
i

FIRE ALERT SYSTEM USING SHAPE AND COLOR
ANALYSIS THROUGH IMAGE PROCESSING VIA

MOBILE APPLICATION

By

Divina A. Chua

Carla Louie H. Leandicho
Leo Angelo C. Magtibay

Jerome T. Ortiz

A Thesis Report Submitted to the School of Electrical Engineering,

Electronics Engineering, and Computer Engineering in Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Engineering

Mapua Institute of Technology
March 2013

ii

iii

ACKNOWLEDGEMENT

 The designers would like to thank the following people for their effort in

making this thesis possible.

 First of all, the designers would like to thank God for the knowledge and

wisdom and the strength to be able to finish this thesis.

 To Engr. Analyn N. Yumang for providing guidance in developing the program

as well as in making the documentation for this thesis.

 To our beloved panellists, Engr. Dionis Padilla, Engr. Joshua B. Cuesta and

Engr. Jose B. Lazaro Jr. for assistance in improving this paper.

 To Engr. Voltaire De Leon and Engr. Ayra Panganiban for the time and

guidance extended to the researchers.

iv

TABLE OF CONTENTS

TITLE PAGE i

APPROVAL SHEET ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS vi

LIST OF TABLES vi

LIST OF FIGURES vii

ABSTRACT viii

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: REVIEW OF RELATED LITERATURES AND RELATED STUDIES 5

 Android Applications 6
 IP Camera 10
 Related Studies 12
 Image Processing-based Fire Detection System 12
 A New Image Based Real Time Flame Detection Method 13
 An Early Fire Detection Method Based on Image Processing 13
 Flame Detection Method in Video Using Covariance Descriptors 14
 Fast and Efficient Method for Fire Detection Using Image Processing 14
 Implementation of Object Tracking and Motion Sensors 16

CHAPTER 3: FIRE ALERT SYSTEM USING SHAPE AND COLOR ANALYSIS 18
 THROUGH IMAGE PROCESSING VIA MOBILE APPLICATION

Abstract 18
Introduction 19
Methodology 23
Hardware Development 23
Conceptual Framework 23
Block Diagram 24
Procedural Steps in Conducting the Study 25
Software Development 27
Shape and Color Analysis Algorithm 29
Color Analysis Algoritm 31
Testing and Statistical Treatment 33

CHAPTER 4: CONCLUSION 42

v

CHAPTER 5: RECOMMENDATION 44

APPENDICES 45

 Appendix A. Operation’s Manual 46

Appendix B. Pictures of Prototype 49
 Appendix C. Program Listing 52

vi

LIST OF TABLES

Table 3.1 Performance and Evaluations 33

Table 3.2 Graph of Performance and Evaluations 34

Table 3.3 Comparing previous results achieved in implementing 35
 Different methods

Table 3.4 Graph of Comparing previous results achieved in implementing 36
 Different methods

Table 3.5 Distance Percentage Error 37

Table 3.6 Graph of Distance Percentage Error 38

Table 3.7 Response of Mobile Application 39

vii

LIST OF FIGURES

Fig 2.1 Architecture of the Android System 6

Fig 2.2 xFace Porting Layer 9

Fig 2.3 Block Diagram of IP Camera 11

Fig 2.4 Block Diagram Implementation of Object Tracking and Motion 17
 Sensor for Home and Office Based WIFI Monitoring System

Fig 3.1 Conceptual Framework 23

Fig 3.2 Block Diagram of Moving Camera 24

Fig 3.3 Procedural Steps in Conducting the Study 25

Fig 3.4 Android Mobile Application Algorithm 27

Fig 3.5 Shape and Color Analysis Algorithm 29

Fig 3.6 Color Analysis Algorithm 31

viii

ABSTRACT

Fire is a common safety problem both in the industry and household

environments. This paper presents the research and implementation of a fire
detector through covariance matrix image processing and alarm device with mobile
phone application. The concept of covariance is used together with Shape analysis

algorithm and color analysis algorithm. The device can detect fire by its color
knowing that there is an enrolment made for color on our web server. A mobile
phone application is created to serve as the receiving end of the device’s alarm. A
moving camera is also utilized for live video streaming of a certain area. The device

will detect if there is a fire in a given area, and then an alarm will be sent to the
user’s Android mobile phone. From the mobile phone application the user will be
able to view the happenings in the area and will have an option to call the fire

station.

Keywords: image processing, fire, web server, android, mobile application

1

Chapter 1
INTRODUCTION

Recently, terrible disasters such as tsunami, flood, avalanche, fire, and

explosion have caused many casualties and damages to property. Therefore,

efficient detection for early alarming systems has to be used and has been an

important research area in the last few years. Researches on the automatic fire

detection, in particular has been widely studied. Sensor-based fire detection is being

used due to its characteristics of low cost and simple set-up. However, these devices

do not work until the material comes in contact with the sensor and awareness of

the additional information such as fire scale or location. Today, image processing

has brought impact to the technology. One of the common applications is facial

recognition used on a laptop for security purposes. Alert systems such as fire and

other safety devices are possible to be combined with image processing technology.

Image processing usually refers to digital image processing. Computer graphics and

computer visions are very much related to image processing. As people move

forward to technology, this study will provide data on the use of home alert systems

as communication through mobile application and image processing technology. The

mobile application development for fire alert system allows the user/s to be

informed when a fire happens/occurs inside their house. There are fire detection

systems that use smoke sensors which require a certain concentration of the smoke

before it can detect fire but can lead to false detection such as a cigarette smoke.

The common problem where fire starts at home is caused primarily by homeowners

2

being careless when it comes to dealing with potential hazardous situations. Another

cause usually deals with electricity where people forget to unplugged electric

appliances. The problem in the existing studies is accuracy in terms of time on when

will the device detect the flame.

The system that will be created is very helpful for the safety of everyone. If

the system will be installed in houses, the families’ safety will be at hand and if the

system will be installed in establishments the owners ensured customers’ safety.

Nowadays, the Earth’s average temperature increases due to the effect of

greenhouse gases which is why fire and floods happen unexpectedly. In 2012 during

the summer time here in the Philippines, temperature reaches 36 degree celsius and

strong typhoons enter the Philippines’ area of responsibility. Because of fire and

flood huge damages happen and worst, people die. In fact, these circumstances can

be minimized if people will be alarmed and can call for help immediately. The

system that will be created will lessen these huge damages, at the same time will

alert the owner immediately if the IP (Internet Protocol) camera saw an occurrence

of fire or smoke.

There are a lot of studies regarding image processing, it varies from

article to article, some are used for security purposes such as facial recognition

for electronic camera devices and some are used in signal processing such as

noise removal and filters. In this study, the researchers will be using image

3

processing with covariance algorithms for fire detection systems. A web camera

will be used for capturing the video data needed for the system to interpret a fire

and an IP camera that will serve as the receiving end of the system. It will also allow

the user to view the live video from the mobile application.

This study aims to develop an algorithm for fire detection using shape and color

analysis. The specific objectives of this research are as follow:

a. To create a mobile application that would alert and automatically inform the

user if there is a fire detected.

b. To develop fire detection system using image processing.

c. To develop a more accurate algorithm that is early fire detection.

The study impacts on the safety of the people as well as contribute greatly in

the safety field through the convenience of an alert system with the use of a

mobile application. The research and the proposed algorithm are suited to the

advancement of technology where people nowadays are seeking portability of

things. The portability of the device will be evident in such a way that the user

will be alerted from the mobile phone theoretically anywhere, provided that the

mobile phone is powered on. The mobile application can be used instantly

once the web server distinguish that the captured image of fire transmit a

signal. Lastly, this research will contribute in the future studies of wireless

technology which is now one of the most widely used technology in transferring

4

data or information.

The research also focuses on house monitoring of fire through image

processing. It alerts the user if there is a fire occurring in the said location. The

study covers the use of co-variance based on fire color detection and shape

analysis to determine a fire through image processing. A web camera is used by the

system to grab the video frames that are subject to be analyzed by the algorithm.

The system will capture a video clip once it detects a fire and stores it in its

memory. This will then send a signal to the android phone to automatically activate

the mobile application for viewing and connect to the IP camera to display the

activity in that location. The mobile application must be installed in the mobile

phone that comes within the system which is the only one capable of

communicating to the IP camera. The range of the camera is only limited to what it

can see and the system cannot take action in stopping the unexpected

emergencies.

5

Chapter 2
REVIEW OF RELATED LITERATURE

One of the most fast paced technology is mobile phones from Motorola

Dynatac 8000x, the first portable cellular phone which can be used to call and save

30 phone numbers, to 2G (GSM and CDMAone). Cellular phones allow more calls to

be packed into the same amount of radio bandwidth where one benefits to lower

emission on the health an individual/user. The 2nd generation networks provide

easier communication that previous analog network on voice, SMS and MMS. Moving

into the 3rd and 4th generations (from EDGE/EVDO to HSPA/Wi-max and later on

almost all wireless carriers are moving to LTE), mobile phones improved be led by

iPhone, Android Phones, and Windows Mobile. With 3G and later on LTE, users will

not be restricted on using voice and SMS only but more usage of data to connect on

the internet with lightning speed and much richer experience for users as they can

go to social networking sites and online messaging with ease. Nowadays, so many

mobile applications are created to monitor unexpected emergencies. There were

created because in today’s generation almost everyone has their own mobile phone

which can be easily accessed.

6

Android Applications

According to the article “Research on Development of Android Application”,

android is a comprehensive operating environment based on Linux V2.6 kernel and

is also a layered system.

Figure 2.1 Architecture of the Android System

Application layer is the site of all Android applications including an email

client, SMS program, maps, browser, contacts, and others. Linux kernel is located at

the bottom layer of the Android system and acts as an abstraction layer between the

hardware and the rest of the software stack. It provides core system services such

as security, memory management, process management, network stack, and driver

7

model. A core feature of Android is that one application can use component element

that belongs to another application. In order to achieve such functions, Android

system must launch the application while any part of the application is asked and

instantiated Java objects being asked. Unlike most operating system, there is no

single point that the system can enter in an Android application. Instead, each

component is a different point through which the system can enter an application

and instantiate component object independently, (Jianye Liu and Jiankun Yu; 2011).

