

Preliminary User's Manual

IE-78K0-NS-P04 IE-780818-NS-EM4

Emulation Board and Probe Board for IE-78K0-NS-A

Target device µPD780816(A) Subseries

Document No. U14514EE2V0UM00 Date Published December 2000

CE

This equipment complies with the EMC protection requirements.

Warning

This is a 'Class A' (EN 55022: 1994) equipment. This equipment can cause radio frequency noise when used in the residential area. In such cases, the user/operator of the equipment may be required to take appropriate countermeasures under his responsibility.

Caution

This equipment should be handled like a CMOS semiconductor device. The user must take all precautions to avoid build-up of static electricity while working with this equipment. All test and measurement tools including the workbench must be grounded. The user/operator must be grounded using the wrist strap. The In-Circuit Emulator probe target connector plug and/or its adapter pins should not be touched with bare hands.

MS-DOS and MS-Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. PC/AT and PC DOS are trademarks of IBM Corp.

The related documents in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The information in this document is current as of 24.11.2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features. NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc.

If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

- **Notes:** (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
 - (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M5 2000.03

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NF

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

Introduction

Product Overview The IE-78K0-NS-P04 and the IE-780818-NS-EM4, when combined with the IE-78K0-NS-A, are used to debug the following target devices that belong to the 78K/0 Series of 8-bit single-chip microcontrollers.

• µPD780816(A) Subseries

Target ReadersThis manual is intended for engineers who will use the IE-78K0-NS-P04 and the
IE-780818-NS-EM4 with the IE-78K0-NS-A to perform system debugging.Engineers who use this manual are expected to be thoroughly familiar with the
target device's functions and use methods and to be knowledgeable about
debugging.

Organization When using the IE-78K0-NS-P04 and the IE-780818-NS-EM4, refer to not only this manual (supplied with the IE-780818-NS-EM4) but also the manual that is supplied with the IE-78K0-NS-A.

IE-78K0-NS-A User's Manual

IE-78K0-NS-P04 IE-780818-NS-EM4 User's Manual

- · Basic specifications
- · System configuration
- · Part names
- · External interface functions
- General
- \cdot Parts names
- · Installation
- Differences between target devices and target interface circuits

Purpose

This manual's purpose is to explain various debugging functions that can be performed when using the IE-78K0-NS-P04 and the IE-780818-NS-EM4.

Terminology

The meanings of certain terms used in this manual are listed below.

Term	Meaning		
Emulation device	This is a general term that refers to the device in the emulator that is used to emulate the target device. It includes the emulation CPU.		
Emulation CPU This is the CPU block in the emulator that is used to execute use generated programs.			
Target device This is a device (a μ PD780816(A) Subseries chip) that is the target f emulation.			
Target systemThis includes the target program and the hardware provided b user. When defined narrowly, it includes only the hardware.			
IE system This refers to the combination of the IE-78K0-NS-A, the IE-78K0-NS-P04 and the IE-780818-NS-EM4.			

Conventions Data significance weight : Higher digits on the left and lower digits on the right

Note : Footnote for item marked with Note in the text.

Caution : Information requiring particular attention

Remark : Supplementary information

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Document Name	Document Number	
	English	Japanese
IE-78K0-NS-A	To be prepared	To be prepared
IE-78K0-NS-P04, IE-780818-NS-EM4	This manual	To be prepared
ID78K0-NS Integrated Debugger Reference Windows [™] Based	U12900E	U12900J

Caution: The documents listed above are subject to change without notice. Be sure to use the latest documents when designing.

Table of Contents

Introduction	5
Chapter 1 General	11
1.1 System Configuration	12
1.2 Hardware Configuration	14
1.3 Basic Specifications	
1.4 Notes on Use of IE-78K0-NS-P04 and IE-780818-NS-EM4	
Chapter 2 Part Names	17
2.1 Package Components	17
2.2 Parts of the IE-78K0-NS-P04	18
2.3 Parts of the IE-780818-NS-EM4	
Chapter 3 Installation	21
3.1 Installation Procedure	22
3.2 Clock Settings	30
3.2.1 Overview of clock settings	30
3.2.2 Main System Clock Selections	
3.2.3 Subsystem Clock Selections	32
3.2.4 Main System Clock Settings	
3.2.5 Examples of Main System Clock Setting	
3.3 Subsystem Clock	
3.3.1 Subsystem Clock Setting	
3.3.2 Examples of Subsystem Clock Setting	
3.4 Jumper Settings	
3.5 External Trigger	
	-1
Chapter 4 Differences among Target Devices and Target Interface Circuits	49
4.1 Input/Output Signals	50
4.2 Differences in Port Functions	54
4.3 Differences in SFR-Registers	54
4.4 Target Interface Circuit	54
Chapter 5 Restrictions	55
Appendix A IE-78K0-NS-P04, IE-780818-NS-EM4 Product Specifications	57
Appendix B Conversion Socket Adapter Package Drawings and recommended	
Board Mounting Pattern	59
Appendix C Pin Correspondence Tables of Emulation Probe	61

List of Figures

Figure 1-1: System Configuration	
Figure 1-2: Basic Hardware Configuration	14
Figure 2-1: IE-78K0-NS-P04 External View and Part Names	18
Figure 2-2: IE-780818-NS-EM4 External View and Part Names	19
Figure 3-1: IE-78K0-NS-A inside	
Figure 3-2: Main Board (G-780009) Jumper Positioning	
Figure 3-3: Emulation Board (IE-78K0-NS-P04) Jumper Positioning	
Figure 3-4: Emulation Board (IE-780818-NS-EM4) Jumper Positioning	28
Figure 3-5: External Circuits Used as System Clock Oscillation Circuit	30
Figure 3-6: When Using Clock That Is Already Mounted on Emulation Board	31
Figure 3-7: When Using User-mounted Clock	31
Figure 3-8: When Using an External Clock	32
Figure 3-9: When Using Standard Clock Mounted on Main Board	32
Figure 3-10: When Using Clock Mounted on the Emulation Board	33
Figure 3-11: Using an External Clock mounted on the Target Hardware	33
Figure 3-12: Connections on Parts Board (When Using Main System Clock or User-Mounted Clock)	
Figure 3-13: IE-78K0-NS-A side (Emulation Device)	
Figure 3-14: Crystal Oscillator (When Using Main System Clock or User-mounted Clock)	
Figure 3-15: Pin Alignment of Crystal Oscillator and Socket	
Figure 3-16: IE-78K0-NS-A side (Emulation Device)	
Figure 3-17: Connections on Parts Board (When Using Subsystem Clock or User-Mounted Clock)	
Figure 3-18: IE-78K0-NS-A side	
Figure 3-19: Crystal Oscillator (When Using Subsystem Clock or User-mounted Clock)	
Figure 3-20: IE-78K0-NS-A side	
Figure 3-21: IE-78K0-NS-A side	
Figure 3-22: External Trigger Input Position	
Figure 4-1: Equivalent Circuit 1 from Emulation Circuit	51
Figure 4-2: Equivalent Circuit 2 from Emulation Circuit	52
Figure 4-3: Equivalent Circuit 3 from Emulation Circuit	53
Figure 5-1: Clock Monitor Implementation	55

