
intention, not the implementation” on page 33.

• Test suites with a mix of quick and slow tests. See section “Don't mix
quick and slow tests” on page 124.

• Tests that fail intermittently even though you haven't changed the code
(especially those that depend on external systems, or on the order of
execution). See sidebar “Beware of unstable tests” on page 165.

195

• Fixture methods that mostly deal with conversion from table content
into business types. See section “Avoid conversions by supporting custom
data types” on page 186.

196

Test smells

Appendix C.

Resources
Here are some books and online resources that you will find of interest.

Books

[1] Gojko Adzic. Copyright © 2009. Neuri Ltd. Bridging the Communica-
tion Gap: Specification by Example and Agile Acceptance Testing.
0955683610.

[2] Kent Beck. Copyright © 2000. Addison-Wesley Publishing Company.
Extreme Programming Explained: Embrace Change. 0201616416.

[3] Rick Mugridge and Ward Cunningham. Copyright © 2005. Prentice
Hall PTR. Fit for Developing Software: Framework for Integrated
Tests. 978-0321269348.

[4] Mary Poppendieck and Tom Poppendieck. Copyright © 2006. Addison-
Wesley Publishing Company. Implementing Lean Software
Development: From Concept to Cash. 0321437381.

[5] Kent Beck and Cynthia Andres. Copyright © 2004. Addison-Wesley
Publishing Company. Extreme Programming Explained: Embrace
Change. Second Edition. 0321278658.

[6] Michael Feathers. Copyright © 2004. Prentice Hall. Working Effectively
with Legacy Code. 0131177052.

[7] Martin Fowler. Copyright © 1999. Addison-Wesley Publishing
Company. Refactoring: Improving the Design of Existing Code.
0201485672.

[8] Mike Cohn. Copyright © 2004. Addison-Wesley Professional. User
Stories Applied: For Agile Software Development. 978-0321205681.

197

[9] Shigeo Shingo. Copyright © 1986. Productivity Press. Zero Quality
Control: Source Inspection and the Poka-Yoke System. 0915299070.

[10] Ron Jeffries, Ann Anderson, and Chet Hendrickson. Copyright ©
2002. Addison-Wesley Professional. Extreme Programming
Installed. 0201745763.

Web sites

Main FitNesse site

Contains the official user guide (Java version), full reference of the wiki
mark-up syntax and further examples: http://www.FitNesse.org. Be sure
you view http://FitNesse.org/FitNesse.DotNet.SuiteAcceptanceTests, the
page with online acceptance tests for the .NET implementation. Browse
through it to find new features and find out how to use them.

FitSharp

Mike Stockdale's page on FitSharp development:
http://www.syterra.com/FitSharp.html

FitSharp GIT repository

Browse the latest source code for FitSharp and see how things really work:
http://github.com/jediwhale/fitsharp

FitNesse Yahoo group

Online discussion forum, mailing list and file repository for all things
related to FitNesse: http://tech.groups.yahoo.com/group/fitnesse/. This
is where to ask for help.

FitNesse.Info community site

Community wiki with additional documentation and related projects:
http://fitnesse.info/. Especially see the Fixture Gallery, reference examples
of all important fixtures: http://fitnesse.info/fixturegallery.

198

Resources

http://www.FitNesse.org
http://FitNesse.org/FitNesse.DotNet.SuiteAcceptanceTests
http://www.syterra.com/FitSharp.html
http://github.com/jediwhale/fitsharp
http://tech.groups.yahoo.com/group/fitnesse/
http://fitnesse.info/
http://fitnesse.info/fixturegallery

UK Agile testing community

http://www.agiletesting.org.uk

Acceptance Testing Info portal

http://www.acceptancetesting.info

Examples from Fit for Developing Software [3] ported to .NET

http://www.vlagsma.com/fitnesse/

FitLibrary homepage

http://fitlibrary.sourceforge.net/

FIT web site

Contains additional documentation, FAQ and more examples:
http://fit.c2.com/

Blogs with good articles on FitNesse and FitSharp

The Quest For Software++

my blog: http://gojko.net

Cory Foy

http://www.cornetdesign.com/

The Shade Tree Developer

Jeremy D. Miller: http://codebetter.com/blogs/jeremy.miller/

Ruslan Trifonov

http://xman892.blogspot.com/

199

UK Agile testing community

http://www.agiletesting.org.uk
http://www.acceptancetesting.info
http://www.vlagsma.com/fitnesse/
http://fitlibrary.sourceforge.net/
http://fit.c2.com/
http://gojko.net
http://www.cornetdesign.com/
http://codebetter.com/blogs/jeremy.miller/
http://xman892.blogspot.com/

Google testing blog

http://googletesting.blogspot.com/

Test-obsessed

http://www.testobsessed.com/

Successful Software

James Shore: http://www.jamesshore.com/Blog

Articles

Martin Fowler: Continous Integration

http://www.martinfowler.com/articles/continuousIntegration.html

James Carr: TDD Anti-Patterns

http://blog.james-carr.org/?p=44

Michael Feathers: A Set of Unit Testing Rules

http://www.artima.com/weblogs/viewpost.jsp?thread=126923

Michael Feathers: Working Effectively With Legacy Code

http://www.objectmentor.com/resources/articles/WorkingEffectively-
WithLegacyCode.pdf

John R. Grout, and Brian T. Downs: A Brief Tutorial on Mistake-proofing,
Poka-Yoke, and ZQC

http://csob.berry.edu/faculty/jgrout/tutorial.html

Robert C. Martin: Three rules of TDD

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd:

200

Resources

http://googletesting.blogspot.com/
http://www.testobsessed.com/
http://www.jamesshore.com/Blog
http://www.martinfowler.com/articles/continuousIntegration.html
http://blog.james-carr.org/?p=44
http://www.artima.com/weblogs/viewpost.jsp?thread=126923
http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf
http://www.objectmentor.com/resources/articles/WorkingEffectivelyWithLegacyCode.pdf
http://csob.berry.edu/faculty/jgrout/tutorial.html
http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

Michael Feathers: Pitching a FIT

http://www.artima.com/weblogs/viewpost.jsp?thread=67373

Sean Shubin: Test First Guidelines

http://www.xprogramming.com/xpmag/testFirstGuidelines.htm

Dan North: Introducing Behavour-Driven Development

http://dannorth.net/introducing-bdd/

James Shore: A vision for FIT

http://www.jamesshore.com/Blog/A-Vision-For-Fit.html

James Shore: How I use FIT

http://www.jamesshore.com/Blog/How-I-Use-Fit.html

Steve Donie, Using version control with FitNesse, revisited

http://donie.homeip.net:8080/pebble/Steve/2007/03/02/1172854856750.html

Video presentations and slides

Mary Poppendieck, Competing on the basis of Speed

http://video.google.com/videoplay?docid=-5105910452864283694

Rick Mugridge, Doubling the value of automated tests

http://video.google.co.uk/videoplay?docid=-7227306990557696708 and
http://www.rimuresearch.com/RickMugridgeGoogleConference.pdf

Valtech: FIT/FitNesse - an agile journey

http://www.valtech-tv.com/permalink/2167/fitfitnesse-an-agile-journey-
part-i.aspx and http://www.valtech-tv.com/permalink/2168/fitfitnesse-
an-agile-journey-part-ii.aspx

201

Michael Feathers: Pitching a FIT

http://www.artima.com/weblogs/viewpost.jsp?thread=67373
http://www.xprogramming.com/xpmag/testFirstGuidelines.htm
http://dannorth.net/introducing-bdd/
http://www.jamesshore.com/Blog/A-Vision-For-Fit.html
http://www.jamesshore.com/Blog/How-I-Use-Fit.html
http://donie.homeip.net:8080/pebble/Steve/2007/03/02/1172854856750.html
http://video.google.com/videoplay?docid=-5105910452864283694
http://video.google.co.uk/videoplay?docid=-7227306990557696708
http://www.rimuresearch.com/RickMugridgeGoogleConference.pdf
http://www.valtech-tv.com/permalink/2167/fitfitnesse-an-agile-journey-part-i.aspx
http://www.valtech-tv.com/permalink/2167/fitfitnesse-an-agile-journey-part-i.aspx
http://www.valtech-tv.com/permalink/2168/fitfitnesse-an-agile-journey-part-ii.aspx
http://www.valtech-tv.com/permalink/2168/fitfitnesse-an-agile-journey-part-ii.aspx

Elliotte Rusty Harold, Test driven web applications with FitNesse

http://www.cafeaulait.org/slides/sdbestpractices2006/fitnesse/:

J.B.Rasinberger: Customer Friendly Testing

http://www.diasparsoftware.com/presentations/CustomerFriendlyTest-
ing/www/img0.html:

202

Resources

http://www.cafeaulait.org/slides/sdbestpractices2006/fitnesse/
http://www.diasparsoftware.com/presentations/CustomerFriendlyTesting/www/img0.html
http://www.diasparsoftware.com/presentations/CustomerFriendlyTesting/www/img0.html

Appendix D.

Source code
This appendix contains full source code of all examples used in the book.
We have built some examples gradually throughout the book, so some
files contain several versions of test classes. In those cases, you will see
different stages put into namespaces such as FirstTry, SecondTry etc. You
can also download all these files from http://gojko.net/fitnesse.

C# Classes

HelloWorld/HelloWorld.cs

1 namespace HelloWorld
2 {
3 public class OurFirstTest : fit.ColumnFixture
4 {
5 public string string1;
6 public string string2;
7 public string Concatenate()
8 {
9 return string1 + " " + string2;
10 }
11 }
12 }

SeleniumTest/Console.cs

1 using System;
2 using Selenium;
3 namespace SeleniumTest
4 {
5 class Console
6 {
7 static void Main(string[] args)
8 {
9 ISelenium sel = new DefaultSelenium("localhost",
10 4444, "*iehta", "http://www.google.com");
11 sel.Start();
12 sel.Open("http://www.google.com/");
13 sel.Type("q", "FitNesse");
14 sel.Click("btnG");

203

http://gojko.net/fitnesse

15 sel.WaitForPageToLoad("3000");
16 }
17 }
18 }

Tristan/src/IDraw.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4
5 namespace Tristan
6 {
7 public interface IDraw
8 {
9 DateTime DrawDate { get; }
10 bool IsOpen { get; }
11 decimal TotalPoolSize { get;}
12
13 ITicket[] Tickets { get;}
14 void AddTicket(ITicket ticket);
15 }
16 }

Tristan/src/IDrawManager.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4
5 namespace Tristan
6 {
7 public class DrawNotOpenException : ApplicationException
8 {
9 public DrawNotOpenException()
10 : base("Draw is closed")
11 {
12 }
13 }
14 interface IDrawManager
15 {
16 IDraw GetDraw(DateTime date);
17 IDraw CreateDraw(DateTime drawDate);
18 void PurchaseTicket(DateTime drawDate, int playerId,
19 int[] numbers, decimal value);
20 void SettleDraw(DateTime drawDate, int[] results);

204

Source code

21 decimal OperatorDeductionFactor { get; }
22 List<ITicket> GetOpenTickets(int playerId);
23 List<ITicket> GetTickets(DateTime drawDate, int playerId);
24 }
25 }

Tristan/src/IPlayerInfo.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4
5 namespace Tristan
6 {
7 public interface IPlayerInfo
8 {
9 string Name { get;}
10 string Address { get;}
11 string City { get;}
12 string PostCode { get;}
13 string Country { get;}
14 string Username { get;}
15 decimal Balance { get;}
16 int PlayerId { get;}
17 bool IsVerified { get;}
18 }
19 }

Tristan/src/IPlayerManager.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4
5 namespace Tristan
6 {
7 public class UnknownPlayerException : ApplicationException
8 {
9 public UnknownPlayerException() : base("Unknown user") { }
10 }
11 public class InvalidPasswordException: ApplicationException
12 {
13 public InvalidPasswordException():base("Invalid password"){}
14 }
15 public class DuplicateUsernameException : ApplicationException
16 {

