
Fast Smallest-Enclosing-Ball Computation in

High Dimensions?

Kaspar Fischer1 ??, Bernd Gärtner1, and Martin Kutz2 ? ? ?

1 ETH Zürich, Switzerland
2 FU Berlin, Germany

Abstract. We develop a simple combinatorial algorithm for computing
the smallest enclosing ball of a set of points in high dimensional Euclidean
space. The resulting code is in most cases faster (sometimes significantly)
than recent dedicated methods that only deliver approximate results,
and it beats off-the-shelf solutions, based e.g. on quadratic programming
solvers.
The algorithm resembles the simplex algorithm for linear programming;
it comes with a Bland-type rule to avoid cycling in presence of degenera-
cies and it typically requires very few iterations. We provide a fast and
robust floating-point implementation whose efficiency is based on a new
dynamic data structure for maintaining intermediate solutions.
The code can efficiently handle point sets in dimensions up to 2,000, and
it solves instances of dimension 10,000 within hours. In low dimensions,
the algorithm can keep up with the fastest computational geometry codes
that are available.

1 Introduction

The problem of finding the smallest enclosing ball (SEB, a.k.a. minimum bound-
ing sphere) of a set of points is a well-studied problem with a large number of
applications; if the points live in low dimension d (d ≤ 30, say), methods from
computational geometry yield solutions that are quite satisfactory in theory and
in practice [1–5]. The case d = 3 has important applications in graphics, most
notably for visibility culling and bounding sphere hierarchies.

There are a number of very recent applications in connection with support
vector machines that require the problem to be solved in higher dimensions;
these include e.g. high-dimensional clustering [6, 7] and nearest neighbor search
[8], see also the references in Kumar et al. [9].

? Partly supported by the IST Programme of the EU and the Swiss Federal Office
for Education and Science as a Shared-cost RTD (FET Open) Project under Con-
tract No IST-2000-26473 (ECG – Effective Computational Geometry for Curves and
Surfaces).

?? Supported by the Berlin/Zürich joint graduate program “Combinatorics, Geometry,
and Computation” (CGC).

? ? ? Member of the European graduate school “Combinatorics, Geometry, and Compu-
tation” supported by the Deutsche Forschungsgemeinschaft, grant GRK588/2.

The existing computational geometry approaches cannot (and were not de-
signed to) deal with most of these applications because they become inefficient
already for moderately high values of d. While codes based on Welzl’s method [3]
cannot reasonably handle point sets beyond dimension d = 30 [4], the quadratic
programming (QP) approach of Gärtner and Schönherr [5] is in practice poly-
nomial in d. However, it critically requires arbitrary-precision linear algebra to
avoid robustness issues, which limits the tractable dimensions to d ≤ 300 [5].

Higher dimensions can be dealt with using state-of-the-art floating point solv-
ers for QP, like e.g. the one of CPLEX [10]. It has also been shown that the SEB
problem is an instance of second order cone programming (SOCP), for which
off-the-shelf solutions are available as well, see [11] and the references there.

It has already been observed by Zhou et al. that general-purpose solvers
can be outperformed by taking the special structure of the SEB problem into
account. Their result [11] is an interior point code which can even handle values
up to d = 10,000. The code is designed for the case where the number of points
is not larger than the dimension; test runs only cover this case and stop as soon
as the ball has been determined up to a fixed accuracy. Zhou et al.’s method also
works for computing the approximate smallest enclosing ball of a set of balls.

The recent polynomial-time (1+ ε)-approximation algorithm of Kumar et al.
goes in a similar direction: it uses additional structure (in this case core sets) on
top of the SOCP formulation in order to arrive at an efficient implementation
for higher d (test results are only given up to d = 1,400) [9].

In this paper, we argue that in order to obtain a fast solution even for very
high dimensions, it is not necessary to settle for suboptimal balls: we compute
the exact smallest enclosing ball using a combinatorial algorithm. Unlike the
approximate methods, our algorithm constitutes an exact method in the RAM
model; and our floating-point implementation shows very stable behaviour. This
implementation beats off-the-shelf interior-point-based methods as well as Ku-
mar et. al.’s approximate method; only for d ≥ 1,000, and if the number of
points does not considerably exceed d, our code is outperformed by the method
of Zhou et al. (which, however, only computes approximate solutions).