List of Tables

Table 1-1: Basic Specifications	15
Table 2-1: Names of IE-78K0-NS-P04 and IE-780818-NS-EM4 Parts	20
Table 3-1: Flash ROM Mode	
Table 3-2: Internal Mode 1	-
Table 3-3: Internal Mode 2	
Table 3-4: Main Clock Selection	
Table 3-5: Main Clock Doubler Selection	
Table 3-6: Sub Clock Selection	
Table 3-7: Reference Voltage Pin of AD-Converter	
Table 3-8: Ground Voltage Pin of AD-Converter	
Table 3-9: JTAG Mode	
Table 3-10: JTAG Mode	-
Table 3-11: FPGA Mode Selection	-
Table 3-12: JTAG Mode	
Table 3-13: Reference Voltage Setting	
Table 3-14: Reference Voltage Setting	
Table 3-15: Future Function	
Table 3-16: LED Indicator D1, D2, D3	
Table 3-17: User RESET mode	
Table 3-18: DCAN Out Transmit Buffer Selection	
Table 3-19: DCAN in Buffer Type Selection	
Table 3-20: Main System Clock Settings	
Table 3-21: Subsystem Clock Settings	
Table 3-22: Jumper Settings on IE-78K0-NS-A	
Table 3-23: Jumper Settings on IE-78K0-NS-P04	
Table 3-24: Jumper Settings on IE-780818-NS-EM4	46
Table 5-1: Difference between the Conversion Time	55
Table C-1: Connector CN11 to Emulation Probe (1/2)	
Table C-1: Connector CN11 to Emulation Probe (2/2)	62

Chapter 1 General

The IE-78K0-NS-P04 and the IE-780818-NS-EM4 are development tools for efficient debugging of hardware or software when using one of the following target devices that belong to the 78K/0 Series of 8-bit single-chip microcontrollers.

This chapter describes the emulation board's and probe board's system configuration and basic specifications.

- Target device

- µPD780816(A) Subseries

1.1 System Configuration

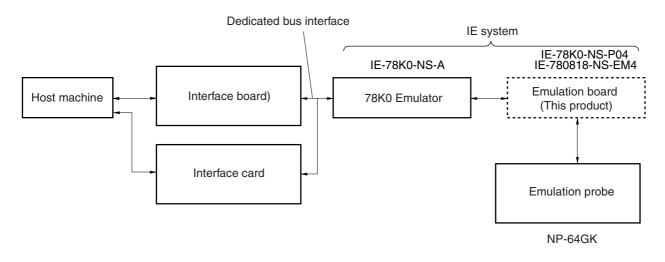
Figure 1-1 illustrates the IE-78K0-NS-P04 / IE-780818-NS-EM4's system configuration.

Debugger Device file ID78K0-NS Control software Host machine PC-9800 Series or IBM PC/AT™ compatibles Interface board Interface board Interface board IE-70000-PCI-IF-A IE-70000-98-IF-C IE-70000-PC-IF-C Interface card or or Interface cable Interface (NS IF Cable) cable IE-78K0-NS-A In-circuit emulator MC CARD NS CARD Cable Cable ____ IE-70000-CD-IF-A С FG Cable IE-78K0-NS-P04 IE-780818-NS-EM4 AC adapter Emulation probe Conversion socket/conversion adapter

Figure 1-1: System Configuration

Note: The packages, emulation probes, and conversion sockets/conversion adapters are listed below.

Package	Emulation Probe	Conversion Socket/ Conversion Adapter
64-pin plastic QFP (GK - type)	NP-64GK	NQPACK064SB YQPACK064SB
		HQPACK064SB140 YQSOCKET064SBF


The NP-64GK is a product of Naito Densei Machidaseisakusho Co., Ltd.

The sockets are products of TOKYO ELETECH CORPORATION.

1.2 Hardware Configuration

Figure 1-2 shows the IE-78K0-NS-P04/IE-780818-NS-EM4's position in the basic hardware configuration.

Figure 1-2: Basic Hardware Configuration

1.3 Basic Specifications

The IE-78K0-NS-P04/IE-780818-NS-EM4's basic specifications are listed in Table 1-1.

Table 1-1: Basic Specifications

Parameter	Description
Target device	μPD780816(A) Subseries
Questa en ala ala	Main system clock: 8.38 MHz
System clock	Subsystem clock: typical. 32.768 KHz
Cleak averaly	External: Pulse input
Clock supply	Internal: Mounted on emulation board
Voltage support	4.0 to 5.5 V (same as target device)

1.4 Notes on Use of IE-78K0-NS-P04 and IE-780818-NS-EM4

- (1) Ensure that the power supply for the IE-78K0-NS-A and the target system is OFF before connecting or disconnecting to/from the IE-78K0-NS-A and the target device, or changing switch settings, etc.
- (2) When carrying out target device emulation using the IE-78K0-NS-P04 and IE-780818-NS-EM4 in conjunction with the IE-78K0-NS-A, there are certain differences from the operation of the actual device (see **Differences from Target Device**).
- (3) The target system V_{DD} must be between 4.0 V and 5.5 V.
- (4) Power on sequence:
 - 1. Power on IE-78K0-NS-A
 - 2. Power on target hardware
 - 3. Start debugger ID78K0-NS

(5) **Power off sequence:**

- 1. Exit from debugger ID78K0-NS
- 2. Power off target hardware
- 3. Power off IE-78K0-NS-A.

Chapter 2 Part Names

This chapter introduces the parts of the IE-78K0-NS-P04 and the IE-780818-NS-EM4. The packaging boxes of the IE-78K0-NS-P04 and the IE-780818-NS-EM4 contain the following items:

2.1 Package Components

IE-78K0-NS-P04 Components

The IE-78K0-NS-P04 comprises the following components. Please check that all these items are included in the package.

(1)	IE-78K0-NS-P04	x 1
(2)	Parts holder (with cover)	x 2
(3)	Registration Card	x 1
(4)	Readme First	x 1
(5)	List of Contents	x 1

IE-780818-NS-EM4 Components

The IE-780818-NS-EM4 comprises the following components. Please check that all these items are included in the package.

(1)	IE-780818-NS-EM4	x 1
(2)	Screws Set	x 1
(3)	Registration Card	x 1
(4)	Readme First	x 1
(5)	List of Contents	x 1
(6)	Floppy Disk with Device	
	File and FPGA Data	x 1
(7)	User's Manual (this manual)	x 1

