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Copyright Notice and Proprietary Information

Copyright © 1996, 1997, 1998, 1999 Robert Bosch GmbH. All rights reserved. This software anc
manual are owned by Robert Bosch GmbH, and may be used only as authorized in the license agreem
controlling such use. No part of this publication may be reproduced, transmitted, or translated, in an
form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior writter
permission of Robert Bosch GmbH, or as expressly provided by the license agreement.

Disclaimer

ROBERT BOSCH GMBH, MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

ROBERT BOSCH GMBH, RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO THE PRODUCTS DESCRIBED HEREIN. ROBERT BOSCH GMBH DOES NOT
ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN.
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Conventions
The following conventions are used in this User's Manual:

COURIER BOLD Names of entities, architectures, configurations, processes, functions,
types, signals, and variables

courier bold File names, shell commands

<courier bold> Should be replaced by a specific name

Naming conventions used with the figures:

E = <name of entity>

P = <name of process>

A = <name of architecture>
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1 Introduction

The VHDL Reference CAN Model is intended for semiconductor designers/manufacturers who want t
build their own implementation of a CAN device using VHDL as hardware description language. It is
provided in addition to the existing C Reference CAN Model.

The user of this model is expected to be familiar with the CAN Specification Revision 2.0 Part A and B.
The model is supplied together with a testbench supporting the following features:

» CAN Protocol Version 2.0 Part A, B

* Flexible testbench environment

» Simulates entire CAN bus system (number of nodes defined by user)

» Easy inclusion of user-defined implementations

» Test program set can be extended by user

* Run time information stored in trace files

» Generation of pattern files supported

The following support is provided to assist the user in working with the model and in understanding its
functionality:

* Detailed User Manual

» Example of a correct implementation for fast start-up

» Example of a buggy implementation for the demonstration of the testbench’s functionality
* Well documented source code

This model was developed and verified with Synopsys VSS v3.4b, Mentor Graphics QuickHDL
v8.5_4.6f and with Mentor Graphics ModelSim 5.2b. A portation to other VHDL Simulators will require
an adaption of the ‘make’ files.

Typically a CAN implementation consists of three major parts:
* Interface to the CPU

» CAN Protocol Controller

* Message Memory

Using the test programs supplied with this VHDL Reference CAN Model only assures the conformity of
the CAN Protocol Controller part of an implementation with CAN Protocol Version 2.0 Part A, B. In
order to verify the correct function of the CPU interface and of the message memory, the user has to wri
additional test programs.
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2 Installation

To install the VHDL Reference CAN Model from the CD-ROM please proceed the following way:

1) Create a directory where you want to install the database by typing:
mkdir <path_to_model>/Bosch_CAN
Example: mkdir /projects/Bosch_CAN

2) Copy the TAR fileRefCAN_Revision_2.2.tarto this directory.

3) Untar the database:
tar xvf RefCAN_Revision_2.2.tar

4) Define the environment variaB®SCH_CAN_ROY typing:
setenv BOSCH_CAN_ROOT <path_to_model>/Bosch_CAN

The setting of the environment variabBOSCH_CAN_ROOghould be done by your project setup
procedure. Please check also that your VHDL simulator is set up correctly before proceeding.

Please checREADME_RefCAN.txt in your Bosch_CAN directory for additional information about
your release of the VHDL Reference CAN model.

In appendix A-1 of this document you find a list of the files and directories together with a short
description.

The VHDL Reference CAN model was developed and tested on a Sun workstation running Solaris 2.
If you have another hardware or operating system please contact your system manager or check
documentation of your hardware/operating system. Up to now, the model is available for UNIX system
only.

Simulations were done with Synopsys VSS v3.4b, Mentor Graphics QuickHDL v8.5_4.6f and Mentol
Graphics ModelSim 5.2b.

BOSCH -9 K8/EIS
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3 Compilation and Simulation

If you have an installation of the Synopsys VSS Simulator, you can now go on with the following
commands:

cd $BOSCH_CAN_ROOT/simulate
genmake SYNOPSYS

If you have an installation of the Mentor Graphics QuickHDL Simulator proceed with the following
commands:

cd $BOSCH_CAN_ROOT/simulate
genmake MG_QuickHDL

Otherwise, if you have an installation of the Mentor Graphics ModelSim Simulator proceed with the
following commands:

cd $BOSCH_CAN_ROOT/simulate
genmake MG_ModelSim

The shell scripggenmake will generate theviakefile and setup files for the specified simulator in the
Bosch_CAN/simulate  directory. Itis used by ‘make’ to analyse the complete model. In addition to the
Makefile  you will find files calledDepends in the subdirectoriegeference , implementation
example , buggy, tests , andtests/* . They list the dependencies of the files in these directories
and are included into thdakefile . You are now ready to run the simulations.

If you have other VHDL Simulators than Synopsys VSS, Mentor QuickHDL or Mentor ModelSim, you
can adapt the scripgenmake to your simulation environment or you can modify the files

Makefile.<tool> andDepends.<tool>  which are distributed with this model. Additionally, you
have to provide a setup file for your simulator likeynopsys_vss_setup , quickhdL.ini or
modelsim.ini

If you want to adapgenmake to another VHDL simulator, proceed the following way:

* Open thegenmake file and copy the case statement for one of the supported simulators
and modify it to fit your simulator :

» Adapt the functions which translate the names of the compiled files to generate the names followin
the rules used by your simulator.

» Adapt the command line entries used by ‘make’ to start compilation and simulation.
» Set the path for your simulatoiGAN_LIBRARYto $BOSCH_CAN_ROOT/objects.

* Add a setup file for the compiler and the simulatd8B®SCH_CAN_ROOT/simulate/ .

» Add a simulation control file t§BOSCH_CAN_ROOT/simulate/ .

To compile the model, please change into direc&BPSCH_CAN_ROOT/simulate/ and typemake
all . This will cause the VHDL analyzer to compile the source code of the model using the information
from the files generated lmyenmake.

The files of compiled model can be found in the direc88®SCH_CAN_ROOT/objects.
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3.1  Starting the Simulation

Change to the directol$BOSCH_CAN_ROOT/simulate . The simulation is started by typimgake with

a specific target. The target defines the desired test program(s) to be simulated and the name of the C,
Protocol Controller configuration to be verified. TMakefile  supports three configuration names:
implementation , example , andbuggy .

The following functions can be performed fogke:

make clean delete all binaries generated by previous runs of the VHDL analyzer
make alll analyze the complete model

make <test> run the test program specified test> , linked withimplementation
make <test> e run the test program specified byest> |, linked withexample

make <test> b run the test program specified byest> |, linked withbuggy

make traces run the complete set of tests, linked witiplementation

make traces_e run the complete set of tests, linked watample

make traces b run the complete set of tests, linked witlygy

After the simulation of progranxtest> there will be a file <test> .trace in the directory
$BOSCH_CAN_ROOT/tests/<test> . This file contains the complete trace information of the
simulation run. It can be regarded as protocol and documentation of the simulation. To check wheth
the installation of the model and the setup of the simulator are correct, compare thedfite . trace ,

which is generated by the simulation, with the flest> . trace.sav , which is distributed with the
model.

The two files have to be, with one restriction, identical. The files may not be absolutely identical becaus
in any VHDL simulation, when several processes are triggered by the same event, the sequence
evaluation is not predictable. For this reason the sequence of trace statements with the same time ste
may be different when simulated with different simulation-software or -hardware. The comparison o
two trace files generated by different tools can be automated when the lines of both trace files are sort
alphabetically. The filestest> . trace.sav  have been generated by the tool Synopsys VSS v3.4b.

3.1.1 Simulating the User's Implementation
To start the simulation of a single test for a user’s implementation model (e.g. test baudrate) type:

make baudrate

If you are simulating with Synopsys VSS, and if the simulation runs without a problem, you will see the
following messages on the screen:

vhdlsim -nc -i $BOSCH_CAN_ROOT/simulate/synopsys_sim.inc \
CAN_LIBRARY .cfg_baudrate ;

VSS_GATE_MODEL=sim_gs - for gate level simulation
"Set stop on FAILURE"

"Start simulation”

955680 NS

Assertion NOTE at 955680 NS in design unit CHECKER(BEHAVIOUR) from process \
/PROTOCOL_TESTBENCH/SYSTEM/CHECK1/PROTOCOL_CHECK/COMPARE_RX_MESSAGE:

"Received Message checked ok"
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1447710 NS

Assertion NOTE at 1447710 NS in design unit CHECKER(BEHAVIOUR) from process \
/PROTOCOL_TESTBENCH/SYSTEM/CHECK1/PROTOCOL_CHECK/COMPARE_RX_MESSAGE:

"Received Message checked ok"
3285128 NS

Assertion FAILURE at 3285128 NS in design unit TEST _PROGRAM(BAUDRATE) from \
process /PROTOCOL_TESTBENCH/WAVEFORM/STIMULI:

"End of Test Program reached: Stop Simulation !"
"Quit simulator"
mv -f trace $BOSCH_CAN_ROOT/tests/baudrate/baudrate.trace ;
if [ -s patter n ] ; then mv -f pattern $BOSCH_CAN_ROOT/tests/baudrate/. ; fi ;

The last statement of the test program is an assertion with a certain FAILURE to terminate the simulatic
because this is the only way to stop a simulation that was not started with an explicit run time.

The user’s implementation model which is used here is a copy of the CAN reference model.

3.1.2  Simulating the Example of an Implementation

The example of an implementation was designed to show the user of this VHDL Reference CAN modke
how to include his own implementation model into the protocol testbench. To run the simulation of &
single test for the example of an implementation model (e.g. test crc) type:

make crc_e

The trace information of this simulation run is located inditee_trace

3.1.3  Simulating the Example of a Buggy Implementation

The example of a buggy implementation is identical to example of an implementation with the differenc
that some faults were inserted in the CAN protocol controller part. This buggy version of a CAN
implementation demonstrates how CAN protocol error are detected.

To run the simulation of the example of a buggy implementation model (e.qg. test btl) type:
make btl_b
During the simulation there will appear some messages on the screen like the one below:

3493250 NS

Assertion ERROR at 3493250 NS in design unit CHECKER(BEHAVIOUR) \
from process /PROTOCOL_TESTBENCH/SYSTEM/CHECK1/PROTOCOL_CHECK/CMP_RX:

“Protocol Error: Invalid BUSMON”

These messages will give you a hint where the problem may be located. The trace information of tf
simulation run can be found in filel.b_trace
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3.2  Test programs

The CAN protocol test programs check the behaviour of a CAN implementation by comparing them witt
the behaviour of the Reference CAN Model node. Their purpose is to check whether the CAN protocc
is correctly implemented in the model of the implementation, they are by no means a production tes
The programs are not adapted to a specific implementati@ success of this test patterns is a
necessary, not a sufficient condition for the assessment of the implementatidn.the following the
different waveforms are listed in alphabetical order and described in detail.

3.2.1 Dbaudrate
Test of Prescaler and Oscillator Tolerance

NUMBER_OF CANS3
Bit Timing: Different Bit Timing for each Node

This architecture uses a system configuration with three CAN nodes. The first CAN node consists of or
implementation CAN model and one Reference CAN Model node working in parallel, the other two
nodes consist of Reference CAN Model nodes. Each node gets a different timing configuratior
depending on different clock periods. The resulting minimum and maximum bit time are in an area o
1.7% around the average bit time. In three cycles, the three nodes start the transmission of a message
the first cycle, the third node wins the arbitration, in the second cycle, the second node, and in the thil
cycle, the first node wins the arbitration. As additional handicap, the messages transmitted are desigr
to contain a maximum of stuff bits, reducing the number of edges that can be used for resynchronisatic
Those nodes losing arbitration do that immediately next to a stuff bit.

After the last transmission, when the bus is idle, the position of the sample point in the scaled bit time |
checked by applying a spike to dominant at RECEIVE_DATAInputs of the implementation CAN
model and of the Reference CAN Model node which is running in parallel to the implementation.

As long as the spike is not longer than the sum of Propagation Delay Segment and Phase Buff
Segment 1, the dominant bus level is not sampled. Note: Even if the spike is not sampled, it is used f
synchronisation.

3.2.2 biterror
Confinement of Bit Errors

NUMBER_OF_CANS 2
Bit Timing:  CLOCK_PERIODB= 100 nSPRESCALER: 1,
NTQ= 10,SAMPLE= 6, RESYCHRONIZATION_JUMP_WIDT4

Transmitters and receivers get bit errors at dominant bits in all fields and all frames, transmitters get
errors at recessive bits in the Control, Data, and CRC Field. Tested while Error Active and Error Passiv

The program consists of the following test steps:
Test of receiver

1) Recessive bit at ACK Slot, recessive bit at first bit of Active Error Flag.
A dominant ACK bit is forced to recessive. The receiver detects a bit error and sends an Active Errc
Flag. The receive error counter is increased by 1.
The first bit of the Receiver Error Flag is forced to recessive. The receiver detects a bit error an:
starts sending an Active Error Flag again. The receive error counter is increased by 8.
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2)

3)

4)

5)

6)

7)

8)

9)

Recessive bit at last bit of Active Error Flag.
The last bit of an Active Error Flag is forced to recessive. The receiver detects a bit error and star
sending an Active Error Flag again. The receive error counter is increased by 8.

Dominant bit at first bit of Intermission, recessive bit at first bit of Overload Flag.

The first bit of Intermission is forced to dominant to create an Overload Flag. Then the first bit of
this Overload Flag is forced to recessive. The receiver detects a bit error and sends an Active Err
Flag. The receive error counter is increased by 8.

Dominant bit at first bit of Intermission, recessive bit at last bit of Overload Flag.

The first bit of Intermission is forced to dominant to create an Overload Flag. Then the last bit of
this Overload Flag is forced to recessive. The receiver detects a bit error and sends an Active Err
Flag. The receive error counter is increased by 8.

Create Active Error Flags until receiver is Error Passive.

When sending an Active Error Flag tRECEIVE_DATAInput of the receiver is forced to recessive
for 11 bittimes. The receiver detects bit errors at every bit and starts Active Error Flags. With every
bit error the receive error counter is increased by 8. Then the last Active Error Flag is sent and th
receiver becomes Error Passive, but it continues sending the Active Error Flag.

Recessive bit at ACK Slot, dominant bit at first bit of Passive Error Flag.

A dominant ACK bit is forced to recessive. The receiver detects a bit error and sends a Passive Err
Flag. The receive error counter is increased by 1.

The first bit of the passive Receiver Error Flag is forced to dominant. The receiver detects a bit errc
and starts sending a Passive Error Flag again. The receive error counter is not changed.

Dominant bit at last bit of Passive Error Flag.
The last bit of a Passive Error Flag is forced to dominant. The receiver detects a bit error and star
sending a Passive Error Flag again. The receive error counter is not changed.

Dominant bit at first bit of Intermission, recessive bit at first bit of Overload Flag.

The first bit of Intermission is forced to dominant to create an Overload Flag. Then the first bit of
this Overload Flag is forced to recessive. The receiver detects a bit error and sends a Passive Er
Flag. The receive error counter is not changed.

Dominant bit at first bit of Intermission, recessive bit at last bit of Overload Flag.

The first bit of Intermission is forced to dominant to create an Overload Flag. Then the last bit of
this Overload Flag is forced to recessive. The receiver detects a bit error and sends a Passive Er
Flag. The receive error counter is not changed.

Test of transmitter

1)

2)

3)

Recessive bit at Start of Frame.
The dominant Start of Frame bit is forced to recessive. The transmitter detects a bit error and sen
an Active Error Flag. The transmit error counter is increased by 8.

Recessive bit at reserved bit, recessive bit at first bit of Active Error Flag.

A dominant reserved bitis forced to recessive. The transmitter detects a bit error and sends an Acti
Error Flag. The transmit error counter is increased by 8.

The first bit of the Transmitter Error Flag is forced to recessive. The transmitter detects a bit erro
and starts sending an Active Error Flag again. The transmit error counter is increased by 8.

Recessive bit at last bit of Active Error Flag.
The last bit of an Active Error Flag is forced to recessive. The transmitter detects a bit error ant
starts sending an Active Error Flag again. The transmit error counter is increased by 8.
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4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

Dominant bit at first bit of Intermission, recessive bit at first bit of Overload Flag.

The first bit of Intermission is forced to dominant to create an Overload Flag. Then the first bit of
this Overload Flag is forced to recessive. The transmitter detects a bit error and sends an Acti\
Error Flag. The transmit error counter is increased by 8.

Dominant bit at first bit of Intermission, recessive bit at last bit of Overload Flag.

The first bit of Intermission is forced to dominant to create an Overload Flag. Then the last bit of
this Overload Flag is forced to recessive. The transmitter detects a bit error and sends an Acti\
Error Flag. The transmit error counter is increased by 8.

Dominant bit at first bit of Data Length Code.
A recessive bit of Data Length Code is forced to dominant. The transmitter detects a bit error an
sends an Active Error Flag. The transmit error counter is increased by 8.

Recessive bit at last bit of Data Length Code.
A dominant bit of Data Length Code is forced to recessive. The transmitter detects a bit error an
sends an Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at first bit of Data Field.
A recessive bit of Data Field is forced to dominant. The transmitter detects a bit error and sends ¢
Active Error Flag. The transmit error counter is increased by 8.

Recessive bit at 8th bit of Data Field.
A dominant bit of Data Field is forced to recessive. The transmitter detects a bit error and sends ¢
Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at first bit of CRC Field.
A recessive bit of CRC Field is forced to dominant. The transmitter detects a bit error and sends &
Active Error Flag. The transmit error counter is increased by 8.

Recessive bit at last bit of CRC Field.
A dominant bit of CRC Field is forced to recessive. The transmitter detects a bit error and sends &
Active Error Flag. The transmit error counter is increased by 8.

Create Active Error Flags until transmitter is Error Passive.

When sending an Active Error Flag ttRECEIVE_DATAInput of the transmitter is forced to
recessive for 3 bit times. The transmitter detects bit errors at every bit and starts Active Error Flags
With every bit error the transmit error counter is increased by 8. Then the last Active Error Flag is
sent and the transmitter becomes Error Passive, but it continues sending the Active Error Flag.

Recessive bit at Start of Frame.
The dominant Start of Frame bit is forced to recessive. The transmitter detects a bit error and sen
a Passive Error Flag. The transmit error counter is increased by 8.

Recessive bit at reserved bit, dominant bit at first bit of Passive Error Flag.

A dominant reserved bit is forced to recessive. The transmitter detects a bit error and sends a Pass
Error Flag. The transmit error counter is increased by 8.

The first bit of the passive Transmitter Error Flag is forced to dominant. The transmitter detects :
bit error and starts sending a Passive Error Flag again. The transmit error counter is not change

Dominant bit at last bit of Passive Error Flag.
The last bit of a Passive Error Flag is forced to dominant. The transmitter detects a bit error and star
sending a Passive Error Flag again. The receive error counter is not changed.
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16)

17)

18)

19)

20)

21)

22)

23)

Dominant bit at first bit of Intermission, recessive bit at first bit of Overload Flag.

The first bit of Intermission is forced to dominant to create an Overload Flag. Then the first bit of
this Overload Flag is forced to recessive. The transmitter detects a bit error and sends a Passive Er
Flag. The transmit error counter is increased by 8.

Dominant bit at first bit of Intermission, recessive bit at last bit of Overload Flag.

The first bit of Intermission is forced to dominant to create an Overload Flag. Then the last bit of
this Overload Flag is forced to recessive. The transmitter detects a bit error and sends a Passive Er
Flag. The transmit error counter is increased by 8.

Dominant bit at first bit of Data Length Code.
A recessive bit of Data Length Code is forced to dominant. The transmitter detects a bit error an
sends a Passive Error Flag. The transmit error counter is increased by 8.

Recessive bit at last bit of Data Length Code.
A dominant bit of Data Length Code is forced to recessive. The transmitter detects a bit error an
sends a Passive Error Flag. The transmit error counter is increased by 8.

Dominant bit at first bit of Data Field.
A recessive bit of Data Field is forced to dominant. The transmitter detects a bit error and sends
Passive Error Flag. The transmit error counter is increased by 8.

Recessive bit at 8th bit of Data Field.
A dominant bit of Data Field is forced to recessive. The transmitter detects a bit error and sends
Passive Error Flag. The transmit error counter is increased by 8.

Dominant bit at first bit of CRC Field.
A recessive bit of CRC Field is forced to dominant. The transmitter detects a bit error and sends
Passive Error Flag. The transmit error counter is increased by 8.

Recessive bit at last bit of CRC Field.
A dominant bit of CRC Field is forced to recessive. The transmitter detects a bit error and sends
Passive Error Flag. The transmit error counter is increased by 8.

3.2.3 bt
Bit Timing

NUMBER_OF_CANS1

Bit Timing: CLOCK_PERIOD- 100 nSPRESCALER- 1,

To test Hard Synchronization and Resynchronization, an edge from recessive to dominant is generai
for each time quanta of a bit time. The case of an edge immediately before the sample point is exclude

The program runs three configurations of the bit timing:

1) Large Phase Buffer, Large Synchronization Jump Width

NTQ= 10,SAMPLE= 6,RESYCHRONIZATION_JUMP_WIDDH#4

2) Large Phase Buffer, Small Synchronization Jump Width

NTQ= 25,SAMPLE= 17,RESYCHRONIZATION_JUMP_WIDDFH1

3) Small Phase Buffer, Small Synchronization Jump Width

NTQ= 10,SAMPLE= 8,RESYCHRONIZATION_JUMP_WIDDFH1
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With each configuration of the bit timing the following tests are performed:

a) Hard SynchronizatiomX_DATA= Recessive, not Transmitter, not Receiver

b) ResychronizationfX_DATA= Recessive, Receiver

c) Resychronization;X_DATA= Dominant, Receiver

d) Resychronization;X_DATA= Dominant, Transmitter

e) Resychronizatio;X_DATA= Recessive, Transmitter

f) Hard SynchronizationTX_DATA= Dominant, Transmitter

Note: The edges from recessive to dominant onRE€EIVE_DATAInput which are used for Hard
Synchronization and Resynchronization appear with the falling edgéM#_QUANTA_CLOCMhile
synchronization is started with the rising edg@IME_QUANTA_CLOCK

3.24 crc
Cyclic Redundancy Check and Acknowledge

NUMBER_OF_CANS 2

Bit Timing: CLOCK_PERIODB- 100 nSPRESCALER- 1,

NTQ= 10,SAMPLE= 6,RESYCHRONIZATION_JUMP_WIDTH4

Test of receiver’s error detection in case of Bit Error in the Data Field and in the CRC Field and test o
the transmitter’s reaction on acknowledge errors.

