

D-33095 Paderborn, Pohlweg 47-49 Tel.:+49-5251/60-3447 Fax: /60-3246
http://adt.upb.de email: belli@adt.upb.de

© Copyright All rights, including translation into other languages reserved by the authors.

No part of this report may be stored, reproduced or used in any form or by any
means – graphic, electronic, or mechanical, including photocopying, recording,
taping, or information and retrieval systems without written permission from
the authors.

Technical Reports and Working Papers

Angewandte Datentechnik (Software Engineering)
Prof. Dr.-Ing. Fevzi Belli

 Test Generation Using Event Sequence Graphs

Fevzi Belli1, Nimal Nissanke2, Christof J. Budnik1, Aditya Mathur3

1): Dept. of Computer Science, Electrical Engineering and Mathematics, University of
Paderborn, Germany

2): Institute for Computing Research, BCIM, London South Bank University, London, UK
3): Department of Computer Science, Purdue University, West Lafayette, IN, USA

 (Version 1.1, 05. September 2005)

Technical Report 2005/6 Version 1.1, 05. September 2005
__

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 1 of 51

Test Generation Using Event Sequence Graphs

Fevzi Belli1, Nimal Nissanke2, Christof J. Budnik1, Aditya Mathur3

1): Dept. of Computer Science, Electrical Engineering and Mathematics, University of Paderborn, Germany

2): Institute for Computing Research, BCIM, London South Bank University, London, UK

3): Department of Computer Science, Purdue University, West Lafayette, IN, USA

Abstract

An Event Sequence Graph (ESG) is a simple albeit powerful formalism for capturing the behavior of a variety of inter-
active systems that include real-time, embedded systems, and graphical user interfaces. A collection of ESGs is pro-
posed as a model of an interactive system. This collection is used for the generation of tests to check for the correctness
of system behavior in the presence of expected and unexpected input event sequences. The proposed test generation al-
gorithm is customizable in the sense that it allows a tester to generate test sequences based on an evaluation of their cost
of execution and the benefit derived. Two case studies, an empirical and an analytical, are reported. The empirical study
is an assessment of the fault detection effectiveness of the approach. The analytical study is to demonstrate the power of
ESGs in modeling and risk analysis.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 2 of 51

Contents

1. Introduction..3
2. Related Work ...4
3. Event Sequence Graphs ...6

3.1. Modeling Functions and Malfunctions .. 8
3.2 Risks and Risk Ordering .. 9
3.3 Quantification of Robustness... 9
3.4 Fault Model.. 10
3.5 Handling Other Features .. 11
3.5.1 States and Outputs.. 11
3.5.2 Multiple Start and Final Events ... 11
3.5.3 Handling Context Sensitivity... 12
3.5.4 Extension of the Fault Model... 12

4. Test Generation..13
4.1. Objectives .. 13
4.2. Test Process ... 14
4.3. Test Generation and Execution Algorithm .. 14
4.3.1. Minimal Spanning Set for the Coverage of ESs ... 15
4.3.2. Minimal Spanning Set for the Coverage of FESs ... 17
4.3.3. Generating Event Sequences with Length > 2 .. 17

5. Case Study 1: The RealJukebox ..19
5.1. Objectives .. 19
5.2. System Description and Model.. 19
5.3. Test Representation.. 21
5.4. Test Generation.. 22
5.5. Results.. 22
5.6. Analysis.. 24
5.7. Fault detection.. 25
5.8. Defense Mechanism, Risk Ordering .. 26
5.9. Discussion .. 26

6. Case Study 2: Railway Crossing..27
6.1. Objectives .. 27
6.2. System model... 27
6.3. System Functions and Malfunctions.. 28
6.4. Defense Mechanism and Risk Graph... 30
6.5. Testing Issues... 32

7. Tool Support ..32
7.1. Test Case Generation ... 32
7.2. Generation of Test Scripts ... 34

8. Discussion ..35
8.1. Advantages and Disadvantages of Modeling with ESG.. 35
8.2. Recommendations for Practice .. 36

9. Future Work ...36

Appendix..40
A. ESGs of the Case Study 1 .. 40
B. List of Faults Revealed... 45

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 3 of 51

1. Introduction
This paper presents a novel approach to modeling, analysis and testing of system behaviors, with
respect to both correct and faulty behaviors, based on Event Sequence Graphs (ESGs). The ap-
proach focuses on (a) testing a system for correctness with respect to its behavioral requirements
and for its robustness against incorrect inputs, and (b) analyzing the consequences under possible
malfunction. It is based on two simple ideas. First, the desirable behavior of the user and the system
under test (SUT) is modeled using a finite set of ESGs. Second, each ESG in this set is inverted al-
gorithmically to obtain a formal representation of the undesirable user behavior and to work out the
corresponding desired response by the SUT. The set of ESGs and their inversions are then used for
test generation and for system malfunction analyses.

Complexity in behavioral patterns is an important source of faults, and hence failures, in computer-
based systems. Such patterns express the relationship between the system and its environment, pos-
sibly including the user and other collaborating systems, and fall into three different categories:
proactive, reactive, and interactive. ESGs apply to all three, though this work places some emphasis
on interactive systems. ESGs focus on their externally observable behavior through discrete event-
based models and provide a unified view of the interactions between the user stimuli and environ-
mental actions, and system responses, though they are separated out later during the testing phase.
ESGs differ from the finite-state based approaches in that they are based on a finite sequence of
events, rather than states.

Our objective is to systematize the test generation process with a twin-track strategy. The first is to
confine the scope of tests by targeting them at a given stage at a chosen system attribute such as
user-friendliness or safety. This is achieved by an ordering of system states according to the risks
posed to that attribute and to selecting tests that address specific threats. The second is to devise test
plans where the tests are naturally ordered according to diminishing returns in terms of their cost-ef-
fectiveness. Technically, this is based on test length. This is possible because the tests are formu-
lated in terms of sequences of non-faulty event pairs in the ESG model when testing the system for
correctness of desirable (functional) features, and sequences of non-faulty event pairs in system
ESG model followed a faulty event pair when testing for any undesirable outcome. Test space is
explored using established algorithms to Chinese Postman Problem but modified with the aim of
achieving greater efficiency. The algorithm establishes complete and minimal set of test cases that
are necessary to exercise all event sequences of increasing lengths. Sequence length being a natural
measure of the test costs, tests are conducted beginning from relatively low cost tests based on
shorter sequences and proceeding onto more costly ones with longer sequences. Monitoring of the
returns as the testing progresses thus provides a judicious basis for deciding when to terminate tests.
The paper illustrates the approach using two case studies and demonstrates the effectiveness of the
approach based on empirical results on actual tests.

In brief, the main contributions of this work are: (a) an ESG based formalism for the modeling and
analysis of the behavior of discrete event, and sequential systems; (b) a test generation algorithm
that takes an ESG as input and generates tests for testing the behavior of a SUT under expected and
unexpected conditions, and (c) an evaluation of the feasibility and effectiveness of the proposed
modeling and test generation schemes using two case studies. Compared to (Belli, 2001), where it
and was first used for the study of user interactions, this work extends and refines it in following re-

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 4 of 51

spects: (a) The present paper introduces a solid formal background for handling ESGs and modeling
aspects. (b) Based on this background, algorithms are introduced and analyzed for test generation
and optimization. (c) The fault model is extended in order to handle a broad variety of malfunctions
and risks, qualitatively and quantitatively. (d) The scope of modeling is generalized so that now not
only user interfaces can be modeled, but any kind of reactive or interactive systems. (d) Two case
studies, one empirical and another one analytical, validate the approach and study its deployment in
different environments, identifying and varying characteristic factors. (e) Tools that are necessary
for an effective deployment of the approach are introduced and discussed. (e) Lessons learned from
intensive and extensive application of the approach to industrial projects are summarized.