2.2 Parts of the IE-78K0-NS-P04

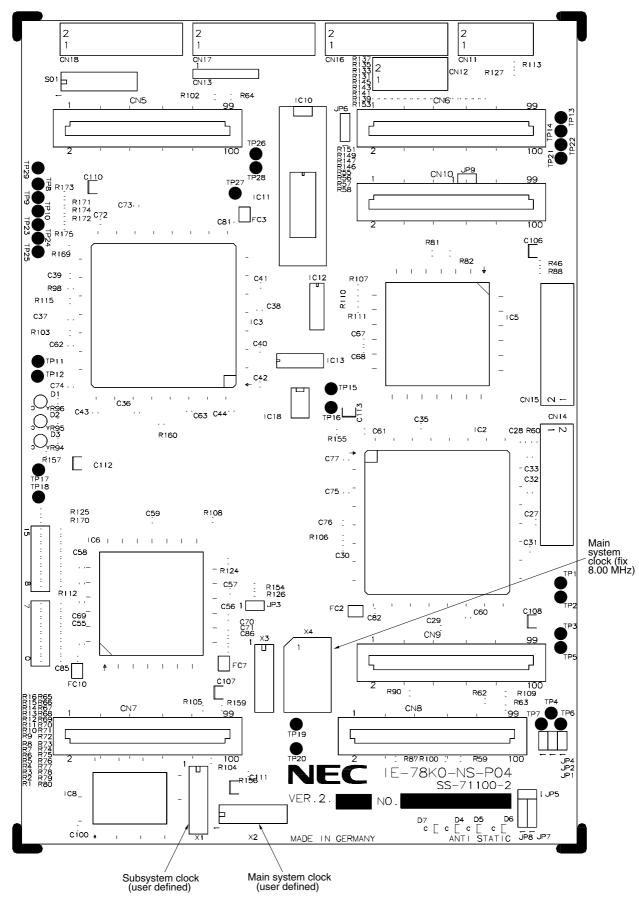
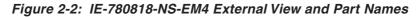
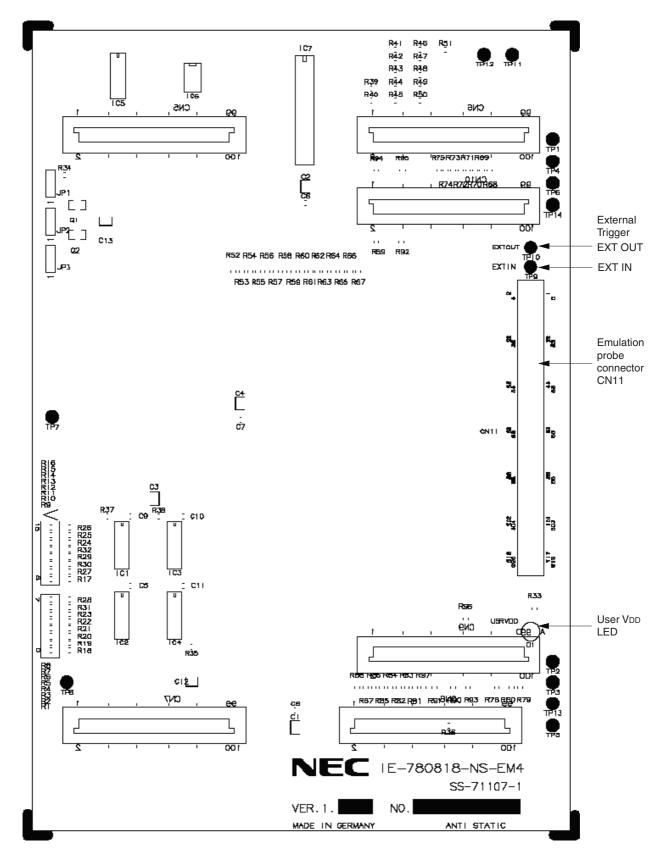




Figure 2-1: IE-78K0-NS-P04 External View and Part Names

2.3 Parts of the IE-780818-NS-EM4

Name	Description (IE-78K0-NS-P04)	Name	Description (IE-780818-NS-EM4)
CN1		CN5	Emulation board connectors
CN2	Emulator connections	CN6	(IE-78K0-NS-P04)
CN3	Emulator connections	CN7	
CN4		CN8	
CN5		CN9	
CN6		CN10	
CN7	Probe board connectors	CN11	Probe connector
CN8	(IE-78K0-NS-P04)	JP1	Disconnect USER-Reset
CN9		JP2	CAN TxD driver buffer type
CN10		JP3	CAN RxD receive buffer type
CN11			
CN12			
CN13			
CN14	Test connector		
CN15	(only for internal use by NEC)		
CN16			
CN17			
CN18			
JP1	Analog reference voltage		
JP2	GND-pin of A/D Converter		
JP3	Reseved (only for internal use by NEC)		
JP4	JTAG mode selection (only for internal use by NEC)		
JP5	FPGA mode selection		
JP6	JTAG mode selection (only for internal use by NEC)		
JP7	LVREF1		
JP8	LVREF0		

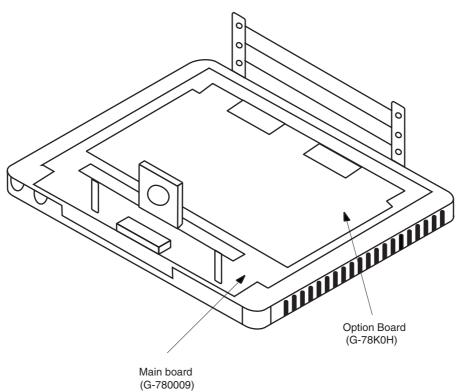
Table 2-1: Names of IE-78K0-NS-P04 and IE-780818-NS-EM4 Parts

Chapter 3 Installation

This chapter describes the method for the connection of the IE-78K0-NS-P04, the IE-780818-NS-EM4 and the emulation probe.

- Installation of the IE-78K0-NS-P04
- Installation of the IE-780818-NS-EM4
- Installation of the emulation probe
- Setting of the jumpers for the clock selection

The power supply of the IE-78K0-NS-A and the target system must be switched off when connecting or disconnecting any item.


Caution: Usage of incorrect connection methods may damage the IE system.

3.1 Installation Procedure

<1> Remove the 4 screws at the sides of the IE-78K0-NS-A and open the top of the cover.

<2> Remove the screws on the option board (G-78K0H) and remove the option board.

Figure 3-1: IE-78K0-NS-A inside

<3> Setup the jumper's on the **main board** (G-780009).

It is necessary to set some jumpers on the main board for the clock selection. An example for the jumper setting will be given in the chapter clock setting.

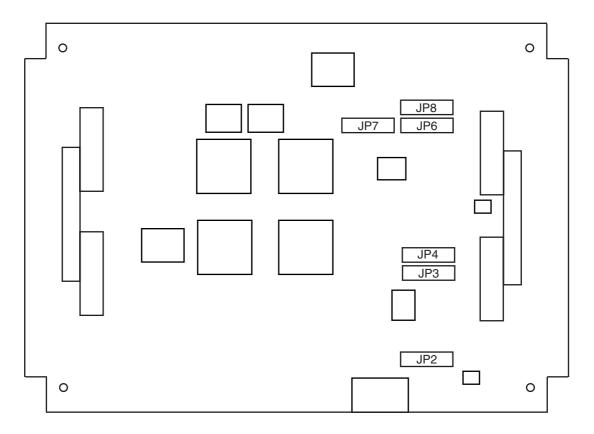


Figure 3-2: Main Board (G-780009) Jumper Positioning

Table 3-1: Flash ROM Mode

Jumper Position	Function
(1-2)	Internal use
(2-3)	Internal use (default)

Jumper JP3

Table 3-2: Internal Mode 1

Jumper Position	Function
(1-2)	Internal use (default)
(2-3)	Internal use

Table 3-3: Internal Mode 2

Jumper Position	Function
(1-2)	Internal use (default)
(2-3)	Internal use

Jumper JP6

Table 3-4: Main Clock Selection

Jumper Position	Function
(1-2)	Not selectable
(3-4)	EM1/P04 board selection (default)
(5-6)	EM4 board selection

Jumper JP7

Table 3-5: Main Clock Doubler Selection

Jumper Position	Function
(1-2)	Main board selection (default)
(3-4)	EM board selection 1
(5-6)	EM board selection 2

Jumper JP8

Table 3-6: Sub Clock Selection

Jumper Position	Function
(1-2)	On EM board (default)
(3-4)	On target system
(5-6)	On main board

<4> Connect the option board (G-78K0H) to the main board (G-780009).

