AutomationDirect

1/16 DIN Series

Operator's Manual

PM24

Microprocessor-Based Process/Temperature Limit Controller

Technical Support

We strive to make our manuals the best in the industry. We rely on your feedback to let us know if we are reaching our goal. If you cannot find the solution to your particular application, or, if for any reason you need additional technical assistance, please call us at 770-844-4200.

Our technical support group is glad to work with you in answering your questions. They are available weekdays from 9:00am to 6:00pm Eastern Standard Time. We also encourage you to visit our website where you can find technical and non-technical information about our products and our company. Visit us at <u>www.automationdirect.com</u> for additional information and FAQ's on our process controllers.

General Safety Information

Electrical Hazards and Warnings

Prior to connecting the controller, read the user's manual for proper connection and operating information.

Follow National Electrical Code (NEC) safety requirements when wiring and connecting a power source and sensors or other devices to the controller. Failure to do so could result in injury, death or damage to equipment and property.

Make sure the proper input voltage is applied to the controller. Improper voltage will result in damage to the unit.

Use caution when removing the controller from its case, there may be live voltage present at the terminals. This should only be done by a qualified technician.

All terminal screws must be tightened securely. Terminal screws not properly secured can cause an electrical short that may damage property, equipment or cause injury or death. Terminal screws improperly secured may fall into equipment causing possible damage to property or equipment.

This instrument is not intended for use in life safety applications.

Important: For applications where physical injury or equipment damage might occur in the event our product fails, we recommend the installation of independent safety equipment with its own independent sensor that will shut down the process.

Important: Firmware version of controller must match the version indicated on the bottom front cover of this manual.

PM 24 Limit Controller

Table of Contents

Description 1. Main Features	Page
2. Specifications Input	3 4
Sensor Wire Input Output 2.1 Main Dimensions	4 4 4
3. Operation 3.1 Electrical Connections 3.2 Input Signal Wiring 3.3 Output Alarm Wiring 3.4 Panel Assembly 3.5 Error Messages	5 6 7 7 7
 4. Menu System 4.1 Initial Startup 4.2 Set Up Cycle Parameters Cycle Menu 4.3 Serial Number Access 	8 8 9 9
5. Controller Configuration 5.1 Cycle 1 – Operation 5.2 Cycle 2 – Alarm Setpoints 5.3 Cycle 3 – Input & Alarm Configuration Table 1 – Input Type Wire Sensor Input Table 2 – Alarm Type Alarm Functions Function Protection 5.4 Cycle 4 – Calibration	
Quick Set Up Reference	
Notes	20
Configuration Sheet	22

1/16 DIN Series PM24 Operator's Manual Manual Rev. 2.2 Firmware Version 1.50

PM24

1/16 DIN Microprocessor-Based Temperature/Process Limit Controller

1. MAIN FEATURES

- Process/Temperature multi-sensor input, without hardware change.
- Accepts 7 thermocouples, RTD-Pt100, DC mA, mV and Volts. All inputs are factory calibrated.
- Programmable Scaling: -1999 to 9999 with selectable decimal point for: mA, mV and Volts input.
- Selectable °F/°C temperature.
- RTD-Pt100 with 1° temperature resolution: -326 to 986°F (-199 to 530°C), and 0.1° temperature resolution: -199.9 to 986.0°F (-199.9 to 530.0°C).
- Input sample rate: 10 reading per second (100 ms).
- Output Alarms: Dual stationary SPST Alarm Relays, with individual hysteresis adjustment.
- Sensor break protection in any condition.
- Easy-to-set programming menu.
- Firmware version displayed during power up.
- High impact ABS enclosure.
- Dimensions: 48x48x106mm.
- Power: 90 to 260Vac.

2. SPECIFICATIONS

- Dimensions: 48 x 48 x 106mm (1/16 DIN) Approximate weight: 200g max.
- Panel cut-out: 45.5 x 45.5mm (± 0.3mm)
- Terminal connection: screws, accepting 16 24 AWG or 6.3 mm fork lugs.
- Power: 90 to 260Vac, 50/60Hz, Consumption: 7VA max.
- Operating environment: 0 to 50°C (32 to 122°F, humidity: 10 to 90% RH, noncondensing.
- Flame-Retardant ABS Plastic Case.
- Warm-up time: 15 minutes max.