The remainder of this paper is organized as follows. Section 2 provides a summary of the related
literature and establishes the relationship between finite-state automata (FSA) based models and
ESG based models of system behavior. Section 3 is a rigorous introduction to ESGs. Section 4
sketches the test generation algorithm. Section 5 reports an empirical study that investigates the
fault detection effectiveness and the cost of test generation; leaving the details of the study to Ap-
pendices 2 and 3. A study in Section 6 demonstrates the analytical power of ESG based modeling,
while Section 7 provides an overview of a toolkit developed to support ESG based modeling. A dis-
cussion related to the current work and directions for further research appear in Sections 8 and 9, re-
spectively. The terminology used in this paper is based on IEEE 610.12, ISO/IEC 9126 and IEC
60300-3-1.

2. Related Work
There is a vast body of work that addresses the problem of test generation for software systems.
Here we review literature related to the modeling and generation of tests.

ESGs, with variations in terminology, have been used for modeling finite-state behavior since the
work of Kleene (Kleene, 1958). Chhikara et al. use event sequence diagrams to study dynamic
probabilistic risk analysis (Chhikara, 2000). Memon et al. use event flow graphs to model GUI
event sequences as test cases (Memon, 2001). Event graphs and timed event graphs are also used in
other areas of research such as simulation (Schruben, 1995) and automatic control (Libeaut, 1995).
In this work ESGs are used for modeling system behavior, test generation, and robustness testing.

Test generation based on finite-state models has been an active area of research for many decades.
Chow proposed the W-method for generating tests from finite-state models in the context of proto-
col testing (Chow, 1978). Chow’s work was followed by work that generated variations of the W
method, such as the Wp method (Fujiwara, 1991), new methods such as Unique Input-Output Se-
quences (Sabnani, 1988), Transition Tour (Aho, 1991), Distinguishing Sequences (Sarikaya, 1989),
and empirical evaluations (Petrenko, 1996; Shehady and Siewiorek, 1997; Bochmann, 1994). Fi-
nite-state models have also been proposed as a means for the specification and analysis of system
behavior (Parnas, 1969; Shaw, 1980; Raju and Shaw, 1994). More recently, researchers have pro-
posed ways to generate tests from a variety of UML specifications such as statecharts and sequence
diagrams. Two doctoral theses offer algorithms to generate tests from statechart specifications
(Bogdanov, 2000; Burton, 2002). Other authors suggest coverage and mutation based adequacy
heuristics to generate tests from statecharts (Fabbri, 1999; Offutt, 2003).

White and Almezen took a different approach to the problem of test generation using finite-state
models (White and Almezen, 2000). Their work is in the context of generating tests for testing
GUIs. Rather than use the traditional Mealy or Moore machines, they propose an alternate repre-

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 5 of 51

sentation of user-responsibilities using the idea of Complete Interaction Sequences (CIS). A CIS is
represented using a finite-state model where user actions, such as OPEN FILE and EDIT, label the
states and the edges are unlabeled. Thus the expected behavior in response to an event is implicit
and specified elsewhere in contrast to the traditional finite-state models that indicate explicitly the
system response to an input as an output label on each transition. The entire system is modeled as a
collection of CISs. An advantage of the CIS-based approach lies in its scalability and intuitiveness.
Instead of creating a single composite finite-state model, multiple CISs, each representing a user re-
sponsibility, are created thereby simplifying the task of model construction and test generation.

Memon et al. (Memon et al., 2000) have proposed a novel approach for GUI testing. Their approach
deploys methods from knowledge engineering to generate test cases, test oracles, etc., and to handle
the test termination problem.

The approach presented here is different from the finite-state based approaches in that ESGs are
based on a finite sequence of events, rather than states. It uses a unified view where user or envi-
ronment actions as well as system responses are considered as events for the purpose of modeling,
though they are separated into different sets during testing. ESGs themselves model finite-event
processes. A collection of ESGs, and not a single ESG, models the behavior of an entire system.
The approach, however, differs significantly from others in two key respects: modeling and test
generation.

ESGs are a representation used to model the discrete interactions between an event-based system
and its environment. Thus, while ESGs are excellent for modeling user-GUI interactions in a way
similar to that done using CISs, they have been also used here to model the behavior of real-time
systems, e.g., a railway-crossing system. ESGs allow a modeler to think in terms of system “events”
instead of system “states.” Our experience with designers and programmers in the real-time soft-
ware industry suggests that ESGs are often easier to use for modeling the discrete behavior of a
system than the traditional finite-state machine that requires the use of “states.” The idea of inver-
sion, or complementing, makes ESG based modeling distinct from other test generation approaches.
ESGs and their complements allow modeling the desirable behavior of a system in the presence of
both expected and unexpected inputs as events. The latter model allows for the quantification of the
robustness of a system and hence raises the possibility of incorporating system robustness into its
overall reliability. While the inversion of finite-state machines needs some theoretical skills, inver-
sion of ESGs is intuitive and easily done by a test designer without recourse to automata theory.

Another distinctive feature of the ESG-based approach lies in its test generation algorithm. Most fi-
nite-state based test generation methods focus on some form of coverage, e.g., transition coverage
(Aho, 1991; White, 2000; Offutt, 2003), or on coverage and state identification (Chow, 1978; Sab-
nani, 1988). The ESG-based test generation algorithm achieves complete coverage of ESGs (Belli,
2001; Marré and Bertolino, 2003) through the use of the Chinese Postman problem (Edmonds and
Johnson, 1973; Kwan, 1962) for managing round trips. In addition, the algorithm also formalizes
and generalizes the notion of pair-wise testing (Tai and Lie, 1992) by including the ability to gener-
ate tests that cover all possible n-tuples for some n>1. While the number of tests so generated can
be impractically large, the algorithm can be applied selectively to individual ESGs with different
values of n. This feature renders the algorithm customizable to the criticality needs of a system.
ESGs that correspond to the most critical portions of a system can be tested more thoroughly using
higher values of n. Note that higher values of n allow the generation of tests that enable testing a
system for errors revealed only through specific sequences of inputs; such errors are known to be
hard to find.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 6 of 51

Another state-oriented group of approaches to test case generation and coverage assessment is
based on model checking, e.g., the SCR (Software Cost Reduction) method, as described in (Gar-
gantini and Heitmeyer, 1999). These approaches identify negative and positive scenarios to generate
test cases automatically from formal requirements specifications. Thus they attempt to overcome
the problem of testing that is not exhaustive, e.g., “black-box checking”, which combines “black-
box testing” and “model checking” (Peled, 2001).

Several approaches have been proposed to assess the robustness of software-based systems. Fetzer
and Xiao (Fetzer, 2002) have proposed techniques for increasing the robustness of C libraries using
wrappers. Huns and Holderfield (Huns, 2002) equate robustness to a lack of software crashes and
suggest redundancy and appropriate granularity as a way to achieve it. Kropp et al. have proposed
an automated method, the Ballista approach, for testing the robustness of software (Kropp, 1998).
Ballista employs random test generation. The proposed ESG approach differs from the approaches
cited here in that it (a) allows the modeling of incorrect behavior that is often the cause of lack of
robustness of software systems and (b) provides an algorithmic approach to test generation for test-
ing a software-based system for robustness.

3. Event Sequence Graphs
In this section we introduce event sequence graphs (ESGs) as a behavior-modeling device; both the
desirable and undesirable behavior are modeled using ESGs. Any software-based system can be
viewed as interacting with its environment through stimuli-response pairs. In this context, the envi-
ronment could be one or more human users, a set of service seekers, or any combination thereof,
and we use the terms “user” and “environment” interchangeably.
An Event Sequence Graph (ESG) is a device to model a subset of the interactions between a system
and its user. The complete set of interactions is captured in terms of a set of ESGs, where each ESG
represents a possibly infinite set of event sequences. An event, an externally observable phenome-
non, can be a user stimulus or a system response, punctuating different stages of the system activity.

