
User’s Manual

Reference CAN
VHDL

Revision 2.2

K8/EIS

1999

User’s Manual Revision 2.2VHDL Reference CAN

K8/EIS

Copyright Notice and Proprietary Information
Copyright © 1996, 1997, 1998, 1999 Robert Bosch GmbH. All rights reserved. This software and
manual are owned by Robert Bosch GmbH, and may be used only as authorized in the license agreement
controlling such use. No part of this publication may be reproduced, transmitted, or translated, in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Robert Bosch GmbH, or as expressly provided by the license agreement.

Disclaimer
ROBERT BOSCH GMBH, MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

ROBERT BOSCH GMBH, RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO THE PRODUCTS DESCRIBED HEREIN. ROBERT BOSCH GMBH DOES NOT
ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN.

i

User’s Manual Revision 2.2VHDL Reference CAN

K8/EIS

Conventions
The following conventions are used in this User’s Manual:

COURIER BOLD Names of entities, architectures, configurations, processes, functions,
types, signals, and variables

courier bold File names, shell commands

<courier bold> Should be replaced by a specific name

Naming conventions used with the figures:

E = <name of entity>

A = <name of architecture>

P = <name of process>

ii

User’s Manual Revision 2.2VHDL Reference CAN

1

2

.
 4
5
5

. 6

12
17
8

21

7
9
0

2
3
4

5
8

9
9

6

7

4

7

Contents

1 Introduction ...

2 Installation..

3 Compilation and Simulation... 3
3.1 Starting the Simulation.. 4

3.1.1 Simulating the User’s Implementation...
3.1.2 Simulating the Example of an Implementation..
3.1.3 Simulating the Example of a Buggy Implementation ..

3.2 Test programs... 6
3.2.1 baudrate ...
3.2.2 biterror.. 6
3.2.3 btl.. 9
3.2.4 crc ... 10
3.2.5 dlc ... 11
3.2.6 emlcount ...
3.2.7 extd_id..
3.2.8 formerr.. 1
3.2.9 idle.. 20
3.2.10 overload..
3.2.11 stuff bit ... 22
3.2.12 stufferr .. 22
3.2.13 txarb.. 24

4 Model Description.. 2
4.1 PROTOCOL_TESTBENCH ... 2
4.2 CAN_SYSTEM ... 3

4.2.1 configuration SYS_I of CAN_SYSTEM ... 31
4.2.2 configuration SYS_E of CAN_SYSTEM.. 31
4.2.3 configuration SYS_B of CAN_SYSTEM.. 31
4.2.4 configuration SYS_R of CAN_SYSTEM.. 31

4.3 BUS_INTERFACE.. 3
4.4 CAN_INTERFACE ... 3

4.4.1 architecture COMPARE... 3
4.4.1.1 CHECKER... 3

4.4.2 architecture REFERENCE ... 3
4.4.2.1 process OSCILLATOR.. 3
4.4.2.2 process PRESCALER.. 3
4.4.2.3 process BIT_TIMING.. 39

4.4.2.3.1 Overview ... 39
4.4.2.3.2 Structure of process BIT_TIMING 40
4.4.2.3.3 Synchronization... 41

4.4.2.4 process BIT_STREAM_PROCESSOR ... 4
4.4.2.4.1 Overview ... 46
4.4.2.4.2 Frame Format .. 4
4.4.2.4.3 Structure of process BIT_STREAM_PROCESSOR........... 48

4.4.2.5 Output to the Trace File ... 5
4.4.2.6 CAN Specification and Reference CAN Model 56
4.4.2.7 Special Features of architecture REFERENCE for Protocol Check.... 5
K8/EISiii

User’s Manual Revision 2.2VHDL Reference CAN

8

4
5

6
6

67
7

2
75
77
 79

0

3

3

3

3

4.4.3 architecture IMPLEMENTATION .. 58
4.4.4 architecture EXAMPLE ... 5

4.4.4.1 architecture SIMPLE of CAN_MODULE... 59
4.4.4.1.1 architecture BASIC of CAN_MESSAGE 60
4.4.4.1.2 architecture PARALLEL_16_BIT of CPU_INTERFACE . 61
4.4.4.1.3 architecture TIMING of CPU_CONTROL......................... 61

4.4.4.2 architecture READ_WRITE of CPU ... 62
4.4.5 architecture BAD_EXAMPLE... 63

4.5 TEST_PROGRAM .. 6
4.5.1 process STIMULI... 6

4.5.1.1 procedure INITIALIZE.. 65
4.5.1.2 procedure WAIT_FOR... 6
4.5.1.3 procedure SEND_MESSAGE.. 6
4.5.1.4 procedure WRITE_TRACE... 66

4.5.2 process REQUEST...
4.5.3 process SYNCHRONIZE_REQUEST... 6

5 Verification of an Implementation... 69
5.1 Integrating an Implementation’s Model into the Reference CAN Model...................... 7
5.2 Configuration of the Testbench..
5.3 Adding Test programs..
5.4 Generating Test Vectors...

A-1 List of Files ... 8

A-2 List of Figures .. 8

A-3 List of Tables.. 8

A-4 Related Documents .. 8

A-5 CAN Services.. 8
K8/EISiv

User’s ManualVHDL Reference CAN Revision 2.2

ant to
It is

d B.

ng its

HDL
ire

ity of
In
o write
1 Introduction

The VHDL Reference CAN Model is intended for semiconductor designers/manufacturers who w
build their own implementation of a CAN device using VHDL as hardware description language.
provided in addition to the existing C Reference CAN Model.

The user of this model is expected to be familiar with the CAN Specification Revision 2.0 Part A an

The model is supplied together with a testbench supporting the following features:

• CAN Protocol Version 2.0 Part A, B

• Flexible testbench environment

• Simulates entire CAN bus system (number of nodes defined by user)

• Easy inclusion of user-defined implementations

• Test program set can be extended by user

• Run time information stored in trace files

• Generation of pattern files supported

The following support is provided to assist the user in working with the model and in understandi
functionality:

• Detailed User Manual

• Example of a correct implementation for fast start-up

• Example of a buggy implementation for the demonstration of the testbench’s functionality

• Well documented source code

This model was developed and verified with Synopsys VSS v3.4b, Mentor Graphics Quick
v8.5_4.6f and with Mentor Graphics ModelSim 5.2b. A portation to other VHDL Simulators will requ
an adaption of the ‘make’ files.

Typically a CAN implementation consists of three major parts:

• Interface to the CPU

• CAN Protocol Controller

• Message Memory

Using the test programs supplied with this VHDL Reference CAN Model only assures the conform
theCAN Protocol Controller part of an implementation with CAN Protocol Version 2.0 Part A, B.
order to verify the correct function of the CPU interface and of the message memory, the user has t
additional test programs.
- 1 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

:

p

hort

is 2.5.
eck the
tems

entor
2 Installation

To install the VHDL Reference CAN Model from the CD-ROM please proceed the following way

1) Create a directory where you want to install the database by typing:
mkdir <path_to_model>/Bosch_CAN

Example: mkdir /projects/Bosch_CAN

2) Copy the TAR fileRefCAN_Revision_2.2.tar to this directory.

3) Untar the database:
tar xvf RefCAN_Revision_2.2.tar

4) Define the environment variableBOSCH_CAN_ROOT by typing:
setenv BOSCH_CAN_ROOT <path_to_model>/Bosch_CAN

The setting of the environment variableBOSCH_CAN_ROOTshould be done by your project setu
procedure. Please check also that your VHDL simulator is set up correctly before proceeding.

Please checkREADME_RefCAN.txt in your Bosch_CAN directory for additional information about
your release of the VHDL Reference CAN model.

In appendix A-1 of this document you find a list of the files and directories together with a s
description.

The VHDL Reference CAN model was developed and tested on a Sun workstation running Solar
If you have another hardware or operating system please contact your system manager or ch
documentation of your hardware/operating system. Up to now, the model is available for UNIX sys
only.

Simulations were done with Synopsys VSS v3.4b, Mentor Graphics QuickHDL v8.5_4.6f and M
Graphics ModelSim 5.2b.
- 2 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ing

ing

the

e
the

ies

you
s

owing

ation
3 Compilation and Simulation

If you have an installation of the Synopsys VSS Simulator, you can now go on with the follow
commands:

cd $BOSCH_CAN_ROOT/simulate
genmake SYNOPSYS

If you have an installation of the Mentor Graphics QuickHDL Simulator proceed with the follow
commands:

cd $BOSCH_CAN_ROOT/simulate
genmake MG_QuickHDL

Otherwise, if you have an installation of the Mentor Graphics ModelSim Simulator proceed with
following commands:

cd $BOSCH_CAN_ROOT/simulate
genmake MG_ModelSim

The shell scriptgenmake will generate theMakefile and setup files for the specified simulator in th
Bosch_CAN/simulate directory. It is used by ‘make’ to analyse the complete model. In addition to
Makefile you will find files calledDepends in the subdirectoriesreference , implementation ,
example , buggy, tests , andtests/* . They list the dependencies of the files in these director
and are included into theMakefile . You are now ready to run the simulations.

If you have other VHDL Simulators than Synopsys VSS, Mentor QuickHDL or Mentor ModelSim,
can adapt the scriptgenmake to your simulation environment or you can modify the file
Makefile.<tool> andDepends.<tool> which are distributed with this model. Additionally, you
have to provide a setup file for your simulator like.synopsys_vss_setup , quickhdl.ini or
modelsim.ini .

If you want to adaptgenmake to another VHDL simulator, proceed the following way:

• Open thegenmake file and copy the case statement for one of the supported simulators
and modify it to fit your simulator :

• Adapt the functions which translate the names of the compiled files to generate the names foll
the rules used by your simulator.

• Adapt the command line entries used by ‘make’ to start compilation and simulation.

• Set the path for your simulator’sCAN_LIBRARY to $BOSCH_CAN_ROOT/objects .

• Add a setup file for the compiler and the simulator to$BOSCH_CAN_ROOT/simulate/ .

• Add a simulation control file to$BOSCH_CAN_ROOT/simulate/ .

To compile the model, please change into directory$BOSCH_CAN_ROOT/simulate/ and typemake
all . This will cause the VHDL analyzer to compile the source code of the model using the inform
from the files generated bygenmake.

The files of compiled model can be found in the directory$BOSCH_CAN_ROOT/objects .
- 3 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

e CAN
:

e
hether

cause
nce of
e stamp
on of
sorted
b.

e:

e the
3.1 Starting the Simulation
Change to the directory$BOSCH_CAN_ROOT/simulate . The simulation is started by typingmake with
a specific target. The target defines the desired test program(s) to be simulated and the name of th
Protocol Controller configuration to be verified. TheMakefile supports three configuration names
implementation , example , andbuggy .

The following functions can be performed bymake:

make clean delete all binaries generated by previous runs of the VHDL analyzer
make all analyze the complete model
make <test> run the test program specified by<test> , linked withimplementation

make <test>_e run the test program specified by<test> , linked withexample

make <test>_b run the test program specified by<test> , linked withbuggy

make traces run the complete set of tests, linked withimplementation

make traces_e run the complete set of tests, linked withexample

make traces_b run the complete set of tests, linked withbuggy

After the simulation of program<test> there will be a file <test> . trace in the directory
$BOSCH_CAN_ROOT/tests/<test> . This file contains the complete trace information of th
simulation run. It can be regarded as protocol and documentation of the simulation. To check w
the installation of the model and the setup of the simulator are correct, compare the file<test> . trace ,
which is generated by the simulation, with the file<test> . trace.sav , which is distributed with the
model.

The two files have to be, with one restriction, identical. The files may not be absolutely identical be
in any VHDL simulation, when several processes are triggered by the same event, the seque
evaluation is not predictable. For this reason the sequence of trace statements with the same tim
may be different when simulated with different simulation-software or -hardware. The comparis
two trace files generated by different tools can be automated when the lines of both trace files are
alphabetically. The files<test> . trace.sav have been generated by the tool Synopsys VSS v3.4

3.1.1 Simulating the User’s Implementation

To start the simulation of a single test for a user’s implementation model (e.g. test baudrate) typ

make baudrate

If you are simulating with Synopsys VSS, and if the simulation runs without a problem, you will se
following messages on the screen:

vhdlsim -nc -i $BOSCH_CAN_ROOT/simulate/synopsys_sim.inc \
CAN_LIBRARY.cfg_baudrate ;

VSS_GATE_MODEL=sim_gs - for gate level simulation

"Set stop on FAILURE"

"Start simulation"

955680 NS

Assertion NOTE at 955680 NS in design unit CHECKER(BEHAVIOUR) from process \
/PROTOCOL_TESTBENCH/SYSTEM/CHECK1/PROTOCOL_CHECK/COMPARE_RX_MESSAGE:

"Received Message checked ok"
- 4 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

lation

odel
of a

rence
AN

of the
1447710 NS

Assertion NOTE at 1447710 NS in design unit CHECKER(BEHAVIOUR) from process \
/PROTOCOL_TESTBENCH/SYSTEM/CHECK1/PROTOCOL_CHECK/COMPARE_RX_MESSAGE:

"Received Message checked ok"

3285128 NS

Assertion FAILURE at 3285128 NS in design unit TEST_PROGRAM(BAUDRATE) from \
process /PROTOCOL_TESTBENCH/WAVEFORM/STIMULI:

"End of Test Program reached: Stop Simulation !"

"Quit simulator"

mv -f trace $BOSCH_CAN_ROOT/tests/baudrate/baudrate.trace ;

if [-s patter n] ; then mv -f pattern $BOSCH_CAN_ROOT/tests/baudrate/. ; fi ;

The last statement of the test program is an assertion with a certain FAILURE to terminate the simu
because this is the only way to stop a simulation that was not started with an explicit run time.

The user’s implementation model which is used here is a copy of the CAN reference model.

3.1.2 Simulating the Example of an Implementation

The example of an implementation was designed to show the user of this VHDL Reference CAN m
how to include his own implementation model into the protocol testbench. To run the simulation
single test for the example of an implementation model (e.g. test crc) type:

make crc_e

The trace information of this simulation run is located in filecrc.e_trace

3.1.3 Simulating the Example of a Buggy Implementation

The example of a buggy implementation is identical to example of an implementation with the diffe
that some faults were inserted in the CAN protocol controller part. This buggy version of a C
implementation demonstrates how CAN protocol error are detected.

To run the simulation of the example of a buggy implementation model (e.g. test btl) type:

make btl_b

During the simulation there will appear some messages on the screen like the one below:

3493250 NS

Assertion ERROR at 3493250 NS in design unit CHECKER(BEHAVIOUR) \
from process /PROTOCOL_TESTBENCH/SYSTEM/CHECK1/PROTOCOL_CHECK/CMP_RX:

“Protocol Error: Invalid BUSMON”

These messages will give you a hint where the problem may be located. The trace information
simulation run can be found in filebtl.b_trace
- 5 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

with
tocol

n test.

of one
two

ation,
ea of
sage. In
e third
signed

sation.

ime is

Buffer
ed for

get bit
ssive.

Error

r and
3.2 Test programs
The CAN protocol test programs check the behaviour of a CAN implementation by comparing them
the behaviour of the Reference CAN Model node. Their purpose is to check whether the CAN pro
is correctly implemented in the model of the implementation, they are by no means a productio
The programs are not adapted to a specific implementation,the success of this test patterns is a
necessary, not a sufficient condition for the assessment of the implementation.In the following the
different waveforms are listed in alphabetical order and described in detail.

3.2.1 baudrate

Test of Prescaler and Oscillator Tolerance

NUMBER_OF_CANS: 3

Bit Timing: Different Bit Timing for each Node

This architecture uses a system configuration with three CAN nodes. The first CAN node consists
implementation CAN model and one Reference CAN Model node working in parallel, the other
nodes consist of Reference CAN Model nodes. Each node gets a different timing configur
depending on different clock periods. The resulting minimum and maximum bit time are in an ar
1.7% around the average bit time. In three cycles, the three nodes start the transmission of a mes
the first cycle, the third node wins the arbitration, in the second cycle, the second node, and in th
cycle, the first node wins the arbitration. As additional handicap, the messages transmitted are de
to contain a maximum of stuff bits, reducing the number of edges that can be used for resynchroni
Those nodes losing arbitration do that immediately next to a stuff bit.

After the last transmission, when the bus is idle, the position of the sample point in the scaled bit t
checked by applying a spike to dominant at theRECEIVE_DATAinputs of the implementation CAN
model and of the Reference CAN Model node which is running in parallel to the implementation.

As long as the spike is not longer than the sum of Propagation Delay Segment and Phase
Segment 1, the dominant bus level is not sampled. Note: Even if the spike is not sampled, it is us
synchronisation.

3.2.2 biterror

Confinement of Bit Errors

NUMBER_OF_CANS: 2

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDTH = 4

Transmitters and receivers get bit errors at dominant bits in all fields and all frames, transmitters
errors at recessive bits in the Control, Data, and CRC Field. Tested while Error Active and Error Pa

The program consists of the following test steps:

Test of receiver

1) Recessive bit at ACK Slot, recessive bit at first bit of Active Error Flag.
A dominant ACK bit is forced to recessive. The receiver detects a bit error and sends an Active
Flag. The receive error counter is increased by 1.
The first bit of the Receiver Error Flag is forced to recessive. The receiver detects a bit erro
starts sending an Active Error Flag again. The receive error counter is increased by 8.
- 6 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

starts

it of
Error

it of
Error

e
very

nd the

e Error

t error

starts

it of
e Error

it of
e Error

sends

Active

error

r and
2) Recessive bit at last bit of Active Error Flag.
The last bit of an Active Error Flag is forced to recessive. The receiver detects a bit error and
sending an Active Error Flag again. The receive error counter is increased by 8.

3) Dominant bit at first bit of Intermission, recessive bit at first bit of Overload Flag.
The first bit of Intermission is forced to dominant to create an Overload Flag. Then the first b
this Overload Flag is forced to recessive. The receiver detects a bit error and sends an Active
Flag. The receive error counter is increased by 8.

4) Dominant bit at first bit of Intermission, recessive bit at last bit of Overload Flag.
The first bit of Intermission is forced to dominant to create an Overload Flag. Then the last b
this Overload Flag is forced to recessive. The receiver detects a bit error and sends an Active
Flag. The receive error counter is increased by 8.

5) Create Active Error Flags until receiver is Error Passive.
When sending an Active Error Flag theRECEIVE_DATAinput of the receiver is forced to recessiv
for 11 bit times. The receiver detects bit errors at every bit and starts Active Error Flags. With e
bit error the receive error counter is increased by 8. Then the last Active Error Flag is sent a
receiver becomes Error Passive, but it continues sending the Active Error Flag.

6) Recessive bit at ACK Slot, dominant bit at first bit of Passive Error Flag.
A dominant ACK bit is forced to recessive. The receiver detects a bit error and sends a Passiv
Flag. The receive error counter is increased by 1.
The first bit of the passive Receiver Error Flag is forced to dominant. The receiver detects a bi
and starts sending a Passive Error Flag again. The receive error counter is not changed.

7) Dominant bit at last bit of Passive Error Flag.
The last bit of a Passive Error Flag is forced to dominant. The receiver detects a bit error and
sending a Passive Error Flag again. The receive error counter is not changed.

8) Dominant bit at first bit of Intermission, recessive bit at first bit of Overload Flag.
The first bit of Intermission is forced to dominant to create an Overload Flag. Then the first b
this Overload Flag is forced to recessive. The receiver detects a bit error and sends a Passiv
Flag. The receive error counter is not changed.

9) Dominant bit at first bit of Intermission, recessive bit at last bit of Overload Flag.
The first bit of Intermission is forced to dominant to create an Overload Flag. Then the last b
this Overload Flag is forced to recessive. The receiver detects a bit error and sends a Passiv
Flag. The receive error counter is not changed.

Test of transmitter

1) Recessive bit at Start of Frame.
The dominant Start of Frame bit is forced to recessive. The transmitter detects a bit error and
an Active Error Flag. The transmit error counter is increased by 8.

2) Recessive bit at reserved bit, recessive bit at first bit of Active Error Flag.
A dominant reserved bit is forced to recessive. The transmitter detects a bit error and sends an
Error Flag. The transmit error counter is increased by 8.
The first bit of the Transmitter Error Flag is forced to recessive. The transmitter detects a bit
and starts sending an Active Error Flag again. The transmit error counter is increased by 8.

3) Recessive bit at last bit of Active Error Flag.
The last bit of an Active Error Flag is forced to recessive. The transmitter detects a bit erro
starts sending an Active Error Flag again. The transmit error counter is increased by 8.
- 7 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

it of
Active

it of
Active

r and

r and

ds an

ds an

ds an

ds an

Flags.
ag is
lag.

sends

Passive

cts a
nged.

starts
4) Dominant bit at first bit of Intermission, recessive bit at first bit of Overload Flag.
The first bit of Intermission is forced to dominant to create an Overload Flag. Then the first b
this Overload Flag is forced to recessive. The transmitter detects a bit error and sends an
Error Flag. The transmit error counter is increased by 8.

5) Dominant bit at first bit of Intermission, recessive bit at last bit of Overload Flag.
The first bit of Intermission is forced to dominant to create an Overload Flag. Then the last b
this Overload Flag is forced to recessive. The transmitter detects a bit error and sends an
Error Flag. The transmit error counter is increased by 8.

6) Dominant bit at first bit of Data Length Code.
A recessive bit of Data Length Code is forced to dominant. The transmitter detects a bit erro
sends an Active Error Flag. The transmit error counter is increased by 8.

7) Recessive bit at last bit of Data Length Code.
A dominant bit of Data Length Code is forced to recessive. The transmitter detects a bit erro
sends an Active Error Flag. The transmit error counter is increased by 8.

8) Dominant bit at first bit of Data Field.
A recessive bit of Data Field is forced to dominant. The transmitter detects a bit error and sen
Active Error Flag. The transmit error counter is increased by 8.

9) Recessive bit at 8th bit of Data Field.
A dominant bit of Data Field is forced to recessive. The transmitter detects a bit error and sen
Active Error Flag. The transmit error counter is increased by 8.

10) Dominant bit at first bit of CRC Field.
A recessive bit of CRC Field is forced to dominant. The transmitter detects a bit error and sen
Active Error Flag. The transmit error counter is increased by 8.

11) Recessive bit at last bit of CRC Field.
A dominant bit of CRC Field is forced to recessive. The transmitter detects a bit error and sen
Active Error Flag. The transmit error counter is increased by 8.

12) Create Active Error Flags until transmitter is Error Passive.
When sending an Active Error Flag theRECEIVE_DATAinput of the transmitter is forced to
recessive for 3 bit times. The transmitter detects bit errors at every bit and starts Active Error
With every bit error the transmit error counter is increased by 8. Then the last Active Error Fl
sent and the transmitter becomes Error Passive, but it continues sending the Active Error F

13) Recessive bit at Start of Frame.
The dominant Start of Frame bit is forced to recessive. The transmitter detects a bit error and
a Passive Error Flag. The transmit error counter is increased by 8.

14) Recessive bit at reserved bit, dominant bit at first bit of Passive Error Flag.
A dominant reserved bit is forced to recessive. The transmitter detects a bit error and sends a
Error Flag. The transmit error counter is increased by 8.
The first bit of the passive Transmitter Error Flag is forced to dominant. The transmitter dete
bit error and starts sending a Passive Error Flag again. The transmit error counter is not cha

15) Dominant bit at last bit of Passive Error Flag.
The last bit of a Passive Error Flag is forced to dominant. The transmitter detects a bit error and
sending a Passive Error Flag again. The receive error counter is not changed.
- 8 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

it of
e Error

it of
e Error

r and

r and

nds a

nds a

nds a

nds a

nerated
luded.
16) Dominant bit at first bit of Intermission, recessive bit at first bit of Overload Flag.
The first bit of Intermission is forced to dominant to create an Overload Flag. Then the first b
this Overload Flag is forced to recessive. The transmitter detects a bit error and sends a Passiv
Flag. The transmit error counter is increased by 8.

17) Dominant bit at first bit of Intermission, recessive bit at last bit of Overload Flag.
The first bit of Intermission is forced to dominant to create an Overload Flag. Then the last b
this Overload Flag is forced to recessive. The transmitter detects a bit error and sends a Passiv
Flag. The transmit error counter is increased by 8.