INPUT

- Keypad selection of input type (refer to table 1)
- Display resolution : 0.1°F/C or 1°F/C (RTD-Pt100),
 - -1999 to 9999 fully scalable for mA, mV and Volts input
- Input sample rate: 10 per second (100 ms)
- Accuracy : Thermocouples J, K, T, E, N: 0.2% of span, ±1°C, ±1 digit Thermocouples R, S: 0.25% of span, ±3°C, ±1 digit Pt100, mA, mV and Volts: 0.2% of span, ±1 digit
- Input impedance: 0-50mV and thermocouples: >10MΩ 0-10 Volts DC: >1MΩ 4-20 mADC: 100 Ω
- Pt100 measurement: DIN 43760 standard (α=0.00385).
 3-wire circuit, cable resistance compensation. Excitation current: 170μA.

SENSOR WIRE INPUT:

- **Thermocouples** are connected to terminals 2(+) and 3(-), with positive on terminal 2.
- Voltage signals up to 50 mV should be connected to terminals 2(+) and 3(-).
- **Pt100 sensors** are connected to terminals 1, 2 and 3, as indicated in this manual. For full compensation of cable resistance only cables with equal wire electrical resistance should be used.
- Voltage signals up to 10 Vdc should be connected to terminals 5(+) and 3(-)
- Current 4 to 20mA signals should be connected to terminals 4 (+) and 3 (-).

OUTPUT:

 Two SPST Relays (without contact suppression): Resistive: 3A @ 250VAC / 3A @ 125VAC / 3A @ 30VDC Inductive: 2A @ 250VAC / 2A @ 30VDC Dielectric Strenght: 750Vrms between open contacts (at sea level for 1 min.)

2.1 MAIN DIMENSIONS AND CUTOUT:

3. OPERATION

Main display - PV: Displays the PV (**P**rocess **V**ariable) value, and used when configuring the parameters of the controller.

Alarm 1 - AL1 LED: status of the alarms, (LED On = alarm active).

Alarm 2 - AL2 LED: status of the alarms, (LED On = alarm active).

SETUP key: used to set up the menu cycles.

DECREASE key: used to change parameter values.

INCREASE key: used to change parameter values.

IMPORTANT:

When the controller is turned on, the firmware version is displayed for approximately 4 seconds, after which the controller starts normal operation. The value of PV is displayed and the outputs are enabled after 6 seconds.

Prior to first operation, the controller should be fully configured. The user must set basic parameters such as input type ("LYPE"), alarm set points ("A ISP" and "A2SP"), etc.

3.1 ELECTRICAL CONNECTIONS:

(Figure 3)

3.2 POWER WIRING:

Note: The installation of fuse is optional, depending on level of protection required.

3.3 INPUT SIGNAL WIRING:

NOTE: Use copper conductors rated for at least 75 °C. For Thermocouple sensors use appropriate compensated thermocouple wires.

(Figure 5)

3.5 PANEL ASSEMBLY:

First remove the mounting clamp and insert the controller into the panel cut out. Place the unit into the panel cutout and slide the mounting clamp from the rear to a firm grip at the panel.

The internal circuitry can be fully removed from the housing without disconnecting any wiring. By using the thumb, just press the tab in the lower part of the front panel, grab the front panel firmly and pull the front face and circuitry from the housing.

Warning: Use caution when removing the controller from its case, there may be live voltage present at the terminals. This should only be done by a qualified technician. It is recommended that power to the controller be disconnected prior to removing the controller from the case.

3.6 ERROR MESSAGES:

The connection and configuration errors for most of the problems encountered when using the controller are shown below.

Error messages are displayed to help the user to identify possible problems.

_ _ _ _ _ : Process temperature is below the selected sensor range.

: Process temperature is above the selected sensor range

 \square \square \square : Controller or sensor error.

Example: - Broken (open) thermocouple, mA, mV or Volts open loop. - Pt100 badly connected, short-circuited, open, or high cable resistance.

4. MENU SYSTEM:

The Parameter Menu System is organized into four basic cycles. This is shown in the chart below.