The program consists of the following test steps:

Test of receiver

1)

2)

Recessive bit at reserved bit r0.

The dominant bit at rO is forced to recessive. The receiver detects a CRC error, sends a recess
ACK bit and an Active Error Flag after the ACK Delimiter. The receive error counter is increased
by 1.

Dominant bit at the 2nd bit of CRC Field.

The recessive bit of CRC Field is forced to dominant. The receiver detects a CRC error, sends
recessive ACK bit and an Active Error Flag after the ACK Delimiter. The receive error counter is
increased by 1. The receiver detects a dominant bit after sending its Error Flag and increases its er
counter by 8.

Test of transmitter

1)

2)

Recessive bit at ACK SIGRECEIVE_DATAInput of RefCAN2 is forced to recessive.

The bus state of RefCANZ2 is idle, because REBCEIVE_DATAInput is forced to recessive. The
transmitter (RefCAN1) detects an ACK error and sends an Active Error Flag. The transmit errol
counter is increased by 8.

Recessive bits after 2nd bit of Active Error Flag until transmitter is Error Passis@EIVE_DATA

input of RefCANZ2 is forced to recessive.

During sending an Active Error Flag tHRECEIVE_DATAInput of the transmitter is forced to
recessive for 14 bit times. The transmitter detects bit errors at every bit and starts Active Error Flag:
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3)

4)

5)

6)

7

8)

With every bit error the transmit error counter is increased by 8. Then the last Active Error Flag is
sent and the transmitter becomes Error Passive (TEN 120 -> 128), but it continues sending tt
Active Error Flag.

Recessive bit at ACK Slot, no dominant bit during Passive Error R&§,EIVE_DATAInput of
RefCAN?2 is forced to recessive.

The bus state of RefCANZ2 is idle, because REBCEIVE_DATAInput is forced to recessive. The
transmitter (RefCAN1) detects an ACK error and sends a Passive Error Flag. During the Passi\
Error Flag no dominant bit appears on the bus. The transmit error counter is not changed.

Transmitting a frame successful, transmitter is Error Active.
The transmitter transmits a frame without errors. The transmit error counter is decreased by 1
(TEC = 127).

Recessive bit at 2nd bit of Identifier.
The dominant bit of Identifier is forced to recessive. The transmitter detects a bit error and sends ¢
Active Error Flag. The transmit error counter is increased by 8. Transmitter is Error Passive.

Recessive bit at ACK Slot, dominant bits after Passive Error AREGEIVE_DATAiInput of
RefCANZ2 is forced to recessive.

The bus state of RefCAN2 is Idle, because RECEIVE_DATAInput is forced to recessive. The
transmitter (RefCAN1) detects an ACK error and sends a Passive Error Flag. During the Passi\
Error Flag no dominant bit appears on the bus. The transmit error counter is not changed. Afte
Passive Error Flag theECEIVE_DATAInput of RefCANL is forced to dominant for 113 bit times.
The transmitter detects form errors at every 8th bit and increases its error counter by 8 (TEC = 247

Recessive bit at ACK Slot, dominant bit at the 2nd bit of Passive Error RRQEIVE_DATAInput

of RefCAN2 is forced to recessive.

The bus state of RefCAN2 is Idle, because RECEIVE_DATAInput is forced to recessive. The
transmitter (RefCAN1) detects an ACK error and sends a Passive Error Flag. During the Passi\
Error Flag a dominant bit appears on the bus. The transmit error counter is increased by 8

(TEC = 255).

Recessive bit at ACK Slot, dominant bit at the 6th bit of Passive Error RBGEIVE_DATAInput

of RefCAN2 is forced to recessive.

The bus state of RefCANZ2 is Idle, because RECEIVE_DATAInput is forced to recessive. The
transmitter (RefCAN1) detects an ACK error and sends a Passive Error Flag. During the Passi\
Error Flag a dominant bit appears on the bus. The transmit error counter is increased by 8

(TEC = 263) and the transmitter becomes Bus Off.

3.25 dlc
Data Field Length

NUMBER_OF_CANS 2

Bit Timing: CLOCK_PERIOD- 100 nSPRESCALER- 1,

NTQ= 10,SAMPLE= 6,RESYCHRONIZATION_JUMP_WIDTH4

Reception and transmission of messages with all possible (0 ... 15!) Data Length Codes as Data and
Remote Frames. In the first part of the test, the receiver (RefCAN1) receives all 32 messages. In t
second part, the transmitter (RefCAN1) transmits all 32 messages.
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3.2.6 emlcount

Function of Error Management Logic, -Counters, and -States

NUMBER_OF_CANS 2

Bit Timing: CLOCK_PERIOD- 100 nSPRESCALER- 1,

NTQ= 10,SAMPLE= 6,RESYCHRONIZATION_JUMP_WIDTH2

Receive and transmit error counters are incremented and decremented around the Error Warning Lin
the Error Passive Limit and the Bus Off Limit. The fault confinement in case of stuck-at-dominant after
sending an Error Flag is tested.

The program consists of the following test steps:

Test of receiver

1)

2)

3)

4)

5)

6)

7)

Stuff error at stuff bit after 4th bit of Identifier.

A recessive stuff bit is forced to dominant. The receiver detects a stuff error and sends an Activ
Error Flag. The receive error counter is increased by 1. The receiver detects dominant bits afte
sending its Error Flag and increases its error counter by 8.

Dominant bit at CRC Delimiter, some resynchronisations.

The recessive CRC Delimiter bit is forced to dominant. The receiver detects a form error and senc
an Active Error Flag. The receive error counter is increased by 1. The receiver detects dominant bi
after sending its Error Flag and increases its error counter by 8. While waiting for the CRC
Delimiter, some resynchronisations are tested by generating positive and negative phase errors
edges from recessive to dominant.

Recessive bit at ACK Slot.

The dominant ACK bit is forced to recessive. The receiver detects a bit error and sends an Activ
Error Flag. The receive error counter is increased by 1. The receiver detects dominant bits afte
sending its Error Flag and increases its error counter by 8.

Dominant bit at last bit of End of Frame, 7 dominant bits after Overload Flag.

The recessive bit of End of Frame is forced to dominant. REEEIVE_DATAinput is forced to
dominant for another 13 bits. The receiver detects an overload condition and sends an Overlo:
Frame. After sending the Overload Frame the receiver detects 7 dominant bits before sending tl
Overload Delimiter. The receive error counter is not changed.

Dominant bit at last bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The receiver starts sending at
Overload Flag. The receive error counter is not changed.

Recessive bit at first bit of Overload Flag, recessive bit at Active Error Flag, increment the REC tc
106. The dominant Overload Flag is forced to recessive. The receiver detects a bit error and sen
an Active Error Flag. The receive error counter is increased by 8. Some bits of the following Active
Error Flags are forced to recessive, therefore the Error Flags start again and increases the rece
error counter by 8.

Wait until Intermission and receive new frame, REC=105.
The receiver waits for the last bit of Intermission and receives a new frame successful. The recei\
error counter is decreased by 1.
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8) Wait until Intermission and receive new frame, REC=104.
The receiver walits for the last bit of Intermission and receives a new frame successful. The recei\
error counter is decreased by 1.

9) Wait until Intermission and receive new frame, REC=103.
The receiver waits for the last bit of Intermission and receives a new frame successful. The recei\
error counter is decreased by 1.

10) Dominant bit at last bit of End of Frame, 4 * 8 dominant bits after Overload Flag.
The recessive bit of End of Frame is forced to dominant. REEEIVE_DATAInput is forced to
dominant for another 38 bits. The receiver detects a form error and sends an Overload Flag. Aft
sending the Overload Flag the receiver detects 8 dominant bits and increases its error counter by
After each sequence of additional eight consecutive dominant bits the receive error counter |
increased by 8. Receiver is now Error Passive.

11) Dominant bit at the 3rd bit of Overload Delimiter, 8 * 2 dominant bits after Passive Error Flag.
A recessive bit of Overload Delimiter is forced to dominant. The receiver detects a form error anc
sends a Passive Error Flag. The receive error counter is increased by 1 and its now equal to 1:
Then the next 16 bit after the Error Flag are forced to dominant. The receiver continues sendin
Passive Error Flag. After each sequence of eight consecutive dominant bits normally the recei\
error counter is increased by eight, however the counter is equal to 136 and not increased.

12) Receive correct frame, REC ~ [119 ... 127].
The receiver waits for the last bit of Intermission and receives a new frame.

13) Wait until End of Frame, node Error Active again.
After the successful reception the receive error counter is decremented. The receiver is now Err:
Active.

14) Receive correct frame, REC = REC - 1.
After the successful reception the receive error counter is decreased by 1.

15) Dominant bit at the first bit of Intermission, recessive bit at the first bit of Overload Flag and Error
Flag. The recessive bit of Intermission is forced to dominant. The receiver detects an overloa
condition and sends an Overload Flag. Then the first bit of Overload Flag is forced to recessive. Th
receiver detects a bit error and sends an Error Flag. The receive error counter is increased by
Depending on the value of the REC after finishing Error Passive, the actual REC value is above 12
or below 128. Nevertheless, an Active Error Flag is sent. The first bit of the Active Error Flag is
forced to dominant, setting the node to Error Passive.

16) Receive correct frame, REC ~[119 ... 127].
The receiver waits for the last bit of Intermission and receives a new frame. After the successft
reception the receive error counter is set to below 128.

17) Receiver sees local bit error in CRC_Field.
One bit of the received message is falsified, causing a CRC-Error.

18) Receiver with CRC-Error sees foreign dominant Acknowledge => Rec+/-0.
Node does not send a dominant Acknowledge, but samples a dominant bit in the Acknowledge Slc

19) Receiver starts CRC-Error-Flag, REC = REC+1.
Active Error Flag is started after Acknowledge Delimiter because of CRC-Error.

20) Recessive Bit in Error Flag => Error Passive.
A bit Error in Active Error Flag sets the node to Error Passive.
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Test of transmitter

1)

2)

3)

4)

5)

6)

Error Passive Transmitter with TEC < 128 sees Bit Error at dominant Identifier bit.
Node sends Passive Error Flag and adds Suspend to Interframe Space.

Error Passive Transmitter sees 104 consecutive dominant bits after Passive Error Flag.
Transmit error counter is incremented to 120.

Receive error counter is decremented by reception of correct messages.
Node is Error Active.

transmit error counter is incremented to 128.
Node is Error Passive.

Receiver sees Stuff Error and 16 consecutive dominant bits after Error Flag.
Receive error counter is incremented to 135.

One Successful transmission, then Bit Error at dominant Identifier bit.
Transmit error counter is decremented to 127, then Passive Error Flag.

A hardware reset is performed, both error counters are reset to 0.

7

8)

9)

10)

11)

12)

13)

14)

Recessive bit at Start of Frame.
The dominant Start of Frame bit is forced to recessive. The transmitter detects a bit error and sen
an Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at ACK Delimiter.
The recessive ACK Delimiter bit is forced to dominant. The transmitter detects a bit error and send
an Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at the first bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The transmitter detects a bit error and sen
an Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at the last bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The transmitter detects a bit error and sen
an Active Error Flag. The transmit error counter is increased by 8

Dominant bit at last bit of Error Delimiter, 7 dominant bits after Overload Flag.

The last recessive bit of Error Delimiter is forced to dominant. The transmitter detects an overloat
condition and sends an Overload Frame. After sending the Overload Frame the transmitter dete«
7 consecutive dominant bits before sending the Overload Delimiter. The transmit error counter i
not changed.

Dominant bit at last bit of Overload Delimiter, 8 dominant bits after Overload Flag.

The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects an overloa:
condition and sends an Overload Frame. After sending the Overload Frame the transmitter dete
8 consecutive dominant bits before sending the Overload Delimiter. The transmit error counter i
increased by 8.

Dominant bit at the 2nd bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects a bit error an
sends an Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at the 2nd bit of Error Delimiter.
The recessive bit of Error Delimiter is forced to dominant. The transmitter detects a bit error anc
sends an Active Error Flag. The transmit error counter is increased by 8.
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15) Recessive bit at ACK Slot, 8 * 4 dominant bits after Error Flag
The dominant ACK bit is forced to recessive. The transmitter detects an ACK error and sends a
Active Error Flag. The transmit error counter is increased by 8. After the Error Flag the
RECEIVE_DATAInput is forced to dominant for another 32 bits. After each sequence of additional
eight consecutive dominant bits the transmitter detects a form error and increases the error coun
by 8.

16) Dominant bit at 2nd bit of Intermission, recessive bit at first bit of Overload and Error Flag.
The recessive bit of Intermission is forced to dominant. The transmitter detects an overloa
condition and sends an Overload Frame. Then the first bit of the Overload Flag is forced tc
dominant. The transmitter detects a bit error and sends an Active Error Flag. The transmit errc
counter is increased by 8.
During sending an Active Error Flag tHRECEIVE_DATAInput of the transmitter is forced to
recessive for 3 bit times. The transmitter detects bit errors at every bit and starts Active Error Flag:
With every bit error the transmit error counter is increased by 8. Then at the beginning of the las
Active Error Flag the transmitter becomes Error Passive, but it continues sending the Active Erro
Flag.

17) Send 7 messages decrementing TEC to 128.
The transmitter sends 7 messages. After the successful transmission of each message the tran:
error counter is decreased by 1.

18) Error Passive transmitter sees Stuff Error during Arbitration at recessive stuff bit.
No TEC change on arbitration stuff error

19) Send one successful message.
Node is set back to Error Active.

20) Recessive bit at Start of Frame.
The dominant Start of Frame bit is forced to recessive. The transmitter detects a bit error and sen
an Active Error Flag. The transmit error counter is increased by 8. The transmitter is now Errol
Passive again.

21) Recessive bit at Start of Frame (Error Passive).
The dominant Start of Frame bit is forced to recessive. The transmitter detects a bit error and sen
a Passive Error Flag. The transmit error counter is increased by 8.

22) Dominant bit at ACK Delimiter (Error Passive).
The recessive ACK Delimiter bit is forced to dominant. The transmitter detects a bit error and send
a Passive Error Flag. The transmit error counter is increased by 8.

23) Dominant bit at the first bit of End of Frame (Error Passive).
The recessive bit of End of Frame is forced to dominant. REEEIVE_DATAInput is forced to
dominant for another 6 bits. The transmitter detects a bit error (at End of Frame) and sends a Pass
Error Flag. The transmit error counter is increased by 8. The 6 dominant bits during the Passiv
Error Flag have no effect.

24) Dominant bit at the last bit of End of Frame (Error Passive), bit error during Passive Error Flag.
The recessive bit of End of Frame is forced to dominant. The transmitter detects a bit error and sen
a Passive Error Flag. The transmit error counter is increased by 8. Then the 3rd bit of Passive Err
Flag is forced to dominant. The transmitter continues sending Passive Error Flag and waits aga
for 6 consecutive bits without changing the error counter.
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25)

26)

27)

28)

29)

30)

31)

32)

33)

34)

35)

Dominant bit at last bit of Error Delimiter (Error Passive), 7 dominant bits after Overload Flag.
The last recessive bit of Error Delimiter is forced to dominant. The transmitter detects an overloat
condition and sends an Overload Frame. After sending the Overload Frame the transmitter dete
7 consecutive dominant bits before sending the Overload Delimiter. The transmit error counter i
not changed.

Dominant bit at last bit of Overload Delimiter (Error Passive), 8 dominant bits after Overload Flag.
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects an overloa:
condition and sends an Overload Frame. After sending the Overload Frame the transmitter dete
8 consecutive dominant bits before sending the Overload Delimiter. The transmit error counter i
increased by 8.

Dominant bit at the 2nd bit of Overload Delimiter (Error Passive).
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects a bit error an:
sends a Passive Error Flag. The transmit error counter is increased by 8.

Recessive bit at ACK Slot (Error Passive)

The dominant ACK bit is forced to recessive. The transmitter detects an ACK error and sends
Passive Error Flag. The transmit error counter is not changed because it does not detect a domin.
bit while sending its Passive Error Flag.

2nd bit of Error Delimiter forced dominant (Error Passive), 64 dominant bits after Passive Errot
Flag.

The recessive bit of Error Delimiter is forced to dominant. The transmitter detects a bit error anc
sends a Passive Error Flag. The transmit error counter is increased by 8.

After the Error Flag th&@ECEIVE_DATAInput is forced to dominant for another 64 bits. After each
sequence of additional eight consecutive dominant bits the transmitter detects a form error ar
Increases the error counter by 8.

Dominant bit at last bit of Error Delimiter (Error Passive).
The last recessive bit of Error Delimiter is forced to dominant. The transmitter detects an overloa
condition and sends an Overload Frame.

Dominant bit at 3rd bit of Intermission (Error Passive).

The last bit of Intermission is forced to dominant. The node is Error Passive and becomes receive
The next 5 bits are also forced to dominant. The receiver detects a stuff error and sends a Pass
Error Flag. The receive error counter is incremented by 1.

Dominant bit at the first bit after receiver's Passive Error Flag.
The first bit after the Passive Error Flag is forced to dominant. The receiver increments the receiv
error counter by 8.

Dominant bit at receiver’s Error Delimiter (Error Passive).
The 4th bit of Error Delimiter is forced to dominant. The receiver detects a form error and
increments the receive error counter by 1.

Dominant bit at the first bit after receiver's Passive Error Flag.
The first bit after 6 consecutive recessive Passive Error Flag bits is forced to dominant. The receive
increments the receive error counter by 8.

Dominant bit at receiver's Error Delimiter. Dominant bit after Passive Error Flag seen as dominan
The recessive bit of Error Delimiter is forced to dominant. The receiver detects a form error anc
increments the receive error counter by 1. After the 6 consecutive dominant Passive Error Flag bi
the receiver sees another dominant bit and increments the receive error counter by 8. A ne
transmission is started.
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36) Dominant bit at first bit of transmitter's Intermission.
The recessive bit of Intermission is forced to dominant. The transmitter detects an overloa
condition and sends an Overload Flag.

37) Recessive bit during transmitter's Overload Flag.
The second bit of the Overload Flag is forced to recessive. The transmitter detects a bit error ar
increments its error counter by 8. Now the transmit error counter exceeds 255 and the node becomnr
Bus Off.

3.2.7 extd id
Test of proper recognition of IDE bit at all stuff conditions and test of losing arbitration at IDE bit.

NUMBER_OF _CANS 2
Bit Timing: CLOCK_PERIOEG= 100 nSPRESCALER- 1,

NTQ= 10,SAMPLE= 6,RESYCHRONIZATION_JUMP_WIDTH4
The program consists of the following test steps:
Receiver, test of stuff bit combinations at IDE
1) IDE = dominant, standard frame: Dominant stuff bit before IDE, bit after IDE is dominant.
2) IDE = dominant, standard frame: Dominant stuff bit before IDE, bit after IDE is recessive.
3) IDE = dominant, standard frame: Recessive stuff bit before IDE, bit after IDE is dominant.
4) IDE = dominant, standard frame: Recessive stuff bit before IDE, bit after IDE is recessive.
5) IDE = dominant, standard frame: Recessive stuff bit after IDE.
6) IDE =recessive, extended frame: Dominant stuff bit after IDE.
7) IDE = recessive, extended frame: Dominant stuff bit before IDE, bit after IDE is dominant.
8) IDE =recessive, extended frame: Dominant stuff bit before IDE, bit after IDE is recessive.

9) IDE =recessive, extended frame: lllegal (dominant) SRR bit, recessive stuff bit before IDE, bit aftel
IDE is dominant.

10) IDE =recessive, extended frame: lllegal (dominant) SRR bit, recessive stuff bit before IDE, bit afte
IDE is recessive.

Transmitter, test of stuff bit combinations at IDE

1) IDE =dominant, standard frame: Dominant stuff bit before IDE, bit after IDE is dominant.
2) IDE = dominant, standard frame: Recessive stuff bit before IDE, bit after IDE is dominant.
3) IDE = dominant, standard frame: Recessive stuff bit after IDE.

4) IDE = recessive, extended frame: Dominant stuff bit after IDE.

5) IDE =recessive, extended frame: Dominant stuff bit before IDE, bit after IDE is dominant.
6) IDE = recessive, extended frame: Dominant stuff bit before IDE, bit after IDE is recessive.
Transmitter, test of losing arbitration before, at and after IDE

1) IDE = dominant, standard frame: Lost arbitration at RTR (standard data frame).
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2) IDE =dominant, standard frame: Lost arbitration at RTR (extended data frame with illegal SRR =
dominant).

3) |IDE =recessive, extended frame: Lost arbitration at SRR (standard data frame).
4) IDE = recessive, extended frame: Lost arbitration at IDE (standard remote frame).
5) IDE =recessive, extended frame: Lost arbitration at extended Identifier.

6) IDE =recessive, extended frame: Lost arbitration at RTR (extended data frame).

7) |IDE =recessive, extended frame: Lost arbitration at SRR (extended data frame with illegal SRR
dominant).

3.2.8 formerr
Confinement of Form Errors

NUMBER_OF_CANS 2
Bit Timing:  CLOCK_PERIOD= 100 nsPRESCALER: 1,
NTQ= 10,SAMPLE= 6,RESYCHRONIZATION_JUMP_WIDT4

Transmitters and receivers get form errors at all fixed format fields of all frames. Tested while Errot
Active and Error Passive.

The program consists of the following test steps:
Test of receiver

1) Dominant bit at CRC Delimiter.
The recessive bit of CRC Delimiter is forced to dominant. The receiver detects a form error anc
sends an Active Error Flag. The receive error counter is increased by 1. The receiver detects don
nant bits after sending its Error Flag and increases its error counter by 8.

2) Dominant bit at ACK Delimiter.
The recessive bit of ACK Delimiter is forced to dominant. The receiver detects a form error and
sends an Active Error Flag. The receive error counter is increased by 1. The receiver detec
dominant bits after sending its Error Flag and increases its error counter by 8.

3) Dominant bit at the first bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The receiver detects a form error and sen:
an Active Error Flag. The receive error counter is increased by 1. The receiver detects dominant bi
after sending its Error Flag and increases its error counter by 8.

4) Dominant bit at the last bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The receiver detects an overload conditic
and sends an Overload Flag. The receive error counter is not changed.