18) Dominant bit at first bit of Data Length Code.
A recessive bit of Data Length Code is forced to dominant. The transmitter detects a bit erro
sends a Passive Error Flag. The transmit error counter is increased by 8.

19) Recessive bit at last bit of Data Length Code.
A dominant bit of Data Length Code is forced to recessive. The transmitter detects a bit erro
sends a Passive Error Flag. The transmit error counter is increased by 8.

20) Dominant bit at first bit of Data Field.
A recessive bit of Data Field is forced to dominant. The transmitter detects a bit error and se
Passive Error Flag. The transmit error counter is increased by 8.

21) Recessive bit at 8th bit of Data Field.
A dominant bit of Data Field is forced to recessive. The transmitter detects a bit error and se
Passive Error Flag. The transmit error counter is increased by 8.

22) Dominant bit at first bit of CRC Field.
A recessive bit of CRC Field is forced to dominant. The transmitter detects a bit error and se
Passive Error Flag. The transmit error counter is increased by 8.

23) Recessive bit at last bit of CRC Field.
A dominant bit of CRC Field is forced to recessive. The transmitter detects a bit error and se
Passive Error Flag. The transmit error counter is increased by 8.

3.2.3 btl

Bit Timing

NUMBER_OF_CANS: 1

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

To test Hard Synchronization and Resynchronization, an edge from recessive to dominant is ge
for each time quanta of a bit time. The case of an edge immediately before the sample point is exc

The program runs three configurations of the bit timing:

1) Large Phase Buffer, Large Synchronization Jump Width

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDDTH = 4

2) Large Phase Buffer, Small Synchronization Jump Width

NTQ = 25,SAMPLE = 17,RESYCHRONIZATION_JUMP_WIDDTH = 1

3) Small Phase Buffer, Small Synchronization Jump Width

NTQ = 10,SAMPLE = 8,RESYCHRONIZATION_JUMP_WIDDTH = 1
- 9 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

st of

cessive
sed

nds a
er is
ts error

error

Flags.
With each configuration of the bit timing the following tests are performed:

a) Hard Synchronization,TX_DATA = Recessive, not Transmitter, not Receiver

b) Resychronization,TX_DATA = Recessive, Receiver

c) Resychronization,TX_DATA = Dominant, Receiver

d) Resychronization,TX_DATA = Dominant, Transmitter

e) Resychronization,TX_DATA = Recessive, Transmitter

f) Hard Synchronization,TX_DATA = Dominant, Transmitter

Note: The edges from recessive to dominant on theRECEIVE_DATAinput which are used for Hard
Synchronization and Resynchronization appear with the falling edge ofTIME_QUANTA_CLOCKwhile
synchronization is started with the rising edge ofTIME_QUANTA_CLOCK.

3.2.4 crc

Cyclic Redundancy Check and Acknowledge

NUMBER_OF_CANS: 2

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDTH = 4

Test of receiver’s error detection in case of Bit Error in the Data Field and in the CRC Field and te
the transmitter’s reaction on acknowledge errors.

The program consists of the following test steps:

Test of receiver

1) Recessive bit at reserved bit r0.
The dominant bit at r0 is forced to recessive. The receiver detects a CRC error, sends a re
ACK bit and an Active Error Flag after the ACK Delimiter. The receive error counter is increa
by 1.

2) Dominant bit at the 2nd bit of CRC Field.
The recessive bit of CRC Field is forced to dominant. The receiver detects a CRC error, se
recessive ACK bit and an Active Error Flag after the ACK Delimiter. The receive error count
increased by 1. The receiver detects a dominant bit after sending its Error Flag and increases i
counter by 8.

Test of transmitter

1) Recessive bit at ACK Slot,RECEIVE_DATA input of RefCAN2 is forced to recessive.
The bus state of RefCAN2 is idle, because theRECEIVE_DATAinput is forced to recessive. The
transmitter (RefCAN1) detects an ACK error and sends an Active Error Flag. The transmit
counter is increased by 8.

2) Recessive bits after 2nd bit of Active Error Flag until transmitter is Error Passive,RECEIVE_DATA
input of RefCAN2 is forced to recessive.
During sending an Active Error Flag theRECEIVE_DATAinput of the transmitter is forced to
recessive for 14 bit times. The transmitter detects bit errors at every bit and starts Active Error
- 10 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ag is
ng the

assive

 1

ds an
.

assive
After
.
247).

assive

assive

and as
In the
With every bit error the transmit error counter is increased by 8. Then the last Active Error Fl
sent and the transmitter becomes Error Passive (TEN 120 -> 128), but it continues sendi
Active Error Flag.

3) Recessive bit at ACK Slot, no dominant bit during Passive Error Flag,RECEIVE_DATAinput of
RefCAN2 is forced to recessive.
The bus state of RefCAN2 is idle, because theRECEIVE_DATAinput is forced to recessive. The
transmitter (RefCAN1) detects an ACK error and sends a Passive Error Flag. During the P
Error Flag no dominant bit appears on the bus. The transmit error counter is not changed.

4) Transmitting a frame successful, transmitter is Error Active.
The transmitter transmits a frame without errors. The transmit error counter is decreased by
(TEC = 127).

5) Recessive bit at 2nd bit of Identifier.
The dominant bit of Identifier is forced to recessive. The transmitter detects a bit error and sen
Active Error Flag. The transmit error counter is increased by 8. Transmitter is Error Passive

6) Recessive bit at ACK Slot, dominant bits after Passive Error Flag,RECEIVE_DATA input of
RefCAN2 is forced to recessive.
The bus state of RefCAN2 is Idle, because theRECEIVE_DATAinput is forced to recessive. The
transmitter (RefCAN1) detects an ACK error and sends a Passive Error Flag. During the P
Error Flag no dominant bit appears on the bus. The transmit error counter is not changed.
Passive Error Flag theRECEIVE_DATAinput of RefCAN1 is forced to dominant for 113 bit times
The transmitter detects form errors at every 8th bit and increases its error counter by 8 (TEC =

7) Recessive bit at ACK Slot, dominant bit at the 2nd bit of Passive Error Flag,RECEIVE_DATAinput
of RefCAN2 is forced to recessive.
The bus state of RefCAN2 is Idle, because theRECEIVE_DATAinput is forced to recessive. The
transmitter (RefCAN1) detects an ACK error and sends a Passive Error Flag. During the P
Error Flag a dominant bit appears on the bus. The transmit error counter is increased by 8
(TEC = 255).

8) Recessive bit at ACK Slot, dominant bit at the 6th bit of Passive Error Flag,RECEIVE_DATAinput
of RefCAN2 is forced to recessive.
The bus state of RefCAN2 is Idle, because theRECEIVE_DATAinput is forced to recessive. The
transmitter (RefCAN1) detects an ACK error and sends a Passive Error Flag. During the P
Error Flag a dominant bit appears on the bus. The transmit error counter is increased by 8
(TEC = 263) and the transmitter becomes Bus Off.

3.2.5 dlc

Data Field Length

NUMBER_OF_CANS: 2

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDTH = 4

Reception and transmission of messages with all possible (0 … 15 !) Data Length Codes as Data
Remote Frames. In the first part of the test, the receiver (RefCAN1) receives all 32 messages.
second part, the transmitter (RefCAN1) transmits all 32 messages.
- 11 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

g Limit,
after

ctive
s after

sends
nt bits

CRC
rrors at

Active
s after

erload
ing the

g an

C to
sends

ctive
receive

eceive
3.2.6 emlcount

Function of Error Management Logic, -Counters, and -States

NUMBER_OF_CANS: 2

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDTH = 2

Receive and transmit error counters are incremented and decremented around the Error Warnin
the Error Passive Limit and the Bus Off Limit. The fault confinement in case of stuck-at-dominant
sending an Error Flag is tested.

The program consists of the following test steps:

Test of receiver

1) Stuff error at stuff bit after 4th bit of Identifier.
A recessive stuff bit is forced to dominant. The receiver detects a stuff error and sends an A
Error Flag. The receive error counter is increased by 1. The receiver detects dominant bit
sending its Error Flag and increases its error counter by 8.

2) Dominant bit at CRC Delimiter, some resynchronisations.
The recessive CRC Delimiter bit is forced to dominant. The receiver detects a form error and
an Active Error Flag. The receive error counter is increased by 1. The receiver detects domina
after sending its Error Flag and increases its error counter by 8. While waiting for the
Delimiter, some resynchronisations are tested by generating positive and negative phase e
edges from recessive to dominant.

3) Recessive bit at ACK Slot.
The dominant ACK bit is forced to recessive. The receiver detects a bit error and sends an
Error Flag. The receive error counter is increased by 1. The receiver detects dominant bit
sending its Error Flag and increases its error counter by 8.

4) Dominant bit at last bit of End of Frame, 7 dominant bits after Overload Flag.
The recessive bit of End of Frame is forced to dominant. TheRECEIVE_DATAinput is forced to
dominant for another 13 bits. The receiver detects an overload condition and sends an Ov
Frame. After sending the Overload Frame the receiver detects 7 dominant bits before send
Overload Delimiter. The receive error counter is not changed.

5) Dominant bit at last bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The receiver starts sendin
Overload Flag. The receive error counter is not changed.

6) Recessive bit at first bit of Overload Flag, recessive bit at Active Error Flag, increment the RE
106. The dominant Overload Flag is forced to recessive. The receiver detects a bit error and
an Active Error Flag. The receive error counter is increased by 8. Some bits of the following A
Error Flags are forced to recessive, therefore the Error Flags start again and increases the
error counter by 8.

7) Wait until Intermission and receive new frame, REC=105.
The receiver waits for the last bit of Intermission and receives a new frame successful. The r
error counter is decreased by 1.
- 12 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

eceive

eceive

. After
er by 8.
ter is

g.
r and
to 136.
nding

eceive

Error

rror
rload

e. The
d by 8.
e 127
g is

ssful

e Slot.
8) Wait until Intermission and receive new frame, REC=104.
The receiver waits for the last bit of Intermission and receives a new frame successful. The r
error counter is decreased by 1.

9) Wait until Intermission and receive new frame, REC=103.
The receiver waits for the last bit of Intermission and receives a new frame successful. The r
error counter is decreased by 1.

10) Dominant bit at last bit of End of Frame, 4 * 8 dominant bits after Overload Flag.
The recessive bit of End of Frame is forced to dominant. TheRECEIVE_DATAinput is forced to
dominant for another 38 bits. The receiver detects a form error and sends an Overload Flag
sending the Overload Flag the receiver detects 8 dominant bits and increases its error count
After each sequence of additional eight consecutive dominant bits the receive error coun
increased by 8. Receiver is now Error Passive.

11) Dominant bit at the 3rd bit of Overload Delimiter, 8 * 2 dominant bits after Passive Error Fla
A recessive bit of Overload Delimiter is forced to dominant. The receiver detects a form erro
sends a Passive Error Flag. The receive error counter is increased by 1 and its now equal
Then the next 16 bit after the Error Flag are forced to dominant. The receiver continues se
Passive Error Flag. After each sequence of eight consecutive dominant bits normally the r
error counter is increased by eight, however the counter is equal to 136 and not increased.

12) Receive correct frame, REC ~ [119 … 127].
The receiver waits for the last bit of Intermission and receives a new frame.

13) Wait until End of Frame, node Error Active again.
After the successful reception the receive error counter is decremented. The receiver is now
Active.

14) Receive correct frame, REC = REC - 1.
After the successful reception the receive error counter is decreased by 1.

15) Dominant bit at the first bit of Intermission, recessive bit at the first bit of Overload Flag and E
Flag. The recessive bit of Intermission is forced to dominant. The receiver detects an ove
condition and sends an Overload Flag. Then the first bit of Overload Flag is forced to recessiv
receiver detects a bit error and sends an Error Flag. The receive error counter is increase
Depending on the value of the REC after finishing Error Passive, the actual REC value is abov
or below 128. Nevertheless, an Active Error Flag is sent. The first bit of the Active Error Fla
forced to dominant, setting the node to Error Passive.

16) Receive correct frame, REC ~ [119 … 127].
The receiver waits for the last bit of Intermission and receives a new frame. After the succe
reception the receive error counter is set to below 128.

17) Receiver sees local bit error in CRC_Field.
One bit of the received message is falsified, causing a CRC-Error.

18) Receiver with CRC-Error sees foreign dominant Acknowledge => Rec+/-0.
Node does not send a dominant Acknowledge, but samples a dominant bit in the Acknowledg

19) Receiver starts CRC-Error-Flag, REC = REC+1.
Active Error Flag is started after Acknowledge Delimiter because of CRC-Error.

20) Recessive Bit in Error Flag => Error Passive.
A bit Error in Active Error Flag sets the node to Error Passive.
- 13 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

sends

sends

sends

sends

rload
detects
ter is

rload
detects
ter is

r and

r and
Test of transmitter

1) Error Passive Transmitter with TEC < 128 sees Bit Error at dominant Identifier bit.
Node sends Passive Error Flag and adds Suspend to Interframe Space.

2) Error Passive Transmitter sees 104 consecutive dominant bits after Passive Error Flag.
Transmit error counter is incremented to 120.

3) Receive error counter is decremented by reception of correct messages.
Node is Error Active.

4) transmit error counter is incremented to 128.
Node is Error Passive.

5) Receiver sees Stuff Error and 16 consecutive dominant bits after Error Flag.
Receive error counter is incremented to 135.

6) One Successful transmission, then Bit Error at dominant Identifier bit.
Transmit error counter is decremented to 127, then Passive Error Flag.

A hardware reset is performed, both error counters are reset to 0.

7) Recessive bit at Start of Frame.
The dominant Start of Frame bit is forced to recessive. The transmitter detects a bit error and
an Active Error Flag. The transmit error counter is increased by 8.

8) Dominant bit at ACK Delimiter.
The recessive ACK Delimiter bit is forced to dominant. The transmitter detects a bit error and
an Active Error Flag. The transmit error counter is increased by 8.

9) Dominant bit at the first bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The transmitter detects a bit error and
an Active Error Flag. The transmit error counter is increased by 8.

10) Dominant bit at the last bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The transmitter detects a bit error and
an Active Error Flag. The transmit error counter is increased by 8

11) Dominant bit at last bit of Error Delimiter, 7 dominant bits after Overload Flag.
The last recessive bit of Error Delimiter is forced to dominant. The transmitter detects an ove
condition and sends an Overload Frame. After sending the Overload Frame the transmitter
7 consecutive dominant bits before sending the Overload Delimiter. The transmit error coun
not changed.

12) Dominant bit at last bit of Overload Delimiter, 8 dominant bits after Overload Flag.
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects an ove
condition and sends an Overload Frame. After sending the Overload Frame the transmitter
8 consecutive dominant bits before sending the Overload Delimiter. The transmit error coun
increased by 8.

13) Dominant bit at the 2nd bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects a bit erro
sends an Active Error Flag. The transmit error counter is increased by 8.

14) Dominant bit at the 2nd bit of Error Delimiter.
The recessive bit of Error Delimiter is forced to dominant. The transmitter detects a bit erro
sends an Active Error Flag. The transmit error counter is increased by 8.
- 14 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ds an
the

onal
ounter

rload
ed to

error

Flags.
e last
Error

transmit

sends
Error

sends

sends

assive
ssive

lag.
sends
Error
again
15) Recessive bit at ACK Slot, 8 * 4 dominant bits after Error Flag
The dominant ACK bit is forced to recessive. The transmitter detects an ACK error and sen
Active Error Flag. The transmit error counter is increased by 8. After the Error Flag
RECEIVE_DATAinput is forced to dominant for another 32 bits. After each sequence of additi
eight consecutive dominant bits the transmitter detects a form error and increases the error c
by 8.

16) Dominant bit at 2nd bit of Intermission, recessive bit at first bit of Overload and Error Flag.
The recessive bit of Intermission is forced to dominant. The transmitter detects an ove
condition and sends an Overload Frame. Then the first bit of the Overload Flag is forc
dominant. The transmitter detects a bit error and sends an Active Error Flag. The transmit
counter is increased by 8.
During sending an Active Error Flag theRECEIVE_DATAinput of the transmitter is forced to
recessive for 3 bit times. The transmitter detects bit errors at every bit and starts Active Error
With every bit error the transmit error counter is increased by 8. Then at the beginning of th
Active Error Flag the transmitter becomes Error Passive, but it continues sending the Active
Flag.

17) Send 7 messages decrementing TEC to 128.
The transmitter sends 7 messages. After the successful transmission of each message the
error counter is decreased by 1.

18) Error Passive transmitter sees Stuff Error during Arbitration at recessive stuff bit.
No TEC change on arbitration stuff error

19) Send one successful message.
Node is set back to Error Active.

20) Recessive bit at Start of Frame.
The dominant Start of Frame bit is forced to recessive. The transmitter detects a bit error and
an Active Error Flag. The transmit error counter is increased by 8. The transmitter is now
Passive again.

21) Recessive bit at Start of Frame (Error Passive).
The dominant Start of Frame bit is forced to recessive. The transmitter detects a bit error and
a Passive Error Flag. The transmit error counter is increased by 8.

22) Dominant bit at ACK Delimiter (Error Passive).
The recessive ACK Delimiter bit is forced to dominant. The transmitter detects a bit error and
a Passive Error Flag. The transmit error counter is increased by 8.

23) Dominant bit at the first bit of End of Frame (Error Passive).
The recessive bit of End of Frame is forced to dominant. TheRECEIVE_DATAinput is forced to
dominant for another 6 bits. The transmitter detects a bit error (at End of Frame) and sends a P
Error Flag. The transmit error counter is increased by 8. The 6 dominant bits during the Pa
Error Flag have no effect.

24) Dominant bit at the last bit of End of Frame (Error Passive), bit error during Passive Error F
The recessive bit of End of Frame is forced to dominant. The transmitter detects a bit error and
a Passive Error Flag. The transmit error counter is increased by 8. Then the 3rd bit of Passive
Flag is forced to dominant. The transmitter continues sending Passive Error Flag and waits
for 6 consecutive bits without changing the error counter.
- 15 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

g.
rload

detects
ter is

lag.
rload

detects
ter is

r and

nds a
minant

Error

r and

h
r and

rload

eiver.
assive

ceive

and

ceiver

inant.
r and
g bits
new
25) Dominant bit at last bit of Error Delimiter (Error Passive), 7 dominant bits after Overload Fla
The last recessive bit of Error Delimiter is forced to dominant. The transmitter detects an ove
condition and sends an Overload Frame. After sending the Overload Frame the transmitter
7 consecutive dominant bits before sending the Overload Delimiter. The transmit error coun
not changed.

26) Dominant bit at last bit of Overload Delimiter (Error Passive), 8 dominant bits after Overload F
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects an ove
condition and sends an Overload Frame. After sending the Overload Frame the transmitter
8 consecutive dominant bits before sending the Overload Delimiter. The transmit error coun
increased by 8.

27) Dominant bit at the 2nd bit of Overload Delimiter (Error Passive).
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects a bit erro
sends a Passive Error Flag. The transmit error counter is increased by 8.

28) Recessive bit at ACK Slot (Error Passive)
The dominant ACK bit is forced to recessive. The transmitter detects an ACK error and se
Passive Error Flag. The transmit error counter is not changed because it does not detect a do
bit while sending its Passive Error Flag.

29) 2nd bit of Error Delimiter forced dominant (Error Passive), 64 dominant bits after Passive
Flag.
The recessive bit of Error Delimiter is forced to dominant. The transmitter detects a bit erro
sends a Passive Error Flag. The transmit error counter is increased by 8.
After the Error Flag theRECEIVE_DATAinput is forced to dominant for another 64 bits. After eac
sequence of additional eight consecutive dominant bits the transmitter detects a form erro
increases the error counter by 8.

30) Dominant bit at last bit of Error Delimiter (Error Passive).
The last recessive bit of Error Delimiter is forced to dominant. The transmitter detects an ove
condition and sends an Overload Frame.

31) Dominant bit at 3rd bit of Intermission (Error Passive).
The last bit of Intermission is forced to dominant. The node is Error Passive and becomes rec
The next 5 bits are also forced to dominant. The receiver detects a stuff error and sends a P
Error Flag. The receive error counter is incremented by 1.

32) Dominant bit at the first bit after receiver’s Passive Error Flag.
The first bit after the Passive Error Flag is forced to dominant. The receiver increments the re
error counter by 8.

33) Dominant bit at receiver’s Error Delimiter (Error Passive).
The 4th bit of Error Delimiter is forced to dominant. The receiver detects a form error
increments the receive error counter by 1.

34) Dominant bit at the first bit after receiver’s Passive Error Flag.
The first bit after 6 consecutive recessive Passive Error Flag bits is forced to dominant. The re
increments the receive error counter by 8.

35) Dominant bit at receiver's Error Delimiter. Dominant bit after Passive Error Flag seen as dom
The recessive bit of Error Delimiter is forced to dominant. The receiver detects a form erro
increments the receive error counter by 1. After the 6 consecutive dominant Passive Error Fla
the receiver sees another dominant bit and increments the receive error counter by 8. A
transmission is started.
- 16 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

rload

or and
comes

after

after
36) Dominant bit at first bit of transmitter's Intermission.
The recessive bit of Intermission is forced to dominant. The transmitter detects an ove
condition and sends an Overload Flag.

37) Recessive bit during transmitter's Overload Flag.
The second bit of the Overload Flag is forced to recessive. The transmitter detects a bit err
increments its error counter by 8. Now the transmit error counter exceeds 255 and the node be
Bus Off.

3.2.7 extd_id

Test of proper recognition of IDE bit at all stuff conditions and test of losing arbitration at IDE bit.

NUMBER_OF_CANS: 2

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDTH = 4

The program consists of the following test steps:

Receiver, test of stuff bit combinations at IDE

1) IDE = dominant, standard frame: Dominant stuff bit before IDE, bit after IDE is dominant.

2) IDE = dominant, standard frame: Dominant stuff bit before IDE, bit after IDE is recessive.

3) IDE = dominant, standard frame: Recessive stuff bit before IDE, bit after IDE is dominant.

4) IDE = dominant, standard frame: Recessive stuff bit before IDE, bit after IDE is recessive.

5) IDE = dominant, standard frame: Recessive stuff bit after IDE.

6) IDE = recessive, extended frame: Dominant stuff bit after IDE.

7) IDE = recessive, extended frame: Dominant stuff bit before IDE, bit after IDE is dominant.

8) IDE = recessive, extended frame: Dominant stuff bit before IDE, bit after IDE is recessive.

9) IDE = recessive, extended frame: Illegal (dominant) SRR bit, recessive stuff bit before IDE, bit
IDE is dominant.

10) IDE = recessive, extended frame: Illegal (dominant) SRR bit, recessive stuff bit before IDE, bit
IDE is recessive.

Transmitter, test of stuff bit combinations at IDE

1) IDE = dominant, standard frame: Dominant stuff bit before IDE, bit after IDE is dominant.

2) IDE = dominant, standard frame: Recessive stuff bit before IDE, bit after IDE is dominant.

3) IDE = dominant, standard frame: Recessive stuff bit after IDE.

4) IDE = recessive, extended frame: Dominant stuff bit after IDE.

5) IDE = recessive, extended frame: Dominant stuff bit before IDE, bit after IDE is dominant.

6) IDE = recessive, extended frame: Dominant stuff bit before IDE, bit after IDE is recessive.

Transmitter, test of losing arbitration before, at and after IDE

1) IDE = dominant, standard frame: Lost arbitration at RTR (standard data frame).
- 17 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

RR =

RR =

Error

r and
domi-

and
etects

sends
nt bits

dition

rload

r and
etects
2) IDE = dominant, standard frame: Lost arbitration at RTR (extended data frame with illegal S
dominant).

3) IDE = recessive, extended frame: Lost arbitration at SRR (standard data frame).

4) IDE = recessive, extended frame: Lost arbitration at IDE (standard remote frame).

5) IDE = recessive, extended frame: Lost arbitration at extended Identifier.

6) IDE = recessive, extended frame: Lost arbitration at RTR (extended data frame).

7) IDE = recessive, extended frame: Lost arbitration at SRR (extended data frame with illegal S
dominant).

3.2.8 formerr

Confinement of Form Errors

NUMBER_OF_CANS: 2

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDTH = 4

Transmitters and receivers get form errors at all fixed format fields of all frames. Tested while
Active and Error Passive.