Our algorithm—which is a pivoting scheme resembling the simplex method
for linear programming—actually computes the set of at most d + 1 support
points whose circumsphere determines the smallest enclosing ball. The number
of iterations is small in practice, but there is no polynomial bound on the worst-
case performance.

The idea behind the method is simple and a variant has in fact already been
proposed by Hopp et al. as a heuristic, along with an implementation for d = 3,
but without any attempts to prove correctness and termination [12]: start with a
balloon strictly containing all the points and then deflate it until it cannot shrink
anymore without loosing a point. Our contribution is two-fold. On the theoret-
ical side, we develop a pivot rule which guarantees termination of the method
even under degeneracies. In contrast, a naive implementation might cycle (Hopp
et al. ignore this issue). The rule is Bland’s rule for the simplex method [13],
adapted to our scenario, in which case the finiteness has an appealing geomet-

ric proof. On the practical side, we represent intermediate solutions (which are
affinely independent point sets, along with their circumcenters) in a way that
allows fast and robust updates under insertion or deletion of a single point. Our
representation is an adaptation of the QR-factorization technique [14]. Already
for d = 3, this makes our code much faster than that of Hopp et al. and we can
efficiently handle point sets in dimensions up to d = 2,000. Within hours, we are
even able to compute the SEB for point sets in dimensions up to 10,000, which
is the highest dimension for which Zhou et al. give test results [11].

2 Sketch of the Algorithm

This section provides the basic notions and a central fact about the SEB problem.
We briefly sketch the main idea of our algorithm, postponing the details to
Section 3.

Basics. We denote by B(c, r) = {x ∈ Rd | ‖x− c‖ ≤ r} the d-dimensional ball of
center c ∈ Rd and radius r ∈ R+. For a point set T and a point c in Rd, we write
B(c, T) for the ball B(c,maxp∈T ‖p−c‖), i.e., the smallest ball with given center
c that encloses the points T . The smallest enclosing ball seb(S) of a finite point
set S ⊂ Rd is defined as the ball of minimal radius which contains the points
in S, i.e., the ball B(c, S) of smallest radius over all c ∈ Rd. The existence and
uniqueness of seb(S) are well-known [3], and so is the following fact which goes
back to Seidel [5].

Lemma 1 (Seidel). Let T be a set of points on the boundary of some ball B
with center c. Then B = seb(T) if and only if c ∈ conv(T).

We provide a simple observation about convex combinations of points on a
sphere, which will play a role in the termination proof of our algorithm.

Lemma 2. Let T be a set of points on the boundary of some ball with positive
radius and with center c ∈ conv(T). Fix any set of coefficients such that

c =
∑

p∈T

λpp,
∑

p∈T

λp = 1, ∀p ∈ T : λp ≥ 0.

Then λp ≤ 1/2 for all p ∈ T .

The pivot step. The circumsphere cs(T) of a nonempty affinely independent set
T is the unique sphere with center in the affine hull aff(T) that goes through
the points in T ; its center is called the circumcenter of T , denoted by cc(T).
A nonempty affinely independent subset T of the set S of given points will be
called a support set.

Our algorithm steps through a sequence of pairs (T, c), maintaining the in-
variant that T is a support set and c is the center of a ball B containing S and
having T on its boundary. Lemma 1 tells us that we have found the smallest
enclosing ball when c = cc(T) and c ∈ conv(T). Until this criterion is fulfilled,
the algorithm performs an iteration (a pivot step) consisting of a walking phase
which is preceeded by a dropping phase in case c ∈ aff(T).

PSfrag replacements

s1

s2

s

c

PSfrag replacements

s1
s2

s

c s1

s2
s′

c
c′

cc(T)

Fig. 1. Dropping s from T = {s, s1, s2} (left) and walking towards the center cc(T) of
the circumsphere of T = {s1, s2} until s′ stops us (right).

Dropping. If c ∈ aff(T), the invariant guarantees that c = cc(T). Because
c 6∈ conv(T), there is at least one point s ∈ T whose coefficient in the affine
combination of T forming c is negative. We drop such an s and enter the walking
phase with the pair (T \ {s}, c), see left of Fig. 1.