According to the article “Context-aware User Interface Framework for Mobile

Applications”, mobile devices today are very heterogeneous, using different

platforms and featuring a multitude of different display resolutions. Therefore, it is

often necessary to adapt an application to multiple devices at development time

taking into account the different display and input capabilities and developing

different implementations for different devices. The number of available platform

configurations, such as Java Platform, Micro Edition (Java ME, also referred as

J2ME) CDC or CLDC further increases the number of different implementation

needed for a portable application. It is known that a user interface should be able to

adapt to the current situation of the user to better suit its needs and desires, thus

improves usability. The XML User Interface Language (XUL) is an XML-based mark-

up language for the description of user interfaces. It is mainly used by Mozilla

Foundation in their products like the Firefox browser or Thunderbird mail client, but

is increasingly popular in the area of web applications. XUL is used by several other

8

projects for mobile devices to specify user interfaces and transforms the XUL to

device specific HTML or WAP pages. In this paper the researchers will introduce a

framework which enables easy creation of applications for different mobile devices

and foster a GUI which reacts to context changes without having the need for any

application logic supporting it. It proposes an extension to XUL to enable the easy

creation of applications which adapt themselves to different devices and user

context. The Java platform was chosen since it is available for most mobile phones

and PDAs, (Thomas Butter, Markus Aleksy, Philipp Bostan, and Martin Schader;

2007).

Based on the article, “Porting mobile web application engine to the Android

platform”, Android is released as an open-source mobile phone operating system is

a Linux-based platform; it consists of the operating system, middleware, and user

interface and application software. xFace is a cross-platform web application engine

for mobile internet. It uses HTML, CSS, and JavaScript and other Web technologies

to develop lightweight mobile applications. Mobile applications which are developed

by using the technology of xFace, can run on different operating systems without

any modification, such as windows Mobile, BREW, Symbian and other mobile phone

platforms. The application framework provides java class library for Android

applications. The libraries layer is developed by C/C++ language where those

libraries are packaged by Application Framework section. The bottom section is the

Linux Kernel which is developed by c language, it provides the core system services,

9

such as security, memory management, file system management, process

management, network group, Driver Model, etc. xFace is composed of xFace engine

and platform adaptation layer (also known as porting layer), xFace engine is mainly

responsible for page layout, script analysis, logic and other functions, the porting

layer is mainly responsible for abstracting the operating system-related functions

into the system-independent in order to make xFace run of different platform. xFace

is developed by C/C++, but the Android application is developed by Java language

which allows us to have to use JNI (Java Native Interface) which is provided by

JAVA to allow JAVA and the C/C++ interface to call each other, (Yonghong Wu,

Jianchao Luo, Lei Luo; 2010).

Figure 2.2 xFace Porting Layer

10

IP Camera

An Internet protocol camera or IP camera is a type of digital video camera

commonly employed for surveillance which unlike analog closed circuit television

(CCTV) cameras can send and receive data via computer network and the internet.

Although most cameras that do this are webcams, the term “IP Camera” is usually

applied only to those used for surveillance.

Based on the article, “Cost Effective IP Camera for Video Surveillance”, IP

cameras are the key devices for video surveillance system. The IP camera can

compress and deliver live video clips to the Internet without using a PC so that

people can remotely browse and watch the protected area activities. Hence, the

performance of the IP surveillance cameras is generally evaluated at encoding

speed, video resolution, video frame bitrates and distortion, power dissipation, etc.

Among these characteristics, the video resolution, the compression ratio and the

frame rate are the most important to the users of the video surveillance systems

because these features are highly related to the image quality and the network

bandwidth. MJPEG and MPEG4 Visual are the common standards used for image

compression, (Ming-Jiang Yang, Jo Yew Tham, Dajun Wu, Kwong, Huang Goh;

2009).

11

Figure 2.3 Block Diagram of IP Camera

12

Related Studies

Image Processing-based Fire Detection System using Statistic Color Model

 Fire is necessary and profitable to human kind life, but it also causes the

damage to life and property in certain cases. In general, the early presence of fire

can be detected by smoke, gas or flame. Most of the fire detection

system/equipment detects the fire based on sensors. However, a sensor cannot be

reliable and fast because there can be times of delay with the sensor. If the

threshold value is low, the sensor can have high sensitivity but it can produce false

alarm. And, it also requires that a certain threshold value must be assigned to each

sensor. Most of the fire detection system used the heuristic fixed threshold values in

their specific methods. However, input images may be changed, in general, so the

heuristic fixed threshold values used in the fire detection systems might be modified

on a case-to-case basis. The image processing-based fire detection has various

advantages. Light travels at very high speed, so the image processing-based fire

detection can be quick to catch the spot of fire on time without delay. Thus, it can

monitor wider space than the conventional sensor-based fire detection system. Most

of the fire detection system used the heuristic fixed threshold values in their specific

methods. In this paper, an automatic fire detection system without the heuristic

fixed threshold values was studied. It presented an automatic method using the

statistical color model and the binary background mask, (Bo-Ho Cho, Jong-Wook

Bae, Sung-Hwan Jung; 2008).

13

A New Image-Based Real-Time Flame Detection Method Using Color

Analysis

 This paper presents a new image-based real-time flame detection method.

The fire flame features based on the HIS color model are extracted by analyzing 70

flame images. Then, based on these flame features, regions with fire-like colors are

roughly separated from an image. Besides segmenting fire flame regions,

background objects with similar fire colors or caused by color shift resulted from the

reflection of fire flames are also separated from the image. To get rid of these

spurious fire-like regions, the image difference method and the invented color

masking technique are applied. Finally, a simple method is devised to estimate the

burning degree of fire flames so that users could be informed with a proper warning

alarm.

An Early Fire-Detection Method Based on Image Processing

The paper presents an early fire detection method based on video processing.

The basic idea of the fire detection is to adopt an RGB (red, green, blue) model

based chromatic and disorder measurement for extracting fire pixels and smoke

pixels. The decision function of fire pixel is mainly deduced by the intensity and

saturation of R component. In addition to using chromatics, dynamic features are

adopted to distinguish other fire aliases. These fire dynamics include sudden

14

movements of flames, changeable shapes, growing rate, and oscillation (or

vibrations) in the infrared response. For improving the reliability of detection, it

utilizes both the disorder characteristic of flames and the growth of fire pixels to

check if it is a real fire. Since the shape of flames changes with time due to air

flowing, the size of the fire's area in an image also changes; the flame always has a

growth feature. The disorder of fires can be measured with the pixel quantity of

flame difference between two consecutive images.

Flame Detection Method in Video Using Covariance Descriptors

This paper presents a video fire detection system which uses a spatio-

temporal co-variance matrix of video data. The system divides the video into spatio-

temporal blocks and computes co-variance features extracted from these blocks to

detect fire. Feature vectors taking advantage of both the spatial and the temporal

characteristics of flame colored regions are classified using an SVM classifier which is

trained and tested using video data containing flames and flame colored objects. Co-

variance method is ideally suited for flame detection because flames exhibit random

behavior and it is observed that the underlying random process can be considered

as a wide-sense stationary process in a flame region in video. The method uses

temporal co-variance information in the decision process. Most fire detection

methods use color, spatial and temporal information separately, but this method

uses temporal extended co-variance matrices representing all the information

15

together. The method works well when the fire is clearly visible and in close range

such that the flicker and irregular nature of flames are observable.

Fast and Efficient Method for Fire Detection Using Image Processing

This paper presents a computer vision-based fire detection algorithm. In

general, a computer vision-based fire detection system employs three major stages:

fire pixel classification, moving object segmentation, and analysis of the candidate

regions. This analysis is usually based on two figures: the shape of the region and

the temporal changes of the region. The fire detection performance depends

critically on the effectiveness of the fire pixel classifier which generates seed areas

than the rest of the system will exercise. The fire detection algorithm consists of two

main parts: fire color modeling and motion detection. The algorithm can be used in

parallel with conventional fire detection systems to reduce false alarms. It can also

be deployed as a stand-alone system to detect fire by using video frames acquired

through a video acquisition device. It is assumed that the image acquisition device

produces its output in RGB format. The algorithm consists of three main stages: fire

pixel detection using color information, detecting moving pixels, and analyzing

dynamics of moving fire pixels in consecutive frames.

16

Implementation of Object Tracking and Motion Sensors for Home and

Office Based WIFI Monitoring System

 According to the design, “Implementation of Object Tracking and Motion

Sensors for Home and Office Based WIFI Monitoring System”, the designers used an

Arduino as a microcontroller for the IP camera's motion. The microcontroller

manages the data from the sensor and switches to properly move the camera. The

designers changed the medium of data transmission that makes the system portable

and allowing for remote viewing anywhere with an internet connection. The servo

motor is the one responsible for generating the movement of the IP camera to

automate its viewing perspective. The camera can scan the area pivoting from left

to right and vice-versa. The camera can also be manually operated by the user

using two push buttons to direct the camera to the left or to the right. The use of

sensors instead of multiple cameras have made it possible to monitor a large area

while minimizing the use of cameras.

17

Figure 2.4 Block Diagram Implementation of Object Tracking and Motion Sensors

for Home and Office Based WIFI Monitoring System

input sensor Arduino

servo camera snapshot

email

18

Chapter 3

FIRE ALERT SYSTEM USING SHAPE AND COLOR ANALYSIS THROUGH

IMAGE PROCESSING VIA ANDROID MOBILE APPLICATION

Abstract

The study presents the research and implementation of a fire detection

system through covariance matrix image processing and an alarm system through

the mobile phone application. The system extracts image frames from the video for

shape and color analysis and segments the moving regions by image differencing

through the concept of co-variance used together with shape and color analysis. A

mobile phone application is created to serve as the receiving end of the system

which moving camera is also utilized for analysing the environment of a certain area

for flame colored objects. The device will detect if there is a fire in a given area, and

then a message will be sent to the Android mobile phone. From the mobile

application the user will be able to view the scenario in the area through the IP

camera.

19

Introduction

Recently, terrible disasters such as tsunami, flood, avalanche, fire, and

explosion have caused many casualties and damages to property. Therefore,

efficient detection for early alarming systems has to be used and has been an

important research area in the last few years. Researches on the automatic fire

detection, in particular has been widely studied. Sensor-based fire detection is being

used due to its characteristics of low cost and simple set-up. However, these devices

do not work until the material comes in contact with the sensor and awareness of

the additional information such as fire scale or location. Today, image processing

has brought impact to the technology. One of the common applications is facial

recognition used on a laptop for security purposes. Alert systems such as fire and

other safety devices are possible to be combined with image processing technology.