205

Tristan/src/IPlayerInfo.cs

17 public DuplicateUsernameException() : base("Duplicate username") { }
18 }
19 public class NotEnoughFundsException : ApplicationException
20 {
21 public NotEnoughFundsException() : base("Not enough funds") { }
22 }
23 public class TransactionDeclinedException : ApplicationException
24 {
25 public TransactionDeclinedException() : base("Transaction declined")
 { }
26 }
27
28 public interface IPlayerManager
29 {
30 int RegisterPlayer(IPlayerRegistrationInfo p);
31 IPlayerInfo GetPlayer(int id);
32 IPlayerInfo GetPlayer(String username);
33 int LogIn(String username, String password);
34 void AdjustBalance(int playerId, decimal amount);
35 void DepositWithCard(int playerId, String cardNumber,
36 String expiryDate, decimal amount);
37 }
38 }

Tristan/src/IPlayerRegistrationInfo.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4
5 namespace Tristan
6 {
7 public interface IPlayerRegistrationInfo
8 {
9 string Name { get;}
10 string Address { get;}
11 string City { get;}
12 string PostCode { get;}
13 string Country { get;}
14 string Username { get;}
15 string Password { get;}

206

Source code

16 }
17 }

Tristan/src/ITicket.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4
5 namespace Tristan
6 {
7 public interface ITicket
8 {
9 int[] Numbers { get;}
10 IPlayerInfo Holder { get;}
11 decimal Value {get;}
12 bool IsOpen { get;}
13 decimal Winnings { get; }
14 DateTime draw { get; }
15 }
16 }

Tristan/src/InitialWinningsCalculator.cs

1 namespace Tristan
2 {
3 public class WinningsCalculator
4 {
5 public int GetPoolPercentage(int combination)
6 {
7 throw new Exception("Not implemented");
8 }
9 public decimal GetPrizePool(int combination, decimal payoutPool)
10 {
11 throw new Exception("Not implemented");
12 }
13 }
14 }

Tristan/src/WinningsCalculator.cs

1 namespace Tristan
2 {
3 public class WinningsCalculator
4 {

207

Tristan/src/ITicket.cs

5 public int GetPoolPercentage(int combination)
6 {
7 switch(combination) {
8 case 6: return 68;
9 case 5: return 10;
10 case 4: return 10;
11 case 3: return 12;
12 default: return 0;
13 }
14 }
15 public decimal GetPrizePool(int combination, decimal payoutPool)
16 {
17 return payoutPool * GetPoolPercentage(combination) / 100;
18 }
19 }
20 }

Tristan/src/inproc/Draw.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using Tristan;
5 namespace Tristan.inproc
6 {
7 class Draw:IDraw
8 {
9 public Draw(DateTime drawDate)
10 {
11 this._totalSize = 0;
12 this._drawDate = drawDate;
13 this._isOpen = true;
14 this._tickets = new List<ITicket>();
15 }
16 private DateTime _drawDate;
17 public DateTime DrawDate
18 {
19 get { return _drawDate; }
20 }
21 private bool _isOpen;
22 public bool IsOpen
23 {
24 get { return _isOpen; }
25 set { _isOpen = value; }
26 }
27 private decimal _totalSize;
28 public decimal TotalPoolSize

208

Source code

29 {
30 get { return _totalSize; }
31 }
32 private List<ITicket> _tickets;
33 public ITicket[] Tickets
34 {
35 get { return _tickets.ToArray();}
36 }
37 public void AddTicket(ITicket ticket)
38 {
39 _tickets.Add(ticket);
40 _totalSize += ticket.Value;
41 }
42 }
43 }

Tristan/src/inproc/DrawManager.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using Tristan;
5 namespace Tristan.inproc
6 {
7 public class DrawManager : IDrawManager
8 {
9 private Dictionary<DateTime, Draw> _draws=new
Dictionary<DateTime,Draw>();
10 private IPlayerManager _playerManager;
11 public DrawManager(IPlayerManager playerMgr)
12 {
13 this._playerManager = playerMgr;
14 }
15 public IDraw GetDraw(DateTime date)
16 {
17 return _draws[date];
18 }
19 public IDraw CreateDraw(DateTime drawDate)
20 {
21 Draw d = new Draw(drawDate);
22 _draws[drawDate] = d;
23 return d;
24 }
25 public void PurchaseTicket(DateTime drawDate, int playerId, int[]
numbers, decimal value)
26 {
27 if (!_draws.ContainsKey(drawDate))

209

Tristan/src/inproc/DrawManager.cs

28 throw new DrawNotOpenException();
29 Draw d = _draws[drawDate];
30 IPlayerInfo player=_playerManager.GetPlayer(playerId);
31 _playerManager.AdjustBalance(playerId, -1 * value);
32 d.AddTicket(new Ticket(player,drawDate, numbers,value));
33 }
34 private int CountCommonElements(int[] array1, int[] array2)
35 {
36 int common = 0;
37 foreach (int i in array1)
38 foreach (int j in array2)
39 if (i == j) common++;
40 return common;
41 }
42 public void SettleDraw(DateTime drawDate, int[] results)
43 {
44 WinningsCalculator wc = new WinningsCalculator();
45 Draw d = _draws[drawDate];
46 d.IsOpen = false;
47 Dictionary<int, List<Ticket>>
ticketCategories=SplitTicketsIntoCategories(results, d);
48 for (int i = 0; i <= results.Length; i++)
49 {
50 decimal prizePool=wc.GetPrizePool(i, d.TotalPoolSize *
(1-OperatorDeductionFactor));
51 foreach (Ticket t in ticketCategories[i])
52 {
53 t.IsOpen = false;
54 if (prizePool > 0)
55 {
56 decimal totalTicketValue =
GetTotalTicketValue(ticketCategories[i]);
57 t.Winnings = t.Value * prizePool / totalTicketValue;
58 _playerManager.AdjustBalance(t.Holder.PlayerId,
59 t.Winnings);
60 }
61 }
62 }
63 }
64
65 private static decimal GetTotalTicketValue(List<Ticket> tickets)
66 {
67 decimal totalTicketValue = 0;
68 foreach (Ticket t in tickets)
69 totalTicketValue += t.Value;
70 return totalTicketValue;
71 }
72 public decimal OperatorDeductionFactor { get { return 0.5m; } }

210

Source code

73 private Dictionary<int, List<Ticket>> SplitTicketsIntoCategories(int[]
 results, Draw d)
74 {
75 Dictionary<int, List<Ticket>> ticketcategories = new Dictionary<int,
 List<Ticket>>();
76 for (int i = 0; i <= results.Length; i++)
77 ticketcategories[i] = new List<Ticket>();
78 foreach (Ticket t in d.Tickets)
79 {
80 int c = CountCommonElements(t.Numbers, results);
81 ticketcategories[c].Add(t);
82 }
83 return ticketcategories;
84 }
85
86
87 public List<ITicket> GetOpenTickets(int playerId)
88 {
89 List<ITicket> tickets = new List<ITicket>();
90 foreach (Draw d in _draws.Values)
91 {
92 if (d.IsOpen){
93 tickets.AddRange(GetTickets(d.DrawDate,playerId));
94 }
95 }
96 return tickets;
97 }
98 public List<ITicket> GetTickets(DateTime drawDate, int playerId)
99 {
100 List<ITicket> tickets = new List<ITicket>();
101 foreach (Ticket t in _draws[drawDate].Tickets)
102 {
103 if (t.Holder.PlayerId == playerId)
104 tickets.Add(t);
105 }
106 return tickets;
107 }
108 }
109 }

Tristan/src/inproc/PlayerInfo.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using Tristan;
5 namespace Tristan.inproc

211

Tristan/src/inproc/PlayerInfo.cs

6 {
7 public class PlayerInfo:IPlayerInfo
8 {
9 private static int nextId=1;
10 public PlayerInfo(IPlayerRegistrationInfo reg)
11 {
12 this._address = reg.Address;
13 this._balance = 0;
14 this._city = reg.City;
15 this._country = reg.Country;
16 this._name = reg.Name;
17 this._postcode = reg.PostCode;
18 this._playerId = nextId++;
19 this._username = reg.Username;
20 this._password = reg.Password;
21 }
22
23 private string _password;
24 internal string Password { get { return _password; } }
25
26 private string _name;
27 public string Name
28 {
29 get { return _name; }
30 set { _name = value; }
31 }
32
33 private string _address;
34 public string Address
35 {
36 get { return _address; }
37 set { _address = value; }
38 }
39
40 private string _city;
41 public string City
42 {
43 get { return _city; }
44 set { _city = value; }
45 }
46
47 private string _postcode;
48 public string PostCode
49 {
50 get { return _postcode; }
51 set { _postcode = value; }
52 }
53 private string _country;

212

Source code

54 public string Country
55 {
56 get { return _country; }
57 set { _country = value; }
58 }
59
60 private string _username;
61 public string Username
62 {
63 get { return _username; }
64 set { _username = value; }
65 }
66
67 private decimal _balance;
68 public decimal Balance
69 {
70 get { return _balance; }
71 set { _balance = value; }
72 }
73 private int _playerId;
74 public int PlayerId
75 {
76 get { return _playerId; }
77 set { _playerId = value; }
78 }
79 private bool _verified;
80 public bool IsVerified {
81 get { return _verified; }
82 set { _verified = value; }
83 }
84 }
85 }

Tristan/src/inproc/PlayerManager.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using Tristan;
5 namespace Tristan.inproc
6 {
7 public class PlayerManager:IPlayerManager
8 {
9 private Dictionary<int,PlayerInfo> _players = new
Dictionary<int,PlayerInfo>();
10 private Dictionary<string, PlayerInfo> _playersByName = new
Dictionary<string, PlayerInfo>();

213

Tristan/src/inproc/PlayerManager.cs

11 public PlayerManager() { }
12 public int RegisterPlayer(IPlayerRegistrationInfo p)
13 {
14 if (_playersByName.ContainsKey(p.Username)) throw new
DuplicateUsernameException();
15 PlayerInfo np = new PlayerInfo(p);
16 _players.Add(np.PlayerId, np);
17 _playersByName.Add(np.Username, np);
18 return np.PlayerId;
19 }
20
21 public IPlayerInfo GetPlayer(int id)
22 {
23 return _players[id];
24 }
25 public IPlayerInfo GetPlayer(String username)
26 {
27 if (!_playersByName.ContainsKey(username)) throw new
UnknownPlayerException();
28 PlayerInfo pi = _playersByName[username];
29 return pi;
30 }
31
32 public int LogIn(String username, String password)
33 {
34 if (!_playersByName.ContainsKey(username)) throw new
UnknownPlayerException();
35 PlayerInfo pi = _playersByName[username];
36 if (password.Equals(pi.Password)) return pi.PlayerId;
37 throw new InvalidPasswordException();
38 }
39
40 public void AdjustBalance(int playerId, decimal amount)
41 {
42 PlayerInfo pi = _players[playerId];
43 if (amount < 0 && pi.Balance < (-1 * amount))
44 throw new NotEnoughFundsException();
45 pi.Balance += amount;
46 }
47
48 public void DepositWithCard(int playerId, string cardNumber, string
expiryDate, decimal amount)
49 {
50 if (cardNumber.EndsWith("2"))
51 throw new TransactionDeclinedException();
52 PlayerInfo pi = _players[playerId];
53 pi.Balance += amount;
54 }

214

Source code

55 }
56 }

Tristan/src/inproc/PlayerRegistrationInfo.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using Tristan.Test;
5 namespace Tristan.inproc
6 {
7 public class PlayerRegistrationInfo: IPlayerRegistrationInfo
8 {
9 private string _name;
10 public string Name { get { return _name; } set { _name = value; } }
11
12 private string _address;
13 public string Address { get { return _address; } set { _address =
value; } }
14
15 private string _city;
16 public string City { get { return _city; } set { _city = value; } }
17
18 private string _postCode;
19 public string PostCode { get { return _postCode; } set { _postCode =
 value; } }
20
21 private string _country;
22 public string Country { get { return _country; } set { _country =
value; } }
23
24 private string _username;
25 public string Username { get { return _username; } set { _username =
 value; } }
26
27 private string _password;
28 public string Password { get { return _password; } set { _password =
 value; } }
29 }
30 }

Tristan/src/inproc/Ticket.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;

