
CodeWarrior for
Microcontrollers V10.0

Device Initialization
User Manual

Help version 2.9

Copyright 2010 Freescale Semiconductor, Inc.

PROCESSOR EXPERT is trademark of Freescale Semiconductor, Inc.

- 1 -

- 2 -

CONTENTS
1. Introduction 4
1.1. Features and Benefits 4
1.2. Basic Terms and Definitions 4
1.3. Quick Start 5
1.4. Rapid Application Development Tools 6

2. User Interface 8
2.1. Target CPU View 8
2.2. Inspector Dialog Box 10
2.3. Code Generation Options Dialog Box 12

3. Using the Tool 14
3.1. Peripheral Initialization Components 14
3.2. Code Generation And Usage 15
3.3. Defining Interrupt Service Routines 17
3.4. Changing The CPU 18

4. Help Revisions History 19

- 3 -

Device Initialization User Manual

1. Introduction
Device Initialization is a fast, easy, and user-friendly way to configure and generate a CPU peripheral

initialization code.

1.1. Features and Benefits
The key features of the Device Initialization tool are:

Graphical• user interface with CPU package, peripherals and pins.

User-friendly• access to the initialization setup of the CPU peripherals.

Initialization• code generator.

User• can select Assembly or C format for the generated code.

Built-in• detailed design specifications of the Freescale CPUs.

Initialization• options are automatically transformed into the peripheral control registers values.

Easy• to view control register values resulting from the parameter settings. Changes are immediately

highlighted.

Changes• in the peripheral control registers values are transformed back into the component parameters.

The key benefits of the Device Initialization tool are:

Easy• to learn design environment.

User• friendly names of the peripheral features - no need to explore manuals for the control register details.

Easy• changes in initialization.

Possibility• to reuse the individual peripheral setup for other designs.

No• need to generate code to see the resulting peripheral control registers values.

1.2. Basic Terms and Definitions
Component - Peripheral Initialization component - is a component that encapsulates initialization of a

peripheral. A component can be configured using the Inspector. See 3.1 Peripheral Initialization Components

for details.

CPU component - Component configuring the CPU core parameters. It cannot be removed from the project.

Design - All components (the CPU component and the Peripheral Initialization components) with their

customized parameters.

Inspector - Window that allow to view and configure parameters of the selected component.

Internal peripherals - Internal peripherals of the MCU (ports, timers, A/D converters, etc. usually controlled by

the CPU core using special registers).

ISR - Interrupt Service Routine - code which is called when an interrupt occurs.

Module - Source code module. Could be generated by the tool or created by the user and included in the project

(user module).

Peripheral settings - Initialization parameters for an individual peripheral. These settings can be saved and

restored from the file.

- 4 -

Device Initialization User Manual Introduction

Popup menu - This menu is displayed when the right mouse button is pressed on some graphical object.

Properties - Parameters of the component. Property settings define the internal peripheral initialization state that

will be converted to generated initialization code during the code generation process.

Target CPU - CPU derivative used in a given design.

1.3. Quick Start
This section describes how to create a simple design, configure a device, generate initialization code and use it in

your application.

Step 1. Create an Empty Design

Use the Project Wizard to create a new project. It can be invoked by clicking on the New Project Wizard in the

Startup screen or using the menu command File > New > Project....

Follow the step by step settings and in the Rapid Application Development Options page and select the Device
Initialization option.

Step 2. Configure Peripherals

The Target CPU window shows the CPU package with the available internal peripherals.

Click on a peripheral field to configure its initialization. A new peripheral initialization component is

automatically created and the Inspector dialog window is displayed. It allows the user to view and change the

parameters.

Use the Inspector dialog window that appears to setup initialization parameters of the peripheral as per your

requirement and confirm it by clicking on the OK button. Use the same steps for all peripherals you wish to

setup.

Step 3. Generate Code

Click the Generate Code button in the Target CPU window.

Within the Options dialog box, that appears immediately, select the desired initialization code format: C or
Assembly.

Please note that on ColdFire CPUs, the assembly code generation is not available.

Within the Options dialog box, that appears immediately, you can specify the name of the output files you wish

to generate (you can also keep a default name 'MCUInit') using the field Generated module name.