Cycle
1 – Indication
2 – Alarms
3 – Configuration
4 – Calibration

4.1 INITIAL STARTUP

When the controller is initially energized the Firmware version is displayed for approximately 4 seconds after which the controller reverts to the normal operation mode in the Indication cycle. The value of the process variable (PV) is displayed and the outputs are enabled after 6 seconds.

Important: The Firmware version of the controller must match the version indicated on the bottom front cover of this manual.

4.2 SETUP CYCLE PARAMETER ACCESS:

The Indication cycle is the default cycle for the controller and only shows the PV. All other cycles have parameters that can be accessed and changed to configure the controller as needed.

The cycles need only to be accessed when a change of parameters is necessary. To reach the other parameters the user must keep the SETUP key pressed for approximately 4 seconds. After this time the controller will display the first parameter of the next cycle. By keeping the SETUP key pressed for another 3 seconds the next cycle will be accessed.

Release the SETUP key when the desired cycle is reached. Press the SETUP key once to access the next parameter in the same cycle or quickly press the SETUP key to move through the parameters in the cycle. After the last parameter in a cycle is reached, pressing the SETUP key one last time will bring the controller back to the Indication cycle (Cycle-1). The display will also revert to the Indication cycle after 20 seconds if the parameters in a cycle are not changed.

Once in a desired parameter the display will alternate the name and value. The value can then be changed by pressing the rightarrow or rightarrow key.

The following page shows the Cycle Parameter Menu.

Cycle Parameter Menu

IND

Cycle-1	Cycle-2	Cycle-3	Cycle-4
INDICATION	ALARMS	CONFIGURATION	CALIBRATION
	-		
PV	R ISP	E A DE	InLE
Indication	Alarm 1	Input Type	Input Low Calibration
	R25P	dP.Po	InHE
	Alarm 2	Decimal Point Position	Input High Calibration
	RL_FE	un IL _{Unit}	
			Cold Junction Low Calibration
		inHi	
		Input High Limit	
		Offset Signal Input	
		Alarm 1 Funtion	
		R2Fu	
		Alarm 2 Funtion	
		R IHY	
		Alarm 1 Hysteresis	
		R5H7	
		Alarm 2 Hysteresis	
		Prot	
		Security Protection	

NOTE: Any changed parameter is saved into non-volatile memory when scrolling to the next parameter or 20 seconds after the new parameter is changed.

4.3 DIGITAL SERIAL NUMBER ACCESS:

To read the controller's serial number (8 digits), hold down the A key for a few seconds and the first four digits will appear on the display. To read the second four digits, hold down the rekey for a few seconds and the second four digits will appear on the display, completing the 8 digits serial number.

The serial number is recorded in the factory and cannot be changed.

5. CONTROLLER CONFIGURATION

The Configuration section gives information on parameter settings in each Cycle which will help to configure the controller for the desired operation. However, the first parameter that needs to be programmed is the Input Type (LYPE) in the Configuration cycle, Cycle-3 (see section 5.3 page 11, and Table 1 page 12). This will determine the scale for all other parameter values, i.e.: a J thermocouple has different temperature range than a K thermocouple and will have a different setpoint range.

5.1 CYCLE 1 – OPERATION:

PV	After power up the display indicates the measured value
INDICATION	proportional to the input signal.

5.2 CYCLE 2 – ALARM SETPOINTS:

Low and high alarms are used to signal minimum and maximum temperature values as programmed in the "**R ISP**" and "**R2SP**" prompts

R 15P Alarm 1	SETPOINT for Alarm 1: Tripping point for alarm 1 (see Table 2, page 13).
R25P Alarm 2	SETPOINT for Alarm 2 : Tripping point for alarm 2 (see Table 2, page 13).
RL, E Alarm Re ference (Diferential)	REFERENCE VALUE FOR DIFFERENTIAL ALARM : a value in respect to which the differential, differential low, and differential high alarms will be set. Valid for alarms type 2, 3, 4, 8, 9, and 10 (see Table 2, page 13).