Walking. If c 6∈ aff(T), we move our center on a straight line towards cc(T).
Lemma 3 below establishes that the moving center is always the center of a
(progressively smaller) ball with T on its boundary. To maintain the algorithm’s
invariant, we must stop walking as soon as a new point s′ ∈ S hits the boundary
of the shrinking ball. In that case we enter the next iteration with the pair
(T ∪ {s′}, c′), where c′ is the stopped center; see Fig. 1. If no point stops the
walk, the center reaches aff(T) and we enter the next iteration with (T,cc(T)).

3 The Algorithm in Detail

Let us start with some basic facts about the walking direction from the current
center c towards the circumcenter of the boundary points T .

Lemma 3. Let T be a nonempty affinely independent point set on the boundary
of some ball B(c, r), i.e., T ⊂ ∂B(c, r) = ∂B(c, T). Then

(i) the line segment [c,cc(T)] is orthogonal to aff(T),
(ii) T ⊂ ∂B(c′, T) for each c′ ∈ [c,cc(T)],
(iii) radius(B(·, T)) is a strictly monotone decreasing function on [c,cc(T)],

with minimum attained at cc(T).

Note that part (i) of this lemma implies that the circumcenter of T coincides
with the orthogonal projection of c onto aff(T), a fact that will become important
for our actual implementation.

When moving along [c,cc(T)], we have to check for new points to hit the
shrinking boundary. The subsequent lemma tells us that all points “behind”
aff(T) are uncritical in this respect, i.e., they cannot hit the boundary and thus
cannot stop the movement of the center. Hence, we may ignore these points
during the walking phase.

procedure seb(S);

begin

c := any point of S;
T := {p}, for a point p of S at maximal distance from c;

while c 6∈ conv(T) do

[Invariant: B(c, T) ⊃ S, ∂B(c, T) ⊃ T , and T affinely independent]

if c ∈ aff(T) then drop a point q from T with λq < 0 in (2);
[Invariant: c 6∈ aff(T)]

among the points in S \ T that do not satisfy (1) find one, p say,
that restricts movement of c towards cc(T) most, if one exists;

move c as far as possible towards cc(T);

if walk has been stopped then T := T ∪ {p};

end while;

return B(c, T);

end seb;

Fig. 2. The algorithm to compute seb(S).

Lemma 4. Let T and c as in Lemma 3 and let p ∈ B(c, T) lie behind aff(T),
precisely,

〈p− c,cc(T)− c〉 ≥ 〈cc(T)− c,cc(T)− c〉. (1)

Then p is contained in B(c′, T) for any c′ ∈ [c,cc(T)].

It remains to identify which point of the boundary set T should be dropped
in case that c ∈ aff(T) but c 6∈ conv(T). Here are the suitable candidates.

Lemma 5. Let T and c as in Lemma 3 and assume that c ∈ aff(T). Let

c =
∑

q∈T

λqq,
∑

q∈T

λq = 1 (2)

be the affine representation of c with respect to T . If c 6∈ conv(T) then λp < 0
for at least one p ∈ T and any such p satisfies inequality (1) with T replaced by
the reduced set T \ {p} there.

Combining Lemmata 4 and 5, we see that if we drop a point with negative
coefficient in (2), this point will not stop us in the subsequent walking step.

The Algorithm in detail. Fig. 2 gives a formal description of our algorithm. The
correctness follows easily from the previous considerations and we will address
the issue of termination soon. Before, let us consider an example in the plane.
Figure 3, (a)–(c), depicts all three iterations of our algorithm on a four-point

PSfrag replacements

s0

s1

s2

PSfrag replacements

s0s1

s2

s3

(a) (b)

PSfrag replacements

s0s1

s2 s3

(c)

t1 t2

t3

c

cc(T)

B(c, T)

Fig. 3. A full run of the algorithm in 2D (left) and two consecutive steps in 3D (right).

set. Each picture shows the current ball B(c, T) just before (dashed) and right
after (solid) the walking phase.

After the initialization c = s0, T = {s1}, we move towards the singleton
T until s2 hits the boundary (step (a)). The subsequent motion towards the
circumcenter of two points is stopped by the point s3, yielding a 3-element
support (step (b)). Before the next walking we drop the point s2 from T . The
last movement (c) is eventually stopped by s0 and then the center lies in the
convex hull of T = {s0, s1, s3}.

