
Adaptive Optics simulation IDL code

A User Manual

Fran�cois Rigaut

March 21, 2001

Contents

1 Introduction 3

2 The input �les 5

2.1 ao.par . 5

2.2 Dimensioning the system . 12

2.3 sensor.par . 13

2.4 mirror.par . 13

2.5 The phase screens . 14

3 The Main Routines 15

3.1 init . 15

3.2 dointer . 15

3.3 mkmatcom . 16

3.4 loop . 16

4 Running simul 17

4.1 X form interface to simul . 17

4.2 Running Simul from the command line . 18

4.3 Running time considerations . 20

5 The output �les 23

A Batch Examples 25

1

2 CONTENTS

Chapter 1

Introduction

This code is written exclusively in IDL (Interactive Data Language) language. It should be executed in the IDL

environment.

This code is intended to simulate adaptive optics systems featuring curvature wavefront sensors (CWFS)

or Shack-Hartmann wavefront sensors (SHWFS), in combination with piezostack (PZT) or bimorph mirrors

(BIM). The code is organized into subroutines that allow to take interaction matrices, invert them, and run a

dynamic close-loop simulation (that includes the temporal behavior of the loop).

The whole thing was developed by myself in an approximately 6 months period. Later I added subroutines

and a GUI. Version 4.2 and 4.3 were developped in the mist of 1997-1999. I estimate the full developement time

to something around 12 man month, mostly when I was at CFHT. It was initially developed to investigate the

performance of the PUEO system (19 subapertures curvature system on the Canada{France{Hawaii Telescope

located atop Mauna Kea in the big island of Hawaii). I must warn the potential user that it is not bulletproof

and certainly not bug free. However, IDL is kind with us, and most of the time will crash gracefully and

allow and easy tracing of the error. I try to follow and solve bugs. If you �nd one, please let me know at

frigaut@gemini.edu.

The �les required to run the code are listed below. More detailled descriptions can be found in the next

section. Some of the �les are mandatory, some other are optionnal (the program check if they are in the current

directory, and read them out in this case). Some �les may be also required to de�ne the system geometry in

the case of a non-square subapertures/actuator pattern.

Mandatory �les :

simul.pro File that contains the main IDL procedure, simul, plus a bunch of other subroutines. This �le

has to be somewhere into the IDL_PATH, in order for IDL to �nd it. It has to be compiled when

entering IDL by typing

.run simul

ao.par This is the main parameter �le. It contains the parameter defaults. To change it, you can

either edit it manually or use the editor provided in the simul GUI.

Phase screen(s) Phase screen(s) used to simulate atmospheric turbulence (e.g. cscreen128_10.fits). Those

are �ts �les. See below (section 2.5) for an explanation of how they are normalized, their format,

etc...

Optionnal �les :

sensor.par This is the sensor parameter �le for radial con�gurations. SHWFS de�ned on a square geometry

do not use this �le. Used exclusively for curvature sensors in the current version.

3

4 CHAPTER 1. INTRODUCTION

mirror.par This is the mirror parameter �le for radial con�gurations. PZT mirrors de�ned on a square

geometry do not use this �le. Used exclusively for bimorph mirrors in the current version.

wfs stat ab.par This �le contains the zernike coeÆcient of the WFS path phase aberrations.

sort modes.par This �le allow to sort the modes found by the modal decomposition in a given order.

The following is a list of output �les, written by simul .

simul.res This is the journal �le into which every operation executed by simul is dumped. For each

\operation" (matrix acquisition, inversion, initialization, loop run) it contains the state of the

system and the results of the operation. Ascii and editable.

sensor.fits Fits �le of the sensor con�guration. Just for information.

pupil.fits Image of the pupil. For information only.

Influence functions in the form pzt_s**_p**_**.fits for the piezostack mirrors, where the ** are the size

of the array (e.g 128 if 128�128 are used), the diameter of the pupi in pixel and the number

of actuators respectively, and in the form bim_s**_p**_e**.fits where the ** are the

size of the array (e.g 128 if 128�128 are used), the diameter of the pupi in pixel and the

number of electrodes respectively. Those inuence fonctions are saved in order to be used for

subsequent use of simul in the same con�guration. This �le is written at the complexion of

the initialization.

mats.fits Fits �le that contains the interaction matrix and the command matrix. This �le is written at

the complexion of the command matrix computation routine.

mta.fits Transformation matrix modes to actuators/electrodes. Written only if modal inversion is re-

quired.

simul.avimage Beware, this is a �ts �le. It contains the average compensated image over the whole loop run.

Written at the complexion of the loop procedure.

modevar.dat Ascii �le. Contains the mode variance in a loop run. Written at the complexion of a loop run.

The parameter ao.sim.calcmode has to be set for this �le to be written.

cb mes The cb_** are what is called \circular bu�er", for historical reason. Here, they have nothing

of circular nature. This one contains the measurement. One line written at each iteration of

the loop run. ao.sim.cb_output has to be set for this �le to be written.

cb com As cb_mes, except it contains the mirror commands.

cb modc As cb_mes, except it contains the mode coeÆcient of the modal decompositon of the input

(turbulent) phase.

cb modc As cb_mes, except it contains the mode coeÆcient of the modal decompositon of the output

(compensated) phase.

Chapter 2

The input �les

This section gives more details on the content of the parameter �les.

2.1 ao.par

This �le contains the default parameters to be used in the code. It is read out when simul is started. simul

can also read other par �les by using the keyword parfile, i.e. :

IDL> simul,/x,parfile='ao.par.my_config.cwfs19'

All the parameters defaults can be changed to accomodate user requirements. This �le is formatted so that

IDL can read easily its content as an IDL structure. It is in fact made of 9 IDL structures that are later gathered

into one large IDL structure called ao. The 8 IDL individual structures are substructures of ao, namelly :

ao.zim Interaction matrix parameters

ao.mir Mirror parameters

ao.wfs WFS parameters

ao.gs Guide Star parameters

ao.ttgswfs Tip-Tilt guide star and WFS parameters

ao.tel Telescope parameters

ao.loop Close-loop parameters

ao.atm Atmosphere parameters

ao.isop Isoplanatism related parameters

ao.sim Simulation parameters

It is very easy to list or modify each substructure elements when into IDL. These elements can be addressed

by the name of the structure dot the name of the substructure dot the name of the element. For instance, one

can address the mirror type by the name ao.mir.type. So one can modify parameters on the IDL command

line by typing simply, for instance :

ao.mir.type = 'piezostack'

ao.gs.starmag = 14.5

ao.loop.it_time = 0.01

and so on. This is convenient for command line batches.