For more details on generated code, see the 3.2 Code Generation And Usage.

- 5 -

Device Initialization User Manual Introduction

Step 4. Use the Generated Code

The MCU_init initialization function call is automatically placed at the beginning of the main routine. Start

writing your application code after this initialization function call.

1.4. Rapid Application Development Tools
Two tools are available in the CodeWarrior IDE for rapid application development: Processor Expert and Device

Initialization. Both tools have many advanced features that lead to development cycle acceleration.

Features Comparison

Feature Processor Expert Device Initialization

Easy to use graphical IDE

Interactive design specifications

of Freescale MCUs

Generated code Peripheral Drivers Initialization code only

Generated code languages C C or Assembly

Peripheral Init Components

Low Level Components

High Level Components

Project Configurations

User-friendly linker parameter

file configuration

Generated code changes tracking

Timing settings in time units

(such as seconds and bauds)

Free components library on the

web

User components creation

Device Initialization

Device Initialization provides a fast and easy way to configure and generate an initialization source code for the

CPU. It contains only one set of components: Peripheral Initialization Components. The code initializing the

peripheral can be generated for use in Assembler or C.

- 6 -

Device Initialization User Manual Introduction

Processor Expert

Processor Expert generates drivers in the C language that allows a hardware-independent access to MCU

peripherals. It contains large library of components called Embedded Components. Embedded Components

encapsulate the initialization and functionality of embedded systems basic elements, such as CPU core, CPU

on-chip peripherals, standalone peripherals, virtual devices and pure software algorithms. These facilities are

interfaced to the user using properties, methods, and events, such as objects in Object Oriented Programming

(OOP).

Note: Processor Expert Embedded Components were formerly called Embedded Beans.

Description of the Embedded Components on different levels of abstraction:

High• Level Components - Basic set of components designed carefully to provide functionality to most of

the microcontrollers in the market. An application built from these components can be easily ported to

another microcontroller supported by the Processor Expert. This group of components can provide

comfortable settings of a desired functionality such as time in ms or frequency in Hz, without the user

knowing about the details of the hardware registers.

Low• Level Components - Components dependent on the peripheral structure that allow the user to benefit

from the non-standard features of a peripheral. The level of portability is decreased due to a different

component interface and the component is usually implemented only for a CPU family offering the

appropriate peripheral. However, there is still possible to easily configure device's features and use a set of

methods and events.

Peripheral• Initialization Components - Components on the lowest level of abstraction. An interface of

such components is based on the set of the peripheral control registers. These components cover all features

of the peripherals and are designed for initialization of these peripherals.

For more details, please see the Processor Expert documentation.

- 7 -

Device Initialization User Manual Introduction

2. User Interface

Windows and Dialog Boxes

The Device Initialization user interface consists of the following windows that are integrated in the CodeWarrior

IDE:

Target• CPU - Main window graphically showing CPU package, structure and components connected to the

internal peripherals. It allows the user to easily to add components related to a specific peripheral to the

design. See 2.1 Target CPU View for details.

Inspector• - Window that allows the user to setup peripheral initialization components parameters. See 2.2

Inspector Dialog Box for details.

Code• Generation Options - Dialog box with design and code generation related settings. See 2.3 Code

Generation Options Dialog Box for details.

2.1. Target CPU View
The Target CPU window is the main window of the Device Initialization design. The window contain the

control buttons at the top of the window and working area that allows the user to browse and configure the

CPU peripherals. To open this window, please use the pop-up menu for of the CPU component in the project

tree.

Figure 2.1 - CPU Component Pop-up Mmenu

Design Control Buttons

The window contains the following control buttons:

Select• CPU package - Lists available packages from the current target CPU. From the list of packages, the

user can choose the one to be used in the design. See 3.4 Changing The CPU for details.

Generate• Code - Invokes the Code Generation dialog allowing the user to generate the initialization code

according to the current settings. See 3.2 Code Generation And Usage for details.

- 8 -

Device Initialization User Manual User Interface

Work Area

This area allows the user to configure the CPU peripherals by adding the Peripheral Initialization Components.