5) Dominant bit at the last bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The receiver detects an overloat
condition and sends an Overload Flag. The receive error counter is not changed.

6) Dominant bit at the second bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The receiver detects a form error an:
sends an Active Error Flag. The receive error counter is increased by 1. The receiver detec
dominant bits after sending its Error Flag and increases its error counter by 8.
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7)

8)

9)

10)

11)

Dominant bit at the second bit of Error Delimiter.

The recessive bit of Error Delimiter is forced to dominant. The receiver detects a form error anc
sends an Active Error Flag. The receive error counter is increased by 1. The receiver detec
dominant bits after sending its Error Flag and increases its error counter by 8.

Dominant bit at the last bit of Error Delimiter.
The recessive bit of Error Delimiter is forced to dominant. The receiver detects an overloac
condition and sends an Overload Flag. The receive error counter is not changed.

Dominant bit at the 8th bit after Overload Flag.
The next 16 bits after Overload Flag are forced to dominant. At the 8th and the 16th bit the receive
detects form errors and increases its error counter by 8.

Dominant bit at the second bit of Overload Delimiter.

The recessive bit of Overload Delimiter is forced to dominant. The receiver detects a form error an
sends an Active Error Flag. The receive error counter is increased by 1. The receiver detec
dominant bits after sending its Error Flag and increases its error counter by 8.

Dominant bit at the 8th bit after Active Error Flag.
The next 16 bits after Active Error Flag are forced to dominant. At the 8th and the 16th bit the
receiver detects form errors and increases its error counter by 8.

Test of transmitter

1)

2)

3)

4)

5)

6)

7

8)

Dominant bit at CRC Delimiter.
The recessive bit of CRC Delimiter is forced to dominant. The transmitter detects a form error ant
sends an Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at ACK Delimiter.
The recessive bit of ACK Delimiter is forced to dominant. The transmitter detects a form error anc
sends an Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at the first bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The transmitter detects a form error an
sends an Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at the last bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The transmitter detects a form error an
sends an Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at the last bit of Error Delimiter.
The recessive bit of Error Delimiter is forced to dominant. The transmitter detects an overloac
condition and sends an Overload Frame. The transmit error counter is not changed.

Dominant bit at the last bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects an overloa
condition and sends an Overload Frame. The transmit error counter is not changed.

Dominant bit at the second bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects a form erro
and sends an Active Error Flag. The transmit error counter is increased by 8.

Dominant bit at the second bit of Error Delimiter.
The recessive bit of Error Delimiter is forced to dominant. The transmitter detects a form error anc
sends an Active Error Flag. The transmit error counter is increased by 8.
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9) Dominant bit at the 8th bit after Overload Flag.
The next 16 bits after Overload Flag are forced to dominant. At the 8th and the 16th bit the
transmitter detects form errors and increases its error counter by 8.

10) Dominant bit at the 8th bit after Active Error Flag.
The next 16 bits after Active Error Flag are forced to dominant. At the 8th and the 16th bit the
transmitter detects form errors and increases its error counter by 8.

3.2.9 idle
Reset and BusOff Recovery Sequences

NUMBER_OF_CANS 1
Bit Timing:  CLOCK_PERIOD= 100 nsPRESCALER: 1,
NTQ= 10,SAMPLE= 8, RESYCHRONIZATION_JUMP_WIDT#1

The reset (11 consecutive recessive bits) and Bus Off (at least 128 * 11 consecutive recessive bi
recovery sequences are tested by setting dominant bits at interesting positions of that sequences. °
detection of Start of Frame is checked; the behaviour of the error counters is monitored.

The program consists of the following test steps:

1) Dominant bit at the 9th bit of Wait_For_Bus_Idle.
The recessive 9th bit of Wait_For_Bus_Idle is forced to dominant. The Wait_For_Bus_Idle cycle
starts again.

2) Dominant bit at the 11th bit of Wait_For_Bus_Idle.
The recessive 11th bit of Wait_For_Bus_Idle is forced to dominant. The Wait_For_Bus_Idle cycle
starts again.

3) Dominant bit at the second bit of Bus_Idle field.
A recessive bit during Bus ldle is forced to dominant. The node interprets this as Start of Frame an
becomes receiver. After the 6th bit of Identifier the receiver detects a stuff error and sends an Activ
Error Flag. The receive error counter is increased by 1.

4) Dominant bit at the 3rd bit of Intermission.
The recessive 3rd bit of Intermission is forced to dominant. The node interprets this as Start c
Frame and becomes transmitter.

5) Sending Active Error Flags, Passive Error Flag until suspend is reached.
When sending an Active Error Flag tRECEIVE_DATANput is forced to recessive. The transmitter
detects bit errors and increases its error counter with every bit error by 8 until the node is Erro
Passive. After the Passive Error Flag, Error Delimiter and Intermission the transmitter send
Suspend Transmission.

6) Recessive bit at the 2nd bit of Identifier.
The dominant 2nd bit of Identifier is forced to recessive. The transmitter detects a bit error and senc
a Passive Error Flag. The transmit error counter is increased by 8.

7) Waiting for Bus Off.
TheRECEIVE_DATAInput is forced to recessive. The transmitter detects bit errors at every Start of
Frame bit and sends Passive Error Flags. With every error the transmit error counter is increased
8. If the error counter is > 255 the node becomes Bus Off.
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8) Abort transmission.
The reset_transmission_request is set to abort the transmission. The node waits now for 128 * :
consecutive recessive bits.

9) Dominant bit at the 9th position of Bus Off recovery sequence.
The recessive 9th bit of Bus Off recovery is forced to dominant. The recovery sequence starts agai

10) Dominant bit at the 11th position of Bus Off recovery sequence.
The recessive 11th bit of Bus Off recovery is forced to dominant. The recovery sequence start
again.

11) Dominant bit at the first position of Bus Off recovery sequence.
The recessive 1st bit of Bus Off recovery is forced to dominant. The recovery sequence starts aga
The recovery counter is unchanged.

12) Dominant bit at the (10 + (126 * 11) ) position of Bus Off recovery.
The recessive bit of Bus Off recovery is forced to dominant. The recovery sequence starts agai
The recovery counter is unchanged. After the next 11 recessive bits the node becomes Bus Idle a
Error Active.

13) Dominant bit at the 12th position of Bus_Idle.
A recessive 12th bit during Bus Idle is forced to dominant. The node interprets this as Start of Fram
and becomes receiver. After the 6th bit of Identifier the receiver detects a stuff error and sends &
Active Error Flag. The receive error counter is increased by 1.

3.2.10 overload
Overload Confinement
NUMBER_OF _CANS 2
Bit Timing: CLOCK_PERIODG= 100 nsSPRESCALER= 1,
NTQ= 10,SAMPLE= 6,RESYCHRONIZATION_JUMP_WIDTH4

For receivers and transmitters, dominant bits are generated at each position of Intermission, at the enc
Error Delimiter and at the last bit of a receiver’'s End of Frame.

The program consists of the following test steps:
Test of receiver

1) Dominant bit at 7th bit of End of Frame, 8th bit of Overload Delimiter, 1st bit of Intermission, 2nd
bit of Intermission.
In a test loop the bits described above are forced to dominant. At each dominant bit the receiver d
tects an overload condition and sends an Overload Flag.

2) Dominant bit at the 3rd bit of Intermission.
The recessive 3rd bit of Intermission is forced to dominant. The receiver interprets this as Start ¢
Frame and receives a new message.

3) Dominant bit at the 8th bit of Error Delimiter.
The recessive 8th bit of Error Delimiter is forced to dominant. The receiver detects an overloac
condition and sends an Overload Flag.
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Test of transmitter

1) Dominant bit at 1st bit of Intermission, 8th bit of Overload Delimiter, 2nd bit of Intermission.
In a test loop the bits described above are forced to dominant. At each dominant bit the transmittc
detects an overload condition and sends an Overload Flag.

2) Dominant bit at 3rd bit of Intermission.
The recessive 3rd bit of Intermission is forced to dominant. The transmitter interprets this as Stal
of Frame and starts a message.

3) Recessive bit at the 4th bit of Identifier.
The dominant 4th bit of Identifier is forced to recessive. The transmitter detects a bit error and senc
an Active Error Flag. The transmit error counter is increased by 8.

4) Dominant bit at the 8th bit of Error Delimiter.
The recessive 8th bit at Error Delimiter is forced to dominant. The transmitter detects an overloa
condition and sends an Overload Flag.

3.2.11 stuff bit
Bit Stuffing

NUMBER_OF_CANS 2
Bit Timing:  CLOCK_PERIOD= 100 nsPRESCALER: 1,
NTQ= 10,SAMPLE= 6,RESYCHRONIZATION_JUMP_WIDT4

Reception and transmission of messages with dominant and recessive stuff bits within and at the end
each stuffed field, followed by a recessive and a dominant bit.

In the first part of the test, the receiver (RefCAN1) receives 11 predefined messages. In this part tf
reserved bits, which have normally to be sent dominant, are modified to test whether the receiver acce|
dominant and recessive reserved bits in all combinations. In the second part the transmitter (RefCAN
transmits 8 predefined messages.

3.2.12 stufferr
Confinement of Stuff Errors

NUMBER_OF_CANS 2
Bit Timing:  CLOCK_PERIODB= 100 nsPRESCALER: 1,
NTQ= 10,SAMPLE= 6,RESYCHRONIZATION_JUMP_WIDT#4

Stuff errors (both dominant and recessive) are generated in each stuffed field of a message and at the
of each stuffed field. The program generates 16 stuff errors at different positions in the data frames.

The program consists of the following test steps:

1) Recessive stuff error at stuff bit after the 8th Identifier position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.
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2) Dominant stuff error at stuff bit after the 4th Identifier position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag. The transmi
error counter is not changed because the error occurred during arbitration. The receiver sends
Active Error Flag and increases the receive error counter by 1.

3) Dominant stuff error at stuff bit after RTR bit.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by INo arbitration is possible after the RTR bit of an extended Identifier.

4) Recessive stuff error at stuff bit after RTR bit.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

5) Recessive stuff error at stuff bit after the 2nd Data Length Code position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

6) Dominant stuff error at stuff bit after the 2nd Data Length Code position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

7) Dominant stuff error at stuff bit after the 4th Data Length Code position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

8) Recessive stuff error at stuff bit after the 4th Data Length Code position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

9) Recessive stuff error at stuff bit after the 8th Data Field position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

10) Dominant stuff error at stuff bit after the 12th Data Field position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

11) Dominant stuff error at stuff bit after the 64th Data Field position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

12) Recessive stuff error at stuff bit after the 8th Data Field position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.
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13) Recessive stuff error at stuff bit after the 8th CRC Field position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

14) Dominant stuff error at stuff bit after the 1st CRC Field position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

15) Dominant stuff error at stuff bit after the 15th CRC Field position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

16) Recessive stuff error at stuff bit after the 15th CRC Field position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and increase
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the recei
error counter by 1.

3.2.13 txarb
Arbitration

NUMBER_OF CANS1
Bit Timing: CLOCK_PERIODG= 100 nsPRESCALER= 1,
NTQ= 10,SAMPLE= 6,RESYCHRONIZATION_JUMP_WIDTH4
A transmitter gets all types of bit errors at different positions in the Arbitration Field.
Standard Identifier

1) Bit 1 error at the 2nd Identifier bit
The recessive ldentifier bit is forced to dominant. The transmitter loses arbitration and becomes re
ceiver. After the 8th Identifier bit the receiver detects a stuff error and send an Active Error Flag.

2) Bit 0 error at the 7th Identifier bit
The dominant Identifier bit is forced to recessive. The transmitter detects a bit error and sends ¢
Active Error Flag. The transmit error counter is increased by 8.

3) Bit1 error at RTR bit
The recessive RTR bitis forced to dominant. The transmitter loses arbitration and becomes receive
After the 5th extended Identifier bit the receiver detects a stuff error and sends an Active Error Flag

4) Bit 0 error at the RTR bit
The dominant RTR bit is forced to recessive. The transmitter detects a bit error and sends an Acti\
Error Flag. The transmit error counter is increased by 8.

5) Bit1 and stuff error after the 9th bit of Identifier
The recessive stuff bit after the 9th Identifier bit is forced to dominant. The transmitter detects a stuf
error and sends an Active Error Flag. The transmit error counter is not changed.

6) Bit 0 and stuff error after the 5th bit of Identifier
The dominant stuff bit after the 5th Identifier bit is forced to recessive. The transmitter detects a bi
error and sends an Active Error Flag. The transmit error counter is increased by 8.
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7)

8)

9)

10)

11)

12)

Bit 1 and stuff error after RTR bit

The recessive stuff bit after the RTR bit is forced to dominant. The transmitter detects a stuff erro
and sends an Active Error Flag. The transmit error counter is not changed because in a stande
Identifier RTR stuff bit is part of the arbitration field.

Bit 0 and stuff error after RTR bit
The dominant stuff bit after RTR bit is forced to recessive. The transmitter detects a bit error ant
sends an Active Error Flag. The transmit error counter is increased by 8.

Bit 1 error at IDE bit
The recessive IDE bit is forced to dominant. The transmitter lost arbitration and becomes receive
After the 5th Data Length Code bit the receiver detects a stuff error and sends an Active Error Flag

Bit O error at IDE bit
The dominant IDE bit is forced to recessive. The transmitter detects a bit error and sends an Activ
Error Flag. The transmit error counter is increased by 8.

Bit 1 and stuff error after IDE bit
The recessive stuff bit after the IDE bit is forced to dominant. The transmitter detects a stuff erro
and sends an Active Error Flag. The transmit error counter is increased by 8.

Bit 0 and stuff error after IDE bit
The dominant stuff bit after IDE bit is forced to recessive. The transmitter detects a bit error anc
sends an Active Error Flag. The transmit error counter is increased by 8.

Extended Identifier

13)

14)

15)

16)

17)

18)

Bit 1 error at the 4th bit of extended Identifier

The recessive extended Identifier bit is forced to dominant. The transmitter loses arbitration an
becomes receiver. After the 9th ext. Identifier bit the receiver detects a stuff error and send an Activ
Error Flag.

Bit O error at the 2nd bit of extended Identifier
The dominant extended Identifier bit is forced to recessive. The transmitter detects a bit error an
sends an Active Error Flag. The transmit error counter is increased by 8.

Bit 1 error at RTR bit

The recessive RTR bitis forced to dominant. The transmitter loses arbitration and becomes receive
After the 4th bit of Data Length Code the receiver detects a stuff error and sends an Active Erro
Flag.

Bit O error at RTR bit
The dominant RTR bit is forced to recessive. The transmitter detects a bit error and sends an Acti\
Error Flag. The transmit error counter is increased by 8.

Bit 1 and stuff error after the 15th bit of extended Identifier
The recessive stuff bit after the 15th extended Identifier bit is forced to dominant. The transmitte
detects a stuff error and sends an Active Error Flag. The transmit error counter is not changed.

Bit 0 and stuff error at the 11th bit of extended ldentifier
The dominant stuff bit after the 11th extended Identifier bit is forced to recessive. The transmitte
detects a bit error and sends an Active Error Flag. The transmit error counter is increased by 8.

BOSCH -25- K8/EIS



VHDL Reference CAN User’s Manual Revision 2.2

19) Bit 1 and stuff error after RTR bit
The recessive stuff bit after the RTR bit is forced to dominant. The transmitter detects a stuff erro

and sends an Active Error Flag. The transmit error counter is increased by 8 because in an extenc
Identifier RTR stuff bit is not part of the arbitration field.

20) Bit 0 and stuff error after RTR bit
The dominant stuff bit after RTR bit is forced to recessive. The transmitter detects a bit error an
sends an Active Error Flag. The transmit error counter is increased by 8.
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4 Model Description

The top level of the Reference CAN Model design is the testbench, consisting of a simulatior
environment and a set of test programs as described in section 3.2. This chapter describes the mc
structure and the functionality implemented in the architectures used in the components of the mode

The testbenclPROTOCOL_TESTBENCshown in figure 1, can be configured to run the different test
programs for different CAN models by assigning dedicated architectures and configurations to th
components WAVEFORM(entity TEST_PROGRAM architecture <test> ) and SYSTEM (entity
CAN_SYSTEMarchitecturd=LEXIBLE). The components are interconnected by a skttefface Signals

as described in section 4.1.

E = PROTOCOL_TESTBENCH

E = CAN_SYSTEM

CAN_BUS
Node 1 Node 2 Node 3 Node n

(optional) (optional) oo (optional)
COMPARE REFCAN REFCAN REFCAN

A = FLEXIBLE

Interface Signals

E = TEST_PROGRAM

A = <test>

A = STRUCTURAL

Figure 1 architecturETRUCTURAIOf PROTOCOL_TESTBENCH

The test programs control the simulation by driving the inputs and strobing the outf@ASIOSYSTEM
Each test program is represented by one dedicated architectureSif PROGRAMNd by three
dedicated configurations ®#FROTOCOL_TESTBENCHNe configuration for each of the three CAN
implementation models GONFIGURATION_IMPLEMENTATIQNCONFIGURATION_EXAMPL.Eand
CONFIGURATION_BUGGYhat are provided with the Reference CAN Model. The configurations are
described in subsections 4.2.1 and 4.2.2.
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To check special features of an user-defined implementation, like a message memory or a bus interfa
additional test programs can be included in the testbench. Thetefibplate.vpp defines an
architectureTEMPLATEOf TEST_PROGRAM his architecture can be used as a template when writing
additional test programs for the verification of an implementation (see section 5.3).

The architectur&LEXIBLE of CAN_SYSTENS structural and connects the CAN model to be verified
(componenCHECK) with a flexible number of Reference CAN Model nodes, interacting via the CAN
bus. Which CAN model is used as compon€RrECK1is defined by a configuration cfAN_SYSTEM
the actual number of Reference CAN Nodes is defined by a configuratf®0afOCOL_TESTBENCH
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41 PROTOCOL_TESTBENCH

The protocol testbench, as shown in figure 1, is the top level entity. It has neither inputs nor outputs ar
is described by only one architectul TRUCTURALSTRUCTURAILconsists of the two components
WAVEFORENASYSTEMThese two components are connected by a set of interface signals.

* The interface (record-) signals drivenST_PROGRAM
RESET
BIT_TIMING_CONFIGURATION(1 to MAXIMUM_NUMBER_OF_CANS)

.PRESCALER
.PROPAGATION_SEGMENT
.PHASE_BUFFER_SEGMENT_1
.RESYNCHRONISATION_JUMP_WIDTH
INFORMATION_PROCESSING_TIME

BUS_INTERFERENCE to MAXIMUM_NUMBER_OF_CANS)
TRANSMIT_MESSAGH(to MAXIMUM_NUMBER_OF_CANS)

.FRAME_KIND
.MESSAGE.IDENTIFIER_KIND
.MESSAGE.IDENTIFIER
.MESSAGE.NBYTES
.MESSAGE.DATA(O...8)

TRANSMISSION_REQUEST(to MAXIMUM_NUMBER_OF_CANS)

* The interface signals driven IBAN_SYSTEM
TRANSMISSION_REQUEST_STATU$(t0o MAXIMUM_NUMBER_OF CANS)
RECEIVED_MESSAGH(to MAXIMUM_NUMBER_OF_CANS)

.FRAME_KIND
.MESSAGE.IDENTIFIER_KIND
.MESSAGE.IDENTIFIER
.MESSAGE.NBYTES
.MESSAGE.DATA(O...8)

These signals (elements of the arrays referencing the CAN nod€aNn SYSTEMimplement the
following functionality:

* RESETIs the system reset.

e BIT_TIMING_CONFIGURATION defines the CAN bit time.

* BUS_INTERFERENCEan force thdRECEIVE_DATAoutput of an instance US_INTERFACHO a
certain state.

* TRANSMIT_MESSAGE#efines a message to be transmitted by the labelled CAN node.

» If TRANSMISSION_REQUESIE true, the labelled CAN node is requested to transmit a message.
 TRANSMISSION_REQUEST_STATW®ows the processing of a requested transmission.
 RECEIVED_MESSAGIS the contents of the last message received by the labelled CAN node.

» The generic paramet®ODEL_LABELldistinguishes the different instances@AN_INTERFACEN-
side CAN_SYSTEM Valid values for MODEL_LABELare 0 to MAXIMUM_NUMBER_OF _CANS
MODEL_LABEL = (s always used for that instance of the implementation that is to be verified by
comparing its function with the function of the reference model working in parallel. That implemen-
tation’s input is a copy of the input of the compared reference model.

For details of the constants and of the type declarations see pacHafjesons.vhd and
trace_package.vhd
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42 CAN_SYSTEM

CAN_SYSTEMcomprises the complete CAN environment to be simulated, its function is described by
the architectur&LEXIBLE (see figure 2). This is a structural architecture, connecting the CAN model
to be verified with a flexible number of Reference CAN Model nodes, interacting via the CAN bus. Itis
used, in different configurations, for all protocol test programs. The ports of the ety SYSTEMre
described in section 4.1.

The architectur&€LEXIBLE of CAN_SYSTENhstantiates components defined by the following entities :

BUS_INTERFACE
CAN_INTERFACE

These entities and their architectures are described in section 4.3 and section 4.4.

E = CAN_SYSTEM
CAN_BUS

/—>

A
Y

—| E = BUS_INTERFACE

A

\ / \

E = BUS_INTERFACE

RECEIVE TRANSMIT RECEIVE TRANSMIT
_DATA _DATA _DATA _DATA

E = CAN_INTERFACE

E = CAN_INTERFACE >* n

MODEL_LABEL =1 MODEL_LABEL =n+1

BUS_INTERFERENCE

BUS_INTERFERENCE

A = COMPARE

A /

1 1 A = FLEXIBLE

v Interface Signals v

Figure 2 architecturELEXIBLE of CAN_SYSTEM

A = REFERENCE

/

The generic paramet&tODEL_LABEIof CAN_INTERFACHS used to distinguish between the different
instances o€CAN_INTERFACEThe generic parameteCs OCK_PERIO@NARX_DELAY(associated with

their actual values in the testbench’s configuration) define the timing of the instantiated components. F
each instance dAN_INTERFACEthere is one instance 8US_INTERFACHcomponenDRIVER) and

one element of the array of interface signals.