Here is an example of a parameter �le :

; File written on Wed Mar 21 11:18:45 HST 2001

; Parameter file for simul.pro, Version 4.3 and later

5

6 CHAPTER 2. THE INPUT FILES

; INTERACTION MATRIX ACQUISITION AND INVERSION

{zim,

v_dm : 0.500000, ; Voltages on the DM to record interaction matrix

v_tt : 0.500000, ; Voltages on the TT to record interaction matrix

inversion : 'zonal', ; Method of inversion, 'modal' or 'zonal'

mta : '', ; Conversion matrix mode -> actuators

mode_enable : '', ; Mode enable/disable for modal inversion

forcenev : 1, ; # of eigenval. to force to Zero in the inversion

cond_number : 0.0100000, ; conditioning number of matrix to invert

matrices : 'mats.fits'} ; File to read interaction and command matrices fr

; MIRROR

{mir,

type : 'bimorph', ; 'bimorph' or 'piezostack' or 'zernike' or 'tip-t

parfile : 'mirror.par', ; mirror par file (for radial config only)

def_file : 'bim_s64_p60_e19.fits', ; file that contains the influence functions

tt : 0, ; Is there a tip-tilt mirror (0/1) ?

v_limit : 6000.00, ; Maximum voltage on the electrodes

hyst : 0.00000, ; deformable mirror hysteresis

nxact : 50} ; linear number of actuator (piezostack only)

; SENSOR

{wfs,

type : 'curvature', ; 'curvature' or 'hartmann'

geom : 'radial', ; WFS geometry : 'radial' or 'square'

parfile : 'sensor.par', ; Sensor par file (radial config only)

lambda : 7.00000e-07, ; WFS wavelength (in meter)

; SHWFS only parameters :

nxsub : 7, ; Linear number of subaperture (SHWFS only)

pixsize : 0.262033, ; Pixel size in arcsec (SHWFS only)

subsize : 2.09626, ; subaperture size in arcsec (SHWFS only)

rnoise : 0, ; e- rms read noise (SHWFS only)

blur : 0, ; Blur image to avoid discretization noise (SHWFS

threshold : 0.00000, ; Threshold on SHWFS in count if positive,

; in percent if negative (e.g. -0.5 = 50%) and no threshold if -1

; CWFS only parameters :

l : 0.150000, ; Extra-focal distance in m (CWFS only)

sinus : 0, ; # of point in a 1/4 wave of mm scanning function

fieldstop : 3.00000, ; Diameter of the field stop (CWFS only)

gainrav : 1.00000, ; Gain of the running average on subaperture flux

mask : 0.300000} ; fraction of pupil diam. obstructed in the CWFS

; GUIDE STAR

{gs,

noise : 1, ; includes the effect of measurement noise (0/1) ?

lgs : 0, ; LGS? (1: yes, 0: no -> NGS)

altitude : 95000.0, ; Altitude of LGS

thickness : 8000.00, ; Na layer thickness

laser_2w0 : 0.300000, ; Beam waist*2 = beam diameter. Don't make it smaller than ~ r0

lauch_diam : 0.450000, ; Lauch telescope diameter

lauch_pos : 0.00000, ; Lauch Tel position in telescope radius units (0= center, 1=edge)

lauch_ttm : 0, ; TT mirror on upward beam ? if yes, also filters out TT form HRWFS

lauch_ttm_gain : -0.800000, ; gain of the integrator of lauch telescope TT mirror

extended : 0, ; Extended guide star (0/1) ?

gsmap : 'extended3.fits', ; map of guide star (2D). Must not include diffraction

gsmapscale : 0.0500000, ; pixel size in guide star map (arcsec/pixel)

starmag : 8.00000, ; Magnitude of guide star

skymag : 20.3000, ; Magnitude of background (sky) /arcsec^2 (normaly 20.7)

zeropoint : 2.00000e+10} ; Zero point = phot.number detected by WFS/s for m

; TIP-TILT GUIDE STAR AND SENSING

{ttgswfs,

ttgs : 0, ; Is a Tip-tilt guide star and WFS used ? also filters HRWFS TT output

starmag : 10.0000, ; Magnitude of tip-tilt guide star

skymag : 20.7000, ; Sky background magnitude / arcsec^2

psize : 0.257022, ; SHWFS pixel size

fov : 1.02809, ; SHWFS Field of view / subaperture

lambda : 7.00000e-07, ; SHWFS wavelength

threshold : -1.00000, ; SHWFS image threshold

gain : 0.0100000, ; TT loop gain

noise : 0.00000} ; SHWFS read out noise

2.1. AO.PAR 7

; TELESCOPE

{tel,

diam : 3.60000, ; Pupil diameter (m)

cobs : 0.421000} ; Central obs diam. in frac of pupil diam.

; CLOSE-LOOP

{loop,

type : 'close', ; Loop type 'close' or 'open'

delay : 0, ; Loop delay in sampling time (0 or 1)

n_iter : 4000, ; Number of iteration in close-loop

im_lambda : 2.20000e-06, ; Imaging wavelength (in meter)

aliasing : 0, ; Aliasing (0=no action, 1=remove low order, 2=remove high order)

gain : 0.600000, ; Overall gain of the integrator

start_skip : 50, ; Number of step to skip before averaging data

it_time : 0.00100000} ; Iteration time (s)

;ATMOSPHERE

{atm,

dr0 : 19.0000, ; D/r0 at the WFS wavelength

directory : '../../data/', ; Path to the dir. that contains the screens

screen1 : 'cscreen128_16.fits', ; Filename of the first phase screen

screen2 : 'cscreen128_18.fits', ; Filename of the second phase screen

screen3 : 'cscreen128_20.fits', ; Filename of the third phase screen

screen4 : 'cscreen128_10.fits', ; Filename of the 4th phase screen

screen5 : 'cscreen128_12.fits', ; Filename of the 5th phase screen

layer1_frac : 0.180000, ; Fraction of turbulence in layer#1

layer2_frac : 0.280000, ; idem for #2 Sum of fi should sum up to 1.

layer3_frac : 0.180000, ; idem for #3.

layer4_frac : 0.190000, ; idem for #4.

layer5_frac : 0.170000, ; idem for #5.

layer1_speed : 3.00000, ; speed of layer 1 in m/s

layer2_speed : 10.0000, ; speed of layer 2 in m/s (if negative goes backward)

layer3_speed : 15.0000, ; speed of layer 3 in m/s

layer4_speed : 25.0000, ; speed of layer 4 in m/s

layer5_speed : 15.0000, ; speed of layer 5 in m/s

layer1_alt : 10.0000, ; altitude layer 1 in m

layer2_alt : 1600.00, ; altitude layer 2 in m

layer3_alt : 3600.00, ; altitude layer 2 in m

layer4_alt : 6300.00, ; altitude layer 2 in m

layer5_alt : 11600.0} ; altitude layer 3 in m

;ISOPLANATISM

{isop,

enable : 1, ; Compute isoplanatism effect ?