Observe that the 2-dimensional case obscures the fact that in higher di-
mensions, the target cc(T) of a walk need not lie in the convex hull of the
support set T . In the right picture of Fig. 3, the current center c first moves
to cc(T) 6∈ conv(T), where T = {t1, t2, t3}. Then, t2 is dropped and the walk
continues towards aff(T \ {t2}).

Termination. It is not clear whether the algorithm as stated in Fig. 2 always
terminates. Although the radius of the ball clearly decreases whenever the center
moves, it might happen that a stopper already lies on the current ball and thus
no real movement is possible. In principle, this might happen repeatedly from
some point on, i.e., we might run in an infinite cycle, perpetually collecting and
dropping points without ever moving the center at all. However, for points in
sufficiently general position such infinite loops cannot occur.

Proposition 1. If for all affinely independent subsets T ⊆ S, no point of S \ T
lies on the circumsphere of T then algorithm seb(S) terminates.

Proof. Right after a dropping phase, the dropped point cannot be reinserted
(Lemmata 4 and 5) and by assumption no other point lies on the current bound-
ary. Thus, the sequence of radii measured right before the dropping steps is
strictly decreasing; and since at least one out of d consecutive iterations de-
mands a drop, it would have to take infinitely many values if the algorithm did
not terminate. But this is impossible because before a drop, the center c coin-
cides with the circumcenter cc(T) of one out of finitely many subsets T of S. ut

The degenerate case. In order to achieve termination for arbitrary instances, we
equip the procedure seb(S) with the following simple rule, resembling Bland’s
pivoting rule for the simplex algorithm [13] (for simplicity, we will actually call
it Bland’s rule in the sequel):

Fix an arbitrary order on the set S. When dropping a point with negative
coefficient in (2), choose the one of smallest rank in the order. Also,
pick the smallest-rank point for inclusion in T when the algorithm is
simultaneously stopped by more than one point during the walking phase.

As it turns out, this rule prevents the algorithm from “cycling”, i.e., it guarantees
that the center of the current ball cannot stay at its position for an infinite
number of iterations.

Theorem 1. Using Bland’s rule, seb(S) terminates.

Proof. Assume for a contradiction that the algorithm cycles, i.e., there is a se-
quence of iterations where the first support set equals the last and the center
does not move. We assume w.l.o.g. that the center coincides with the origin. Let
C ⊆ S denote the set of all points that enter and leave the support during the
cycle and let among these be m the one of maximal rank.

The key idea is to consider a slightly modified instanceX of the SEB problem.
Choose a support set D 63 m right after dropping m and let X := D ∪ {−m},
mirroring the point m at 0. There is a unique affine representation of the center
0 by the points in D∪{m}, where by Bland’s rule, the coefficients of points in D
are all nonnegative while m’s is negative. This gives us a convex representation
of 0 by the points in X and we may write

0 = 〈
∑

p∈X

λpp,cc(I)〉 =
∑

p∈D

λp〈p,cc(I)〉 − λ−m〈m,cc(I)〉. (3)

We have introduced the scalar products because of their close relation to
criterion (1) of the algorithm. We bound these by considering a support set
I 63 m just before insertion of the point m. We have 〈m,cc(I)〉 < 〈cc(I),cc(I)〉
and by Bland’s rule and the maximality of m, there cannot be any other points
of C in front of aff(I); further, all points of D that do not lie in C must, by
definition, also lie in I. Hence, we get 〈p,cc(I)〉 ≥ 〈cc(I),cc(I)〉 for all p ∈ I.
Plugging these inequalities into (3) we obtain

0 >
(

∑

p∈D

λp − λ−m

)

〈cc(I),cc(I)〉 = (1− 2λ−m)〈cc(I),cc(I)〉,

which implies λ−m > 1/2, a contradiction to Lemma 2. ut

4 The Implementation

We have programmed our algorithm in C++ using floating point arithmetic. At
the heart of this implementation is a dynamic QR-decomposition, which allows
updates for point insertion into and deletion from T and supports the two core
operations of our algorithm:

– compute the affine coefficients of some p ∈ aff(T),
– compute the circumcenter cc(T) of T .