Formally, an ESG is a labeled graph represented as a triple ESG = (α, E) where α is a finite set of
labeled nodes (vertices) and E: α α, a relation, possibly empty, on α. The elements of E represent
directed arcs (edges) between the nodes in α. As a convention, two distinct vertices are identified as
entry and exit nodes and are shown respectively by an incoming arc with no source and an outgoing
arc with no destination.

Elements of α are known as events. The set α is partitioned into two subsets αenv and αsys such that

 α = αenv ∪αsys, αenv ∩αsys=φ, (1)

where αenv is the set of environmental events (i.e., user inputs) and αsys a set of system responses.
The distinction between the sets αenv and αsys is important because the events in the latter are con-
trollable within the system, whereas the events in the former are assumed to be not subject to such
control.

We refer to a node in α by its label. Given two nodes a and b in α, a directed arc from a to b indi-
cates that event b can follow event a. A simple ESG is shown below.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 7 of 51

Fig. 1. An ESG with two nodes labeled a and b

The complement of an ESG, denoted by ESG , includes all the edges not included in the ESG, but
with no new entry or exit edges. The complement of the ESG in Fig. 1 appears in Fig.2.

Fig. 2. ESG – Complement of the ESG given in Fig. 1

Finally, the completed ESG, referred to as CESG, is constructed as the superposition of the ESG and
its complement ESG . For example, superposition of the ESG in Fig. 1 and its complement in Fig. 2
leads to a CESG shown in Fig. 3.

Fig. 3. CESG – Completed ESG of the ESG given in Fig. 1

Interaction patterns implicit in an ESG, ESG , and CESG, can also be expressed in terms of a regular
expression (Salomaa, 1969; Shaw, 1980). For example, the following regular expression r captures
all interaction patterns implicit in the CESG in Fig. 3.

 r = (a+b+)+ (2)

Expression (2) indicates that a sequence of one or more events a can be followed by a sequence of
one or more events b and, furthermore, this pattern can recur one or more times. Note that Kleene’s
star operation “*”, which is not used in this example, indicates an arbitrary number of occurrences,
including the empty sequence. Note also that a CESG and the corresponding regular expression
capture, respectively, all valid and invalid sequences of events.

Let R denote the regular set denoted by the regular expression r. Given a system M and an ESG Me
that models a set of interactions between the user and M, we refer to the corresponding regular ex-
pression as r(Me) and the regular set as R(Me). Thus R(Me) denotes a possibly infinite set of strings,
or event sequences in the present context, over the alphabet α. Often, it is a finite set of ESGs that
model all interactions of concern with M. We shall use R(M) to denote the set of all interactions
modeled by the ESGs in this set. It is easy to obtain R(M) as R(Me1)∪ R(Me 2)∪ ...∪ R(Men) given
the n ESGs Me1, Me 2,...Men that model the behavior of M.

ESGs are comparable to the Myhill graphs (Myhill, 1957), which are also adopted as computation
schemes (Ianow, 1958), or as syntax diagrams, e.g., as used in (Jensen and Wirth, 1974) to define
the syntax of Pascal. The difference between the Myhill graphs and the ESGs as introduced here is
that the symbols, which label the nodes of an ESG, are interpreted not merely as symbols or meta-
symbols of a language, but as operations on an event set (see also Event Sequences (Korel, 1996)).
A flexible visualization at different abstraction levels is given through view graphs (Gossens, 2005).

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 8 of 51

3.1. Modeling Functions and Malfunctions

We use the term system function, or simply function, to refer to the correct behavior of the SUT
while the term malfunction, or dysfunction, refers to its incorrect behavior. Using the event termi-
nology above, functions and malfunctions can be represented as regular expressions over the set α.

For a system M, event sequences over α that belong to R(M) denote system functions, while others
denote malfunctions. Let F denote the set of system functions and D the set of system malfunctions.
We then have

 F ⊆ R(M) and D ⊆)(MR (3)

To test a system, one generally produces meaningful test inputs and complies a list of corresponding
expected system outputs. Accordingly, a test represents the execution of the SUT and comparison of
the outcome with the expected. When the test results are in accordance with the user’s expectations,
the test succeeds otherwise it fails.

Some nodes in an ESG represent environmental events, e.g., user inputs lead to expected system re-
sponses, which are also considered as events. Thus, each edge of the ESG represents a legal event
pair, or simply, an event pair (EP). For example, ab in Fig. 1 is an event pair. A sequence of n con-
secutive edges is an event sequence (ES) of the length n+1.

A complete ES (CES) starts at the entry of the ESG and ends at its exit, i.e., it represents a walk
through the ESG. The set of the CESs specifies the system function F as introduced in (3). Alter-
nately viewed, the CESs constitute legal words of the regular set defined by an ESG.

Analogous to the notion of EP, faulty (or illegal) event pairs (FEP) are introduced as the edges of
the corresponding ESG , e.g., aa, ba, bb in Fig. 3. Further, an EP of the ESG can be extended to a
faulty, or an illegal, event triple (FETr) by adding a subsequent FEP (if there exists one) to this EP,
e.g., ab and bb of Fig. 3, resulting in abb. Thus a FETr consists of three consecutive nodes in an
ESG where the last two nodes constitute an FEP. In general, a faulty event sequence (FES) of the
length n consists of n-1 events that form a (legal) ES of length n-2 and of two events at the end that
form an FEP.

Given an ESG e, faulty CESs (FCESs) can be constructed systematically using FEPs as follows.

 An FEP that starts at the entry of e is also an FCES.

 An FEP f that does not start at the entry of e is not executable and is extended
by adding suitable prefixes. Each ES that starts at the entry of e and ends at
the first symbol of f is prefixed to f and the resulting sequence becomes an
FCES. Such prefixes are referred to as starters.

(4)

Note that the attribute “complete” in FCES expresses only the fact that an FEP might have been
“completed” by means of an ES as a prefix to make it executable (otherwise it is not complete, i.e.,
not executable). Thus, an FCES is an FES that starts at the entry node but fails to reach the exit
node. For a given SUT, we refer to the set of FCES as the set V.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 9 of 51

3.2. Risks and Risk Ordering
Malfunctions of a system are often related to its state. However, since the representation based on
ESGs is void of any explicit notion of state, it is necessary to refer to states indirectly in terms of the
elements of R(M), which as explained earlier, are event sequences beginning at the entry node.
Thus, a string in s∈ R(M), s may also be treated as a notation for the state reached by M upon the
execution of the events in s.

In embedded systems, such as a pacemaker or a railway-crossing controller, an event sequence s
may lead the system to a state that has some form of risk associated with it. Though we do not con-
cern ourselves with the actual quantification of risk, we need an ordering relation based on risk for
the states of M. As shown in Section 6, this offers us a systematic selective approach to test genera-
tion.

A risk ordering relation � is defined as

 � = {(s1, s2)| s1, s2∈R(M) and the risk level associated with state s1 is less than that
 associated with state s2.} (5)

The risk ordering function above is analogous to that used in (Nissanke and Dammag, 2002). In this
context, risk level of a state quantifies the “degree of the undesirability” of an event sequence from
the perspective of some critical system attribute, which could be, for example, safety. An analogous
interpretation of � can be found for other system attributes.

The risk ordering relation � is intended as a guide to determining an appropriate response to any
threats detected. Such responses are specified in terms of a defense matrix DM that utilizes the risk
ordering relation to revert the system state from its current one to a less, or the least, risky state.
DM, and the associated constraint, are defined as follows.