In the architectureFLEXIBLE, CAN_SYSTEMcontains at least one instance ©AN_INTERFACE
(componentCHECK]) and a flexible number of additional instancesG#N_INTERFACE (component
REFERENCE_MODELThe actual number of nodes connected to the CAN bus is determined by the
generic paramet&iUMBER_OF_CAN_NOD®B$ CAN_SYSTENh =NUMBER_OF_CAN_NODEB). This
generic parameter is defined by a configuratioRROTOCOL_TESTBENCH
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The following architectures are available foAN_INTERFACE COMPAREREFERENCHEEXAMPLEand
BAD_EXAMPLEWhich CAN model architecture or configuration is associated with comp@¢BCK1
or with the componenREFERENCE_MODEH4 defined by a configuration GfAN_SYSTEM

Only one architecture is available BUS_INTERFACE BEHAVIOUR(see section 4.3).

For other applications beyond the CAN protocol verification, additi@?_SYSTEMrchitectures and
configurations can be defined.

4.2.1  configuration SYS_| of CAN_SYSTEM

This configuration is designed to simulate an implementation’s model (configuration
IMPLEMENTATION together with a Reference CAN Model node (architecREEERENCErunning in
parallel inside componer@HECK1(architectureCOMPAREWhile optional additional Reference CAN
Model nodes provide CAN communication to the implementation. All test programs described in sectiol
3.2 use this configuration, but with different numbers of CAN nodes :

NUMBER_OF CAN_NODE4 : htl idle txarb
NUMBER_OF_CAN_NODER: biterror crc dic
emlcount  extd id formerr

overload stuff bit  stufferr
NUMBER_OF_CAN_NODES: baudrate

The architectures and configurationS@GAN_INTERFACE,which are used here, are described in section
4.4.1 (architectureCOMPARE in section 4.4.2 (architectur@EFERENCE and in section 4.4.3
(configurationlMPLEMENTATION.

4.2.2 configuration SYS_E of CAN_SYSTEM

This configuration is the same &YS_|I, with only one exception : Instead of an instance of
CONFIGURATION_IMPLEMENTATIONof architecture REFERENCE an instance of configuration
CONFIGURATION_EXAMPLEf architectureEXAMPLEIis running in parallel with a Reference CAN
Model node inside compone@HECK 1(architectureCOMPARE

The configuratiolCONFIGURATION_EXAMPLE architectureeXAMPLEOf CAN_INTERFACE,which is
used here, is described in section 4.4.4.

4.2.3 configuration SYS_B of CAN_SYSTEM

This configuration is the same &YS_E with only one exception : Instead of an instance of
configuration CONFIGURATION_EXAMPLBf architectureEXAMPLE an instance of configuration
CONFIGURATION_BUG®f architectureEXAMPLHS running in parallel with a Reference CAN Model
node inside compone@HECK1(architectureCOMPARE

The configurationCONFIGURATION_BUGGYf architectureEXAMPLEof CAN_INTERFACE, which is
used here, is described in section 4.4.5.

4.2.4  configuration SYS_R of CAN_SYSTEM

In this configuration, only architectulREFERENCES used for all instances @fAN_INTERFACEThis
configuration, not depending on any implementation’s model, is intended for the development of tes
programs (see section 5.3).
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4.3 BUS INTERFACE
BUS_INTERFACHS used to connect an instanceCaiN_INTERFACEoO theCAN_BUS

The entity has the following ports :

generic TX_DOMINANT_DELAY delay when driving a dominant bit to the CAN bus
generic TX_RECESSIVE_DELAY delay when driving a recessive bit to the CAN bus

generic RX_DELAY delay when receiving a bit from the CAN bus

in RESET

inout CAN_BUS model of a CAN bus, may be dominant or recessive
in BUS_INTERFERENCE forcesRECEIVE_DATAto specific values

out RECEIVE_DATA output toCAN_INTERFACE

in TRANSMIT _DATA input fromCAN_INTERFACE

In the CAN_SYSTEMhe physical layer of the CAN bus is represented by a single bus line which can be
driven to the valueRECESSIVEandDOMINANTby each of the instances BUS_INTERFACEconnected

to CAN_BUS The resolution function used faZAN_BUSensures that a single dominant level will
override all recessive levels.

Only one architecture exists fBUS_INTERFACE hamedBEHAVIOUR

In BEHAVIOURthe state of signalRANSMIT_DATAS converted to a dominant level (if it is ‘0’) or a
recessive level (if it is ‘1) on theCAN_BUS An assertion of severity error checks whether
TRANSMIT_DATAhas a value different from ‘0’ or ‘1.

RECEIVE_DATAdepends on the state @AN_BUSand on the state oBUS_ INTERFERENCEIf
BUS_INTERFERENCHs NONE a dominant level oiftAN_BUSWwill be read as ‘0’ and a recessive level
will be read as ‘1’

If BUS_INTERFERENCEHS set toBIT_ERROR a dominant level oitAN_BUSWwill be read as ‘1’ and a
recessive level will be read as ‘0'.

With BUS_INTERFERENCEet toSTUCK_AT_RECESSIVE, RECEIVE_DATAvIll always be ‘1'.
With BUS_INTERFERENCEet toSTUCK_AT_DOMINANT, RECEIVE_DATwiIll always be ‘0'.

The generic delay parameters are provided as an option for the simulation of CAN bus systems. In t
configurations for the simulation of the protocol test programs, no configuratioARf SYSTEMsSigns
actual parameters to the generic delay paramet888f INTERFACESo in all instances they remain at
their default values of O ns.

If a particular implementation requires another kind of physical layer, architeBEHaVIOURMay be
replaced in the configurations OAN_SYSTEM
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4.4  CAN_INTERFACE

The entityCAN_INTERFACHS designed as a CAN Protocol Controller, which is connected to the CAN
bus by aBUS_INTERFACEand to the message memory by the sigrRRCEIVED_MESSAGENd
TRANSMIT_MESSAGE

The entity has the following ports :

generic MODEL_LABEL Each component of this entity has a particular name
generic CLOCK_PERIOD Is an array of the base time units of tbAN_SYSTEM
generic RX_DELAY used to synchronize Reference and Implementation
generic GET_RECEIVE_ERROR_COUNTER_FROM_MODBpti@nal, only for protocol check

in RESET restores the initial state of the entity

in RECEIVE_DATA is the data input frorBUS_INTERFACE

out TRANSMIT_DATA is the data output tBUS_INTERFACE

in BIT_TIMING_CONFIGURATION is the definition for the CAN bus bit time

out RECEIVED_MESSAGE is the last received message

in TRANSMISSION_REQUEST if true, the CAN node is required to transmit

in TRANSMIT_MESSAGE Is the message to be transmitted

out TRANSMISSION_REQUEST_STATUshows the processing of a requested transmission

The functionality of a certain instance @AN_INTERFACEdepends on the architecture which is
associated to that instance in a configuration.

The following architectures and configurations are availabl€4dt_INTERFACE

COMPARE compares implementation’s model with reference model during simulation
REFERENCE reference model of a CAN Protocol Controller

IMPLEMENTATION  model of user’s implementation, currently substitutedRBFfERENCE
EXAMPLE example of a CAN module, including message memory and CPU interface
BAD_EXAMPLE example of a buggy CAN Protocol Controller

The architectureSOMPARBNdREFERENCHre fundamental parts of the CAN protocol testbench and
should not be modified.

The architecturédMPLEMENTATIONS a proxy for the user’s implementation model that is to be verified
by the Reference CAN Model node. Sint4PLEMENTATIONS not part of the Reference CAN Model,
the configuration CONFIGURATION_IMPLEMENTATIONcurrently associates the architecture
REFERENCHEvhenever théMPLEMENTATIONS instantiated.

The architectureEXAMPLEdescribes an entire CAN module, including CAN Protocol Controller,
message memory, and CPU interface, linked togeth€@ONFIGURATION_EXAMPLH is intended as
an example how to integrate the user’s implementation model into the Reference CAN Model.

The architectureBAD_EXAMPLEdescribes a buggy CAN Protocol Controller. The configuration
CONFIGURATION_BUGGInNks this buggy CAN Protocol Controller into the architect@BEAMPLE
resulting in a buggy CAN module. The simulation of this buggy module, running in parallel to the
architecturdREFERENCIhside the architectureOMPAREhows how the test programs of the Reference
CAN Model detect CAN protocol errors.

Besides the entity’s port signals, the protocol check requires additional internal information on interne
signals of the architectures &fAN_INTERFACE These internal signals cannot be accessed directely.
Therefore, the architectures are provided with a set of global sigd@ND OUDf the record type
BOND_OUT_TYPRmRs defined in packageace _package.vhd .BOND_OUiS an array of records, each
architecture drives only elements 8OND_OUMODEL_LABE). In the model of the user’s
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implementation, thé8OND_OUBignals (see section 5.1) are to be excluded from synthesis, they are
intended for the verification simulation only.

4.4.1 architecture COMPARE

The architectureCOMPARBf CAN_INTERFACEIs a structural architecture as shown in figure 3. It
consists of the componentdPLEMENTATIONREFERENCHKboth referencing entitg AN_INTERFACE;,
and of the componeMROTOCOL_CHEGKeferencing entit HECKER

E = CAN_INTERFACE
RECEIVE_DATA

[
RX DELAY TRANSMIT_DATA_R TRANSMIT_DATA_|

i YYY i
E = CAN_INTERFACE % E = CAN_INTERFACE
©)
>
<
T
BOND_OUT L] Bonp_out
MODEL_LABEL = generic @ MODEL_LABEL = 0
Signals & < | Signals
O
w
T
(@)
Il
A = REFERENCE | g W - A = IMPLEMENTATION
‘ RECEIVED_MESSAGE_R RECEIVED MESSAGE._| ‘
| A = COMPARE

+ Interface Signals

Figure 3 architecture OMPARBf CAN_INTERFACE

TheIMPLEMENTATIONS running in parallel to th&@EFERENCHEmMeaning they get the same inputs and
should generate the same outputs. During a simulation, some oB@ND_OUTsignals and the
TRANSMIT_DATAand RECEIVED_MESSAGHort signals of the implementation’s model and of the
Reference CAN Model node are compareddOTOCOL_CHECKheBOND_OUTignals are not part

of CAN_INTERFACK port map list, they are global signals declared in package package.vhd

Inside CAN_INTERFACEs architectures, the values of certain internal signals or variables are assignec
to correspondin@OND_OUTignals, making that values externally visible, see also section 5.1.

In case of a difference in that signals, the checker will indicate this difference by a report of severity erro
as a CAN protocol error. The functionality ©®HECKERs described in section 4.4.1.1.

The TRANSMIT_DATAoutput of COMPARIES the TRANSMIT_DATAoutput ofIMPLEMENTATION The
TRANSMIT_DATAoutput of REFERENCEHS only used by the checker and is not visible outside this
architecture.
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The RECEIVE_DATAInput of COMPARHs connected directely to th@ECEIVE_DATA input of
IMPLEMENTATIONThe generic paramet&X_DELAYis an input delay factor, to be multiplied with the
implementation model’s clock period. TIRECEIVE_DATAInput of REFERENCHS delayed in order to
compensate the delay time caused by the synchronization oRE@EIVE_DATA input to the
implementation model’s clock.

The TRANSMISSION_REQUESIhput of REFERENCHS connected taOND_OUT(0).TXRQST This
global signal is set by the implementation under test to assure that the RefCAN running in parallel alway
starts the transmission synchronously to the implementation (see also section 4.5.3).

Only one instance dAN_INTERFACHEN aCAN_SYSTENhay be associated with architect@®MPARE

Which implementation’s modelQONFIGURATION_IMPLEMENTATIQNCONFIGURATION_EXAMPLE
or CONFIGURATION_BUGG@Yis compared toREFERENCEIis defined by a configuration of
PROTOCOL_TESTBENCREFERENCHS always associated with architect@EeFERENCE

44.1.1 CHECKER

CHECKEROmpare8OND_OUSignals and theRANSMIT_DATANJRECEIVED_MESSAGort signals
of an implementation under test (IUT) with the corresponding signals of the Reference CAN Model nod
simulated in parallel and notifies differences as CAN protocol errors.

Entity CHECKERS instanciated as a component of architectG@VPARBf CAN_INTERFACE Its
functionality is implemented in the architect®@EHAVIOURof CHECKER

The elements of theOND_OuUTlobal signal record used IQHECKERare the following:

BOND_OUT(MODEL_LABEL)
.BUSMON
.TRANSMIT_ERROR_COUNTER
.RECEIVE_ERROR_COUNTER
.BUSOFF

The MODEL_LABELs 0 for the implementation and in the range of IMAXIMUM_NUMBER_OF_CANS
for the Reference CAN Model nodes. The global signals are defined in patkeagepackage.vhd

BUSMOKeflects the state (RECEIVE_DATAat the last sample poinTRANSMIT_ERROR_COUNTERd
RECEIVE_ERROR_COUNTHRonitor the state of the two error counteBJSOFFis ‘1’ when the
transmit error counter has reached 256.
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Case #1 Case #2
-MIN + MAX -MIN + MAX
- -

TRANSMIT_DATA_R_STABLE __& --------------- —& xl_
TRANSMIT_DATA _| _Al\ N

TRANSMIT_DATA_|_DELAYED \k \
N

MIN MAX MIN MAX
g

IMIN| [MIN|

N\ N
TRANSMIT_DATA R TN \ I\

Figure 4 Tolerable phase shifts between compared signals (exampiAfsMIT_DATA

After RESET CHECKERemains passive as long as the CAN bus remains in the recessiveEstBEKER

is activated when the IUT sampled the first dominant bit after the start of the simulation. If it detects &
difference between the relevant signals of the IUT and of the Reference CAN Model node, an assertic
will cause a report of severity error, documenting the CAN protocol error.

In order to compensate for a possible phase difference between the clocks of the IUT and the Referer
CAN Model node, the signals of the IUT and the Reference CAN Model node are compared not directly
but with the help of some intermediate signals, so that small phase differences between the signals i
tolerated.

The IUT is required to follow the Reference CAN Model node within the time window defined by signals
MIN andMAX This allows phase shifts to be tolerated if the edges of the compared signals lie within this
time window (see figure 4). The limits for the tolerable phase shiftve&&= (Time Quanta/ 2 = -MIN.

If an edge appears ARANSMIT_DATA_Rthe transmit data output of the Reference CAN Model node,
the TRANSMIT_DATA_R_STABLEignal is set to false foMiN + MAX After this time it returns to true.

If an edge appears &iRANSMIT_DATA |, the transmit data output of the IUT, the edge of signal
TRANSMIT_DATA_|_DELAYEDS generated frolfRANSMIT_DATA_I by delaying it forMIN].

CHECKERompares the Reference CAN Model node signals with the delayed signals of the IUT while
the Reference CAN Model node signals are stable. In the example of figGRANSMIT_DATA_Rs
compared WittTRANSMIT_DATA | _DELAYEDwhile TRANSMIT_DATA_R_STABLIS true (outside the
shaded area). If the phase shift between the edges is so small that the edges of the delayed signal:
within the shaded areas, the signals of the IUT and of the Reference CAN Model node will be regarde
as identical.
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In Case #1 the transmit data outplRANSMIT_DATA_lof the IUT changes after the transmit data output
TRANSMIT_DATA_Rof the Reference CAN Model node. In Case #2 the transmit data output
TRANSMIT_DATA | of the IUT changes before the transmit data oufpRANSMIT_DATA_Rof the
Reference CAN Model node. In both cases the phase shift can be tolerated because the generated si
TRANSMIT_DATA_| _DELAYEDies inside the shaded area.

If the phase difference of the edges of the compared signals is greatemiNjngn error in the
implementation is assumed. An assertion report shows which signal causes the CAN protocol error.

The same phase compensation is used for the other compared signals with the exception of the er
counters. The error counters are compared at the sample point only. If the receive error counter react
the error passive levelHECKERNIy verifies that both receive error counters are above the error passive
limit (127), their actual values are not compared. When the receive error counters are decremented ag:
finishing error passive, they are set to a value in the range of 119 to 127. The Reference CAN Modt
node adjusts itself to the value of the implementation’s receive error counter (see section 4.4.2.7).

At the reception of a messag&HECKERcompares theRECEIVED MESSAGHort signals of
implementation and Reference CAN Model. The comparision is done at the implementation’s
RECEIVED_MESSAGevents rather than the reference model’s in order to allow implementations with a
hardware acceptance filtering that do not accept certain messages of the reference testbench. In cas
restricted implementations, only that part of the message that is inside the restriction is checked.
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4.4.2 architecture REFERENCE

This architecture implements the functionality of a CAN controller as define@AM Specification
Revision 2.0 Part A and B It is used to check an user-written implementation using the test programs
described in section 3.2.
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Figure 5 architecturBEFERENC®Bf CAN_INTERFACE
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The Reference CAN Model architecture shown in figure 5 consists of the following processes:

OSCILLATOR
PRESCALER

BIT_TIMING
BIT_STREAM_PROCESSOR
REQUEST_STATUS
TRACE_MESSAGE
TRACING

The functions implemented in these processes are described in the following subsections.

442.1 process OSCILLATOR

Generates the clock signaLOCKwhich is input to processSIME_QUANTA_CLOCKCLOCKis based on
the generic paramet&@LOCK_PERIOLand has a phase shift MODEL_LABEIle 1 ns. The phase shift
assures that the different instances of the reference model are evaluated in an explicit sequence.

4.4.2.2 process PRESCALER

The TIME_QUANTA_CLOCKIs derived from CLOCK by dividing it by the prescaler value
BIT_TIMING_CONFIGURATION.PRESCALER The TIME_QUANTA CLOCHKs the clock input for
processSBIT_TIMING .

4.4.2.3 process BIT_TIMING

4.42.3.1 Overview

This process controls bit timing and synchronization, sampleRE@EIVE_DATANnput, and drives the
TRANSMIT_DAT Aoutput.

The signals below are input to proc&ss_TIMING :

RESET
TIME_QUANTA_CLOCK
BIT_TIMING_CONFIGURATION

PRESCALER
PROPAGATION_SEGMENT
.PHASE_BUFFER_SEGMENT _1
.RESYNCHRONISATION_JUMP_WIDTH
INFORMATION_PROCESSING_TIME

RECEIVE_DATA
HARD_SYNC_ENABLE
BUS_DRIVE

The following signals are output of proc&d3_TIMING :

BUSMON

SAMPLE_POINT

TRANSMIT_DATA

BOND_OUT(MODEL_LABEL).BUSMON

BOND_OUT(MODEL_LABEL).TRANSMIT_POINT
The BOND_OUBignals are defined in packagace_package.vhd . They are used bgHECKERS
described in section 4.4.1.1. The geneMODEL_LABELis used to address a certain instance of
CAN_INTERFACE
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4.4.2.3.2 Structure of process BIT_TIMING
In the following paragraph the flow of proces3_TIMING as shown in figure 6 is explained.

BIT_TIMING: (RESET, BIT_TIMING_CONFIGURATION, TIME_QUANTA_CLOCK)

if RESET then
Initialize signals and variables
end if;

if BIT_TIMING_CONFIGURATION’event or (RESET’event and not RESET) then
Recalculation of quasi constants:
sample point
Phase Buffer Segment 2
Number of time quanta in a bit time
end if;

if TIME_QUANTA_CLOCK’event and TIME_QUANTA CLOCK = ‘1’ then
Control of bit timing and bus line:
Sample bus line
Drive bus line
Hard Synchronization and Resynchronization
end if;

Figure 6 Process flow &IT_TIMING .
The process is sensitive to signalRESET TIME_QUANTA CLOCKand the signals of
BIT_TIMING_CONFIGURATION. Whenever one of these signals has an event the process is evaluatec

When RESETIs active TRANSMIT_DATAIs set to ‘1’ (recessive) an8AMPLE_POINTis set to ‘0’
(inactive). In addition some local variables are set to their default values.

After RESET and whenever one of the signals BIfT_TIMING_CONFIGURATION has an event, the
quasi constants for Phase Buffer SegmenPRASE_BUFFER_SEGMENT), Zample point $AMPLE
SAMPLE_J), and the number of time quanta in a bit timdTQ NTQ_I) are calculatedSAMPLE_I and
NTQ_I are used for temporary storage during synchronization.

On each rising edge 8iIME_QUANTA_CLOCHKe following actions are performed:
» The time quanta counter is incremented.

» The differenceDIFF of the actual value of the time quanta counteOUNT and the sample point
(SAMPLE_]) is calculated. This variable is used when resychronizing to determine whether
TRANSMIT_POINTshould be set or not.

» SignalsSAMPLE_POINTandTRANSMIT_POINTare reset one time quanta after they have gone active.
 ThePHASE_ERROI® calculated. Figure 7 shows the relation between bit timing and phase error.

» The number of time quant®ELTA by which Phase Buffer Segment 1 is lengthened respectively
Phase Buffer Segment 2 is shortened is calculated as the minimum of theRteA®E ERROBRNd
the value oORESYNCHRONIZATION_JUMP_WIDTH
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» During each bit time there is the possibility to synchronize on a recessive to dominant edge at th
RECEIVE_DATANnput. This can be done by a Hard Synchronization or by a Resynchronization. Eact
synchronization resets ti®/NC_ENABLHEag to guarantee that only one synchronization per bit time
is performed.

» Atthe end of a bit time the time quanta counter is re6S€IYNTE 0), TRANSMIT_POINTis set and the
TRANSMIT_DATAoutput gets the actual value®ldS_DRIVE

 If the time quanta counter equa®\MPLE_| the signalSAMPLE_POINTis set to ‘1’ and the output
signalBUSMONyets the value o0RECEIVE_DATA ThereforeBUSMOMNhows the sampled input data
stream. In addition thBYNC_ENABLElag is set true to enable synchronization.

For details of the VHDL coding see fitan_interface_reference.vhd

—

T

7

PHASE_ERROR =0

RECEIVE_DATA | PHASE_ERROR >0

(lengthen PB1)

I PHASE_ERROR <0

(shorten PB2)

SAMPLE_POINT

/

TQ
| | | | |
[ [ [ [ [ [
21 3 PB1 PB2
N x
c o Sample
>
U) - .
- Bit Time
TQ = Time Quanta PB1 = Phase Buffer Segment 1
SyncSeg = Synchronization Segment PB2 = Phase Buffer Segment 2
PROP = Propagation Segment IPT = Information Processing Time

Figure 7 Bit Timing and Phase Error.

4.4.2.3.3 Synchronization

During each bit time there is the possibility to synchronize on a recessive to dominant edge at th
RECEIVE_DATAInput. This can be done by a Hard Synchronization or by Resynchronization.
Synchronization will only be done when the last sampled bus value was recessiB8MON: ‘1").