5.3 CYCLE 3 – INPUT TYPE, AND ALARMS CONFIGURATION:

FALE	INPUT TYPE: Selects the input sensor type to be connected to the indicator. Default: <i>i</i> (T/C Type K)
Туре	" This is the first parameter to be set " (Refer to Table 1, page 12).
dP,Po Decimal Point	DECIMAL POINT POSITION: Available only for input types 18, 19 or 20. Defines the number of digits to be shown after the decimal point. Programmable from 0 to 3. Default:
un IL unit	 TEMPERATURE UNIT: Selects display indication for degrees Celsius or Fahrenheit. Default: 0 0 - degrees Celsius (°C) 1 - degrees Fahrenheit (°F)
InLL Input Low Limit	INPUT LOW LIMIT: Available for input types from 9 to 20. Defines the lowest value to be displayed when the input signal is at its lower value. For input types from 0 to 8 it defines the lowest alarm set point value. Default: - ISD
InHL Input High Limit	INPUT HIGH LIMIT: Available for input types from 9 to 20. Defines the highest value to be displayed when the input signal is at its upper value. For input types from 0 to 8 it defines the highest alarm set point value. Default: 1370
OFF5 Offset Input	OFFSET SIGNAL INPUT: Offset value to be added to the PV to compensate sensor error. Default: D
RIFu Alarm 1 Function	FUNCTION OF ALARM 1: Refer to Table 2, page 13, for function description and respective codes to set at this prompt. Default:
Alarm 2	FUNCTION OF ALARM 2: Refer to Table 2, page 13, for function description and respective codes to set at this prompt. Default:
R IHY Alarm 1 Hysteresys	ALARM 1 HYSTERESIS: Defines the differential range between the PV value at which the alarm is turned on and the value at which it is turned off (in engineering units). Default: <i>I</i>
R2HY Alarm 2 Hysteresys	ALARM 2 HYSTERESIS: Defines the differential range between the PV value at which the alarm is turned on and the value at which it is turned off (in engineering units). Default: <i>1</i> .
Prot Protection	 FUNCTION PROTECTION: See description and Figure 8 on page 15, and Figure 9 on page 16. Default: 1 D = No protection, all cycles can be accessed. I = No access to cycle 4 Z = No access to cycle 3, and cycle 4. J = No access to cycle 2, cycle 3, and cycle 4.

Input Type:

	CODE		
INPUTITE	CODE	RANGE	
Thermocouple J	0	-166 to 1400°F (-110 to 760°C)	
Thermocouple K	1	-238 to 2498°F (-150 to 1370°C)	
Thermocouple T	2	-256 to 752°F (-160 to 400 °C)	
Thermocouple E	Э	-130 to 1328°F (-90 to 720°C)	
Thermocouple N	ч	-238 to 2372°F (-150 to 1300°C)	
Thermocouple R	5	32 to 3200°F (0 to 1760°C)	
Thermocouple S	6	32 to 3200°F (0 to 1760°C)	
Pt100 (Resolution 0.1°)	٦	-199.9 to 986.0°F (-199.9 to 530.0°C)	
Pt100 (Resolution 1°)	8	-326 to 986°F (-199 to 530°C)	
4 to 20mA	9	Linearized J: -166 to 1400°F (-110 to 760°C)	
4 to 20mA	10	Linearized K: -238 to 2498°F (-150 to 1370°C)	
4 to 20mA	11	Linearized T: -256 to 752°F (-160 to 400 °C)	
4 to 20mA	12	Linearized E: -130 to 1328°F (-90 to 720°C)	
4 to 20mA	13	Linearized N: -238 to 2372°F (-150 to 1300°C)	
4 to 20mA	14	Linearized R: 32 to 3200°F (0 to 1760°C)	
4 to 20mA	15	Linearized S: 32 to 3200°F (0 to 1760°C)	
4 to 20mA	15	Linearized Pt100: -199.9 to 986.0°F (-199.9 to 530.0°C)	
4 to 20mA	רו	Linearized Pt100: -326 to 986°F (-199 to 530°C)	
0 to 50mV	18	Linear. Programmable range from -1999 to 9999	
4 to 20mA	19	Linear. Programmable range from -1999 to 9999	
0 to 10V	20	Linear. Programmable range from -1999 to 9999	

NOTE: In case of sensor break or failure an error " *Erro*" message is displayed.