See 3.1 Peripheral Initialization Components for details.

The window shows:

Peripherals• available on the MCU and their allocation by components.

Pins• and their allocation by components.

Useful• information that is available in the status line if the mouse cursor is placed on pin, component or

peripheral.

The following information about each pin is displayed on the package:

Pin• name (either default or user-defined).

Icon• of a component that uses (allocates) the pin.

Direction• of the pin (input, output, or input/output) symbolized by blue arrows, if a component is connected.

Hints

A hint appears when the mouse cursor is placed on a specific item:

A pin hint contains:

pin• number

pin• name

owner• of the pin (component that allocates it)

short• pin description

Note: The pin hint is available only in the package view mode

Component icon hint contains:

component• type

component• description

General Pop-up Menu

This menu appears when the user right-clicks anywhere in the Device Initialization window. It contains the

following commands:

Zoom• in - Shows the help page.

Zoom• out - Shows the help page.

Rotate• - Shows the help page.

- 9 -

Device Initialization User Manual User Interface

Sample Screenshot

2.2. Inspector Dialog Box
The Inspector dialog box allows the user to modify parameters of components configuring internal peripherals of

the target CPU. (For more details on the peripheral components, please see 3.1 Peripheral Initialization

Components.)

Inspector dialog box consists of two panels:

Component• Parameters - Contains the parameters that influence the initialization of the selected device.

Register• Details - Contains the values of the individual control registers that is set by a generated

initialization code.

Control Buttons

The buttons description from left to right:

• - Removes the currently opened peripheral initialization component from the

design. This command is not available for the CPU component.

• - Opens the file selection dialog box and saves parameters to the selected file.

• - Opens the file selection dialog box and restores parameters from the selected file.

- 10 -

Device Initialization User Manual User Interface

• - Saves the initialization. parameters and closes the window

• - Cancels changes and closes the window.

Component Parameters Panel

Component Parameters panel contains three columns:

Item• names - Items that are to be set are listed in the second column of the inspector. Groups of items

describing certain features can be collapsed or expanded by double clicking on the first line of the group.

Selected• settings - Settings of the items are made in this column. If the user should select from pre-defined

values, there is a drop-down menu with the list of available options. There is are radix change buttons

'H','D','B' for switching value radix to Hexadecimal, Decimal and Binary, where such change is reasonable.

Setting• status - Current setting or an error status may be reflected on the same line, in the rightmost column

of the inspector. The error is also displayed in the item's hint.

Settings with errors are marked with red color and the description for the error can be found in the rightmost

column.

A parameter can be presented as read-only and the user cannot change its content. Such read-only values are

shown in gray.

Register Details

This panel shows values of individual control or data registers related to the currently selected CPU peripheral

and reflects the settings in the Component Parameters panel.

On some peripherals there may be present an Additionally modified registers section within this panel that lists

the registers that are initialized but belong to a different peripheral.

The following two types of rows can be found in this panel:

Whole• register content
The row contains the following columns:

Name - Specifies name of the register according to the CPU datasheet.

Init. Value - Specifies the initialization value of a register or bit computed according to the settings in

the Component Parameters panel. This is the last value written by the initialization function to the
register.
Note: For some registers, the value read from the register afterwards can be different than the last

written value. For example, some interrupt flags are cleared by writing 1. Please see the MCU manual

for details on registers behavior.

If the row is active, the value can be changed using the keyboard. The field also contains a radix button

(H,D,B) that allows to switch between Hexadecimal, Decimal and Binary formats of the value.

The value that contains undefined bits is always shown in binary format.

Address - Specifies address of a register.

Individual• bit of the register
These rows can be unfolded under each register contain values and the names of individual bits. Bits are

sorted from the highest to lowest weight. The bit rows of a register can be shown or hidden using the

plus/minus icons.

- 11 -

Device Initialization User Manual User Interface

2.3. Code Generation Options Dialog Box
This dialog box is invoked at each code generation (using the Generate Code button). The user can specify the

options influencing the format and placement of the generated code. Options are divided into two groups using

tabs.