Image processing usually refers to digital image processing. Computer graphics and

computer visions are very much related to image processing. As people move

forward to technology, this study will provide data on the use of home alert systems

as communication through mobile application and image processing technology. The

mobile application development for fire alert system allows the user/s to be

informed when a fire happens/occurs inside their house. There are fire detection

systems that use smoke sensors which require a certain concentration of the smoke

before it can detect fire but can lead to false detection such as a cigarette smoke.

The common problem where fire starts at home is caused primarily by homeowners

20

being careless when it comes to dealing with potential hazardous situations. Another

cause usually deals with electricity where people forget to unplugged electric

appliances. The problem in the existing studies is accuracy in terms of time on when

will the device detect the flame.

The system that will be created is very helpful for the safety of everyone. If

the system will be installed in houses, the families’ safety will be at hand and if the

system will be installed in establishments the owners ensured customers’ safety.

Nowadays, the Earth’s average temperature increases due to the effect of

greenhouse gases which is why fire and floods happen unexpectedly. In 2012 during

the summer time here in the Philippines, temperature reaches 36 degree celsius and

strong typhoons enter the Philippines’ area of responsibility. Because of fire and

flood huge damages happen and worst, people die. In fact, these circumstances can

be minimized if people will be alarmed and can call for help immediately. The

system that will be created will lessen these huge damages, at the same time will

alert the owner immediately if the IP (Internet Protocol) camera saw an occurrence

of fire or smoke.

There are a lot of studies regarding image processing, it varies from

article to article, some are used for security purposes such as facial recognition

for electronic camera devices and some are used in signal processing such as

noise removal and filters. In this study, the researchers will be using image

21

processing with covariance algorithms for fire detection systems. A web camera

will be used for capturing the video data needed for the system to interpret a fire

and an IP camera that will serve as the receiving end of the system. It will also allow

the user to view the live video from the mobile application.

This study aims to develop an algorithm for fire detection using shape and

color analysis. The specific objectives of this research are as follow:

a. To create a mobile application that would alert and automatically inform the

user if there is a fire detected.

b. To develop fire detection system using image processing.

c. To develop a more accurate algorithm that is early fire detection.

The study impacts on the safety of the people as well as contribute greatly

in the safety field through the convenience of an alert system with the use of a

mobile application. The research and the proposed algorithm are suited to the

advancement of technology where people nowadays are seeking portability of

things. The portability of the device will be evident in such a way that the user

will be alerted from the mobile phone theoretically anywhere, provided that the

mobile phone is powered on. The mobile application can be used instantly

once the web server distinguish that the captured image of fire transmit a

signal. Lastly, this research will contribute in the future studies of wireless

technology which is now one of the most widely used technology in transferring

22

data or information.

The research also focuses on house monitoring of fire through image

processing. It alerts the user if there is a fire occurring in the said location. The

study covers the use of co-variance based on fire color detection and shape

analysis to determine a fire through image processing. A web camera is used by the

system to grab the video frames that are subject to be analyzed by the algorithm.

The system will capture a video clip once it detects a fire and stores it in its

memory. This will then send a signal to the android phone to automatically activate

the mobile application for viewing and connect to the IP camera to display the

activity in that location. The mobile application must be installed in the mobile

phone that comes within the system which is the only one capable of

communicating to the IP camera. The range of the camera is only limited to what it

can see and the system cannot take action in stopping the unexpected

emergencies.

23

Methodology

Hardware Development

This section provides an overview of the steps that the designers undertook

in the hardware development of this research. Hardware development includes the

flow of data through the components, block diagrams and schematic diagram of the

research as well as components used in the research.

The designers researched and gathered information about previous system as

basis for circuit design. They also researched components that can fit into the

system to make it more cost effective without affecting the output. From the

information gathered, the designers selected components to be used in the

research.

Conceptual Framework

Fire Detection System

Mobile Phone Application

Figure 3.1 Conceptual Framework

Web

Camera

Fire Detection
Algorithm

Save

Video

Internet

Mobile
Phone

Android
Mobile

Application

Live Video
Streaming

IP Camera

24

Figure 3.1 shows the conceptual framework of the study. For the fire

detection system, the web camera rotates within an area for image processing. The

fire detection algorithm analyzes the environment for possible fire occurrences and

detects an object as a fire if it satisfies the algorithm. The system will then save a

short video clip for verification and send an alert message to the mobile phone

through the internet. When the mobile phone receives the message, the mobile

application will be automatically activated. The mobile application will connect to the

IP camera and present a live video streaming of the scenario in the mobile phone.

Block Diagram

Figure 3.2 Block Diagram of the Moving Camera

 Figure 3.2 shows the block diagram for the hardware development of the

system. The moving camera is serially connected to the laptop and awaits the

commands from the program and transmits the signal to the microcontroller. The

microcontroller controls the movement and timing of the servo motor to where it

should focus at a certain time. The web camera is mounted to the servo motor and

serves as a tool for image processing.

Input Microcontroller Servo Motor Web Camera

25

Figure 3.3 Procedural Steps in Conducting the Study

 Figure 3.3 shows about the procedures one must do in conducting the

study. First is researching about the related literature which will help by

brainstorming for a possible and innovative topic. The hardware development

discusses the materials needed as well as the steps in designing the device. The

26

development of the Fire Color Detection Algorithm and Mobile Application will fall

under the category of software development. In the software development, the

researchers determine what platform must be used and also the coding algorithms

that will satisfy the software components of the system.

27

Software Development

The mobile application can be programmed using C/C++, since the Android

mobile platform’s middleware is written in Java and C/C++. The figure below

discusses the process flow of the mobile application. The mobile application initially

runs as a background application on the mobile phone.

Figure 3.4 Android Mobile Application Algorithm

START

Is there

Fire

Detected?

END

Connect to IP

Camera

Is the

Application

ON?

Show Live

Video

NO

NO

YES

YES

28

Figure 3.4 discusses the android mobile application algorithm, once the

system detects a fire it will send a message that will be connected to the mobile

phone. The mobile application connected to the IP camera will begin the live video

streaming of the area covered.

29

Figure 3.5 Shape and Color Analysis Algorithm

The proposed fire detection algorithm can be concluded in Figure 3.5.

Firstly, the moving regions are segmented from the captured image frames, thus

used as candidates for checking if it is a fire or not. The shape created by

segmenting these moving regions would be verified by testing each pixel using the

START

Fire

Detected

?

Extract image frames from video

Segment moving regions by

image differencing

Color Analysis

END

Shape Analysis

Send Fire Alarm

30

color analysis. By using the chromatic color model, each pixel would be tested if it is

a fire or not. It was analyzed that the hue of the fire colored pixels was in the range

of 0 and 60. The RGB domain equivalent of this condition is, R ≥ G > B. Since fire

is a light source its pixel values must be larger than some threshold. is the

threshold for red channel, R > . Last is about saturation. S is the saturation value

of a pixel and is the saturation value of this pixel when R is RT. S > (255 −

R) . If the three conditions are satisfied then it will be classified as a fire.

Thus, using co-variance can include the location and intensity values of the pixels,

red, green, and blue values of the pixels as well as their first and second derivatives.

The system only covers a room environment set-up. Finally, if it detects a fire the

system will send a signal onto the mobile application for the user to be informed.

31

Figure 3.6 Color Analysis Algorithm

Figure 3.6 presents the color analysis algorithm used in the system. The

algorithm presents three conditions to be satisfied before it concludes that the

algorithm has detected a fire. A fire is an image that can be described by using its

color properties. This color pixel can be extracted into the individual elements as R,

G and B which can be used for color detection. The first condition R ≥ G > B is

computed from the means of red, green, and blue extracted from the video. Where

R should be more stressed than the other components, because R becomes the

START

R ≥ G > B

R >

S > (255 −

R)

END

32

dominating color channel in an RGB images of flames. R > is the second

condition for R to be over some pre-determined threshold . However, lighting

conditions may adversely affect the saturation values of flames resulting in similar R,

G and B values which may cause non-flame pixels to be considered as flame

colored. Therefore, saturation values of the pixels should also be over some

threshold value. In the third condition, S > (255 − R) , where is the value

of saturation when the value of R channel is . If all of the three conditions are

satisfied for a pixel, then that pixel is considered as a fire colored pixel. The values

of both and are typically 0.5 and 0.11, respectively.

33

Testing and Statistical Treatment

Material Used Correct Detection (%) False Detection (%)

Paper 100% 0%

Rubber 97.6% 2.4%

Plastic 98.5% 1.5%

Wood 100% 0%

Table 3.1 Performance and Evaluations

Table 3.1 presents the performance and evaluation of the fire alert system.

The correct detection refers to the success rate of the system in detecting fire while

the false detection refers to the percentage of unsuccessful detection of the system.

Using different materials, the system is tested using 25 samples of each material.

The results obtained from the testing are presented in the table.

Procedures in conducting the performance and evaluation testing are:

1. Set-up the fire alert system.

2. Burn the said material.

3. Wait until the system detects the fire. If the fire becomes bigger and the

system doesn’t detect, this is considered as a false detection.

4. Wait for the android mobile application’s notification.

5. Repeat steps 2-4 for 25 times.

6. Change to another burning material.

34

7. Compute for the percentage of correct detection and false detection with

the given formula.

 (3.1)

This formula is used in calculating systems correct detection. Correct

detection is calculated by the number of correctly detected samples over the

number of total number of samples.

 (3.2)

The number of false detection is computed by subtracting correct detection

from 100%.

Table 3.2 Graph of Performance and Evaluations

0

20

40

60

80

100

120

Paper Rubber Plastic Wood

Correct Detection

False Detection

35

Methods No. of Faulty Detection System Performance

Color Detection (by RGB

color pattern)

(19/104) = 18.26% 81.74%

Motion Detection (by

comparing pixel
coordinate)

(17/104) = 16.34% 83.66%

Area Dispersion Detection

(by checking deviation in
area)

(10/104) = 9.61% 90.36%

Optimized Flame Detection
(by images processing

based techniques)

(8/104) = 7.69% 92.31%

Proposed Fire Detection
System

(5/104) = 4.81% 95.19%

Table 3.3 Comparing previous results achieved in implementing different

methods

Table 3.3 presents the comparison of the proposed fire alert system versus

the different methods used on different studies. The number of faulty detection

signifies the number of false detection over the total number of samples tested.

 (3.3)

In calculating percentage of faulty detection it is computed by the number of

faulty detection over total number of samples multiplied by 100%.