Notes: 1) For Thermocouple Sensors use appropriate compensated thermocouple wires.

2) Use copper conductors rated for at least 75 °C (except on T/C).

Alarm Type:

(where SPAn means: **R ISP** and **R2SP**)

Alarm Functions:

Low Alarm: Activates at present value, independent of main setpoint. Low process-alarm activates at and below alarm setting.

High Alarm: Activates at present value, independent of main setpoint. High process-alarm activates at and above alarm setting.

Differential Low: Activates at present deviation (negative or positive) value from Alarm Reference ($RL_{r}E$). Low deviation-alarm activates below alarm setting. Figure 7(a) gives a graphical description of this.

Differential High: Activates at present deviation (negative or positive) value from Alarm Reference ($RL_{r}E$). High deviation-alarm activates above alarm setting. This is represented in figure 7(b).

Differential: Activates when the process exceeds a specified band-alarm centered around the Alarm Reference (**RLrE**). See Figure 7(c).

Inhibition at power-up: Alarm blocking at power-up inhibits the relay alarm from activating when the unit is first energized. The alarm will only trip after the process variable reaches a new alarm situation.

Function Protection (Prot):

The controller is shipped with full accessibility. If you want to use the "Function Protection" to disable access to cycles 2, 3 and 4, follow the steps below:

- Remove the controller circuitry from the housing by using the thumb to press the tab in the lower front face of the controller, then, while firmly grabbing the front face at the top and bottom pull it and the circuitry from the case.

Warning: Use caution when removing the controller from its case, there may be live voltage present at the terminals. This should only be done by a qualified technician. It is recommended that power to the controller be disconnected prior to removing the controller from the case.

- View the controller in the position shown in Figure 8 and note the Protection Jumper on the top main board.
- Enable Function Protection (locks the **Prot** parameter) by placing the jumper over both jumper prongs as shown in figure below. Needle nose pliers are recommended for changing jumper position.
- **Disable Function Protection** (unlocks the **Prot** parameter) by placing the jumper over both jumper prongs as shown in figure below.
- Once the desired protection is obtained slide the controller back in the case making sure that the main board and power supply board stay in the circuit board channels at the top and bottom side walls of the case. Use the palm of the hand to press the front panel flush into the controller housing.

(Figure 8)

CYCLE 4 - CALIBRATION LEVEL:

NOTE: All input and output types are factory calibrated. This cycle should only be accessed by experienced personnel. If in doubt do not press the \bigcirc or \bigcirc keys in this cycle.

InLL Input Low Calibration	SENSOR OFFSET CALIBRATION . Sets the temperature sensor low calibration (offset). The display shows only the corrected temperature and not the offset added. A signal simulator should be used to inject a low value signal to properly adjust the offset.
InHE	INPUT HIGH CALIBRATION . Sets the sensor input circuit gain or high calibration.
In put H igh C alibration	A signal simulator should be used to inject a high value signal to properly adjust the offset.
C JL Cold Junction Low Calibration	COLD JUNCTION OFFSET CALIBRATION : Sets the cold junction ^o C offset calibration. A good thermometer or a temperature simulator should be used to properly adjust this parameter.

PM24 Quick Setup Reference

Key and Display Functions

	AutomationDirect_	P M24	
Main display: Indicates the — process temperature, program parameters and alarms.	24[] []	
A1 LED: Indicates the status of alarm 1.	→ A1	A2 ■	A2 LED: Indicates the status of alarm 2.
SET UP: Used to move			Used to increase the value of the displayed parameter.
Used to advance to the next Cycle when pressed and held for 4 seconds.		Used to decr of the display	ease the value ved parameter.