The program consists of the following test steps:

Test of receiver

1) Dominant bit at CRC Delimiter.
The recessive bit of CRC Delimiter is forced to dominant. The receiver detects a form erro
sends an Active Error Flag. The receive error counter is increased by 1. The receiver detects
nant bits after sending its Error Flag and increases its error counter by 8.

2) Dominant bit at ACK Delimiter.
The recessive bit of ACK Delimiter is forced to dominant. The receiver detects a form error
sends an Active Error Flag. The receive error counter is increased by 1. The receiver d
dominant bits after sending its Error Flag and increases its error counter by 8.

3) Dominant bit at the first bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The receiver detects a form error and
an Active Error Flag. The receive error counter is increased by 1. The receiver detects domina
after sending its Error Flag and increases its error counter by 8.

4) Dominant bit at the last bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The receiver detects an overload con
and sends an Overload Flag. The receive error counter is not changed.

5) Dominant bit at the last bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The receiver detects an ove
condition and sends an Overload Flag. The receive error counter is not changed.

6) Dominant bit at the second bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The receiver detects a form erro
sends an Active Error Flag. The receive error counter is increased by 1. The receiver d
dominant bits after sending its Error Flag and increases its error counter by 8.
- 18 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

r and
etects

rload

eiver

r and
etects

t the

r and

r and

r and

r and

rload

rload

error

r and
7) Dominant bit at the second bit of Error Delimiter.
The recessive bit of Error Delimiter is forced to dominant. The receiver detects a form erro
sends an Active Error Flag. The receive error counter is increased by 1. The receiver d
dominant bits after sending its Error Flag and increases its error counter by 8.

8) Dominant bit at the last bit of Error Delimiter.
The recessive bit of Error Delimiter is forced to dominant. The receiver detects an ove
condition and sends an Overload Flag. The receive error counter is not changed.

9) Dominant bit at the 8th bit after Overload Flag.
The next 16 bits after Overload Flag are forced to dominant. At the 8th and the 16th bit the rec
detects form errors and increases its error counter by 8.

10) Dominant bit at the second bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The receiver detects a form erro
sends an Active Error Flag. The receive error counter is increased by 1. The receiver d
dominant bits after sending its Error Flag and increases its error counter by 8.

11) Dominant bit at the 8th bit after Active Error Flag.
The next 16 bits after Active Error Flag are forced to dominant. At the 8th and the 16th bi
receiver detects form errors and increases its error counter by 8.

Test of transmitter

1) Dominant bit at CRC Delimiter.
The recessive bit of CRC Delimiter is forced to dominant. The transmitter detects a form erro
sends an Active Error Flag. The transmit error counter is increased by 8.

2) Dominant bit at ACK Delimiter.
The recessive bit of ACK Delimiter is forced to dominant. The transmitter detects a form erro
sends an Active Error Flag. The transmit error counter is increased by 8.

3) Dominant bit at the first bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The transmitter detects a form erro
sends an Active Error Flag. The transmit error counter is increased by 8.

4) Dominant bit at the last bit of End of Frame.
The recessive bit of End of Frame is forced to dominant. The transmitter detects a form erro
sends an Active Error Flag. The transmit error counter is increased by 8.

5) Dominant bit at the last bit of Error Delimiter.
The recessive bit of Error Delimiter is forced to dominant. The transmitter detects an ove
condition and sends an Overload Frame. The transmit error counter is not changed.

6) Dominant bit at the last bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects an ove
condition and sends an Overload Frame. The transmit error counter is not changed.

7) Dominant bit at the second bit of Overload Delimiter.
The recessive bit of Overload Delimiter is forced to dominant. The transmitter detects a form
and sends an Active Error Flag. The transmit error counter is increased by 8.

8) Dominant bit at the second bit of Error Delimiter.
The recessive bit of Error Delimiter is forced to dominant. The transmitter detects a form erro
sends an Active Error Flag. The transmit error counter is increased by 8.
- 19 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

t the

t the

e bits)
es. The

ycle

cycle

e and
Active

art of

r
Error
ends

sends

rt of
sed by
9) Dominant bit at the 8th bit after Overload Flag.
The next 16 bits after Overload Flag are forced to dominant. At the 8th and the 16th bi
transmitter detects form errors and increases its error counter by 8.

10) Dominant bit at the 8th bit after Active Error Flag.
The next 16 bits after Active Error Flag are forced to dominant. At the 8th and the 16th bi
transmitter detects form errors and increases its error counter by 8.

3.2.9 idle

Reset and BusOff Recovery Sequences

NUMBER_OF_CANS: 1

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 8,RESYCHRONIZATION_JUMP_WIDTH = 1

The reset (11 consecutive recessive bits) and Bus Off (at least 128 * 11 consecutive recessiv
recovery sequences are tested by setting dominant bits at interesting positions of that sequenc
detection of Start of Frame is checked; the behaviour of the error counters is monitored.

The program consists of the following test steps:

1) Dominant bit at the 9th bit of Wait_For_Bus_Idle.
The recessive 9th bit of Wait_For_Bus_Idle is forced to dominant. The Wait_For_Bus_Idle c
starts again.

2) Dominant bit at the 11th bit of Wait_For_Bus_Idle.
The recessive 11th bit of Wait_For_Bus_Idle is forced to dominant. The Wait_For_Bus_Idle
starts again.

3) Dominant bit at the second bit of Bus_Idle field.
A recessive bit during Bus Idle is forced to dominant. The node interprets this as Start of Fram
becomes receiver. After the 6th bit of Identifier the receiver detects a stuff error and sends an
Error Flag. The receive error counter is increased by 1.

4) Dominant bit at the 3rd bit of Intermission.
The recessive 3rd bit of Intermission is forced to dominant. The node interprets this as St
Frame and becomes transmitter.

5) Sending Active Error Flags, Passive Error Flag until suspend is reached.
When sending an Active Error Flag theRECEIVE_DATAinput is forced to recessive. The transmitte
detects bit errors and increases its error counter with every bit error by 8 until the node is
Passive. After the Passive Error Flag, Error Delimiter and Intermission the transmitter s
Suspend Transmission.

6) Recessive bit at the 2nd bit of Identifier.
The dominant 2nd bit of Identifier is forced to recessive. The transmitter detects a bit error and
a Passive Error Flag. The transmit error counter is increased by 8.

7) Waiting for Bus Off.
TheRECEIVE_DATAinput is forced to recessive. The transmitter detects bit errors at every Sta
Frame bit and sends Passive Error Flags. With every error the transmit error counter is increa
8. If the error counter is > 255 the node becomes Bus Off.
- 20 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

8 * 11

again.

starts

again.

again.
dle and

rame
ds an

end of

2nd

er de-

tart of

rload
8) Abort transmission.
The reset_transmission_request is set to abort the transmission. The node waits now for 12
consecutive recessive bits.

9) Dominant bit at the 9th position of Bus Off recovery sequence.
The recessive 9th bit of Bus Off recovery is forced to dominant. The recovery sequence starts

10) Dominant bit at the 11th position of Bus Off recovery sequence.
The recessive 11th bit of Bus Off recovery is forced to dominant. The recovery sequence
again.

11) Dominant bit at the first position of Bus Off recovery sequence.
The recessive 1st bit of Bus Off recovery is forced to dominant. The recovery sequence starts
The recovery counter is unchanged.

12) Dominant bit at the (10 + (126 * 11)) position of Bus Off recovery.
The recessive bit of Bus Off recovery is forced to dominant. The recovery sequence starts
The recovery counter is unchanged. After the next 11 recessive bits the node becomes Bus I
Error Active.

13) Dominant bit at the 12th position of Bus_Idle.
A recessive 12th bit during Bus Idle is forced to dominant. The node interprets this as Start of F
and becomes receiver. After the 6th bit of Identifier the receiver detects a stuff error and sen
Active Error Flag. The receive error counter is increased by 1.

3.2.10 overload

Overload Confinement

NUMBER_OF_CANS: 2

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDTH = 4

For receivers and transmitters, dominant bits are generated at each position of Intermission, at the
Error Delimiter and at the last bit of a receiver’s End of Frame.

The program consists of the following test steps:

Test of receiver

1) Dominant bit at 7th bit of End of Frame, 8th bit of Overload Delimiter, 1st bit of Intermission,
bit of Intermission.
In a test loop the bits described above are forced to dominant. At each dominant bit the receiv
tects an overload condition and sends an Overload Flag.

2) Dominant bit at the 3rd bit of Intermission.
The recessive 3rd bit of Intermission is forced to dominant. The receiver interprets this as S
Frame and receives a new message.

3) Dominant bit at the 8th bit of Error Delimiter.
The recessive 8th bit of Error Delimiter is forced to dominant. The receiver detects an ove
condition and sends an Overload Flag.
- 21 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

mitter

Start

sends

rload

end of

art the
ccepts

CAN1)

t the end
es.

eases
eceive
Test of transmitter

1) Dominant bit at 1st bit of Intermission, 8th bit of Overload Delimiter, 2nd bit of Intermission.
In a test loop the bits described above are forced to dominant. At each dominant bit the trans
detects an overload condition and sends an Overload Flag.

2) Dominant bit at 3rd bit of Intermission.
The recessive 3rd bit of Intermission is forced to dominant. The transmitter interprets this as
of Frame and starts a message.

3) Recessive bit at the 4th bit of Identifier.
The dominant 4th bit of Identifier is forced to recessive. The transmitter detects a bit error and
an Active Error Flag. The transmit error counter is increased by 8.

4) Dominant bit at the 8th bit of Error Delimiter.
The recessive 8th bit at Error Delimiter is forced to dominant. The transmitter detects an ove
condition and sends an Overload Flag.

3.2.11 stuff bit

Bit Stuffing

NUMBER_OF_CANS: 2

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDTH = 4

Reception and transmission of messages with dominant and recessive stuff bits within and at the
each stuffed field, followed by a recessive and a dominant bit.
In the first part of the test, the receiver (RefCAN1) receives 11 predefined messages. In this p
reserved bits, which have normally to be sent dominant, are modified to test whether the receiver a
dominant and recessive reserved bits in all combinations. In the second part the transmitter (Ref
transmits 8 predefined messages.

3.2.12 stufferr

Confinement of Stuff Errors

NUMBER_OF_CANS: 2

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDTH = 4

Stuff errors (both dominant and recessive) are generated in each stuffed field of a message and a
of each stuffed field. The program generates 16 stuff errors at different positions in the data fram

The program consists of the following test steps:

1) Recessive stuff error at stuff bit after the 8th Identifier position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.
- 22 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

nsmit
nds an

eases
eceive

eases
eceive

eases
eceive

eases
eceive

eases
eceive

eases
eceive

eases
eceive

eases
eceive

eases
eceive

eases
eceive
2) Dominant stuff error at stuff bit after the 4th Identifier position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag. The tra
error counter is not changed because the error occurred during arbitration. The receiver se
Active Error Flag and increases the receive error counter by 1.

3) Dominant stuff error at stuff bit after RTR bit.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.No arbitration is possible after the RTR bit of an extended Identifier.

4) Recessive stuff error at stuff bit after RTR bit.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

5) Recessive stuff error at stuff bit after the 2nd Data Length Code position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

6) Dominant stuff error at stuff bit after the 2nd Data Length Code position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

7) Dominant stuff error at stuff bit after the 4th Data Length Code position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

8) Recessive stuff error at stuff bit after the 4th Data Length Code position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

9) Recessive stuff error at stuff bit after the 8th Data Field position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

10) Dominant stuff error at stuff bit after the 12th Data Field position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

11) Dominant stuff error at stuff bit after the 64th Data Field position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

12) Recessive stuff error at stuff bit after the 8th Data Field position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.
- 23 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

eases
eceive

eases
eceive

eases
eceive

eases
eceive

es re-
lag.

ds an

ceiver.
Flag.

Active

stuff

a bit
13) Recessive stuff error at stuff bit after the 8th CRC Field position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

14) Dominant stuff error at stuff bit after the 1st CRC Field position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

15) Dominant stuff error at stuff bit after the 15th CRC Field position.
A recessive stuff bit is forced to dominant. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

16) Recessive stuff error at stuff bit after the 15th CRC Field position.
A dominant stuff bit is forced to recessive. The transmitter sends an Active Error Flag and incr
the transmit error counter by 8. The receiver sends an Active Error Flag and increases the r
error counter by 1.

3.2.13 txarb

Arbitration

NUMBER_OF_CANS: 1

Bit Timing: CLOCK_PERIOD = 100 ns,PRESCALER = 1,

NTQ = 10,SAMPLE = 6,RESYCHRONIZATION_JUMP_WIDTH = 4

A transmitter gets all types of bit errors at different positions in the Arbitration Field.

Standard Identifier

1) Bit 1 error at the 2nd Identifier bit
The recessive Identifier bit is forced to dominant. The transmitter loses arbitration and becom
ceiver. After the 8th Identifier bit the receiver detects a stuff error and send an Active Error F

2) Bit 0 error at the 7th Identifier bit
The dominant Identifier bit is forced to recessive. The transmitter detects a bit error and sen
Active Error Flag. The transmit error counter is increased by 8.

3) Bit 1 error at RTR bit
The recessive RTR bit is forced to dominant. The transmitter loses arbitration and becomes re
After the 5th extended Identifier bit the receiver detects a stuff error and sends an Active Error

4) Bit 0 error at the RTR bit
The dominant RTR bit is forced to recessive. The transmitter detects a bit error and sends an
Error Flag. The transmit error counter is increased by 8.

5) Bit 1 and stuff error after the 9th bit of Identifier
The recessive stuff bit after the 9th Identifier bit is forced to dominant. The transmitter detects a
error and sends an Active Error Flag. The transmit error counter is not changed.

6) Bit 0 and stuff error after the 5th bit of Identifier
The dominant stuff bit after the 5th Identifier bit is forced to recessive. The transmitter detects
error and sends an Active Error Flag. The transmit error counter is increased by 8.
- 24 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

error
andard

r and

eiver.
Flag.

Active

error

r and

n and
Active

r and

ceiver.
Error

Active

itter
ed.

itter
y 8.
7) Bit 1 and stuff error after RTR bit
The recessive stuff bit after the RTR bit is forced to dominant. The transmitter detects a stuff
and sends an Active Error Flag. The transmit error counter is not changed because in a st
Identifier RTR stuff bit is part of the arbitration field.

8) Bit 0 and stuff error after RTR bit
The dominant stuff bit after RTR bit is forced to recessive. The transmitter detects a bit erro
sends an Active Error Flag. The transmit error counter is increased by 8.

9) Bit 1 error at IDE bit
The recessive IDE bit is forced to dominant. The transmitter lost arbitration and becomes rec
After the 5th Data Length Code bit the receiver detects a stuff error and sends an Active Error

10) Bit 0 error at IDE bit
The dominant IDE bit is forced to recessive. The transmitter detects a bit error and sends an
Error Flag. The transmit error counter is increased by 8.

11) Bit 1 and stuff error after IDE bit
The recessive stuff bit after the IDE bit is forced to dominant. The transmitter detects a stuff
and sends an Active Error Flag. The transmit error counter is increased by 8.

12) Bit 0 and stuff error after IDE bit
The dominant stuff bit after IDE bit is forced to recessive. The transmitter detects a bit erro
sends an Active Error Flag. The transmit error counter is increased by 8.

Extended Identifier

13) Bit 1 error at the 4th bit of extended Identifier
The recessive extended Identifier bit is forced to dominant. The transmitter loses arbitratio
becomes receiver. After the 9th ext. Identifier bit the receiver detects a stuff error and send an
Error Flag.

14) Bit 0 error at the 2nd bit of extended Identifier
The dominant extended Identifier bit is forced to recessive. The transmitter detects a bit erro
sends an Active Error Flag. The transmit error counter is increased by 8.

15) Bit 1 error at RTR bit
The recessive RTR bit is forced to dominant. The transmitter loses arbitration and becomes re
After the 4th bit of Data Length Code the receiver detects a stuff error and sends an Active
Flag.

16) Bit 0 error at RTR bit
The dominant RTR bit is forced to recessive. The transmitter detects a bit error and sends an
Error Flag. The transmit error counter is increased by 8.

17) Bit 1 and stuff error after the 15th bit of extended Identifier
The recessive stuff bit after the 15th extended Identifier bit is forced to dominant. The transm
detects a stuff error and sends an Active Error Flag. The transmit error counter is not chang

18) Bit 0 and stuff error at the 11th bit of extended Identifier
The dominant stuff bit after the 11th extended Identifier bit is forced to recessive. The transm
detects a bit error and sends an Active Error Flag. The transmit error counter is increased b
- 25 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

error
tended

r and
19) Bit 1 and stuff error after RTR bit
The recessive stuff bit after the RTR bit is forced to dominant. The transmitter detects a stuff
and sends an Active Error Flag. The transmit error counter is increased by 8 because in an ex
Identifier RTR stuff bit is not part of the arbitration field.

20) Bit 0 and stuff error after RTR bit
The dominant stuff bit after RTR bit is forced to recessive. The transmitter detects a bit erro
sends an Active Error Flag. The transmit error counter is increased by 8.
- 26 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

lation
model

odel.

st
to the

are
4 Model Description

The top level of the Reference CAN Model design is the testbench, consisting of a simu
environment and a set of test programs as described in section 3.2. This chapter describes the
structure and the functionality implemented in the architectures used in the components of the m

The testbenchPROTOCOL_TESTBENCH, shown in figure 1, can be configured to run the different te
programs for different CAN models by assigning dedicated architectures and configurations
components WAVEFORM(entity TEST_PROGRAM, architecture <test>) and SYSTEM (entity
CAN_SYSTEM, architectureFLEXIBLE). The components are interconnected by a set ofInterface Signals
as described in section 4.1.

 Figure 1 architectureSTRUCTURAL of PROTOCOL_TESTBENCH.

The test programs control the simulation by driving the inputs and strobing the outputs ofCAN_SYSTEM.
Each test program is represented by one dedicated architecture ofTEST_PROGRAMand by three
dedicated configurations ofPROTOCOL_TESTBENCH, one configuration for each of the three CAN
implementation models (CONFIGURATION_IMPLEMENTATION, CONFIGURATION_EXAMPLE, and
CONFIGURATION_BUGGY) that are provided with the Reference CAN Model. The configurations
described in subsections 4.2.1 and 4.2.2.

Node 1 Node 2 Node n

COMPARE REFCAN

(optional)

E = CAN_SYSTEM

E = TEST_PROGRAM

CAN_BUS

•••

Interface Signals

A = <test>

E = PROTOCOL_TESTBENCH

A = STRUCTURAL

A = FLEXIBLE

REFCAN

(optional)
Node 3

REFCAN

(optional)
- 27 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

terface,

ing

d
AN
To check special features of an user-defined implementation, like a message memory or a bus in
additional test programs can be included in the testbench. The filetemplate.vpp defines an
architectureTEMPLATEof TEST_PROGRAM. This architecture can be used as a template when writ
additional test programs for the verification of an implementation (see section 5.3).

The architectureFLEXIBLE of CAN_SYSTEMis structural and connects the CAN model to be verifie
(componentCHECK1) with a flexible number of Reference CAN Model nodes, interacting via the C
bus. Which CAN model is used as componentCHECK1is defined by a configuration ofCAN_SYSTEM,
the actual number of Reference CAN Nodes is defined by a configuration ofPROTOCOL_TESTBENCH.
- 28 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ts and
s

.

S
by
en-
4.1 PROTOCOL_TESTBENCH
The protocol testbench, as shown in figure 1, is the top level entity. It has neither inputs nor outpu
is described by only one architecture,STRUCTURAL. STRUCTURALconsists of the two component
WAVEFORM andSYSTEM. These two components are connected by a set of interface signals.

• The interface (record-) signals driven byTEST_PROGRAM :
RESET

BIT_TIMING_CONFIGURATION(1 toMAXIMUM_NUMBER_OF_CANS)

.PRESCALER

.PROPAGATION_SEGMENT

.PHASE_BUFFER_SEGMENT_1

.RESYNCHRONISATION_JUMP_WIDTH

.INFORMATION_PROCESSING_TIME

BUS_INTERFERENCE(1 toMAXIMUM_NUMBER_OF_CANS)

TRANSMIT_MESSAGE(1 toMAXIMUM_NUMBER_OF_CANS)

.FRAME_KIND

.MESSAGE.IDENTIFIER_KIND

.MESSAGE.IDENTIFIER

.MESSAGE.NBYTES

.MESSAGE.DATA(0…8)

TRANSMISSION_REQUEST(1 toMAXIMUM_NUMBER_OF_CANS)

• The interface signals driven byCAN_SYSTEM :
TRANSMISSION_REQUEST_STATUS(1 toMAXIMUM_NUMBER_OF_CANS)

RECEIVED_MESSAGE(1 toMAXIMUM_NUMBER_OF_CANS)

.FRAME_KIND

.MESSAGE.IDENTIFIER_KIND

.MESSAGE.IDENTIFIER

.MESSAGE.NBYTES

.MESSAGE.DATA(0…8)

These signals (elements of the arrays referencing the CAN nodes inCAN_SYSTEM) implement the
following functionality:

• RESET is the system reset.

• BIT_TIMING_CONFIGURATION defines the CAN bit time.

• BUS_INTERFERENCEcan force theRECEIVE_DATAoutput of an instance ofBUS_INTERFACEto a
certain state.

• TRANSMIT_MESSAGE defines a message to be transmitted by the labelled CAN node.

• If TRANSMISSION_REQUEST is true, the labelled CAN node is requested to transmit a message

• TRANSMISSION_REQUEST_STATUS shows the processing of a requested transmission.

• RECEIVED_MESSAGE is the contents of the last message received by the labelled CAN node.

• The generic parameterMODEL_LABELdistinguishes the different instances ofCAN_INTERFACEin-
side CAN_SYSTEM. Valid values for MODEL_LABELare 0 to MAXIMUM_NUMBER_OF_CAN.
MODEL_LABEL = 0is always used for that instance of the implementation that is to be verified
comparing its function with the function of the reference model working in parallel. That implem
tation’s input is a copy of the input of the compared reference model.

For details of the constants and of the type declarations see packagesdefinitions.vhd and
trace_package.vhd .
- 29 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

d by
del
It is

s :

t

ts. For

the
4.2 CAN_SYSTEM
CAN_SYSTEMcomprises the complete CAN environment to be simulated, its function is describe
the architectureFLEXIBLE (see figure 2). This is a structural architecture, connecting the CAN mo
to be verified with a flexible number of Reference CAN Model nodes, interacting via the CAN bus.
used, in different configurations, for all protocol test programs. The ports of the entityCAN_SYSTEMare
described in section 4.1.

The architectureFLEXIBLE of CAN_SYSTEMinstantiates components defined by the following entitie

BUS_INTERFACE

CAN_INTERFACE

These entities and their architectures are described in section 4.3 and section 4.4.

 Figure 2 architectureFLEXIBLE of CAN_SYSTEM.

The generic parameterMODEL_LABELof CAN_INTERFACEis used to distinguish between the differen
instances ofCAN_INTERFACE. The generic parametersCLOCK_PERIODandRX_DELAY(associated with
their actual values in the testbench’s configuration) define the timing of the instantiated componen
each instance ofCAN_INTERFACE, there is one instance ofBUS_INTERFACE(componentDRIVER) and
one element of the array of interface signals.

In the architectureFLEXIBLE, CAN_SYSTEM contains at least one instance ofCAN_INTERFACE
(componentCHECK1) and a flexible number of additional instances ofCAN_INTERFACE (component
REFERENCE_MODEL). The actual number of nodes connected to the CAN bus is determined by
generic parameterNUMBER_OF_CAN_NODESof CAN_SYSTEM(n =NUMBER_OF_CAN_NODES- 1). This
generic parameter is defined by a configuration ofPROTOCOL_TESTBENCH.

E = CAN_SYSTEM

E = BUS_INTERFACE

MODEL_LABEL = 1 MODEL_LABEL = n + 1

E = CAN_INTERFACEE = CAN_INTERFACE

B
U

S
_I

N
T

E
R

F
E

R
E

N
C

E

B
U

S
_I

N
T

E
R

F
E

R
E

N
C

E

A = COMPARE A = REFERENCE

E = BUS_INTERFACE

RECEIVE
_DATA

TRANSMIT
_DATA

RECEIVE
_DATA

TRANSMIT
_DATA

CAN_BUS

Interface Signals

A = FLEXIBLE

* n
- 30 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

tion

ction

on

of

of

l

f test
The following architectures are available forCAN_INTERFACE: COMPARE, REFERENCE, EXAMPLE, and
BAD_EXAMPLE. Which CAN model architecture or configuration is associated with componentCHECK1
or with the componentsREFERENCE_MODEL is defined by a configuration ofCAN_SYSTEM.