This is necessary to avoid synchronizing on spikes on the bus line. The conditions for synchronizatic
are dependent whether the node is receiver or transmitter.

For additional information about synchronization see also CAN Specification 2.0 Part A, B.
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if RECEIVE_DATA = ‘0’ and BUSMON = ‘1"and SYNC_ENABLE then
SYNC_ENABLE :=false;

if HARD_SYNC_ENABLE = ‘1’ then
Hard Synchronization
end if;

elsif HARD_SYNC_ENABLE ='0" and BUS_DRIVE = ‘1’ then
Resynchronization when Receiver
end if;

elsif HARD_SYNC_ENABLE = ‘0’ and PHASE_ERROR <= 0 then
Resynchronization when Transmitter
end if;

end if;

Figure 8 Synchronization flow.

Hard Synchronization

When the CAN node is in Bus_ldle state, the sigisdRD_SYNC_ENABLEs set true by the
BIT_STREAM_PROCESSORNow a recessive to dominant edge on the bus will cause a Hard
Synchronization provided that the last sampled value was recessive.

When the node is receiver and a recessive to dominant edge is detected the value of the time qua
counter is set to on€OUNT= 1) and a new bit time starts.

If the node is transmitting a dominant bit, Hard Synchronization can only occur RMASE_ERRORO.

The generation 60fRANSMIT_POINTIis done only if the detected edge lies Information Processing Time
after the sample point (see figure 7).
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if HARD_SYNC_ENABLE = ‘1’ then

Transmitter: Synchronize only if edge after sample point

if BUS_DRIVE = ‘1" or COUNT > SAMPLE_| then
COUNT =1;

end if;

Generation of TRANSMIT_POINT only if edge lies
Information Processing Time after sample point
if DIFF >=
BIT_TIMING_CONFIGURATION.INFORMATION_PROCESSING_TIME then
TRANSMIT_POINT <= true;
TX_DATA <= BUS_DRIVE;
end if;

Figure 9 Hard Synchronization on recessive to dominant edge.

Resynchronization

When a reception or transmission is in progress there is the possibility to resynchronize on recessive
dominant edges on the CAN bus. There are two cases for Resynchronization depending if the node
receiver or transmitter.

Node is Receiver

If the node is receiver there will be Resynchronization on each recessive to dominant edge provided t|
value ofBUSMONs ‘1.

If the edge lies between Synchronisation Segment and sample p6iASE_ERROR 0) the Phase
Buffer Segment 1 is lengthened by a number of time quanta less or equal the resynchronization jun
width. This is done by shifting the sample poisi{MPLE_I) and the end of bit timeNTQ _I) by DELTA

time quanta.

If the edge lies between sample point and the next Synchronization SegPhx8E_ERROR 0) the
Phase Buffer Segment 2 is shortened in the following way:

When the distance of the detected edge from the next Synchronization Segment is less than t
resychronization jump width, the time quanta counter is set to G@JNT= 1) and a new bit time is
started. Else the number of time quanta for this bit tiiTe)( I) is decremented bYELTA

The generation ofRANSMIT_POINTis done only if the detected edge lies Information Processing Time
after the sample point.
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elsif HARD_SYNC_ENABLE =0’ and BUS_DRIVE = ‘1’ then

Edge between SyncSeg and sample point:
Lengthen Phase Buffer Segment 1
if PHASE_ERROR > 0 then
SAMPLE_| := SAMPLE_| + DELTA,;
NTQ | :=NTQ | + DELTA;

Edge between sample point and next SyncSeg:
Shorten Phase Buffer Segment 2
elsif PHASE_ERROR <= 0 then
if COUNT > (NTQ_|I -
BIT_TIMING_CONFIGURATION.RESYNCHRONIZATION_JUMP_WIDTH) then
COUNT =1;
Generation of TRANSMIT_POINT only if edge lies
Information Processing Time after sample point
if DIFF >=
BIT_TIMING_CONFIGURATION.INFORMATION_PROCESSING_TIME then
TRANSMIT_POINT <= true;
TX_DATA <= BUS_DRIVE;
end if;
else
NTQ_I:=NTQ_I + DELTA;
end if;
end if;

Figure 10 Resynchronization, Node = Receiver.

Node is Transmitter

If the node is transmitter there will only be a Resychronization on a recessive to dominant edge if th
edge lies between the sample point and the next Synchronisation SegHaSH ERROR 0). Phase
Buffer Segment 2 is shortened by a number of time quanta less or equal the resynchronization jun
width.

If the distance of the detected edge from the next Synchronization Segment is less than tf
resychronization jump width, the time quanta counter is set to G@JNT= 1) and a new bit time is
started. Else the number of time quanta for this bit tidT&)( |) is decremented HYELTA

The generation o0fFRANSMIT_POINTis done only if the detected edge lies Information Processing Time
after the sample point.
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elsif HARD_SYNC_ENABLE ='0’ and PHASE_ERROR <= 0 then

Edge between sample point and next SyncSeg:
Shorten Phase Buffer Segment 2
if COUNT > (NTQ I -
BIT_TIMING_CONFIGURATION.RESYNCHRONIZATION_JUMP_WIDTH) then
COUNT =1;
Generation of TRANSMIT_POINT only if edge lies
Information Processing Time after sample point
if DIFF >=
BIT_TIMING_CONFIGURATION.INFORMATION_PROCESSING_TIME then
TRANSMIT_POINT <= true;
TX_DATA <= BUS_DRIVE;
end if;
else
NTQ |:=NTQ_I| + DELTA,;
end if;
end if;

Figure 11 Resynchronization, Node = Transmitter.
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4.4.2.4 process BIT_STREAM_PROCESSOR

44.2.4.1 Overview
TheBIT_STREAM_PROCESSQOg§enerates and receives the bit stream.

Input signals of proces’dT_STREAM_PROCESSOR

RESET

PROCESS_BIT

RECEIVE_DATA

BIT_ERROR

TRANSMISSION_REQUEST

TRANSMIT_MESSAGE
.FRAME_KIND
.MESSAGE.IDENTIFIER_KIND
.MESSAGE.IDENTIFIER
.MESSAGE.NBYTES
.MESSAGE.DATA

ADJUST_ERROR_COUNTERS

Functional output signals of procés3_STREAM_PROCESSOR

BUS_DRIVE

HARD_SYNC_ENABLE

TRANSMISSION_REQUEST_STATUS

RECEIVED_MESSAGE
.FRAME_KIND
.MESSAGE.IDENTIFIER_KIND
.MESSAGE.IDENTIFIER
.MESSAGE.NBYTES
.MESSAGE.DATA

BOND_OUTignals of procesBIT_STREAM_PROCESSOR

BOND_OUT(MODEL_LABEL).BUS_DRIVE
BOND_OUT(MODEL_LABEL).TRANSMIT_ERROR_COUNTER
BOND_OUT(MODEL_LABEL).RECEIVE_ERROR_COUNTER
BOND_OUT(MODEL_LABEL).TXRQST
BOND_OUT(MODEL_LABEL).FIELD
BOND_OUT(MODEL_LABEL).POSITION
BOND_OUT(MODEL_LABEL).STATUS

Traceoutput signals of proce®3T_STREAM_PROCESSOR

MESSAGE_OK
MESSAGE_RECEIVED
TX_REQUEST_STATUS
STUFF_BIT
PREVIOUS_POSITION
PREVIOUS_STATUS
PREVIOUS_FIELD
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44.2.4.2 Frame Format

STATUS The actual state of a CAN node is describe@¥TUS STATUScan have the values
RESET, WAIT_FOR_BUS IDLE, IDLE, RECEIVING, TRANSMITTING,
BUS _OFF RECOVERY.

FIELD: Each bit of a CAN protocol frame can be referenced byilisD andPOSITION inside
the frameFIELD is not equal to the field names in the CAN_Specification. It is a group of
bits with the same function. For example Identifier, Data_Length_Code or CRC_Delimiter.

POSITION: Bit position inside &IELD . The first bit has always tHROSITION number 1.
The following paragraph lists all valieiIELD names. The number in brackets is the range@$ITION.

Not taking part in message transfer, not influencing the bus
Reset, [1...++4]
Wait_For_Bus_ldle, [1...++]
Bus_ldle, [1...1+]
Bus_Off, [1...++]

Data_Frame or Remote_Frame
Start_Of_Frame, [1]
Identifier, [1...11]
SRR_Bit, [1]
IDE_Bit, [1]
Ex_ldentifier, [1...18]
RTR_BIt, [1]
Reserved_Bits, [0...1]
Data_Length_Code, [1...4]
Data_Field, [1...8xNBytes] (only in Data Frames)
CRC_Sequence, [1...15]
CRC_Delimiter, [1]
ACK_Slot, [1]
ACK_Delimiter, [1]
End_Of_Frame, [1...7]

Error_Frame
Active_Error_Flag, [1...6+]
Passive_Error_Flag, [1...6+]
Error_Delimiter, [2...8] (1st bit is last bit of Error Flag)

Overload_Frame
Overload_Flag, [1...6+]
Overload_Delimiter, [2...8] (1st bit is last bit of Error Flag)

InterFrame_Space
Intermission, [1...3]
Suspend_Transmission, [1...8]

Each of the fields Reset, Wait_For_Bus_Idle, Bus_ldle and Bus_Off implies one sp&sials For
example Bus_Idle points to IDLE and Bus_Off points to BUS_OFF_RECOVERY. All other fields are
linked withSTATUSRECEIVING or TRANSMITTING.

In processBIT_STREAM_PROCESSORata_Frame and Remote_Frame (and all the fields in it) are
calculated in own program sections separated in TRANSMITTING and RECEIVING. The Error_Frame
the Overload_Frame and the InterFrame_Space are divided in the fields which are listed above, al
separated in TRANSMITTING and RECEIVIN&TATUS
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4.4.2.4.3 Structure of process BIT_STREAM_PROCESSOR

Figure 12 shows the structure of procéd3 STREAM_PROCESSORhe parts of this process are
described in the following section. See filen_interface_reference.vhd for details of the VHDL
coding.

BIT_STREAM_PROCESSOR

if RESET then

INITIALIZATION

elsif PROCESS_BIT event and PROCESS_BIT = 1" then
TRACE assignments

STUFF assignments
ERROR STATUS assignments

case STATUS of CAN Interface
when WAIT_FOR_BUS IDLE =>

when IDLE =>

when RECEIVING =>

when TRANSMITTING =>

when BUS_OFF_RECOVERY =>

when others =>

end case

elsif ADJUST_ERROR_COUNTERS’event and
ADJUST_ERROR_COUNTERS = ‘1" then

RECEIVE_ERROR_COUNTER adjustment assignments
end if

Figure 12 Structure of the BIT_STREAM_PROCESSOR process.

INITIALIZATION
Local signals, variables and output signals are set to their default values.

TRACE assignments

Some trace signhaBREVIOUS_XXXare set before the source signals are change8SAGE_Ois set to
false. Its only true during the reception of the last bit of End of FrabmeC_OKs set to false. It can only
be true during the reception of the recessive CRC Delimiter.

STUFF assignments

The stuff variablesSTUFF_BIT and STUFF_CONDITIONare assigned according to the values of
DOMINANT_COUNTERRECESSIVE_COUNTERNd STUFF_ENABLE The signalsSTUFF_BIT and
NEXT_IS_STUFFare only used for tracing.
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ERROR_STATUS assignments
If TRANSMIT_ERROR_COUNTBRJRECEIVE_ERROR_COUNTHERe less than or equal to 127 the node
is Error Active andERROR_PASSIVHs false.

STATUS of CAN Interface
Here the actual state of the CAN node is evaluaBgATUSIs a signal ofCAN_STATUS_TYPEThe five
states (without RESET) are described in the next sections.

STATUS- BUS_OFF_RECOVERY

The node waits for 128 occurrences of 11 consecutive recessive bits on the bus, wit
HARD_SYNC_ENABLE&et to ‘1. TheRECEIVE_ERROR_COUNTHERused to count these 128 occur-
rences and thBOSITION signal is used to count 11 consecutive bits. If a dominant bit occurs on the
bus therPOSITION is reset to 1. If th(RECEIVE_ERROR_COUNTHE&Requal to 128 theBTATUSIs
changed to IDLETRANSMIT_ERROR_COUNTBRARECEIVE_ERROR_COUNTERe clearedPO-
SITION is setto ‘1.

STATUS- WAIT_FOR_BUS_IDLE

This is the first status aftedESET The node waits for 11 consecutive recessive bits which are counted
with the RECESSIVE_COUNTERvith HARD _SYNC_ENABLEet to ‘1'. If the node has monitored
these 11 bits on the bus am&ANSMISSION_REQUESIS true thenSTATUSIs changed to TRANS-
MITTING. In the other case the status is changed to IDLE.

STATUS- IDLE

The bus is now free and the node waits for a recessive to dominant edge on the bus which is interpret
as Start Of Frame. The node becomes receiver with se&MgTUS to RECEIVING and
HARD_SYNC_ENABL®D ‘0. The FIELD of the next bit is Identifier an@TUFF_ENABLHS true be-
cause Start_Of Frame is part of the stuffed area.

If no dominant bit appears on the bus the node waits foRANSMISSION_REQUESTH0 become
transmitter. ThenSTATUS is changed to TRANSMITTING. TheFIELD of the next bit is
Start_ Of Frame STUFF_ENABLEbecomes trueBUS_DRIVE is set to dominant (because of
Start_ Of Frame) andARD_SYNC_ENABLWiIll be set to ‘0.
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e STATUS- RECEIVING
The status RECEIVING is divided in 7 fields.

Status is RECEIVING

case FIELD is

when Active_Error_Flag =>
when Passive_Error_Flag =>
when Error_Delimiter =>
when Overload_Flag =>
when Overload_Delimiter =>
when Intermission =>

when others =>
end case

Figure 13 Structure of RECEIVING status.

STATUS- RECEIVING:FIELD = Active_Error_Flag

The receiver sends 6 dominant bits. If a bit error occurs during the Active_Error_Flag then a nev
Active_Error_Flag is sent and tliRECEIVE_ERROR_COUNTERNcremented by 8. After the 6th bit,

the Active_Error_Flag has finished aB)S_DRIVEIs set to ‘1. The receiver monitors the bus and
waits for a recessive bit to chan@@ATUSto Error_Delimiter. The first bit of Error_Delimiter is
recognized in the Active_Error_Flag, so #1@SITION of Error_Delimiter must be set to 2.

If the first bit after the Active _Error Flag is monitored as dominant then the
RECEIVE_ERROR_COUNTIERNcremented by 8. The receiver accepts up to 7 dominant bits after the
Active_Error_Flag. At the 8th consecutive dominant bit following the Active_Error_Flag and after
each sequence of additional eight consecutive dominant bitRE@EIVE_ERROR_COUNTHR
incremented by 8.

At each increment of thRECEIVE_ERROR_COUNTHERring the Active_Error_Flag the error counter
value is checked for ERROR_PASSIVE.

STATUS- RECEIVING:FIELD = Passive_Error_Flag

The receiver waits for 6 consecutive bits on the bus (dominant or recessive). If a bit error and
transition from dominant to recessive or from recessive to dominant is monitore@@mION is

set to ‘1. The node looks for a dominant bit after the first 6 bits of the Passive_Error_Flag. If this
occurred then theRECEIVE_ERROR_COUNTER incremented by 8. After the detection of 6
consecutive bits theASSIVE_ERROR_FLAG®as finished. The next recessive bit changeaTUSto
Error_Delimiter. The first bit of Error_Delimiter is recognized in the Passive_Error_Flag, so the
POSITION of Error_Delimiter must be set to 2.

The receiver accepts up to 7 dominant bits after the 6 consecutive Passive_Error_Flag bits. At the €
consecutive dominant bit following the Passive_Error_Flag and after each sequence of addition
eight consecutive dominant bits tRECEIVE_ERROR_COUNTHERIncremented by 8.
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STATUS- RECEIVING:FIELD = Error_Delimiter

The receiver sends 8 recessive bits on the bus. At the end of the delirien is changed to
Intermission. If a dominant bit occurs during the delimiter bits 2 - 7, then the receiver detects a forn
error and sends an Error_Flag (active or passive) RE@EIVE_ERROR_COUNTERNncremented by

1. If adominant bit is monitored at the last delimiter bit then the receiver detects an overload conditiol
and sends an Overload_Flag. The first bit of the Error_Delimiter is always recessive because it |
necessary to detect the end of an Error_Flag and to changé&timeto Error_Delimiter.

STATUS- RECEIVING:FIELD = Overload_Flag

The Overload_Flag has the same form like the Active_Error_Flag. The error actions and condition
during the flag are almost identical. The only difference is that a dominant bit at the first bit after the
Overload_Flag does not change REECEIVE_ERROR_COUNTER

STATUS- RECEIVING:FIELD = Overload_Delimiter
The Overload_Delimiter has the same form as the Error_Delimiter. The error actions and condition
during the delimiter are identical.

STATUS- RECEIVING:FIELD = Intermission

A dominant bit during the first or the second bit of Intermission is interpreted as overload condition
and the receiver sends an Overload_Flag. If the 3rd Intermission bit is monitored as dominant th
receiver interprets this as Start_ Of Frame. If tT®@ANSMISSION_REQUESIE true, the receiver
becomes transmitter and a new transmission is started (beginning with Identifier), or if
TRANSMISSION_REQUESIE false the receiver receives another frame (next bit is Identifier). At a
recessive bit at the 3rd Intermission bit the receiver becomes transmitter and starts sending a n
frame if TRANSMISSION_REQUESS true (beginning with Start_Of Frame) or changesIhaTus

to IDLE.

STATUS- RECEIVING:FIELD = others

The field “others” contains the reception of a data frame from the field Start Of Frame to
End_Of Frame and is divided in two main parts.

In the first part the actual bit is not a stuff bit. Thintifier KIND (STANDARD/EXTENDED),
FRAME_KIND(DATA/REMOTE), NBYTES(Data Length Code) and the maximum number of bits in
the frame are calculated. Then the items end of stuffed area, checksum, ACK bit, form error &
ACK_Delimiter and form error at End_Of_Frame are tested. After receiving a recessive bit at the las
position of End_Of_Frame the received messa&p MESSAGHS calculated and the node changes
FIELD to Intermission.

If during the reception the next expected bit is a stuff bit tR@SITION is not incremented and the
FIELD signal is not calculated because a stuff bit has the S2@®TION andFIELD value as the
preceding message bit.

In the second part the actual bit is a stuff BOSITION is incremented anBIELD is updated for the

next bit. If a stuff error happened an error frame is sent.
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e STATUS- TRANSMITTING
The status TRANSMITTING is divided in 8 fields.

Status is TRANSMITTING

case FIELD is
when Active_Error_Flag =>

when Passive_Error_Flag =>
when Error_Delimiter =>

when Overload_Flag =>

when Overload_Delimiter =>
when Intermission =>

when Suspend_Transmission =>

when others =>

end case

Figure 14 Structure o0FRANSMITTINGstatus.

STATUS- TRANSMITTING: FIELD = Active_Error_Flag

The transmitter sends 6 dominant bits. If a bit error occurs during the Active_Error_Flag then a nev
Active_Error_Flag is sent and tHeRANSMIT_ERROR_COUNTERIncremented by 8. After the 6th

bit, the Active_Error_Flag has finished aBtJS_DRIVE is set to ‘1’. The transmitter monitors the
bus and waits for a recessive bit to changeSmaTUSto Error_Delimiter. The first bit of delimiter

is recognized in the Active_Error_Flag, so H@SITION of delimiter must be set to 2.

The transmitter accepts up to 7 dominant bits after the Active_Error_Flag. At the 8th consecutiv
dominant bit following the Active_Error_Flag and after each sequence of additional eight consecutiv
dominant bits th@RANSMIT_ERROR_COUNTEiERNcremented by 8.

At each increment of th#RANSMIT_ERROR_COUNTHERring the Active_Error_Flag the counter
value is checked for ERROR_PASSIVE and Bus Off.

STATUS- TRANSMITTING: FIELD = Passive_Error_Flag

First the node looks for a dominant bit during the first 6 Passive_Error_Flag bits. If an ACK error has
occurred before ACK_Slot then tHERANSMIT_ERROR_COUNTHERIncremented by 8. Next the
transmitter waits for 6 consecutive bits on the bus (dominant or recessive). If a bit error and :
transition from dominant to recessive or from recessive to dominant is monitore@@&mION is

setto ‘1’. After the detection of 6 consecutive bits #®SSIVE_ERROR_FLA®as finished. The next
recessive bit changes tIsgATUSto Error_Delimiter. The first bit of delimiter is recognized in the
Passive Error_Flag, so tROSITION of delimiter must be set to 2.

The transmitter accepts up to 7 dominant bits after the 6 consecutive Passive_Error_Flag bits. At tl
8th consecutive dominant bit following the Passive_Error_Flag and after each sequence of addition
eight consecutive dominant bits thRANSMIT_ERROR_COUNTERncremented by 8.

At each increment of theRANSMIT_ERROR_COUNTHERring the Passive_Error_Flag the counter
value is checked for Bus Off.
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STATUS- TRANSMITTING: FIELD = Error_Delimiter

The transmitter sends 8 recessive bits on the bus. At the end of the delifieD is changed to
Intermission. If a dominant bit occurs during the Error_Delimiter bits 2 - 7, then the transmitter
detects a form error and sends an Error_Flag (active or passiveJ.RANSMIT_ERROR_COUNTER

is incremented by 8. If a dominant bit is monitored at the last delimiter bit then the transmitter detect
an overload condition and sends an Overload_Flag. The first bit of the Error_Delimiter is always
recessive because it is necessary to detect the end of an Error_Flag and to charigelheo
Error_Delimiter.

STATUS- TRANSMITTING: FIELD Overload_Flag
The Overload_Flag has the same form like the Active_Error_Flag. The error actions and condition
during the flag are identical.

STATUS- TRANSMITTING: FIELD Overload_Delimiter
The Overload_Delimiter has the same form as the Error_Delimiter. The error actions and condition
during the delimiter are identical.