Our implementation, however, does not tackle the latter task in the present
formulation. From part (i) of Lemma 3 we know that the circumcenter of T
coincides with the orthogonal projection of c onto aff(T) and this is how we ac-
tually compute cc(T) in practice. Using this reformulation, we shall see that the
two tasks at hand are essentially the same problem. We briefly sketch the main
ideas behind our implementation, which are combinations of standard concepts
from linear algebra.

Computing orthogonal projections and affine coefficients. In order to apply linear
algebra, we switch from the affine space to a linear space by fixing some “origin”
q0 of T = {q0, q1, . . . , qr} and defining the relative vectors ai = qi−q0, 1 ≤ i ≤ r.
For the matrix A = [a1, . . . , ar], which has full column rank r, we maintain a QR-
decomposition QR = A, that is, an orthogonal d×d matrix Q and a rectangular

d× r matrix R =
[

R̂
0

]

, where R̂ is square upper triangular.
Recall how such a decomposition can be used to “solve” an overdetermined

system of linear equations Ax = b (the right hand side b ∈ Rd being given)
[14, Sec. 5.3]: Using orthogonality of Q, first compute y := Q−1b = QT b; then
discard the lower d − r entries of y =

[

ŷ
∗

]

and evaluate R̂x∗ = ŷ through back
substitution. The resulting x∗ is known to minimize the residual ||Ax−b||, which
means that Ax∗ is the unique point in im(A) closest to b. In other words, Ax∗

is the orthogonal projection of b onto im(A).
This already solves both our tasks. The affine coefficients of some point p ∈

aff(T) are exactly the entries of the approximation x∗ for the shifted equation
Ax = p−q0 (the missing coefficient of q0 follows directly from the others); further,
for arbitrary p, Ax∗ is just the orthogonal projection of p onto aff(T). With a
QR-decomposition of A at hand, these calculations can be done in quadratic
time (in the dimension) as seen above.

The computation of orthogonal projections even allows some improvement.
By reformulating it as a Gram-Schmidt-like procedure and exploiting a duality in
the QR-decomposition, we can obtain running times of order min{rank(A), d−
rank(A)}·d. This should, however, be seen only as a minor technical modification
of the general procedure described above.

Maintaining the QR-decomposition. Of course, computing orthogonal projec-
tions and affine coefficients in quadratic time would not be of much use if we
had to set up a complete QR-decomposition of A in cubic time each time a point

is inserted into or removed from the support set T—the basic modifications ap-
plied to T in each iteration.

Golub and van Loan [14, Sec. 12.5] describe how to update a QR-decompo-
sition in quadratic time, using Givens rotations. We briefly present those tech-
niques and show how they apply to our setting of points in affine space.

Adding a point p to T corresponds to appending the column vector u = p−q0
to A yielding a matrix A′ of rank r + 1. To incorporate this change into Q and
R, append the column vector w = QTu to R so that the resulting matrix R′

satisfies the desired equation QR′ = A′. But then R′ is no longer in upper
triangular form. This defect can be repaired by application of d− r − 1 Givens
rotations Gr+1, . . . , Gd−1 from the left (yielding the upper triangular matrix
R′′ = Gr+1 · · ·Gd−1R

′). Applying the transposes of these orthogonal matrices
to Q from the right (giving the orthogonal matrix Q′ = QGT

d−1 · · ·G
T
r+1) then

provides consistency again (Q′R′′ = A′). Since multiplication with a Givens
rotator effects only two columns of Q, the overall update takes O(d2) steps.

Removing a point from T works similarly to insertion. Simply erase the cor-
responding column from R and shift the higher columns one place left. This
introduces one subdiagonal entry in each shifted column which again can be
zeroed with a linear number of Givens rotations, resulting in a total number of

O(dk) steps, where k < d is the number of columns shifted.
The remaining task of removing the origin q0 from T (which does not work

in the above fashion since q0 does not correspond to a particular column of A)
can also be dealt with efficiently (using an appropriate rank-1-update). Thus, all
updates can be realized in quadratic time. (Observe that we used the matrices
A and A′ only for explanatory purposes. Our program does not need to store
them explicitly but performs all computation on Q and R directly.)