Only one architecture is available forBUS_INTERFACE : BEHAVIOUR (see section 4.3).

For other applications beyond the CAN protocol verification, additionalCAN_SYSTEMarchitectures and
configurations can be defined.

4.2.1 configuration SYS_I of CAN_SYSTEM

This configuration is designed to simulate an implementation’s model (configura
IMPLEMENTATION) together with a Reference CAN Model node (architectureREFERENCE) running in
parallel inside componentCHECK1(architectureCOMPARE) while optional additional Reference CAN
Model nodes provide CAN communication to the implementation. All test programs described in se
3.2 use this configuration, but with different numbers of CAN nodes :

NUMBER_OF_CAN_NODES = 1 : btl idle txarb

NUMBER_OF_CAN_NODES = 2: biterror crc dlc
emlcount extd_id formerr
overload stuff bit stufferr

NUMBER_OF_CAN_NODES = 3: baudrate

The architectures and configurations ofCAN_INTERFACE,which are used here, are described in secti
4.4.1 (architectureCOMPARE), in section 4.4.2 (architectureREFERENCE), and in section 4.4.3
(configurationIMPLEMENTATION).

4.2.2 configuration SYS_E of CAN_SYSTEM

This configuration is the same asSYS_I , with only one exception : Instead of an instance
CONFIGURATION_IMPLEMENTATIONof architecture REFERENCE, an instance of configuration
CONFIGURATION_EXAMPLEof architectureEXAMPLEis running in parallel with a Reference CAN
Model node inside componentCHECK1 (architectureCOMPARE).

The configurationCONFIGURATION_EXAMPLEof architectureEXAMPLEof CAN_INTERFACE,which is
used here, is described in section 4.4.4.

4.2.3 configuration SYS_B of CAN_SYSTEM

This configuration is the same asSYS_E, with only one exception : Instead of an instance
configuration CONFIGURATION_EXAMPLEof architectureEXAMPLE, an instance of configuration
CONFIGURATION_BUGGYof architectureEXAMPLEis running in parallel with a Reference CAN Mode
node inside componentCHECK1 (architectureCOMPARE).

The configurationCONFIGURATION_BUGGYof architectureEXAMPLEof CAN_INTERFACE,which is
used here, is described in section 4.4.5.

4.2.4 configuration SYS_R of CAN_SYSTEM

In this configuration, only architectureREFERENCEis used for all instances ofCAN_INTERFACE. This
configuration, not depending on any implementation’s model, is intended for the development o
programs (see section 5.3).
- 31 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

n be

ll

er

l

. In the

t

4.3 BUS_INTERFACE
BUS_INTERFACE is used to connect an instance ofCAN_INTERFACE to theCAN_BUS.

The entity has the following ports :

generic TX_DOMINANT_DELAY delay when driving a dominant bit to the CAN bus
generic TX_RECESSIVE_DELAY delay when driving a recessive bit to the CAN bus
generic RX_DELAY delay when receiving a bit from the CAN bus
in RESET
inout CAN_BUS model of a CAN bus, may be dominant or recessive
in BUS_INTERFERENCE forcesRECEIVE_DATA to specific values
out RECEIVE_DATA output toCAN_INTERFACE
in TRANSMIT_DATA input fromCAN_INTERFACE

In theCAN_SYSTEM, the physical layer of the CAN bus is represented by a single bus line which ca
driven to the valuesRECESSIVEandDOMINANTby each of the instances ofBUS_INTERFACEconnected
to CAN_BUS. The resolution function used forCAN_BUSensures that a single dominant level wi
override all recessive levels.

Only one architecture exists forBUS_INTERFACE, namedBEHAVIOUR.

In BEHAVIOUR, the state of signalTRANSMIT_DATAis converted to a dominant level (if it is ‘0’) or a
recessive level (if it is ‘1’) on theCAN_BUS. An assertion of severity error checks wheth
TRANSMIT_DATA has a value different from ‘0’ or ‘1’.

RECEIVE_DATA depends on the state ofCAN_BUSand on the state ofBUS_INTERFERENCE. If
BUS_INTERFERENCEis NONE, a dominant level onCAN_BUSwill be read as ‘0’ and a recessive leve
will be read as ‘1’.

If BUS_INTERFERENCEis set toBIT_ERROR, a dominant level onCAN_BUSwill be read as ‘1’ and a
recessive level will be read as ‘0’.

With BUS_INTERFERENCE set toSTUCK_AT_RECESSIVE, RECEIVE_DATA will always be ‘1’.

With BUS_INTERFERENCE set toSTUCK_AT_DOMINANT, RECEIVE_DATA will always be ‘0’.

The generic delay parameters are provided as an option for the simulation of CAN bus systems
configurations for the simulation of the protocol test programs, no configuration ofCAN_SYSTEMassigns
actual parameters to the generic delay parameters ofBUS_INTERFACE, so in all instances they remain a
their default values of 0 ns.

If a particular implementation requires another kind of physical layer, architectureBEHAVIOURmay be
replaced in the configurations ofCAN_SYSTEM.
- 32 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

AN

e

ion

n

is

tion

face

nd

ed
,
e

er,

on

the
ce

ternal
ely.
4.4 CAN_INTERFACE
The entityCAN_INTERFACEis designed as a CAN Protocol Controller, which is connected to the C
bus by aBUS_INTERFACEand to the message memory by the signalsRECEIVED_MESSAGEand
TRANSMIT_MESSAGE.

The entity has the following ports :

generic MODEL_LABEL Each component of this entity has a particular nam
generic CLOCK_PERIOD is an array of the base time units of theCAN_SYSTEM
generic RX_DELAY used to synchronize Reference and Implementat
generic GET_RECEIVE_ERROR_COUNTER_FROM_MODEL_0optional, only for protocol check
in RESET restores the initial state of the entity
in RECEIVE_DATA is the data input fromBUS_INTERFACE
out TRANSMIT_DATA is the data output toBUS_INTERFACE
in BIT_TIMING_CONFIGURATION is the definition for the CAN bus bit time
out RECEIVED_MESSAGE is the last received message
in TRANSMISSION_REQUEST if true, the CAN node is required to transmit
in TRANSMIT_MESSAGE is the message to be transmitted
out TRANSMISSION_REQUEST_STATUSshows the processing of a requested transmissio

The functionality of a certain instance ofCAN_INTERFACEdepends on the architecture which
associated to that instance in a configuration.

The following architectures and configurations are available forCAN_INTERFACE :

COMPARE compares implementation’s model with reference model during simula
REFERENCE reference model of a CAN Protocol Controller
IMPLEMENTATION model of user’s implementation, currently substituted byREFERENCE
EXAMPLE example of a CAN module, including message memory and CPU inter
BAD_EXAMPLE example of a buggy CAN Protocol Controller

The architecturesCOMPAREandREFERENCEare fundamental parts of the CAN protocol testbench a
should not be modified.

The architectureIMPLEMENTATIONis a proxy for the user’s implementation model that is to be verifi
by the Reference CAN Model node. SinceIMPLEMENTATIONis not part of the Reference CAN Model
the configuration CONFIGURATION_IMPLEMENTATIONcurrently associates the architectur
REFERENCE whenever theIMPLEMENTATION is instantiated.

The architectureEXAMPLEdescribes an entire CAN module, including CAN Protocol Controll
message memory, and CPU interface, linked together inCONFIGURATION_EXAMPLE. It is intended as
an example how to integrate the user’s implementation model into the Reference CAN Model.

The architectureBAD_EXAMPLEdescribes a buggy CAN Protocol Controller. The configurati
CONFIGURATION_BUGGYlinks this buggy CAN Protocol Controller into the architectureEXAMPLE,
resulting in a buggy CAN module. The simulation of this buggy module, running in parallel to
architectureREFERENCEinside the architectureCOMPAREshows how the test programs of the Referen
CAN Model detect CAN protocol errors.

Besides the entity’s port signals, the protocol check requires additional internal information on in
signals of the architectures ofCAN_INTERFACE. These internal signals cannot be accessed direct
Therefore, the architectures are provided with a set of global signalsBOND_OUTof the record type
BOND_OUT_TYPE, as defined in packagetrace_package.vhd . BOND_OUTis an array of records, each
architecture drives only elements ofBOND_OUT(MODEL_LABEL). In the model of the user’s
- 33 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

are

It

d

e

igned

error

is
implementation, theBOND_OUTsignals (see section 5.1) are to be excluded from synthesis, they
intended for the verification simulation only.

4.4.1 architecture COMPARE

The architectureCOMPAREof CAN_INTERFACEis a structural architecture as shown in figure 3.
consists of the componentsIMPLEMENTATION, REFERENCE(both referencing entityCAN_INTERFACE),
and of the componentPROTOCOL_CHECK (referencing entityCHECKER).

 Figure 3 architectureCOMPARE of CAN_INTERFACE.

The IMPLEMENTATIONis running in parallel to theREFERENCE, meaning they get the same inputs an
should generate the same outputs. During a simulation, some of theBOND_OUTsignals and the
TRANSMIT_DATAand RECEIVED_MESSAGEport signals of the implementation’s model and of th
Reference CAN Model node are compared byPROTOCOL_CHECK. TheBOND_OUTsignals are not part
of CAN_INTERFACE’s port map list, they are global signals declared in packagetrace_package.vhd .
InsideCAN_INTERFACE’s architectures, the values of certain internal signals or variables are ass
to correspondingBOND_OUT signals, making that values externally visible, see also section 5.1.

In case of a difference in that signals, the checker will indicate this difference by a report of severity
as a CAN protocol error. The functionality ofCHECKER is described in section 4.4.1.1.

The TRANSMIT_DATAoutput ofCOMPAREis theTRANSMIT_DATAoutput of IMPLEMENTATION. The
TRANSMIT_DATAoutput of REFERENCEis only used by the checker and is not visible outside th
architecture.

E = CAN_INTERFACE

A = COMPARE

BOND_OUT

Signals

BOND_OUT

Signals

RECEIVE_DATA

TRANSMIT_DATA_ITRANSMIT_DATA_R

Interface Signals

RX_DELAY

RECEIVED_MESSAGE_R

E
 =

 C
H

E
C

K
E

R
E = CAN_INTERFACEE = CAN_INTERFACE

A = IMPLEMENTATIONA = REFERENCE

MODEL_LABEL = 0MODEL_LABEL = generic

A
 =

 B
E

H
A

V
IO

U
R

RECEIVED_MESSAGE_I
- 34 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

lways

node

S

The RECEIVE_DATA input of COMPAREis connected directely to theRECEIVE_DATA input of
IMPLEMENTATION. The generic parameterRX_DELAYis an input delay factor, to be multiplied with the
implementation model’s clock period. TheRECEIVE_DATAinput of REFERENCEis delayed in order to
compensate the delay time caused by the synchronization of theRECEIVE_DATA input to the
implementation model’s clock.

The TRANSMISSION_REQUESTinput of REFERENCEis connected toBOND_OUT(0).TXRQST. This
global signal is set by the implementation under test to assure that the RefCAN running in parallel a
starts the transmission synchronously to the implementation (see also section 4.5.3).

Only one instance ofCAN_INTERFACEin aCAN_SYSTEMmay be associated with architectureCOMPARE.

Which implementation’s model (CONFIGURATION_IMPLEMENTATION, CONFIGURATION_EXAMPLE,
or CONFIGURATION_BUGGY) is compared toREFERENCEis defined by a configuration of
PROTOCOL_TESTBENCH, REFERENCE is always associated with architectureREFERENCE.

4.4.1.1 CHECKER

CHECKERcomparesBOND_OUTsignals and theTRANSMIT_DATAandRECEIVED_MESSAGEport signals
of an implementation under test (IUT) with the corresponding signals of the Reference CAN Model
simulated in parallel and notifies differences as CAN protocol errors.

Entity CHECKERis instanciated as a component of architectureCOMPAREof CAN_INTERFACE. Its
functionality is implemented in the architectureBEHAVIOUR of CHECKER.

The elements of theBOND_OUT global signal record used byCHECKER are the following:

BOND_OUT(MODEL_LABEL)
.BUSMON
.TRANSMIT_ERROR_COUNTER
.RECEIVE_ERROR_COUNTER
.BUSOFF

TheMODEL_LABELis 0 for the implementation and in the range of 1 toMAXIMUM_NUMBER_OF_CAN
for the Reference CAN Model nodes. The global signals are defined in packagetrace_package.vhd .

BUSMONreflects the state ofRECEIVE_DATAat the last sample point.TRANSMIT_ERROR_COUNTERand
RECEIVE_ERROR_COUNTERmonitor the state of the two error counters.BUSOFFis ‘1’ when the
transmit error counter has reached 256.
- 35 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

cts a
sertion

ference
ectly,
als are

nals
n this

e,

al

while

gnals lie
arded
 Figure 4 Tolerable phase shifts between compared signals (example forTRANSMIT_DATA).

After RESET, CHECKERremains passive as long as the CAN bus remains in the recessive state.CHECKER
is activated when the IUT sampled the first dominant bit after the start of the simulation. If it dete
difference between the relevant signals of the IUT and of the Reference CAN Model node, an as
will cause a report of severity error, documenting the CAN protocol error.

In order to compensate for a possible phase difference between the clocks of the IUT and the Re
CAN Model node, the signals of the IUT and the Reference CAN Model node are compared not dir
but with the help of some intermediate signals, so that small phase differences between the sign
tolerated.

The IUT is required to follow the Reference CAN Model node within the time window defined by sig
MIN andMAX. This allows phase shifts to be tolerated if the edges of the compared signals lie withi
time window (see figure 4). The limits for the tolerable phase shift areMAX= (Time Quanta) / 2 = -MIN.

If an edge appears atTRANSMIT_DATA_R, the transmit data output of the Reference CAN Model nod
theTRANSMIT_DATA_R_STABLE signal is set to false for -MIN + MAX. After this time it returns to true.

If an edge appears atTRANSMIT_DATA_I, the transmit data output of the IUT, the edge of sign
TRANSMIT_DATA_I_DELAYED is generated fromTRANSMIT_DATA_I by delaying it for |MIN|.

CHECKERcompares the Reference CAN Model node signals with the delayed signals of the IUT
the Reference CAN Model node signals are stable. In the example of figure 4,TRANSMIT_DATA_Ris
compared withTRANSMIT_DATA_I_DELAYEDwhile TRANSMIT_DATA_R_STABLEis true (outside the
shaded area). If the phase shift between the edges is so small that the edges of the delayed si
within the shaded areas, the signals of the IUT and of the Reference CAN Model node will be reg
as identical.

TRANSMIT_DATA_R

TRANSMIT_DATA_R_STABLE

TRANSMIT_DATA_I

TRANSMIT_DATA_I_DELAYED

-MIN + MAX-MIN + MAX

|MIN||MIN|

Case #1 Case #2

MIN MAX MIN MAX
- 36 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ut
tput

ed signal

rror.

e error
eaches
sive
d again,
Model
).

tion’s
ith a
case of

.

In Case #1 the transmit data outputTRANSMIT_DATA_Iof the IUT changes after the transmit data outp
TRANSMIT_DATA_Rof the Reference CAN Model node. In Case #2 the transmit data ou
TRANSMIT_DATA_I of the IUT changes before the transmit data outputTRANSMIT_DATA_Rof the
Reference CAN Model node. In both cases the phase shift can be tolerated because the generat
TRANSMIT_DATA_I_DELAYED lies inside the shaded area.

If the phase difference of the edges of the compared signals is greater than |MIN|, an error in the
implementation is assumed. An assertion report shows which signal causes the CAN protocol e

The same phase compensation is used for the other compared signals with the exception of th
counters. The error counters are compared at the sample point only. If the receive error counter r
the error passive level,CHECKERonly verifies that both receive error counters are above the error pas
limit (127), their actual values are not compared. When the receive error counters are decremente
finishing error passive, they are set to a value in the range of 119 to 127. The Reference CAN
node adjusts itself to the value of the implementation’s receive error counter (see section 4.4.2.7

At the reception of a message,CHECKERcompares theRECEIVED_MESSAGEport signals of
implementation and Reference CAN Model. The comparision is done at the implementa
RECEIVED_MESSAGEevents rather than the reference model’s in order to allow implementations w
hardware acceptance filtering that do not accept certain messages of the reference testbench. In
restricted implementations, only that part of the message that is inside the restriction is checked
- 37 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ams
4.4.2 architecture REFERENCE

This architecture implements the functionality of a CAN controller as defined byCAN Specification
Revision 2.0 Part A and B. It is used to check an user-written implementation using the test progr
described in section 3.2.

 Figure 5 architectureREFERENCE of CAN_INTERFACE.

P
 =

 O
S

C
IL

LA
T

O
R

P
 =

 P
R

E
S

C
A

LE
R

P = BIT_TIMING

pr
oc

es
se

s

P = BIT_STREAM_PROCESSOR

CLOCK

T
IM

E
_Q

U
A

N
T

A
_C

LO
C

K

RECEIVE_DATA TRANSMIT_DATA

S
A

M
P

LE
_P

O
IN

T

H
A

R
D

_S
Y

N
C

_E
N

A
B

LE

B
U

S
_D

R
IV

E

R
E

S
E

T

T
R

A
N

S
M

IT
_M

E
S

S
A

G
E

R
E

C
E

IV
E

D
_M

E
S

S
A

G
E

T
R

A
N

S
M

IS
S

IO
N

_R
E

Q
U

E
S

T

T
R

A
N

S
M

IS
S

IO
N

_R
E

Q
U

E
S

T
_S

T
A

T
U

S

M
O

D
E

L_
LA

B
E

L

B
IT

_T
IM

IN
G

_C
O

N
F

IG
U

R
A

T
IO

N

Trace Signals

E = CAN_INTERFACE

A
 =

 R
E

F
E

R
E

N
C

E

B
U

S
M

O
N

C
LO

C
K

_P
E

R
IO

D

R
X

_D
E

LA
Y

G
E

T
_R

E
C

E
IV

E
_E

R
R

O
R

_C
O

U
N

T
E

R
_F

R
O

M
_M

O
D

E
L_

0

w
rit

in
g

tr
ac

e
in

fo
rm

at
io

n

B
O

N
D

_O
U

T

- 38 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

.

of
The Reference CAN Model architecture shown in figure 5 consists of the following processes:

OSCILLATOR
PRESCALER
BIT_TIMING
BIT_STREAM_PROCESSOR
REQUEST_STATUS
TRACE_MESSAGE
TRACING

The functions implemented in these processes are described in the following subsections.

4.4.2.1 process OSCILLATOR

Generates the clock signalCLOCK, which is input to processTIME_QUANTA_CLOCK. CLOCKis based on
the generic parameterCLOCK_PERIODand has a phase shift ofMODEL_LABEL• 1 ns. The phase shift
assures that the different instances of the reference model are evaluated in an explicit sequence

4.4.2.2 process PRESCALER

The TIME_QUANTA_CLOCKis derived from CLOCK by dividing it by the prescaler value
BIT_TIMING_CONFIGURATION.PRESCALER. The TIME_QUANTA_CLOCKis the clock input for
processBIT_TIMING .

4.4.2.3 process BIT_TIMING

4.4.2.3.1 Overview

This process controls bit timing and synchronization, samples theRECEIVE_DATAinput, and drives the
TRANSMIT_DATA output.

The signals below are input to processBIT_TIMING :

RESET

TIME_QUANTA_CLOCK

BIT_TIMING_CONFIGURATION

.PRESCALER

.PROPAGATION_SEGMENT

.PHASE_BUFFER_SEGMENT_1

.RESYNCHRONISATION_JUMP_WIDTH

.INFORMATION_PROCESSING_TIME

RECEIVE_DATA

HARD_SYNC_ENABLE

BUS_DRIVE

The following signals are output of processBIT_TIMING :

BUSMON

SAMPLE_POINT

TRANSMIT_DATA

BOND_OUT(MODEL_LABEL).BUSMON

BOND_OUT(MODEL_LABEL).TRANSMIT_POINT

TheBOND_OUTSignals are defined in packagetrace_package.vhd . They are used byCHECKERas
described in section 4.4.1.1. The genericMODEL_LABELis used to address a certain instance
CAN_INTERFACE.
- 39 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ated.

ther

ive.

or.

ely
4.4.2.3.2 Structure of process BIT_TIMING

In the following paragraph the flow of processBIT_TIMING as shown in figure 6 is explained.

 Figure 6 Process flow ofBIT_TIMING .

The process is sensitive to signalsRESET, TIME_QUANTA_CLOCKand the signals of
BIT_TIMING_CONFIGURATION. Whenever one of these signals has an event the process is evalu

When RESET is activeTRANSMIT_DATAis set to ‘1’ (recessive) andSAMPLE_POINTis set to ‘0’
(inactive). In addition some local variables are set to their default values.

After RESET, and whenever one of the signals ofBIT_TIMING_CONFIGURATION has an event, the
quasi constants for Phase Buffer Segment 2 (PHASE_BUFFER_SEGMENT_2), sample point (SAMPLE,
SAMPLE_I), and the number of time quanta in a bit time (NTQ, NTQ_I) are calculated.SAMPLE_I and
NTQ_I are used for temporary storage during synchronization.

On each rising edge ofTIME_QUANTA_CLOCK the following actions are performed:

• The time quanta counter is incremented.

• The differenceDIFF of the actual value of the time quanta counter (COUNT) and the sample point
(SAMPLE_I) is calculated. This variable is used when resychronizing to determine whe
TRANSMIT_POINT should be set or not.

• SignalsSAMPLE_POINTandTRANSMIT_POINTare reset one time quanta after they have gone act

• ThePHASE_ERROR is calculated. Figure 7 shows the relation between bit timing and phase err

• The number of time quanta (DELTA) by which Phase Buffer Segment 1 is lengthened respectiv
Phase Buffer Segment 2 is shortened is calculated as the minimum of the actualPHASE_ERRORand
the value ofRESYNCHRONIZATION_JUMP_WIDTH.

BIT_TIMING: (RESET, BIT_TIMING_CONFIGURATION, TIME_QUANTA_CLOCK)

if RESET then
Initialize signals and variables

end if;

if BIT_TIMING_CONFIGURATION’event or (RESET’event and not RESET) then
Recalculation of quasi constants:
sample point
Phase Buffer Segment 2
Number of time quanta in a bit time

end if;

if TIME_QUANTA_CLOCK’event and TIME_QUANTA_CLOCK = ‘1’ then
Control of bit timing and bus line:
Sample bus line
Drive bus line
Hard Synchronization and Resynchronization

end if;
- 40 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

at the
Each

e

a

at the
tion.

zation
• During each bit time there is the possibility to synchronize on a recessive to dominant edge
RECEIVE_DATAinput. This can be done by a Hard Synchronization or by a Resynchronization.
synchronization resets theSYNC_ENABLEflag to guarantee that only one synchronization per bit tim
is performed.

• At the end of a bit time the time quanta counter is reset (COUNT= 0),TRANSMIT_POINTis set and the
TRANSMIT_DATA output gets the actual value ofBUS_DRIVE.

• If the time quanta counter equalsSAMPLE_I the signalSAMPLE_POINTis set to ‘1’ and the output
signalBUSMONgets the value ofRECEIVE_DATA. ThereforeBUSMONshows the sampled input dat
stream. In addition theSYNC_ENABLE flag is set true to enable synchronization.

For details of the VHDL coding see filecan_interface_reference.vhd .

 Figure 7 Bit Timing and Phase Error.

4.4.2.3.3 Synchronization

During each bit time there is the possibility to synchronize on a recessive to dominant edge
RECEIVE_DATA input. This can be done by a Hard Synchronization or by Resynchroniza
Synchronization will only be done when the last sampled bus value was recessive (i.e.BUSMON= ‘1’).
This is necessary to avoid synchronizing on spikes on the bus line. The conditions for synchroni
are dependent whether the node is receiver or transmitter.

For additional information about synchronization see also CAN Specification 2.0 Part A, B.