diststar1 : 20, ; distance of star 1 in arcsec (+ or -)

diststar2 : 40} ; distance of star 2 in arcsec (+ or -)

; SIMULATION SOFTWARE PARAMETERS + MONITORING AND DEBUGING

{sim,

size : 64, ; size of the standard arrays

pupd : 60.0000, ; Pupil diameter in pixel (should be < size)

monitor : 1, ; Display the results on screen (0/1) ?

calcmode : 0, ; compute modal decomposition (0/1)

calcmtf : 0, ; Compute MTF, MTF SNR and Structure function

cb_output : 0} ; Output of meas., mirror commands and modes

Description of the parameters :

� zim substructure :

{ ao.zim.v_dm : Voltages to apply to the deformable mirror to record the interaction matrix. This

should be large enough to avoid numerical errors and low enough to be in the dynamic range of

the sensor. A voltage that give a signal which is likely to be typical while on the atmosphere is

recommended. Typically of the order of 1 to 100 volts.

{ ao.zim.v_tt : Same for the tip-tilt mirror. Same order of magnitude.

8 CHAPTER 2. THE INPUT FILES

{ ao.zim.inversion : 'modal' or 'zonal'. 'zonal' uses a Singular Value Decomposition algorithm, and

excludes ao.zim.forcenev eigenmodes. 'modal' uses a mode basis computed from the inuence

functions : These modes are orthogonal in the phase space (i.e. their cross product integral over

the pupil is zero). The modal inversion allow to cancel particular modes among all the modes,

interactively or not. A pure piston, tip, tilt and defocus mode (to be more precise modes which

shape is the closest to these modes the mirror can achieve) appear as the 4 �rst modes of the basis.

In the current version, the modal inversion works only with curvature wavefront sensors, not with

Shack-Hartmann WFS.

{ ao.zim.mta : Name of the matrix from which to read the mode{to{actuator transformation coeÆ-

cients. Usually called mta.fits because is saved under this name by the routine that computes it

(included in simul). This matrix is saved to save time during further executions of simul , if using

the same con�guration of course.

{ ao.zim.mode_enable : Name of a �ts �le into which the previous user selection have been stored.

One is written each time the interactive mode selection routine is ran.

{ ao.zim.forcenev : Number of eigenvalues to force to zero in the matrix inversion process. Usually

between 1 and 10. At least one has to be discarded (the one corresponding to the piston mode), and

also the one corresponding to the deformable mirror tip and tilt when using an additionnal tip-tilt

mirror. Sometimes one may wish to zero some other eigenvalues that are o� the main group of

eigenvalues because of instability or noise consideration.

{ ao.zim.matrices : Name of a �le recorded in a previous run (and saved as mats.fits) that contains

the interation matrix and the command matrix. Be careful in using this option that the �le you

indicate is the right one. You don't want to use a �le taken with a di�erent set of parameters and

try to close the loop with it. The purpose of this parameter is to save execution time or allow the

user to always use the same command matrix from one run to another.

� mir substructure :

{ ao.mir.type : Valid options are 'bimorph', 'piezostack', 'zernike' or 'tip-tilt'.

{ ao.mir.parfile : Parameter �le for bimorph mirror on a radial geometry. See below. Usually

'mirror.par'.

{ ao.mir.def_file : Fits �le that contains the inuence function for each electrodes/actuators. If not

set (that is, set to an empty string), the program will compute a new set of inuence function from

the mirror parameters. This �le is created by the code each time it computes new inuence functions.

In that case, the program will print on the screen the �le name it saved the inuence function in. It is

usually on the form bim_s128_p120_e56.fits or pzt_s128_p120_10x10.fits where the size of the

arrays, the pupil size in pixels and the number of electrodes/actuators are quoted. Warning : There is

no check that the actual �le matches the other mirror parameters. Please make sure that the entered

�le name matches with the array size, the pupil diameter and the number of electrodes/actuators

(respectively ao.sim.size, ao.sim.pupd and ao.mir.nxact or ao.mir.parfile).

{ ao.mir.tt : Whether there is a tip-tilt mirror or not (0/1)

{ ao.mir.v_limit : Limit voltage on the deformable and tip-tilt mirror. Used in the loop procedure

to limit the voltages.

{ ao.mir.nxact : For PZT mirror, number of actuators in a pupil diameter. For 'Zernike', number of

modes (piston is inluded).

� wfs substructure :

{ ao.wfs.type : 'curvature' or 'hartmann' are the only valid choices.

{ ao.wfs.geom : WFS and mirror geometry : 'radial' or 'square' are the only valid choices. Note :

In the current version, curvature sensors work only in 'radial', and Shack-Hartmann sensors only in

'square'.

{ ao.wfs.parfile : Parameter �le for CWFS on radial con�gurations. See below.

{ ao.wfs.lambda : Wavelength at which the wavefront sensing is done. In the results, the variances

(turbulent phase variance, corrected phase variance, etc, but not the Strehl ratios) are expressed at

this wavelength.

2.1. AO.PAR 9

{ ao.wfs.nxsub : SHWFS only. Number of subapertures in a pupil diameter.

{ ao.wfs.pixsize : SHWSF only. Size of the pixel in arcsec at the lenslet focal plane. The program

will print the subaperture size in arcsec during the execution. You may then modify this parameter

to match your requirements. Usually between 0.05 and 0.5 arcsec/pixel. Will be rounded to the

nearest multiple of the actual pixel size imposed by the sampling in the pupil plane.

{ ao.wfs.subsize : Subaperture size in arcsec. Taken into account only if smaller than the subaperture

size imposed by the sampling in the pupil plane. Updated with the actual value. Will be rounded to

nearest possible value (multiple of updated pixel size). One of the current restriction of the program

is that subaperture size are usually limited to a rather low value. This is a consequence of the

sampling in the pupil plane and of the properties of the Fourier transforms. Indeed, the maximum

size of the image plane is directly set by the sampling in the pupil plane, following the relation :

s =
�wfs

4:884e� 6

PDP

D

where s is the maximum �eld of view, PDP the pupil diameter in pixels and D the pupil diameter

in meters. An 8-m telescope for which a pupil diameter of 110 pixel is used, working at a wavelength

of 0.7 microns leads for instance to a maximum size of 2 arcsec, which is small, and for some case

smaller than what the user may want to use/test. The only way out in the current version would be

to use larger pupil size (200 or more) which therefore imply using larger array size (256). This is of

course extremely CPU time consuming.