STATUS- TRANSMITTING: FIELD Intermission

A dominant bit during the first or the second bit of Intermission is interpreted as overload condition
and the transmitter sends an Overload_Flag. If the 3rd Intermission bit is monitored as dominant tf
transmitter interprets this as Start Of Frame. If tHEPANSMISSION_REQUESTS true a new
transmission is started (beginning with Identifier), orTRANSMISSION_REQUESTS false the
transmitter becomes a receiver (next bit is Identifier). At a recessive bit at the 3rd Intermission bit th
transmitter sends Suspend_TransmissiorERRROR_PASSIVE starts sending a new frame if
TRANSMISSION_REQUESS true (beginning with Start_Of _Frame) or changesshaTuSto IDLE.

STATUS- TRANSMITTING: FIELD Suspend_Transmission

The Error Passive transmitter sends after Intermission 8 recessive bits on the bus. When meanwhil
dominant bit occurs the node interprets this as Start_ Of Frame and becomes receiver. After sendi
the suspend bits the transmitter starts transmitting a messagaNSMISSION _REQUESS true or

if false chang&TATUSto IDLE.

STATUS- TRANSMITTING: FIELD others

The field “others” contains the transmission of a data frame from the field Start Of Frame to
End_Of Frame.

The first part assigns the actuaRANSMIT_BIT from the BIT_MESSAGEIn depend ofFIELD,
POSITION andSTUFF_BIT. TheTRANSMIT_ERROR_COUNTERIecremented by 1 at the last bit of
End_Of Frame and th8 TUFF_ENABLEvariable is set false at the end of the stuffed area. If
STUFF_CONDITIONIs true the next bit is a stuff bit. ThePOSITION is not incremented anelELD

is not changed. The stuff bits are not pamBidaf MESSAGE

The next part sets ti@&US_DRIVEsignal.BUS_DRIVEis the bit which is transmitted in the next event.

If the next bit is a stuff bit theBUS_DRIVEgets the complementary value of the actual transmitted
bit. In the other caseUS_DRIVEgets the value of the next bit fraBir_MESSAGE

The next section checks for the error conditions during the transmission. First a stuff error at RTR b
in an extended frame is checked, because this stuff error is different to a RTR stuff error in a standa
frame. Next the arbitration and the possible errors in the arbitration field are tested. The transmitte
lost the arbitration when the bit that is monitored is domin&ugMON ‘0’) and is different to the

bit value that is senBIT_ERROR=true). Then the ACK error and the bit errors outside the arbitration
field are tested.
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4.4.2.5 Output to the Trace File

The operation of the test program and of the CAN modules is documented by writing text into the
simulation’s trace file. This architecturREFERENCHNcorporates three trace processeBACING
REQUEST_STATUSINdRECEIVE_MESSAGE

REQUEST_STATUS triggered by each change oK_REQUEST_STATU$he internal name of the
output TRANSMISSION_REQUEST_STATUSWhen TRANSMISSION_REQUEST_STATU&hanges, a
line is written into the trace file, containing a time stamp, B@DEL_LABEI(to identify the source of
the trace message), and the new staldROINSMISSION_REQUEST_STATUS

RECEIVE_MESSAGEH triggered by each reception of an error-free CAN message. The received messag
is written into the trace file, together with time stamp andDEL_LABELThe note written into the trace

file starts with the information whether a Data or a Remote, a Standard or an Extended Frame is receive
Then follow the Identifier, the Data Length Code, and, if actually received, the Data Bytes.

TRACINGis scheduled regularly, at the end of the Information Processing Time after the Sample Poin
For each evaluation of the proce®3_STREAM_PROCESSOQRNe line of text is written into the trace

file. This line starts, as before, with time stamp an@DEL_LABELThen follow the position of the
processed bit in thEIELD , the STATUSandFIELD at the last Sample Point, tiRECEIVE_DATAat the

last Sample Point, whether tHRECEIVE_DATAwas aBIT_ERROR the transmitted bit, and the values

of the RECEIVE_ERROR_COUNTERATRANSMIT_ERROR_COUNTEBRhen the CAN module leaves
reset state, some header lines are printed into the trace file, describing the trace signals. Some exam|
of trace output are described in figure 15, figure 16, and figure 17.

In the trace package (see filmce package.vhd ), the global signalfRACE_CONTROIs declared.
TRACE_CONTROE an array{iODEL_LABEL_TYP)Eof std_ulogic_vectors, providing each instance of
a CAN model with its own 10-biTRACE_CONTRO\ector (default value = “1111111111"). In the
architecture REFERENCE TRACE_CONTRQ@MODEL_LABE)(0) enables the processRACING to
document the function of the proceBsT_STREAM_PROCESSOBy writing to the trace file at each
Sample-Point. By settinfRACE_CONTR@MODEL_LABE)(0) to ‘0’, the CAN model with the generic
parameteMODEL_LABELs prevented from writing trace output at each Sample-Point.

The other bits of th@RACE_CONTRO\ector are not used by the architecttREFERENCEthey are
provided to control the trace output of the different parts of an implementation’s model.
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Tx_Rgst_Status of CAN1 changed to DONE
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Tx_Rgst_Status of CAN2 changed to DONE

RefCANZ2 left Reset State
RefCANO left Reset State
RefCANL1 left Reset State
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Node n State/Field at SamplePt dret C C
RefCANO 1 Wait_For_Bus_ldle 101F 0 O
RefCAN1 1 Wait_For_Bus_ldle 101F 0 O
RefCAN2 1 Wait For_Bus_lIdle 101F 0 O
Implementation and refCAN are synchronised
RefCANO 2 Wait_For_Bus_ldle 011F 0 O
RefCAN2 11 Wait_For_Bus_ldle 101F 0 O

WAIT_FOR: STATUS, FIELD and POSITION reached !

| Start of Test (Receive Error Counter counts up and down) |

RefCANO 1 Bus_ldle

011F 0 0
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906801
906802
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907601
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907801
907802
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908801
908802
909800
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909802
910800
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RefCANO 8 Tx_Identifier
RefCAN1 8 Tx_Identifier
RefCAN2 8 Tx_ldentifier

001T127 120
001T127 120
O0OO0OF 12 16

Tx_Rgst_Status of CANO changed to PENDING
Tx_Rgst_Status of CAN1 changed to PENDING

RefCANO 9
RefCAN1 9
RefCAN2 9
RefCANO 10
RefCAN1 10
RefCAN2 10
RefCANO 11
RefCAN1 11
RefCAN2 11
RefCANO
RefCAN1
RefCAN2
RefCANO
RefCAN1
RefCAN2
RefCANO
RefCAN1
RefCAN2
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RefCAN1
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Tx_Identifier
Tx_Identifier
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Tx_ldentifier
Rx_ldentifier
Rx_ldentifier
Tx_ldentifier
Rx_RTR_Bit
Rx_RTR_Bit
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Rx_IDE_Bit
Tx_IDE_Bit
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Tx_Reserved_Bits

011T127 120
01171127 120

Figure 16 Example of lost arbitration in a simulation’s trace file (e.g. test program emicount).
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In figure 16, RefCANL1 and the parallely simulated RefCANO (the implementation) lose arbitration at the
9th Identifier bit. In figure 17, RefCAN2 does not send Acknowledge because of a CRC Error, therefor:
RefCAN1 and RefCANO see an Acknowledge Error.

45800 RefCANO
45801 RefCAN1
45802 RefCAN2
46800 RefCANO
46801 RefCAN1
46802 RefCAN2
47800 RefCANO
47801 RefCAN1
47802 RefCAN2
48800 RefCANO
48801 RefCAN1
48802 RefCAN2
49800 RefCANO 1 Rx_ACK_Slot 1
49801 RefCAN1 1 Rx_ACK_Slot 1
49802 RefCAN2 1 Tx_ACK_Slot 1

1

Rx_CRC_Sequence
Rx_CRC_Sequence
Tx_CRC_Sequence
Rx_CRC_Sequence
Rx_CRC_Sequence
Tx_CRC_Sequence
Rx_CRC_Sequence
Rx_CRC_Sequence
Tx_CRC_Sequence
Rx_CRC_Delimiter

Rx_CRC_Delimiter

Tx_CRC_Delimiter
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50602 Tx_Rgst_Status of CAN2 changed to ERROR

50800 RefCANO 1 Rx_ACK_Delimiter 0

50801 RefCAN1 1 Rx_ACK_Delimiter 01
50802 RefCAN2 1 Tx_Active_Error_Flag 000
51602 Tx_Rqst_Status of CAN2 changed to PENDING
51800 RefCANO 1 Rx_Active_Error_Flag 00
51801 RefCAN1 1 Rx_Active_Error_Flag
51802 RefCAN2 2 Tx_Active _Error_Flag
52800 RefCANO 2 Rx_Active_Error_Flag
52801 RefCAN1 2 Rx_Active_Error_Flag

o
o
oo OOOOOOOOOOOOOO
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0
0
0
0
0
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Figure 17 Example of CRC Error in a simulation’s trace file (e.g. test program crc).

4.4.2.6 CAN Specification and Reference CAN Model

In case of some error conditions, the CAN node’s reaction is left open by the actual CAN protoco
specification. In these cases, the C Reference CAN Model sets a standard, which is implemented in eve
existing CAN controller and in this VHDL Reference CAN Model :

Reception of Data Length Code > 8
The receiver regards the received Data Length Code as = 8.

Reception of dominant bit at last bit of End of Frame.
Message is valid, no error counter is incremented, Overload Frame is started.

Reception of a dominant SRR bit in an Extended Frame
SRR should have been send recessive, but actual value is ignored (same as for Reserved Bits).

Hard Synchronisation
The Hard Synchronisation is enabled not only for Bus Idle state, but also for Suspend state and tl
end of the Intermission State, as required for the reception of a Start of Frame.

Receive Error Count

Once the Receive Error Count has reached its Error Passive level, itis no longer incremented, becal
then its actual value is of no interest. Theoretically, the Fault Confinement Rules could increment th
Receive Error Count’s value over all limits.

A new revision of the ISO 11898 CAN protocol specification is in preparation that will cover these case:
the same way as the Reference CAN Models.
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In the Reference CAN Model, thRECEIVE_ERROR_COUNTERuUSsed to count the Busoff Recovery
Sequence, a dedicatB&CESSIVE_COUNTER used to count the sequences of 11 consecutive recessive
bits. Both implementations are not obligatory; the internal structure of architeREFERENCHS
designed to interface with the protocol check processes, it is not intended as an example for hardwe
implementations of CAN protocol controllers.

4.4.2.7 Special Features of architecture REFERENCE for Protocol Check.
The architecture reference has two special features:

The first feature is the adjustable Receive Error Counter : After the successful reception of a messac
when the Receive Error Counter is decremented, then it will be set to a value of 127 (its maximum valu
is limited to 136). Since the implementation’s Receive Error Count may be set to another value (in th
range of 119 to 127), the Reference CAN Model can adjust itself to the value of
BOND_OUT(0).RECEIVE_ERROR_COUNTER the feature is enabled b§AN_INTERFACE generic
GET_RECEIVE_ERROR_COUNTER_FROM_MODETLh6 Reference CAN Model that is simulated in
parallel to the implementation’s model inside architecC@PARE the only CAN node for which this
feature is enabled (see section 4.4.1). Other architectui@adfINTERFACHgnore this generic (with

the exception 0BAD_EXAMPLE

The second feature is a “freeze”-function. In order to synchronize the Reference CAN Model to extern:
events, it is possible to stop its bit processing (not its bit synchronization) by setting the global signe
FREEZE(MODEL_LABEL) to true. FREEZE is a global signal that is defined in the package
definitions.vhd , itis an array of boolean, range from INBAXIMUM_NUMBER_OF_CAM#ile the
Reference CAN Model is “frozen”, it still synchronizes itself to the bit stream, when it is “thawed up”
(by settingFREEZE(MODEL_LABELY}o false), it restarts its bit processing at the same state when it was
“frozen”. The “freeze”-function is provided for the test of implementation’s models that need a longer
idle time between messages to set up hew messages or to read received messages (e. g. implementa
with a slow CPU interface), it is not used in the existing test programs.
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4.4.3 architecture IMPLEMENTATION

The architecturéeMPLEMENTATIONof CAN_INTERFACHS an external shell for the user's model of a
CAN implementation, providing a standardized interface between the user's model, the simulatio
environment, and the test programs. The internal structun®BELEMENTATIONIs supposed to be
defined by the configurationCONFIGURATION_IMPLEMENTATIQNfollowing the example of
architectureEXAMPLEand CONFIGURATION_EXAMPLIB section 4.4.4 and the description in section
5.1.

In that version ofCONFIGURATION_IMPLEMENTATIQNhat is distributed with the VHDL Reference
CAN Model, architecturetMPLEMENTATIONS substituted by architectuREFERENCE

4.4.4 architecture EXAMPLE

The architecture described here (see figure 18) is a combination of a simple CAN module, consisting (.
defined in chaptelintroduction at page 1, see figure 19 at page 59) of three major parts:

* Interface to the CPU,

» CAN Protocol Controller (with a separate Control Register),

* Message Memory,

and of an elementary CPU model. This model is adapted to the CAN module’s specific CPU interfac

The purpose of the CPU model is to drive the CPU interface of the CAN module (performing the
functions write_data and read_data), interfacing between the CAN model and the protocol test progran
The interposed CPU keeps the protocol test programs independent of particular CAN modules.

TRANSMIT_DATA A ‘ RECEIVE_DATA

E = CAN_INTERFACE l

E=CPU E = CAN_MODULE

CPU_BUS

Control Signals

> MODEL_LABEL = generic

RECEIVE_INTERRUPT

A = READ_WRITE A = SIMPLE

A A

I A = EXAMPLE

* Interface Signals

Figure 18 architecturEXAMPLEOf CAN_INTERFACE
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EXAMPLEHSs a structural architecture, consisting of the componenaid_MODE(entity CAN_MODULE
and CPU_MODEL(entity CPUY. In the configurationCONFIGURATION_EXAMPLEthe component
CPU_MODEIs associated with architectuREAD_WRITEthe componenCAN_MODEIs associated with
architectureSIMPLE. SIMPLE is intended as a prototype for an implementation’s model to be verified.

4.4.4.1 architecture SIMPLE of CAN_MODULE

TRANSMIT_DATA A RECEIVE_DATA
E = CAN_MODULE ¢
P = SYNCHRONIZE_
RECEIVED_DATA
¢ SYNCHRONIZED_DATA
E = CAN_INTERFACE
MODEL_LABEL = generic
A = REFERENCE
TRANSMIT TRANSMISSION_ BIT_TIMING_
MESSAGE REQUEST CONFIGURATION
E = CAN_MESSAGE E = CAN_CONTROL
—
A =BASIC A =TIMING
16 INTERNAL_BUS A
Internal Control Signals
E = CPU_INTERFACE IiIJ
o
A = PARALLEL_16 BIT U;_)
AN 1
<
N A A

2 2 =

Z'= o 16 P

P = 2 Z o

n v, z S Oz

D ' ) S <

58 g 2 v =2
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Figure 19 architectur8IMPLE of CAN_MODULE
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This is a structural architecture of a CAN module with a basic message memory. It can be used as
template showing how a CAN module implementation should look like to be simulated together with the
Reference CAN Model node in the CAN protocol testbench.

In the configurationCONFIGURATION_EXAMPL.Ehe componenCAN_PROTOCOL_CONTROLLER
associated with architecturBEFERENCE the componentMESSAGE_MEMORSY associated with
architectureBASIC, the componenCONTROL_REGISTER associated with architectuféMING, and
the componenCPU_ACCESS$s associated with architectUPARALLEL_16_BIT.

This structure is only an example, it is by no means a mandatory standard for all implementations; e.(
the control register could be part of a synthesizable protocol controller. The internal structure of the CAI
module is optional, but the user has to be aware that using the testbench and the test programs supp
with this VHDL Reference CAN Model only assures the conformity of the CAN Protocol Controller part
of the implementation with CAN Protocol Version 2.0 Part A, B. In order to verify the correct function
of the CPU interface and of the message memory, the user has to write additional test programs.

4.4.4.1.1 architecture BASIC of CAN_MESSAGE

This is an example of a CAN module’s message memory with basic functions. It consists of a receiv
buffer and of a transmit buffer, each buffer consisting of 7 words of 16 bits. The receive buffer stores th
last received message, the transmit buffer stores the message to be transmitted.

Address| RECEIVE_BUFFERAddress-1)(15 downto 0) | AddressTRANSMIT _BUFFERddress-8)(15 downto 0)

16#02# New_Data & Message_Lost & “0” & 16#09# Do_Transmit & Tx_Pending & “0” &
Identifier(28 downto 16) Identifier(28 downto 16)

16#03# Identifier(15 downto 0) 16#0A# Identifier(15 downto 0)

16#04# Extended & Remote & "0000000000” & 16#0B# Extended & Remote & "0000000000” &

Data_Length_Code Data_Length_Code

16#05# Data(1) & Data(2) 16#0C# Data(1) & Data(2)

16#06# Data(3) & Data(4) 16#0D# Data(3) & Data(4)

16#07# Data(5) & Data(6) 16#0E# Data(5) & Data(6)

16#08# Data(7) & Data(8) 16#0F# Data(7) & Data(8)

Table 1: Address map of the CAN module’s message memory in architecture BASIC.

The messages are stored as std_logic_vectors, a bit with value ‘0’ corresponds to a dominant bit on t
CAN bus, a bit with value ‘1’ corresponds to a recessive bit. In case of standard frames, only the first 1
of the 29 Identifier bits are used, Identifier (28 downto 18) is then regarded as Identifier (10 downto C

In the RECEIVE_BUFFERNew_Data and Message_Lost are status bits, which can be read and writtet
by the CPU. Each time a message is received, the message memory sets New_Data; the CPU is expe
to reset New_Data before reading the message. When New_Data is not reset at the reception of the r
message, the message memory will set Message Lost. Each reception of a message is signalled to
CPU by a pulse of the interrupt lIRECEIVE_INTERRUPT

The message memory does not do any acceptance filtering, each received message is stored into
RECEIVE_BUFFERWhen a new message is stored, the previous message is lost. The reception of
message is documented by printing the content of the message into the simulation’s trace file.

In the TRANSMIT_BUFFERDo_Transmit and Tx_Pending are command and status bits, which can be
read and written by the CPU. The CPU sets both Do_Transmit and Tx_Pending to request th
transmission of a message. When the transmission has started, the message memory resets Tx_Pen
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When the transmission is successfully completed and Tx_Pending is not set again by the CPU, tl
message memory resets Do_Transmit. If the CPU resets Do_Transmit before the transmission
completed, the transmission will not be repeated in case of an error or when it lost arbitration. Th
TRANSMISSION_REQUESSignal to the CAN Protocol Controller is active as long as Do_Transmit is
set. Any changes afRANSMISSION_REQUESAre documented by printing a note into the simulation’s
trace file.

4.4.4.1.2 architecture PARALLEL_16_BIT of CPU_INTERFACE

This architecture connects the external tristalR)_BUSwith the tristatelNTERNAL_BUS both buses
being 16 bits wide with a non-multiplexed 4-IADDRESSus. The direction of the tristate buses is
controlled by the signalREADandWRITE The internal control signaREAD_TandWRITE_T for the
control register are generated fra®BAD WRITE, andADDRESSThe address decoding for the message
memory is done in that component.

4.4.4.1.3 architecture TIMING of CPU_CONTROL

This component controls theBIT_TIMING_CONFIGURATION input of the component
CAN_PROTOCOL_CONTROLLUERtity CAN_INTERFACE The CPU writes the values of the parameters
Resynchronisation_Jump_Width, Prescaler, Propagation_Segment, and Phase_Buffer_Segment_1
the TIMING_REGISTER The parameter Information_Processing_Time is not programmable in a
hardware implementation, so it is not included in thiMING_REGISTER In this example, it is
controlled directly by the test program.

Address TIMING_REGISTER(15 downto 0)

16#00# Resynchronisation_Jump_Width[1:0] & '0' & Prescaler[4:0] & '0' &
Propagation_Segment[2:0] & '0' & Phase_Buffer_Segment_1[2:0]

16#01# not used

Table 2: Address map of the CAN module’s control register in architecture TIMING.

In a hardware implementation, Information_Processing_Time would be an intrinsic attribute of the
design, requiring the test program to use the same value for the configuration of the parallely simulate
reference model. To keep the test programs independent of the hardware implementations, the act
value of Information_Processing_Time is not defined in the source code files of the test programs, it |
defined by a generic parameter of the test program’s entity.

The generic paramettMFORMATION_PROCESSING_TIMIS associated with its actual value in the test
program’s configuration of the testbench.
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4.4.4.2 architecture READ_WRITE of CPU

TheCPUcontrolling theCAN_MODULIBSside the architectureXAMPLEOf CAN_INTERFACEServes two
purposes. FirstCPUtranslates the inpuBIT_TIMING_CONFIGURATION, TRANSMIT_MESSAGEnd
TRANSMISSION_REQUES®f CAN_INTERFACEHNto write commands, interfacing between the protocol
test programs and the CAN implementation’s model. And secGrtmonitors the operation of the
CAN_MODULENd makes its internal function visible at the entity’s ports by reading received message
from theRECEIVE_BUFFERand by reading the transmit status bits Do_Transmit and Tx_Pending.

Event Reaction of CPU

Change of BIT_TIMING_CONFIGURATION| CPU writes Bit Timing Configuration into TIMING_REGISTER
Change of TRANSMIT_MESSAGE CPU updates TRANSMIT_BUFFER

Change of TRANSMISSION_REQUEST CPU updates Do_Transmit and Tx_Pending

Edge of RECEIVE_INTERRUPT CPU reads RECEIVE_BUFFERand updates

RECEIVED_MESSAG#ort signal

TRANSMISSION_REQUEST_STATUS CPU checks Do_Transmit and Tx_Pending
changes to DONEor to TRANSMITTING

No Event No operation, NOP

Table 3: Features of the architecture READ_WRITEf CPU

The CPUactions in table 3 are listed in order of priority, with writing iInftMING_REGISTER having
the highest and NOP having the lowest priority. Each actid@Rifis documented by printing a note into
the simulation’s trace file.