 DM ∈ R(M)×D → R(M) (6)

 ∀ s1, s2, v • (s1,v) ∈ dom DM ∧ DM(s1,v) = s2 ⇒ s2 � s1 (7)

The above expresses the requirement that, should one encounter the malfunction d in any given
state s1, the system must be brought to a state s2, which is of a lower risk level than s1. A defense
action, which is an appropriately enforced sequence of events, is used to bring the system into a less
risky state. An exception handler executes a defense action. The actual definition of the defense ma-
trix and the appropriate set X of exception handlers is the responsibility of a domain expert special-
izing in the risks posed by a given malfunction. Relying on this risk based interpretation of state in
terms of event sequences, if x is a defense action appropriate for the scenario implicit in (5), then s1
x = s2.

A specific benefit of risk ordering in the framework introduced here is that it allows a systematic
approach to the selection of test cases by focusing on one or more particular vulnerability attribute.

3.3. Quantification of Robustness
Robustness of a software system is defined as the ability of the system to behave acceptably in the
presence of unexpected inputs (Huhns, 2002). We prefer to treat robustness as the ability of a sys-

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 10 of 51

tem to handle exceptional or faulty inputs. Thus, while there is an expected set of inputs, its com-
plement is a faulty set of inputs. The ability of a system to handle acceptably such exceptional in-
puts is a measure of its robustness. A set of ESGs that models a SUT behavior defines the set of ex-
pected event sequences. The complement of each ESG in this set, taken together, defines the set of
unexpected input sequences. We define robustness with respect to precisely this set of unexpected
input sequences.

Several approaches have been proposed to assess the robustness of a system. The Ballista approach
(Kropp, 1998) is an elegant way to assess the robustness of a software system by the generation of
special values and random inputs. Here we propose an alternate ESG based approach to testing a
software system for robustness. This approach allows the quantification of robustness with respect
to a universe of erroneous inputs.

As mentioned above, in Section 3, the complement of an ESG defines a subset of all possible erro-
neous or faulty, event sequences. A set of erroneous inputs is obtained for the SUT by comple-
menting each ESG in the set that models the behavior of the SUT. We explain in Section 4.3.2 how
these faulty sequences are used to generate test inputs that test the exception handling ability of the
SUT. Given that there are n tests, each containing a faulty sequence, and that in m, m≤n, of these
tests the SUT behaves acceptably, the robustness of the SUT is estimated to be the ratio m/n.

The robustness measure proposed above is significantly different from the one obtained using the
Ballista approach. While the Ballista approach uses special and random values of SUT input vari-
ables to assess robustness, the ESG approach uses tests based on faulty event sequences as a way to
assess the same. A comparison of the two approaches is not within the scope of this work.

3.4. Fault Model
As ESGs are constructed according to the user expectation concerning the system behavior, any
CES is supposed to successfully run the system. Thus, a CES can be used as a test case, and the test
fails if this CES starting at the entry node

 cannot reach the exit node due to a failure, e.g., system crash (sequencing fault), or

 reaches the exit node, but does not deliver the expected operation result (functional fault).

Accordingly, a CFES is supposed to cause a failure, or if there is an exception handling mechanism,
an error message about the impairment of the events; otherwise a sequential fault occurs. A se-
quencing fault can also occur in the starter portion, i.e., in the ES as the prefix of the FCES. CFES-
based functional faults do not make any sense as they are supposed to exclude the expected behav-
ior of the system.

This fault model is very simple and makes clear how the oracle problem is handled: A CES-based
test case is supposed to succeed a test whereby a FCES-based one to fail the test.

In spite of its simplicity, the fault model is sufficiently powerful to guarantee revealing all sequenc-
ing faults, provided that ESs and FCESs to be covered are sufficiently long (Sections 4.3.1 and
4.3.2). The approach cannot, however, guarantee to detect all functional faults, because in case a
test succeeds, the user must validate that the expected result has been obtained.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 11 of 51

3.5. Handling Other Features

3.5.1. States and Outputs
Traditional finite-state automata (FSA) consist of states and transitions labeled by inputs, and in the
case of a Mealy machine, also outputs. While an ESG is a finite, memoryless, device, in the sense
that it consists of a finite set of nodes and vertices, the transitions are unlabeled. Merging the states
and inputs/outputs of the FSA to derive the corresponding ESG considerably simplifies the fault
modeling.

As an example, the ESG of Fig. 1 is represented as an FSA (Fig. 4, (a)) which then is completed by
a fault state (Fig. 4, (b)). Fig. 3 is then compared with Fig. 4, (b) in order to illustrate the fault mod-
eling features in FSAs.

If the underlying ESG has n vertices, the corresponding CESG has at most 2n edges that connect
each of the n vertices with every other vertex (West, 1996). The ESG in Fig. 1 has two events, lead-
ing to a total of 4 edges (22 = 4) of the CESG in Fig. 3, without counting the entry and exit edges.
Assuming that the corresponding FSA in Fig. 4(a) has three states and an input alphabet of two
symbols, a and b, the corresponding, completed FSA (CFSA) is given in Fig. 4 (b) with an extra
state “fault.” For the sake of simplicity, edges are allowed to be associated with multiple inputs,
e.g., with a, b. Evidently, a CFSA with n states and an input alphabet of the cardinality
m has m n⋅ edges (without counting the entry and exit edges). Thus, the example CFSA in Fig. 4 has
a total of 6 edges (2·3 = 6); with the edge labeled with two inputs counted as a double edge.

3.5.2. Multiple Start and Final Events
In the definition above, ESGs have a single start node at the entry and a single final node at the exit.
In cases where multiple start nodes and/or multiple final nodes are needed, additional (pseudo) sin-
gle entry node, denoted by [, and/or a single pseudo exit node, denoted by], are introduced and
connected to the corresponding multiple nodes required at the entry and/or at the exit. In the ESG of
Fig. 5, a is the start node that is connected to the pseudo entry node [, and a (the second occur-
rence) and c are the final nodes that are connected to the pseudo exit node]. The same notation is
applicable to ESGs with single entry and exit nodes, though in this case pseudo nodes, hence the
square bracket notation, may be dropped without causing any confusion. Any direct transition from
[to], if added, indicates that the ESG can generate an empty event sequence.

(a) FSA which is equivalent to the ESG of Fig. 1 (b) Completed FSA

Fig. 4. Completed FSA of Fig. 1, leading to a total of 6 edges

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 12 of 51

Fig. 5. Pseudo start/final nodes ([,], respectively) and interaction ambiguities (caused by the double

occurrence of a)

3.5.3. Handling Context Sensitivity
When using ESGs to model an application, e.g., a graphical user interface, there is often a need for
using the same command, or the same icon, for similar operations in different contexts or in differ-
ent hierarchical levels of the application. An example is the operation delete used for deleting a
symbol, a record, or even a file. In such cases, the system usually carries out the proper action using
the context information. The approach introduced, however, eliminates the need for being explicit
about the hierarchy information in abstracting the real system into an ESG model.
As an example, Fig. 5 depicts an ESG that has two different nodes with the same label a and there-
fore, can be initiated or triggered by the same input a. While constructing the EPs and FEPs, and
accordingly the CESs and FCESs, one needs to differentiate between the node a that leads to b or c,
and the node a that can be reached via b and leads only to c. This ambiguity can be resolved sim-
ply by indexing, for example, a1 identifying the first appearance of a, and a2 identifying the latter
one. This indexing implies the syntactical, or contextual, position and can help with the reconstruc-
tion of different hierarchical levels that have been “flattened” in the course of modeling.

3.5.4. Extension of the Fault Model
Based on past work related to fault modeling (Eggers, 1984; Belli, 1991; Fabbri, 1994; Delamaro,
2001; DeMillo, 1978, 1991) and denoting inputs, outputs, states, or transitions as elements, we ob-
tain the following fault model.

 Omission error (o-error) – an element has been omitted.
 Insertion error (i-error) – an element has been inserted
 Corruption error (c-error) – an element has been corrupted.