{ ao.wfs.rnoise : SHWFS only. CCD rms read-out noise. The noise is assumed gaussian. The CCD

gain is 1 (one ADU per photon). Therefore this value is in equivalent number of photons.

{ ao.wfs.blur : SHWFS only. If set to one, each subaperture focal images is convolved by a gaussian

of FWHM roughtly equivalent to the size of the expected (typical) seeing. This is to get rid of the

undersampling problem when working with point-like sources (trying to compute a center of gravity

is greatly a�ected if the source image is much smaller than the pixel !). This has to be used only

when taking interaction matrices. In the real word, it is equivalent to taking an extended light source.

When closing the loop on a guide star, blur should be set to 0 (no way to blur the image in a real

SHWFS, except when using light intensi�ers which have an extended PSF). In the current version,

blur is put automaticaly to 1 when doing interaction matrices, and to 0 for the loop run.

{ ao.wfs.threshold : SHWFS only. Threshold to apply in the centroid calculation, in number of

equivalent photons. The threshold is subtracted to each subaperture's focal images and the negative

pixels are forced to zero. A threshold of -1 means no threshold. A threshold between 0 and -1 is

understood as relative to the image maximum (e.g. -0.5 means threshold at 50% of the current image

maximum).

{ ao.wfs.l : CWFS only. Extra-focal distance in meter in a F/60 beam. Usually between 0.05 and

0.5 depending on the D/r0 at the sensing wavelength and the number of subapertures (e.g. 0.07 for

19 subaperture and 0.6 arcsec seeing and a sensing in the visible, 0.3 for 80 subapertures and 0.45

arcsec seeing).

{ ao.wfs.sinus : CWFS only. Number of point in a quarter period of the membrane mirror sinusoidal

scanning function. Usually, it is better to chose a value greater than 7 to reduce discretization e�ect

and lower then 20 to keep the computation time reasonable.

{ ao.wfs.fieldstop : CWFS Only. Size of the �eld stop in arcsec. Used only to compute the sky

background contribution to the subaperture's count.

{ ao.wfs.gainrav : CWFS Only. Gain of the running average of the denominator in the expression

of the measurements :

m =
N1 �N2

N1 +N2

The running average has the form :

m =
N1(t)�N2(t)

rav(t)

where

rav(t) = g � (N1(t) +N2(t)) + (1� g)� rav(t� 1)

10 CHAPTER 2. THE INPUT FILES

This scheme was at one time proposed to increase the SNR of the measurement. It turned out that

the area over which the SNR is improved is quite narrow (3-5 photons/subapertures according to

M.Northcott) and marginal. In every other cases, this degrades the measurement SNR. Usually, I

recommend to not use it, i.e. set its value to 1.

{ ao.wfs.mask : CWFS Only. Diameter, in fraction of the pupil diameter, of the mask (if any) placed

directly in front of the microlens array. Usually 0. Was implemented for PUEO where an inverted

telescope scheme is used to expand the beam in front of the lenslet. The 'mask' is in that case the

secondary mirror of this inverted telescope. For PUEO, this value was 0.3, compared to the central

obstruction of the CFH tetescope (0.44).

� gs substructure :

{ ao.gs.noise : Flag to indicate that the program should consider noise (read-out noise and photon

noise). 0 or 1.

{ ao.gs.lgs : 0 or 1 depending whether the WFS is using a LGS (1) or not (0). Setting this parameter

to 1 enable the LGS related parameters (7 following parameters)

{ ao.gs.altitude : Altitude of the LGS [m].

{ ao.gs.thickness : Thickness of the layer [m] (sodium layer or gated rayleigh)

{ ao.gs.laser_2w0 : Beam diameter at the lauch telescope [m]. A good value is 2-3 r0(laser wave-

length).

{ ao.gs.lauch_diam : Lauch telescope diameter [m]

{ ao.gs.lauch_pos : Lauch telescope position (0 means that the lauch telescope is behind the sec-

ondary, 1 means it is just at the edge of the primary mirror).

{ ao.gs.lauch_ttm : 1 means that there is a Tip-Tilt/steering mirror on the upward beam. Setting

this parameter to 1 will also �lter the TT from the AO WFS command to the AO system TT mirror

(the AO WFS TT on a LGS should be directed to the LGS steering mirror).

{ ao.gs.ttm_gain : Gain of the TT/steering mirror, if any.

{ ao.gs.extended : Set to 1 if wavefront sensing has to be done on an extended object.

{ ao.gs.gsmap : name of the �ts �le that contains the image of the extended object. This image shall

not contain di�raction of the telescope or the subaperture. It is the image as seen from space using

a telescope of in�nite diameter, a model of the object. Use images of reasonable size (e.g. 64x64). It

is recommended that the object is well restrained within the image frame, i.e. no discontinuities at

the edges (to avoid ringing when Fourier transforming it).

{ ao.gs.gsmapscale : scale of the guide star map (above) in arcsec/pixel.

{ ao.gs.starmag : Magnitude of the reference star at the sensing wavelength (ao.wfs.lambda)

{ ao.gs.skymag : Magnitude of the sky per arcsec2 at the sensing wavelength. In Shack-Hartmanns,

the �eld is limited by the size of the subaperture (a �eld stop of the same dimension is assumed). In

curvature sensors, the �eld of view is de�ned by the parameter ao.wfs.fieldstop.

{ ao.gs.zeropoint : Zeropoint for photometric measurement, i.e. number of photons detected by

the WFS (all subapertures added) for a zero magnitude star (at the sensing wavelength). Must be

around 1010 or 1011 for 4-m to 8-m telescope with good optical and quantum eÆciencies.

� ttgswfs substructure :

{ ao.ttgswfs.ttgs : If set to \1", it means that a Tip-tilt guide star and a TT WFS are used. Again,

to avoid conict, this also �lters the TT from the AO WFS output.

{ ao.ttgswfs.starmag : Magnitude of tip-tilt guide star, if any.

{ ao.ttgswfs.skymag : Sky background magnitude / arcsec2

{ ao.ttgswfs.psize : TTWFS pixel size

{ ao.ttgswfs.fov : SHWFS Field of view per subaperture in arcsec

{ ao.ttgswfs.lambda : TTWFS e�ective operating wavelength

2.1. AO.PAR 11

{ ao.ttgswfs.threshold : TTWFS image threshold. Same rules as for the AO WFS.

{ ao.ttgswfs.gain : TT loop gain

{ ao.ttgswfs.noise : TTWFS read out noise in photon

� tel substructure :

{ ao.tel.diam : Telescope diameter in meters

{ ao.tel.cobs : Telescope central obscuration diameter in fraction of telescope diameter.

� loop substructure :

{ ao.loop.type : 'close' or 'open'. Self explanatory.