<5> Setup of the emulation board (IE-78K0-NS-P04)

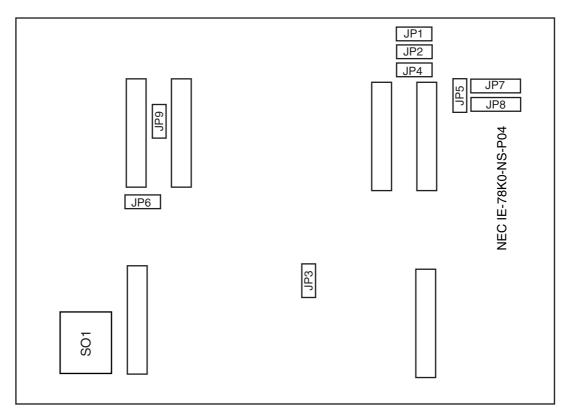


Figure 3-3: Emulation Board (IE-78K0-NS-P04) Jumper Positioning

Table 3-7: Reference Voltage Pin of AD-Converter

Jumper Position	AAVREF	Function
Open	Target	Connected to target selected reference voltage (default)
Close	GND	Reference voltage

Remark: Close jumper JP1 when the AD-converter is not used.

Jumper JP2

Table 3-8: Ground Voltage Pin of AD-Converter

Jumper Position	AAVss	Function
Open	Target	Connected to target selected ground base (default)
Close	GND	Internal digital ground

Remark: Close jumper JP2 when the AD-converter is not used.

Table 3-9: JTAG Mode

Jumper Position	JTAG	Function
Open	Pull-up	Reserved (Internal use) (default)
Close	GND	Reserved (Internal use)

Jumper JP4

Table 3-10: JTAG Mode

Jumper Position	JTAG	Function
Open	Pull-up	Reserved (Internal use)
Close	GND	Reserved (Internal use) (default)

Jumper JP5

Table 3-11: FPGA Mode Selection

Jumper Position	ESN	Function
Open	Pull-up	Asynchronous peripheral mode (FPGAs are loaded by IE) (default)
Close	GND	Reserved (Internal use)

Jumper JP6

Table 3-12: JTAG Mode

Jumper Position	JTAG	Function
(1-2)	Pull-up	Reserved (Internal use)
(2-3)	GND	Reserved (Internal use) (default)

Jumper JP7

Table 3-13: Reference Voltage Setting

Jumper Position	LV _{REF1}	Function
(1-2)	Vcc	Reserved (Internal use) (default)
(2-3)	LVDD	Reserved (Internal use)

Table 3-14: Reference Voltage Setting

Jumper Position	LV _{REF0}	Function
(1-2)	Vcc	Reserved (Internal use) (default)
(2-3)	LVdd	Reserved (Internal use)

Jumper JP9

Table 3-15: Future Function

Jumper Position		Function
Open	Pull-up	Reserved (Internal use) (default)
Close	GND	Reserved (Internal use)

LED Indicator

Table 3-16: LED Indicator D1, D2, D3


LED	Condition	Function
LED1 green	Blinking	FPGA download ongoing
LED1 green	On	FPGA download complete
LED1 green	Off	FPGA not programmed
LED2 yellow	Blinking	Not used
LED2 yellow	On	V _{cc} on
LED2 yellow	Off	V _{cc} off
LED3 red	Blinking	Not used
LED3 red	On	Not used
LED3 red	Off	Not used

Remark: Not used LED's are reserved for future functions.

<6> Connect the emulation board (IE-78K0-NS-P04) to the option board (G-78K0H).

<7> When user clock as main clock is used, the main system clock can be mounted by using a parts holder or a crystal oscillator (see chapter clock setting).

<8> Setup of the probe board (IE-780818-NS-EM4)

	NEC IE-780818-NS-EM4
JP1 JP2 JP3	

Table 3-17: User RESET mode

Jumper Position	User RESET	Function
(1-2)	To probe	User Reset (IE) connected to the probe (default)
(2-3)	Pull-up	User Reset (IE) pull-up by resistor (10K)

Jumper JP2

Table 3-18: DCAN Out Transmit Buffer Selection

Jumper Position	DCAN out	Function
(1-2)	Pin emulator	Reserved
(2-3)	FPGA	DCAN transmit line from FPGA via transistor to probe (default)

Jumper JP3

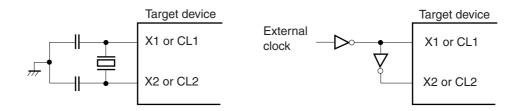
Table 3-19: DCAN in Buffer Type Selection

Jumper Position	DCAN in	Function
(1-2)	Pin emulator	Original buffer (default)
(2-3)	FPGA	Buffer type different /timing optimized (limitation USRVDD \ge 4.5 V)

3.2 Clock Settings

3.2.1 Overview of clock settings

Main system clock

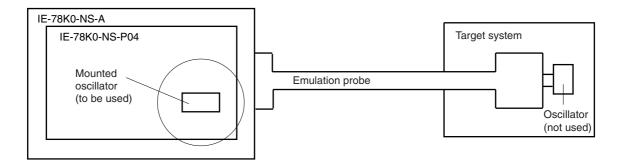

Select from (1) to (3) below as the main system clock and subsystem clock to be used during debugging.

- (1) Clock that is already mounted on emulation board
- (2) Clock that is mounted by user
- (3) External clock

If the target system includes an internal clock, select either "(1) Clock that is already mounted on emulation board" or "(2) Clock that is mounted by user". An internal clock connects the target device to an oscillator and uses the target device's internal oscillation circuit. An example of an external circuit is shown in part (a) of Figure 3-5. During emulation, the oscillator that is mounted on the target system is not used. Instead, it uses the clock that is mounted on the emulation board which is installed for the IE-78K0-NS-A. If the target system includes an external clock, select "(3) External clock".

An external clock supplies a clock signal from outside of the target device and does not use the target device's internal oscillation circuit. An example of an external circuit is shown in part (b) of Figure 3-5.

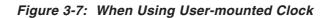
Figure 3-5: External Circuits Used as System Clock Oscillation Circuit

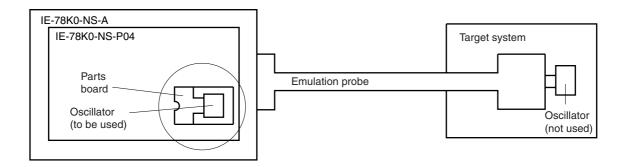


3.2.2 Main System Clock Selections

(1) Clock that is already mounted on emulation board

A crystal resonator is already mounted on the emulation board. Its frequency is 8.0000 MHz.

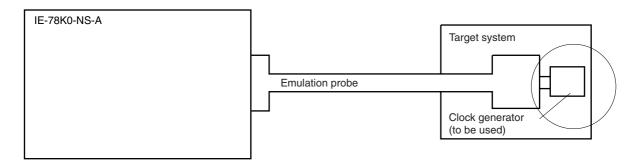

Figure 3-6: When Using Clock That Is Already Mounted on Emulation Board



Remark: The clock that is supplied by the IE-78K0-NS-P04 oscillator (encircled in the figure) is used.

(2) Clock that is mounted by user

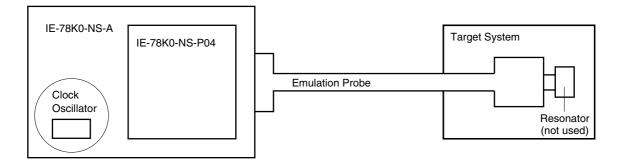
The user is able to mount any clock supported by the set specifications on the IE-78K0-NS-P04. First mount the oscillator on the parts holder, then attach the parts board to the IE-78K0-NS-P04. This method is useful when using a different frequency from that of the pre-mounted clock.