215

Tristan/src/inproc/PlayerRegistrationInfo.cs

4
5 namespace Tristan.inproc
6 {
7 class Ticket:ITicket
8 {
9 public Ticket(IPlayerInfo holder, DateTime draw, int[] numbers, decimal
 value)
10 {
11 _numbers = new int[numbers.Length];
12 System.Array.Copy(numbers, _numbers, numbers.Length);
13 _holder = holder;
14 _value = value;
15 _open = true;
16 _winnings = 0;
17 _drawDate = draw;
18 }
19 private int[] _numbers;
20 public int[] Numbers
21 {
22 get { return _numbers; }
23 }
24
25 private IPlayerInfo _holder;
26 public IPlayerInfo Holder
27 {
28 get { return _holder; }
29 }
30 private decimal _value;
31 public decimal Value
32 {
33 get { return _value; }
34 }
35
36 private bool _open;
37 public bool IsOpen
38 {
39 get { return _open; }
40 set { _open = value; }
41 }
42 private decimal _winnings;
43 public decimal Winnings
44 {
45 get { return _winnings; }
46 set { _winnings = value; }
47 }
48 private DateTime _drawDate;
49 public DateTime draw
50 {

216

Source code

51 get { return _drawDate; }
52 }
53 }
54 }

Tristan/test/PayoutTable.cs

1 namespace Tristan.Test
2 {
3 public class PayoutTable:fit.ColumnFixture
4 {
5 private WinningsCalculator wc=new WinningsCalculator();
6 public int winningCombination;
7 public decimal payoutPool;
8 public int PoolPercentage()
9 {
10 return wc.GetPoolPercentage(winningCombination);
11 }
12 public decimal PrizePool()
13 {
14 return wc.GetPrizePool(winningCombination, payoutPool);
15 }
16 }
17 }

Tristan/test/PlayerRegistration.cs

1 using fit;
2 using Tristan.inproc;
3 using System;
4 namespace Tristan.Test
5 {
6 public class SetUpTestEnvironment : Fixture
7 {
8 internal static IPlayerManager playerManager;
9 public SetUpTestEnvironment()
10 {
11 playerManager = new PlayerManager();
12 }
13 }
14 }
15 namespace Tristan.Test.FirstTry
16 {
17 public class PlayerRegisters : ColumnFixture
18 {
19 public string Username;

217

Tristan/test/PayoutTable.cs

20 public string Password;
21 public int PlayerId()
22 {
23 PlayerRegistrationInfo reg = new PlayerRegistrationInfo();
24 reg.Username = Username;
25 reg.Password = Password;
26 return SetUpTestEnvironment.playerManager.RegisterPlayer(reg);
27 }
28 }
29 public class CheckStoredDetails : ColumnFixture
30 {
31 public int PlayerId;
32 public string Username
33 {
34 get
35 {
36 return SetUpTestEnvironment.playerManager.
37 GetPlayer(PlayerId).Username;
38 }
39 }
40 public decimal Balance
41 {
42 get
43 {
44 return SetUpTestEnvironment.playerManager.
45 GetPlayer(PlayerId).Balance;
46 }
47 }
48 }
49 public class CheckLogIn:ColumnFixture{
50 public string Username;
51 public string Password;
52 public bool CanLogIn()
53 {
54 try
55 {
56 SetUpTestEnvironment.playerManager.LogIn(Username, Password);
57 return true;
58 }
59 catch (ApplicationException)
60 {
61 return false;
62 }
63 }
64 }
65 }
66 namespace Tristan.Test.SecondTry
67 {

218

Source code

68 public class PlayerRegisters : ColumnFixture
69 {
70 public class ExtendedPlayerRegistrationInfo: PlayerRegistrationInfo
71 {
72 public int PlayerId()
73 {
74 return SetUpTestEnvironment.playerManager.RegisterPlayer(this);
75 }
76 }
77 private ExtendedPlayerRegistrationInfo to =
78 new ExtendedPlayerRegistrationInfo();
79 public override object GetTargetObject()
80 {
81 return to;
82 }
83 }
84 public class CheckStoredDetailsFor : ColumnFixture
85 {
86 public override object GetTargetObject()
87 {
88 int newid=(int)Fixture.Recall(Args[0]);
89 return SetUpTestEnvironment.playerManager.GetPlayer(newid);
90 }
91 }
92 public class CheckLogIn : ColumnFixture
93 {
94 public string Username;
95 public string Password;
96 public int LoggedInAsPlayerId()
97 {
98 return SetUpTestEnvironment.playerManager.
99 LogIn(Username, Password);
100 }
101 }
102 }

Tristan/test/PurchaseTicket.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using Tristan.inproc;
5 using fit;
6 namespace Tristan.Test.PurchaseTicket
7 {
8 public class SetUpTestEnvironment : ColumnFixture
9 {

219

Tristan/test/PurchaseTicket.cs

10 internal static IPlayerManager playerManager;
11 internal static IDrawManager drawManager;
12 public SetUpTestEnvironment()
13 {
14 playerManager = new PlayerManager();
15 drawManager = new DrawManager(playerManager);
16 }
17 public DateTime CreateDraw {
18 set
19 {
20 drawManager.CreateDraw(value);
21 }
22 }
23 }
24 public class PlayerRegisters : ColumnFixture
25 {
26 public class ExtendedPlayerRegistrationInfo:
27 PlayerRegistrationInfo
28 {
29 public int PlayerId()
30 {
31 return SetUpTestEnvironment.playerManager.
32 RegisterPlayer(this);
33 }
34 }
35 private ExtendedPlayerRegistrationInfo to =
36 new ExtendedPlayerRegistrationInfo();
37 public override object GetTargetObject()
38 {
39 return to;
40 }
41 }
42 public class PurchaseTicket : fitlibrary.DoFixture
43 {
44 public void PlayerDepositsDollarsWithCardAndExpiryDate(
45 string username, decimal amount, string card, string expiry)
46 {
47 int pid = SetUpTestEnvironment.playerManager.
48 GetPlayer(username).PlayerId;
49 SetUpTestEnvironment.playerManager.DepositWithCard(
50 pid, card, expiry, amount);
51 }
52 public bool PlayerHasDollars(String username, decimal amount)
53 {
54 return (SetUpTestEnvironment.playerManager.
55 GetPlayer(username).Balance == amount);
56 }
57 public void PlayerBuysATicketWithNumbersForDrawOn(

220

Source code

58 string username, int[] numbers, DateTime date)
59 {
60 PlayerBuysTicketsWithNumbersForDrawOn(
61 username, 1, numbers, date);
62 }
63 public void PlayerBuysTicketsWithNumbersForDrawOn(
64 string username, int tickets, int[] numbers, DateTime date)
65 {
66 int pid = SetUpTestEnvironment.playerManager.
67 GetPlayer(username).PlayerId;
68 SetUpTestEnvironment.drawManager.PurchaseTicket(
69 date, pid, numbers, 10*tickets);
70 }
71 public bool PoolValueForDrawOnIsDollars(DateTime date,
72 decimal amount)
73 {
74 return SetUpTestEnvironment.drawManager.GetDraw(date).
75 TotalPoolSize == amount;
76 }
77 private static bool CompareArrays(int[] sorted1, int[] unsorted2)
78 {
79 if (sorted1.Length != unsorted2.Length) return false;
80 Array.Sort(unsorted2);
81 for (int i = 0; i < sorted1.Length; i++)
82 {
83 if (sorted1[i] != unsorted2[i]) return false;
84 }
85 return true;
86 }
87 public bool
88 TicketWithNumbersForDollarsIsRegisteredForPlayerForDrawOn(
89 int[] numbers, decimal amount, string username, DateTime draw)
90 {
91 ITicket[] tck = SetUpTestEnvironment.
92 drawManager.GetDraw(draw).Tickets;
93 Array.Sort(numbers);
94 foreach (ITicket ticket in tck)
95 {
96 if (CompareArrays(numbers, ticket.Numbers) &&
97 amount == ticket.Value &&
98 username.Equals(ticket.Holder.Username))
99 return true;
100 }
101 return false;
102 }
103 public int TicketsInDrawOn(DateTime date)
104 {
105 return SetUpTestEnvironment.drawManager.

221

Tristan/test/PurchaseTicket.cs

106 GetDraw(date).Tickets.Length;
107 }
108 public decimal PoolValueForDrawOnIs(DateTime date)
109 {
110 return SetUpTestEnvironment.drawManager.
111 GetDraw(date).TotalPoolSize;
112 }
113 public decimal AccountBalanceFor(String username)
114 {
115 return SetUpTestEnvironment.playerManager.
116 GetPlayer(username).Balance;
117 }
118 }
119 }

Tristan/test/ReviewTickets.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using Tristan;
5 using Tristan.inproc;
6 using fit;
7 namespace Tristan.Test
8 {
9 public class ReviewTickets:fitlibrary.DoFixture
10 {
11 private IDrawManager _drawManager;
12 private IPlayerManager _playerManager;
13 public ReviewTickets()
14 {
15 _playerManager = new PlayerManager();
16 _drawManager = new DrawManager(_playerManager);
17 }
18 public void DrawOnIsOpen(DateTime drawDate)
19 {
20 _drawManager.CreateDraw(drawDate);
21 }
22 public void PlayerOpensAccountWithDollars(String player, decimal
balance)
23 {
24 PlayerRegistrationInfo p = new PlayerRegistrationInfo();
25 p.Username = player; p.Name = player;
26 p.Password = "XXXXXX";
27 // define other mandatory properties
28 int playerId = _playerManager.RegisterPlayer(p);
29 _playerManager.AdjustBalance(playerId, balance);

222

Source code

30 }
31 public void PlayerBuysATicketWithNumbersForDrawOn(
32 string username, int[] numbers, DateTime date)
33 {
34 PlayerBuysTicketsWithNumbersForDrawOn(username, 1, numbers, date);
35 }
36
37 public void PlayerBuysTicketsWithNumbersForDrawOn(
38 string username, int tickets, int[] numbers, DateTime date)
39 {
40 int pid = _playerManager.GetPlayer(username).PlayerId;
41 _drawManager.PurchaseTicket(date, pid, numbers, 10 * tickets);
42 }
43 public IList<ITicket> PlayerListsOpenTickets(String player)
44 {
45 return _drawManager.GetOpenTickets(
46 _playerManager.GetPlayer(player).PlayerId);
47 }
48 public IList<ITicket> PlayerListsTicketsForDrawOn(
49 String player, DateTime date)
50 {
51 return _drawManager.GetTickets(
52 date,_playerManager.GetPlayer(player).PlayerId);
53 }
54 public void NumbersAreDrawnOn(int[] numbers, DateTime date)
55 {
56 _drawManager.SettleDraw(date, numbers);
57 }
58 }
59 public class ReviewTicketsWithRowFixture : fitlibrary.DoFixture
60 {
61 private IDrawManager _drawManager;
62 private IPlayerManager _playerManager;
63 public ReviewTicketsWithRowFixture()
64 {
65 _playerManager = new PlayerManager();
66 _drawManager = new DrawManager(_playerManager);
67 }
68 public void DrawOnIsOpen(DateTime drawDate)
69 {
70 _drawManager.CreateDraw(drawDate);
71 }
72 public void PlayerOpensAccountWithDollars(
73 String player, decimal balance){
74 PlayerRegistrationInfo p = new PlayerRegistrationInfo();
75 p.Username = player; p.Name = player;
76 p.Password = "XXXXXX";
77 // define other mandatory properties

223

Tristan/test/ReviewTickets.cs

78 int playerId = _playerManager.RegisterPlayer(p);
79 _playerManager.AdjustBalance(playerId, balance);
80 }
81 public void PlayerBuysATicketWithNumbersForDrawOn(
82 string username, int[] numbers, DateTime date)
83 {
84 PlayerBuysTicketsWithNumbersForDrawOn(
85 username, 1, numbers, date);
86 }
87
88 public void PlayerBuysTicketsWithNumbersForDrawOn(
89 string username, int tickets, int[] numbers, DateTime date)
90 {
91 int pid = _playerManager.GetPlayer(username).PlayerId;
92 _drawManager.PurchaseTicket(date, pid, numbers, 10 * tickets);
93 }
94 public RowFixture PlayerListsOpenTickets(String player)
95 {
96 return new TicketRowFixture(
97 _drawManager.GetOpenTickets(
98 _playerManager.GetPlayer(player).PlayerId));
99 }
100 public RowFixture PlayerListsTicketsForDrawOn(
101 String player, DateTime date)
102 {
103 return new TicketRowFixture(
104 _drawManager.GetTickets(date,
105 _playerManager.GetPlayer(player).PlayerId));
106 }
107 public void NumbersAreDrawnOn(int[] numbers, DateTime date)
108 {
109 _drawManager.SettleDraw(date, numbers);
110 }
111 }
112 public class TicketRowFixture : fit.RowFixture
113 {
114 private List<ITicket> _internalList;
115 public TicketRowFixture(List<ITicket> tickets)
116 {
117 _internalList = tickets;
118 }
119 public override Type GetTargetClass()
120 {
121 return typeof(ITicket);
122 }
123
124 public override object[] Query()
125 {