 (3.4)

36

The system performance is calculated by subtracting percentage of faulty

detection from 100%.

Table 3.4 Graph of Comparing previous results achieved in implementing

different methods

0

20

40

60

80

100

120

Color

Detection

Motion

Detection

Area

Dispersion

Optimized

Flame
Detection

Proposed

System

Faulty Detection

System Performance

37

Distance of the fire
from the camera (cm)

Percentage of
Detection (%)

Percent Error (%)

50 20/20 = 100 % 0 %

100 20/20 = 100 % 0 %

150 20/20 = 100 % 0 %

200 19/20 = 95 % 5 %

250 18/20 = 90 % 10 %

300 18/20 = 90 % 10 %

Table 3.5 Distance Percentage Error

Table 3.5 presents the distance percentage error; this testing measures the

range of the system. The system’s accuracy is tested from different ranges in

centimeter. Each range is tested with 20 samples.

Procedures in conducting the distance percentage error testing are:

1. Set-up the fire alert system.

2. Put the object to be burned in the said distance.

3. Wait until the system detects the fire. If the fire becomes bigger and the

system doesn’t detect, this is considered it as a false detection.

4. Wait for the android mobile application’s notification.

5. Repeat steps 2-4 for 20 times.

6. Move the burning object to the next distance.

7. Compute for the percentage of detection and percent error with the given

formula.

38

 (3.5)

In calculating percentage of detection it is computed by the number of fire

detected over total number of samples multiplied by 100%.

 (3.6)

The percentage error is calculated by subtracting percentage of detection

from 100%.

Table 3.6 Graph of Distance Percentage Error

0

20

40

60

80

100

120

50 100 150 200 250 300

Percentage of
Detection

Percent Error

39

Trial
Android Mobile

Application Alerted
Seconds

1 Yes 18s

2 Yes 15s

3 Yes 20s

4 Yes 16s

5 Yes 18s

6 Yes 19s

7 Yes 21s

8 Yes 17s

9 Yes 18s

10 Yes 19s

Table 3.7 Response of Android Mobile Application

Table 3.7 shows the accuracy of the android mobile application as seen

where the application detects the entire alert trial from trial 1 up to trial 10. But it

differs in time it takes to alert the android mobile application. The two major factors

affecting the speed are the network provider and the speed of the mobile phone to

receive SMS. Even the time it will take to view the live streaming video will depend

on these two major factors. This means that the accuracy of the application doesn’t

rely on how the designers created the android mobile application. Result of speed

varies depending on those two factors.

Procedures in conducting the response of android mobile application testing are:

1. Set-up the fire alert system.

2. Burn paper (or any material).

40

3. Wait for the system to detect fire.

4. If the system detects a fire, start the stop watch.

5. Stop the stop watch when the notification pops out in the android phone.

6. Record the result time.

Fire Detected

 Burning Paper Burning Rubber

 Burning Plastic Burning Wood

41

No Fire Detected

 Lighter Cigarette

 Gas Stove Burner

42

Chapter 4
CONCLUSION

The study Fire alert system based on shape and color analysis through

image processing via Android mobile application focuses on implementing a fire

alert system that will defect early fire occurrence and alert users through the mobile.

By performing trials of tests, the researchers can say that the system is able to

detect fire with the range of 5 seconds to 20 seconds from the start of the flame.

The time of detection may vary depending on the quality of the camera. The system

created an android mobile application that will automatically inform the user if there

is a fire detected. Time interval from fire detection to fire alert android mobile

application depends on the network provider. With the use of image processing the

researchers created a system that can detect fire on its early stage. By integrating

image processing using MATLAB application on the camera with the help of shape

and color analysis, this has been proven that the system is more accurate compared

to other research studies and other fire or smoke detectors. With the use of the

created algorithm the system can detect or distinguish the difference between a fire

and an object that has the same shade color of a fire. The only thing where one can

get false alarms is when the background color is the same as the color of the fire.

Based from the results gathered, there are factors that play an important role in

getting the output. First is the distance of the camera from the fire, and second is

the camera on how it can detect the fire quickly. The web camera is responsible for

43

image processing which is through the use of MATLAB programming. The web

camera’s range is 10m or 30ft but is limited to the system design to 5m or 15ft

because of the low quality of the web camera and to make the system more

accurate. When the researchers are developing the system it was found out that the

web camera couldn’t save video clip while the user is viewing the scenario that is

why the researchers use two (2) cameras. The web camera is used in image

processing and saved video clip while the IP camera is used in viewing the scenario.

As the researchers finish the system all of the objectives successfully met. They are

able to create a android mobile application that will automatically inform and alert

the user. The application will automatically receive an SMS alert message when the

system send a “Fire” or “fire” text message the application will convert this text

message to open the fire alert android mobile application and the user can view

what is happening in the scenario. The live streaming speed depends on the service

provider. The researchers are able to develop a fire detection system using image

processing and creat an algorithm for fire detection using shape and color analysis.

With the algorithm created a fire detection system is more accurate than the past

researches and systems developed.

44

Chapter 5
RECOMMENDATION

 Based from the limitations of the fire alert system and the results gathered,

the system can be further improved by the following recommendations. First is

increasing the fire detection accuracy of the image processing program to

distinguish between the background color of the room and fire color, if both are of

the same color, thus eliminating the remaining false alarm of the system. Second

recommendation is increasing the camera’s range to suit bigger rooms which also

increases the fire detection accuracy.

Also to further improve the system’s capability in fire detection, future works can be

integrated to the temperature sensor that can detect room temperature. This can

help the user in assessing the severity of the situation. For the android mobile

application, the option to record the live video stream can be added because this

can help the authorities in conducting investigations on the cause of fire.

45

APPENDICES

46

APPENDIX A

Operation’s Manual

System Requirements

 These are the requirements necessary to operate the device. It should be a

laptop or a computer with the following features:

1. Windows XP Service Pack 3 or newer versions

2. Intel Pentium 4 or higher

3. 512 MB RAM (minimum), 1 GB RAM (recommended)

4. At least 625 MB Hard Disk space

5. Graphics 16-, 24-, or 32-bit OpenGL capable graphics adapter

6. USB Port

7. Internet Connection

Installation Procedure

1. Install the MATLAB Software in the PC or laptop.

2. Install the application in the android phone.

3. Connect the device to a USB port of a laptop or PC.

4. Connect the camera to the device.

47

5. Mount the camera on a solid level surface.

6. Connect the device to its power source.

7. Configure the router and the IP address of the camera.

User’s Manual

PC or Laptop

1. Run the MATLAB software installed in the PC or laptop.

2. Connect to the internet.

3. Run the program in MATLAB.

Android Phone

1. Connect to the internet.

2. Run application in phone.

Troubleshooting Guides and Procedures

1. No video is shown in the output of program.

1.1 Check the connection of the device to the PC.

1.2 Make sure the device is connected to its power source.

1.3 Adjust the position of the camera.

48

2. Unable to receive alert on the android phone.

2.1 Check if the application is running in background on the phone.

If not restart the application.

2.2 Make sure you have internet connection on your phone.

3. Video feedback from the camera cannot be seen in the android phone.

3.1 Check if the camera is on and is connected to the router.

3.2 Make sure you have internet connection in your phone.

3.3 Check if the IP address of the camera is correct.

Error Definitions

1. No internet connection.

2. Too much process on the computer.

3. Human error.

49

APPENDIX B

Pictures of Prototype

Android Application Notification

Setting up Fire

50

Waiting for fire detection

Fire Detected

51

Image Processing Camera

IP camera and router

52

APPENDIX C

Program Listing

function FireAlertSystem()

clc % Clear command window.

clear all% Get rid of variables from prior run of this m-file.
disp('Program Start'); % Message sent to command window.
workspace; % Show panel with all variables.
delete(instrfindall); % Find visible and hidden instrument objects.
imaqreset; % Disconnect and delete all image acquisition objects
% imaqreset deletes any image acquisition objects that exist in memory and

unloads all adaptors loaded by the toolbox.
% As a result, the image acquisition hardware is reset.

% imaqreset is the image acquisition command that returns MATLAB to the

known state of having no image acquisition objects
% and no loaded image acquisition adaptors.

% You can use imaqreset to force the toolbox to search for new hardware

that might have been installed while MATLAB was running.

% Note that imaqreset should not be called from any of the callbacks of a

videoinput object, such as the StartFcn or FramesAcquiredFcn.

set(gcf, 'Position', get(0, 'ScreenSize'));
set(gcf, 'name', 'Fire Alert System Using Shape and Color Analysis Through

Image Processing via Mobile Application','numbertitle','off');

videoDevReader = imaq.VideoDevice('winvideo', 1, 'YUY2_320x240');
set(videoDevReader,'ReturnedColorSpace','rgb');

subplot(2, 4, [5 8],'Visible','off');
capsT = sprintf('INITIALIZATION COMPLETE!');

cla;
text(0,1, capsT);
drawnow;

while 1 == 1

while 1 == 1

 fwrite(arduino,angle1); %Write to arduino angle 0 degrees.

 pause(0.02)

 videoFrame = step(videoDevReader);
 origVid = videoFrame;

 redVid = videoFrame(:, :, 1);
 greenVid = videoFrame(:, :, 2);
 blueVid = videoFrame(:, :, 3);

 ex_Red = imsubtract(redVid, rgb2gray(videoFrame));

53

 ex_Red = medfilt2(ex_Red, [3 3]); % Use a median filter to filter

out noise

 ex_Red = im2bw(ex_Red,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Red = bwareaopen(ex_Red,300); % Remove all those pixels less

than 300px

 ex_Green = imsubtract(greenVid, rgb2gray(videoFrame));

 ex_Green = medfilt2(ex_Green, [3 3]); % Use a median filter to

filter out noise

 ex_Green = im2bw(ex_Green,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Green = bwareaopen(ex_Green,300); % Remove all those pixels

less than 300px

 ex_Blue = imsubtract(blueVid, rgb2gray(videoFrame));

 ex_Blue = medfilt2(ex_Blue, [3 3]); % Use a median filter to

filter out noise

 ex_Blue = im2bw(ex_Blue,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Blue = bwareaopen(ex_Blue,300); % Remove all those pixels less

than 300px

 bw = bwlabel(ex_Red, 8); % Label all the connected components in

the image.