Stability, termination, and verification. As for numerical stability, QR-decom-
position itself behaves nicely since all updates on Q and R are via orthogonal
Givens rotators [14, Sec. 5.1.10]. However, for our coefficient computations and
orthogonal projections to work, we have to avoid degeneracy of the matrix R.
Though in theory this is guaranteed through the affine independence of T , we
introduce a stability threshold in our floating point implementation to protect
against unfortunate interaction of rounding errors and geometric degeneracy in
the input set. This is done by allowing only such stopping points to enter the
support set that are not closer to the current affine hull of T than some ε.
(Remember that points behind aff(T) are ignored anyway because of Lemma 4.)

Our code is equipped with a result checker, which upon termination verifies
whether all points of S really lie in the computed ball and whether the support
points all lie on the boundary. We further do some consistency checking on the
final QR-decomposition by determining the affine coefficients of each individual
point in T . In all our test runs, the overall error computed thus was never larger
than 10−12, about 104 times the machine precision.

Finally, we note that while Bland’s rule guarantees termination in theory,
it is slow in practice. As with LP-solvers, we resort to a different heuristic in
practice, which yields very satisfactory running-time behavior and has the fur-

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

seb: n=1000

seb: n=2000

Zhou et al.: n=1000 +

++
+
++

++
+++

Kumar et al.: n=1000 ×

×

×

×

se
co

n
d
s

dimension

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000

seb: n=4000

seb: n=2000

seb: n=1000

CPLEX: n=1000

se
co

n
d
s

dimension

Fig. 4. (a) Our Algorithm seb, Zhou et al., and Kumar et al. on uniform distribution,
(b) Algorithm seb on normal distribution.

ther advantage of greater robustness with respect to roundoff errors: The rule
for deletion from T in the dropping phase is to pick the point t of minimal λt

in (2). For insertion into T in the walking phase we consider, roughly speaking,
all points of S which would result in almost the same walking distance as the
actual stopping point p (allowing only some additional ε) and choose amongst
these the one farthest from aff(T).

Note that our stability threshold and the above selection threshold are a
concept entirely different from the approximation thresholds of [9] and [11]. Our
ε’s do not enter the running time and choosing them close to machine precision
already resulted in very stable behavior in practice.

5 Testing Results

We have run the floating point implementation of our algorithm on random point
sets drawn from different distributions:

– uniform distribution in the unit cube,
– normal distribution with standard deviation 1,
– uniform distribution on the surface of the unit sphere, with each point per-

turbed in direction of the center by some number drawn uniformly at random
from a small interval [−δ,+δ).

The tests were performed on a 480Mhz Sun Ultra 4 workstation.
Figure 4(a) shows the running time of our algorithm on instances with 1,000

and 2,000 points drawn uniformly at random from the unit cube in up to 2,000
dimensions. For reference, we included the running times given in [9] and [11] on
similar point sets. However, these data should be interpreted with care: they are
taken from the respective publications and we have not recomputed them under
our conditions (the code of [11] is not available). However, the hardware was
comparable to ours. Also observe that Zhou et al. implemented their algorithm

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000

seb: n=2000

seb: n=1000

CPLEX: n=2000

CPLEX: n=1000

se
co

n
d
s

dimension

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000

uniform in 1000d
uniform in 2000d

sphere in 500d

sphere in 1000d

sphere in 2000d -

-

su
p
p
or

t
si

ze

iteration

Fig. 5. (a) Algorithm seb and CPLEX on almost spherical distribution (δ = 10−4),
(b) Support-size development depending on the number of iterations, for 1,000 points
in different dimensions, distributed uniformly and almost spherically (δ = 10−3)

in Matlab, which is not really comparable with our C++ implementation. Still,
the figures give an idea of the relative performances of the three methods for
several hundred dimensions.

On the normal distribution our algorithm performs similarly as for the uni-
form distribution. Figure 4(b) contains plots for sets of 1,000, 2,000, and 4,000
points. We compared these results to the performance of the general-purpose
QP-solver of CPLEX (version 6.6.0, which is the latest version available to us).
We outperform CPLEX by wide margins. (The running times of CPLEX on
2,000 and 4,000 points, which are not included in the figure, scale almost uni-
formly by a factor of 2 resp. 4 on the tested data.) Again, these results are to
be seen in the proper perspective; it is of course not surprising that a dedi-
cated algorithm is superior to a general-purpose code; moreover, the QP arising
from the SEB problem are not the “typical” QP that CPLEX is tuned for. Still,
the comparison is necessary in order to argue that off-the-shelf methods cannot
successfully compete with our approach.