Basic Options

Basic options include the following options and option groups:

Generated• file types available:

(For more information on generated files, please see the chapter 3.2 Code Generation And Usage)

Relocatable Assembler - Generates the relocatable code in the assembly language. This option is not

available for the absolute assembly projects.

Absolute Assembler - Generates an absolute code in assembly language. This option is supported only if

it was selected in the CodeWarrior Project wizard.

C - Generates the code in the C language. This option is not available for the assembly projects.

After• Generation

Save and add files to the project - The files produced by Processor Expert are named using the value of

the Generated Module Name field. The files are automatically added to the Generated Code folder of the

Code Warrior project.

Create file and do not add to project - The code will be generated into the newly created untitled editor

files.

Generated• module name - Specifies name of the files where the initialization code will be generated.

Advanced Options

The following options modify the generation of code:

Generate• register modification only if initialization value does not match reset state - This option does

not affect the registers writable only once (for example CONFIGx) nor the registers placed in FLASH (for

example MORx).

Generate• comments about register modification - Source code will contain comments with descriptions of

the registers values.

Generate• interrupt vector table - Interrupt vector table content will be generated to the output file.

Generate• interrupt service routine templates - Tool will generate an empty interrupt routines definitions

for all enabled interrupts according to the components parameters. See 3.3 Defining Interrupt Service

Routines for details.

Generate• initialization of registers writable only once - These registers can be written only once after

reset due to technological or safety reasons. This options enables the generation of initialization code for

these registers.

Generate• initialization of register placed in FLASH - Initialization of these registers will be done during

the programming of the application code to the FLASH memory.

After• code generation show description how to use the generated files - If this option is enabled, a dialog

box with the short description of the generated modules and their usage is displayed after every code

generation.

- 12 -

Device Initialization User Manual User Interface

Common Options

Show• this dialog every time before code generation - Using this check-box, the user can enable or disable

appearance of this dialog box before every code generation.

- 13 -

Device Initialization User Manual User Interface

3. Using the Tool
The sub-chapters describe basic principles and tasks related to device initialization.

Peripheral• Initialization Components

Code• Generation And Usage

Defining• Interrupt Service Routines

Changing• The CPU

3.1. Peripheral Initialization Components
A Peripheral Initialization Component is an object that provides a human-readable interface to the initialization

parameters of a selected on-chip CPU peripheral. Parameters of the Peripheral Initialization Component

represent the settings of all peripheral registers in the clear tabular form. Names of the Peripheral Initialization

Components are Init_<peripheral> and they are specific for each CPU family.

Adding Component

Components can be added to the design using the Target CPU window. Click on the unallocated peripheral to

add a new component. The new component is preset to work with the selected device. Inspector dialog box

appears allowing the user to configure parameters of the component.

Component Parameters and Device Registers

Every component contains a group of parameters (properties) that describe the desired initialization state of the

device. These parameters are automatically transformed to values of control registers related to the selected

peripheral. Inspector shows both - component parameters and resulting registers values.

Component parameters are grouped to several groups by type. The following groups are commonly present in

peripheral initialization components:

Settings• - Common peripheral parameters.

Pins• - Configuration of the pins related to the peripheral.

Interrupts• - Configuration of the interrupts and interrupt service routines related to the peripheral. See 3.3

Defining Interrupt Service Routines for details.

Initialization• - Parameters related to the peripheral initialization.

CPU components

A CPU component is the component that configures the parameters of the CPU core, such as clock source and

frequency and power-saving capabilities. The CPU component is always present in design and cannot be

removed. CPU component contains the following parameter groups:

Clock• Settings - Configuration of the CPU timing

Internal• Peripherals - Configurations of the peripherals not supported by separate components and settings

that can be shared among components.

CPU• Interrupts - Configuration of the interrupts related to the CPU core.

- 14 -

Device Initialization User Manual Using the Tool

Modifying Components Settings

Parameters of existing components can be configured using the Inspector dialog which can be opened by

clicking on the component's icon in the Device Initialization window.

3.2. Code Generation And Usage

Starting The Code Generation

To generate code:

Click1. the Generate Code button in the Target CPU. The Code Generation Options dialog box with the

code generation options appears. See 2.3 Code Generation Options Dialog Box for details.