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
 stats = regionprops(bw, 'BoundingBox', 'Centroid');

 MR = mean(mean(redVid));
 MG = mean(mean(greenVid));
 MB = mean(mean(blueVid));
 S = 0.3; % Saturation value of a pixel;

 subplot(2, 4, 1); imshow(origVid); title('Original'); drawnow;

 subplot(2, 4, 2); imshow(ex_Red); title('Red Frame'); drawnow;

 subplot(2, 4, 3); imshow(ex_Green); title('Green Frame'); drawnow;

 subplot(2, 4, 4); imshow(ex_Blue); title('Blue Frame'); drawnow;

54

if MR > MG && MG > MB

if MR > 0.5 % Threshold

if S > (1 - MR) * 0.11 / 0.5

% Must examine here for saturation.
 subplot(2, 4, [5 8],'Visible','off');
 capsT = sprintf('FIRE DETECTED! PROCESSING..');
 cla;
 text(0,1, capsT);
 drawnow;

 hsvImage = rgb2hsv(videoFrame); %# Convert the image

to HSV space.
 satRed = hsvImage(:, :, 1); % Get saturation, red.
 SR = mean(mean(satRed)); % Get mean.

%S > (1 - R)ST/RT
 ST = (1 - MR) * 0.11 / 0.5;
 capsT = sprintf('RED SATURATION = %.2f \nSATURATION:

%.2f',SR, ST);
 text(0,0, sprintf(capsT));

% Determine the camera deviceID.
 imaqreset;
 infom = imaqhwinfo;
for k = 1:length(infom.InstalledAdaptors)
 info = imaqhwinfo(infom.InstalledAdaptors{k});
if ~isempty(info.DeviceIDs)
 Installedadaptor = infom.InstalledAdaptors{k};
break;
end

end

if ~exist('Installedadaptor', 'var')
 h = warndlg('Video camera not connected !','!! Warning

!!', 'replace');
 pause (5);
if ishandle(h), close (h); end; beep;
return;
end

 filenameprefix = 'FireAlertVideo'; % Filename prefix.
 adaptorname = Installedadaptor;
 deviceid = '1'; % The maximum should be the total number

of cameras connected.
 loopnumber = 0; % How many time the video is divided.

% The following sections takes video according to the time specified by

the user

 k = 1;
while 1
 my_log = [filenameprefix num2str(refnum) '.avi'];
 aviobj = VideoWriter(my_log, 'Motion JPEG AVI');

55

 vid = videoinput(adaptorname, deviceid,

'YUY2_320x240');
 vid.LoggingMode = 'disk&memory';
 vid.DiskLogger = aviobj;
 vid.TriggerRepeat = Inf;
 set(vid,'FramesPerTrigger', 1500)

 start(vid);
 close(vid.DiskLogger);
 flushdata(vid)
 pause (6)
 clear my_log;

 refnum = refnum + 1;
if k > loopnumber
 delete(vid);
 clear vid;
break;
end
end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG, MB);
 text(0,1, MeanRGB);

end

 subplot(2, 4, 1);
for object = 1:length(stats)
 bb = stats(object).BoundingBox;

56

 bc = stats(object).Centroid;
 rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
%plot(bc(1),bc(2), '-m+')
 a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), '

Y: ', num2str(round(bc(2)))));
 set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize',

12, 'Color', 'yellow');
 drawnow;
end

if frameCounts < 20

 frameCounts = frameCounts + 1;

else

 frameCounts = 0;
break;

end

 fwrite(arduino,angle2); %Write to arduino angle 45 degrees.
 pause(0.02)

 videoFrame = step(videoDevReader);
 origVid = videoFrame;

 redVid = videoFrame(:, :, 1);
 greenVid = videoFrame(:, :, 2);
 blueVid = videoFrame(:, :, 3);

 ex_Red = imsubtract(redVid, rgb2gray(videoFrame));

 ex_Red = medfilt2(ex_Red, [3 3]); % Use a median filter to filter

out noise

 ex_Red = im2bw(ex_Red,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Red = bwareaopen(ex_Red,300); % Remove all those pixels less

than 300px

 ex_Green = imsubtract(greenVid, rgb2gray(videoFrame));

 ex_Green = medfilt2(ex_Green, [3 3]); % Use a median filter to

filter out noise

 ex_Green = im2bw(ex_Green,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Green = bwareaopen(ex_Green,300); % Remove all those pixels

less than 300px

57

 ex_Blue = imsubtract(blueVid, rgb2gray(videoFrame));

 ex_Blue = medfilt2(ex_Blue, [3 3]); % Use a median filter to

filter out noise

 ex_Blue = im2bw(ex_Blue,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Blue = bwareaopen(ex_Blue,300); % Remove all those pixels less

than 300px

 bw = bwlabel(ex_Red, 8); % Label all the connected components in

the image.

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
 stats = regionprops(bw, 'BoundingBox', 'Centroid');

 MR = mean(mean(redVid));
 MG = mean(mean(greenVid));
 MB = mean(mean(blueVid));
 S = 0.3; % Saturation value of a pixel;

 subplot(2, 4, 1); imshow(origVid); title('Original'); drawnow;

 subplot(2, 4, 2); imshow(ex_Red); title('Red Frame'); drawnow;

 subplot(2, 4, 3); imshow(ex_Green); title('Green Frame'); drawnow;

 subplot(2, 4, 4); imshow(ex_Blue); title('Blue Frame'); drawnow;

if MR > MG && MG > MB

if MR > 0.5 % Threshold

if S > (1 - MR) * 0.11 / 0.5

% Must examine here for saturation.
 subplot(2, 4, [5 8],'Visible','off');
 capsT = sprintf('FIRE DETECTED! PROCESSING..');
 cla;
 text(0,1, capsT);
 drawnow;

 hsvImage = rgb2hsv(videoFrame); %# Convert the image

to HSV space.
 satRed = hsvImage(:, :, 1); % Get saturation, red.
 SR = mean(mean(satRed)); % Get mean.

%S > (1 - R)ST/RT
 ST = (1 - MR) * 0.11 / 0.5;

58

 capsT = sprintf('RED SATURATION = %.2f \nSATURATION:

%.2f',SR, ST);
 text(0,0, sprintf(capsT));

% Determine the camera deviceID.
 imaqreset;
 infom = imaqhwinfo;
for k = 1:length(infom.InstalledAdaptors)
 info = imaqhwinfo(infom.InstalledAdaptors{k});
if ~isempty(info.DeviceIDs)
 Installedadaptor = infom.InstalledAdaptors{k};
break;
end
end

if ~exist('Installedadaptor', 'var')
 h = warndlg('Video camera not connected !','!! Warning

!!', 'replace');
 pause (5);
if ishandle(h), close (h); end; beep;
return;
end

 filenameprefix = 'FireAlertVideo'; % Filename prefix.

 adaptorname = Installedadaptor;
 deviceid = '1'; % The maximum should be the total number

of cameras connected.
 loopnumber = 0; % How many time the video is divided.

% The following sections takes video according to the time specified by

the user
 k = 1;
while 1

 my_log = [filenameprefix num2str(refnum) '.avi'];
 aviobj = VideoWriter(my_log, 'Motion JPEG AVI');

 vid = videoinput(adaptorname, deviceid,

'YUY2_320x240');
 vid.LoggingMode = 'disk&memory';
 vid.DiskLogger = aviobj;
 vid.TriggerRepeat = Inf;
 set(vid,'FramesPerTrigger', 1500)

 start(vid);
 close(vid.DiskLogger);
 flushdata(vid)
 pause (6)
 clear my_log;

 refnum = refnum + 1;
if k > loopnumber
 delete(vid);
 clear vid;
break;
end

59

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG, MB);
 text(0,1, MeanRGB);

end

 subplot(2, 4, 1);

for object = 1:length(stats)
 bb = stats(object).BoundingBox;
 bc = stats(object).Centroid;
 rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
%plot(bc(1),bc(2), '-m+')
 a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), '

Y: ', num2str(round(bc(2)))));
 set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize',

12, 'Color', 'yellow');
 drawnow;
end

if frameCounts < 20

 frameCounts = frameCounts + 1;

else

 frameCounts = 0;
break;

end

60

 fwrite(arduino,angle3); %Write to arduino angle 90 degrees.
 pause(0.02)

 videoFrame = step(videoDevReader);
 origVid = videoFrame;

 redVid = videoFrame(:, :, 1);
 greenVid = videoFrame(:, :, 2);
 blueVid = videoFrame(:, :, 3);

 ex_Red = imsubtract(redVid, rgb2gray(videoFrame));

 ex_Red = medfilt2(ex_Red, [3 3]); % Use a median filter to filter

out noise

 ex_Red = im2bw(ex_Red,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Red = bwareaopen(ex_Red,300); % Remove all those pixels less

than 300px

 ex_Green = imsubtract(greenVid, rgb2gray(videoFrame));

 ex_Green = medfilt2(ex_Green, [3 3]); % Use a median filter to

filter out noise

 ex_Green = im2bw(ex_Green,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Green = bwareaopen(ex_Green,300); % Remove all those pixels

less than 300px

 ex_Blue = imsubtract(blueVid, rgb2gray(videoFrame));

 ex_Blue = medfilt2(ex_Blue, [3 3]); % Use a median filter to

filter out noise

 ex_Blue = im2bw(ex_Blue,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Blue = bwareaopen(ex_Blue,300); % Remove all those pixels less

than 300px

 bw = bwlabel(ex_Red, 8); % Label all the connected components in

the image.

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
 stats = regionprops(bw, 'BoundingBox', 'Centroid');

 MR = mean(mean(redVid));

61

 MG = mean(mean(greenVid));
 MB = mean(mean(blueVid));
 S = 0.3; % Saturation value of a pixel;

 subplot(2, 4, 1); imshow(origVid); title('Original'); drawnow;

 subplot(2, 4, 2); imshow(ex_Red); title('Red Frame'); drawnow;

 subplot(2, 4, 3); imshow(ex_Green); title('Green Frame'); drawnow;

 subplot(2, 4, 4); imshow(ex_Blue); title('Blue Frame'); drawnow;

if MR > MG && MG > MB

if MR > 0.5 % Threshold

if S > (1 - MR) * 0.11 / 0.5

% Must examine here for saturation.
 subplot(2, 4, [5 8],'Visible','off');
 capsT = sprintf('FIRE DETECTED! PROCESSING..');
 cla;
 text(0,1, capsT);

 drawnow;

 hsvImage = rgb2hsv(videoFrame); %# Convert the image

to HSV space.
 satRed = hsvImage(:, :, 1); % Get saturation, red.
 SR = mean(mean(satRed)); % Get mean.