This architectur&READ_WRITEOf entity CPUIs specifically designed to interface between the protocol
test programs and the architect@®i®PLE of entity CAN_MODULBther CAN module implementations

will require a different CPU entity, interfacing the particular type of data bus of the CAN module’s
entity. Those implementation specific CPU models will have to provide the same features a
READ WRITE
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4.45 architecture BAD_EXAMPLE

The architecturéBAD_EXAMPLBf CAN_INTERFACHS a slightly modified copy of the architecture
REFERENCHsee section 4.4.2). It is used DONFIGURATION_BUGGWYf architectureEXAMPLE
CONFIGURATION_BUGGY a copy of CONFIGURATION_EXAMPLEsee section 4.4.4) with the
exception that the componenCAN_PROTOCOL_CONTROLLH& associated with architecture
BAD_EXAMPLHEnstead of architectulREFERENCE

This buggy version of a CAN implementation demonstrates, when simulated in configusa$oB of
CAN_SYSTEMsee section 4.2.3), how tHRROTOCOL_CHEGHK architectureCOMPAREKSee section
4.4.1.1) reveals CAN protocol errors.

Aside from the deliberately inserted CAN protocol err@&8P_EXAMPLE modified in one other point:
The value of thé(RECEIVE ERROR COUMen itis decreased from Error Passive level to Error Active
level. In the CAN specification, the fault confinement rule 8 stat&fg:f‘ the successful reception of a
message ..., the RECEIVE ERROR COUNMIdecreased by 1 ..., and if it was greater than 127, it will be set to

a value between 119 and 127“. At that condition, theRECEIVE ERROR COUNS set to 127 in
REFERENCEand to 119 inBAD_EXAMPLEthe nomenclature of the architectures is not intended to
favour either value).

Simulating the componenREFERENCE(architectureREFERENCE in parallel to the component
IMPLEMENTATION (configuration CONFIGURATION_BUGGYf architectureEXAMPLE inside the
architecture COMPAREdemonstrates how a Reference CAN Model node adapts itself to the
IMPLEMENTATIORs RECEIVE ERROR COUNalue when there is a difference of that values caused
by a different application of fault confinement rule 8. If there is a difference oRIBEEIVE ERROR
COUNTvalues caused by other reasons, the Reference CAN Model node will not adapt itself; th
difference will be regarded as a CAN protocol error.
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45 TEST_PROGRAM

For the verification of CAN Protocol Controllers, tRROTOCOL_TESTBENG$ee chapter 4 at page 27)
is provided with a set of test programs. Each test program is described by a separate architatture

of TEST_PROGRARktest> stands for the individual program’s name), it is linked by a configuration
of PROTOCOL_TESTBENGskEe section 5.2). Aktest> architectures have the same structure (shown
in figure 20), consisting of the three procesSasMULI , REQUESTBNdSYNCHRONIZE_REQUESThe
‘Interface Signals’ link the test program with the CAN nodes located in the architeet&éBLE of
CAN_SYSTEM

* Interface Signals

TRANSMISSION_REQUEST
-

TRANSMISSION_REQUEST_STATUS

SET_TRANSMISSION_REQUEST

RESET_TRANSMISSION_REQUEST

QUEST

HOLD_TRANSMISSION_REQUEST

E =TEST_PROGRAM

START_TRANSMISSION

P = STIMULI RESET_REQUEST

P = REQUEST

DO_ARBITRATION

YYyvYyYVvYyvVy

REQUEST_WHILE_BUSY

SYNCHRONIZE_RE

REQUEST_ACCEPTED

P

A = <test>

Figure 20 Structure of an architectytest> of TEST_PROGRAM

The test program is subdivided into three proce REQUESBNASYNCHRONIZE_REQUESDnNtrol the
TRANSMISSION_REQUESTIinputs of all CAN nodes, whileSTIMULI controls the RESET
BIT_TIMING_CONFIGURATION, and the TRANSMIT_MESSAGEHNnputs of all CAN nodes in the
CAN_SYSTEMas well as theBUS_INTERFERENCEHNputs of allBUS_INTERFACEcomponents. The
TRANSMISSION_REQUEST inputs are driven by a separate process, because the
TRANSMISSION_REQUESInhput of one particular CAN node depends on the state transitions of the
corresponding TRANSMISSION_REQUEST_STATUS port, while  the inputs RESET
BIT_TIMING_CONFIGURATION, TRANSMIT_MESSAGEand BUS_INTERFERENCEare driven as
required by the flow of the protocol test program.

The subdivision allowsSTIMULI to require REQUESTand SYNCHRONIZE_REQUESID set the
TRANSMISSION_REQUESIRputs of several CAN nodes at the same time and to continue the program
without waiting for the proper reset conditions of the sepaRANSMISSION_REQUESThputs.
STIMULI, REQUESTand SYNCHRONIZE_REQUESTcommunicate by means of internal signals of
TEST_PROGRAffor an example of a test program see section 5.3).
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ProcesseREQUESTand SYNCHRONIZE_REQUESThe internal signals ofEST_PROGRAMiNd the
procedures used §TIMULI are the same for all architecturesTST_PROGRAM herefore they are
extracted from the test program source code files and stored in sepahate files. The core of the
source code, th8TIMULI process, remains in the filest>.vpp , referencing the.vhi files by

“#include” statements. The internal signals ofEST_PROGRAMare defined in file
signal_definition.vhi , request_process.vhi contains the processeREQUEST and

SYNCHRONIZE_REQUEST while the internal procedures ofSTIMULI are shifted into
test_routines.vhi

‘make’ uses the C-compiler’s preprocessor cpp to process the “# include” statements, generating the fi
<test>.vhd from<test>.vpp and the:.vhi files (see section 5.3).

45.1 process STIMULI

ProcessSTIMULI consists of a sequence of statements which form the specific test program. It begin:
with an initialization of the CAN nodes; at the end of the process, an assertion of severity failure stop
the simulation.

A typical protocol test program consists of the following statements :

» Assignments to the ‘Interface Signals’ which are output of proc&sHMULI, e.g.
BUS_INTERFERENCIH force theRECEIVE_DATAInputs of specific CAN nodes to particular values.

* ‘wait ' statements, waiting for an integer multipleGfOCK_PERIODr BIT_TIME .

* Procedure call statements, invokingTIALIZE , WAIT_FOR SEND_MESSAGBNdWRITE_TRACE
» Assignments to internal signals to exchange information with other processes.

The statements may be groupedifin’‘or ‘case * branches or in loops.

INITIALIZE , WAIT_FOR andSEND_MESSAG# e local procedures of the architecture and are located
in the included filetest_routines.vhi , While WRITE_TRACHS a global procedure, located in the
packagearace package.vhd

45.1.1 procedure INITIALIZE
( CFG BIT_TIMING_CONFIGURATION_TYPE )

INITIALIZE setsRESETactive, disables alTRANSMISSION_REQUESTignals, assigns the actual
BIT_TIMING_CONFIGURATIONas well as the internal signalT_TIME and set8US_INTERFERENCE
to NONHor all nodes irCAN_SYSTEM

After the initialization RESETis disabled and the CAN nodes are synchronized by applying an edge from
recessive to dominant to tiRECEIVE_DATAInputs of all CAN nodes. Since the time from the end of
the hardware reset to the begin of the CAN bus activity is implementation-specific, depending e.g. o
the extent of the message memory’s initializatiMi;TIALIZE ~ adapts to this time, controlled by the
generic parametetSlITIALIZATION_CYCLES andINIT_SETUP of TEST_PROGRAM

The default value ofNITIALIZATION_CYCLES is 1, resulting in only one synchronisation-edge after
the hardware reset, but if a higher value is defined in a configuration ¢tfR@TOCOL_TESTBENCH
sequence of dominant and recessive bits gives the necessary time for initialization. After the la:
dominant bit, all CAN nodes iCAN_SYSTEMre expected to have started their CAN bus activities and
all nodes are waiting synchronously for a sequence of 11 recessive bits before starting the reception &
transmission of framesINIT_SETUP adjusts the evaluation time of the proceSTIMULI of
TEST_PROGRAMIth respect to the CAN bit time.
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45.1.2 procedure WAIT_FOR

( CAN_LABEL MODEL_LABEL_TYPE
STATUS CAN_STATUS_TYPE
FIELD FIELD_NAME_TYPE
POSITION  natural )

WAIT_FORwaits until the CAN node specified b@AN_LABELreaches the sample point of a bit
POSITION in a CAN frameFIELD while being in a particulalSTATUS After this sample point,
WAIT_FORwaits for the the end of Phase Buffer Segment 2, synchronizing the test program to the CAN
bus.

If the desired conditions are not met before a limiMXAXIMUM_WAIT_PERIODSCLOCK_PERIOD(1)

is reached, the simulation is stopped by an assertion of severity failure. This limit is implemented t
avoid never-ending loops. The default value of the natural siy@ediIMUM_WAIT_PERIOD& 2000
(defined insignal_definition.vhi ); the value may be changed in the test program.

4.5.1.3 procedure SEND_ MESSAGE

( CAN_LABEL MODEL_LABEL_TYPE
MESSAGE FRAME_TYPE
COMPLETION_CONDITION COMPLETION_CONDITION_TYPE )

SEND_MESSAGESSIgNSMESSAGHEO the TRANSMIT_MESSAGIRhput of the CAN node specified by
CAN_LABELand triggers theREQUESTprocess to set the transmission request for the labelled CAN.
Then the procedure (or the proce®EQUEST see section 4.5.2) waits for the specified
COMPLETION_CONDITION

There are fouCOMPLETION_CONDITIONS
* REQUESTED SEND_MESSAGHESt requests a transmission.
* STARTED SEND_MESSAGHaits until the requested transmission has started on the CAN bus.

» SUCCEEDED_OR_ERRORSEND_MESSAGRaits until the requested transmission has completed
or is interrupted by an error frame.

e SUCCEDED SEND_MESSAGHaits until the requested transmission has completed.

4514 procedure WRITE_TRACE

WRITE_TRACE called with a string parameter, writes the string into the simulation’s trace file. An
optional second parametd¥l(ES , default natural value 3) controls whether the same string is copied
into the pattern file (see section 5.4) and the string’s print format (seedide_package.vhd ). If
written to the TRACEFILE, the string may preceded by a time stamp (default), if written to the
PATTERNFILE, it may preceded by a time stamp or a comment marker.

If FILES = 0, write only toTRACEFILE, without time stamp.

If FILES = 1, write only toTRACEFILE, including time stamp.

If FILES = 2, write to both files, without time stamp.

If FILES = 3, write to both files, including time stamp.

If FILES = 4, write to both files, including time stamp; alternate format with comment marker.

If FILES =5, write only toPATTERNFILE, without time stamp.

If FILES = 6, write only taPATTERNFILE, including time stamp.

If FILES =7, write only toPATTERNFILE, including time stampalternate format with comment marker.
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Accesses teATTERNFILE are only enabled WSE_SECOND_FILE="1".

The format of thePATTERNFILE output may have to be adapted to the actual simulator tool. The
"alternate format" for the patternfile assumes that the patternfile-reading program treats lines startir
with a "#" character as a comment. For programs that use different labels to mark comments, the stril
"#"in ‘(FILES = 4) or (FILES = 7)’ has to be adapted.

4.5.2 process REQUEST

This process is part of every protocol test program. It sets and reset®@f._TX REQUESIhputs of
process SYNCHRONIZE_REQUESTThe process is controlled by the input signal vectors
SET_TRANSMISSION_REQUEST RESET_TRANSMISSION _REQUEST START_TRANSMISSION
HOLD_TRANSMISSION_REQUESTRESET_REQUEST from process STIMULI and by the
TRANSMISSION_REQUEST_STATUS the particular CAN node.

RESET_REQUESIE a boolean signal, causiEQUESTO reset alTRANSMISSION_REQUESSignals,
while SET_TRANSMISSION_REQUESBTART_TRANSMISSIONRESET_TRANSMISSION_REQUEST
and HOLD_TRANSMISSION_REQUESAre boolean vectors, with one element for each node in the
CAN_SYSTEM

STIMULI or, to be more specific, its local procedl8BND_MESSAGHas three options to control the
TRANSMISSION_REQUESIhput of a CAN node :

e It can control TRANSMISSION_REQUESTdirectly by SET_TRANSMISSION_REQUESTand
RESET_TRANSMISSION_REQUEST

* START_TRANSMISSION requires REQUEST to activate TRANSMISSION_REQUEST until
TRANSMISSION_REQUEST_STATWhanges tdRANSMITTING

* HOLD_TRANSMISSION_REQUESEquiresREQUESTt0 activate TRANSMISSION_REQUESTntil
TRANSMISSION_REQUEST_STATUW®anges tDONE

REQUEST_WHILE_BUSI¢ a boolean vector, with one element for each node inChis_SYSTEMIts
elements are set to true BEQUESTF STIMULI requests a transmission for a particular CAN node while
that CAN node is already busy with a transmission.

Status information about transmission requests of the CAN nodes is written to the simulation’s trace file

45.3 process SYNCHRONIZE_REQUEST

This process is part of every protocol test program. It sets and reSeTREANSMISSION_REQUEST
inputs of all CAN nodes. The process is controlled by the input signal ve&tOAL_TX_REQUESfrom
procesKREQUESTthe bond-out signd8OND_OUT(0). TXRQSTand signabO_ARBITRATIONwhich is
controlled by procesSTIMULI .

To force a synchronous Start Of Frame for the implementation under test and one or more RefCANS, tt
user must set sign@O_ARBITRATIONtrue. Now the respective RefCAN(s) will wait with its(their)
Start Of Frame until the implementation has set the global sigO&lD_OUT(0).TXRQSTtrue. After
arbitration has started sigra®_ARBITRATIONshould be reset.

This procedure is neccessary to compensate for different speeds of CPU interfaces. When the bus is it
a RefCAN node can start to send immediately after the test program dafRedSMIT _MESSAGE
while an implementation has to wait until tTRANSMIT_MESSAGEas been written into its message
buffer.
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Figure 21 shows a section frobaudrate.vpp ~ where the implementation and three RefCAN’s start
arbitration synchronously.

DO_ARBITRATION <= true;
Tx1: forlin 1 to 3 loop

SEND_MESSAGE (I, MESSAGES(l), REQUESTED);
end loop Tx1,;
WAIT_FOR (1, TRANSMITTING, Identifier, 1);
DO_ARBITRATION <= false;
WAIT_FOR (1, RECEIVING, End_Of_Frame, 2);

Figure 21 Synchronous Start of Arbitration for an Implementation and 3 RefCANSs.
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5 Verification of an Implementation

The design of integrated protocol controllers generally has to emphasize the verification of completene
and correctness of the protocol. For Controller Area Network (CAN), which is licensed to most major
semiconductor suppliers, it is of special importance to standardize the protocol verification by means «
a High Level Language reference environment. Due to the variety of CAN controller implementation:
(see figure 22 at page 70), the reference must be limited to the modelling of the protocol itself, leavin
complete freedom to the application specific part of the component.

The Reference CAN Model environment consists of the “golden” CAN protocol model and a testbenct
consisting of test programs and a simulator kernel. In the testbench the model of a CAN controller und
development can be compared with the concurrently simulated reference model, while the test progre
and other instances of the reference model provide CAN messages.

For the development of the first CAN controller implementation, the only reference was the CAN
protocol specification document. Therefore a set of test programs had to be developed to simulate .
relevant state transitions of CAN message transfer. The protocol consistency of the design was ensu
by manually checking the simulation results line for line with the protocol specification.

For the following design, the existing set of test programs was adapted to a different CPU interface ar
to a different message buffer structure. Checking of simulation results was partly automated by checkir
with the simulation results of the first design. The disadvantage of that method is that it is closely linke«
to the structure of the CAN implementation and to the simulation tool. In view of time and cost to be
invested for designing an integrated protocol controller, this verification is insufficient and carries high
risk for costly redesign iterations.

The increasing number of CAN licensees and developments of integrated CAN components made
necessary to standardize and to support the protocol verification for all designs. For this purpose ai
motivated by the aforementioned experience, Bosch has developed the C Reference CAN Model.

While the CAN protocol specification document remains the authentic CAN norm standardized by
international organisations, the C Reference CAN Model establishes a de facto standard for CA
verification. Distributed to the CAN licensees, it has been utilized in various designs, assuring that a
existing CAN implementations are compatible with each other and may be used in the same network

For the success of CAN as the generally accepted protocol standard, the wide range of versat
compatible CAN implementations of different vendors was important. This protocol consistency wa:s
significantly supported by the availability of the Reference CAN Model.

To be independent from simulation tools and from different types of CAN implementations, the first
version of the model has been written in "C"-language (together with a simulator kernel) and is limitec
to the protocol itself (the data link layer of the OSI model), leaving out the physical layer and the
application layer, which are implementation specific.

Up to now, the Reference CAN Model has been used by Robert Bosch GmbH for the verification of tel
CAN implementations and by CAN designers of the licensees, including most major semiconductc
suppliers. In this way, the compatibility of all existing CAN implementations is guaranteed.

The Reference CAN model is represented in two versions, the realisation in C (as distributed to the CA
licensees) and its translation in VHDL (an option for the CAN licensees). While the VHDL simulator of
any designer's CAD environment should be compatible with the VHDL version, the C version is
provided with a specific and custom simulator kernel and is not connected to a specific IC design tog

BOSCH - 69 - K8/EIS



VHDL Reference CAN User’s Manual Revision 2.2

The continuous spreading of VHDL (Very High Speed Hardware Description Language) as a standal
design language for IC development urged the conversion of the Reference CAN Model from th
customized C simulation environment to a VHDL environment.

Since a considerable amount of work and know-how had been invested in the C model of the CAI
Protocol Controller and into the verification test programs, that had to be taken into account whe
developing the strategy for the conversion from C into VHDL.

For the understanding of the extent of the model, it is useful to split existing CAN controller
implementations in protocol related and application related sections. The CAN Protocol Controller is th
kernel of each CAN implementation, interfacing between the physical layer and the application layer.

The VHDL reference model of the protocol controller is behaviourally structured, it is not targeted for
synthesis but for the functional verification.

Different types of CAN implementations are offered by several semiconductor suppliers, realized a
stand-alone device or as module op@ The differences of those implementations lie in the number of
local message buffers, in the acceptance filtering, in the CAN busline input comparators and outpt
drivers, and in the CPU and periphery interface.

CAN Bus
[ e e 1 [ P e 1
1 i 1 1 i 1 *
I | Physical ! I | Physical ! Physical || Oscillator/
: Layer : : Layer : Layer Calibrator
CAN Protocol CAN Protocol CAN Protocol
Controller Controller Controller
T 141 =B T
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Transmit @ BUff %g @ %g c?g
- uffer 0 | » 0 .
Buffer S % % S géi qugéi Port Module with
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s | LEFO) 5 Digital (and Analog)
J L zg ol e -~
. Input and Output
CPU Interface CPU Interface
! 3 E : ! 5|/\E : \AAAAJ VVVVVYY
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: External / Local CPU : : External / Local CPU : Port Pins
1 1 1 1
CAN Component with CAN Component with CAN Component
Basic Application Layer Full Application Layer of Type SLIO

Figure 22 Structure of different CAN Components.

Common for all implementations is the CAN Protocol Controller whose function is defined by the CAN
protocol specification; it handles the bit timing, the frame coding, the bit stuffing, the CRC check, the
frame validation and the fault confinement. The interface to the physical layer is the serial bit strean
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coded as dominant or recessive bits; the interface to the application layer are the transferred messag
consisting of identifier, data length code, and data bytes, without CRC code or stuff bits. The acceptan
filtering, based upon the identifier, is done by the application layer.

The reference model’s testbench and test programs are designed to test exclusively the implementatic
protocol controller, independent of the other functions of the implementation. This is done by comparin
the function of the implementation’s protocol controller with the function of the reference controller
during the simulation of CAN message transfer and CAN bus errors.

Since the CPU interface and the application layer are not defined by the CAN protocol specification, a
interface is needed between the test programs of the Reference CAN Model and the models of tl
implementations.

In the C version, that interface is provided by the functions called by the test programs for the
initialisation of the models and for the start of the transmission of a CAN message. When these functior
are adapted to the specific implementation, the test programs themselves, calling these functions, rem
unchanged regardless of the type of the implementation.

Other implementation specific parts of the C version are the functions called for the CAN protocol chec
process, monitoring the implementation’s CAN functions and the CAN bus process, connecting th
implementation to the CAN bus. These functions have to be adapted if the signal names for the CA
input or output signals differ from the names in the reference protocol controller model.

In the VHDL version, the interface between the protocol test programs, the Reference CAN Model an
the implementation’s model is the ent@AN_INTERFACEassociated with an architecture enclosing the
implementation’s model. All implementation specific type conversions of interface signals and
translations of test program commands are done inside this architecture, leaving the rest of the Referel
CAN Model untouched. Test programs, reference and implementation’s models and the CAN bus syste
are linked together by a configuration of PROTOCOL_TESTBENCH

During a simulation, the Reference CAN Model produces a trace file recording all serial data on the CAl
bus and the internal activities of the CAN Protocol Controllers as well as the possible occurrence of
protocol error. Optionally, a similar trace function for the implementation may be added for the manua
comparison of the CAN functions.

If the Reference CAN Model is used for the verification of an implementation’s model in a different
design environment, e.g. a hardware tester, the trace function can be expanded by a pattern genere
writing test vectors in any desired format.

In order to retain the invested know-how and to reduce possible design risks, the internal structure
model, testbench, and test program of the C model have been remodelled in the VHDL model. Th
protocol test program set was translated verbatim from C to VHDL, producing the same CAN messac
transfer and the same CAN bus errors, enabling the automated verification of the VHDL model by th
comparison of the simulation’s trace files.

Main issues of the actual design work have been, apart from the detailed verification, the independen
from any VHDL tool's deviations (up to now, Synopsys VSS and Mentor QuickHDL have been
evaluated) and the self-containment of the models of the CAN Protocol Controller and of the CAN bus
giving the possibility to combine them with other VHDL models of periphery and systems.