{ ao.loop.delay : This is the pure delay of the close loop, in addition to the one frame delay intrisic

to the close-loop principle. If for instance you want to modelize a system using a CCD with a one

frame delay induced by read out time, set delay to 1. Value up to 3 are accepted.

{ ao.loop.n_iter : Number of iterations for the close-loop. Actual number of iterations may be

smaller, as the loop subroutine exit the close-loop when the phase screen has been scanned to the

end or the user hits 'q' at the keyboard.

{ ao.loop.im_lambda : Imaging wavelength in meter. The Strehl ratio and the FWHM are expressed

at this wavelength.

{ ao.loop.aliasing : If set to 1, then the correction modes are subtracted from the input turbulent

phase. Therefore, the variance of these modes in the corrected phase is only due to aliasing and noise,

if any. To compute the weight of aliasing in a system, set this to 1, set the noise to 0, and run it on

a long enough sample with a small enough sample time to reduce the servo lag error. The corrected

mode variance gives you the amount of aliasing. An alternative for linear systems (Shack-hartmann)

is to determine the aliasing in open loop. This allows to enlarge the sampling time, therefore requires

less time to scan a complete phase screen. Beware that this method allow the determination of spatial

aliasing only, excluding cross coupling, which may exist in real systems. If set to 2, the high order

modes are �ltered out from the input turbulent phase, that is. only the component parallel to the

mirror modes in the modal decomposition of the phase is preserved. Using this, the e�ect of spatial

aliasing is not taken into account, so that one can estimate the e�ect of purely the noise or the servo

lag. This is only a �rst order approximation, as the presence of the high order modes may a�ect the

noise properties of the wavefront sensor (for instance because the spots are extended).

{ ao.loop.gain : Gain of the close{loop. This is a �rst order loop with a simple integrator.

Newcommand = Oldcommand + gain��command

{ ao.loop.start_skip : Number of iterations to skip before collecting performance statistics (usually

10 to 50).

{ ao.loop.it_time : Iteration time (in seconds)

� atm substructure :

{ ao.atm.dr0 : D=r0 at WFS wavelength

{ ao.atm.directory : Path (relative or absolute) to the phase screen directory

{ ao.atm.screenn, with n=1 to 5 : Phase screen �le names. See section 2.5. NONE OF THESE 5

PHASE SCREEN SHOULD BE THE SAME, for statistical reasons (the seeing statistics assumes

the layers are uncorrelated, if it is not, it changes the statistics and the results quite drastically).

{ ao.atm.layern_frac, with n=1 to 5 : Fraction of the turbulence in each layers. The three fractions

must sum up to 1. If you want to use a single layer, just set one fraction to 1 and the others to 0.

{ ao.atm.layern_speed, with n=1 to 5 : Speed of the layers in meter per second.

{ ao.atm.layern_alt, with n=1 to 5 : Altitude of the layers above the telescope in meters.

� isop substructure :

12 CHAPTER 2. THE INPUT FILES

{ ao.isop.enable : Set to 1 if isoplanatism computations are to be done. It takes some time (a

fraction of what is needed for one loop iteration) so do not use it if not necessary.

{ ao.isop.diststar1 : Distance of star 1 to the guide star, in arcsec.

{ ao.isop.diststar2 : Distance of star 2 to the guide star, in arcsec.

� sim substructure :

{ ao.sim.size : Size of the standard arrays (on which the pupil and the phase is de�ned). Should be

a power of 2 for FFT purposes. Usually 32, 64 or 128. 32 may be small for most of the purpose.

Array sizes over 128 lead to quite long execution times (see section Running time considerations).

{ ao.sim.pupd : Diameter of the pupil in pixel. Should be smaller than the array size ao.sim.size.

Usually about 80% to 100% of the later parameter. A good compromise is to have about 3 points

per r0 at the sensing wavelength, so if for instance D=r0 equals 25, a pupil diameter of 75 is well

suited. More is even better (up to 4 or 5 points per r0), if one can a�ord the execution time. Also,

sometimes it doesn't cost more to put larger pupil diameter, for instance ao.sim.pupd = 75 imposes

ao.sim.size = 128, so that one can set ao.sim.pupd to 120 without much extra cost. Warning :

ao.sim.pupd is forced to the closest integer value that verify the condition that the number of pixels

in the pupil plane should be constant for each subaperture.

{ ao.sim.monitor : Graphic display of the results on screen (ag equals to 0 or 1). It has to be

noticed that if monitor is set (to 1), some interactive features are turned on , which then requires

an operator action (beware of this in batches than may get stuck at this point). If this is set to 0

in the parameter �le and the GUI is not used, then no window is created, which therefore prevent

any ulterior graphical display. Usefull for batches where one does not want windows, to keep the

possibility to run the batch as a background process.

{ ao.sim.calcmode : Toggle mode variance computation and output to a �le.

{ ao.sim.calcmtf : Toggle the computation of the Modulation Transfer Function, the SNR on the

MTF and the phase structure function.

{ ao.sim.cb_output : If set, the measurements, the mirror commands and the mode coeÆcients are

output to �les (resp. cb mes, cb com, cb modnc and cb modc), at each iteration.

Note 1 : IDL de�nes the structure members type (Integer, oat, string) the �rst time he reads it into an IDL

session. Make sure you assigned the right type to the parameters you modify in ao.par. For instance, do not

assign the value 1 to ao.loop.gain, otherwise it will be taken as an integer by IDL and you will not be able to

assign a non-integer value to it later in the same session (instead, set it to 1.0). If this happens, you have to

exit IDL, modify the parameter value in ao.par, and start IDL again.

Note 2 : Do not change the syntax of a line. You may change the parameter value, but do not remove coma

or brackets, otherwise IDL won't be able to read out the structure.

Note 3 : For any modi�cations of the number of parameters : You may add variables into the existing sub-

structures, but do not add additionnal structures. When adding parameters, respect the syntax (name : value

and then coma or closing bracket if end of substructure)

2.2 Dimensioning the system

It is recommended to :

� have several pixel per r0 (at the very least 2).

� have more than 5x5 pixels per subapertures (SHWFS or CWFS) in the pupil plane. That is, if using a

10x10 SHWFS, the pupil should be at least 50 pixels in diameter.

� don't go for values smaller than 0.04 for the CWFS extra-focal distance.

2.3. SENSOR.PAR 13

2.3 sensor.par

This �le sets the parameters required to de�ne the geometry of the sensor when the 'radial' con�guration is

chosen. Remember, this �le is not read, therefore not needed if a square con�guration is selected. Here is an

example :

Sensor file :

Both for Curvature sensor and Shack-Hartmann.