Remark: The clock that is supplied by the IE-78K0-NS-P04 oscillator (encircled in the figure) is used.

(3) External clock

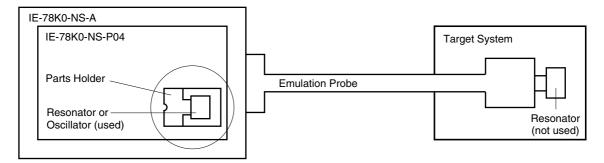
An external clock connected to the target system can be used via the emulation probe.


Remark: The clock supplied by the target system's clock generator (encircled in the figure) is used.

3.2.3 Subsystem Clock Selections

(1) Standard clock offered by the main board

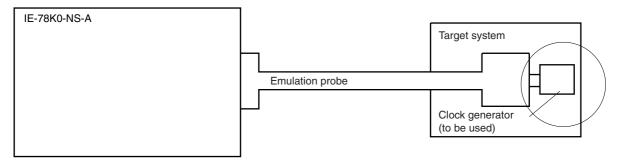
A crystal oscillator is already mounted on the main board. The frequency is 32.768 kHz.



Remark: The clock supplied from the oscillator on the Main Board (G-78009) (circled) is used.

(2) Clock mounted by user on the emulation board

A clock that matches the specifications set by the user can be mounted on the IE-78K0-NS-P04. The resonator or oscillator to be used is mounted on a parts holder and that parts holder is installed on the IE-78K0-NS-P04. This is useful if you want to perform debugging at a different frequency from that of the clock mounted beforehand.



Remark: The clock supplied from the resonator or oscillator on the IE-78K0-NS-P04 (circled) is used.

(3) External clock on the target hardware

The external clock on the target system can be used via an emulation probe.

Figure 3-11: Using an External Clock mounted on the Target Hardware

Remark: The clock supplied by the clock generator circuit (circled in the above figure) is used.

3.2.4 Main system clock settings

Table 3-20:	Main	System	Clock	Settings
-------------	------	--------	-------	----------

Frequency of Main System Clock		IE-78K0-NS-P04	CPU Clock Source Selection (ID)
When using clock that is already mounted on emulation board	8.00 MHz	Shortcut 6-8	Internal
When using clock mounted by user		Includes oscillator circuit	
When using external clock	Other than 8.00 MHz	Shortcut 6-8	External

Caution: When using an an user defined clock or external clock, open the configuration dialog when starting the integrated debugger (ID78K0-NS) and select "External" in the area (Clock) for selecting the CPU's clock source (this selects the user's clock).

(1) When using clock that is already mounted on emulation board

When the IE-78K0-NS-P04 is shipped, an 8.00-MHz crystal resonator is already mounted in the IE-78K0-NS-P04 X4 socket. When using the factory-set mode settings, there is no need to make any other hardware settings.

When starting the integrated debugger (ID78K0-NS), open the configuration dialog and select "Internal" in the area (Clock) for selecting the CPU's clock source (this selects the emulator's internal clock).

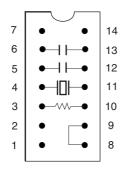
Remark: The IE-78K0-NS-P04 factory settings are those listed above under "when using clock that is already mounted on emulation board".

(2) When using clock mounted by user

The settings described under either (a) or (b) are required, depending on the type of clock to be used. When starting the integrated debugger (ID78K0-NS), open the configuration dialog and select "External" in the area (Clock) for selecting the CPU's clock source (this selects the emulator's internal clock).

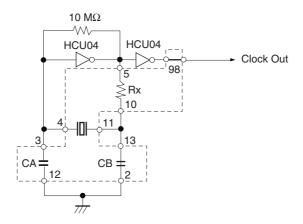
(a) When using a ceramic oscillator or crystal resonator

- Items to be prepared
 - Parts holder (supplied with IE-78K0-NS-P04)
 - Ceramic oscillator or crystal resonator
 - Resistor Rx


- · Capacitor CA
- Capacitor CB
- Solder kit

<Steps>

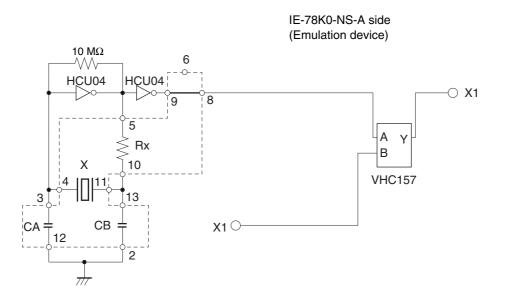
<1> Solder onto the supplied parts board (as shown below) the target ceramic oscillator or crystal resonator, resistor Rx, capacitor CA, and capacitor CB (all with suitable oscillation frequency).


Figure 3-12: Connections on Parts Board (When Using Main System Clock or User-Mounted Clock)

Parts holder

Pin No.	Connection		
2-13	Capacitor CB		
3-12	Capacitor CA		
4-11	Ceramic oscillator or crystal resonator		
5-10	Resistor Rx		
8-9	Short		

Circuit diagram

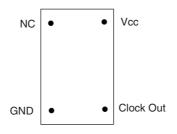


- <2> Prepare the IE-78K0-NS-P04.
- <3> Remove the parts holder inserted in the socket (marked "X2") on the IE-78K0-NS-P04.
- <4> Connect the parts holder (from <1> above) to the socket (X2) from which the part holder was removed. Check the pin 1 mark to make sure the board is mounted in the correct direction.
- <5> Make sure that the parts board mounted in the X2 socket on the emulation board is wired as shown in Figure 3-10 above.

<6> Install the IE-78K0-NS-P04 and the IE-780818-NS-EM4 in the IE-78K0-NS-A.

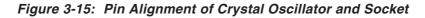
The above steps configure a circuit and enable clock output to be supplied from the mounted oscillator to the emulation device.

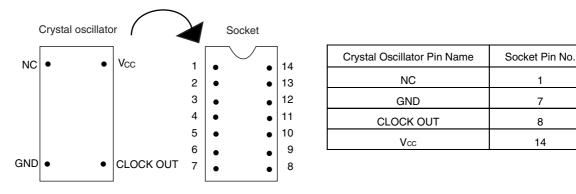
Figure 3-13: IE-78K0-NS-A side (Emulation Device)



Remark: The sections enclosed in broken lines indicate parts that are attached to the parts holder.

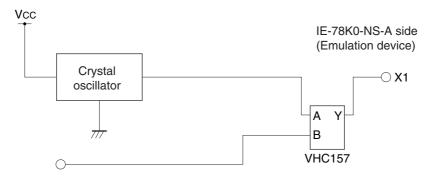
(b) When using a crystal oscillator


- Items to be prepared
- Crystal oscillator (see pinouts shown in Figure 3-15)



<Steps>

- <1> Prepare the IE-78K0-NS-P04.
- <2> Remove the parts holder inserted in the socket (marked "X2") on the IE-78K0-NS-P04.
- <3> Connect the parts board (from <2> above) to the socket (X2) from which the parts holder was removed. Insert the crystal oscillator into the socket so as to align the pins as shown in the figure below.



<4> Install the IE-78K0-NS-P04 and the IE-780818-NS-EM4 in the IE-78K0-NS-A.