RECEIVE_DATA

PHASE_ERROR = 0

PHASE_ERROR > 0

PHASE_ERROR < 0

(lengthen PB1)

(shorten PB2)

Sample

TQ

S
yn

cS
eg

P
R

O
P PB1 PB2

Bit Time

SAMPLE_POINT

TQ = Time Quanta

SyncSeg = Synchronization Segment

PROP = Propagation Segment

PB1 = Phase Buffer Segment 1

PB2 = Phase Buffer Segment 2

IPT = Information Processing Time

IPT
- 41 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ard

quanta

me
 Figure 8 Synchronization flow.

Hard Synchronization

When the CAN node is in Bus_Idle state, the signalHARD_SYNC_ENABLEis set true by the
BIT_STREAM_PROCESSOR. Now a recessive to dominant edge on the bus will cause a H
Synchronization provided that the last sampled value was recessive.

When the node is receiver and a recessive to dominant edge is detected the value of the time
counter is set to one (COUNT = 1) and a new bit time starts.

If the node is transmitting a dominant bit, Hard Synchronization can only occur whenPHASE_ERROR< 0.

The generation ofTRANSMIT_POINTis done only if the detected edge lies Information Processing Ti
after the sample point (see figure 7).

if RECEIVE_DATA = ‘0’ and BUSMON = ‘1’ and SYNC_ENABLE then

SYNC_ENABLE := false;

if HARD_SYNC_ENABLE = ‘1’ then
Hard Synchronization

end if;

elsif HARD_SYNC_ENABLE = ‘0’ and BUS_DRIVE = ‘1’ then
Resynchronization when Receiver

end if;

elsif HARD_SYNC_ENABLE = ‘0’ and PHASE_ERROR <= 0 then
Resynchronization when Transmitter

end if;

end if;
- 42 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

sive to
ode is

ed the

n jump

an the

me
 Figure 9 Hard Synchronization on recessive to dominant edge.

Resynchronization

When a reception or transmission is in progress there is the possibility to resynchronize on reces
dominant edges on the CAN bus. There are two cases for Resynchronization depending if the n
receiver or transmitter.

Node is Receiver

If the node is receiver there will be Resynchronization on each recessive to dominant edge provid
value ofBUSMON is ‘1’.

If the edge lies between Synchronisation Segment and sample point (PHASE_ERROR> 0) the Phase
Buffer Segment 1 is lengthened by a number of time quanta less or equal the resynchronizatio
width. This is done by shifting the sample point (SAMPLE_I) and the end of bit time (NTQ_I) by DELTA
time quanta.

If the edge lies between sample point and the next Synchronization Segment (PHASE_ERROR< 0) the
Phase Buffer Segment 2 is shortened in the following way:

When the distance of the detected edge from the next Synchronization Segment is less th
resychronization jump width, the time quanta counter is set to one (COUNT= 1) and a new bit time is
started. Else the number of time quanta for this bit time (NTQ_I) is decremented byDELTA.

The generation ofTRANSMIT_POINTis done only if the detected edge lies Information Processing Ti
after the sample point.

if HARD_SYNC_ENABLE = ‘1’ then

Transmitter: Synchronize only if edge after sample point
if BUS_DRIVE = ‘1’ or COUNT > SAMPLE_I then

COUNT = 1;
end if;

Generation of TRANSMIT_POINT only if edge lies
Information Processing Time after sample point
if DIFF >=
BIT_TIMING_CONFIGURATION.INFORMATION_PROCESSING_TIME then

TRANSMIT_POINT <= true;
TX_DATA <= BUS_DRIVE;

end if;
- 43 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

if the

jump

n the

me
 Figure 10 Resynchronization, Node = Receiver.

Node is Transmitter

If the node is transmitter there will only be a Resychronization on a recessive to dominant edge
edge lies between the sample point and the next Synchronisation Segment (PHASE_ERROR< 0). Phase
Buffer Segment 2 is shortened by a number of time quanta less or equal the resynchronization
width.

If the distance of the detected edge from the next Synchronization Segment is less tha
resychronization jump width, the time quanta counter is set to one (COUNT= 1) and a new bit time is
started. Else the number of time quanta for this bit time (NTQ_I) is decremented byDELTA.

The generation ofTRANSMIT_POINTis done only if the detected edge lies Information Processing Ti
after the sample point.

elsif HARD_SYNC_ENABLE = ‘0’ and BUS_DRIVE = ‘1’ then

Edge between SyncSeg and sample point:
Lengthen Phase Buffer Segment 1
if PHASE_ERROR > 0 then

SAMPLE_I := SAMPLE_I + DELTA;
NTQ_I := NTQ_I + DELTA;

Edge between sample point and next SyncSeg:
Shorten Phase Buffer Segment 2
elsif PHASE_ERROR <= 0 then

if COUNT > (NTQ_I -
BIT_TIMING_CONFIGURATION.RESYNCHRONIZATION_JUMP_WIDTH) then

COUNT = 1;
Generation of TRANSMIT_POINT only if edge lies
Information Processing Time after sample point
if DIFF >=

BIT_TIMING_CONFIGURATION.INFORMATION_PROCESSING_TIME then
TRANSMIT_POINT <= true;
TX_DATA <= BUS_DRIVE;

end if;
else

NTQ_I := NTQ_I + DELTA;
end if;

end if;
- 44 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2
 Figure 11 Resynchronization, Node = Transmitter.

elsif HARD_SYNC_ENABLE = ‘0’ and PHASE_ERROR <= 0 then

Edge between sample point and next SyncSeg:
Shorten Phase Buffer Segment 2
if COUNT > (NTQ_I -

BIT_TIMING_CONFIGURATION.RESYNCHRONIZATION_JUMP_WIDTH) then
COUNT = 1;
Generation of TRANSMIT_POINT only if edge lies
Information Processing Time after sample point
if DIFF >=

BIT_TIMING_CONFIGURATION.INFORMATION_PROCESSING_TIME then
TRANSMIT_POINT <= true;
TX_DATA <= BUS_DRIVE;

end if;
else

NTQ_I := NTQ_I + DELTA;
end if;

end if;
- 45 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2
4.4.2.4 process BIT_STREAM_PROCESSOR

4.4.2.4.1 Overview

TheBIT_STREAM_PROCESSOR generates and receives the bit stream.

Input signals of processBIT_STREAM_PROCESSOR:

RESET
PROCESS_BIT
RECEIVE_DATA
BIT_ERROR
TRANSMISSION_REQUEST
TRANSMIT_MESSAGE

.FRAME_KIND

.MESSAGE.IDENTIFIER_KIND

.MESSAGE.IDENTIFIER

.MESSAGE.NBYTES

.MESSAGE.DATA
ADJUST_ERROR_COUNTERS

Functional output signals of processBIT_STREAM_PROCESSOR:

BUS_DRIVE
HARD_SYNC_ENABLE
TRANSMISSION_REQUEST_STATUS
RECEIVED_MESSAGE

.FRAME_KIND

.MESSAGE.IDENTIFIER_KIND

.MESSAGE.IDENTIFIER

.MESSAGE.NBYTES

.MESSAGE.DATA

BOND_OUT signals of processBIT_STREAM_PROCESSOR:

BOND_OUT(MODEL_LABEL).BUS_DRIVE
BOND_OUT(MODEL_LABEL).TRANSMIT_ERROR_COUNTER
BOND_OUT(MODEL_LABEL).RECEIVE_ERROR_COUNTER
BOND_OUT(MODEL_LABEL).TXRQST
BOND_OUT(MODEL_LABEL).FIELD
BOND_OUT(MODEL_LABEL).POSITION
BOND_OUT(MODEL_LABEL).STATUS

Trace output signals of processBIT_STREAM_PROCESSOR:

MESSAGE_OK
MESSAGE_RECEIVED
TX_REQUEST_STATUS
STUFF_BIT
PREVIOUS_POSITION
PREVIOUS_STATUS
PREVIOUS_FIELD
- 46 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

of
ter.

are

are
ame,
e, also
4.4.2.4.2 Frame Format

STATUS: The actual state of a CAN node is described bySTATUS. STATUS can have the values
RESET, WAIT_FOR_BUS_IDLE, IDLE, RECEIVING, TRANSMITTING,
BUS_OFF_RECOVERY.

FIELD : Each bit of a CAN protocol frame can be referenced by itsFIELD andPOSITION inside
the frame.FIELD is not equal to the field names in the CAN_Specification. It is a group
bits with the same function. For example Identifier, Data_Length_Code or CRC_Delimi

POSITION: Bit position inside aFIELD . The first bit has always thePOSITION number 1.

The following paragraph lists all validFIELD names. The number in brackets is the range ofPOSITION.

Not taking part in message transfer, not influencing the bus
Reset, [1…++]
Wait_For_Bus_Idle, [1…++]
Bus_Idle, [1…1+]
Bus_Off, [1…++]

Data_Frame or Remote_Frame
Start_Of_Frame, [1]
Identifier, [1…11]
SRR_Bit, [1]
IDE_Bit, [1]
Ex_Identifier, [1…18]
RTR_Bit, [1]
Reserved_Bits, [0…1]
Data_Length_Code, [1…4]
Data_Field, [1…8xNBytes] (only in Data Frames)
CRC_Sequence, [1…15]
CRC_Delimiter, [1]
ACK_Slot, [1]
ACK_Delimiter, [1]
End_Of_Frame, [1…7]

Error_Frame
Active_Error_Flag, [1…6+]
Passive_Error_Flag, [1…6+]
Error_Delimiter, [2…8] (1st bit is last bit of Error Flag)

Overload_Frame
Overload_Flag, [1…6+]
Overload_Delimiter, [2…8] (1st bit is last bit of Error Flag)

InterFrame_Space
Intermission, [1…3]
Suspend_Transmission, [1…8]

Each of the fields Reset, Wait_For_Bus_Idle, Bus_Idle and Bus_Off implies one specialSTATUS. For
example Bus_Idle points to IDLE and Bus_Off points to BUS_OFF_RECOVERY. All other fields
linked withSTATUS RECEIVING or TRANSMITTING.

In processBIT_STREAM_PROCESSORData_Frame and Remote_Frame (and all the fields in it)
calculated in own program sections separated in TRANSMITTING and RECEIVING. The Error_Fr
the Overload_Frame and the InterFrame_Space are divided in the fields which are listed abov
separated in TRANSMITTING and RECEIVINGSTATUS.
- 47 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

of
4.4.2.4.3 Structure of process BIT_STREAM_PROCESSOR

Figure 12 shows the structure of processBIT_STREAM_PROCESSOR. The parts of this process are
described in the following section. See filecan_interface_reference.vhd for details of the VHDL
coding.

 Figure 12 Structure of the BIT_STREAM_PROCESSOR process.

INITIALIZATION
Local signals, variables and output signals are set to their default values.

TRACE assignments
Some trace signalsPREVIOUS_XXXare set before the source signals are changed.MESSAGE_OKis set to
false. Its only true during the reception of the last bit of End of Frame.CRC_OKis set to false. It can only
be true during the reception of the recessive CRC Delimiter.

STUFF assignments
The stuff variablesSTUFF_BIT and STUFF_CONDITIONare assigned according to the values
DOMINANT_COUNTER, RECESSIVE_COUNTERand STUFF_ENABLE. The signalsSTUFF_BIT and
NEXT_IS_STUFF are only used for tracing.

BIT_STREAM_PROCESSOR

if RESET then

INITIALIZATION

elsif PROCESS_BIT’event and PROCESS_BIT = ‘1’ then
TRACE assignments

STUFF assignments

ERROR STATUS assignments

case STATUS of CAN Interface

when WAIT_FOR_BUS_IDLE =>

when IDLE =>

when RECEIVING =>

when TRANSMITTING =>

when BUS_OFF_RECOVERY =>

when others =>

end case

end if

elsif ADJUST_ERROR_COUNTERS’event and

RECEIVE_ERROR_COUNTER adjustment assignments

ADJUST_ERROR_COUNTERS = ‘1’ then
- 48 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

e

with
r-
the

nted

rpreted

f

ERROR_STATUS assignments
If TRANSMIT_ERROR_COUNTERandRECEIVE_ERROR_COUNTERare less than or equal to 127 the nod
is Error Active andERROR_PASSIVE is false.

STATUS of CAN Interface
Here the actual state of the CAN node is evaluated.STATUSis a signal ofCAN_STATUS_TYPE. The five
states (without RESET) are described in the next sections.

• STATUS - BUS_OFF_RECOVERY
The node waits for 128 occurrences of 11 consecutive recessive bits on the bus,
HARD_SYNC_ENABLEset to ‘1’. TheRECEIVE_ERROR_COUNTERis used to count these 128 occu
rences and thePOSITION signal is used to count 11 consecutive bits. If a dominant bit occurs on
bus thenPOSITION is reset to 1. If theRECEIVE_ERROR_COUNTERis equal to 128 thenSTATUSis
changed to IDLE,TRANSMIT_ERROR_COUNTERandRECEIVE_ERROR_COUNTERare cleared,PO-
SITION is set to ‘1’.

• STATUS - WAIT_FOR_BUS_IDLE
This is the first status afterRESET. The node waits for 11 consecutive recessive bits which are cou
with the RECESSIVE_COUNTER, with HARD_SYNC_ENABLEset to ‘1’. If the node has monitored
these 11 bits on the bus andTRANSMISSION_REQUESTis true thenSTATUSis changed to TRANS-
MITTING. In the other case the status is changed to IDLE.

• STATUS - IDLE
The bus is now free and the node waits for a recessive to dominant edge on the bus which is inte
as Start_Of_Frame. The node becomes receiver with settingSTATUS to RECEIVING and
HARD_SYNC_ENABLEto ‘0’. The FIELD of the next bit is Identifier andSTUFF_ENABLEis true be-
cause Start_Of_Frame is part of the stuffed area.
If no dominant bit appears on the bus the node waits for aTRANSMISSION_REQUESTto become
transmitter. ThenSTATUS is changed to TRANSMITTING. TheFIELD of the next bit is
Start_Of_Frame.STUFF_ENABLEbecomes true.BUS_DRIVE is set to dominant (because o
Start_Of_Frame) andHARD_SYNC_ENABLE will be set to ‘0’.
- 49 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

new
,
d

the
r the
fter

r

and a

this

the

the 8th
itional
• STATUS - RECEIVING
The status RECEIVING is divided in 7 fields.

 Figure 13 Structure of RECEIVING status.

STATUS - RECEIVING:FIELD = Active_Error_Flag
The receiver sends 6 dominant bits. If a bit error occurs during the Active_Error_Flag then a
Active_Error_Flag is sent and theRECEIVE_ERROR_COUNTERis incremented by 8. After the 6th bit
the Active_Error_Flag has finished andBUS_DRIVEis set to ‘1’. The receiver monitors the bus an
waits for a recessive bit to changeSTATUSto Error_Delimiter. The first bit of Error_Delimiter is
recognized in the Active_Error_Flag, so thePOSITION of Error_Delimiter must be set to 2.
If the first bit after the Active_Error_Flag is monitored as dominant then
RECEIVE_ERROR_COUNTERis incremented by 8. The receiver accepts up to 7 dominant bits afte
Active_Error_Flag. At the 8th consecutive dominant bit following the Active_Error_Flag and a
each sequence of additional eight consecutive dominant bits theRECEIVE_ERROR_COUNTERis
incremented by 8.
At each increment of theRECEIVE_ERROR_COUNTERduring the Active_Error_Flag the error counte
value is checked for ERROR_PASSIVE.

STATUS - RECEIVING:FIELD = Passive_Error_Flag
The receiver waits for 6 consecutive bits on the bus (dominant or recessive). If a bit error
transition from dominant to recessive or from recessive to dominant is monitored thenPOSITION is
set to ‘1’. The node looks for a dominant bit after the first 6 bits of the Passive_Error_Flag. If
occurred then theRECEIVE_ERROR_COUNTERin incremented by 8. After the detection of 6
consecutive bits thePASSIVE_ERROR_FLAGhas finished. The next recessive bit changesSTATUSto
Error_Delimiter. The first bit of Error_Delimiter is recognized in the Passive_Error_Flag, so
POSITION of Error_Delimiter must be set to 2.
The receiver accepts up to 7 dominant bits after the 6 consecutive Passive_Error_Flag bits. At
consecutive dominant bit following the Passive_Error_Flag and after each sequence of add
eight consecutive dominant bits theRECEIVE_ERROR_COUNTER is incremented by 8.

Status is RECEIVING

case FIELD is

when Active_Error_Flag =>

when Passive_Error_Flag =>

when Error_Delimiter =>

when Overload_Flag =>

when Overload_Delimiter =>

when Intermission =>

when others =>

end case
- 50 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

form

dition
e it is

itions
r the

itions

ition
nt the

or if
t a
a new

e to

in
ror at
e last
s

STATUS - RECEIVING:FIELD = Error_Delimiter
The receiver sends 8 recessive bits on the bus. At the end of the delimiter,FIELD is changed to
Intermission. If a dominant bit occurs during the delimiter bits 2 - 7, then the receiver detects a
error and sends an Error_Flag (active or passive). TheRECEIVE_ERROR_COUNTERis incremented by
1. If a dominant bit is monitored at the last delimiter bit then the receiver detects an overload con
and sends an Overload_Flag. The first bit of the Error_Delimiter is always recessive becaus
necessary to detect the end of an Error_Flag and to change theFIELD to Error_Delimiter.

STATUS - RECEIVING:FIELD = Overload_Flag
The Overload_Flag has the same form like the Active_Error_Flag. The error actions and cond
during the flag are almost identical. The only difference is that a dominant bit at the first bit afte
Overload_Flag does not change theRECEIVE_ERROR_COUNTER.

STATUS - RECEIVING:FIELD = Overload_Delimiter
The Overload_Delimiter has the same form as the Error_Delimiter. The error actions and cond
during the delimiter are identical.

STATUS - RECEIVING:FIELD = Intermission
A dominant bit during the first or the second bit of Intermission is interpreted as overload cond
and the receiver sends an Overload_Flag. If the 3rd Intermission bit is monitored as domina
receiver interprets this as Start_Of_Frame. If thenTRANSMISSION_REQUESTis true, the receiver
becomes transmitter and a new transmission is started (beginning with Identifier),
TRANSMISSION_REQUESTis false the receiver receives another frame (next bit is Identifier). A
recessive bit at the 3rd Intermission bit the receiver becomes transmitter and starts sending
frame ifTRANSMISSION_REQUESTis true (beginning with Start_Of_Frame) or changes theSTATUS
to IDLE.

STATUS - RECEIVING:FIELD = others
The field “others” contains the reception of a data frame from the field Start_Of_Fram
End_Of_Frame and is divided in two main parts.
In the first part the actual bit is not a stuff bit. TheIdentifier_KIND (STANDARD/EXTENDED),
FRAME_KIND(DATA/REMOTE), NBYTES(Data Length Code) and the maximum number of bits
the frame are calculated. Then the items end of stuffed area, checksum, ACK bit, form er
ACK_Delimiter and form error at End_Of_Frame are tested. After receiving a recessive bit at th
position of End_Of_Frame the received message (RX_MESSAGE) is calculated and the node change
FIELD to Intermission.
If during the reception the next expected bit is a stuff bit thenPOSITION is not incremented and the
FIELD signal is not calculated because a stuff bit has the samePOSITION andFIELD value as the
preceding message bit.
In the second part the actual bit is a stuff bit.POSITION is incremented andFIELD is updated for the
next bit. If a stuff error happened an error frame is sent.
- 51 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

new

utive
utive

r

r has

nd a

e

At the
itional

er
• STATUS - TRANSMITTING
The status TRANSMITTING is divided in 8 fields.

 Figure 14 Structure ofTRANSMITTING status.

STATUS - TRANSMITTING: FIELD = Active_Error_Flag
The transmitter sends 6 dominant bits. If a bit error occurs during the Active_Error_Flag then a
Active_Error_Flag is sent and theTRANSMIT_ERROR_COUNTERis incremented by 8. After the 6th
bit, the Active_Error_Flag has finished andBUS_DRIVE is set to ‘1’. The transmitter monitors the
bus and waits for a recessive bit to change theSTATUSto Error_Delimiter. The first bit of delimiter
is recognized in the Active_Error_Flag, so thePOSITION of delimiter must be set to 2.
The transmitter accepts up to 7 dominant bits after the Active_Error_Flag. At the 8th consec
dominant bit following the Active_Error_Flag and after each sequence of additional eight consec
dominant bits theTRANSMIT_ERROR_COUNTER is incremented by 8.
At each increment of theTRANSMIT_ERROR_COUNTERduring the Active_Error_Flag the counte
value is checked for ERROR_PASSIVE and Bus Off.

STATUS - TRANSMITTING: FIELD = Passive_Error_Flag
First the node looks for a dominant bit during the first 6 Passive_Error_Flag bits. If an ACK erro
occurred before ACK_Slot then theTRANSMIT_ERROR_COUNTERis incremented by 8. Next the
transmitter waits for 6 consecutive bits on the bus (dominant or recessive). If a bit error a
transition from dominant to recessive or from recessive to dominant is monitored thenPOSITION is
set to ‘1’. After the detection of 6 consecutive bits thePASSIVE_ERROR_FLAGhas finished. The next
recessive bit changes theSTATUSto Error_Delimiter. The first bit of delimiter is recognized in th
Passive_Error_Flag, so thePOSITION of delimiter must be set to 2.
The transmitter accepts up to 7 dominant bits after the 6 consecutive Passive_Error_Flag bits.
8th consecutive dominant bit following the Passive_Error_Flag and after each sequence of add
eight consecutive dominant bits theTRANSMIT_ERROR_COUNTER is incremented by 8.
At each increment of theTRANSMIT_ERROR_COUNTERduring the Passive_Error_Flag the count
value is checked for Bus Off.

Status is TRANSMITTING

case FIELD is

when Active_Error_Flag =>

when Passive_Error_Flag =>

when Error_Delimiter =>

when Overload_Flag =>

when Overload_Delimiter =>

when Intermission =>

when Suspend_Transmission =>

when others =>

end case
- 52 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

itter
R
tects

ways

itions

itions

ition
nt the

it the
f

while a
ending

e to

f
If

t.
ted

R bit
ndard
mitter

ion
STATUS - TRANSMITTING: FIELD = Error_Delimiter
The transmitter sends 8 recessive bits on the bus. At the end of the delimiter,FIELD is changed to
Intermission. If a dominant bit occurs during the Error_Delimiter bits 2 - 7, then the transm
detects a form error and sends an Error_Flag (active or passive). TheTRANSMIT_ERROR_COUNTE
is incremented by 8. If a dominant bit is monitored at the last delimiter bit then the transmitter de
an overload condition and sends an Overload_Flag. The first bit of the Error_Delimiter is al
recessive because it is necessary to detect the end of an Error_Flag and to change theFIELD to
Error_Delimiter.

STATUS - TRANSMITTING: FIELD Overload_Flag
The Overload_Flag has the same form like the Active_Error_Flag. The error actions and cond
during the flag are identical.

STATUS - TRANSMITTING: FIELD Overload_Delimiter
The Overload_Delimiter has the same form as the Error_Delimiter. The error actions and cond
during the delimiter are identical.

STATUS - TRANSMITTING: FIELD Intermission
A dominant bit during the first or the second bit of Intermission is interpreted as overload cond
and the transmitter sends an Overload_Flag. If the 3rd Intermission bit is monitored as domina
transmitter interprets this as Start_Of_Frame. If thenTRANSMISSION_REQUESTis true a new
transmission is started (beginning with Identifier), or ifTRANSMISSION_REQUESTis false the
transmitter becomes a receiver (next bit is Identifier). At a recessive bit at the 3rd Intermission b
transmitter sends Suspend_Transmission ifERROR_PASSIVE, starts sending a new frame i
TRANSMISSION_REQUESTis true (beginning with Start_Of_Frame) or changes theSTATUSto IDLE.

STATUS - TRANSMITTING: FIELD Suspend_Transmission
The Error Passive transmitter sends after Intermission 8 recessive bits on the bus. When mean
dominant bit occurs the node interprets this as Start_Of_Frame and becomes receiver. After s
the suspend bits the transmitter starts transmitting a message ifTRANSMISSION_REQUESTis true or
if false changeSTATUS to IDLE.