224

Source code

126 return _internalList.ToArray();
127 }
128 }
129 }

Tristan/test/SetUpTestEnvironment.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using fit;
5 using Tristan.inproc;
6 namespace Tristan.Test
7 {
8 }

Tristan/test/Settlement.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using Tristan;
5 using Tristan.inproc;
6 using fitlibrary;
7 using fit;
8 namespace Tristan.Test.Settlement
9 {
10 internal class BalanceCheckFixture : ColumnFixture
11 {
12 private IPlayerManager _playerManager;
13 public BalanceCheckFixture(IPlayerManager pm)
14 {
15 _playerManager = pm;
16 }
17 public String player;
18 public decimal Balance
19 {
20 get
21 {
22 return _playerManager.GetPlayer(player).Balance;
23 }
24 }
25 }
26 internal class CreatePlayerFixture : SetUpFixture
27 {
28 private IPlayerManager _playerManager;

225

Tristan/test/SetUpTestEnvironment.cs

29 public CreatePlayerFixture(IPlayerManager pm)
30 {
31 _playerManager = pm;
32 }
33 public void PlayerBalance(String player, decimal balance)
34 {
35 PlayerRegistrationInfo p = new PlayerRegistrationInfo();
36 p.Username = player; p.Name = player;
37 p.Password = "XXXXXX";
38 // define other mandatory properties
39 int playerId = _playerManager.RegisterPlayer(p);
40 _playerManager.AdjustBalance(playerId, balance);
41 }
42 }
43 internal class TicketPurchaseFixture: SetUpFixture
44 {
45 private IDrawManager _drawManager;
46 private DateTime _drawDate;
47 private IPlayerManager _playerManager;
48
49 public TicketPurchaseFixture(IPlayerManager pm, IDrawManager dm,
50 DateTime drawDate)
51 {
52 _drawManager = dm;
53 _playerManager = pm;
54 _drawDate = drawDate;
55 }
56 public void PlayerNumbersValue(String player, int[] numbers, decimal
 value)
57 {
58 _drawManager.PurchaseTicket(_drawDate,
59 _playerManager.GetPlayer(player).PlayerId, numbers, value);
60 }
61 }
62 public class SettlementTest:DoFixture
63 {
64 private IDrawManager drawManager;
65 private IPlayerManager playerManager;
66 private DateTime drawDate;
67 public SettlementTest()
68 {
69 playerManager = new PlayerManager();
70 drawManager = new DrawManager(playerManager);
71 drawDate = DateTime.Now;
72 drawManager.CreateDraw(drawDate);
73 }
74 public Fixture TicketsInTheDraw()
75 {

226

Source code

76 return new TicketPurchaseFixture(playerManager, drawManager,
drawDate);
77 }
78 public void DrawResultsAre(int[] numbers)
79 {
80 drawManager.SettleDraw(drawDate, numbers);
81 }
82 public Fixture AccountsAfterTheDraw()
83 {
84 return new BalanceCheckFixture(playerManager);
85 }
86 public Fixture AccountsBeforeTheDraw()
87 {
88 return new CreatePlayerFixture(playerManager);
89 }
90 }
91 }

Tristan/test/TotalPoolValue.cs

1 using System;
2
3 namespace Tristan.Test
4 {
5 public class PrizeDistributionForPayoutPool:fit.ColumnFixture {
6 private WinningsCalculator wc = new WinningsCalculator();
7 public int winningCombination;
8 public int PoolPercentage()
9 {
10 return wc.GetPoolPercentage(winningCombination);
11 }
12 public decimal? payoutPool;
13 public decimal PrizePool()
14 {
15 if (payoutPool == null) payoutPool = Decimal.Parse(Args[0]);
16 return wc.GetPrizePool(winningCombination, payoutPool.Value);
17 }
18 }
19 }

domain/AlternatingSUT.cs

1 ï»¿using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using fit;

227

Tristan/test/TotalPoolValue.cs

5 using fitlibrary;
6 namespace info.fitnesse
7 {
8
9 public class LinkInsertFixture : ColumnFixture
10 {
11 private ILinkRepository repo;
12 Link l;
13 public LinkInsertFixture(ILinkRepository repo)
14 {
15 this.repo = repo;
16 }
17 public int Id
18 {
19 get
20 {
21 return repo.Save(l);
22 }
23 }
24 public override void Reset()
25 {
26 l = new Link(); SetSystemUnderTest(l);
27 }
28
29 }
30 public class LinkCheckFixture : ColumnFixture
31 {
32 private ILinkRepository repo;
33 public LinkCheckFixture(ILinkRepository repo)
34 {
35 this.repo = repo;
36 }
37 public int Id
38 {
39 set
40 {
41 SetSystemUnderTest(repo.FindById(value));
42 }
43 }
44 }
45 public class AlternatingSUT : DoFixture
46 {
47 private ILinkRepository repo = new MemoryLinkRepository();
48 public Fixture DefineLinks()
49 {
50 return new LinkInsertFixture(repo);
51 }
52 public Fixture CheckLinks()

228

Source code

53 {
54 return new LinkCheckFixture(repo);
55 }
56 }
57 }

domain/AutomaticDomainObjectWrapping.cs

1 ï»¿using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using fit;
5 namespace info.fitnesse
6 {
7 public class AutomaticDomainObjectWrapping: fitlibrary.DoFixture
8 {
9
10 }
11 }

domain/Domain.cs

1 ï»¿using System;
2 using System.Collections.Generic;
3 using System.Text;
4
5 namespace info.fitnesse
6 {
7 public class Link
8 {
9 public Link()
10 {
11 }
12 public Link(String name, String url)
13 {
14 this.Name = name;
15 this.Url = url;
16 }
17 public int Id { get; set; }
18 public String Name { get; set; }
19 public String Url { get; set; }
20 public Boolean Valid
21 {
22 get
23 {
24 return

229

domain/AutomaticDomainObjectWrapping.cs

25 ((!String.IsNullOrEmpty(Name)) &&
26 (!String.IsNullOrEmpty(Url)) &&
27 Url.Contains("://"));
28 }
29 }
30 }
31 public interface ILinkRepository
32 {
33 Link FindById(int id);
34 IEnumerable<Link> FindAll();
35 int Save(Link l);
36
37 }
38 public class MemoryLinkRepository : ILinkRepository
39 {
40 private List<Link> links=new List<Link>();
41 public Link FindById(int id)
42 {
43 return links[id];
44 }
45 public IEnumerable<Link> FindAll()
46 {
47 return links;
48 }
49
50
51 public int Save(Link l)
52 {
53 int nextIndex = links.Count;
54 links.Add(l);
55 return nextIndex;
56 }
57 }
58 }

domain/FlowCollections.cs

1 ï»¿using System;
2 using System.Collections.Generic;
3 using fit;
4 using fitlibrary;
5 namespace info.fitnesse
6 {
7 public class LinkSetupFixture : SetUpFixture
8 {
9 private ILinkRepository repo;
10 public LinkSetupFixture(ILinkRepository repo)

230

Source code

11 {
12 this.repo = repo;
13 }
14 public void NameUrl(String name, String url)
15 {
16 repo.Save(new Link { Url = url, Name = name });
17 }
18 }
19 public class FlowCollections: DoFixture
20 {
21 private ILinkRepository repo = new MemoryLinkRepository();
22 public Fixture DefineLinks()
23 {
24 return new LinkSetupFixture(repo);
25 }
26 public IEnumerable<Link> ListLinks()
27 {
28 return repo.FindAll();
29 }
30 }
31 public class FlowSystemUnderTest : DoFixture
32 {
33 private ILinkRepository repo = new MemoryLinkRepository();
34 public Fixture DefineLinks()
35 {
36 return new LinkSetupFixture(repo);
37 }
38 public FlowSystemUnderTest()
39 {
40 SetSystemUnderTest(repo);
41 }
42 }
43 public class WithSystemUnderTest : DoFixture
44 {
45 public Fixture DefineLinks()
46 {
47 return new LinkSetupFixture((ILinkRepository)
this.mySystemUnderTest);
48 }
49 }
50 }

domain/SystemUnderTestColumnFixture.cs

1 ï»¿using System;
2 using System.Collections.Generic;
3 using System.Text;

231

domain/SystemUnderTestColumnFixture.cs

4
5 namespace info.fitnesse.sut
6 {
7 public class LinkValidityCheck:fit.ColumnFixture
8 {
9 public LinkValidityCheck()
10 {
11 SetSystemUnderTest(new Link());
12 }
13 public String comment;
14 }
15 }

domain/TargetObject.cs

1 ï»¿using System;
2 using System.Collections.Generic;
3 using System.Text;
4
5 namespace info.fitnesse.to
6 {
7 public class LinkValidityCheck:fit.ColumnFixture
8 {
9 Link l = new Link();
10 public override Object GetTargetObject()
11 {
12 return l;
13 }
14 }
15 }

extended/CurrencyParser.cs

1 ï»¿using fitSharp.Fit.Operators;
2 using fitSharp.Machine.Engine;
3 using fitSharp.Fit.Model;
4 using fitSharp.Machine.Model;
5 using System;
6
7 namespace extended
8 {
9 public class CurrencyParser: CellOperator, ParseOperator<Cell>
10 {
11
12 public bool CanParse(Type type, TypedValue instance, Tree<Cell>
parameters)

232

Source code

13 {
14 return type == typeof(decimal) &&
parameters.Value.Text.StartsWith("$");
15 }
16
17 public TypedValue Parse(Type type, TypedValue instance, Tree<Cell>
 parameters)
18 {
19 return new TypedValue
(Decimal.Parse(parameters.Value.Text.Substring(1)));
20 }
21 }
22 }

extended/Invoice.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4
5 namespace extended
6 {
7 class TaxCalculator
8 {
9 public decimal GetTax(String code, decimal price)
10 {
11 if (code.StartsWith("B")) return 0;
12 return 0.1m * price;
13 }
14 }
15 public class Invoice:fitnesse.fixtures.TableFixture
16 {
17 protected override void DoStaticTable(int rows)
18 {
19 TaxCalculator tc=new TaxCalculator();
20 decimal totaltax = 0;
21 for (int row = 1; row < rows - 3; row++)
22 {
23 totaltax += tc.GetTax(GetString(row, 1),
24 Decimal.Parse(GetString(row, 2)));
25 }
26 decimal taxintable = Decimal.Parse(GetString(rows - 2, 2));
27 if (taxintable == totaltax)
28 Right(rows - 2, 2);
29 else
30 Wrong(rows - 2, 2, totaltax.ToString());
31 }

233

extended/Invoice.cs

32 }
33 }

extended/RegExHandler.cs

1 using System.Text.RegularExpressions;
2 using fitnesse.handlers;
3 using fitSharp.Fit.Model;
4 using fitSharp.Machine.Engine;
5 using fitSharp.Machine.Model;
6 using fitSharp.Fit.Operators;
7 namespace extended
8 {
9 public class RegExHandler : CellOperator, CompareOperator<Cell>
10 {
11 public bool CanCompare(TypedValue actual, Tree<Cell> expected)
12 {
13
14 string searchString = expected.Value.Text;
15 System.Console.Out.WriteLine("searchString");
16 return searchString.StartsWith("/") &&
17 searchString.EndsWith("/");
18 }
19 public bool Compare(TypedValue actual, Tree<Cell> cell)
20 {
21
22 object actualValue = actual.Value;
23 Regex expected = new Regex(cell.Value.Text.Substring(1,
cell.Value.Text.Length - 2));
24 return expected.IsMatch(actualValue.ToString());
25 }
26 }
27 }

webfixture/WebTest.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4 using Selenium;
5
6 namespace webfixture
7 {
8 public class WebTest : fitlibrary.DoFixture
9 {
10 private ISelenium instance;