Note that a c-error can be represented by an o-error followed immediately by an i-error, with a dif-
ferent element being inserted for the omitted element.

When applied to the elements of a Mealy automaton, these hypotheses are capable of delivering test
cases to detect a variety of defects, e.g., whether an edge is missing as a result of a defect of the
next state function, or if an output is missing or corrupted, since the output function does not work
properly, etc. (Gill, 1962). The hypotheses can be extended from single errors to multiple (n) errors
(Eggers, 1984):

 on-errors – n elements have been omitted.
 in-errors – n elements have been inserted.
 cn-errors – n elements have been corrupted.

Finally, to represent arbitrary types of faults within the context of a finite-state model, an appropri-
ate combination of these hypotheses is necessary, e.g., “a transition is forgotten, or inserted, or two

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 13 of 51

transitions have been interchanged” can be represented by cio ++ 2 , where “+” represents the logi-
cal operator for “(exclusive) or”. The described fault model can generate many classification
schemes for coverage, based on, for example, (Chillarege, 1996; Offutt et al., 2003; Marré, 2003).

This extension can also be applied to ESG-based modeling, and enables, in turn, a precise assign-
ment of severity levels to undesirable events in accordance with experience and judgment of the
tester (see Section 5.8).

4. Test Generation
We now focus on test generation from an ESG model. The method described in this section uses
ESGs and their complements as inputs and generates a test set that is complete with respect to a
model-based coverage criterion.

4.1. Objectives
As already mentioned when discussing the fault model (Section 3.4), a CES, by definition, is ex-
pected to lead a SUT to a desirable state, and hence it may be viewed as a test input against which
the SUT is expected to produce a correct output. The generation of CESs is one of the objectives of
the test generation procedure described. The other objective is to generate FCESs from the com-
plement of ESGs that together model the whole system behavior – both the desirable and the unde-
sirable parts. Upon the input of an FCES, the SUT is expected to transfer itself temporarily into a
faulty state and might invoke a fault detection/correction procedure, provided that an appropriate
exception handling mechanism has been implemented (Goodenough, 1975; Randell, 1978). Thus,
while CESs are used to test for the correct behavior of an SUT, the FCESs are used to check for the
correctness of exception handling.

We seek a test generation algorithm that, given an ESG and the corresponding CESG, generates
tests that satisfy the following coverage criteria.

 Cover all event pairs in the ESG, and
 Cover all faulty event pairs of the CESG.

(8)

Note that a test set that satisfies the first of the two criteria above consists of CESs while the one
that satisfies the second consists of FCESs. Thus all transitions in the ESG and CESG will neces-
sarily be covered by the CESs and FCESs, respectively (Belli, 2001; Belli and Dreyer, 1997). How-
ever, this criterion is more powerful than the transition or node coverage criterion (Offutt, 2003) as,
in addition, it requires the coverage of pairs of adjacent nodes in the ESG and its corresponding
CESG. We will show later in Section 4.3 how this pair-wise coverage can be generalized to n-tuple,
n>2, coverage and the cost and benefits of such an extension.

It is obvious that there exist a large number of solutions to the test generation problem as stated
above. For example, when an ESG has a loop, one could obtain a long chain of events that consti-
tute a CES. This observation leads us to impose the following additional constraints on the test gen-
eration process:

 The sum of the lengths of the generated CESs should be minimal.
 (b) The sum of the lengths of the generated FCESs, should be minimal.

(9)

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 14 of 51

The constraint on lengths of the tests generated allow for a reduction in the cost of test execution.
One might argue that minimizing test length might have an adverse effect on fault detection. While
this is true in general, our experiments show that the effect is minimal. Further, the coverage criteria
can be made more powerful by increasing the value of n in the n-tuple coverage to be obtained
thereby further reducing any negative effect of reducing the length of tests on the fault detection ef-
fectiveness.

The set of CESs that satisfy (7a) and (8a) for a given ESG is referred to as the minimal spanning set
for the coverage of event sequences of ESG (MSCES). An MSCES is a complete and minimal set
of test cases aimed at exercising all event-sequences of a given length and related to the desirable
behavior of the SUT. Similarly, the set of FCESs that satisfy (7b) and (8b) is referred to as the mini-
mal spanning set for the coverage of faulty event sequences (MSCFES). A MSFCES is a complete
and minimal set of test cases aimed at exercising the SUT against faulty input sequences that test
the exception handling behavior of the SUT.

4.2. Test Process

Once the tests have been constructed, they are input to the SUT. In case a CES is input, we check if
the system behaves as expected on a correct input. In the case an FCES is input, we check if the
system is able to recover from faulty inputs. The lack of a system’s ability to respond as desired to
an FCES is considered as a lack of robustness. When an FCES is input, an undesirable behavior
might occur, for example, because an exception handler is missing or incorrectly implemented.

A major problem is the determination of the correct (i.e., desirable) and faulty (i.e., undesirable) be-
havior, also known as the oracle problem (Binder, 2000; Hamlet, 1994). The present approach han-
dles the oracle problem effectively by embedding the expecting behavior within the CES itself. Re-
call that both types of events, from the environment and responses generated by the system, are a
part of a CES.

4.3. Test Generation and Execution Algorithm

In this section we sketch the algorithms used for the generation of CESs and FCESs given an ESG
and its complement. Algorithms presented here are extensions of the well-known algorithm for
solving the Chinese Postman Problem (CPP) (Edmonds, 1973).

A solution to the CPP is a minimum length closed walk that covers each edge of the given graph at
least once. A solution to this problem for a given ESG satisfies the first constraint in (9). However,
such a solution might fail to satisfy the first constraint, and its generalization to triples, quadruples,
etc., in (8) which requires that all event pairs be also covered. It is the satisfaction of (8) and its
generalization that requires an extension to the algorithm for solving the CPP. A similar extension is
also needed for generating FCESs from CESG.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 15 of 51

4.3.1. Minimal Spanning Set for the Coverage of ESs

As mentioned earlier in Section 3, a CES represents a legal walk, traversing the ESG from its entry
to the exit. Given an ESG e, a complete legal walk contains each EP in e at least once. A complete
legal walk is minimal if its length cannot be reduced without changing it to an incomplete legal
walk. A minimal legal walk is considered ideal when it contains every EP exactly once.

Legal walks can be generated easily for a given ESG as CESs. It is not, however, always feasible to
construct a complete or an ideal walk. Using results from graph theory (West, 1996), MSCESs can
be constructed as follows:

 Check whether an ideal walk exists.
 If not, check whether a complete walk exists and construct a minimal one if it does.
 If there is no complete walk, construct a set of walks such that (a) sum of the lengths of all

walks is minimal and (b) all EPs are covered.

Construction of MSCES

The MSCES problem introduced here is expected to have a lower degree of complexity than the
Chinese Postman Problem as the edges of the ESG are not weighted, i.e., the adjacent nodes are
equidistant. In the following we summarize results relevant to the calculation of test costs and that
make the test process scalable.

An algorithm described in (Thimbleby, 2003) to solve the CPP determines a minimal tour that cov-
ers the edges of a given strongly connected graph. Transformation of an ESG into a strongly con-
nected graph is illustrated in Fig. 6. Addition of a backward edge, indicated as a dashed arrow from
the exit to the entry, transforms the ESG in Fig. 6 (a) to a strongly connected graph in Fig. 6 (b).