STATUS - TRANSMITTING: FIELD others
The field “others” contains the transmission of a data frame from the field Start_Of_Fram
End_Of_Frame.
The first part assigns the actualTRANSMIT_BIT from the BIT_MESSAGEin depend ofFIELD ,
POSITION andSTUFF_BIT. TheTRANSMIT_ERROR_COUNTERis decremented by 1 at the last bit o
End_Of_Frame and theSTUFF_ENABLEvariable is set false at the end of the stuffed area.
STUFF_CONDITIONis true the next bit is a stuff bit. ThenPOSITION is not incremented andFIELD
is not changed. The stuff bits are not part ofBIT_MESSAGE.
The next part sets theBUS_DRIVEsignal.BUS_DRIVEis the bit which is transmitted in the next even
If the next bit is a stuff bit thenBUS_DRIVEgets the complementary value of the actual transmit
bit. In the other caseBUS_DRIVE gets the value of the next bit fromBIT_MESSAGE.
The next section checks for the error conditions during the transmission. First a stuff error at RT
in an extended frame is checked, because this stuff error is different to a RTR stuff error in a sta
frame. Next the arbitration and the possible errors in the arbitration field are tested. The trans
lost the arbitration when the bit that is monitored is dominant (BUSMON= ‘0’) and is different to the
bit value that is sent (BIT_ERROR= true). Then the ACK error and the bit errors outside the arbitrat
field are tested.
- 53 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

o the

ssage

ceived.

Point.

s

xamples

of
4.4.2.5 Output to the Trace File

The operation of the test program and of the CAN modules is documented by writing text int
simulation’s trace file. This architectureREFERENCEincorporates three trace processes,TRACING,
REQUEST_STATUS, andRECEIVE_MESSAGE.

REQUEST_STATUSis triggered by each change ofTX_REQUEST_STATUS(the internal name of the
output TRANSMISSION_REQUEST_STATUS). When TRANSMISSION_REQUEST_STATUSchanges, a
line is written into the trace file, containing a time stamp, theMODEL_LABEL(to identify the source of
the trace message), and the new state ofTRANSMISSION_REQUEST_STATUS.

RECEIVE_MESSAGEis triggered by each reception of an error-free CAN message. The received me
is written into the trace file, together with time stamp andMODEL_LABEL. The note written into the trace
file starts with the information whether a Data or a Remote, a Standard or an Extended Frame is re
Then follow the Identifier, the Data Length Code, and, if actually received, the Data Bytes.

TRACINGis scheduled regularly, at the end of the Information Processing Time after the Sample
For each evaluation of the processBIT_STREAM_PROCESSOR, one line of text is written into the trace
file. This line starts, as before, with time stamp andMODEL_LABEL. Then follow the position of the
processed bit in theFIELD , theSTATUSandFIELD at the last Sample Point, theRECEIVE_DATAat the
last Sample Point, whether thisRECEIVE_DATAwas aBIT_ERROR, the transmitted bit, and the value
of theRECEIVE_ERROR_COUNTERandTRANSMIT_ERROR_COUNTER. When the CAN module leaves
reset state, some header lines are printed into the trace file, describing the trace signals. Some e
of trace output are described in figure 15, figure 16, and figure 17.

In the trace package (see filetrace_package.vhd), the global signalTRACE_CONTROLis declared.
TRACE_CONTROLis an array(MODEL_LABEL_TYPE) of std_ulogic_vectors, providing each instance
a CAN model with its own 10-bitTRACE_CONTROLvector (default value = “1111111111”). In the
architecture REFERENCE, TRACE_CONTROL(MODEL_LABEL)(0) enables the processTRACING to
document the function of the processBIT_STREAM_PROCESSORby writing to the trace file at each
Sample-Point. By settingTRACE_CONTROL(MODEL_LABEL)(0) to ‘0’, the CAN model with the generic
parameterMODEL_LABEL is prevented from writing trace output at each Sample-Point.

The other bits of theTRACE_CONTROLvector are not used by the architectureREFERENCE, they are
provided to control the trace output of the different parts of an implementation’s model.
- 54 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2
 Figure 15 Start of a simulation’s trace file (e.g. test program emlcount).

 Figure 16 Example of lost arbitration in a simulation’s trace file (e.g. test program emlcount).

1 Tx_Rqst_Status of CAN1 changed to DONE
0 Tx_Rqst_Status of CAN0 changed to DONE
2 Tx_Rqst_Status of CAN2 changed to DONE

1100 RefCAN2 left Reset State
1100 RefCAN0 left Reset State
1100 RefCAN1 left Reset State

P B B
o Si u
s at s T
i mE D x
t pr r R
i lr i q R T
o eo v s E E

Time Node n State/Field at SamplePt dr e t C C
1800 RefCAN0 1 Wait_For_Bus_Idle 10 1 F 0 0
1801 RefCAN1 1 Wait_For_Bus_Idle 10 1 F 0 0
1802 RefCAN2 1 Wait_For_Bus_Idle 10 1 F 0 0
2050 Implementation and refCAN are synchronised
2800 RefCAN0 2 Wait_For_Bus_Idle 01 1 F 0 0

.................

13802 RefCAN2 11 Wait_For_Bus_Idle 10 1 F 0 0
14050 WAIT_FOR: STATUS, FIELD and POSITION reached !
14050 ===
14050 | Start of Test (Receive Error Counter counts up and down) |
14050 ===
14800 RefCAN0 1 Bus_Idle 01 1 F 0 0

.................

.................
906800 RefCAN0 8 Tx_Identifier 00 1 T 127 120
906801 RefCAN1 8 Tx_Identifier 00 1 T 127 120
906802 RefCAN2 8 Tx_Identifier 00 0 F 12 16
907600 Tx_Rqst_Status of CAN0 changed to PENDING
907601 Tx_Rqst_Status of CAN1 changed to PENDING
907800 RefCAN0 9 Tx_Identifier 01 1 T 127 120
907801 RefCAN1 9 Tx_Identifier 01 1 T 127 120
907802 RefCAN2 9 Tx_Identifier 00 0 F 12 16
908800 RefCAN0 10 Rx_Identifier 01 1 T 127 120
908801 RefCAN1 10 Rx_Identifier 01 1 T 127 120
908802 RefCAN2 10 Tx_Identifier 00 0 F 12 16
909800 RefCAN0 11 Rx_Identifier 01 1 T 127 120
909801 RefCAN1 11 Rx_Identifier 01 1 T 127 120
909802 RefCAN2 11 Tx_Identifier 00 0 F 12 16
910800 RefCAN0 1 Rx_RTR_Bit 01 1 T 127 120
910801 RefCAN1 1 Rx_RTR_Bit 01 1 T 127 120
910802 RefCAN2 1 Tx_RTR_Bit 00 1 F 12 16
911800 RefCAN0 S Rx_RTR_Bit 10 1 T 127 120
911801 RefCAN1 S Rx_RTR_Bit 10 1 T 127 120
911802 RefCAN2 S Tx_RTR_Bit 10 0 F 12 16
912800 RefCAN0 1 Rx_IDE_Bit 01 1 T 127 120
912801 RefCAN1 1 Rx_IDE_Bit 01 1 T 127 120
912802 RefCAN2 1 Tx_IDE_Bit 00 1 F 12 16
913800 RefCAN0 1 Rx_Reserved_Bits 10 1 T 127 120
913801 RefCAN1 1 Rx_Reserved_Bits 10 1 T 127 120
913802 RefCAN2 1 Tx_Reserved_Bits 10 0 F 12 16

.................
- 55 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

t the
efore

tocol
n every

ts).

nd the

ecause
nt the

ases
In figure 16, RefCAN1 and the parallely simulated RefCAN0 (the implementation) lose arbitration a
9th Identifier bit. In figure 17, RefCAN2 does not send Acknowledge because of a CRC Error, ther
RefCAN1 and RefCAN0 see an Acknowledge Error.

 Figure 17 Example of CRC Error in a simulation’s trace file (e.g. test program crc).

4.4.2.6 CAN Specification and Reference CAN Model

In case of some error conditions, the CAN node’s reaction is left open by the actual CAN pro
specification. In these cases, the C Reference CAN Model sets a standard, which is implemented i
existing CAN controller and in this VHDL Reference CAN Model :

• Reception of Data Length Code > 8
The receiver regards the received Data Length Code as = 8.

• Reception of dominant bit at last bit of End of Frame.
Message is valid, no error counter is incremented, Overload Frame is started.

• Reception of a dominant SRR bit in an Extended Frame
SRR should have been send recessive, but actual value is ignored (same as for Reserved Bi

• Hard Synchronisation
The Hard Synchronisation is enabled not only for Bus Idle state, but also for Suspend state a
end of the Intermission State, as required for the reception of a Start of Frame.

• Receive Error Count
Once the Receive Error Count has reached its Error Passive level, it is no longer incremented, b
then its actual value is of no interest. Theoretically, the Fault Confinement Rules could increme
Receive Error Count’s value over all limits.

A new revision of the ISO 11898 CAN protocol specification is in preparation that will cover these c
the same way as the Reference CAN Models.

.................
45800 RefCAN0 13 Rx_CRC_Sequence 01 1 F 0 0
45801 RefCAN1 13 Rx_CRC_Sequence 01 1 F 0 0
45802 RefCAN2 13 Tx_CRC_Sequence 00 0 T 0 0
46800 RefCAN0 14 Rx_CRC_Sequence 01 1 F 0 0
46801 RefCAN1 14 Rx_CRC_Sequence 01 1 F 0 0
46802 RefCAN2 14 Tx_CRC_Sequence 00 1 T 0 0
47800 RefCAN0 15 Rx_CRC_Sequence 10 1 F 0 0
47801 RefCAN1 15 Rx_CRC_Sequence 10 1 F 0 0
47802 RefCAN2 15 Tx_CRC_Sequence 10 1 T 0 0
48800 RefCAN0 1 Rx_CRC_Delimiter 10 1 F 0 0
48801 RefCAN1 1 Rx_CRC_Delimiter 10 1 F 0 0
48802 RefCAN2 1 Tx_CRC_Delimiter 10 1 T 0 0
49800 RefCAN0 1 Rx_ACK_Slot 10 1 F 0 0
49801 RefCAN1 1 Rx_ACK_Slot 10 1 F 0 0
49802 RefCAN2 1 Tx_ACK_Slot 10 0 T 0 8
50602 Tx_Rqst_Status of CAN2 changed to ERROR
50800 RefCAN0 1 Rx_ACK_Delimiter 01 0 F 1 0
50801 RefCAN1 1 Rx_ACK_Delimiter 01 0 F 1 0
50802 RefCAN2 1 Tx_Active_Error_Flag 00 0 T 0 8
51602 Tx_Rqst_Status of CAN2 changed to PENDING
51800 RefCAN0 1 Rx_Active_Error_Flag 00 0 F 1 0
51801 RefCAN1 1 Rx_Active_Error_Flag 00 0 F 1 0
51802 RefCAN2 2 Tx_Active_Error_Flag 00 0 T 0 8
52800 RefCAN0 2 Rx_Active_Error_Flag 00 0 F 1 0
52801 RefCAN1 2 Rx_Active_Error_Flag 00 0 F 1 0

.................
- 56 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

y
sive

rdware

ssage,
value
in the

of

n

ternal
ignal
e

up”
was
nger
entations
In the Reference CAN Model, theRECEIVE_ERROR_COUNTERis used to count the Busoff Recover
Sequence, a dedicatedRECESSIVE_COUNTERis used to count the sequences of 11 consecutive reces
bits. Both implementations are not obligatory; the internal structure of architectureREFERENCEis
designed to interface with the protocol check processes, it is not intended as an example for ha
implementations of CAN protocol controllers.

4.4.2.7 Special Features of architecture REFERENCE for Protocol Check.

The architecture reference has two special features:

The first feature is the adjustable Receive Error Counter : After the successful reception of a me
when the Receive Error Counter is decremented, then it will be set to a value of 127 (its maximum
is limited to 136). Since the implementation’s Receive Error Count may be set to another value (
range of 119 to 127), the Reference CAN Model can adjust itself to the value
BOND_OUT(0).RECEIVE_ERROR_COUNTER, if the feature is enabled byCAN_INTERFACE’s generic
GET_RECEIVE_ERROR_COUNTER_FROM_MODEL_0. The Reference CAN Model that is simulated i
parallel to the implementation’s model inside architectureCOMPAREis the only CAN node for which this
feature is enabled (see section 4.4.1). Other architectures ofCAN_INTERFACEignore this generic (with
the exception ofBAD_EXAMPLE).

The second feature is a “freeze”-function. In order to synchronize the Reference CAN Model to ex
events, it is possible to stop its bit processing (not its bit synchronization) by setting the global s
FREEZE(MODEL_LABEL) to true. FREEZE is a global signal that is defined in the packag
definitions.vhd , it is an array of boolean, range from 1 toMAXIMUM_NUMBER_OF_CANS. While the
Reference CAN Model is “frozen”, it still synchronizes itself to the bit stream, when it is “thawed
(by settingFREEZE(MODEL_LABEL)to false), it restarts its bit processing at the same state when it
“frozen”. The “freeze”-function is provided for the test of implementation’s models that need a lo
idle time between messages to set up new messages or to read received messages (e. g. implem
with a slow CPU interface), it is not used in the existing test programs.
- 57 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

a
lation

n

ing (as

rface.

the
grams.
4.4.3 architecture IMPLEMENTATION

The architectureIMPLEMENTATIONof CAN_INTERFACEis an external shell for the user’s model of
CAN implementation, providing a standardized interface between the user’s model, the simu
environment, and the test programs. The internal structure ofIMPLEMENTATIONis supposed to be
defined by the configurationCONFIGURATION_IMPLEMENTATION, following the example of
architectureEXAMPLEandCONFIGURATION_EXAMPLEin section 4.4.4 and the description in sectio
5.1.

In that version ofCONFIGURATION_IMPLEMENTATION, that is distributed with the VHDL Reference
CAN Model, architectureIMPLEMENTATION is substituted by architectureREFERENCE.

4.4.4 architecture EXAMPLE

The architecture described here (see figure 18) is a combination of a simple CAN module, consist
defined in chapterIntroduction at page 1, see figure 19 at page 59) of three major parts:

• Interface to the CPU,

• CAN Protocol Controller (with a separate Control Register),

• Message Memory,

and of an elementary CPU model. This model is adapted to the CAN module’s specific CPU inte

The purpose of the CPU model is to drive the CPU interface of the CAN module (performing
functions write_data and read_data), interfacing between the CAN model and the protocol test pro
The interposed CPU keeps the protocol test programs independent of particular CAN modules.

 Figure 18 architectureEXAMPLE of CAN_INTERFACE.

E = CAN_INTERFACE

A = EXAMPLE

E = CPU E = CAN_MODULE

A = READ_WRITE A = SIMPLE

RECEIVE_DATATRANSMIT_DATA

Interface Signals

MODEL_LABEL = generic

CPU_BUS

Control Signals

RECEIVE_INTERRUPT
- 58 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ed.
EXAMPLEis a structural architecture, consisting of the componentsCAN_MODEL(entity CAN_MODULE)
and CPU_MODEL(entity CPU). In the configurationCONFIGURATION_EXAMPLE, the component
CPU_MODELis associated with architectureREAD_WRITE, the componentCAN_MODELis associated with
architectureSIMPLE. SIMPLE is intended as a prototype for an implementation’s model to be verifi

4.4.4.1 architecture SIMPLE of CAN_MODULE

 Figure 19 architectureSIMPLE of CAN_MODULE.

TRANSMIT_ BIT_TIMING_
CONFIGURATIONMESSAGE

E = CAN_INTERFACE

E = CAN_MESSAGE

TRANSMIT_DATA RECEIVE_DATA

A = REFERENCE

A = BASIC A = TIMING

E = CPU_INTERFACE

A = PARALLEL_16_BIT

E = CAN_CONTROL

TRANSMISSION_

T
R

A
N

S
M

IS
S

IO
N

_

R
E

C
E

IV
E

_I
N

T
E

R
R

U
P

T
E = CAN_MODULE

A
 =

 S
IM

P
LE

C
P

U
_B

U
S

C
on

tr
ol

 S
og

na
ls

R
E

S
E

T

MODEL_LABEL = generic

REQUEST

INTERNAL_BUS

Internal Control Signals

16

16
IN

F
O

R
M

A
T

IO
N

_
P

R
O

C
E

S
S

IN
G

_T
IM

E

C
LK

P = SYNCHRONIZE_
RECEIVED_DATA

SYNCHRONIZED_DATA

R
E

Q
U

E
S

T
_S

T
A

T
U

S

- 59 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

d as a
h the

s; e.g.,
CAN

supplied
part
tion
.

ceive
s the

on the
irst 11
nto 0).

ritten
xpected

the next
ed to the

into the
n of a

n be
st the
Pending.
This is a structural architecture of a CAN module with a basic message memory. It can be use
template showing how a CAN module implementation should look like to be simulated together wit
Reference CAN Model node in the CAN protocol testbench.

In the configurationCONFIGURATION_EXAMPLE, the componentCAN_PROTOCOL_CONTROLLERis
associated with architectureREFERENCE, the componentMESSAGE_MEMORYis associated with
architectureBASIC, the componentCONTROL_REGISTERis associated with architectureTIMING , and
the componentCPU_ACCESS is associated with architecturePARALLEL_16_BIT .

This structure is only an example, it is by no means a mandatory standard for all implementation
the control register could be part of a synthesizable protocol controller. The internal structure of the
module is optional, but the user has to be aware that using the testbench and the test programs
with this VHDL Reference CAN Model only assures the conformity of the CAN Protocol Controller
of the implementation with CAN Protocol Version 2.0 Part A, B. In order to verify the correct func
of the CPU interface and of the message memory, the user has to write additional test programs

4.4.4.1.1 architecture BASIC of CAN_MESSAGE

This is an example of a CAN module’s message memory with basic functions. It consists of a re
buffer and of a transmit buffer, each buffer consisting of 7 words of 16 bits. The receive buffer store
last received message, the transmit buffer stores the message to be transmitted.

The messages are stored as std_logic_vectors, a bit with value ‘0’ corresponds to a dominant bit
CAN bus, a bit with value ‘1’ corresponds to a recessive bit. In case of standard frames, only the f
of the 29 Identifier bits are used, Identifier (28 downto 18) is then regarded as Identifier (10 dow

In theRECEIVE_BUFFER, New_Data and Message_Lost are status bits, which can be read and w
by the CPU. Each time a message is received, the message memory sets New_Data; the CPU is e
to reset New_Data before reading the message. When New_Data is not reset at the reception of
message, the message memory will set Message_Lost. Each reception of a message is signall
CPU by a pulse of the interrupt lineRECEIVE_INTERRUPT.

The message memory does not do any acceptance filtering, each received message is stored
RECEIVE_BUFFER. When a new message is stored, the previous message is lost. The receptio
message is documented by printing the content of the message into the simulation’s trace file.

In theTRANSMIT_BUFFER, Do_Transmit and Tx_Pending are command and status bits, which ca
read and written by the CPU. The CPU sets both Do_Transmit and Tx_Pending to reque
transmission of a message. When the transmission has started, the message memory resets Tx_

Address RECEIVE_BUFFER(Address-1)(15 downto 0) AddressTRANSMIT_BUFFER(Address-8)(15 downto 0)

16#02# New_Data & Message_Lost & “0” &
Identifier(28 downto 16)

16#09# Do_Transmit & Tx_Pending & “0” &
Identifier(28 downto 16)

16#03# Identifier(15 downto 0) 16#0A# Identifier(15 downto 0)

16#04# Extended & Remote & ”0000000000” &
Data_Length_Code

16#0B# Extended & Remote & ”0000000000” &
Data_Length_Code

16#05# Data(1) & Data(2) 16#0C# Data(1) & Data(2)

16#06# Data(3) & Data(4) 16#0D# Data(3) & Data(4)

16#07# Data(5) & Data(6) 16#0E# Data(5) & Data(6)

16#08# Data(7) & Data(8) 16#0F# Data(7) & Data(8)

 Table 1: Address map of the CAN module’s message memory in architecture BASIC.
- 60 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

U, the
sion is
. The
t is
’s

is

ge

rs
t_1 into

in a

f the
ulated

actual
s, it is

st
When the transmission is successfully completed and Tx_Pending is not set again by the CP
message memory resets Do_Transmit. If the CPU resets Do_Transmit before the transmis
completed, the transmission will not be repeated in case of an error or when it lost arbitration
TRANSMISSION_REQUESTsignal to the CAN Protocol Controller is active as long as Do_Transmi
set. Any changes ofTRANSMISSION_REQUESTare documented by printing a note into the simulation
trace file.

4.4.4.1.2 architecture PARALLEL_16_BIT of CPU_INTERFACE

This architecture connects the external tristateCPU_BUSwith the tristateINTERNAL_BUS, both buses
being 16 bits wide with a non-multiplexed 4-bitADDRESSbus. The direction of the tristate buses
controlled by the signalsREADandWRITE. The internal control signalsREAD_TandWRITE_T for the
control register are generated fromREAD, WRITE, andADDRESS. The address decoding for the messa
memory is done in that component.

4.4.4.1.3 architecture TIMING of CPU_CONTROL

This component controls theBIT_TIMING_CONFIGURATION input of the component
CAN_PROTOCOL_CONTROLLER(entityCAN_INTERFACE). The CPU writes the values of the paramete
Resynchronisation_Jump_Width, Prescaler, Propagation_Segment, and Phase_Buffer_Segmen
the TIMING_REGISTER. The parameter Information_Processing_Time is not programmable
hardware implementation, so it is not included in theTIMING_REGISTER. In this example, it is
controlled directly by the test program.

In a hardware implementation, Information_Processing_Time would be an intrinsic attribute o
design, requiring the test program to use the same value for the configuration of the parallely sim
reference model. To keep the test programs independent of the hardware implementations, the
value of Information_Processing_Time is not defined in the source code files of the test program
defined by a generic parameter of the test program’s entity.

The generic parameterINFORMATION_PROCESSING_TIMEis associated with its actual value in the te
program’s configuration of the testbench.

Address TIMING_REGISTER(15 downto 0)

16#00# Resynchronisation_Jump_Width[1:0] & '0' & Prescaler[4:0] & '0' &
Propagation_Segment[2:0] & '0' & Phase_Buffer_Segment_1[2:0]

16#01# not used

 Table 2: Address map of the CAN module’s control register in architecture TIMING .
- 61 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ol

ages
.

ol

le’s
s as
4.4.4.2 architecture READ_WRITE of CPU

TheCPUcontrolling theCAN_MODULEinside the architectureEXAMPLEof CAN_INTERFACEserves two
purposes. First,CPUtranslates the inputsBIT_TIMING_CONFIGURATION, TRANSMIT_MESSAGE, and
TRANSMISSION_REQUESTof CAN_INTERFACEinto write commands, interfacing between the protoc
test programs and the CAN implementation’s model. And second,CPUmonitors the operation of the
CAN_MODULEand makes its internal function visible at the entity’s ports by reading received mess
from theRECEIVE_BUFFER and by reading the transmit status bits Do_Transmit and Tx_Pending

TheCPUactions in table 3 are listed in order of priority, with writing intoTIMING_REGISTERhaving
the highest and NOP having the lowest priority. Each action ofCPUis documented by printing a note into
the simulation’s trace file.

This architectureREAD_WRITEof entity CPUis specifically designed to interface between the protoc
test programs and the architectureSIMPLE of entityCAN_MODULE. Other CAN module implementations
will require a different CPU entity, interfacing the particular type of data bus of the CAN modu
entity. Those implementation specific CPU models will have to provide the same feature
READ_WRITE.

Event Reaction of CPU

Change of BIT_TIMING_CONFIGURATION CPU writes Bit Timing Configuration into TIMING_REGISTER

Change of TRANSMIT_MESSAGE CPU updates TRANSMIT_BUFFER

Change of TRANSMISSION_REQUEST CPU updates Do_Transmit and Tx_Pending

Edge of RECEIVE_INTERRUPT CPU reads RECEIVE_BUFFER and updates
RECEIVED_MESSAGE port signal

TRANSMISSION_REQUEST_STATUS
changes to DONE or to TRANSMITTING

CPU checks Do_Transmit and Tx_Pending

No Event No operation, NOP

 Table 3: Features of the architecture READ_WRITE of CPU.
- 62 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ve

to

the
ed

f; the
4.4.5 architecture BAD_EXAMPLE

The architectureBAD_EXAMPLEof CAN_INTERFACEis a slightly modified copy of the architecture
REFERENCE(see section 4.4.2). It is used inCONFIGURATION_BUGGYof architectureEXAMPLE.
CONFIGURATION_BUGGYis a copy of CONFIGURATION_EXAMPLE(see section 4.4.4) with the
exception that the componentCAN_PROTOCOL_CONTROLLERis associated with architecture
BAD_EXAMPLE instead of architectureREFERENCE.