234

Source code

11 public void StartBrowserWithSeleniumConsoleOnAtPortAndScriptsAt(
12 String browser, String rcServer, int rcPort, String seleniumURL)
13 {
14 instance = new DefaultSelenium(rcServer,
15 rcPort, browser, seleniumURL);
16 instance.Start();
17 }
18 public void ShutdownBrowser()
19 {
20 instance.Stop();
21 }
22 public static readonly string[] buttonLocators = new String[] {
23 "xpath=//input[@type='submit' and @name='{0}']",
24 "xpath=//input[@type='button' and @name='{0}']",
25 "xpath=//input[@type='submit' and @value='{0}']",
26 "xpath=//input[@type='button' and @value='{0}']",
27 "xpath=//input[@type='submit' and @id='{0}']",
28 "xpath=//input[@type='button' and @id='{0}']"};
29
30 public static readonly string[] selectLocators = new String[] {

31 "xpath=//select[@name='{0}']",
32 "xpath=//select[@id='{0}']"};
33
34 private String GetLocator(String caption, String[] possibleFormats)
35 {
36 foreach (String s in possibleFormats)
37 {
38 String locator = String.Format(s, caption);
39 if (instance.IsElementPresent(locator))
40 {
41 return locator;
42 }
43 }
44 throw new ApplicationException(
45 "Cannot find element by " + caption);
46 }
47 public void UserOpensURL(String s)
48 {
49 instance.Open(s);
50 }
51 public static readonly string[] textFieldLocators = new String[]
 {
52 "xpath=//input[@type='text' and @name='{0}']",
53 "xpath=//input[@type='password' and @name='{0}']",
54 "xpath=//textarea[@name='{0}']",
55 "xpath=//input[@type='text' and @id='{0}']",
56 "xpath=//input[@type='password' and @id='{0}']",

235

webfixture/WebTest.cs

57 "xpath=//textarea[@id='{0}']"};
58
59 public void UserTypesIntoField(String what, String where)
60 {
61 instance.Type(GetLocator(
62 where.Replace(" ", ""), textFieldLocators), what);
63 }
64 public void UserClicksOn(String buttonCaption)
65 {
66 instance.Click(GetLocator(buttonCaption, buttonLocators));
67 }
68 public void PageReloadsInLessThanSeconds(String sec)
69 {
70 instance.WaitForPageToLoad(sec + "000");
71 }
72 public bool PageContainsText(String s)
73 {
74 return instance.IsTextPresent(s);
75 }
76 public bool PageURLIs(String s)
77 {
78 return s.Equals(instance.GetLocation());
79 }
80 public void UserSelectsFrom(String what, String where)
81 {
82 instance.Select(
83 GetLocator(where.Replace(" ", ""), selectLocators), what);
84 }
85 }
86 }

FitNesse Tests

CustomParsing

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\extended\bin\Debug\extended.dll
4
5 !|configuration setup|
6 |service|
7 |add operator|extended.CurrencyParser|
8
9 !|DecimalFixture|

236

Source code

10 |field|field?|
11 |$44|44|

DomainWrapper.AlternatingSystemUnderTest

1 !|info.fitnesse.AlternatingSUT|
2
3 !|Define Links|
4 |Name|Url|Id?|
5 |Google|http://www.google.com|>>google|
6 |Yahoo|http://www.yahoo.com|>>yahoo|
7 |Microsoft|http://www.microsoft.com|>>msft|
8 !|Check Links|
9 |Id|Name?|Url?|
10 |<<google|Google|http://www.google.com|

DomainWrapper.FlowCollections

1 !|info.fitnesse.FlowCollections|
2
3 !|Define Links|
4 |Name|Url|
5 |Google|http://www.google.com|
6 |Yahoo|http://www.yahoo.com|
7
8
9 !|List Links|
10 |Name|Url|
11 |Google|http://www.google.com|
12 |Yahoo|http://www.yahoo.com|

DomainWrapper.FrontPage

1 !-FitNesse-! .NET tips & tricks
2
3
4 >FlowCollections
5 >SystemUnderTest
6 >WithSystemUnderTest
7 >NamingSystemUnderTests
8 ----
9 >TargetObject
10 >SystemUnderTestColumnFixture
11 >AlternatingSystemUnderTest
12 ----

237

DomainWrapper.AlternatingSystemUnderTest

13 >AutomaticDomainObjectWrappingWithHandlers
14 ---
15 >SuiteConfigFile

DomainWrapper.NamingSystemUnderTests

1 !*> setup
2 !|info.fitnesse.AutomaticDomainObjectWrapping|
3
4 |import|
5 |info.fitnesse|
6
7 !|name|google|with|new|Link|Google|http://www.google.com|
8
9 !|name|yahoo|with|new|Link|Yahoo|http://www.yahoo.com|
10
11 *!
12
13 |use|google|
14 |check|valid|true|
15
16 |use|yahoo|
17 |check|valid|true|

DomainWrapper.SystemUnderTest

1 !|info.fitnesse.FlowSystemUnderTest|
2
3 !|Define Links|
4 |Name|Url|
5 |Google|http://www.google.com|
6 |Yahoo|http://www.yahoo.com|
7
8
9 !|Find All|
10 |Name|Url|
11 |Google|http://www.google.com|
12 |Yahoo|http://www.yahoo.com|

DomainWrapper.SystemUnderTestColumnFixture

1 |import|
2 |info.fitnesse.sut|
3
4 Link validity check

238

Source code

5
6 Valid links have to contain a URL and a name, and the URL must contain
the sequence ://
7
8 Examples
9
10 !|Link validity check|
11 |name|url|valid?|comment|
12 |google|http://www.google.com|true|both set, correct|
13 |blank|http://www.google.com|false|name not set|
14 |google|blank|false|url not set|
15 |google|www.google.com|false|url not in correct format|
16

DomainWrapper.TargetObject

1 |import|
2 |info.fitnesse.to|
3
4 Link validity check
5
6 Valid links have to contain a URL and a name, and the URL must contain
the sequence ://
7
8 Examples
9
10 !|Link validity check|
11 |name|url|valid?|
12 |google|http://www.google.com|true|
13 |blank|http://www.google.com|false|
14 |google|blank|false|
15 |google|www.google.com|false|

DomainWrapper.WithSystemUnderTest

1 !|info.fitnesse.WithSystemUnderTest|
2
3 !|with|new|info.fitnesse.MemoryLinkRepository|
4
5 !|Define Links|
6 |Name|Url|
7 |Google|http://www.google.com|
8 |Yahoo|http://www.yahoo.com|
9
10 !|Find All|
11 |Name|Url|

239

DomainWrapper.TargetObject

12 |Google|http://www.google.com|
13 |Yahoo|http://www.yahoo.com|

DomainWrapper

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3
4 !path D:\work\fitnesse\domain\bin\Release\domain.dll
5
6
7 !contents -R

FrontPage

1 !c !3 Welcome to the Wonderful World of !-FitNesse-!!
2
3 HelloWorld
4
5 PrizeCalculationFirstTry
6 NicerPrizeCalculation
7
8 PlayerRegistrationFirstTry
9 PlayerRegistrationSecondTry
10 PlayerRegistrationThirdTry
11
12 PurchaseTicketFirstTry
13 PurchaseTicketSecondTry
14 PurchaseTicketNotEnoughMoney
15 PurchaseTicketSuite
16
17 SettlementTests
18
19 TicketReviewTests
20 TicketReviewTestsWithRowFixture
21
22 LoginTest
23
24 InvoiceTable
25 CustomParsing

240

Source code

26
27 DomainWrapper

HelloWorld

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\HelloWorld\bin\Release\HelloWorld.dll
4
5 !|HelloWorld.OurFirstTest|
6 |string1|string2|Concatenate?|
7 |Hello|World|Hello World|

InvoiceTable

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\extended\bin\Release\extended.dll
4
5
6 |import|
7 |extended|
8
9 !-
10 <table><tr><td colspan="3">Invoice</td></tr>
11 <tr><td>Item</td><td>Product code</td><td>Price</td></tr>
12 <tr><td>Pragmatic Programmer</td><td>B978-0201616224</td><td>34.03</td></tr>
13 <tr><td>Sony RDR-GX330</td><td>ERDR-GX330</td><td>94.80</td></tr>
14 <tr><td>Test Driven Development By
Example</td><td>B978-0321146533</td><td>32.39</td></tr>
15 <tr><td>Net Total</td><td></td><td>161.22</td></tr>
16 <tr><td>Tax (10% on applicable items)</td><td></td><td>9.48</td></tr>
17 <tr><td>Total</td><td></td><td>170.70</td></tr>
18 </table>
19 -!

LoginTest

1 !|webfixture.WebTest|
2
3 !|Start Browser|*iehta|With Selenium Console On| localhost| At Port
|4444|And Scripts At|http://localhost:7711|
4

241

HelloWorld

5 |User Opens URL|http://localhost:7711/login.aspx|
6 |User types|testuser|into|username|field|
7 |User types|testpassword|into|password|field|
8
9 |User clicks on|Log In|
10 |Page reloads in less than|3|seconds|
11 |Page contains text|You have logged in|
12
13 |Shutdown browser|

NicerPrizeCalculation

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !|Import|
6 |Tristan.Test|
7
8 The prize pool is divided among the winners using the following distribution
 for winning combinations (number of correct hits out of six chosen numbers).
 Example below is for $2M payout pool.
9
10 !|Prize Distribution for Payout Pool|2,000,000|
11 |Winning Combination|Pool Percentage?|Prize Pool?|
12 |6|68|1,360,000|
13 |5|10|200,000|
14 |4|10|200,000|
15 |3|12|240,000|

PlayerRegistrationFirstTry

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !|import|
6 |Tristan.Test|
7 |Tristan.Test.FirstTry|
8 !3 Upon registration, player details are stored correctly in the system,
 the player can log in, and the balance on his account is 0
9 !|Set Up Test Environment|
10
11 !|Player Registers|

242

Source code

12 |username|password|player id?|
13 |johnsmith|test123|>>player|
14
15 !|Check Stored Details|
16 |player id|username?|balance?|
17 |<<player|johnsmith|0|
18
19 !|Check Log In|
20 |username|password|can log in?|
21 |johnsmith|test123|yes|

PlayerRegistrationSecondTry

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !|import|
6 |Tristan.Test|
7 |Tristan.Test.SecondTry|
8
9 !|Set Up Test Environment|
10 !3 Upon registration, player details are stored correctly in the system,
 the player can log in, and the balance on his account is 0
11 |Player Registers|
12 |username|password|name|address|city|postcode|country|player id?|
13 |johnsmith|test123|John Smith|44 Ranelagh Way|London|NN1EE1|UK|>>player|
14
15 |Check Stored Details For |player|
16 |username?|name?|address?|city?|postcode?|country?|balance?|
17 |johnsmith|John Smith|44 Ranelagh Way|London|NN1EE1|UK|0|
18
19 |Check Log In|
20 |username|password|logged in as player id?|
21 |johnsmith|test123|<<player|

PlayerRegistrationThirdTry

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !|import|
6 |Tristan.Test|

243

PlayerRegistrationSecondTry

7 |Tristan.Test.SecondTry|
8
9 |Set Up Test Environment|
10 !3 Player cannot register if the requested username already exists
11 |Player Registers|
12 |username|password|name|address|city|postcode|country|player id?|
13 |johnsmith|test123|John Smith|44 Ranelagh Way|London|NN1EE1|UK|>>player|
14 |johnsmith|test334|Smith2|55 Ranelagh
Way|London|NN2EE2|UK|exception["Duplicate username"]|
15 !3 Player cannot log-in with an incorrect password
16 |Check Log In|
17 |username|password|logged in as player id?|
18 |johnsmith|test123|<<player|
19 |johnsmith|test334|exception["Invalid password"]|