%S > (1 - R)ST/RT
 ST = (1 - MR) * 0.11 / 0.5;

 capsT = sprintf('RED SATURATION = %.2f \nSATURATION:

%.2f',SR, ST);
 text(0,0, sprintf(capsT));

% Determine the camera deviceID.
 imaqreset;
 infom = imaqhwinfo;
for k = 1:length(infom.InstalledAdaptors)
 info = imaqhwinfo(infom.InstalledAdaptors{k});

if ~isempty(info.DeviceIDs)
 Installedadaptor = infom.InstalledAdaptors{k};
break;
end
end

if ~exist('Installedadaptor', 'var')
 h = warndlg('Video camera not connected !','!! Warning

!!', 'replace');
 pause (5);
if ishandle(h), close (h); end; beep;
return;
end

62

 filenameprefix = 'FireAlertVideo'; % Filename prefix.
 adaptorname = Installedadaptor;
 deviceid = '1'; % The maximum should be the total number

of cameras connected.
 loopnumber = 0; % How many time the video is divided.

% The following sections takes video according to the time specified by

the user
 k = 1;
while 1
 my_log = [filenameprefix num2str(refnum) '.avi'];
 aviobj = VideoWriter(my_log, 'Motion JPEG AVI');

 vid = videoinput(adaptorname, deviceid,

'YUY2_320x240');
 vid.LoggingMode = 'disk&memory';
 vid.DiskLogger = aviobj;
 vid.TriggerRepeat = Inf;
 set(vid,'FramesPerTrigger', 1500)

 start(vid);
 close(vid.DiskLogger);
 flushdata(vid)

 pause (6)
 clear my_log;

 refnum = refnum + 1;
if k > loopnumber
 delete(vid);
 clear vid;
break;
end

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);

 text(0,1, MeanRGB);

end

63

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG, MB);
 text(0,1, MeanRGB);

end

 subplot(2, 4, 1);
for object = 1:length(stats)
 bb = stats(object).BoundingBox;
 bc = stats(object).Centroid;
 rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
%plot(bc(1),bc(2), '-m+')
 a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), '

Y: ', num2str(round(bc(2)))));
 set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize',

12, 'Color', 'yellow');
 drawnow;
end

if frameCounts < 20

 frameCounts = frameCounts + 1;

else

 frameCounts = 0;
break;

end

 fwrite(arduino,angle4); %Write to arduino angle 135 degrees.
 pause(0.02)

 videoFrame = step(videoDevReader);
 origVid = videoFrame;

 redVid = videoFrame(:, :, 1);

 greenVid = videoFrame(:, :, 2);
 blueVid = videoFrame(:, :, 3);

 ex_Red = imsubtract(redVid, rgb2gray(videoFrame));

 ex_Red = medfilt2(ex_Red, [3 3]); % Use a median filter to filter

out noise

 ex_Red = im2bw(ex_Red,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Red = bwareaopen(ex_Red,300); % Remove all those pixels less

than 300px

64

 ex_Green = imsubtract(greenVid, rgb2gray(videoFrame));

 ex_Green = medfilt2(ex_Green, [3 3]); % Use a median filter to

filter out noise

 ex_Green = im2bw(ex_Green,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Green = bwareaopen(ex_Green,300); % Remove all those pixels

less than 300px

 ex_Blue = imsubtract(blueVid, rgb2gray(videoFrame));

 ex_Blue = medfilt2(ex_Blue, [3 3]); % Use a median filter to

filter out noise

 ex_Blue = im2bw(ex_Blue,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Blue = bwareaopen(ex_Blue,300); % Remove all those pixels less

than 300px

 bw = bwlabel(ex_Red, 8); % Label all the connected components in

the image.

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
 stats = regionprops(bw, 'BoundingBox', 'Centroid');

 MR = mean(mean(redVid));

 MG = mean(mean(greenVid));
 MB = mean(mean(blueVid));
 S = 0.3; % Saturation value of a pixel;

 subplot(2, 4, 1); imshow(origVid); title('Original'); drawnow;

 subplot(2, 4, 2); imshow(ex_Red); title('Red Frame'); drawnow;

 subplot(2, 4, 3); imshow(ex_Green); title('Green Frame'); drawnow;

 subplot(2, 4, 4); imshow(ex_Blue); title('Blue Frame'); drawnow;

if MR > MG && MG > MB

if MR > 0.5 % Threshold

if S > (1 - MR) * 0.11 / 0.5

% Must examine here for saturation.
 subplot(2, 4, [5 8],'Visible','off');
 capsT = sprintf('FIRE DETECTED! PROCESSING..');

65

 cla;
 text(0,1, capsT);
 drawnow;

 hsvImage = rgb2hsv(videoFrame); %# Convert the image

to HSV space.
 satRed = hsvImage(:, :, 1); % Get saturation, red.
 SR = mean(mean(satRed)); % Get mean.

%S > (1 - R)ST/RT
 ST = (1 - MR) * 0.11 / 0.5;
 capsT = sprintf('RED SATURATION = %.2f \nSATURATION:

%.2f',SR, ST);
 text(0,0, sprintf(capsT));

% Determine the camera deviceID.
 imaqreset;
 infom = imaqhwinfo;
for k = 1:length(infom.InstalledAdaptors)
 info = imaqhwinfo(infom.InstalledAdaptors{k});
if ~isempty(info.DeviceIDs)
 Installedadaptor = infom.InstalledAdaptors{k};
break;
end

end

if ~exist('Installedadaptor', 'var')
 h = warndlg('Video camera not connected !','!! Warning

!!', 'replace');
 pause (5);
if ishandle(h), close (h); end; beep;
return;
end

 filenameprefix = 'FireAlertVideo'; % Filename prefix.
 adaptorname = Installedadaptor;
 deviceid = '1'; % The maximum should be the total number

of cameras connected.
 loopnumber = 0; % How many time the video is divided.

% The following sections takes video according to the time specified by

the user

 k = 1;
while 1
 my_log = [filenameprefix num2str(refnum) '.avi'];
 aviobj = VideoWriter(my_log, 'Motion JPEG AVI');

 vid = videoinput(adaptorname, deviceid,

'YUY2_320x240');
 vid.LoggingMode = 'disk&memory';
 vid.DiskLogger = aviobj;
 vid.TriggerRepeat = Inf;
 set(vid,'FramesPerTrigger', 1500)

 start(vid);

66

 close(vid.DiskLogger);
 flushdata(vid)
 pause (6)
 clear my_log;

 refnum = refnum + 1;
if k > loopnumber
 delete(vid);
 clear vid;
break;
end
end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG, MB);
 text(0,1, MeanRGB);

end

 subplot(2, 4, 1);
for object = 1:length(stats)
 bb = stats(object).BoundingBox;
 bc = stats(object).Centroid;
 rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
%plot(bc(1),bc(2), '-m+')
 a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), '

Y: ', num2str(round(bc(2)))));
 set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize',

12, 'Color', 'yellow');
 drawnow;
end

67

if frameCounts < 20

 frameCounts = frameCounts + 1;

else

 frameCounts = 0;
break;

end

 fwrite(arduino,angle5); %Write to arduino angle 180 degrees.
 pause(0.02)

 videoFrame = step(videoDevReader);
 origVid = videoFrame;

 redVid = videoFrame(:, :, 1);
 greenVid = videoFrame(:, :, 2);
 blueVid = videoFrame(:, :, 3);

 ex_Red = imsubtract(redVid, rgb2gray(videoFrame));

 ex_Red = medfilt2(ex_Red, [3 3]); % Use a median filter to filter

out noise

 ex_Red = im2bw(ex_Red,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Red = bwareaopen(ex_Red,300); % Remove all those pixels less

than 300px

 ex_Green = imsubtract(greenVid, rgb2gray(videoFrame));

 ex_Green = medfilt2(ex_Green, [3 3]); % Use a median filter to

filter out noise

 ex_Green = im2bw(ex_Green,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Green = bwareaopen(ex_Green,300); % Remove all those pixels

less than 300px

 ex_Blue = imsubtract(blueVid, rgb2gray(videoFrame));

 ex_Blue = medfilt2(ex_Blue, [3 3]); % Use a median filter to

filter out noise

 ex_Blue = im2bw(ex_Blue,0.18); % Convert the resulting grayscale

image into a binary image.

68

 ex_Blue = bwareaopen(ex_Blue,300); % Remove all those pixels less

than 300px

 bw = bwlabel(ex_Red, 8); % Label all the connected components in

the image.

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
 stats = regionprops(bw, 'BoundingBox', 'Centroid');

 MR = mean(mean(redVid));
 MG = mean(mean(greenVid));
 MB = mean(mean(blueVid));
 S = 0.3; % Saturation value of a pixel;

 subplot(2, 4, 1); imshow(origVid); title('Original'); drawnow;

 subplot(2, 4, 2); imshow(ex_Red); title('Red Frame'); drawnow;

 subplot(2, 4, 3); imshow(ex_Green); title('Green Frame'); drawnow;

 subplot(2, 4, 4); imshow(ex_Blue); title('Blue Frame'); drawnow;

if MR > MG && MG > MB

if MR > 0.5 % Threshold

if S > (1 - MR) * 0.11 / 0.5

% Must examine here for saturation.
 subplot(2, 4, [5 8],'Visible','off');

 capsT = sprintf('FIRE DETECTED! PROCESSING..');
 cla;
 text(0,1, capsT);
 drawnow;

 hsvImage = rgb2hsv(videoFrame); %# Convert the image

to HSV space.
 satRed = hsvImage(:, :, 1); % Get saturation, red.
 SR = mean(mean(satRed)); % Get mean.

%S > (1 - R)ST/RT
 ST = (1 - MR) * 0.11 / 0.5;
 capsT = sprintf('RED SATURATION = %.2f \nSATURATION:

%.2f',SR, ST);
 text(0,0, sprintf(capsT));

% Determine the camera deviceID.
 imaqreset;

 infom = imaqhwinfo;
for k = 1:length(infom.InstalledAdaptors)
 info = imaqhwinfo(infom.InstalledAdaptors{k});
if ~isempty(info.DeviceIDs)

69

 Installedadaptor = infom.InstalledAdaptors{k};
break;
end
end

if ~exist('Installedadaptor', 'var')
 h = warndlg('Video camera not connected !','!! Warning

!!', 'replace');
 pause (5);
if ishandle(h), close (h); end; beep;
return;
end

 filenameprefix = 'FireAlertVideo'; % Filename prefix.
 adaptorname = Installedadaptor;
 deviceid = '1'; % The maximum should be the total number

of cameras connected.
 loopnumber = 0; % How many time the video is divided.