Start after string ".start.". Description :

**

line | variable type | option | meaning

1 | character*1 | R or C | Sensor geometry (Radial or Cartesian)

2 | integer | - | Number of ring (central subaperture included)

3 | R,R,I,R,I | - | Inner and outer radius of ring #1,

Number of subapertures in ring #1,

Angular offset of first subaperture with respect

to X axis (in degrees),

Direction of rotation (1=clockwise, -1=anticlockwise)

.start.

Radial

4

0.0 0.3135 4 0. 1

0.3135 0.4985 8 0. 1

0.4985 0.7410 16 0. 1

0.7410 1.3500 24 0. 1

The content of the �le is explained in the header. The code will build up the sensor subaperture's con�guration

from the parameters and print out the total number of subapertures.

Note : The parameter which de�nes the 'direction of rotation' is not used in the IDL version of the simulations

(there was a fortran version prior to this one which used it).

2.4 mirror.par

This �le sets the parameters required to de�ne the geometry of the mirror when the 'radial' con�guration is

chosen. Remember, this �le is not read, therefore not needed if a square con�guration is selected. Here is an

example :

Mirror file :

For bimorph mirror

Start after string ".start.". Description :

**

line | variable type | option | meaning

1 | integer | - | Number of ring (central subaperture included)

2 | Real,Real | - | Mirror_ellipticity, Angle of incidence

3 | R,R,I,R,I | - | Inner and outer radius of ring #1,

Number of subapertures in ring #1,

Angular offset of first subaperture with respect

to X axis (in degrees),

Direction of rotation (1=clockwise, -1=anticlockwise)

4 | R | - | Fixation radius

.start.

4

0 0

0.0 0.3135 4 0. 1

0.3135 0.4985 8 0. 1

0.4985 0.7410 16 0. 1

1.0000 1.7000 24 0. 1

1.78

14 CHAPTER 2. THE INPUT FILES

The content of the �le is explained in the header. The code will compute the inuence functions for each

electrodes (remember, this is for bimorph mirrors only) from these parameters, and will write a �ts �le containing

the inuence functions. It will print out the total number of electrodes and the �ts �le name.

Note : The parameter which de�nes the 'direction of rotation', the 'angle of incidence' and the

'mirror ellipticity' are not used in the IDL version of the simulations.

2.5 The phase screens

These should be �ts �les, with a r0 per pixel of 1, with the phase expressed in radian. The conversion to a given

D=r0 is done in the loop subroutine. The phase screens are shifted across the pupil to simulate moving layers.

Screens 1, 3 and 5 are translated along the 'X' axis (same direction) and screens 2 and 4 are translated along

the 'Y' axis. All the screens must have the same dimension. The shorter axis must be at least equal to the

pupil dimension in pixel. The length of the long axis determines the maximum number of iteration achievable

in a loop run. The long and short axis position (NAXIS1 greater or smaller than NAXIS2) in the �ts �le has

no importance. The phase screens are transposed by the routine if not in the right con�guration. Typically,

128�1024 (or 1024� 128), or 200�1000 phase screens are suited. You can emulate an atmosphere with less

layers than 5 by setting the other \layer fractions" to 0, but all the screen name should be �lled with a valid

�le name.

Chapter 3

The Main Routines

The simul procedure is divided into 4 main subroutines. When simul is started, the �le ao.par is read and the

ao structure is �lled. There is then basically four routines to achieve the simulation. These are listed in the

following subsections.

3.1 init

As indicated by its name, this subroutine initializes the main arrays and variables. Here is what it does :

� Build up the pupil array (�lled with 0 and 1)

� Initialize WFS arrays, i.e. build up an array that contains the subaperture number at each pixel, on a

scale that matches the pupil de�nition.

� Initialize the mirror inuence functions, i.e. read the ao.mir.def_file if not set to a null string (exit in

error if �le is not found), otherwise compute the inuence functions. Computing the inuence functions

may take quite a while on large arrays (64 or 128), especially for bimorph mirrors, which uses FFT on

arrays 4 times larger (e.g. 512�512 for array sizes of 128).

� Initialize size of various arrays.

� Read out interaction and command matrices if ao.zim.matrices is not set to the null string. Exit in

error if �le is not found.

� Initialize the graphic display (4 windows), even if monitor is not set (monitor may be interactively turned

on/o� when the loop is running).

� Print out the ao structure and the main parameters in a �le called simul.res.

3.2 dointer

This routine does the interaction matrix acquisition. It �rst acquire a reference set of measurement by feeding

a null phase to the WFS routine. Each inuence function (scaled by the required voltage) is then send to the

wavefront sensing routine and the normalized measurements are stacked up in the interaction matrix. Do not

forget to set ao.wfs.blur to 1 when using a Shack-Hartmann with a large pixel size (now automatically turned

on). The noise is automatically turned o� when doing the interaction matrix acquisition. However, the number

of photon corresponding to the selected magnitude is used, together with the selected threshold (SHWFS).

15

16 CHAPTER 3. THE MAIN ROUTINES

3.3 mkmatcom

This routine inverts the interaction matrix using a Singular Value Decomposition method ('zonal') or by an

inverse modal �ltering ('modal'). Following the standart SVD procedure for inversion, the eigenvector matrices

are swapped and transposed, and the diagonal matrix containing the inverted eigenvalues is builded up. The

invert of the N lowest eigenvalues (N equals to ao.zim.forcenev) is forced to zero (instead of a large number)

in this diagonal matrix. If ao.sim.monitor is set, the eigenvalues, and the mode shapes corresponding to the

zeroed eigenvalues are displayed, together with the interaction matrix and the command matrix. These two

matrices are then saved into a �ts �le called mats.fits. The user may rename this �le to store it for later runs.

3.4 loop

This routine simulates a close{loop, including an evolving atmosphere and a one frame delay integrator. The

scheme is as follows :

1 Read out the phase screens

2 Initialize statistic metrics

3 Start the main loop

a Fill the phase with the translated and scaled phase screens values.

b Add the mirror shape to the phase deformation

c Feed the phase to the WFS routine and get measurements

d Compute the mirror commands by multiply the measurements by the command matrix

e Compute new mirror shape to be applied on next iteration

f Compute variances, Strehls and average image

g Display results on screen

4 Save performance metrics

Chapter 4

Running simul

The simul routine must be started at the IDL prompt. After entering IDL, the routine has to be compiled.

Just type .run simul at the IDL prompt.

There is then two possibilities to run simul and perform the di�erent operations : From an X form or from

the command line. This is detailled in the next sections.

4.1 X form interface to simul

Just type

IDL> simul,/x

An X form will pop-up :

At this point you can modify (Edit parameters) or list the parameters (show parameters), or make other

actions by clicking on a button. Clicking on 'Edit parameters' or 'Show parameters' will pop-up another form

(see next page).