PrizeCalculation

1 !define COMMAND_PATTERN {%m %p}
2 !define TEST_RUNNER {dotnet2\FitServer.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !|Import|
6 |Tristan.Test|
7
8 !|Payout Table|
9 |Payout Pool|Winning Combination|Pool Percentage?|Prize Pool?|
10 |2,000,000|6|68|1,360,000|
11 |2,000,000|5|10|200,000|
12 |2,000,000|4|10|200,000|
13 |2,000,000|3|12|240,000|

PrizeCalculationFirstTry

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4 !|Tristan.Test.PayoutTable|
5 |payoutPool|winningCombination|PoolPercentage?|PrizePool?|
6 |2000000|6|68|1360000|
7 |2000000|5|10|200000|

244

Source code

8 |2000000|4|10|200000|
9 |2000000|3|12|240000|

PurchaseTicketFirstTry

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !|import|
6 |Tristan.Test.PurchaseTicket|
7
8 |Set Up Test Environment|
9 |Create Draw|
10 |01/01/2008|
11
12 |Player Registers|
13 |username|password|name|address|city|postcode|country|player id?|
14 |john|test123|John Smith|44 Ranelagh Way|London|NN1EE1|UK|>>player|
15
16 !3 A player registers, transfers money into the account and purchases a
ticket. The ticket should be registered for the correct draw in the system,
and the account balance and pool size will be adjusted for the ticket value
17
18 |Purchase Ticket|
19 |Player|john|Deposits|100|dollars with card|4111111111111111|and expiry
date|01/12|
20 |Player|john|has|100|dollars|
21 |Player|john|buys a ticket with numbers|1,3,4,5,8,10| for draw on
|01/01/2008|
22 |Pool value for draw on |01/01/2008|is|10|dollars|
23 |Player|john|has|90|dollars|
24 |Ticket with numbers|1,3,4,5,8,10| for |10| dollars is registered for
player|john| for draw on |01/01/2008|

PurchaseTicketNotEnoughMoney

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !|import|
6 |Tristan.Test.PurchaseTicket|
7

245

PurchaseTicketFirstTry

8 |Set Up Test Environment|
9 |Create Draw|
10 |01/01/2008|
11
12 |Player Registers|
13 |username|password|name|address|city|postcode|country|player id?|
14 |john|test123|John Smith|44 Ranelagh Way|London|NN1EE1|UK|>>player|
15 !3 When there is not enough money in the account, the ticket purchase
should be refused. The ticket should not be registered, account balance and
pool value remain untouched.
16 |Purchase Ticket|
17 |Player|john|Deposits|50|dollars with card|4111111111111111|and expiry
date|01/12|
18 |reject|Player|john|buys|10| tickets with numbers|1,3,4,5,8,10| for draw
 on |01/01/2008|
19 |Check|Pool value for draw on |01/01/2008|is|0|
20 |Check|Account balance for |john|50|
21 |Check|Tickets in draw on |01/01/2008|0|
22 |not|Ticket with numbers|1,3,4,5,8,10| for |100| dollars is registered
for player|john| for draw on |01/01/2008|

PurchaseTicketSecondTry

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !|import|
6 |Tristan.Test.PurchaseTicket|
7
8 |Set Up Test Environment|
9 |Create Draw|
10 |01/01/2008|
11
12 |Player Registers|
13 |username|password|name|address|city|postcode|country|player id?|
14 |john|test123|John Smith|44 Ranelagh Way|London|NN1EE1|UK|>>player|
15 !3 A player registers, transfers money into the account and purchases a
ticket. The ticket should be registered for the correct draw in the system,
and the account balance and pool size will be adjusted for the ticket value
16 |Purchase Ticket|
17 |Player|john|Deposits|100|dollars with card|4111111111111111|and expiry
date|01/12|
18 |Player|john|has|100|dollars|
19 |Player|john|buys a ticket with numbers|1,3,4,5,8,10| for draw on
|01/01/2008|

246

Source code

20 |Check|Pool value for draw on |01/01/2008|is|10|
21 |Check|Account balance for |john|90|
22 |Ticket with numbers|1,3,4,5,8,10| for |10| dollars is registered for
player|john| for draw on |01/01/2008|

PurchaseTicketSuite.BasicCase

1 !3 A player registers, transfers money into the account and purchases a
ticket. The ticket should be registered for the correct draw in the system,
and the account balance and pool size will be adjusted for the ticket value
2 |Purchase Ticket|
3 |Player|john|Deposits|100|dollars with card|4111111111111111|and expiry
date|01/12|
4 |Player|john|has|100|dollars|
5 |Player|john|buys a ticket with numbers|1,3,4,5,8,10| for draw on
|01/01/2008|
6 |Check|Pool value for draw on |01/01/2008|is|10|
7 |Check|Account balance for |john|90|
8 |Ticket with numbers|1,3,4,5,8,10| for |10| dollars is registered for
player|john| for draw on |01/01/2008|

PurchaseTicketSuite.NotEnoughMoney

1 !3 When there is not enough money in the account, the ticket purchase
should be refused. The ticket should not be registered, account balance and
pool value remain untouched.
2 |Purchase Ticket|
3 |Player|john|Deposits|50|dollars with card|4111111111111111|and expiry
date|01/12|
4 |reject|Player|john|buys|10| tickets with numbers|1,3,4,5,8,10| for draw
 on |01/01/2008|
5 |Check|Pool value for draw on |01/01/2008|is|0|
6 |Check|Account balance for |john|50|
7 |Check|Tickets in draw on |01/01/2008|0|
8 |not|Ticket with numbers|1,3,4,5,8,10| for |100| dollars is registered
for player|john| for draw on |01/01/2008|

PurchaseTicketSuite.SetUp

1 !|import|
2 |Tristan.Test.PurchaseTicket|
3
4 |Set Up Test Environment|
5 |Create Draw|
6 |01/01/2008|

247

PurchaseTicketSuite.BasicCase

7
8 |Player Registers|
9 |username|password|name|address|city|postcode|country|player id?|
10 |john|test123|John Smith|44 Ranelagh Way|London|NN1EE1|UK|>>player|

PurchaseTicketSuite

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !contents -R

PurchaseTicketWithVariable

1 !define COMMAND_PATTERN {%m %p}
2 !define TEST_RUNNER {dotnet2\FitServer.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !define username {john}
6
7 !|import|
8 |Tristan.Test.PurchaseTicket|
9
10 |Set Up Test Environment|
11 |Create Draw|
12 |01/01/2008|
13 |02/01/2008|
14
15 |Player Registers|
16 |username|password|name|address|city|postcode|country|new player id?|
17 |john|test123|John Smith|44 Ranelagh Way|London|NN1EE1|UK|>>player|
18 !3 A player registers, transfers money into the account and purchases a
ticket. The ticket should be registered for the correct draw in the system,
and the account balance and pool size will be adjusted for the ticket value
19 |Purchase Ticket|
20 |Player|${username}|Deposits|100|dollars with card|4111111111111111|and
expiry date|01/12|
21 |Player|${username}|has|100|dollars|

248

Source code

22 |Player|${username}|buys a ticket with numbers|1,3,4,5,8,10| for |10|
dollars for draw on |01/01/2008|

SettlementTests.OneWinnerSixBallsFirstTry

1 !3 Arthur guessed all 6 balls correctly, so he takes the entire 6 out of
 6 prize
2
3 |Tickets in the Draw|
4 |player|numbers|value|
5 |Ford|2,11,22,33,39,18|50|
6 |Arthur|1,5,4,7,9,20|50|
7 |Trisha|10,21,30,6,16,26|50|
8 |Marvin|12,13,14,15,16,17|50|
9
10 |Draw results are|1,5,4,20,9,7|
11
12 |Accounts after the Draw|
13 |Player|Balance?|
14 |Arthur|118|
15 |Ford|50|
16 |Trisha|50|
17 |Marvin|50|

SettlementTests.SetUp

1 !|Tristan.Test.Settlement.SettlementTest|
2
3 |Accounts before the draw|
4 |player|balance|
5 |Arthur|100|
6 |Ford|100|
7 |Trisha|100|
8 |Marvin|100|

SettlementTests.TwoWinnersFourBalls

1 !3 Arthur and Trisha guess 4 balls correctly (1,5,4,20). Arthur bet 80
dollars, Trisha bet 20, so the prize is split 4/1
2
3 |Tickets in the Draw|
4 |player|numbers|value|
5 |Ford|2,11,22,33,39,18|50|
6 |Arthur|1,5,4,7,9,20|80|
7 |Trisha|10,1,20,5,4,11|20|

249

SettlementTests.OneWinnerSixBallsFirstTry

8 |Marvin|12,13,14,15,16,17|50|
9
10 |Draw results are|1,5,4,20,38,37|
11
12 |Accounts after the Draw|
13 |Player|Balance?|
14 |Arthur|28|
15 |Ford|50|
16 |Trisha|82|
17 |Marvin|50|

SettlementTests

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !contents -R

TicketReviewTests.SetUp

1 !|Tristan.Test.ReviewTickets|
2
3 |Draw on |01/01/2008| is open|
4
5 |Player | john | opens account with | 100 | dollars|

TicketReviewTests.SeveralTicketsOneDraw

1 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|01/01/2008|
2
3 |Player|john|buys a ticket with numbers|2,4,5,8,10,12|for draw
on|01/01/2008|
4
5 |Player|john|buys|5|tickets with numbers|3,6,9,12,15,18|for draw
on|01/01/2008|
6
7 |Player|john|lists open tickets|
8 |draw|numbers|value|
9 |01/01/2008|1,3,4,5,8,10|10|

250

Source code

10 |01/01/2008|2,4,5,8,10,12|10|
11 |01/01/2008|3,6,9,12,15,18|50|

TicketReviewTests.SeveralTicketsTwoDraws

1 |Draw on|02/01/2008|is open|
2
3 |Draw on|03/01/2008|is open|
4
5 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|02/01/2008|
6
7 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|01/01/2008|
8
9 |Player|john|buys|5|tickets with numbers|3,6,9,12,15,18|for draw
on|01/01/2008|
10
11 |Player|john|lists tickets for draw on|01/01/2008|
12 |value|numbers|
13 |10|1,3,4,5,8,10|
14 |50|3,6,9,12,15,18|
15
16 |Player|john|lists tickets for draw on|02/01/2008|
17 |value|numbers|
18 |10|1,3,4,5,8,10|
19
20 |Player|john|lists tickets for draw on|03/01/2008|
21 |value|numbers|

TicketReviewTests.TwoAccountsOneDraw

1 |Player|tom|opens account with|50|dollars|
2
3 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|01/01/2008|
4
5 |Player|tom|buys a ticket with numbers|2,4,5,8,10,12|for draw on|01/01/2008|
6
7 |Player|john|lists tickets for draw on|01/01/2008|
8 |value|numbers|
9 |10|1,3,4,5,8,10|
10
11 |Player|tom|lists tickets for draw on|01/01/2008|

251

TicketReviewTests.SeveralTicketsTwoDraws

12 |value|numbers|
13 |10|2,4,5,8,10,12|

TicketReviewTests.WinningsRecordedCorrectly

1 |Draw on|02/01/2008|is open|
2
3 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|01/01/2008|
4
5 |Player|john|buys a ticket with numbers|1,3,4,5,8,10|for draw on|02/01/2008|
6
7 |Player|john|buys|5|tickets with numbers|3,6,9,12,15,18|for draw
on|01/01/2008|
8
9 |Numbers|1,3,4,5,31,32|are drawn on|01/01/2008|
10
11 |Player|john|lists tickets for draw on|01/01/2008|
12 |value|numbers|is open|winnings|
13 |10|1,3,4,5,8,10|false|3|
14 |50|3,6,9,12,15,18|false|0|
15
16 |Player|john|lists open tickets|
17 |draw|value|numbers|
18 |02/01/2008|10|1,3,4,5,8,10|

TicketReviewTests

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !contents -R

TicketReviewTestsWithRowFixture

1 !define COMMAND_PATTERN {%m -r fitnesse.fitserver.FitServer,dotnet2\fit.dll
 %p}
2 !define TEST_RUNNER {dotnet2\Runner.exe}
3 !path D:\work\fitnesse\Tristan\bin\Release\Tristan.dll
4
5 !|Tristan.Test.ReviewTicketsWithRowFixture|
6
7 |Draw on |01/01/2008| is open|
8