The labels of the vertices in Fig. 6 (b) indicate the balance of these vertices as the difference be-
tween the number of incoming edges and the number of the outgoing edges. These balance values
determine the number of additional edges that will be identified by searching the all-shortest-paths
and solving the optimization problem. The problem can then be transformed into the construction of

Algorithm 1. Test Generation and Execution Algorithm

 Input: an ESG with

n:= number of the functional units (modules) of the system that fulfill a well-
 defined task
length:= required length of the event sequences to be covered
 FOR unit 1 TO n DO
 BEGIN
 Generate appropriate ESG and ESG
 FOR k:=2 TO length DO
 BEGIN
 Cover all ESs of length k by means of CESs subject to
 minimizing the number and total length of the CESs
 END
 Cover all FEPs of unit by means of FCESs subject to
 minimizing the total length of the FCESs
 END
 Apply the test set given by the selected CESs and FCESs to the SUT.
 Observe the system output to determine whether the system response is in
 compliance with the expectation.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 16 of 51

an Euler tour for this graph (West, 1996). This tour may contain the backward edge multiple times,
indicating the number of walks.

For the example given in Fig. 6 (a), the minimal tour (based on Fig. 6 (b)) and the minimal set of
the legal walks (i.e., CESs) covering the EPs is given by:

 Minimal Tour = (abcbdcaca); MSCES = { abcbdc, ac} (10)

Note that no entire walks exist. Therefore, an ideal walk cannot be constructed. Furthermore, the
MSCES can be constructed in time O(|α|3) (West, 1996). See Algorithm 2 for details.

Fig. 6 (a). An example ESG (b). Transferring walks into tours and balancing the

nodes

Theorem 1: MSCES can be constructed in time O(|V|3).
Proof (sketched; see also H. Thimbleby, 2003): The shortest paths from one node to all other ones
can be determined by the depth-first-search in O(|E|+|V|), as ESG under consideration is a
unweighted graph. Furthermore, because of |E|>>|V|+1, the complexity can be approximated to

Algorithm 2: Generation of MSCES
Input: ESG=(V, E); ε=[, γ=]
Output: MSCES

add_arc(ESG, (γ, ε));
sets A, B, M, MSCES = ∅;
FOR all nodes v∈V DO
 IF (diff(v) > 0) THEN
 A = A ∪ {vi | i∈{1,..,diff(v)}};
 IF (diff(v) < 0) THEN
 B = B ∪ {vi | i∈{1,..,diff(v)}};
m = |A| = |B|;
D[1 .. m][1 .. m];
FOR all nodes v∈A DO
 compute_shortest_paths(v, B, D);
M = solveAssignmentProblem(D);
FOR all (i, j)∈M DO
 Path = get_shortest_path(i, j);
 FOR all arcs e∈Path DO
 add_arc(ESG, e);
EulerTourList = compute_Euler_tour(ESG);
start = 1;
FOR i=2 TO length(EulerTourList)-1
 IF (getElement(EulerTourList, i)= γ)
 MSCES = MSCES ∪
 getPartialList(EulerTourList, start, i);
 start = i + 1;
RETURN MSCES;

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 17 of 51

O(|E|). Following the shortest paths of all nodes to all other ones can be determined by O(|E|*|V|).
The Hungarian Algorithm that solves the assignment problem has the complexity O(|V|3) and the
algorithm next to determine the Euler-Tour has the complexity O(|E|*|V|). Thus, the total
complexity is determined by O(|V|3).

4.3.2. Minimal Spanning Set for the Coverage of FESs
In comparison to the interpretation of the CESs as legal walks, by definition illegal walks are real-
ized by FCESs that never reach the exit node. An illegal walk is minimal if the length of its starter
cannot be further reduced.
Assuming that an ESG has n vertices and d edges as EPs, then exactly 2u n d= − edges are the
FEPs. Thus, at most u FCESs of minimal length, i.e., of length 2, are available. These FCESs
emerge when the node (nodes) following the entry node is (are) followed immediately by a faulty
input. Accordingly, the maximal length of an FCES can be n; these are subsequences of CESs with
their last event being replaced by an FEP. Therefore, the number of FCESs is determined precisely
by the number of FEPs. An FEP that represents an FCES is of a constant length of 2 and therefore
cannot be shortened. It remains to be noticed that only the starters of the remaining FEPs can be
minimized, e.g., using the algorithm given in (Dijkstra, 1959). Below is the minimal set of the ille-
gal walks for the graph in Fig. 6 (a).
 { aa, ad, aba, abb, aca, acc, acd, abdb, abda } (11)
While constructing the MSCESs, we take into account the ESs that are used to form starters to con-
struct MSFCESs. The ESs used as starters need not be covered by additional CESs. This can help
save costs if the test budget is limited, as is often the case in practice.

The determination and specification of the CESs and FCES should ideally be carried out during the
definition of the user requirements, often long before the system is implemented. They are then a
part of the system test specification. Certainly, CESs and FCESs can also be produced incremen-
tally at any later time, even during testing.

4.3.3. Generating Event Sequences with Length > 2
A phenomenon in testing interactive systems that most testers seem to be familiar with is that faults
can be frequently detected and reproduced only in some context. This makes a test sequence of a
length>2 necessary since repetitive occurrences of some subsequences are needed to cause an error
to occur/recur.

Consider the following scenario: Based on the ESG given in Fig. 7, the tester assumes that the EP
given by BC always reveals a fault, no matter if executed within [ABC], [ABABC], or [ABDCBC];
i.e., the test cases containing BC always detect the fault in any context. In this case, the fault is said
to be a static one, as it can be detected without a context. Furthermore, the same scenario (so the as-
sumption) demonstrates that the EP BA reveals another fault, but only in the context of [AB-
CBAC], and never within [ABAC], or [ABACBDC], etc. In this case the fault is said to be a dy-
namic one.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 18 of 51

Fig. 7. Static faults vs. dynamic faults (discussed events are boldface)

Such observations clearly indicate that the test process must be applied to longer ESs than 2 (EPs).

Therefore, an ESG can be transformed into a graph in which the nodes can be used to generate test
cases of length > 2, in the same way that the nodes of the original ESG are used to generate EPs and
to determine the appropriate MSCES.

Fig. 8 illustrates the generation of ESs of length=3. In this example adjacent nodes of the extended
ESG are concatenated, e.g., AB is connected with BD, leading to ABBD. The shared event, i.e., B,
occurs only once producing ABD as an ES of length=3. In case ESs of length=4 are to be generated,
the extended graph must be extended another time using the same algorithm.

Fig. 8. Extending the ESG for covering ESs of length=3

The common procedure embodying this approach is given in Algorithm 3.

Algorithm 3: Generating ESs and FESs with length > 2

Input: ESG=(V, E); ε = [, γ=], ESG’=(V’, E’) with V’=∅ , ε’= [, γ’=];
Output: ESG’=(V’, E’), ε’= [, γ’=];
FOR EACH (i,j)∈ E with (i<>ε) AND (j<>γ) DO
 addNode(ESG’,(ES(ESG,i) ⊕ ω (ES(ESG,j)));
 removeArc(ESG,(i,j));
FOR EACH i∈ V’ with (i<>ε’) AND (i<>γ‘) DO
 FOR EACH j∈ V’ with (j<>ε’) AND (j<>γ‘) DO
 IF(ES(ESG’,i) ⊕ ω (ES(ESG’,j)) =
 α (ES(ESG’,i)) ⊕ (ES(ESG’,j)) THEN
 addArc(ESG’,(i,j));
 FOR EACH (k,l)∈E with k=ε DO
 IF(ES(ESG’,i) = ES(ESG,l) ⊕ ω (ES(ESG’,i)) THEN
 addArc(ESG’,(ε’,i));
 FOR EACH (k,l)∈ E with l=γ DO
 IF(ES(ESG’,i) = α (ES(ESG’,i)) ⊕ ES(ESG,k) THEN
 addArc(ESG’,(i,γ’));

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 19 of 51

In Algorithm 3, ES(ESG,i) represents the identifier, e. g., AB, of the node i of the ESG. This
identifier can be concatenated with another identifier ES(ESG,j) of the node j, e.g., CD. This is
represented by AB ⊕ CD, or ES(ESG,i) ⊕ ES(ESG,j), resulting in the new identifier ABCD.
Note that the identifiers of the newly generated nodes to extend the ESG are constructed using the
identifiers of the existing nodes. The function addNode() inserts a new ES of length k. Following
this step, a node u is connected with a node v if the last n-1 events that are used in the identifier of u
are the same as the first n-1 events that are included in the identifier of v. The function addArc()
inserts an arc, connecting u with v in the ESG. The pseudo nodes [,] are connected with all the ex-
tensions of the nodes with which they were connected before the extension. In order to avoid trav-
ersing the entire matrix, arcs which are already considered are to be removed by the function re-
moveArc().