Set Up Cycle Parameters

Cycle-1	Cycle-2	Cycle-3	Cycle-4
INDICATION	ALARMS	CONFIGURATION	CALIBRATION
PV Indication	R 15P Alarm 1	LYPE Input Type	InLE Input Low Calibration
	Alarm 2	dPPo Decimal Point Position	InHE Input High Calibration
	RL_E Differential	Unit	
		Input Low Limit	Calibration
		Input High Limit	
		Offset Signal Input	
		Alarm 1 Funtion	
		Alarm 2 Funtion	
		R IHY Alarm 1 Hysteresis	
		R2H Alarm 2 Hysteresis	
		Prot Security Protection	

This quick reference setup is intended to be used by experienced users that are familiar with the PM24 set up menu or those that need only basic limit alarm operation. This guide will show how to configure the input and basic alarm functions. For detailed programming information refer to the Table of Contents to find the required instructions for a particular function. Follow these steps:

- 1. <u>Indication</u>: Connect Power and Input wiring to the proper terminal connections (page 6). After power-up the controller is in the **Indication** Cycle and shows the PV in the display.
- Input Type: Press and hold the SETUP key until LYPE is shown in the display, approximately 7 seconds. Select the Input Type from Table 1 on page 12 by using the ▼ or ▲ keys. If Input Type is linear (codes 18,19 or 20) proceed to 3. If Input Type is temperature (codes 0 17) proceed to 4.
- Decimal Point Position: Used only if input is linear, Input Types 18,19 or 20. After selecting the Input type in Cycle-3 press the SETUP key once until dPPo is shown in the display. Select the desired decimal point position using the ⊂ or keys.

- 6. <u>Alarm Set Points</u>: After setting up the Alarm Functions press the SETUP key several times until the Indication Cycle is reached (PV display). From the Indication Cycle press and hold the SETUP key for approximately 4 seconds until *R ISP* is shown in the display, Cycle-2. Select the value of the set point for Alarm 1 using the or keys. If a second alarm limit was programmed, then press the SETUP key once until *R2SP* is shown in the display. Select the value of the set point for this alarm using the or ▲ keys as well. This will set up the controller for limit alarm operation.

All parameter settings are stored in non-volatile memory when scrolling to the next parameter or if the value has not been changed within a 20 second period.

PM24

Configuration Sheet

Name. Date.	Name:	Date:
-------------	-------	-------

Part#: _____

Project:_____

Process Setpoint:				
Cycle 3 CONFIGURATION	Default	CODE/VALUE	CHARACTERISTICS / FUNCTION	
LYPE	1			
dPPo	۵			
Un IE	0			
InLL	- 150			
InHL	סרפו			
A IFU	0			
A2FU	0			
A IHY	1			
A5H7	1			
Prot	1			
Cycle 2 ALARMS	Default	CODE/VALUE	CHARACTERISTICS / FUNCTION	
A ISP	6 10			
ASSP	6 10			
ALFE	- 150			

Error Codes Table for Temperature/Process Controllers

Document # C0504

The connection and configuration errors for most of the problems encountered in using the controller are shown below. A final revision of the connections and parameters will save time and further losses.

Error messages are displayed to help the user to identify possible problems.

Display Show s	Cause		
	Process or temperature is below the selected sensor range.		
	Process or temperature is above the selected sensor range.		
Erro	 Sensor error. Example: 1. No connections on the sensor input terminals. 2. Broken thermocouple (open w i re) or broken RTD-Pt100. 3. RTD-Pt100 badly connected, short-circuited or high cable resistance. 		
Err I	RTD-Pt100 badly connected, short-circuited or high cable resistance.		
Err 6	This kind of error is caused when, for instance, a 4-20mA signal goes through the mV or Thermocouples input and can introduce signals of up to 30VDC at the input point and force the Auto/Zero and Auto/Span to w ork outside the limits that guarantee the precision of the controller. This error goes away when the signal is removed from the input and the connection is fixed (normally, input signals of up to 30VDC do not damage the controller's hardw are).		
Err 2	Auto/Zero Problem: This error is caused by a w ong connection and indicates that a voltage greater than 30VDC w as input into the sensor and the Auto/Zero circuit was damaged. It is necessary to rev i se the controller.		
Err 4	Auto/Span Problem: This error is caused by a wrong connection and indicates that a voltage greater than 30VDC was input into the sensor and the Auto/Span circuit was damaged. It is necessary to revise the controller.		

Error Codes Table

NOTE: The controllers do not accept AC-Voltage or AC-Current in the sensor input. This type of signal can damage the controller.