252

Source code

9 |Player | john | opens account with | 100 | dollars|
10
11 |Player|john| buys a ticket with numbers |1,3,4,5,8,10 | for draw on
|01/01/2008|
12
13 |Player|john| buys a ticket with numbers |2,4,5,8,10,12 | for draw on
|01/01/2008|
14
15 |Player|john| buys | 5 | tickets with numbers |3,6,9,12,15,18 | for draw
 on |01/01/2008|
16
17 |Player|john| lists open tickets |
18 |draw|numbers|value?|
19 |01/01/2008|1,3,4,5,8,10|10|
20 |01/01/2008|2,4,5,8,10,12|10|
21 |01/01/2008|3,6,9,12,15,18|50|

fitnesse/FitNesseRoot/content.txt

1 !contents -R

Build scripts

scripts/runfitnesse.build

1 <project default="test">
2 <property name="fitnesse.dir" value="c:\services\fitnesse" />
3 <property name="fitnesse.server" value="localhost" />
4 <property name="fitnesse.port" value="8888" />
5 <target name="test">
6 <exec program="${fitnesse.dir}\dotnet2\Runner.exe"
7 commandline="-r fitnesse.fitserver.TestRunner,dotnet2\fit.dll
${fitnesse.server} ${fitnesse.port} ${fitnesse.test}"
8 workingdir="${fitnesse.dir}"/>
9 </target>
10 <target name="test">
11 <echo message="running tests ${fitnesse.test}" />
12 <delete file="${output.file}" />
13 <delete file="${format.file}" />
14 <exec program="${fitnesse.dir}\dotnet2\TestRunner.exe"
15 commandline="-results ${output.file} -r
fitnesse.fitserver.TestRunner,dotnet2\fit.dll ${fitnesse.server}
${fitnesse.port} ${fitnesse.test}"
16 workingdir="${fitnesse.dir}"
17 failonerror="true"/>
18 <echo message="tests ${fitnesse.test} complete" />

253

fitnesse/FitNesseRoot/content.txt

19 </target>
20 <target name="format">
21 <echo message="formatting ${fitnesse.test} results" />
22 <delete file="${format.file}" />
23 <exec program="java.exe"
24 workingdir="${fitnesse.dir}"
25 commandline="-cp ${fitnesse.dir}\fitnesse.jar
fitnesse.runner.FormattingOption ${output.file} xml ${format.file}
${fitnesse.server} ${fitnesse.port} ${fitnesse.test}" failonerror="false"/>
26 <echo message="formatting ${fitnesse.test} results into ${format.file}
complete" />
27 </target>
28 </project>

scripts/ccnet.config

1 <cruisecontrol>
2 <project name="Continuous-Test">
3 <workingDirectory>w:\ccnetbuild\source\test</workingDirectory>
4 <artifactDirectory>w:\ccnetbuild\artifact-cont\test</artifactDirectory>
5 <tasks>
6 <exec>
7 <executable>net.exe</executable>
8 <buildArgs>stop ccnetfitnesse</buildArgs>
9 </exec>
10 <exec>
11 <executable>net.exe</executable>
12 <buildArgs>start ccnetfitnesse</buildArgs>
13 </exec>
14 <nant>
15 <buildFile>w:\ccnetbuild\source\build\runfitnesse.build</buildFile>

16 <buildTimeoutSeconds>300000</buildTimeoutSeconds>
17 <buildArgs>-D:output.file=c:\temp\fitnesse-tx.log
-D:format.file=c:\temp\fitnesse-tx.xml
-D:fitnesse.test=TicketReviewTests</buildArgs>
18 <targetList><target>test</target></targetList>
19 </nant>
20 </tasks>
21 <publishers>
22 <nant>
23 <buildFile>w:\ccnetbuild\source\build\runfitnesse.build</buildFile>

24 <buildTimeoutSeconds>300000</buildTimeoutSeconds>
25 <buildArgs>-D:output.file=c:\temp\fitnesse-tx.log
-D:format.file=c:\temp\fitnesse-tx.xml
-D:fitnesse.test=TicketReviewTests</buildArgs>

254

Source code

26 <targetList><target>format</target></targetList>
27 </nant>
28 <merge>
29 <files>
30 <file>c:\temp\fitnesse-tx.xml</file>
31 </files>
32 </merge>
33 <xmllogger />
34 </publishers>
35 </project>
36 </cruisecontrol>

Web code

code/testsite/loginform.html

1 <html>
2 <body>
3 <form method="post" action="login.aspx">
4 <table>
5 <tr><td>Username:</td><td><input type="text" name="username" /></td></tr>
6 <tr><td>Password:</td><td><input type="password" name="password"
/></td></tr>
7 <tr><td><input type="submit" name="login" value="Log
In"/></td><td></td></tr>
8 </table>
9 </form>
10 </body>
11 </html>

code/testsite/login.aspx

1 <%@PAGE Language="C#"%>
2 <%
3 //just a dummy page to act as an endpoint for selenium tests
4 //will authorise testuser with testpassword, and decline everyone else
5 if (!String.IsNullOrEmpty(Request["username"])){
6 if ("testuser".Equals(Request["username"]) &&
7 "testpassword".Equals(Request["password"])){
8 Response.Write ("You have logged in");
9 }
10 else {
11 Response.Write ("Error: username or password incorrect");
12 }
13 }
14 else{

255

Web code

15 Response.Redirect("loginform.html");
16 }
17 %>

256

Source code

Index
Symbols
${} 84
<< 56
>> 56

A
acceptance test

compared to unit test 35
introduced 33
who should write them? 34

ActionFixture class 75
Args array 48
arguments 48
array

automatic conversion 71, 97
automatic wrapping with DoFix-
ture 106
strings or ints 109

ArrayFixture 173
ArrayFixture class 106

compared with RowFixture 112
converting result to test 164

automated acceptance testing 33
automated build tool 119

scheduling tests 133

B
Bathyscaphe Trieste 37
blank

cell 63, 162
keyword 63

BoolFixture class 58
BoundFixture class 180

bound variable 157
bug, exterminating 38
business analyst

involvement in testing 9, 32, 34,
41, 47, 51
writing tests without learning wiki
syntax 162

business domain object 59, 101, 163
business form, use as test 165
business object 164, 195

collection 106
FIT hooks 18

business rule
and acceptance test 88
and test suite 81
testing directly 87
testing through the UI 135

C
CamelCase

automatic conversion into links 22
valid page names 24

cell operator
CompareEndsWith 183, 184
CompareIntegralRange 184
CompareStartsWith 184
CurrencyParser 185
loading on demand 183
non-standard 183
SubstringHandler 184

central server 119
check, keyword 74, 163
code-oriented test 9, 124
collapsed block 83
collection

automatic wrapping with DoFix-
ture 106
empty 108

257

ColumnFixture class 22
inner workings 180
replacement when used for setup
94
when to use 43, 44

Comment class 50
CompareEndsWith 183
CompareEndsWith class 184
CompareIntegralRange class 184
CompareStartsWith class 184
CompareSubstring class 184
ConfigurationSetup class 183
contents, keyword 80
continuous integration 129
converting test results into tests

ArrayFixture and RowFixture 164
basic FIT fixtures 162
DoFixture 163

cross-domain scripting 139
CruiseControl.NET 129
CurrencyParser class 185
custom data type 186
customer

involvement in testing 9, 32, 34,
41, 47
-oriented test 9, 33, 124

error checking 64
custom fixture class 187

D
DatabaseEnvironment class 153
DatabaseTest class 151
database testing 151
data-transfer object 59, 101, 163, 164
data type

and cell operators 184
custom 186
handling 181

matching 181
DbFit 151
debugging tests 182
DecimalFixture class 58
dedicated server, Selenium 147
define, keyword 84
dependency injection 92
describe-demonstrate-develop 35
DoCell method 180
DoCells method 180
DoFixture class

automatic collection wrapping 106
embedding other fixtures 92
introduced 70
wrapping business objects 101

DoRow method 179
DoRows method 179
DoTable method 179
DoTables method 179
DoubleFixture class 58
draw pool 29
DTO (see data-transfer object)
duplication, removing 79
dynamic information 56

E
empty collection 108
error, keyword 62
example

CurrencyParser 185
HelloWorld 18
invoice 165

Excel
converting from 165
writing tests 162

exception, keyword 62
exec, NAnt task 128
executable specification 34

258

Index

Execute class 157
ExecuteException class 181
ExecuteProcedure class 155
expected outcome 23
Export class 154
exterminating bugs 38

F
face-saving tests 137
fail, keyword 63
field name 22
files, organising 123
FIT

inner workings 177
introduced 7

fit.dll 19
FitLibrary 43, 70
FitNesse

as a Windows service 125
benefits 8
compared to NUnit 9
connecting to .NET classes 22
download 15
inner workings 177
installation 15
internal version control 119
introduced 8
security 120

fitnesse.jar 16
FitNesseRoot directory 126
fitsharp.dll 19
fixture

ActionFixture 75
arguments 48
ArrayFixture 106
BoolFixture 58
BoundFixture 180
ColumnFixture 22

Comment 50
coordinating 91
custom implementation 187
DatabaseEnvironment 153
DatabaseTest 151
DecimalFixture 58
DoFixture 70
DoubleFixture 58
embedding 92
Execute 157
ExecuteProcedure 155
Export 154
FloatFixture 58
import 48
inner structure 179
Insert 156
IntFixture 58
LongFixture 58
Query 157
RowFixture 112
SequenceFixture 98
SetUpFixture 94
SqlServerTest 152
StringFixture 58
TableFixture 166
target object 59
WebTest 142

Fixture class 18, 43
FloatFixture class 58
flow 92

and class names 95
and import 93
and SequenceFixture 98
DbFit database connection 152
DbFit mode 151
how DoFixture takes over 179
with test suites 100

flow mode 172

259

FolderRunner 177
form, use as test 165
Framework for Integrated Testing
(see FIT)

G
GetTargetObject method 59, 163

H
HelloWorld 18

I
IDraw interface 67
IDrawManager interface 68
IEnumerable interface, automatic
wrapping with DoFixture 106
import 48

and flow mode 93
cancelling 154

include directive 82
Insert class 156
installing FitNesse 15
instsrv.exe 125
IntFixture class 58
invariant on the code 161
IPlayerManager interface 54, 68
IPlayerRegistrationInfo interface 54
ISelenium interface 141
ITicket interface 68

K
keyword

blank 63
check 74, 163
contents 80
define 84
error 62

exception 62
fail 63
include 83
missing 107
name 175
no 58
not 74
note 75
null 63
path 22, 123
reject 74
show 74, 163
surplus 107
use 175
with 174
yes 58

L
legacy code 161
LongFixture class 58
lottery rules 29

M
markup variables 84
merge, CruiseControl.NET block 131
method name 22

and DoFixture 70, 71
and SequenceFixture 98

missing, keyword 107
mistake-proofing 37
multi-step test 53
mySystemUnderTest 101
mySystemUnderTest property 163

N
name

keyword 175

260

Index

NAnt 128
.NET 2 test runner

making default 126
.NET formatting 50
.NET 2 test runner

installing 15
no, keyword 58
not, keyword 74
note, keyword 75
null, keyword 63
NUnit 6, 47

compared to FitNesse 9
equivalent code to ColumnFixture
23

P
PageFooter 86
PageHeader 86
page property

remote wiki URL 121
suite 80
test 19

parameterised test page 58, 84
Parse

class 178
method 181, 186

Parse method 111
ParseSymbol class 181
parse tree 177
path, keyword 22, 123
payout pool 29
PlayerManager class 54
Poka-Yoke 37, 37
ProcessTables method 179
property name 22
public field 45
publishers, CruiseControl.NET block
131

Q
Query class 157
quick test 124

R
Recall method 61
red-green-refactor 31
reflection, DLL deployment 123
regression test 11
reject, keyword 74
remote server, Selenium 147
remote wiki 120
Reset 171
root page 86

running .NET by default 126
RowFixture class 112

converting result to test 164
for databases 157

Runner.exe 22
stopping tests 182

S
scheduling tests 133
security of FitNesse 120
Selenium

integrating with FitNesse 142
introduced 138
looking for HTML element 144
on a dedicated server 147
opening a URL 143
Remote Control 138
starting the browser 142
stopping the browser 143