The above steps configure a circuit and enable clock output to be supplied from the mounted oscillator to the emulation device.

(3) When using an external clock

No hardware settings are required for this situation.

Make sure that the parts holder with a shortcut between 6 and 8 is in the socket (marked "X2"). When starting the integrated debugger (ID78K0-NS), open the configuration dialog and select "External" in the area (Clock) for selecting the CPU's clock source (this selects the user's clock).

3.2.5 Examples of Main System Clock Setting

(1) Standard Clock 8.00 MHz offered by the Emulation Board (IE-78K0-NS-P04)

Main Board: JP6 - (3-4) JP7 - (1-2) Emulation Board: X2 with shortcut between 6 - 8 ID78K0-NS: Internal

(2) Clock mounted by the User on the Emulation Board

 User related Clock
 Main Board: JP6 - (3-4) JP7 - (1-2)
 Emulation Board: X2 with parts holder and crystal resonator, ceramic resonator or crystal oscillator
 ID78K0-NS: External

(3) External Clock on the Target Hardware

Main Board:	JP6 - (3-4)
	JP7 - (1-2)
Emulation Board:	X2 with shortcut between 6 - 8
ID78K0-NS:	External

3.3 Subsystem Clock

3.3.1 Subsystem Clock Setting

Table 3-21: Subsystem Clock Settings

Subayatam Clask E	requereu te be Lleed	IE-78K0-NS-P04	IE-78K0-NS-A
Subsystem Clock F	requency to be Used	Parts holder (X1)	JP8
When using clock that is already mounted on main board	32.768 KHz	Short 6 - 8	Short 5 - 6
When using user- mounted clock	Other than 32.768 KHz	Includes oscillator	Short 1 - 2
When using external clock		Not used	Short 3 - 4

Caution: Jumper JP8, which is used to select the board's clock or an external clock, should be set only after turning off the IE-78K0-NS-A's power.

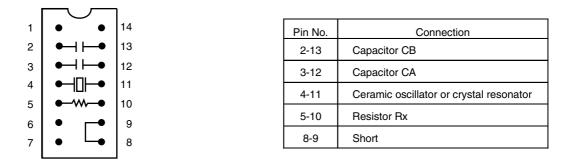
(1) When using clock that is already mounted on main board

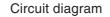
When the IE-78K0-NS-P04 / IE-780818-NS-EM4 are shipped, there is no 32.768 KHz crystal on the board. The parts holder on X1 is shortened between 6 and 8. Short pins 5 and 6 of the IE-78K0-NS-A's main board to use the 32.768 KHz crystal of the emulator. There is no additional settings of the integrated debugger ID78K0-NS necessary.

(2) When using the user-mounted clock on the IE-78K0-NS-P04

The settings described under either (a) or (b) are required, depending on the type of clock to be used. Short pins 1 and 2 on the IE-78K0-NS-A's jumper (JP8). There is no need to make any other settings via the integrated debugger (ID78K0-NS).

(a) When using a ceramic oscillator or crystal resonator


- Items to be prepared
 - Parts board (supplied with IE-78K0-NS) - Capacitor CA
 - Ceramic oscillator or crystal resonator - Capacitor CB
 - Resistor Rx


- Solder kit

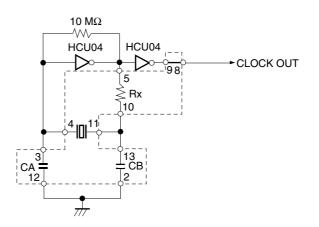

- <Steps>
- <1> Solder onto the supplied parts board (as shown below) the target ceramic oscillator or crystal resonator, resistor Rx, capacitor CA, and capacitor CB (all with suitable oscillation frequency).

Figure 3-17: Connections on Parts Board (When Using Subsystem Clock or User-Mounted Clock)

Parts holder (X1 of IE-78K0-NS-P04)

Remark: The sections enclosed in broken lines indicate parts that are attached to the parts board.

- <2> Prepare the IE-78K0-NS-P04.
- <3> Remove the crystal oscillator that is mounted in the IE-78K0-NS-P04's socket (the socket marked as "X1").
- <4> Connect the parts board (from <1> above) to the socket (X1) from which the crystal oscillator was removed (see <3> above). Check the pin 1 mark to make sure the board is mounted in the correct direction.
- <5> Install the IE-78K0-NS-P04 and the IE-780818-NS-EM4 in the IE-78K0-NS-A.

The above steps configure a circuit and enable clock output to be supplied from the mounted oscillator to the emulation device.

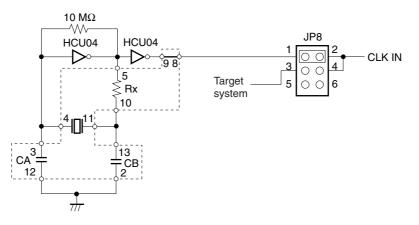
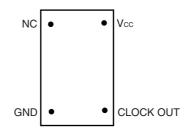


Figure 3-18: IE-78K0-NS-A side


Remark: The section enclosed in broken lines indicates parts that are attached to the parts board.

(b) When using a crystal oscillator

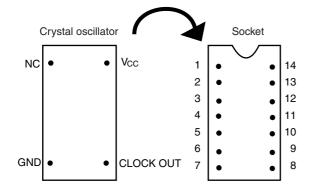
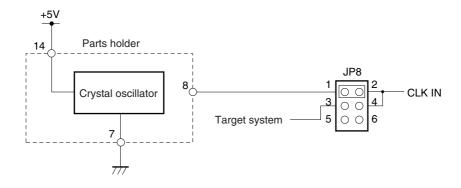

- Items to be prepared
- Crystal oscillator (see pinouts shown in Figure 3-20)

Figure 3-19: Crystal Oscillator (When Using Subsystem Clock or User-mounted Clock)

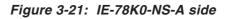
<Steps>

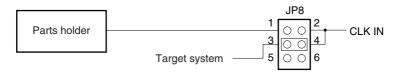
- <1> Prepare the IE-78K0-NS-P04.
- <2> Remove the crystal oscillator that is mounted in the IE-78K0-NS-P04's socket (the socket marked as "X1").
- <3> Connect the parts board (from <2> above) to the socket (X1) from which the crystal oscillator was removed. Insert the crystal oscillator into the socket so as to align the pins as shown below.



Crystal Oscillator Pin Name	Socket Pin No.
NC	1
GND	7
CLOCK OUT	8
Vcc	14

<4> Install the IE-78K0-NS-P04 and the IE-780818-NS-EM4 in the IE-78K0-NS-A.


The above steps configure a circuit and enable clock output to be supplied from the mounted oscillator to the emulation device.


Figure 3-20: IE-78K0-NS-A side

(3) When using an external clock

Short pins 3 and 4 on the IE-78K0-NS-A's jumper (JP8). There is no need to make any settings via the integrated debugger (ID78K0-NS).

3.3.2 Examples of Subsystem Clock Setting

(1) Standard Clock 32.768 KHz offered by the Main Board (G-780009)

Main Board:JP8 - (5-6)Emulation Board (IE-78K0-NS-P04):X1 with shortcut between 6 - 8ID78K0-NS:don't care

(2) Clock mounted by the User on the Emulation Board

Main Board:JP8 - (1-2)Emulation Board (IE-78K0-NS-P04):X1 with oscillation circuitID78K0-NS:don't care

(3) External Clock on the Target Hardware

Main Board:JP8 - (3-4)Emulation Board (IE-78K0-NS-P04):X1 with shortcut between 6 - 8ID78K0-NS:don't care

3.4 Jumper Settings

When using the IE-78K0-NS-P04 and the IE-780818-NS-EM4, set the jumpers as shown below.