% The following sections takes video according to the time specified by

the user
 k = 1;
while 1
 my_log = [filenameprefix num2str(refnum) '.avi'];

 aviobj = VideoWriter(my_log, 'Motion JPEG AVI');

 vid = videoinput(adaptorname, deviceid,

'YUY2_320x240');
 vid.LoggingMode = 'disk&memory';
 vid.DiskLogger = aviobj;
 vid.TriggerRepeat = Inf;
 set(vid,'FramesPerTrigger', 1500)

 start(vid);
 close(vid.DiskLogger);
 flushdata(vid)
 pause (6)
 clear my_log;

 refnum = refnum + 1;
if k > loopnumber
 delete(vid);

 clear vid;
break;
end
end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

70

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG, MB);
 text(0,1, MeanRGB);

end

 subplot(2, 4, 1);
for object = 1:length(stats)

 bb = stats(object).BoundingBox;
 bc = stats(object).Centroid;
 rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
%plot(bc(1),bc(2), '-m+')
 a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), '

Y: ', num2str(round(bc(2)))));
 set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize',

12, 'Color', 'yellow');
 drawnow;
end

if frameCounts < 20

 frameCounts = frameCounts + 1;

else

 frameCounts = 0;

break;

end

 fwrite(arduino,angle4); %Write to arduino angle 135 degrees.
 pause(0.02)

 videoFrame = step(videoDevReader);
 origVid = videoFrame;

 redVid = videoFrame(:, :, 1);
 greenVid = videoFrame(:, :, 2);
 blueVid = videoFrame(:, :, 3);

71

 ex_Red = imsubtract(redVid, rgb2gray(videoFrame));

 ex_Red = medfilt2(ex_Red, [3 3]); % Use a median filter to filter

out noise

 ex_Red = im2bw(ex_Red,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Red = bwareaopen(ex_Red,300); % Remove all those pixels less

than 300px

 ex_Green = imsubtract(greenVid, rgb2gray(videoFrame));

 ex_Green = medfilt2(ex_Green, [3 3]); % Use a median filter to

filter out noise

 ex_Green = im2bw(ex_Green,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Green = bwareaopen(ex_Green,300); % Remove all those pixels

less than 300px

 ex_Blue = imsubtract(blueVid, rgb2gray(videoFrame));

 ex_Blue = medfilt2(ex_Blue, [3 3]); % Use a median filter to

filter out noise

 ex_Blue = im2bw(ex_Blue,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Blue = bwareaopen(ex_Blue,300); % Remove all those pixels less

than 300px

 bw = bwlabel(ex_Red, 8); % Label all the connected components in

the image.

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
 stats = regionprops(bw, 'BoundingBox', 'Centroid');

 MR = mean(mean(redVid));
 MG = mean(mean(greenVid));
 MB = mean(mean(blueVid));
 S = 0.3; % Saturation value of a pixel;

 subplot(2, 4, 1); imshow(origVid); title('Original'); drawnow;

 subplot(2, 4, 2); imshow(ex_Red); title('Red Frame'); drawnow;

 subplot(2, 4, 3); imshow(ex_Green); title('Green Frame'); drawnow;

72

 subplot(2, 4, 4); imshow(ex_Blue); title('Blue Frame'); drawnow;

if MR > MG && MG > MB

if MR > 0.5 % Threshold

if S > (1 - MR) * 0.11 / 0.5

% Must examine here for saturation.
 subplot(2, 4, [5 8],'Visible','off');
 capsT = sprintf('FIRE DETECTED! PROCESSING..');
 cla;
 text(0,1, capsT);
 drawnow;

 hsvImage = rgb2hsv(videoFrame); %# Convert the image

to HSV space.
 satRed = hsvImage(:, :, 1); % Get saturation, red.
 SR = mean(mean(satRed)); % Get mean.

%S > (1 - R)ST/RT
 ST = (1 - MR) * 0.11 / 0.5;
 capsT = sprintf('RED SATURATION = %.2f \nSATURATION:

%.2f',SR, ST);
 text(0,0, sprintf(capsT));

% Determine the camera deviceID.
 imaqreset;
 infom = imaqhwinfo;
for k = 1:length(infom.InstalledAdaptors)
 info = imaqhwinfo(infom.InstalledAdaptors{k});
if ~isempty(info.DeviceIDs)
 Installedadaptor = infom.InstalledAdaptors{k};

break;
end
end

if ~exist('Installedadaptor', 'var')
 h = warndlg('Video camera not connected !','!! Warning

!!', 'replace');
 pause (5);
if ishandle(h), close (h); end; beep;

return;
end

 filenameprefix = 'FireAlertVideo'; % Filename prefix.
 adaptorname = Installedadaptor;
 deviceid = '1'; % The maximum should be the total number

of cameras connected.
 loopnumber = 0; % How many time the video is divided.

% The following sections takes video according to the time specified by

the user
 k = 1;
while 1

73

 my_log = [filenameprefix num2str(refnum) '.avi'];
 aviobj = VideoWriter(my_log, 'Motion JPEG AVI');

 vid = videoinput(adaptorname, deviceid,

'YUY2_320x240');
 vid.LoggingMode = 'disk&memory';
 vid.DiskLogger = aviobj;
 vid.TriggerRepeat = Inf;
 set(vid,'FramesPerTrigger', 1500)

 start(vid);
 close(vid.DiskLogger);
 flushdata(vid)
 pause (6)
 clear my_log;

 refnum = refnum + 1;
if k > loopnumber
 delete(vid);
 clear vid;
break;
end
end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG, MB);
 text(0,1, MeanRGB);

end

 subplot(2, 4, 1);

74

for object = 1:length(stats)
 bb = stats(object).BoundingBox;
 bc = stats(object).Centroid;
 rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
%plot(bc(1),bc(2), '-m+')
 a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), '

Y: ', num2str(round(bc(2)))));
 set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize',

12, 'Color', 'yellow');
 drawnow;
end

if frameCounts < 20

 frameCounts = frameCounts + 1;

else

 frameCounts = 0;
break;

end

 fwrite(arduino,angle3); %Write to arduino angle 90 degrees.
 pause(0.02)

 videoFrame = step(videoDevReader);
 origVid = videoFrame;

 redVid = videoFrame(:, :, 1);
 greenVid = videoFrame(:, :, 2);
 blueVid = videoFrame(:, :, 3);

 ex_Red = imsubtract(redVid, rgb2gray(videoFrame));

 ex_Red = medfilt2(ex_Red, [3 3]); % Use a median filter to filter

out noise

 ex_Red = im2bw(ex_Red,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Red = bwareaopen(ex_Red,300); % Remove all those pixels less

than 300px

 ex_Green = imsubtract(greenVid, rgb2gray(videoFrame));

 ex_Green = medfilt2(ex_Green, [3 3]); % Use a median filter to

filter out noise

 ex_Green = im2bw(ex_Green,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Green = bwareaopen(ex_Green,300); % Remove all those pixels

less than 300px

75

 ex_Blue = imsubtract(blueVid, rgb2gray(videoFrame));

 ex_Blue = medfilt2(ex_Blue, [3 3]); % Use a median filter to

filter out noise

 ex_Blue = im2bw(ex_Blue,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Blue = bwareaopen(ex_Blue,300); % Remove all those pixels less

than 300px

 bw = bwlabel(ex_Red, 8); % Label all the connected components in

the image.

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
 stats = regionprops(bw, 'BoundingBox', 'Centroid');

 MR = mean(mean(redVid));
 MG = mean(mean(greenVid));
 MB = mean(mean(blueVid));

 S = 0.3; % Saturation value of a pixel;

 subplot(2, 4, 1); imshow(origVid); title('Original'); drawnow;

 subplot(2, 4, 2); imshow(ex_Red); title('Red Frame'); drawnow;

 subplot(2, 4, 3); imshow(ex_Green); title('Green Frame'); drawnow;

 subplot(2, 4, 4); imshow(ex_Blue); title('Blue Frame'); drawnow;

if MR > MG && MG > MB

if MR > 0.5 % Threshold

if S > (1 - MR) * 0.11 / 0.5

% Must examine here for saturation.

 subplot(2, 4, [5 8],'Visible','off');
 capsT = sprintf('FIRE DETECTED! PROCESSING..');
 cla;
 text(0,1, capsT);
 drawnow;

 hsvImage = rgb2hsv(videoFrame); %# Convert the image

to HSV space.
 satRed = hsvImage(:, :, 1); % Get saturation, red.
 SR = mean(mean(satRed)); % Get mean.

%S > (1 - R)ST/RT
 ST = (1 - MR) * 0.11 / 0.5;

76

 capsT = sprintf('RED SATURATION = %.2f \nSATURATION:

%.2f',SR, ST);
 text(0,0, sprintf(capsT));

% Determine the camera deviceID.
 imaqreset;
 infom = imaqhwinfo;
for k = 1:length(infom.InstalledAdaptors)
 info = imaqhwinfo(infom.InstalledAdaptors{k});
if ~isempty(info.DeviceIDs)
 Installedadaptor = infom.InstalledAdaptors{k};
break;
end
end

if ~exist('Installedadaptor', 'var')
 h = warndlg('Video camera not connected !','!! Warning

!!', 'replace');
 pause (5);
if ishandle(h), close (h); end; beep;
return;
end

 filenameprefix = 'FireAlertVideo'; % Filename prefix.

 adaptorname = Installedadaptor;
 deviceid = '1'; % The maximum should be the total number

of cameras connected.
 loopnumber = 0; % How many time the video is divided.