You can modify any �elds. The modi�cation is taken into account without doing a carriage return. It will

not accept parameters of an other type (integer, oat or string) than the type that has been de�ned for the

parameter when IDL �rst read ao.par (see note 1 in the section ao.par). You may leave that parameter

window open and push buttons on the main simul window.

After having edited/modi�ed the parameters (if necessary), you have to initialize before doing anything

else. Push the button initialize. The code will perform the functions described in the section 3.1, and

if ao.sim.monitor is set, it will display a contour of the subapertures with the electrode/actuator pattern

superimposed in the con�guration window (if it has not exited in error because it didn't �nd some �le before

that).

Once initialized, you have to have a command matrix to start a loop. If the interaction and command matrices

have been restored (ao.zim.matrices set to a �le name previously saved), you can skip the interaction matrix

acquisition and inversion steps. You may also invert the matrix again with di�erent inversion parameters. This

will of course override the command matrix. If no matrices have been read, then you need to acquire one with

'Acquire interaction matrix', and invert it with 'Invert interaction matrix'. Again, be careful you have set the

deformable and tip-tilt mirror voltages to a suitable value. If ao.sim.monitor is set, the eigenvalues, the modes

corresponding to the zeroed eigenvalues, the interaction matrix and the command matrix will be displayed.

At this point, you may start a loop simulation. Once you click on 'Start loop', some initializations are done

and a message will appear on the 'loop' window, that tells you what operations can be entered while the loop

is running. Basically, you can update D=r0 (type d in the IDL root window), the loop gain (type g), the

extra-focal distance (CWFS only, type l), you can also reset the voltages on the mirrors (type r), toggle the

17

18 CHAPTER 4. RUNNING SIMUL

graphic display (type m) or stop the loop (type q). This also works when loop is started from the command

line.

Once done, you can change parameters and start again. It may not be clear for the user where to start from

when some parameters are changed : The following table gives a summary of the parameters, and where to

start from in the routine hierarchy (init, matrix acquisition, matrix inversion, loop, in this order) when the

parameter is modi�ed.

Note concerning X window management into IDL : If the program exit in error while running simul with an

X form, you can always restore the control to the X form by typing

IDL> xmanager

This will give back the control to the event manager, and allow you to press new buttons.

4.2 Running Simul from the command line

simul can also be runned in a command line mode. This is especially useful to make batches, for instance to

test a serie of di�erent parameter sets without continuous user interventions.

To start simul, type

IDL> simul

The code will read the parameter �le ao.par and load the parameter default values into the ao structure. This

is the only purpose of the main routine simul.

For the ao structure to be accessible, you have to declare it at the main IDL level, by typing: IDL> common aostr,ao

You may now change parameter values, e.g.

IDL> ao.sim.monitor = 1

or start a subroutine, e.g.

IDL> init

As described above, 4 subroutines are available : init, do_inter, mkmatcom and loop.

In this mode, 4 windows are created at the initalization level, to which the graphic displays will be directed

(if ao.sim.monitor = 1).

You may also include part of the commands, or all of the commands, in a batch. In IDL, starting a batch is

done by typing @ immediately followed by the name of the batch �le. For instance,

IDL> @ao.batch

An example of a batch �le is given below, and more examples are given in appendix A :

;

simul

common aostr,ao

ao.mir.def_file = 'bim_s64_p60_e80.fits'

ao.zim.matrices = 'mats_s64_p60_e80.fits'

ao.wfs.l = 0.30

ao.wfs.parfile = 'sensor.par.80'

ao.mir.parfile = 'mirror.par.80'

ao.atm.screen1 = 'screen14_f_800_200.fits'

init

;

;

ao.gs.starmag = 14.

ao.loop.gain = 0.3

loop

;

4.2. RUNNING SIMUL FROM THE COMMAND LINE 19

Parameter name Used in routines Parameter name Used in routines

ao.zim.v_dm do inter ao.zim.v_tt do inter

ao.zim.inversion init ao.zim.mta init

ao.zim.mode_enable mkmatcom ao.zim.forcenev mkmatcom

ao.zim.matrices init

ao.mir.type init ao.mir.parfile init

ao.mir.def_file init ao.mir.tt init

ao.mir.v_limit loop ao.mir.nxact init

ao.wfs.type init ao.wfs.geom init

ao.wfs.parfile init ao.wfs.lambda init

ao.wfs.nxsub init ao.wfs.pixsize init

ao.wfs.subsize init ao.wfs.rnoise do inter, loop

ao.wfs.blur do inter, loop ao.wfs.threshold do inter, loop

ao.wfs.l do inter, loop ao.wfs.sinus init

ao.wfs.fieldstop loop ao.wfs.mask init

ao.gs.noise loop ao.gs.lgs (all) init

ao.ttgswfs.(all) init ao.gs.extended loop

ao.gs.gsmap loop ao.gs.gsmapscale loop

ao.gs.starmag loop, do inter ao.gs.skymag loop

ao.gs.zeropoint loop, do inter

ao.tel.diam init, do inter, loop ao.tel.cobs init

ao.loop.type loop ao.loop.delay loop

ao.loop.n_iter loop ao.loop.im_lambda loop

ao.loop.aliasing loop ao.loop.gain loop

ao.loop.start_skip loop ao.loop.it_time loop

ao.atm.dr0 loop ao.atm.directory loop

ao.atm.screen1 loop ao.atm.screen2 loop

ao.atm.screen3 loop ao.atm.layer1_frac loop

ao.atm.layer2_frac loop ao.atm.layer3_frac loop

ao.atm.layer1_speed loop ao.atm.layer2_speed loop

ao.atm.layer3_speed loop ao.atm.layer1_alt loop

ao.atm.layer2_alt loop ao.atm.layer3_alt loop

ao.isop.enable loop ao.isop.diststar1 loop

ao.isop.diststar2 loop

ao.sim.size init ao.sim.pupd init

ao.sim.monitor - ao.sim.calcmode loop

ao.sim.calcmtf loop ao.sim.cb_output loop

Table 4.1: Parameter names and routines that uses it. This is mostly to allow the user to determine if a new

initialization, or a new matrix, or nothing, is needed after updating parameters. 'init' stands for initialization,

'do inter' for 'acquire interaction matrix' and 'mkmatcom' for 'invert interaction matrix'.

20 CHAPTER 4. RUNNING SIMUL

ao.gs.starmag = 16.

ao.loop.gain = 0.15

loop

;

ao.gs.starmag = 18.

ao.loop.gain = 0.1

loop

;

In this batch, some environement parameters are modi�ed (their default values speci�ed in ao.par are overri-

den). Then, the routine init is called. In this example, the interaction and command matrices were computed

in a former run and stored in a �le. This �le (ao.zim.matrices) is here read by the init routine. The next step

is a serie of loop runs, with di�erent magnitude values. At the complexion of each loop, results are appended

in a �le called simul.res, as detailled in section 5.