Click2. on the Generate button in the Options dialog box. The source code initializing the MCU registers

according to the specified component parameters is generated. The generated modules are added into the

project and can be found in the Sources sub-folder of the project.

Generated Code

During the Code Generation process the Device Initialization tool generates the initialization code for the CPU

peripherals allocated by the components. The generated code reflects the configuration of the components'

parameters and is contained in the function named MCU_init. The user should call this function at the beginning

of the application code to initialize peripherals.

In the ColdFireV1 MCUs, an additional function is generated, named __initialize_hardware. It contains settings

of the clock source, the core registers and the system control registers (SOPTx, SPMSCx, all write-once

registers). This function is called from the after-reset startup code.

The generated module consists of two files:

Implementation• file containing the code of the initialization function(s) and optionally the interrupt vectors

table.

Interface• file containing the declarations that can be referenced by the user. This file is generated only if the

files are stored to a disc (see below).

Depending on the After generation option, the files can be stored to a disk and added to the current project or just

shown in the editor as untitled files. See 2.3 Code Generation Options Dialog Box for details.

Device Initialization tool can generate the following types of initialization code:

Relocatable• Assembler - The implementation file has the extension .asm and the interface file has the

extension .inc. This option is not available for the absolute assembly projects.

Absolute• Assembler - The implementation file has the extension .inc and must be included at the end of the

user module, where address for code is selected (using ORG). Absolute assembler is supported only if it was

selected in the CodeWarrior Project wizard.

C• language - The implementation file has the extension .c and the interface file has the extension .h.

A default name for the generated module is ' MCUInit '. An Initialization code format, the generated module

name, and other code generation options, can be configured in the Options dialog box. See 2.3 Code Generation

Options Dialog Box for details.

- 15 -

Device Initialization User Manual Using the Tool

User Changes in the Generated Code

If the content of generated modules is written to the disk, it always overwrites the existing files during every

code generation. As a result all the user modification are discarded with the following exceptions:

user• definitions (or generally any other source code) in .C (or .asm) placed in the special comment marks. In

case of C language it looks like:

/* User declarations and definitions */

 User source code...

/* End of user declarations and definitions */

content• of interrupt service routines that are assigned to any interrupt(s) in the peripheral initialization

components. See 3.3 Defining Interrupt Service Routines for details.

unused• interrupt service routines (no component contains their name). They do not disappear but they are

moved to the end of the file. The generated comments before and after the ISR must not be modified for this

feature to work properly.

Note: No user changes in the .h file (or .inc in case of assembly language) are preserved. The file is always

overwritten.

Using the Generated Code

To call MCU_init function from the main file, it's necessary to do the following modification in your code:

Device• initialization by default generates an interrupt vectors table containing all interrupt vectors (it can be

disabled in the Options dialog box, see chapter 2.3 Code Generation Options Dialog Box for details).

Existing interrupt vector definitions have to be removed or commented out to avoid a conflict.

Version specific information for RS08 family
On the derivatives from the RS08 family the interrupt support is missing or is limited. See 3.3 Defining

Interrupt Service Routines for details.

For details on configuring interrupt vectors in Device Initialization please see the chapter 3.3 Defining

Interrupt Service Routines.

Add• a call to the generated MCU_init function at the beginning of the application main routine. The newly

created projects already contain this line.

Note: The prototype or external declaration of the MCU_init function or a command including the interface

file with this declaration should be present in the module where the MCU_init is called. In a new project, it

is already there in the main file.

- 16 -

Device Initialization User Manual Using the Tool

3.3. Defining Interrupt Service Routines
Some Peripheral Initialization components allow the initialization of an interrupt service routine. Interrupt(s) can

be enabled in initialization code using appropriate parameters that can be found within the group Interrupts.

After enabling, the specification of an Interrupt Service Routine (ISR) name using the ISR name property is

required. This name is generated to Interrupt Vector table during the code generation process. See 3.2 Code

Generation And Usage for details.

Please note that if the ISR name is filled it is generated into the Interrupt Vector Table even if the interrupt

property is disabled.

Figure 3.1 - Example Of The Interrupt Setup

Enabling or disabling peripheral interrupts during runtime has to be done by the user's code.