This buggy version of a CAN implementation demonstrates, when simulated in configurationSYS_Bof
CAN_SYSTEM(see section 4.2.3), how thePROTOCOL_CHECKin architectureCOMPARE(see section
4.4.1.1) reveals CAN protocol errors.

Aside from the deliberately inserted CAN protocol errors,BAD_EXAMPLEis modified in one other point:
The value of theRECEIVE ERROR COUNTwhen it is decreased from Error Passive level to Error Acti
level. In the CAN specification, the fault confinement rule 8 states “After the successful reception of a
message …, the RECEIVE ERROR COUNTis decreased by 1 …, and if it was greater than 127, it will be set to
a value between 119 and 127“. At that condition, theRECEIVE ERROR COUNTis set to 127 in
REFERENCE, and to 119 inBAD_EXAMPLE(the nomenclature of the architectures is not intended
favour either value).

Simulating the componentREFERENCE(architectureREFERENCE) in parallel to the component
IMPLEMENTATION (configuration CONFIGURATION_BUGGYof architectureEXAMPLE) inside the
architecture COMPAREdemonstrates how a Reference CAN Model node adapts itself to
IMPLEMENTATION’s RECEIVE ERROR COUNTvalue when there is a difference of that values caus
by a different application of fault confinement rule 8. If there is a difference of theRECEIVE ERROR
COUNTvalues caused by other reasons, the Reference CAN Model node will not adapt itsel
difference will be regarded as a CAN protocol error.
- 63 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

)

on
wn

the
the

ram

of
4.5 TEST_PROGRAM
For the verification of CAN Protocol Controllers, thePROTOCOL_TESTBENCH(see chapter 4 at page 27
is provided with a set of test programs. Each test program is described by a separate architecture<test>
of TEST_PROGRAM(<test> stands for the individual program’s name), it is linked by a configurati
of PROTOCOL_TESTBENCH(see section 5.2). All<test> architectures have the same structure (sho
in figure 20), consisting of the three processesSTIMULI , REQUESTandSYNCHRONIZE_REQUEST. The
‘Interface Signals’ link the test program with the CAN nodes located in the architectureFLEXIBLE of
CAN_SYSTEM.

 Figure 20 Structure of an architecture<test> of TEST_PROGRAM.

The test program is subdivided into three processes.REQUESTandSYNCHRONIZE_REQUESTcontrol the
TRANSMISSION_REQUESTinputs of all CAN nodes, whileSTIMULI controls the RESET,
BIT_TIMING_CONFIGURATION, and the TRANSMIT_MESSAGEinputs of all CAN nodes in the
CAN_SYSTEM, as well as theBUS_INTERFERENCEinputs of all BUS_INTERFACEcomponents. The
TRANSMISSION_REQUEST inputs are driven by a separate process, because
TRANSMISSION_REQUESTinput of one particular CAN node depends on the state transitions of
corresponding TRANSMISSION_REQUEST_STATUS port, while the inputs RESET,
BIT_TIMING_CONFIGURATION, TRANSMIT_MESSAGE, and BUS_INTERFERENCEare driven as
required by the flow of the protocol test program.

The subdivision allowsSTIMULI to require REQUESTand SYNCHRONIZE_REQUESTto set the
TRANSMISSION_REQUESTinputs of several CAN nodes at the same time and to continue the prog
without waiting for the proper reset conditions of the separateTRANSMISSION_REQUESTinputs.
STIMULI , REQUESTand SYNCHRONIZE_REQUESTcommunicate by means of internal signals
TEST_PROGRAM (for an example of a test program see section 5.3).

P = STIMULI

P
 =

 R
E

Q
U

E
S

T

E
 =

 T
E

S
T

_P
R

O
G

R
A

M

A = <test>

Interface Signals

TRANSMISSION_REQUEST

TRANSMISSION_REQUEST_STATUS

SET_TRANSMISSION_REQUEST

RESET_TRANSMISSION_REQUEST

HOLD_TRANSMISSION_REQUEST

START_TRANSMISSION

REQUEST_WHILE_BUSY

RESET_REQUEST

DO_ARBITRATION

P
 =

 S
Y

N
C

H
R

O
N

IZ
E

_R
E

Q
U

E
S

T
REQUEST_ACCEPTED
- 64 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

the file

egins
stops

.

ted
e

l

from
of
.g. on

er

e last
nd
ion and
ProcessesREQUESTand SYNCHRONIZE_REQUEST, the internal signals ofTEST_PROGRAM, and the
procedures used bySTIMULI are the same for all architectures ofTEST_PROGRAM. Therefore they are
extracted from the test program source code files and stored in separate*.vhi files. The core of the
source code, theSTIMULI process, remains in the file<test>.vpp , referencing the*.vhi files by
“# include” statements. The internal signals ofTEST_PROGRAMare defined in file
signal_definition.vhi , request_process.vhi contains the processesREQUEST and
SYNCHRONIZE_REQUEST, while the internal procedures ofSTIMULI are shifted into
test_routines.vhi .

‘make’ uses the C-compiler’s preprocessor cpp to process the “# include” statements, generating
<test>.vhd from <test>.vpp and the*.vhi files (see section 5.3).

4.5.1 process STIMULI

ProcessSTIMULI consists of a sequence of statements which form the specific test program. It b
with an initialization of the CAN nodes; at the end of the process, an assertion of severity failure
the simulation.

A typical protocol test program consists of the following statements :

• Assignments to the ‘Interface Signals’ which are output of processSTIMULI , e.g.
BUS_INTERFERENCEto force theRECEIVE_DATAinputs of specific CAN nodes to particular values

• ‘wait ’ statements, waiting for an integer multiple ofCLOCK_PERIOD or BIT_TIME .

• Procedure call statements, invokingINITIALIZE , WAIT_FOR, SEND_MESSAGE, andWRITE_TRACE.

• Assignments to internal signals to exchange information with other processes.

The statements may be grouped in ‘if ’ or ‘case ’ branches or in loops.

INITIALIZE , WAIT_FOR, andSEND_MESSAGEare local procedures of the architecture and are loca
in the included filetest_routines.vhi , while WRITE_TRACEis a global procedure, located in th
packagetrace_package.vhd .

4.5.1.1 procedure INITIALIZE

(CFG BIT_TIMING_CONFIGURATION_TYPE)

INITIALIZE setsRESETactive, disables allTRANSMISSION_REQUESTsignals, assigns the actua
BIT_TIMING_CONFIGURATIONas well as the internal signalBIT_TIME and setsBUS_INTERFERENCE
to NONE for all nodes inCAN_SYSTEM.

After the initialization,RESETis disabled and the CAN nodes are synchronized by applying an edge
recessive to dominant to theRECEIVE_DATAinputs of all CAN nodes. Since the time from the end
the hardware reset to the begin of the CAN bus activity is implementation-specific, depending e
the extent of the message memory’s initialization,INITIALIZE adapts to this time, controlled by the
generic parametersINITIALIZATION_CYCLES andINIT_SETUP of TEST_PROGRAM.

The default value ofINITIALIZATION_CYCLES is 1, resulting in only one synchronisation-edge aft
the hardware reset, but if a higher value is defined in a configuration of thePROTOCOL_TESTBENCH, a
sequence of dominant and recessive bits gives the necessary time for initialization. After th
dominant bit, all CAN nodes inCAN_SYSTEMare expected to have started their CAN bus activities a
all nodes are waiting synchronously for a sequence of 11 recessive bits before starting the recept
transmission of frames.INIT_SETUP adjusts the evaluation time of the processSTIMULI of
TEST_PROGRAM with respect to the CAN bit time.
- 65 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

it

CAN

ed to

AN.
d

bus.

d

An
ied

the

.

4.5.1.2 procedure WAIT_FOR

(CAN_LABEL MODEL_LABEL_TYPE
STATUS CAN_STATUS_TYPE
FIELD FIELD_NAME_TYPE
POSITION natural)

WAIT_FORwaits until the CAN node specified byCAN_LABELreaches the sample point of a b
POSITION in a CAN frameFIELD while being in a particularSTATUS. After this sample point,
WAIT_FORwaits for the the end of Phase Buffer Segment 2, synchronizing the test program to the
bus.

If the desired conditions are not met before a limit ofMAXIMUM_WAIT_PERIODS• CLOCK_PERIOD(1)
is reached, the simulation is stopped by an assertion of severity failure. This limit is implement
avoid never-ending loops. The default value of the natural signalMAXIMUM_WAIT_PERIODSis 2000
(defined insignal_definition.vhi); the value may be changed in the test program.

4.5.1.3 procedure SEND_MESSAGE

(CAN_LABEL MODEL_LABEL_TYPE
MESSAGE FRAME_TYPE
COMPLETION_CONDITION COMPLETION_CONDITION_TYPE)

SEND_MESSAGEassignsMESSAGEto the TRANSMIT_MESSAGEinput of the CAN node specified by
CAN_LABELand triggers theREQUESTprocess to set the transmission request for the labelled C
Then the procedure (or the processREQUEST, see section 4.5.2) waits for the specifie
COMPLETION_CONDITION.

There are fourCOMPLETION_CONDITIONS:

• REQUESTED: SEND_MESSAGE just requests a transmission.

• STARTED: SEND_MESSAGE waits until the requested transmission has started on the CAN

• SUCCEEDED_OR_ERROR: SEND_MESSAGE waits until the requested transmission has complete
or is interrupted by an error frame.

• SUCCEDED: SEND_MESSAGE waits until the requested transmission has completed.

4.5.1.4 procedure WRITE_TRACE

WRITE_TRACE, called with a string parameter, writes the string into the simulation’s trace file.
optional second parameter (FILES , default natural value 3) controls whether the same string is cop
into the pattern file (see section 5.4) and the string’s print format (see filetrace_package.vhd). If
written to the TRACEFILE, the string may preceded by a time stamp (default), if written to
PATTERNFILE, it may preceded by a time stamp or a comment marker.

If FILES = 0, write only toTRACEFILE, without time stamp.
If FILES = 1, write only toTRACEFILE, including time stamp.
If FILES = 2, write to both files, without time stamp.
If FILES = 3, write to both files, including time stamp.
If FILES = 4, write to both files, including time stamp; alternate format with comment marker.
If FILES = 5, write only toPATTERNFILE, without time stamp.
If FILES = 6, write only toPATTERNFILE, including time stamp.
If FILES = 7, write only toPATTERNFILE, including time stamp;alternate format with comment marker
- 66 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

he
tarting
string

rs

the

ile

e file.

s, the
)

s is idle,

e

Accesses toPATTERNFILE are only enabled ifUSE_SECOND_FILE = ’1’.

The format of thePATTERNFILE output may have to be adapted to the actual simulator tool. T
"alternate format" for the patternfile assumes that the patternfile-reading program treats lines s
with a "#" character as a comment. For programs that use different labels to mark comments, the
"# " in ‘(FILES = 4) or (FILES = 7)’ has to be adapted.

4.5.2 process REQUEST

This process is part of every protocol test program. It sets and resets theLOCAL_TX_REQUESTinputs of
process SYNCHRONIZE_REQUEST. The process is controlled by the input signal vecto
SET_TRANSMISSION_REQUEST, RESET_TRANSMISSION_REQUEST, START_TRANSMISSION,
HOLD_TRANSMISSION_REQUEST, RESET_REQUEST from process STIMULI and by the
TRANSMISSION_REQUEST_STATUS of the particular CAN node.

RESET_REQUESTis a boolean signal, causingREQUESTto reset allTRANSMISSION_REQUESTsignals,
while SET_TRANSMISSION_REQUEST, START_TRANSMISSION, RESET_TRANSMISSION_REQUEST,
and HOLD_TRANSMISSION_REQUESTare boolean vectors, with one element for each node in
CAN_SYSTEM.

STIMULI or, to be more specific, its local procedureSEND_MESSAGE, has three options to control the
TRANSMISSION_REQUEST input of a CAN node :

• It can control TRANSMISSION_REQUESTdirectly by SET_TRANSMISSION_REQUESTand
RESET_TRANSMISSION_REQUEST.

• START_TRANSMISSION requires REQUEST to activate TRANSMISSION_REQUEST until
TRANSMISSION_REQUEST_STATUS changes toTRANSMITTING.

• HOLD_TRANSMISSION_REQUESTrequiresREQUESTto activateTRANSMISSION_REQUESTuntil
TRANSMISSION_REQUEST_STATUS changes toDONE.

REQUEST_WHILE_BUSYis a boolean vector, with one element for each node in theCAN_SYSTEM. Its
elements are set to true byREQUESTif STIMULI requests a transmission for a particular CAN node wh
that CAN node is already busy with a transmission.

Status information about transmission requests of the CAN nodes is written to the simulation’s trac

4.5.3 process SYNCHRONIZE_REQUEST

This process is part of every protocol test program. It sets and resets theTRANSMISSION_REQUEST
inputs of all CAN nodes. The process is controlled by the input signal vectorLOCAL_TX_REQUESTfrom
processREQUEST, the bond-out signalBOND_OUT(0).TXRQSTand signalDO_ARBITRATIONwhich is
controlled by processSTIMULI .

To force a synchronous Start Of Frame for the implementation under test and one or more RefCAN
user must set signalDO_ARBITRATIONtrue. Now the respective RefCAN(s) will wait with its(their
Start Of Frame until the implementation has set the global signalBOND_OUT(0).TXRQSTtrue. After
arbitration has started signalDO_ARBITRATION should be reset.

This procedure is neccessary to compensate for different speeds of CPU interfaces. When the bu
a RefCAN node can start to send immediately after the test program definedTRANSMIT_MESSAGE,
while an implementation has to wait until theTRANSMIT_MESSAGEhas been written into its messag
buffer.
- 67 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

rt
Figure 21 shows a section frombaudrate.vpp where the implementation and three RefCAN’s sta
arbitration synchronously.

 Figure 21 Synchronous Start of Arbitration for an Implementation and 3 RefCANs.

.................

DO_ARBITRATION <= true;
Tx1: for I in 1 to 3 loop

SEND_MESSAGE (I, MESSAGES(I), REQUESTED);
end loop Tx1;
WAIT_FOR (1, TRANSMITTING, Identifier, 1);
DO_ARBITRATION <= false;
WAIT_FOR (1, RECEIVING, End_Of_Frame, 2);

.................
- 68 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

teness
ajor

ans of
tions
aving

ench,
under

rogram

CAN
late all
nsured

e and
ecking
inked
o be
high

ade it
se and
l.

d by
CAN
at all
work.

rsatile
was

first
ited
the

of ten
uctor

CAN
r of
n is

n tool.
5 Verification of an Implementation

The design of integrated protocol controllers generally has to emphasize the verification of comple
and correctness of the protocol. For Controller Area Network (CAN), which is licensed to most m
semiconductor suppliers, it is of special importance to standardize the protocol verification by me
a High Level Language reference environment. Due to the variety of CAN controller implementa
(see figure 22 at page 70), the reference must be limited to the modelling of the protocol itself, le
complete freedom to the application specific part of the component.

The Reference CAN Model environment consists of the “golden” CAN protocol model and a testb
consisting of test programs and a simulator kernel. In the testbench the model of a CAN controller
development can be compared with the concurrently simulated reference model, while the test p
and other instances of the reference model provide CAN messages.

For the development of the first CAN controller implementation, the only reference was the
protocol specification document. Therefore a set of test programs had to be developed to simu
relevant state transitions of CAN message transfer. The protocol consistency of the design was e
by manually checking the simulation results line for line with the protocol specification.

For the following design, the existing set of test programs was adapted to a different CPU interfac
to a different message buffer structure. Checking of simulation results was partly automated by ch
with the simulation results of the first design. The disadvantage of that method is that it is closely l
to the structure of the CAN implementation and to the simulation tool. In view of time and cost t
invested for designing an integrated protocol controller, this verification is insufficient and carries
risk for costly redesign iterations.

The increasing number of CAN licensees and developments of integrated CAN components m
necessary to standardize and to support the protocol verification for all designs. For this purpo
motivated by the aforementioned experience, Bosch has developed the C Reference CAN Mode

While the CAN protocol specification document remains the authentic CAN norm standardize
international organisations, the C Reference CAN Model establishes a de facto standard for
verification. Distributed to the CAN licensees, it has been utilized in various designs, assuring th
existing CAN implementations are compatible with each other and may be used in the same net

For the success of CAN as the generally accepted protocol standard, the wide range of ve
compatible CAN implementations of different vendors was important. This protocol consistency
significantly supported by the availability of the Reference CAN Model.

To be independent from simulation tools and from different types of CAN implementations, the
version of the model has been written in "C"-language (together with a simulator kernel) and is lim
to the protocol itself (the data link layer of the OSI model), leaving out the physical layer and
application layer, which are implementation specific.

Up to now, the Reference CAN Model has been used by Robert Bosch GmbH for the verification
CAN implementations and by CAN designers of the licensees, including most major semicond
suppliers. In this way, the compatibility of all existing CAN implementations is guaranteed.

The Reference CAN model is represented in two versions, the realisation in C (as distributed to the
licensees) and its translation in VHDL (an option for the CAN licensees). While the VHDL simulato
any designer’s CAD environment should be compatible with the VHDL version, the C versio
provided with a specific and custom simulator kernel and is not connected to a specific IC desig
- 69 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ndard
the

CAN
when

ller
is the

ayer.

d for

ed as
of

output

AN
, the
ream,
The continuous spreading of VHDL (Very High Speed Hardware Description Language) as a sta
design language for IC development urged the conversion of the Reference CAN Model from
customized C simulation environment to a VHDL environment.

Since a considerable amount of work and know-how had been invested in the C model of the
Protocol Controller and into the verification test programs, that had to be taken into account
developing the strategy for the conversion from C into VHDL.

For the understanding of the extent of the model, it is useful to split existing CAN contro
implementations in protocol related and application related sections. The CAN Protocol Controller
kernel of each CAN implementation, interfacing between the physical layer and the application l

The VHDL reference model of the protocol controller is behaviourally structured, it is not targete
synthesis but for the functional verification.

Different types of CAN implementations are offered by several semiconductor suppliers, realiz
stand-alone device or as module on aµC. The differences of those implementations lie in the number
local message buffers, in the acceptance filtering, in the CAN busline input comparators and
drivers, and in the CPU and periphery interface.

 Figure 22 Structure of different CAN Components.

Common for all implementations is the CAN Protocol Controller whose function is defined by the C
protocol specification; it handles the bit timing, the frame coding, the bit stuffing, the CRC check
frame validation and the fault confinement. The interface to the physical layer is the serial bit st

CAN Protocol
Controller

Physical
Layer

CPU Interface

Receive

Buffer
Transmit

Buffer

CAN Component with

(FIFO)

C
on

tr
ol

S
ta

tu
s

External / Local CPU

Basic Application Layer

CAN Protocol
Controller

Physical
Layer

CPU Interface

CAN Component with

External / Local CPU

Full Application Layer

CAN Protocol
Controller

Physical
Layer

CAN Component

of Type SLIO

CAN Bus
M

es
sa

ge
O

bj
ec

t 1

M
es

sa
ge

O
bj

ec
t 2

M
es

sa
ge

O
bj

ec
t n

C
on

tr
ol

S
ta

tu
s

Oscillator/
Calibrator

Port Module with

Digital (and Analog)

Input and Output

Port Pins
- 70 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ssages,
ptance

tation’s
aring

oller

n, an
of the

r the
ctions
remain

heck
g the
CAN

el and
he
and
ference
ystem

CAN
e of a
nual

rent
nerator,

ture of
l. The
ssage
y the

dency
een
bus,

ing a
ion of
ent
ulating
coded as dominant or recessive bits; the interface to the application layer are the transferred me
consisting of identifier, data length code, and data bytes, without CRC code or stuff bits. The acce
filtering, based upon the identifier, is done by the application layer.

The reference model’s testbench and test programs are designed to test exclusively the implemen
protocol controller, independent of the other functions of the implementation. This is done by comp
the function of the implementation’s protocol controller with the function of the reference contr
during the simulation of CAN message transfer and CAN bus errors.

Since the CPU interface and the application layer are not defined by the CAN protocol specificatio
interface is needed between the test programs of the Reference CAN Model and the models
implementations.

In the C version, that interface is provided by the functions called by the test programs fo
initialisation of the models and for the start of the transmission of a CAN message. When these fun
are adapted to the specific implementation, the test programs themselves, calling these functions,
unchanged regardless of the type of the implementation.

Other implementation specific parts of the C version are the functions called for the CAN protocol c
process, monitoring the implementation’s CAN functions and the CAN bus process, connectin
implementation to the CAN bus. These functions have to be adapted if the signal names for the
input or output signals differ from the names in the reference protocol controller model.

In the VHDL version, the interface between the protocol test programs, the Reference CAN Mod
the implementation’s model is the entityCAN_INTERFACE, associated with an architecture enclosing t
implementation’s model. All implementation specific type conversions of interface signals
translations of test program commands are done inside this architecture, leaving the rest of the Re
CAN Model untouched. Test programs, reference and implementation’s models and the CAN bus s
are linked together by a configuration of thePROTOCOL_TESTBENCH.

During a simulation, the Reference CAN Model produces a trace file recording all serial data on the
bus and the internal activities of the CAN Protocol Controllers as well as the possible occurrenc
protocol error. Optionally, a similar trace function for the implementation may be added for the ma
comparison of the CAN functions.

If the Reference CAN Model is used for the verification of an implementation’s model in a diffe
design environment, e.g. a hardware tester, the trace function can be expanded by a pattern ge
writing test vectors in any desired format.

In order to retain the invested know-how and to reduce possible design risks, the internal struc
model, testbench, and test program of the C model have been remodelled in the VHDL mode
protocol test program set was translated verbatim from C to VHDL, producing the same CAN me
transfer and the same CAN bus errors, enabling the automated verification of the VHDL model b
comparison of the simulation’s trace files.

Main issues of the actual design work have been, apart from the detailed verification, the indepen
from any VHDL tool’s deviations (up to now, Synopsys VSS and Mentor QuickHDL have b
evaluated) and the self-containment of the models of the CAN Protocol Controller and of the CAN
giving the possibility to combine them with other VHDL models of periphery and systems.

The Reference CAN Model supports the circuit development for CAN implementations by provid
verification tool that can be adapted to different design environments. Furthermore, the applicat
the Reference CAN Model is not limited to the test of IC implementations, its simulation environm
with CAN message transfer between several nodes can be expanded with additional processes sim
peripheral hardware to use it as a design tool for the development of CAN based systems.
- 71 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

nd

(the
ecific
For the

re

ple
ent.

and
e CPU

nals

re the

entity
the
busoff
to be

ation,

d for

side a
,

d.
o be
. If the

. In

ference

ion

ers
outside
o other
5.1 Integrating an Implementation’s Model into the Reference CAN Model
In the architectureCAN_SYSTEM, the interface of a CAN node to the physical layer (the CAN bus) a
to the application layer (the message memory) is the entityCAN_INTERFACE. In order to integrate the
model of an actual CAN component into the Reference CAN Model’s simulation environment
CAN_SYSTEM), the implementation has to be enclosed in a shell that does all implementation sp
type conversions of interface signals and that translates the protocol test program’s commands.
CAN protocol verification, this shell has to be written as architectureIMPLEMENTATION and
configuration CONFIGURATION_IMPLEMENTATIONof entity CAN_INTERFACE. In the temporary
CONFIGURATION_IMPLEMENTATIONprovided with the Reference CAN Model, the architectu
IMPLEMENTATION is substituted by architectureREFERENCE.