Apparently, this Algorithm 3 has a complexity of O(|V|2) because of the nested FOR-loops to deter-
mine the arcs in the ESG’. Another algorithm to generate FESs of length > 2 is not necessary be-
cause such faulty sequences will be constructed through the concatenation of the appropriate start-
ers with the FEPs. Algorithm 2 can be applied to the outcome of Algorithm 3, i.e., to the extended
ESG, to determine the MSCES for l(ES) > 2.

5. Case Study 1: The RealJukebox
We now present a case study to determine the effectiveness of the tests generated using the algo-
rithms mentioned in the previous section. The study was conducted using the RealJukebox of the
RealNetworks application available in the public domain. We did not have access to the source code
and any specification of the application, other than its user manual. Hence all ESGs required for test
generation of were derived from the application GUI.

5.1. Objectives
The objective of this empirical study was to investigate the effect of varying

 event-tuple coverage, i.e., length of the ES to be covered, subsequently referred to as n-tuple
coverage, and

 the number of the event sequences
on the fault detection effectiveness of the CESs and FCESs using the algorithms sketched in Section
4.3 (see Basili, 1986; Wohlin., 2001).

The value of n is considered as a contributor to the cost of the test process; the larger the value of n
the more costly the test process in terms of the human effort spent in administering the test. We
studied the fault detection effectiveness of the generated test set for n=2, 3, and 4, that correspond
to, respectively, pair-wise, triple, and quadruple coverage.

5.2. System Description and Model
RealJukebox (RJB) is a personal music management system to build, manage, and play individual
digital music library on a personal computer. Fig. 9 is a snapshot of the RJB interface showing the
main menu. At the top level, the GUI has a pull-down menu with the options File, Edit, etc., to in-
voke operations. These options have further sub-options, and so on. There are additional window

RETURN ESG’;

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 20 of 51

components allowing navigation through the entries of the menu and sub-menus, creating many
combinations and, accordingly, many applications.

Fig. 9. Example of a GUI (RealJukebox of RealTime)

In the course of the present case study, a set of ESGs was determined for the RJB. This task was
performed manually by studying the online help function, the user manual, and the GUI of the RJB
and identifying distinct functionalities from a user’s point of view. The complete set of ESGs is
found in Appendix A. As an example, the ESG in Fig. 10 represents the top-level GUI to produce
the desired interaction “Play and Record a CD or Track” via the main menu in Fig. 9.
The user can load a CD, select a track and play it. One can then change the mode, replay the track,
or remove the CD, load another CD, etc. Fig. 10 illustrates all sequences of user-system interactions
to realize the likely operations that the user might launch when using the system.

Each of the correct interactions, denoted by the nodes in Fig. 10, defines a system sub-function that
must be refined and represented in a corresponding sub-ESG, as done in Section 5.7 for the node P
(Play track) in Fig. 14.

Fig. 10. The system function Play and Record a CD or Track represented as an ESG

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 21 of 51

The derivation of ESGs required some experience in designing GUIs and an understanding of how
they function. As is common in modeling processes, the interactions that seem most relevant in the
diagram are selected and named so as to reflect the user’s perspective. We are not aware of any
algorithmic ways to generate ESGs automatically from the GUI.

5.3. Test Representation
The nodes of an ESG are interpreted as operations on identifiable objects that can be con-
trolled/perceived by input/output devices, i.e., elements of WIMPs (Windows, Icons, Menus, and
Pointers). Thus an event can be a user input (an element of the set αenv, see (1)), or a system re-
sponse (an element of the set αsys), leading or triggering interactively to a succession of user inputs
and system outputs. Accordingly, a chain of edges from one vertex of an ESG to another is realized
by sequences of the form below.

initial user input(s)→ (interim) system response(s) → (interim) user input(s) → … → (final) system response (12)

(12) defines an ES as introduced in Section 3. An ES may consist of no interim system responses
but only user inputs and a final system response as, for example, in Fig. 10. Note that our event se-
quences are similar to those used by White et al. (White and Almezen, 2000).

Given the ESG in Fig. 10, test generation begins with an analysis of the system function Play
and Record a CD or Track. This analysis leads to the following set of EPs.

 LS, LR, SP, SM, SR, PS, PP, PR, PM, MP, MS, MM, MR, RL, RM (13)

In the next step we generate CESs. As explained in (see Section 3.1), CES is a walk obtained by ex-
tending the EPs by appropriate prefixes and/or suffixes. The list (14) below gives the CESs as test
inputs.

 LSR, LR, LSPR, LSMR, LSR, LSPSR, LSPPR, LSPR, LSPMR, LSMPR,
LSMSR, LSMMR, LSMR, LRLR, LRMR

(14)

Some CESs, e.g., LSR, occur more than once in (14). This is because LSR can be obtained by
adding the suffix R to the event pair LS as well as by adding a prefix L to the event pair SR. Elimi-
nation of this redundancy leads to (15).

 LSR, LR, LSPR, LSMR, LSPSR, LSPPR, LSPMR, LSMPR, LSMSR, LSMMR,
LRLR, LRMR

(15)

The set of the CESs given in (15) ensures that all EPs are covered. However, it is not optimized yet
using the minimal length criteria given in (10).

Next we construct the set of FCESs. To do so we examine the set of FEPs. The dashed edges of the
CESG in Fig. 11 represent the FEPs of the function “Play and Record a CD or Track”
of the RJB. These edges are listed below.

 LL, SL, LP, PL, LM, ML, SS, RP, RR, RS (16)

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 22 of 51

Fig. 11. CESG (Completed ESG) of Fig. 10 (dashed lines: FEPs)

Based on the algorithm implicit in (4) and the FEPs, we now construct the FCESs systematically in
two forms (17):

• FEPs that start at the entry are complete test inputs to trigger undesirable situations, e.g.,
LL, LP, LM in (16).

• FEPs which do not start at the entry, e.g., SL, PL, ML, SS, RP, RR, RS in (14), need
prefixes (see (17)).

 LL, LP, LM, LSL, LSPL, LSPML, LSS, LSPMRP, LSPMRR, LSPMRS (17)

Together with these test inputs, the test process can be carried out as described in (6) and (8).

5.4. Test Generation
As mentioned in Section 5, a set of ESGs was derived manually by studying the user manual of the
RJB and through a careful examination of its GUI. The ESGs were input to a test generation tool
(see Section 7) to generate CESs and FCESs that constitute the tests for the RJB in this experiment.
The tool uses the algorithms sketched earlier and given in Section 4.3 and in Appendix 1. Tests
were generated for pair-wise, triple, and quadruple event coverage.

Two student testers applied the generated tests to the RJB semi-automatically using the tools. The
testers worked over a period of two weeks, five days a week and, on average, six hours per day,
thus spending a total of 60 person-hours. These figures result in approximately 5.5 seconds per test.
Faults discovered were noted and analyzed subsequently for their severity.

5.5. Results
Tab. 1 displays the number of tests generated, total count of faults detected, and the cost of detect-
ing a fault measured as faults detected per test case. As shown, a total of 78,611 tests were gener-
ated for different n-tuple event coverage using the CES-based and FCES-based test generation.