The most difficult inputs for our code are sets of (almost) cospherical points.
In such situations, it typically happens that many points enter the support set
in intermediate steps only to be dropped again later. This is quite different to
the case of the normal distribution, where a large fraction of the points will
never enter the support and the algorithm needs much fewer iterations. Figure 5
compares our algorithm and again CPLEX on almost-spherical instances. For
smaller dimensions, CPLEX is faster, but starting from roughly d = 1,500, we
again win.

The papers of Zhou et al. as well as Kumar et al. do not contain tests with
almost-cospherical points. In case of the QP-solver of CPLEX, our observation is
that the point distribution has no major influence on the runtime; in particular,
cospherical points do not give rise to particularly difficult inputs. It might be
the case that the same is true for the methods of Zhou et al. and Kumar et al.,
but it would still be interesting to verify this on concrete examples.

To provide more insight into the actual behavior of our algorithm, Figure 5(b)
shows the support-size development for complete runs on different inputs. In all
our tests we observed that the computation starts with a long point-collection
phase during which no dropping occurs. This initial phase is followed by an
intermediate period of dropping and inserting during which the support size
changes only very little. Finally, there is a short dropping phase almost without
new insertions. The intermediate phase is usually quite short, except for almost
spherical distributions with n considerably larger than d. The explanation for
this phenomenon being that only for such distributions there are many candidate
points for the final support set which are repeatedly dropped and inserted several
times. With growing dimension, more and more points of an almost-spherical
distribution belong into the final support set, leaving only few points ever to be
dropped. We thank Emo Welzl for pointing out this fact, thus explaining the
nonmonotone running-time behavior of our algorithm in Fig. 5(a).

References

1. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related
problems. SIAM J. Comput. 12 (1983) 759–776

2. Dyer, M.E.: A class of convex programs with applications to computational geom-
etry. In: Proc. 8th Annu. ACM Sympos. Comput. Geom. (1992) 9–15

3. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In Maurer, H., ed.:
New Results and New Trends in Computer Science. Volume 555 of Lecture Notes
Comput. Sci. Springer-Verlag (1991) 359–370

4. Gärtner, B.: Fast and robust smallest enclosing balls. In: Proc. 7th Annual Euro-
pean Symposium on Algorithms (ESA). Volume 1643 of Lecture Notes Comput.
Sci., Springer-Verlag (1999) 325–338

5. Gärtner, B., Schönherr, S.: An efficient, exact, and generic quadratic programming
solver for geometric optimization. In: Proc. 16th Annu. ACM Sympos. Comput.
Geom. (2000) 110–118

6. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support vector clustering.
Journal of Machine Learning Research 2 (2001) 125–137

7. Bulatov, Y., Jambawalikar, S., Kumar, P., Sethia, S.: Hand recognition using
geometric classifiers (2002) Abstract of presentation for the DIMACS Workshop
on Computational Geometry (Rutgers University).

8. Goel, A., Indyk, P., Varadarajan, K.R.: Reductions among high dimensional prox-
imity problems. In: Symposium on Discrete Algorithms. (2001) 769–778

9. Kumar, P., Mitchell, J.S.B., Yıldırım, E.A.: Computing core-sets and approxi-
mate smallest enclosing hyperspheres in high dimensions (2003) To appear in the
Proceedings of ALENEX’03.

10. ILOG, Inc.: ILOG CPLEX 6.5 user’s manual (1999)
11. Zhou, G., Toh, K.C., Sun, J.: Efficient algorithms for the smallest enclosing ball

problem. Manuscript (2002)
12. Hopp, T.H., Reeve, C.P.: An algorithm for computing the minimum covering

sphere in any dimension. Technical Report NISTIR 5831, National Institute of
Standards and Technology (1996)

13. Chvátal, V.: Linear programming. W. H. Freeman, New York, NY (1983)
14. Golub, G.H., van Loan, C.F.: Matrix Computations. third edn. Johns Hopkins

University Press (1996)