The architectureEXAMPLE(see section 4.4.4) is an example how to build such a shell for a sim
standalone CAN module.EXAMPLEconsists of the CAN module component and of a CPU compon
The CPU translates the input signals (TRANSMIT_MESSAGE, TRANSMISSION_REQUEST, and
BIT_TIMING_CONFIGURATION) driven by the test program into write accesses, writing the data
commands into the appropriate registers of the CAN module. At the reception of a message, th
reads the message from the message memory and updates the port signalRECEIVED_MESSAGE. The
value ofRECEIVED_MESSAGEis checked in the protocol testbench. The reset and the interface sig
to the bus interfaceRECEIVE_DATA andTRANSMIT_DATA do not need conversion in this example.

The protocol test programs do not read the output ports of the implementation’s model, therefo
signalTRANSMISSION_REQUEST_STATUS can be left unconnected.

For the on-line protocol check, some additional signals are necessary, which are not ports of the
CAN_INTERFACEand which usually are internal signals of a CAN module not accessible from
outside. The additional signals are the actual values of the error counters, the sampled bit, and the
state. To avoid the problems with the design synthesis, that would arise if these signals had
connected to the highest level of the hierarchy for no other purpose than the CAN protocol verific
the global signalBOND_OUT (an array of records) is introduced (see filetrace_package.vhd).

A BOND_OUTrecord contains copies of internal signals or variables of a CAN node, to be use
protocol verification or for the extraction of trace information, the values of theBOND_OUTsignals may
not have any influence on the function of the CAN node. Which of the array’s elements is used in
CAN node model is defined by the generic parameterMODEL_LABEL. For the implementation’s model
at least the record elementsBUSMON (the sampled bit), TRANSMIT_ERROR_COUNTER,
RECEIVE_ERROR_COUNTER(the counter’s values), andBUSOFF(the digital state) have to be connecte
All these elements contain information required by the CAN protocol when a new bit value is t
evaluated, so somewhere in the implementation’s model this information has to be accessible
information is available as signals, they are copied into the appropriate elements of theBOND_OUTrecord
by concurrent statements, otherwise theBOND_OUTrecord elements are assigned inside a process
both cases, the assignments to theBOND_OUT signal are to be excluded from the design synthesis.

There are three generic parameters which can be used to adjust the evaluation time of the Re
Model’s processes to the evaluation time of the implementation to be verified:

INITIALIZATION_CYCLES time needed to configure the implementation (after Reset)
INIT_SETUP adjusts evaluation time of processSTIMULI of TEST_PROGRAM
RX_DELAY compensation of the physical input delay of the implementat

An architecture as described inEXAMPLEis recommended for all cases of standalone CAN controll
and for those CAN modules on microcontrollers, whose CPU interface can be accessed from the
(at least in a test mode). The advantage of this solution, simulating the whole device, compared t
- 72 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

hout
’s

tricted
read

the
,
dware
solutions (e.g. extracting the CAN Protocol Controller from the implementation and simulating wit
a CPU component in architectureIMPLEMENTATION) is that it can produce test vectors for the device
pins. With these test vectors, the protocol test programs can be transferred to hardware testers.

Especially for the verification of the message memory, the CPU state machine should not be res
to the translation of the test program’s input to the CAN module, it also should (with lower priority)
status registers and received messages from the message memory (seearchitecture READ_WRITE of
CPU at page 62), making this internal information visible at the device’s pins.

For those CAN modules onµCs, whose CPU interface is only accessible by the local CPU, not from
outside, a different structure for architectureIMPLEMENTATIONis recommended (see figure 23)
providing the same features as verification of the message memory and compatibility with a har
tester.

 Figure 23 Verification of a CAN module of an embedded microcontroller.

E = CAN_INTERFACE

A = IMPLEMENTATION

E = EMBEDDED_WITH_CAN

A = DUT

RECEIVE_DATATRANSMIT_DATA

Interface Signals

CPU

PERIPHERY

MEMORY

CAN_MODULE

A = OPCODE

E = ROM
- 73 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

s from
t in
e local
code,
For this solution, the local CPU has to have the capability (at least in test mode) to read op-code
an external memory. As inEXAMPLE, the entire device should be simulated, but the other componen
the architecture, replacing the CPU state machine, is a program memory, providing op-codes to th
CPU. This program memory translates the protocol test program’s commands into executable
causing the CPU in the device under test to write to the CAN module’s registers.
- 74 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

d
AN

e.
ith
n

sed
yn-

st
5.2 Configuration of the Testbench
Figure 24 shows the configuration of thePROTOCOL_TESTBENCHto simulate the test program
TEMPLATE(see file$BOSCH_CAN_ROOT/tests/template/cfg_template.vhd). For this template
of a test program, provided for the development of new test programs, the simplestCAN_SYSTEMis
chosen, consisting only of 2 (NUMBER_OF_CANS) CAN nodes. No implementation model is reference
(CONFIGURATION_SYS_R, see section 4.2.4); this testbench’s configuration is focusing on the C
protocol functions.

 Figure 24 Template for a testbench configuration.

The following generic parameters define the timing of the CAN system’s simulation :

CLOCK_PERIODis an array of time values. It ranges from 0 to (NUMBER_OF_CANS+ 1), providing each
CAN node (1 toNUMBER_OF_CANS) in the CAN system with an independent clock sourc
CLOCK_PERIOD(0) is reserved for the clock of the implementation under test, w
CLOCK_PERIOD(NUMBER_OF_CANS + 1)as an option for the implementation’s local CPU. I
this configuration, all nodes use the same clock period of 100 ns

RX_DELAYis an input delay factor, to be multiplied with the implementation model’s clock period. U
in the architectureCOMPAREof CAN_INTERFACEto compensate the delay time caused by the s
chronization of the CAN input signal to the implementation model’s clock.

CLOCK_PERIOD andRX_DELAY have to be the same forCAN_SYSTEM andTEST_PROGRAM.

INFORMATION_PROCESSING_TIMEis an intrinsic attribute of the implementation’s design. The te
program needs access this parameter for the configuration of the CAN bit time.

library CAN_LIBRARY;

-- This configuration defines the following entity/architecture pairs:
-- PROTOCOL_TESTBENCH - STRUCTURAL
-- CAN_SYSTEM - FLEXIBLE (only 2 Reference Models)
-- CAN_INTERFACE - REFERENCE
-- It is used with configuration IMPLEMENTATION of CAN_INTERFACE

configuration CFG_TEMPLATE of PROTOCOL_TESTBENCH is
for STRUCTURAL

for SYSTEM: CAN_SYSTEM
use configuration CAN_LIBRARY.CONFIGURATION_SYS_R
generic map (

NUMBER_OF_CANS => 2,
CLOCK_PERIOD => (others => 100 ns),
RX_DELAY => 0.00

);
end for;

for WAVEFORM: TEST_PROGRAM
use entity CAN_LIBRARY.TEST_PROGRAM(TEMPLATE)
generic map (

CLOCK_PERIOD => (others => 100 ns),
INFORMATION_PROCESSING_TIME => 2,
INITIALIZATION_CYCLES => 1,
INIT_SETUP => 0.80,
RX_DELAY => 0.00

);
end for;

end for;
end CFG_TEMPLATE;
- 75 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

lise

spect

e sig-
el.

the

ler
INITIALIZATION_CYCLES is a parameter that allows to compensate for the time needed to initia
the implementation’s model after a hardware reset. One cycle is two CAN bit times.

INIT_SETUP is a phase shift factor. The evaluation time steps of the test program are shifted with re
to the active (rising) clock edge of the Reference CAN Model by the amount ofINIT_SETUP •
CLOCK_PERIOD(1). The phase shift provides a setup time between the edges of the interfac
nals driven by the test program and the internal state transitions of the Reference CAN Mod

Figure 25 shows the configuration of thePROTOCOL_TESTBENCHto simulate the test program
BAUDRATE (see file$BOSCH_CAN_ROOT/tests/baudrate/cfg_baudrate_example.vhd).

 Figure 25 Testbench configuration for test programBAUDRATE simulating architectureEXAMPLE.

In this test program, three (NUMBER_OF_CANS) CAN nodes communicate in theCAN_SYSTEM, one of
the nodes made up of the architecturesEXAMPLE and REFERENCEsimulated in parallel
(CONFIGURATION_SYS_E, see section 4.2.2).EXAMPLE is granted time for initialisation
(INITIALIZATION_CYCLES) after reset.EXAMPLEoperates with a clock period of 110 ns, same as
parallely simulatedREFERENCEandEXAMPLE’s local CPU. TheREFERENCE(2) operates with a clock
period of 1118 ns,REFERENCE(3) with a clock period of 442 ns. The CAN node’s baud rate presca
provide a common bit time regardless of the difference in the clock sources.

library CAN_LIBRARY;

-- This configuration defines the following entity/architecture pairs:
-- PROTOCOL_TESTBENCH - STRUCTURAL
-- CAN_SYSTEM - FLEXIBLE (1 Example-Implementation and 3 Ref. Models)
-- CAN_INTERFACE - EXAMPLE
-- It is used with configuration EXAMPLE of CAN_INTERFACE

configuration CFG_BAUDRATE_EXAMPLE of PROTOCOL_TESTBENCH is
for STRUCTURAL

for SYSTEM: CAN_SYSTEM
use configuration CAN_LIBRARY.CONFIGURATION_SYS_E
generic map (

NUMBER_OF_CANS => 3,
CLOCK_PERIOD => (110 ns, 110 ns, 1118 ns, 442 ns,

others => 110 ns),
RX_DELAY => 0.001

);
end for;

for WAVEFORM: TEST_PROGRAM
use entity CAN_LIBRARY.TEST_PROGRAM(BAUDRATE)
generic map (

CLOCK_PERIOD => (110 ns, 110 ns, 1118 ns, 442 ns,
others => 110 ns),

INFORMATION_PROCESSING_TIME => 0,
INITIALIZATION_CYCLES => 3,
INIT_SETUP => 0.10,
RX_DELAY => 0.001

);
end for;

end for;
end CFG_BAUDRATE_EXAMPLE;
- 76 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2
5.3 Adding Test programs
The filetemplate.vpp in the directory$BOSCH_CAN_ROOT/tests/template is intended to be used
as a template, if a particular implementation requires additional test programs.

 Figure 26 architectureTEMPLATE of TEST_PROGRAM.

Each new test program requires a specific directory in$BOSCH_CAN_ROOT/tests/ , with the same
name as the new architecture. The new file<test>.vpp starts as a copy oftemplate.vpp , the
architecture’s name changed fromTEMPLATEto <test> and theTIMING configuration changed to the

architecture TEMPLATE of TEST_PROGRAM is

include "../signal_definition.vhi"
-- declaration of additional constants and signals

begin

include "../request_process.vhi"

STIMULI: process

variable TIMING : BIT_TIMING_CONFIGURATION_TYPE;
-- declaration of additional variables

include "../test_routines.vhi"

begin

TIMING.PRESCALER := 1;
TIMING.PROPAGATION_SEGMENT := 1;
TIMING.PHASE_BUFFER_SEGMENT_1 := 4;
TIMING.RESYNCHRONISATION_JUMP_WIDTH := 4;
TIMING.INFORMATION_PROCESSING_TIME := INFORMATION_PROCESSING_TIME;

INITIALIZE (TIMING);

-- start of test program

WRITE_TRACE("Just a template for a test program");

wait for 1 * BIT_TIME;

-- end of test program

WRITE_TRACE("End of test program >>template<< reached");

assert false report "End of Test Program reached: Stop Simulation !"
severity failure;

end process STIMULI;

end TEMPLATE;
- 77 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

, and

file.
actual values. The test program code is inserted between the comments “start of test program “
and “end of test program “, additional constants (e.g. messages to be transmitted), signals
variables are defined at the positions shown by the appropriate comments.

For compilation and simulation of the new test programs, targets have to be defined in the Make
- 78 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

ation

ses

s
file

writing
vioural
ile, so
tation.

d

An
string’s
t string

write

file
5.4 Generating Test Vectors
During a simulation, the Reference CAN Model writes text into a trace file, to document the oper
of the test program. This text is written by different processes, most is written by processTRACINGin
architectureREFERENCEof CAN_INTERFACE(see section 4.4.2) and by the processesSTIMULI and
REQUESTin the architectures ofTEST_PROGRAM(see section 4.5). To enable the access of all proces
to the same trace file, the packageTRACE_PACKAGEglobally defines the fileTRACEFILE to “trace ”.
This package is used by packageDEFINITIONS . TRACE_PACKAGEis also to be used by all architecture
of an implementation’s model that are supposed to write to the same trace file (see
$BOSCH_CAN_ROOT/reference/trace_package.vhd).

In the same package,PATTERNFILE has been defined to “pattern ”. Typical applications of this
PATTERNFILE would be a process in architectureIMPLEMENTATION, writing test vectors for the
device’s pins (to be used for hardware testing) or a process inside the architecture of the device,
test vectors to compare the functions of two architectures of the same sub-module’s entity (beha
description / synthesized netlist). Most vector reading tools tolerate comment lines in the vector f
comments should be inserted to identify significant events, supporting debugging and documen
To simplify the commenting of the pattern file, the procedureWRITE_TRACE(see section 4.5.1.4), use
to write to the trace file, can optionally write to the pattern file.

WRITE_TRACE, called with a string parameter, writes the string into the simulation’s trace file.
optional second parameter controls whether the same string is copied into the pattern file and the
print format. This procedure has to be adapted to the actual vector reading tool, preceding each tex
with the tool’s comment symbol.

Since no test vectors are generated in distributed version of the Reference CAN Model, the
accesses ofWRITE_TRACEto the pattern file are disabled byUSE_SECOND_FILE= ‘0’. In order to
enable those write accesses, the vector generating process has to setUSE_SECOND_FILE to ‘1’.

Even if no text is written to the pattern file, some VHDL simulators may generate the (empty)
“pattern ”.
- 79 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2
A-1 List of Files

Model Top-Directory

README_RefCAN.txt - Important information about this version

simulate - the compilation and simulation environment

.synopsys_vss.setup - Synopsys setup file generated by genmake

synopsys_sim.inc - include file for Synopsys VSS simulator generated by genmake

quickhdl.ini - setup file for Mentor ModelSim generated by genmake

modelsim.ini - setup file for Mentor QuickHDL generated by genmake

genmake - generates Makefile, Depends files, and setup files for the specified simulator

genmake.sav - backup of genmake

Makefile.SYNOPSYS - backup of Synopsys Makefile

Makefile.MG_QuickHDL - backup of Mentor QuickHDL Makefile

Makefile.MG_ModelSim - backup of Mentor ModelSim Makefile

doc - documentation

Users_Manual_V.pdf- Users Manual

DataSheet_V.pdf- Data Sheet

can2spec.pdf- CAN Protocol Specification Revision 2.0

reference - testbench, Reference CAN Model and packages

Depends.SYNOPSYS - backup of Synopsys Depends file

Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file

Depends.MG_ModelSim - backup of Mentor ModelSim Depends file

definitions.vhd - package definitions used by the Reference CAN Model

trace_package.vhd - package used for trace output generation

protocol_testbench.vhd - entity of protocol_testbench

protocol_testbench_struct.vhd - architecture structural of protocol_testbench

can_system.vhd - entity of can_system

can_system_flexible.vhd - architecture flexible of can_system

test_program.vhd - entity of test_program
- 80 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2
can_interface.vhd - entity of can_interface

can_interface_compare.vhd - architecture compare of can_interface

can_interface_reference.vhd - architecture reference of can_interface

bus_interface.vhd - entity of bus_interface

bus_interface_beh.vhd - architecture behaviour of bus_interface

checker.vhd - entity of checker

checker_beh.vhd - architecture behaviour of checker

internal_trace.vhd - entity of internal trace component, instantiated within architecture
reference of can_interface

internal_trace_dummy.vhd - architecture dummy of internal_trace (default)

implementation - an user-defined implementation should be placed here

Depends.SYNOPSYS - backup of Synopsys Depends file

Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file

Depends.MG_ModelSim - backup of Mentor ModelSim Depends file

configuration_implementation.vhd - configuration of can_interface (now REFERENCE)

configuration_sys_i.vhd - configuration of can_system (COMPARE + REFERENCE)

example - example of a CAN implementation

Depends.SYNOPSYS - backup of Synopsys Depends file

Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file

Depends.MG_ModelSim - backup of Mentor ModelSim Depends file

message_buffer.vhd - package with definitions used by architecture read_write

example.vhd - architecture example of can_interface

configuration_example.vhd - configuration of can_interface

can_module.vhd - entity of can_module

simple.vhd - architecture simple of can_module

cpu.vhd - entity of cpu

read_write.vhd - architecture read_write of cpu

can_message.vhd - entity of can_message

basic.vhd - architecture basic of can_message

cpu_interface.vhd - entity of cpu_interface
- 81 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2
parallel_16_bit.vhd - architecture parallel_16_bit of cpu_interface

can_control.vhd - entity of can_control

timing.vhd - architecture timing of can_control

configuration_sys_e.vhd - configuration of can_system (COMPARE + REFERENCE)

buggy - example of a buggy CAN implementation

Depends.SYNOPSYS - backup of Synopsys Depends file

Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file

Depends.MG_ModelSim - backup of Mentor ModelSim Depends file

bad_example.vhd - architecture bad_example of can_interface

buggy.vhd - architecture buggy of can_module

configuration_buggy.vhd - configuration of can_interface

configuration_sys_b.vhd - configuration of can_system (COMPARE + REFERENCE)

tests - test programs with trace files

Depends.SYNOPSYS - backup of Synopsys Depends file

Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file

Depends.MG_ModelSim - backup of Mentor ModelSim Depends file

test_routines.vhi - procedures used within test programs

signal_definition.vhi - constants and signals to control the test program

request_process.vhi - process to set /reset TRANSMISSION_REQUEST

tests/<test> - each test program has its own directory

Depends.SYNOPSYS - backup of Synopsys Depends file

Depends.MG_QuickHDL - backup of Mentor QuickHDL Depends file

Depends.MG_ModelSim - backup of Mentor ModelSim Depends file

<test>.vpp - architecture <test> of test_program, contains configuration cfg_<test>

<test>.vhd - generated by make from <test>.vpp and include files ../*.vhi

cfg_<test>.vhd - configuration cfg_<test> of protocol_testbench

cfg_<test>_example.vhd - configuration cfg_<test>_example of protocol_testbench

cfg_<test>_buggy.vhd - configuration cfg_<test>_buggy of protocol_testbench

<test>.trace.sav - backup of trace file generated by simulation
- 82 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2
<test>.e_trace.sav - backup of trace file generated by simulation of example

<test>.b_trace.sav - backup of trace file generated by simulation of buggy

Note: <test> stands for any of the reference test programs from section 3.2

objects - compiled model

After installation of the model this directory is empty !
- 83 - K8/EIS

User’s ManualVHDL Reference CAN Revision 2.2

7
30
34

38
.. 40
.....
.
43
....... 44
....... 45
...... 48
...... 50
..... 52
...... 55
..... 55
..... 56
58
59

4
..... 68
...... 70
.... 73
....... 75

77

2

osch
A-2 List of Figures

 Figure 1 architectureSTRUCTURAL of PROTOCOL_TESTBENCH. .. 2
 Figure 2 architectureFLEXIBLE of CAN_SYSTEM. ..
 Figure 3 architectureCOMPARE of CAN_INTERFACE. ..
 Figure 4 Tolerable phase shifts between compared signals (example forTRANSMIT_DATA). 36
 Figure 5 architectureREFERENCE of CAN_INTERFACE. ...
 Figure 6 Process flow ofBIT_TIMING
 Figure 7 Bit Timing and Phase Error. .. 41
 Figure 8 Synchronization flow. ... 42
 Figure 9 Hard Synchronization onrecessive to dominant edge. ..
 Figure 10 Resynchronization, Node = Receiver. ...
 Figure 11 Resynchronization, Node = Transmitter. ..
 Figure 12 Structure of the BIT_STREAM_PROCESSOR process. ...
 Figure 13 Structure of RECEIVING status. ...
 Figure 14 Structure of TRANSMITTING status. ..
 Figure 15 Start of a simulation’s trace file (e.g. test program emlcount).
 Figure 16 Example of lost arbitration in a simulation’s trace file (e.g. test program emlcount).
 Figure 17 Example of CRC Error in a simulation’s trace file (e.g. test program crc).
 Figure 18 architectureEXAMPLE of CAN_INTERFACE. ..
 Figure 19 architectureSIMPLE of CAN_MODULE. ...
 Figure 20 Structure of an architecture<test> of TEST_PROGRAM. ... 6
 Figure 21 Synchronous Start of Arbitration for an Implementation and 3 RefCANs.
 Figure 22 Structure of different CAN Components. ...
 Figure 23 Verification of a CAN module of an embedded microcontroller.
 Figure 24 Template for a testbench configuration. ..
 Figure 25 Testbench configuration for test programBAUDRATE simulating architectureEXAMPLE. 76
 Figure 26 architectureTEMPLATE of TEST_PROGRAM. ..

A-3 List of Tables

 Table 1 Address map of the CAN module’s message memory in architectureBASIC. 60
 Table 2 Address map of the CAN module’s control register in architectureTIMING 61
 Table 3 Features of the architectureREAD_WRITE of CPU. .. 6

A-4 Related Documents

• CAN Specification Revision 2.0 Part A and B

A-5 CAN Services

Actual information about this VHDL Reference CAN model and the CAN IP modules available at B
can be found on the Bosch CAN website:

http://www.can.bosch.com
- 84 - K8/EIS

	1 Introduction
	2 Installation
	3 Compilation and Simulation
	3.1 Starting the Simulation
	3.1.1 Simulating the User’s Implementation
	3.1.2 Simulating the Example of an Implementation
	3.1.3 Simulating the Example of a Buggy Implementation

	3.2 Test programs
	3.2.1 baudrate
	3.2.2 biterror
	3.2.3 btl
	3.2.4 crc
	3.2.5 dlc
	3.2.6 emlcount
	3.2.7 extd_id
	3.2.8 formerr
	3.2.9 idle
	3.2.10 overload
	3.2.11 stuff bit
	3.2.12 stufferr
	3.2.13 txarb

	4 Model Description
	4.1 PROTOCOL_TESTBENCH
	4.2 CAN_SYSTEM
	4.2.1 configuration SYS_I of CAN_SYSTEM�
	4.2.2 configuration SYS_E of CAN_SYSTEM�
	4.2.3 configuration SYS_B of CAN_SYSTEM
	4.2.4 configuration SYS_R of CAN_SYSTEM�

	4.3 BUS_INTERFACE
	4.4 CAN_INTERFACE
	4.4.1 architecture COMPARE�
	4.4.1.1 CHECKER

	4.4.2 architecture REFERENCE
	4.4.2.1 process OSCILLATOR
	4.4.2.2 process PRESCALER
	4.4.2.3 process BIT_TIMING
	4.4.2.3.1 Overview
	4.4.2.3.2 Structure of process BIT_TIMING
	4.4.2.3.3 Synchronization

	4.4.2.4 process BIT_STREAM_PROCESSOR
	4.4.2.4.1 Overview
	4.4.2.4.2 Frame Format
	4.4.2.4.3 Structure of process BIT_STREAM_PROCESSOR

	4.4.2.5 Output to the Trace File
	4.4.2.6 CAN Specification and Reference CAN Model
	4.4.2.7 Special Features of architecture REFERENCE for Protocol Check.

	4.4.3 architecture IMPLEMENTATION�
	4.4.4 architecture EXAMPLE�
	4.4.4.1 architecture SIMPLE of CAN_MODULE
	4.4.4.1.1 architecture BASIC of CAN_MESSAGE
	4.4.4.1.2 architecture PARALLEL_16_BIT of CPU_INTERFACE
	4.4.4.1.3 architecture TIMING of CPU_CONTROL

	4.4.4.2 architecture READ_WRITE of CPU

	4.4.5 architecture BAD_EXAMPLE

	4.5 TEST_PROGRAM
	4.5.1 process STIMULI�
	4.5.1.1 procedure INITIALIZE
	4.5.1.2 procedure WAIT_FOR
	4.5.1.3 procedure SEND_MESSAGE
	4.5.1.4 procedure WRITE_TRACE

	4.5.2 process REQUEST
	4.5.3 process SYNCHRONIZE_REQUEST

	5 Verification of an Implementation
	5.1 Integrating an Implementation’s Model into the Reference CAN Model
	5.2 Configuration of the Testbench
	5.3 Adding Test programs
	5.4 Generating Test Vectors

	A-1 List of Files
	A-2 List of Figures
	A-3 List of Tables
	A-4 Related Documents
	A-5 CAN Services