Table 3-22: Jumper Settings on IE-78K0-NS-A

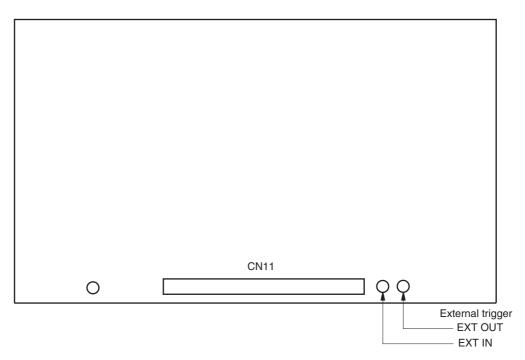
	JP2	JP3	JP4	JP6	JP7	JP8
Short	2-3	1-2	1-2	3-4	1-2	5-6

Table 3-23: Jumper Settings on IE-78K0-NS-P04

JP1	JP2	JP3	JP4	JP5	JP6	JP7	JP8	JP9
Open	Open	Open	Closed	Open	2-3	1-2	1-2	Open

Table 3-24: Jumper Settings on IE-780818-NS-EM4

JP1	JP2	JP3
1-2	2-3	1-2



3.5 External Trigger

To set up an external trigger, connect the IE-780818-NS-EM4's check pin, EXTOUT, and EXTIN as shown below.

See the in-circuit emulator (IE-78K0-NS-A) User's Manual for description of related use methods and pin characteristics.

NEC

[Memo]

Chapter 4 Differences among Target Devices and Target Interface Circuits

This chapter describes differences between the target device and the IE-78K0-NS-P04 / IE-780818-NS-EM4 target interface circuit.

Although the target device is a CMOS circuit, the IE-78K0-NS-P04/IE-780818-NS-EM4's target interface circuit consists of an emulation chip, TTL, CMOS-IC, and other components.

When connected the IE system with the target system for debugging, the IE system performs emulation so as to operate as the actual target device would operate on the target system.

However, some minor differences exist since the operations are performed via the IE system's emulation.

4.1 Input/Output Signals

<1> Signal which are input or output from the gate array.

<2> Signals those are input or output from the μ PD78P0308.

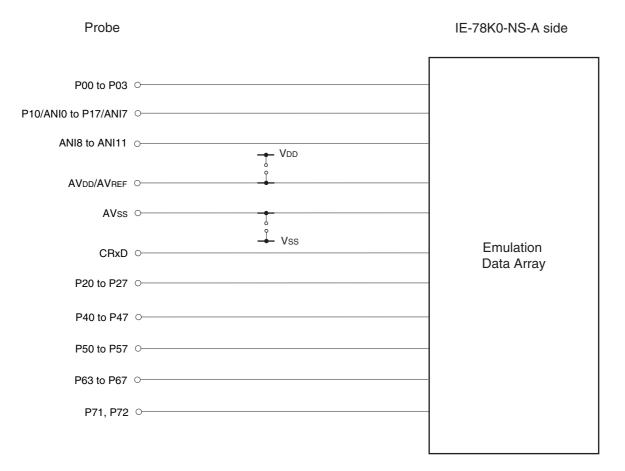
- <3> Signals that are input or output from the µPD780009 emulation CPU
- <4> Other signals

The IE system circuit is used as follows for above-mentioned signals.

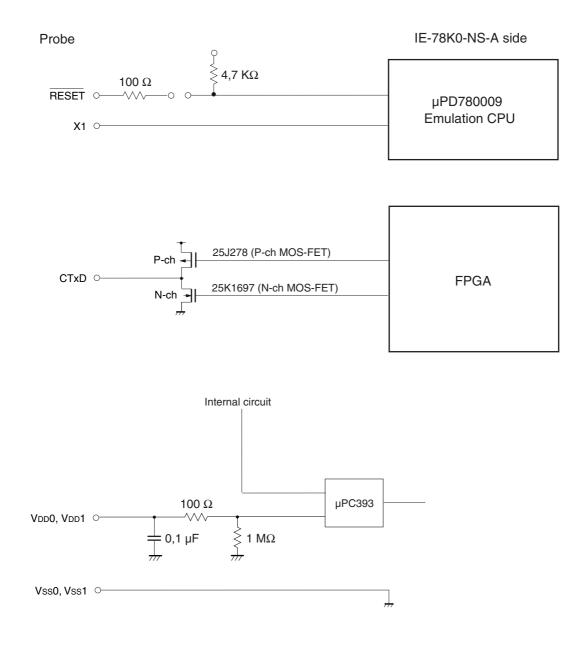
(1) Signals which are input or output from the gate array

P00 to P03 P10/ANI0 to P17/ANI7 ANI8 to ANI11 P20 to P27 P40 to P47 P50 to P57 P63 to P67 P70, P71 AVDD/AVREF AVss CRxD

(2) Signals those are input or output from the μ PD78P0308


None.

(3) Signals that are input or output from the $\mu\text{PD780009}$ emulation CPU


 $\frac{X1}{RESET}$

(4) Other signals

VDD0, VDD1 Vss0, Vss1 X2 CTxD VPP/Test

Figure 4-1: Equivalent Circuit 1 from Emulation Circuit

Figure 4-2: Equivalent Circuit 2 from Emulation Circuit

NF

Probe	IE-78K0-NS-A side
X2 O	Open
VPP/Test O	Open

Figure 4-3: Equivalent Circuit 3 from Emulation Circuit

4.2 Differences in Port Functions

- 1. The subclock has to be build up with a crystal or an oscillator. A RC-combination can not be used.
- 2. The conversion time of the AD-converter is different to the device (please refer to the Chapter 5 Restrictions).
- 3. The clock monitor can not be emulated as on the device (please refer to the Chapter 5 Restrictions).

4.3 Differences in SFR-Registers

Caution: The emulator has a register to emulate the powerfail detection which is not existing at the real chip. The name of the register is DAM0 (SFR-Adr: 0xFF9C). This register has to be set to the value 0x01 by the user program.

4.4 Target Interface Circuit

The purpose of the target interface circuit is to have the same operations as the target device performed in the IE-78K0-NS-A. It comprises the emulation device and various dates (CMOS, TTL and othes ICs). When debugging is performed with the target system connected to the IE-78K0-NS-A, the IE-78K0-NS-A target interface circuit performes emulation as though the actual target device were operating in the target system.

The target device has a CMOS LSI configuration. The target interface circuit emulator device also has a CMOS LSI configuration, and is virtually identical to the target device in terms of DC characteristics and AC characteristics (when operating on $V_{DD} = 4.0$ to 5.5 V).

However, where emulation device signal input/output is performed via gates in the target interface circuit, DC and AC characteristics differ from those of the target device.

In particular, regarding AC characteristics, there is a date delay time (which differs from date to date) each time a gate is passed through.

The above points must be taken into consideration when designing the target system.

Caution: When the IE-78K0-NS-A and IE-78K0-NS-P04 and IE-780818-NS-EM4 are connected to the target system, 4.0 to 5.5 V must be supplied as the target system power supply (VDD).