4.3 Running time considerations

Note: this section was written in 1994. Things have changed some since then, but the order of the system we

want to simulate have also gone up, so it might still be lengthy to run simulations...

It is clear that you need a fast machine to run simul . You need also quite a bit of RAM space. 64 MB should

probably besuÆcient for reasonable application, but 128MB is better and is required for large system simulation

(128x128 arrays for instance). Simulating 36 subapertures CWFS on 64x64 arrays is fast (< 1s/iteration) on a

pentium equiped machine or a Ultra Sparc workstation. On the same machine, a SHWFS of 14x14 subapertures

on 128x128 arrays may take a couple of second per iteration.

This numerical simulation code is not intented to provide the user with a versatile tool. It is clear that the

running time, plus the necessity to have large statistical sample imply several minutes to several hours per

con�guration. Hence a complete investigation of the parameter space, which contains quite a lot of parameters,

is diÆcult, if not impossible. The goal is more to precise/con�rm results obtained with analytical code.

4.3. RUNNING TIME CONSIDERATIONS 21

Figure 4.1: Main X form of the GUI

22 CHAPTER 4. RUNNING SIMUL

Figure 4.2: Parameter form

Chapter 5

The output �les

These �les are described in the introduction. As mentionned in there, simul.res contains a complete set of

information : Each time one of the routine is ran, it appends the results to simul.res, together with the

complete set of parameters. Parameters are loggued by writing the complete ao structure into the �le. The

best is to run simul , and to have a look at simul.res �le. It should be self explanatory.

23

24 CHAPTER 5. THE OUTPUT FILES

Appendix A

Batch Examples

This is a simple example of batch. It uses the batch command line language of IDL (not a procedure). To run

it, one should type IDL> @batch

The goal was here to investigate the performance at several WFS integration time.

; Start simul with parameter file ao.par.14x14

; Monitor is set to zero, so no graphic window is created.

simul,par='ao.par.14x14',mon=0

; define the common to be able to access the parameters at this level :

common aostr, ao

; Initialize

init

; Create a result summary file :

spawn,"echo 'results from batch_1' >! batch_1.res"

; Set the WFS integration time, run a loop and store the results :

ao.loop.it_time = 0.002

loop

spawn,"tail -2l simul.res >> batch_1.res"

; Same for a different WFS integration time, etc...

ao.loop.it_time = 0.004

loop

spawn,"tail -2l simul.res >> batch_1.res"

ao.loop.it_time = 0.006

loop

spawn,"tail -2l simul.res >> batch_1.res"

ao.loop.it_time = 0.008

loop

spawn,"tail -2l simul.res >> batch_1.res"

ao.loop.it_time = 0.010

25

26 APPENDIX A. BATCH EXAMPLES

loop

spawn,"tail -2l simul.res >> batch_1.res"

ao.loop.it_time = 0.020

loop

spawn,"tail -2l simul.res >> batch_1.res"

ao.loop.it_time = 0.040

loop

spawn,"tail -2l simul.res >> batch_1.res"

ao.loop.it_time = 0.080

loop

spawn,"tail -2l simul.res >> batch_1.res"

27

This is a quite elaborated example already : The goal was here to investigate the performance of several

subaperture con�gurations for a 36 or so curvature system.

pro optim36

; define the common to be able to access the parameters :

common aostr, ao

; Create a file named ``optim36.res'' to summarize the results :

com = "echo resultats optim >! optim36.res"

res = execute('spawn,com')

; Start simul (this reads out the par file and put the variable into

; the common area :

simul,par='ao.par.optim.l30.s0'

; define the configurations I want to evaluate :

configs = [[4,6,10,16], $

[1,6,12,18], $

[1,6,12,16], $

[2,6,10,18], $

[3,6,10,18], $

[3,6,12,16], $

[2,6,12,16]]

nconfigs= (size(configs))(2)

frint = [1.,0.9,0.8,1.1]

frext = [1.,1.1,1.2,0.9]

; loop on the configurations :

for i=0,nconfigs-1 do begin

; load the current configuration :

config = configs(*,i)

; Some formating of the summary file :

openw,1,'optim36.res',/append

printf,1,'++++++++++++++++++'

printf,1,config

close,1

; loop on ring radius within a given configuration :

for j=0,3 do begin

r = cwfs_design(config,0.1365)

r(0) = r(0)*frint(j)

r(n_elements(r)-1) = r(n_elements(r)-1)*frext(j)

28 APPENDIX A. BATCH EXAMPLES

; write the mirror and sensor par file for this configuration

write_parfiles,config,r

; Initialize in 'modal' to get the mode to actuator matrix and mode

; expression. This is to get the propagation of the noise.

ao.zim.inversion = 'modal'

ao.sim.calcmode = 1

ao.zim.mta = ''

init

do_inter

mkmatcom

; make the command matrix to be used in 'zonal'

ao.zim.inversion = 'zonal'

ao.sim.calcmode = 0

mkmatcom

; run the loop

loop

; grab the results from the output files and put

; them in the results summary file.

openw,1,'optim36.res',/append & printf,1,r & close,1

com = "cat modes_noise.dat >> optim36.res"

res = execute('spawn,com')

com = "tail -2l simul.res >> optim36.res"

res = execute('spawn,com')

endfor

endfor

com = "mv optim36.res optim36.res.l30.s0"

res = execute('spawn,com')

end

;--------------------------

pro write_parfiles,config,r

; this is a procedure that writes par files (sensor and mirror) for

; a given config according to the format recognized by simul.pro.

; Just to avoid to pre-type them all.

n = n_elements(config)

rint = shift(r,1)

rint(0.)= 0.

rext = r

rext(n-1) = 1.5

openw,1,'sensor.par'

printf,1,'.start.'

printf,1,'R'

29

printf,1,n_elements(config),format='(i1)'

for i=0,n_elements(config)-1 do $

printf,1,rint(i),rext(i),config(i),0.,1,format='(f4.2,3x,f4.2,3x,i3,3x,f3.1,3x,i1)'

close,1

rint(n-1) = 1.0

rext(n-1) = 1.6

openw,1,'mirror.par'

printf,1,'.start.'

printf,1,n_elements(config),format='(i1)'

printf,1,'0 0'

for i=0,n_elements(config)-1 do $

printf,1,rint(i),rext(i),config(i),0.,1,format='(f4.2,3x,f4.2,3x,i3,3x,f3.1,3x,i1)'

printf,1,'1.8'

close,1

end