Version specific information for RS08 family
Derivatives of the RS08 family with CPU core version 2 support a single global interrupt vector. The interrupt

doesn’t support a vector table lookup mechanism as used on HC(S)08 devices. It is the responsibility of a

routine servicing the global interrupt to poll the system interrupt pending registers (SIPx) to determine if an

interrupt is pending. To support the single global interrupt vector there is a set of emulated interrupt vectors for

each HW module defined. User can assign an interrupt service routine to these emulated interrupt vectors in a

component. To emulate the interrupt vector table mechanism of the HCS08 family a global interrupt vector

routine is generated, which performs check of the SIPx registers to determine if an interrupt is pending and

calls appropriate interrupt service routines.

The order in which the SIPx registers are polled is affected by priority of the emulated interrupts. The priority

can be in the range 0 .. number_of_interrupts-1 (e.g. 0 .. 15). Default priority value depends on the position of

an associated bit in a SIPx register. The interrupt priority can be changed to any value within the allowed range.

The lower is the number, the higher is the priority because the interrupts with a lower priority number are

polled first. When two interrupts are assigned the same priority then the order in which they are polled depends

on the default priority.

Interrupt Service Routines Code

The ISR with the specified name has to be declared according to the compiler conventions and fully

implemented by the user. Declarations of the ISRs that do not exist yet can be generated automatically during the

code generation process into the generated module if the option Generate interrupt service routine templates
is enabled. See 2.3 Code Generation Options Dialog Box for details.

Version specific information for RS08 family
All ISR on the RS08 family has to be defined as ordinary C functions (or assembly routines) because they are

called from global interrupt handler that emulates individual interrupt functionality.

- 17 -

Device Initialization User Manual Using the Tool

The contents of interrupt service routines, written by the user, that are assigned to any interrupt within
the components parameters is protected against being overwritten during the code Generation process. In
case the interrupt service routine is not assigned to any interrupt, it's moved to the end of the file.

Warning: The user is responsible for synchronizing ISR names in the code and ISR names specified in

components. If an ISR is renamed, the name has to be changed in the component(s) where this ISR name is

assigned and vice versa. This has to be done before next code generation. Otherwise the newly specified ISR

would not be found and the existing ISR with an old name will be treated as unassigned, that is, it will be moved

to the end of file.

3.4. Changing The CPU

Changing CPU package

The type of the CPU package can be changed using the Select CPU Package button in the Device Initialization

window. See 2.1 Target CPU View for details.

Switching the Project to a Different CPU Derivative

To switch to a different CPU derivative for the project, select Project Change MCU / Connection from the

menu bar in the CodeWarrior IDE.

Components Assignment

If some peripherals of the MCU set by components are not supported by the new MCU derivative the project is

switched to, a dialog box with a list of the unsupported items is shown. The user is asked to confirm that these

items will be removed from the design.

- 18 -

Device Initialization User Manual Using the Tool

4. Help Revisions History
The current revision number: 2.9 (Generated: 11.3.2010 14:21:41)

- 19 -

Device Initialization User Manual Index

- 20 -

Device Initialization User Manual Index

INDEX
Changing CPU 18
Code generation 15
Component 4, 14
CPU component 4
Creating ISRs 17
Design 4
Design steps 5
Features 4
Initialization code 15
Inspector 4, 10
Internal peripherals 4
Interrupt initialization 17
ISRS 17
Module 4
Options 12
Peripheral Initialization 14
Peripheral settings 4
Project creation 5
Properties 5
RAD tools 6
Target CPU 5, 8
Tools comparison 6
Using generated code 15

- 21 -

Device Initialization User Manual Index

	1. Introduction
	1.1. Features and Benefits
	1.2. Basic Terms and Definitions
	1.3. Quick Start
	1.4. Rapid Application Development Tools

	2. User Interface
	2.1. Target CPU View
	2.2. Inspector Dialog Box
	2.3. Code Generation Options Dialog Box

	3. Using the Tool
	3.1. Peripheral Initialization Components
	3.2. Code Generation And Usage
	3.3. Defining Interrupt Service Routines
	3.4. Changing The CPU

	4. Help Revisions History