SequenceFixture class 98
serialisation, DLL deployment 123
session control test 136
SetFixture class 114

261

SetSystemUnderTest 169
SetUp 80

in flow mode 100
setup fixture 55
SetUpFixture class 94

for databases 156
show, keyword 74, 163
singleton 55
slow test 124
special page

PageFooter 86
PageHeader 86
root 86, 126
SetUp 80, 100
SuiteSetUp 85
SuiteTearDown 85
TearDown 85, 100

Spreadsheet to FitNesse 162
SqlServerTest class 152
srvany.exe 125
stopping tests 182
stored procedures 155
story test 32
StringFixture class 58
subwiki 79

in flow mode 100
links 83

SuiteSetUp 85
SuiteTearDown 85
surplus, keyword 107
symbol 56

accessing from code 61
as argument 61
implementation 181
in output columns 61
standard access classes 58

symbolic links 84
system under test 101, 163

T
table

as test description 22
passing values between 54

TableFixture class 166
table of contents

for a subwiki 80
target object 59, 163

compared to system under test 101
tasks, CruiseControl.NET block 130
TDD (see test-driven development)
team working

building shared understanding 3
passing on requirements 9
setup options 119

TearDown 85
in flow mode 100

test, multi-step 53
test-driven development

benefits 5
three rules 31

test extension 87, 109, 195
test page 19

converting to test suite 81
hiding parts 88
include pages as components 83
linking 23
links 83
parameterised 58, 84
symbolic links 84
valid names 24

TestRunner 127
test runner

.NET by default 126
FolderRunner 177
Runner.exe 22
TestRunner 127

262

Index

test script 53
test smell 79, 195
test stub 69
test suite 80

in flow mode 100
three rules of TDD 31
Toyota 36
troubleshooting

with DoFixture 74
with Selenium 141
with Visual Studio 182

U
UI (see user interface, testing)
unit test

compared to acceptance test 35
rules by Michael Feathers 10
tool abuse 6

unstable test 165
usability constraint 135
use

keyword 175
use case

compared to user stories 32
user interface, testing 135
user story 32

compared to use cases 32
introduced 32
selected 29

V
version control

external 121
internal 119, 122

Visual Studio
debugging fixtures 182
deploying DLLs 123, 123

W
WaitForPageToLoad method 145
web interface, testing 135
WebTest class 142
wiki 18

import 120
new 126

Windows resource kit 125
Windows service 125
WinningsCalculator class 41
with

keyword 174
Word

converting from 165
writing tests 162

workflow 87
fixtures 179
rule 135
test 136

Y
yes, keyword 58

Z
zero quality control 36
ZQC (see zero quality control)

263

264

	Test Driven .NET Development with FitNesse
	Table of Contents
	Preface to the second edition
	What's new in this version?

	Training and consultancy
	Acknowledgements
	About the author
	Part I. Getting started
	Chapter 1. Introduction
	Who should read this book?
	Why bother with TDD?
	Quality from the start
	Early interface validation
	Divide and conquer
	Safety net for the code
	Confidence = Productivity
	Light at the end of the tunnel

	Beyond unit tests
	Getting FIT
	How does FitNesse help?

	FitNesse or NUnit?
	Quick basic tests: use NUnit
	Manageable larger tests: use FitNesse
	Not a silver bullet

	The next step

	Chapter 2. Installing FitNesse
	Setting up FitNesse
	A quick test
	How FitNesse connects to .NET classes
	Don't forget the test
	FitNesse is very strict about the page names

	Playtime

	Part II. FitNesse and TDD in practice
	Chapter 3. Our Project
	Lottery rules
	Selected user stories
	Applying TDD to our project
	Guiding the development
	Automated acceptance testing
	Who should write acceptance tests?

	Testing to prevent defects, not to find them

	The next step

	Chapter 4. Writing basic tests
	ColumnFixture — the Swiss Army knife of FitNesse
	Testing in plain English
	Use names that are easy to read – FitNesse will find the correct .NET equivalent
	Import namespaces and clean up table headers
	Replace repetitive values with arguments
	Talk to the customer
	Use comments to describe tables
	Use .NET formatting to make values easier to read
	Customer-friendly table

	Playtime

	Chapter 5. Writing simple test scripts
	Passing values between tables
	Use setup fixtures to store static context
	Use symbols to pass dynamic information

	Writing a simple test script
	Use data-transfer objects directly
	Using symbols to check dynamic values
	Checking for errors
	Playtime

	Chapter 6. Writing efficient test scripts
	Better test scripts with DoFixture
	Writing the story in a test table

	Use DoFixture keywords for better control
	Keep ActionFixture in mind
	Playtime

	Chapter 7. Removing duplication
	Group related tests into test suites
	Include pages and use them as components
	Links within a subwiki

	Reuse entire suites with symbolic links
	Use markup variables to parameterise test pages
	Defining common actions
	Remove irrelevant information
	Acceptance tests should focus on business rules
	Hide parts of the page
	Playtime

	Chapter 8. Coordinating fixtures
	Embed fixtures for best results
	Settlement tests in flow mode

	Use SetUpFixture to prepare the stage for tests
	Create test suites in flow mode
	Wrapping business objects with DoFixture
	Playtime

	Chapter 9. Working with collections
	Testing lists of objects
	Checking for empty collections
	Beware of test extensions
	Use RowFixture for better precision
	Playtime

	Part III. Advanced FitNesse usage
	Chapter 10. Working in a team
	Options for team setup
	Using a single central server
	Importing tests from a remote wiki
	Storing tests in a version control system

	Organising the files
	Don't mix quick and slow tests
	Separate code-oriented and customer-oriented tests
	Start with a fresh wiki
	Configure FitNesse to run .NET tests by default

	Integrating with automated build tools
	Using TestRunner
	Running tests with NAnt
	Integrating FitNesse with CruiseControl.NET
	Scheduling tests and alerts

	Chapter 11. Testing web interfaces
	Choosing the right thing to test
	Workflow and session control
	Face-saving tests
	Test a key business workflow

	Introducing Selenium
	Setting up Selenium and Remote Control
	A quick Selenium example
	Using ISelenium

	Connecting from FitNesse
	Starting and stopping the browser
	Simulating client interaction
	Inspecting results
	Completing the test

	Running tests on a remote server
	More Selenium tests

	Chapter 12. Testing database code
	Connecting to the database
	Connecting in flow mode
	Connecting in standalone mode
	Transaction management

	Working with stored procedures
	Preparing test data
	Executing statements
	Verifying query results
	Other DbFit features

	Chapter 13. Testing legacy code
	Covering legacy code with tests
	Use blank cells to print out results
	Use show and check with FitLibrary
	Wrap existing objects for tests
	Use ArrayFixture and RowFixture to capture data batches
	Using existing forms for regression tables

	Chapter 14. Using business domain objects directly
	System under test with ColumnFixtures
	Changing the system under test
	Using collections directly
	Setting the system under test from FitNesse
	Using named fixtures
	Don't go too far

	Chapter 15. Tips and tricks
	What really happens during a test?
	The parse tree
	Executing tables
	Binding columns to class members
	Cell operators
	Handling data types

	Attaching the Visual Studio debugger
	When in doubt, just print to the console

	Load non-standard cell operators for simpler comparisons
	Simplify verifications with a custom cell operator
	Avoid conversions by supporting custom data types
	Implement domain-specific tests using custom fixtures

	Part IV. Appendices
	Appendix A. Formatting text
	Appendix B. Test smells
	Appendix C. Resources
	Books
	Web sites
	Main FitNesse site
	FitSharp
	FitSharp GIT repository
	FitNesse Yahoo group
	FitNesse.Info community site
	UK Agile testing community
	Acceptance Testing Info portal
	Examples from Fit for Developing Software [3] ported to .NET
	FitLibrary homepage
	FIT web site

	Blogs with good articles on FitNesse and FitSharp
	The Quest For Software++
	Cory Foy
	The Shade Tree Developer
	Ruslan Trifonov
	Google testing blog
	Test-obsessed
	Successful Software

	Articles
	Martin Fowler: Continous Integration
	James Carr: TDD Anti-Patterns
	Michael Feathers: A Set of Unit Testing Rules
	Michael Feathers: Working Effectively With Legacy Code
	John R. Grout, and Brian T. Downs: A Brief Tutorial on Mistake-proofing, Poka-Yoke, and ZQC
	Robert C. Martin: Three rules of TDD
	Michael Feathers: Pitching a FIT
	Sean Shubin: Test First Guidelines
	Dan North: Introducing Behavour-Driven Development
	James Shore: A vision for FIT
	James Shore: How I use FIT
	Steve Donie, Using version control with FitNesse, revisited

	Video presentations and slides
	Mary Poppendieck, Competing on the basis of Speed
	Rick Mugridge, Doubling the value of automated tests
	Valtech: FIT/FitNesse - an agile journey
	Elliotte Rusty Harold, Test driven web applications with FitNesse
	J.B.Rasinberger: Customer Friendly Testing

	Appendix D. Source code
	C# Classes
	HelloWorld/HelloWorld.cs
	SeleniumTest/Console.cs
	Tristan/src/IDraw.cs
	Tristan/src/IDrawManager.cs
	Tristan/src/IPlayerInfo.cs
	Tristan/src/IPlayerManager.cs
	Tristan/src/IPlayerRegistrationInfo.cs
	Tristan/src/ITicket.cs
	Tristan/src/InitialWinningsCalculator.cs
	Tristan/src/WinningsCalculator.cs
	Tristan/src/inproc/Draw.cs
	Tristan/src/inproc/DrawManager.cs
	Tristan/src/inproc/PlayerInfo.cs
	Tristan/src/inproc/PlayerManager.cs
	Tristan/src/inproc/PlayerRegistrationInfo.cs
	Tristan/src/inproc/Ticket.cs
	Tristan/test/PayoutTable.cs
	Tristan/test/PlayerRegistration.cs
	Tristan/test/PurchaseTicket.cs
	Tristan/test/ReviewTickets.cs
	Tristan/test/SetUpTestEnvironment.cs
	Tristan/test/Settlement.cs
	Tristan/test/TotalPoolValue.cs
	domain/AlternatingSUT.cs
	domain/AutomaticDomainObjectWrapping.cs
	domain/Domain.cs
	domain/FlowCollections.cs
	domain/SystemUnderTestColumnFixture.cs
	domain/TargetObject.cs
	extended/CurrencyParser.cs
	extended/Invoice.cs
	extended/RegExHandler.cs
	webfixture/WebTest.cs

	FitNesse Tests
	CustomParsing
	DomainWrapper.AlternatingSystemUnderTest
	DomainWrapper.FlowCollections
	DomainWrapper.FrontPage
	DomainWrapper.NamingSystemUnderTests
	DomainWrapper.SystemUnderTest
	DomainWrapper.SystemUnderTestColumnFixture
	DomainWrapper.TargetObject
	DomainWrapper.WithSystemUnderTest
	DomainWrapper
	FrontPage
	HelloWorld
	InvoiceTable
	LoginTest
	NicerPrizeCalculation
	PlayerRegistrationFirstTry
	PlayerRegistrationSecondTry
	PlayerRegistrationThirdTry
	PrizeCalculation
	PrizeCalculationFirstTry
	PurchaseTicketFirstTry
	PurchaseTicketNotEnoughMoney
	PurchaseTicketSecondTry
	PurchaseTicketSuite.BasicCase
	PurchaseTicketSuite.NotEnoughMoney
	PurchaseTicketSuite.SetUp
	PurchaseTicketSuite
	PurchaseTicketWithVariable
	SettlementTests.OneWinnerSixBallsFirstTry
	SettlementTests.SetUp
	SettlementTests.TwoWinnersFourBalls
	SettlementTests
	TicketReviewTests.SetUp
	TicketReviewTests.SeveralTicketsOneDraw
	TicketReviewTests.SeveralTicketsTwoDraws
	TicketReviewTests.TwoAccountsOneDraw
	TicketReviewTests.WinningsRecordedCorrectly
	TicketReviewTests
	TicketReviewTestsWithRowFixture
	fitnesse/FitNesseRoot/content.txt

	Build scripts
	scripts/runfitnesse.build
	scripts/ccnet.config

	Web code
	code/testsite/loginform.html
	code/testsite/login.aspx

	Index