% The following sections takes video according to the time specified by

the user
 k = 1;
while 1

 my_log = [filenameprefix num2str(refnum) '.avi'];
 aviobj = VideoWriter(my_log, 'Motion JPEG AVI');

 vid = videoinput(adaptorname, deviceid,

'YUY2_320x240');
 vid.LoggingMode = 'disk&memory';
 vid.DiskLogger = aviobj;
 vid.TriggerRepeat = Inf;
 set(vid,'FramesPerTrigger', 1500)

 start(vid);
 close(vid.DiskLogger);
 flushdata(vid)
 pause (6)
 clear my_log;

 refnum = refnum + 1;
if k > loopnumber
 delete(vid);
 clear vid;
break;
end

77

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG, MB);
 text(0,1, MeanRGB);

end

 subplot(2, 4, 1);

for object = 1:length(stats)
 bb = stats(object).BoundingBox;
 bc = stats(object).Centroid;
 rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
%plot(bc(1),bc(2), '-m+')
 a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), '

Y: ', num2str(round(bc(2)))));
 set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize',

12, 'Color', 'yellow');
 drawnow;
end

if frameCounts < 20

 frameCounts = frameCounts + 1;

else

 frameCounts = 0;
break;

end

78

 fwrite(arduino,angle2); %Write to arduino angle 45 degrees.
 pause(0.02)

 videoFrame = step(videoDevReader);
 origVid = videoFrame;

 redVid = videoFrame(:, :, 1);
 greenVid = videoFrame(:, :, 2);
 blueVid = videoFrame(:, :, 3);

 ex_Red = imsubtract(redVid, rgb2gray(videoFrame));

 ex_Red = medfilt2(ex_Red, [3 3]); % Use a median filter to filter

out noise

 ex_Red = im2bw(ex_Red,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Red = bwareaopen(ex_Red,300); % Remove all those pixels less

than 300px

 ex_Green = imsubtract(greenVid, rgb2gray(videoFrame));

 ex_Green = medfilt2(ex_Green, [3 3]); % Use a median filter to

filter out noise

 ex_Green = im2bw(ex_Green,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Green = bwareaopen(ex_Green,300); % Remove all those pixels

less than 300px

 ex_Blue = imsubtract(blueVid, rgb2gray(videoFrame));

 ex_Blue = medfilt2(ex_Blue, [3 3]); % Use a median filter to

filter out noise

 ex_Blue = im2bw(ex_Blue,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Blue = bwareaopen(ex_Blue,300); % Remove all those pixels less

than 300px

 bw = bwlabel(ex_Red, 8); % Label all the connected components in

the image.

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
 stats = regionprops(bw, 'BoundingBox', 'Centroid');

 MR = mean(mean(redVid));

79

 MG = mean(mean(greenVid));
 MB = mean(mean(blueVid));
 S = 0.3; % Saturation value of a pixel;

 subplot(2, 4, 1); imshow(origVid); title('Original'); drawnow;

 subplot(2, 4, 2); imshow(ex_Red); title('Red Frame'); drawnow;

 subplot(2, 4, 3); imshow(ex_Green); title('Green Frame'); drawnow;

 subplot(2, 4, 4); imshow(ex_Blue); title('Blue Frame'); drawnow;

if MR > MG && MG > MB

if MR > 0.5 % Threshold

if S > (1 - MR) * 0.11 / 0.5

% Must examine here for saturation.
 subplot(2, 4, [5 8],'Visible','off');
 capsT = sprintf('FIRE DETECTED! PROCESSING..');
 cla;
 text(0,1, capsT);

 drawnow;

 hsvImage = rgb2hsv(videoFrame); %# Convert the image

to HSV space.
 satRed = hsvImage(:, :, 1); % Get saturation, red.
 SR = mean(mean(satRed)); % Get mean.

%S > (1 - R)ST/RT
 ST = (1 - MR) * 0.11 / 0.5;

 capsT = sprintf('RED SATURATION = %.2f \nSATURATION:

%.2f',SR, ST);
 text(0,0, sprintf(capsT));

% Determine the camera deviceID.
 imaqreset;
 infom = imaqhwinfo;
for k = 1:length(infom.InstalledAdaptors)
 info = imaqhwinfo(infom.InstalledAdaptors{k});

if ~isempty(info.DeviceIDs)
 Installedadaptor = infom.InstalledAdaptors{k};
break;
end
end

if ~exist('Installedadaptor', 'var')
 h = warndlg('Video camera not connected !','!! Warning

!!', 'replace');
 pause (5);
if ishandle(h), close (h); end; beep;
return;
end

80

 filenameprefix = 'FireAlertVideo'; % Filename prefix.
 adaptorname = Installedadaptor;
 deviceid = '1'; % The maximum should be the total number

of cameras connected.
 loopnumber = 0; % How many time the video is divided.

% The following sections takes video according to the time specified by

the user
 k = 1;
while 1
 my_log = [filenameprefix num2str(refnum) '.avi'];
 aviobj = VideoWriter(my_log, 'Motion JPEG AVI');

 vid = videoinput(adaptorname, deviceid,

'YUY2_320x240');
 vid.LoggingMode = 'disk&memory';
 vid.DiskLogger = aviobj;
 vid.TriggerRepeat = Inf;
 set(vid,'FramesPerTrigger', 1500)

 start(vid);
 close(vid.DiskLogger);
 flushdata(vid)

 pause (6)
 clear my_log;

 refnum = refnum + 1;
if k > loopnumber
 delete(vid);
 clear vid;
break;
end

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);

 text(0,1, MeanRGB);

end

81

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG, MB);
 text(0,1, MeanRGB);

end

 subplot(2, 4, 1);
for object = 1:length(stats)
 bb = stats(object).BoundingBox;
 bc = stats(object).Centroid;
 rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
%plot(bc(1),bc(2), '-m+')
 a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), '

Y: ', num2str(round(bc(2)))));
 set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize',

12, 'Color', 'yellow');
 drawnow;
end

if frameCounts < 20

 frameCounts = frameCounts + 1;

else

 frameCounts = 0;
break;

end

 fwrite(arduino,angle1); %Write to arduino angle 0 degrees.
 pause(0.02)

 videoFrame = step(videoDevReader);
 origVid = videoFrame;

 redVid = videoFrame(:, :, 1);

 greenVid = videoFrame(:, :, 2);
 blueVid = videoFrame(:, :, 3);

 ex_Red = imsubtract(redVid, rgb2gray(videoFrame));

 ex_Red = medfilt2(ex_Red, [3 3]); % Use a median filter to filter

out noise

 ex_Red = im2bw(ex_Red,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Red = bwareaopen(ex_Red,300); % Remove all those pixels less

than 300px

82

 ex_Green = imsubtract(greenVid, rgb2gray(videoFrame));

 ex_Green = medfilt2(ex_Green, [3 3]); % Use a median filter to

filter out noise

 ex_Green = im2bw(ex_Green,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Green = bwareaopen(ex_Green,300); % Remove all those pixels

less than 300px

 ex_Blue = imsubtract(blueVid, rgb2gray(videoFrame));

 ex_Blue = medfilt2(ex_Blue, [3 3]); % Use a median filter to

filter out noise

 ex_Blue = im2bw(ex_Blue,0.18); % Convert the resulting grayscale

image into a binary image.

 ex_Blue = bwareaopen(ex_Blue,300); % Remove all those pixels less

than 300px

 bw = bwlabel(ex_Red, 8); % Label all the connected components in

the image.

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
 stats = regionprops(bw, 'BoundingBox', 'Centroid');

 MR = mean(mean(redVid));

 MG = mean(mean(greenVid));
 MB = mean(mean(blueVid));
 S = 0.3; % Saturation value of a pixel;

 subplot(2, 4, 1); imshow(origVid); title('Original'); drawnow;

 subplot(2, 4, 2); imshow(ex_Red); title('Red Frame'); drawnow;

 subplot(2, 4, 3); imshow(ex_Green); title('Green Frame'); drawnow;

 subplot(2, 4, 4); imshow(ex_Blue); title('Blue Frame'); drawnow;

if MR > MG && MG > MB

if MR > 0.5 % Threshold

if S > (1 - MR) * 0.11 / 0.5

% Must examine here for saturation.
 subplot(2, 4, [5 8],'Visible','off');
 capsT = sprintf('FIRE DETECTED! PROCESSING..');

83

 cla;
 text(0,1, capsT);
 drawnow;

 hsvImage = rgb2hsv(videoFrame); %# Convert the image

to HSV space.
 satRed = hsvImage(:, :, 1); % Get saturation, red.
 SR = mean(mean(satRed)); % Get mean.

%S > (1 - R)ST/RT
 ST = (1 - MR) * 0.11 / 0.5;
 capsT = sprintf('RED SATURATION = %.2f \nSATURATION:

%.2f',SR, ST);
 text(0,0, sprintf(capsT));

% Determine the camera deviceID.
 imaqreset;
 infom = imaqhwinfo;
for k = 1:length(infom.InstalledAdaptors)
 info = imaqhwinfo(infom.InstalledAdaptors{k});
if ~isempty(info.DeviceIDs)
 Installedadaptor = infom.InstalledAdaptors{k};
break;
end

end

if ~exist('Installedadaptor', 'var')
 h = warndlg('Video camera not connected !','!! Warning

!!', 'replace');
 pause (5);
if ishandle(h), close (h); end; beep;
return;
end

 filenameprefix = 'FireAlertVideo'; % Filename prefix.
 adaptorname = Installedadaptor;
 deviceid = '1'; % The maximum should be the total number

of cameras connected.
 loopnumber = 0; % How many time the video is divided.

% The following sections takes video according to the time specified by

the user

 k = 1;
while 1
 my_log = [filenameprefix num2str(refnum) '.avi'];
 aviobj = VideoWriter(my_log, 'Motion JPEG AVI');

 vid = videoinput(adaptorname, deviceid,

'YUY2_320x240');
 vid.LoggingMode = 'disk&memory';
 vid.DiskLogger = aviobj;
 vid.TriggerRepeat = Inf;
 set(vid,'FramesPerTrigger', 1500)

 start(vid);

84

 close(vid.DiskLogger);
 flushdata(vid)
 pause (6)
 clear my_log;

 refnum = refnum + 1;
if k > loopnumber
 delete(vid);
 clear vid;
break;
end
end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG,

MB);
 text(0,1, MeanRGB);

end

else

 subplot(2, 4, [5 8],'Visible','off');
 cla;
 MeanRGB = sprintf('R = %.2f G = %.2f B = %.2f',MR, MG, MB);
 text(0,1, MeanRGB);

end

 subplot(2, 4, 1);
for object = 1:length(stats)
 bb = stats(object).BoundingBox;
 bc = stats(object).Centroid;
 rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
%plot(bc(1),bc(2), '-m+')
 a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), '

Y: ', num2str(round(bc(2)))));
 set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize',

12, 'Color', 'yellow');
 drawnow;
end

85

if frameCounts < 20

 frameCounts = frameCounts + 1;

else

 frameCounts = 0;
break;

end

end

end

disp('Program End.') % Message sent to command window.

return