The Reference CAN Model supports the circuit development for CAN implementations by providing a
verification tool that can be adapted to different design environments. Furthermore, the application
the Reference CAN Model is not limited to the test of IC implementations, its simulation environment
with CAN message transfer between several nodes can be expanded with additional processes simula
peripheral hardware to use it as a design tool for the development of CAN based systems.
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5.1 Integrating an Implementation’s Model into the Reference CAN Model

In the architectur€AN_SYSTEMhe interface of a CAN node to the physical layer (the CAN bus) and
to the application layer (the message memory) is the ety INTERFACEIn order to integrate the
model of an actual CAN component into the Reference CAN Model's simulation environment (the
CAN_SYSTEM the implementation has to be enclosed in a shell that does all implementation specific
type conversions of interface signals and that translates the protocol test program’s commands. For
CAN protocol verification, this shell has to be written as architectiM@LEMENTATION and
configuration CONFIGURATION_IMPLEMENTATIOMf entity CAN_INTERFACE In the temporary
CONFIGURATION_IMPLEMENTATIONrovided with the Reference CAN Model, the architecture
IMPLEMENTATIONS substituted by architectuREFERENCE

The architectureeXAMPLE(see section 4.4.4) is an example how to build such a shell for a simple
standalone CAN modul&XAMPLEconsists of the CAN module component and of a CPU component.
The CPU translates the input signalSRANSMIT_MESSAGETRANSMISSION_REQUESTand
BIT_TIMING_CONFIGURATION) driven by the test program into write accesses, writing the data and
commands into the appropriate registers of the CAN module. At the reception of a message, the CF
reads the message from the message memory and updates the porREQE&VED_MESSAGH he
value of RECEIVED_MESSAGIE checked in the protocol testbench. The reset and the interface signals
to the bus interfacRECEIVE_DATAandTRANSMIT_DATAdo not need conversion in this example.

The protocol test programs do not read the output ports of the implementation’s model, therefore tf
signalTRANSMISSION_REQUEST_STATUWS&N be left unconnected.

For the on-line protocol check, some additional signals are necessary, which are not ports of the ent
CAN_INTERFACEand which usually are internal signals of a CAN module not accessible from the
outside. The additional signals are the actual values of the error counters, the sampled bit, and the bus
state. To avoid the problems with the design synthesis, that would arise if these signals had to |
connected to the highest level of the hierarchy for no other purpose than the CAN protocol verificatior
the global signaBOND_OuUTan array of records) is introduced (seetfieee_package.vhd ).

A BOND_OUTecord contains copies of internal signals or variables of a CAN node, to be used for
protocol verification or for the extraction of trace information, the values oBtbED_OUSignals may

not have any influence on the function of the CAN node. Which of the array’s elements is used inside
CAN node model is defined by the generic param#&t@DEL_LABELFor the implementation’s model,

at least the record elementBUSMON (the sampled bit), TRANSMIT_ERROR_COUNTER
RECEIVE_ERROR_COUNTHRe counter’s values), amUSOFHRthe digital state) have to be connected.
All these elements contain information required by the CAN protocol when a new bit value is to be
evaluated, so somewhere in the implementation’s model this information has to be accessible. If tt
information is available as signals, they are copied into the appropriate element806iNbe OUTecord

by concurrent statements, otherwise B@ND_OUTecord elements are assigned inside a process. In
both cases, the assignments toB&D_OUTBignal are to be excluded from the design synthesis.

There are three generic parameters which can be used to adjust the evaluation time of the Referel
Model's processes to the evaluation time of the implementation to be verified:

INITIALIZATION_CYCLES time needed to configure the implementation (after Reset)
INIT_SETUP adjusts evaluation time of proceS§IMULI of TEST_PROGRAM
RX_DELAY compensation of the physical input delay of the implementation

An architecture as described EXAMPLES recommended for all cases of standalone CAN controllers
and for those CAN modules on microcontrollers, whose CPU interface can be accessed from the outsi
(at least in a test mode). The advantage of this solution, simulating the whole device, compared to oth
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solutions (e.g. extracting the CAN Protocol Controller from the implementation and simulating without
a CPU component in architectuddPLEMENTATION is that it can produce test vectors for the device’s
pins. With these test vectors, the protocol test programs can be transferred to hardware testers.

Especially for the verification of the message memory, the CPU state machine should not be restricte
to the translation of the test program’s input to the CAN module, it also should (with lower priority) read
status registers and received messages from the message memargligeeture READ_WRITE of

CPU at page 62), making this internal information visible at the device’s pins.

For those CAN modules guCs, whose CPU interface is only accessible by the local CPU, not from the
outside, a different structure for architectuMPLEMENTATIONIis recommended (see figure 23),
providing the same features as verification of the message memory and compatibility with a hardwali

tester.

TRANSMIT_DATA A RECEIVE_DATA
E = CAN_INTERFACE
E = EMBEDDED_WITH_CAN
y
CAN_MODULE
CPU MEMORY
PERIPHERY
A=DUT
E = ROM
A = OPCODE

A = IMPLEMENTATION

+ Interface Signals

Figure 23 Verification of a CAN module of an embedded microcontroller.
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For this solution, the local CPU has to have the capability (at least in test mode) to read op-codes fro
an external memory. As IBXAMPLEthe entire device should be simulated, but the other component in

the architecture, replacing the CPU state machine, is a program memory, providing op-codes to the loc
CPU. This program memory translates the protocol test program’s commands into executable coc
causing the CPU in the device under test to write to the CAN module’s registers.
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5.2  Configuration of the Testbench

Figure 24 shows the configuration of tHRROTOCOL_TESTBENCHe simulate the test program
TEMPLATHsee file$BOSCH_CAN_ROOT/tests/template/cfg_template.vhd ). For this template

of a test program, provided for the development of new test programs, the sirGplSBYSTENSs
chosen, consisting only of AUMBER_OF_CANE&AN nodes. No implementation model is referenced
(CONFIGURATION_SYS_Rsee section 4.2.4); this testbench’s configuration is focusing on the CAN
protocol functions.

library CAN_LIBRARY;

-- This configuration defines the following entity/architecture pairs:
-- PROTOCOL_TESTBENCH - STRUCTURAL

-- CAN_SYSTEM - FLEXIBLE (only 2 Reference Models)

--  CAN_INTERFACE - REFERENCE

-- It is used with configuration IMPLEMENTATION of CAN_INTERFACE

configuration CFG_TEMPLATE of PROTOCOL_TESTBENCH is
for STRUCTURAL
for SYSTEM: CAN_SYSTEM

use configuration CAN_LIBRARY.CONFIGURATION_SYS R

generic map (
NUMBER_OF_CANS => 2,
CLOCK_PERIOD => (others => 100 ns),
RX_DELAY =>0.00

);

end for;

for WAVEFORM: TEST_PROGRAM
use entity CAN_LIBRARY.TEST_PROGRAM(TEMPLATE)
generic map (
CLOCK_PERIOD => (others => 100 ns),
INFORMATION_PROCESSING_TIME => 2,
INITIALIZATION_CYCLES =>1,
INIT_SETUP =>0.80,
RX_DELAY =>0.00
);
end for;
end for;
end CFG_TEMPLATE;

Figure 24 Template for a testbench configuration.

The following generic parameters define the timing of the CAN system’s simulation :

CLOCK_PERIODs an array of time values. It ranges from 0 MI{MBER_OF_CANSL1), providing each
CAN node (1 toNUMBER_OF_CANSn the CAN system with an independent clock source.
CLOCK_PERIOD(0) is reserved for the clock of the implementation under test, with
CLOCK_PERIOD(NUMBER_OF_CANS + @& an option for the implementation’s local CPU. In
this configuration, all nodes use the same clock period of 100 ns

RX_DELAYis an input delay factor, to be multiplied with the implementation model’s clock period. Used
in the architectur€ OMPARBf CAN_INTERFACEO compensate the delay time caused by the syn-
chronization of the CAN input signal to the implementation model’s clock.

CLOCK_PERIONdRX_DELAYhave to be the same fOAN_SYSTEMNATEST_PROGRAM

INFORMATION_PROCESSING_TIMIS an intrinsic attribute of the implementation’s design. The test
program needs access this parameter for the configuration of the CAN bit time.
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INITIALIZATION_CYCLES is a parameter that allows to compensate for the time needed to initialise
the implementation’s model after a hardware reset. One cycle is two CAN bit times.

INIT_SETUP is a phase shift factor. The evaluation time steps of the test program are shifted with respe:
to the active (rising) clock edge of the Reference CAN Model by the amoumMNIdf SETUP e
CLOCK_PERIOD(1). The phase shift provides a setup time between the edges of the interface sig
nals driven by the test program and the internal state transitions of the Reference CAN Model.

Figure 25 shows the configuration of tHRROTOCOL_TESTBENCHe simulate the test program
BAUDRATHEsee filesBBOSCH_CAN_ROOT/tests/baudrate/cfg_baudrate_example.vhd ).

library CAN_LIBRARY;

-- This configuration defines the following entity/architecture pairs:

-- PROTOCOL_TESTBENCH - STRUCTURAL

-- CAN_SYSTEM - FLEXIBLE (1 Example-Implementation and 3 Ref. Models)
--  CAN_INTERFACE - EXAMPLE

-- It is used with configuration EXAMPLE of CAN_INTERFACE

configuration CFG_BAUDRATE_EXAMPLE of PROTOCOL_TESTBENCH is
for STRUCTURAL
for SYSTEM: CAN_SYSTEM

use configuration CAN_LIBRARY.CONFIGURATION_SYS E

generic map (
NUMBER_OF_ CANS => 3,
CLOCK_PERIOD =>(110ns, 110 ns, 1118 ns, 442 ns,

others => 110 ns),

RX_DELAY =>0.001

);

end for;

for WAVEFORM: TEST_PROGRAM
use entity CAN_LIBRARY.TEST_PROGRAM(BAUDRATE)
generic map (
CLOCK_PERIOD =>(110ns, 110 ns, 1118 ns, 442 ns,
others => 110 ns),
INFORMATION_PROCESSING_TIME => 0,
INITIALIZATION_CYCLES => 3,
INIT_SETUP =>0.10,
RX_DELAY =>(0.001
);
end for;
end for;
end CFG_BAUDRATE_EXAMPLE;

Figure 25 Testbench configuration for test progBaxtVDRATEimulating architectureXAMPLE

In this test program, threeéNUMBER_OF_CANEAN nodes communicate in th@AN_SYSTEMone of

the nodes made up of the architecturEXAMPLE and REFERENCESsimulated in parallel
(CONFIGURATION_SYS_E see section 4.2.2).EXAMPLE is granted time for initialisation
(INITIALIZATION_CYCLES ) after resetEXAMPLEoperates with a clock period of 110 ns, same as the
parallely simulatedREFERENCERNdEXAMPLES local CPU. TheREFERENCE) operates with a clock
period of 1118 nsSREFERENCE) with a clock period of 442 ns. The CAN node’s baud rate prescaler
provide a common bit time regardless of the difference in the clock sources.
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5.3  Adding Test programs

The filetemplate.vpp  inthe directory8BOSCH_CAN_ROOT/tests/template  is intended to be used
as a template, if a particular implementation requires additional test programs.

architecture TEMPLATE of TEST_PROGRAM is

# include "../signal_definition.vhi"
-- declaration of additional constants and signals

begin
# include "../request_process.vhi"
STIMULLI: process

variable TIMING : BIT_TIMING_CONFIGURATION_TYPE;
-- declaration of additional variables

# include "../test_routines.vhi"
begin

TIMING.PRESCALER
TIMING.PROPAGATION_SEGMENT
TIMING.PHASE_BUFFER_SEGMENT_1
TIMING.RESYNCHRONISATION_JUMP WIDTH
TIMING.INFORMATION_PROCESSING_TIME :

INITIALIZE (TIMING);

1 e

Z.b-bl—\"'

ORMATION_PROCESSING_TIME;

-- start of test program

WRITE_TRACE("Just a template for a test program");
wait for 1 * BIT_TIME;

-- end of test program

WRITE_TRACE("End of test program >>template<< reached");

assert false report "End of Test Program reached: Stop Simulation !"
severity failure;

end process STIMULI;
end TEMPLATE;

Figure 26 architecturéEMPLATEOf TEST_PROGRAM

Each new test program requires a specific directorB@SCH_CAN_ROOT/tests/ , with the same
name as the new architecture. The new fitest>.vpp  starts as a copy aemplate.vpp , the
architecture’s name changed frafEMPLATHoO <test> and theTIMING configuration changed to the
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actual values. The test program code is inserted between the commstarttsof test program “

and “end of test program *“, additional constants (e.g. messages to be transmitted), signals, anc
variables are defined at the positions shown by the appropriate comments.

For compilation and simulation of the new test programs, targets have to be defined in the Makefile.
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5.4 Generating Test Vectors

During a simulation, the Reference CAN Model writes text into a trace file, to document the operatior
of the test program. This text is written by different processes, most is written by proRASINGIn
architectureREFERENCBf CAN_INTERFACHESee section 4.4.2) and by the procesSEBvULI and
REQUESTN the architectures ofEST_PROGRAgee section 4.5). To enable the access of all processes
to the same trace file, the packagRACE_PACKAG#Ilobally defines the filerRACEFILE to “trace .

This package is used by packddeFINITIONS . TRACE_PACKAGE also to be used by all architectures

of an implementation’s model that are supposed to write to the same trace file (see file
$BOSCH_CAN_ROOT/reference/trace_package.vhd ).

In the same packag®ATTERNFILE has been defined topattern ”. Typical applications of this
PATTERNFILE would be a process in architectutdPLEMENTATION writing test vectors for the
device’s pins (to be used for hardware testing) or a process inside the architecture of the device, writir
test vectors to compare the functions of two architectures of the same sub-module’s entity (behaviout
description / synthesized netlist). Most vector reading tools tolerate comment lines in the vector file, s
comments should be inserted to identify significant events, supporting debugging and documentatio
To simplify the commenting of the pattern file, the procedwRITE_TRACHKSee section 4.5.1.4), used

to write to the trace file, can optionally write to the pattern file.

WRITE_TRACE called with a string parameter, writes the string into the simulation’s trace file. An
optional second parameter controls whether the same string is copied into the pattern file and the string
print format. This procedure has to be adapted to the actual vector reading tool, preceding each text stri
with the tool’'s comment symbol.

Since no test vectors are generated in distributed version of the Reference CAN Model, the writ
accesses OWRITE_TRACHoO the pattern file are disabled hySE_SECOND_FILE= ‘0". In order to
enable those write accesses, the vector generating process hasSie SEECOND_FILEO ‘1.

Even if no text is written to the pattern file, some VHDL simulators may generate the (empty) file
“pattern "
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A-1 List of Files

Model Top-Directory

README_RefCAN.txt - Important information about this version

simulate - the compilation and simulation environment

.Synopsys_vss.setupSynopsys setup file generated by genmake

synopsys_sim.in¢ include file for Synopsys VSS simulator generated by genmake
quickhdl.ini - setup file for Mentor ModelSim generated by genmake

modelsim.ini - setup file for Mentor QuickHDL generated by genmake

genmake- generates Makefile, Depends files, and setup files for the specified simulator
genmake.sav backup of genmake

Makefile. SYNOPSYS- backup of Synopsys Makefile

Makefile.MG_QuickHDL - backup of Mentor QuickHDL Makefile
Makefile.MG_ModelSim - backup of Mentor ModelSim Makefile

doc - documentation

Users_Manual_V.pdf- Users Manual
DataSheet_V.pdf- Data Sheet

can2spec.pdt CAN Protocol Specification Revision 2.0

reference - testbench, Reference CAN Model and packages

Depends.SYNOPSYS backup of Synopsys Depends file
Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file
Depends.MG_ModelSim- backup of Mentor ModelSim Depends file
definitions.vhd - package definitions used by the Reference CAN Model
trace_package.vhd package used for trace output generation
protocol_testbench.vhd- entity of protocol_testbench
protocol_testbench_struct.vhd- architecture structural of protocol_testbench
can_system.vhd entity of can_system

can_system_flexible.vhd architecture flexible of can_system

test_program.vhd - entity of test_program
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can_interface.vhd- entity of can_interface
can_interface_compare.vhd architecture compare of can_interface
can_interface_reference.vhd architecture reference of can_interface
bus_interface.vhd- entity of bus_interface

bus_interface_beh.vhd architecture behaviour of bus_interface
checker.vhd- entity of checker

checker_beh.vhd- architecture behaviour of checker

internal_trace.vhd - entity of internal trace component, instantiated within architecture
reference of can_interface

internal_trace_dummy.vhd - architecture dummy of internal_trace (default)

Implementation - an user-defined implementation should be placed here

Depends.SYNOPSYS backup of Synopsys Depends file

Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file
Depends.MG_ModelSim- backup of Mentor ModelSim Depends file
configuration_implementation.vhd - configuration of can_interface (now REFERENCE)

configuration_sys_i.vhd- configuration of can_system (COMPARE + REFERENCE)

example - example of a CAN implementation

Depends.SYNOPSYS backup of Synopsys Depends file
Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file
Depends.MG_ModelSim- backup of Mentor ModelSim Depends file
message_buffer.vhd package with definitions used by architecture read_write
example.vhd- architecture example of can_interface
configuration_example.vhd- configuration of can_interface
can_module.vhd- entity of can_module

simple.vhd - architecture simple of can_module

cpu.vhd - entity of cpu

read_write.vhd - architecture read_write of cpu
can_message.vhdentity of can_message

basic.vhd- architecture basic of can_message

cpu_interface.vhd- entity of cpu_interface
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parallel_16_bit.vhd - architecture parallel_16_bit of cpu_interface
can_control.vhd - entity of can_control
timing.vhd - architecture timing of can_control

configuration_sys_e.vhd- configuration of can_system (COMPARE + REFERENCE)

bugagy - example of a buggy CAN implementation

Depends.SYNOPSYS backup of Synopsys Depends file

Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file
Depends.MG_ModelSim- backup of Mentor ModelSim Depends file
bad_example.vhd- architecture bad_example of can_interface

buggy.vhd - architecture buggy of can_module

configuration_buggy.vhd - configuration of can_interface

configuration_sys_b.vhd- configuration of can_system (COMPARE + REFERENCE)

tests - test programs with trace files

Depends.SYNOPSYS backup of Synopsys Depends file
Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file
Depends.MG_ModelSim- backup of Mentor ModelSim Depends file
test_routines.vhi- procedures used within test programs
signal_definition.vhi - constants and signals to control the test program
request_process.vhi process to set /reset TRANSMISSION_REQUEST

tests/<test> - each test program has its own directory

Depends.SYNOPSYS backup of Synopsys Depends file

Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file
Depends.MG_ModelSim- backup of Mentor ModelSim Depends file

<test>.vpp- architecture <test> of test_program, contains configuration cfg_<test>
<test>.vhd- generated by make from <test>.vpp and include files ../*.vhi
cfg_<test>.vhd- configuration cfg_<test> of protocol_testbench
cfg_<test>_example.vhd configuration cfg_<test>_example of protocol_testbench
cfg_<test>_buggy.vhd configuration cfg_<test>_buggy of protocol_testbench

<test>.trace.saw backup of trace file generated by simulation
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<test>.e_trace.sav backup of trace file generated by simulation of example
<test>.b_trace.sav backup of trace file generated by simulation of buggy

Note: <test>stands for any of the reference test programs from section 3.2

objects - compiled model

After installation of the model this directory is empty !

BOSCH -83- K8/EIS



VHDL Reference CAN

User’'s Manual Revision 2.2

A-2 List of Figures

Figure 1 architecturETRUCTURAIOf PROTOCOL_TESTBENCH........coiiiiiiiiiiiieeeeeeeiee e 27
Figure 2  architeCturELEXIBLE Of CAN_SYSTEM......ccoitiiiiiiiiiiiiiiiiiiiiiiiiee ettt e e e e e e 30
Figure 3 architeCtur€OMPARBf CAN_INTERFACE ......uuuiiiiiiiiie e e e e e e e e e e e e eeeeeaaens 34
Figure 4 Tolerable phase shifts between compared signals (examplAREMIT _DATA ...... 36
Figure 5 architeCturBEFERENCEHT CAN_INTERFACE ......ccooiiiiiiiiiiiiiiiiiiieieeee et 38
Figure 6 Process flow @IT_TIMING . ..oooeiiiiiiiiiiiiiiie e e et e e e e e e e e e e e e e e e eeeee s 40
Figure 7 Bit TImMINg and Phase EITOr. ......coouuiiiiiiiiii e a e 41.......
Figure 8  Synchronization flOW. ... 42...
Figure 9 Hard Synchronization oacessivdo dominantedge. ..........ccccoevvvvvviiiiiiiiieeee e, 43
Figure 10 Resynchronization, NOdE = RECEIVEL. ........uuiiiiiiiiiiiii et e e e e e
Figure 11 Resynchronization, NOde = TranSMILIEr. ..........cceeiiiiiiiiiiiiiiiiiiiiiiiee e
Figure 12 Structure of the BIT_STREAM_PROCESSOR PrOCESS. ...uuuuuiiiiiiiieeeeeeieeereeeeisennnnnnnnens .
Figure 13 Structure of RECEIVING STAtUS. .......ouuiiiiiiiiiiiis et e et e e !
Figure 14 Structure of TRANSMITTING STALUS. ...ccooiiiiiiiiiiiiiiiieiiiii e 5
Figure 15 Start of a simulation’s trace file (e.g. test program emlcount). .........ccccceeeeiiiiiiieeeeeeennenne, !
Figure 16 Example of lost arbitration in a simulation’s trace file (e.g. test program emlcount). ..... 5
Figure 17 Example of CRC Error in a simulation’s trace file (e.g. test program Crc). ..................... 5
Figure 18 architecturEXAMPLEOf CAN_INTERFACE ......uuuiiiiiiii et e e e e e e e e e e e e eenenanns 58
Figure 19 architecturBIMPLE Of CAN_MODULE..........ccoutiiiiiiiiiiiiiae et e e 59
Figure 20 Structure of an architectsttest> 0Of TEST_PROGRAM...........oooiiiiiiiiiiiiiiiiieieeeeee e 64
Figure 21 Synchronous Start of Arbitration for an Implementation and 3 RefCANS. ..................... 6
Figure 22 Structure of different CAN COMPONENTS. .....cooiiiiiiiiiiiiiiie e 7
Figure 23 Verification of a CAN module of an embedded microcontroller. ............ccccevevevviiinnnnnnnn. 7
Figure 24 Template for a testbench configuration. ................iiiiiiiiiii e
Figure 25 Testbench configuration for test progBktyDRATEImulating architectureXAMPLE 76
Figure 26 architeCturEEMPLATEOf TEST_PROGRAM........coiiiiiiiiiiiiiiitiie ettt e e e 77
A-3 List of Tables
Table 1  Address map of the CAN module’s message memory in architB&SII@. ................ 60
Table 2  Address map of the CAN module’s control register in architeTMiNG. ................. 61
Table 3  Features of the architeCt®BAD_WRITEOf CPU ........ovvviiiiiiiiiiiei e 62

A-4 Related Documents

» CAN Specification Revision 2.0 Part A and B

A-5 CAN Services
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http://www.can.bosch.com
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