Chapter 5 Restrictions

- 1. Starting up the IE system without target board connected makes initial values for ports-indefinite.
- 2. The RESET value of the CANES register is not correct. As workaround the CANES register has to be reset by software.
- 3. Power Fail Detector It is necessary to set the DAM0 register (dedicated register when the ICE is used).
- 4. The voltage level of VPP cannot be detected during self-programming. The feedback information bit VPP of the FLPMC register will be always read as 1.
- 5. AD-Converter

The conversion time of the AD-Converter is different than on the real device.

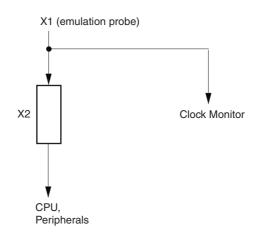

Device	Emulation Tool
144/fx	144/fx
120/fx	120/fx
96/fx	96/fx
72/fx	288/fx
60/fx	240/fx
48/fx	192/fx

Table 5-1: Difference between the Conversion Time

6. Clock Monitor

The clock monitor is implemented in the following way.

When the Clock Monitor shall be used, the clock for the Clock Monitor has to be supplied via the X1 pin of the emulation probe. Due to this it may be necessary to use two separate clock supplies: one for the CPU and the peripherals on the IE-78K0-P04 (socket X2) and the other for the Clock Monitor via the X1 pin of the emulation probe.

NEC

[Memo]

Appendix A IE-78K0-NS-P04, IE-780818-NS-EM4 Product Specifications

Product name	:	IE-78K0-NS-P04, IE-780818-NS-EM4	
Operating temperature	:	0 to 50 °C	
Humidity	:	10 to 80% RH (no condensation)	
Storage temperature	:	–15 to +60 °C	
Power supply	:	Power supply capacity : DC 200mA (MAX.)	1.0 W +5 V

Table A-1: Connectors on IE-78K0-NS-P04 Board and IE-780818-NS-EM4 Board

Name	Description (IE-78K0-NS-P04)	Name	Description (IE-780818-NS-EM4)
CN1		CN5	Emulation board connectors
CN2		CN6	(IE-78K0-NS-P04)
CN3	Emulator connections	CN7	
CN4		CN8	
CN5		CN9	
CN6		CN10	
CN7	Probe board connectors	CN11	Probe connector
CN8	(IE-78K0-NS-P04)	JP1	Disconnect USER-Reset
CN9		JP2	CAN TxD driver buffer type
CN10		JP3	CAN RxD receive buffer type
CN11			
CN12			
CN13			
CN14	Test connector		
CN15	(only for internal use by NEC)		
CN16			
CN17			
CN18			
JP1	Analog reference voltage		
JP2	GND-pin of A/D Converter		
JP3	Reseved (only for internal use by NEC)		
JP4	JTAG mode selection (only for internal use by NEC)		
JP5	FPGA mode selection		
JP6	JTAG mode selection (only for internal use by NEC)		
JP7	LVREF1		
JP8	LVREF0		

NEC

[Memo]

Appendix B Conversion Socket Adapter Package Drawings and recommended **Board Mounting Pattern**

The following sockets and socket adapters are available for the connection of the probe or device:

- Soldering socket : NQPACK064SB
- Probe adapter : YQPACK064SB
- High adapterYQSOCKET064SBFDevice LidHQPACK064SB140

NEC

[Memo]

Appendix C Pin Correspondence Tables of Emulation Probe

No.	Real-chip	Pin Function
1		GND
3		NC
5		NC
7		NC
9		NC
11		GND
13	Pin 34	AVDD/AVREF
15	Pin 16	CTxD
17	Pin 36	ANI9
19	Pin 14	P71/TIO1
21	Pin 38	ANI11
23	Pin 12	Vss1
25		GND
27	Pin 40	VDD0
29	Pin 10	P60/TI20
31		NC
33		NC
35		NC
37		NC
39		GND
41		NC
43	Pin 17	P27/TI51/TO51
45	Pin 31	P15/ANI5
47	Pin 19	P25/TxD
49	Pin 29	P13/ANI3
51	Pin 21	P23/PCL
53		GND
55	Pin 27	P11/ANI1
57	Pin 23	P21/SO2
59	Pin 25	AVss
61	Pin 57	P02/INTP2
63	Pin 55	P00/INTP0
65	Pin 59	P50
67		GND
69	Pin 53	P46/KR6
71	Pin 61	P52
73	Pin 51	P44/KR4
75	Pin 63	P54
77	Pin 49	P42/KR2
79		NC
81		GND
83		NC
85		NC
87		NC
89		NC
91	Pin 42	X2
93	Pin 42	P62/TI22
95	50	GND
97	Pin 44	CL1/CCLK
31	1 111 44	

No.	Real-chip	Pin Function
2		GND
4		NC
6		NC
8		NC
10		NC
12		GND
14	Pin 33	P17/ANI7
16	Pin 15	CRxD
18	Pin 35	ANI8
20	Pin 13	P70/TI00/TO00
22	Pin 37	ANI10
24	Pin 11	Vdd
26		GND
28	Pin 39	Vss
30	Pin 09	P61/TI21
32		NC
34		NC
36		NC
38		NC
40		GND
42		NC
44	Pin 18	P26/TI50/TO50
46	Pin 32	P16/ANI6
48	Pin 20	P24/RxD
50	Pin 30	P14/ANI4
52	Pin 22	P22/SCK2
54		GND
56	Pin 28	P12/ANI2
58	Pin 24	P20/SI2
60	Pin 26	P10/ANI0
62	Pin 58	P03/INTP3
64	Pin 56	P01/INTP1
66	Pin 60	P51
68		GND
70	Pin 54	P47/KR7
72	Pin 62	P53
74	Pin 52	P45/KR5
76	Pin 64	P55
78	Pin 50	P43/KR3
80		NC
82		GND
84		NC
86		NC
88		NC
90		NC
92	Pin 41	X1
94	Pin 07	P63
96	-	GND
98	Pin 43	IC/VPP

Table C-1: Connector CN11 to Emulation Probe (1/2)

Г

No.	Real-chip	Pin Function
99	Pin 06	P64
101	Pin 46	RESET
103	Pin 04	P66
105	Pin 48	P41/KR1
107	Pin 02	P57
109		GND
111		NC
113		NC
115		NC
117		NC
119		GND

-				
	No.	Real-chip	Pin Function	
	100	Pin 05	P65	
	102	Pin 45	CL2	
	104	Pin 03	P67	
	106	Pin 47	P40/KR40	
	108	Pin 01	P10/ANI0	
	110		GND	
	112		NC	
	114		NC	
	116		NC	
	118		NC	
	120		GND	

Table C-1: Connector CN11 to Emulation Probe (2/2)

Remark: The meaning of the symbols and figures in the Emulation Probe column is as follows: GND: Ground clip NC: Not connected 1–120: Emulation probe tip pin numbers

NE

Facsimile Message

FAX

Korea

Seoul Branch

Fax: 02-528-4411

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Thank you for your kind support.

Hong Kong, Philippines, Oceania **Asian Nations except Philippines** NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583

Japan

NEC Semiconductor Technical Hotline Fax: 044-548-7900

Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: 1-800-729-9288 1-408-588-6130 Europe

NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274

South America NEC do Brasil S.A.

Fax: +55-11-6465-6829

From:

Name

Tel.

Address

North America

NEC Electronics Inc.

Company

Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951

NEC Electronics Hong Kong Ltd.

NEC Electronics Hong Kong Ltd.

I would like to report the following error/make the following suggestion:

Document title: _

Document number:

_____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				

CS 99.1