Also, a total of 68 faults were detected when the RJB was tested against these tests. The number of
faults detected increased from 44 through 56 to 68 as n was raised through the values 2, 3 and 4 in
n-tuple coverage. While the tests that cover all event pairs reveal 44 errors, coverage of event tri-
ples, and then event quadruples, leads to the detection of only 12 new errors, in each case. As indi-

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 23 of 51

cated in the table, there is a decrease in the number of faults detected per test case 0.0104 to 0.001
for n=2 and 4, respectively. Fig. 12 shows a plot of the cumulative count of faults detected versus
the count of tests generated for n-tuple event coverage.

Tab. 1. Size of the test set and its fault detection effectiveness measured against n-tuple coverage.

Event-tuples
covered (n)

No. of test cases Total count of faults
detected

Total count of faults de-
tected per test case (Costs)

2 (pairs) 4,236 44total 0.0104
3 (triples) 10,512 44old+12new=56total 0.0053
4 (quadruples) 63,863 (44+12)old+12new=68total 0.0010

Fig. 12. Number of test cases and the cumulative number of faults detected vs. length of test cases.

Tab. 2 displays the number of tests generated, total count of faults detected, and the cost of detect-
ing a fault measured as faults detected per test case separated by the method of generation, i.e., de-
rived from ESGs and CESGs. The cumulative count of faults discovered from the two sets of tests
is shown in Fig. 13.

Tab. 2. Size of the generated test sets, fault detection effectiveness, and cost for tests generated from
ESGs and CESGs.
Event-tu-
ples cov-
ered

No. of test
cases de-
rived from
ESGs (Te)

No. of test
cases de-
rived from
CESGs Tce)

Total count of faults
detected by test
cases derived from
ESGs (Fe)

Total count of
faults detected by
test cases derived
from CESGs (Fce)

Cost

(Fe/Te)

Cost

(Fce/Tce)

2 (pair) 727 3,509 24total 20total 0.0330 0.0057

3 (triples) 3,672
6,840 24old+7new

=31total
20old+5new

=25total
0.0084 0.0037

4 (quad- 27,882 35,981 (24+7)old+4new (20+5)old+8new 0.0013 0.0009

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 24 of 51

ruples) =35total =33total

Fig. 13. Fault detection effectiveness of test cases based on CES/CFES versus event-tuple coverage.

5.6. Analysis

We make the following observations from the data in Tab. 1 and Tab. 2.

 Test cases derived for pair-wise coverage, are the most cost-effective when compared with
tests that cover triples and quadruples, respectively.

 A rapid decline in test effectiveness is observed with the increasing length of the event se-
quences used as test cases (cf. Tab. 1).

 The test cases derived from ESGs show a higher degree of fault detection effectiveness than
those derived from CESGs. This might have been caused, however, by the fact that the SUT
has a good exception handling mechanism, even though it is not perfect. (cf. Tab. 2 and Fig.
12).

The test effectiveness measured in terms of the cost per detected fault does not strongly correlate
with the event-tuple coverage of the test cases derived from ESGs. The same is true for the tests de-
rived from CESGs. This observation has cost implications for test management as the length and the
number of the test cases generated directly effect the cost of testing.

The observation above leads to the recommendation that it is cost-effective to test a system starting
with tests derived from the ESGs that cover only the event pairs. If the cumulative number of de-
tected faults grows slowly, then one might terminate the test at this point. Depending on the testing
budget, one might then consider generating and executing tests from ESGs that cover event triples
and quadruples. The same incremental approach seems appropriate for testing exception handling
code using tests generated from CESGs.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 25 of 51

5.7. Fault detection

To demonstrate the fault detection capability of the approach, the function Play track is ana-
lyzed. This function is represented by the ESG in Fig. 14 as a refinement of node P in Fig. 10 and
Fig. 11.

Fig. 14. Completed ESG as a refinement of Fig. 10

Some of the detected faults are listed in Tab. 3. The fault detection process is simple. As an exam-
ple, to detect fault 1 in Tab. 3, one starts with the Control option of the Main Menu of the RJB as
in Fig. 10 and sequentially pushes the button Rec and then the button Rew, or alternatively, the
button FF, as shown in Fig. 14 as alternative edges labelled with No. 1. The other faults in Tab 3,
labelled accordingly in Fig. 14 with fault numbers, can be detected similarly. A complete list of the
faults detected is included in Appendix B, which also includes the test sequences that reveal these
faults. This list includes also the type of the fault, as classified in Section 3.4.

Tab. 3. Detected faults related to the system function Play track (node P in Fig. 10)

No. Faults Detected by the ES

1. While recording, pushing the forward button or rewind button stops the recording process
without due warning.

2. If a track is selected but the pointer refers to another track, pushing the play button invokes
playing the selected track; i.e., the situation is ambiguous.

3.
Menu item Play/Pause does not lead to the same effect as the control buttons that are sequen-
tially displayed and pushed via the main window. Therefore, pushing play on the control panel
while the track is playing stops the playing.

4. Track position could not be set before starting to play the file.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 26 of 51

5.8. Defense Mechanism, Risk Ordering
Once the system has been transferred into a faulty state, it cannot accept any further legal or illegal
inputs, because an undesirable situation can neither be moved to a desirable one, nor can it be trans-
ferred into an even more undesirable one. This level of abstraction ignores fault propagation,
whereby faulty events could lead to other faults, possibly, of greater severity. Therefore, prior to
further input, the system must recover, i.e., the illegal interaction must be undone by moving the
system into a legal state through a backward, or a forward, recovery mechanism (Goodenough,
1975; Randell, 1978).

The construction of the FCESs as described in (4) guarantees that only their last two symbols (as an
FEP) are incompatible, in other words, for the determination of the position in which a correction
can take place, backtracking by only one symbol is necessary. Having backtracked, possible modes
of recovery (i.e., corrections) depend solely on the number of the different symbols which can then
transfer the system into a correct state. In this sense, as an example, the faulty event sequence SL in
(16) is “less risky” in terms of flexibility in fault correction than the sequence LL, that is, SL � LL,
This is because

 LL can be transferred to the only two legal event pairs LS and LR after backtracking to L,
 while SL can be transferred to three legal event pairs SP, SM and SR after backtracking to

S.
Thus, for self-correction, any FCES that includes SL as a FEP represents a situation which is “less
risky” (more desirable) than an FCES of the same length that includes LL, for example, in order to
automatically navigate the user despite his/her faulty input.

The risk ordering relation can be implemented by incorporating it into a conventional parsing algo-
rithm known in compiler construction (Aho et al., 1977). In uncritical cases a forward recovery
might be more convenient, e.g., wherever possible, alerting immediately the user when an FEP is
detected, and continue the operation to reach a safe state.

The extended fault model (Section 3.5.4) can be extremely useful for forming fault hypotheses that
take the individual risk ratios into account.

5.9. Discussion
At first glance, it seems that only 68 faults are detected upon executing approximately 80,000 test
cases (Tab. 1) – a huge test effort to detect a relatively small number of faults, especially compared
to the previous experience (Belli, 2001) with the same approach. However, the following circum-
stances appear to explain the situation and to justify the work:

 The algorithms used for determining MSCES and MSFCES (Section 4.3.1 and 4.3.2) have
not been considered here as a way of reducing the number of tests. This is because their use
would have concealed the number of faults detected by any sequence depending on its
length, as well as the number of the individual test cases that would have been covered by a
single MSCES or by a single MSFCES.

 Due to intensive and extensive deployment over many years, the product subjected to test is
of high quality.

 Given the above, it was encouraging to note that the approach could detect faults at all in this
product. This motivates us to further refine and improve the proposed approach.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 27 of 51

A key conclusion is that the approach facilitates a simple, but nevertheless a cost-effective, stepwise
and straightforward test strategy. This is because it enables the enumeration of test cases (based on
the CES and CFES) and, thereby, helps manage the scalability of the test process.

6. Case Study 2: Railway Crossing

In this section, an additional case study sketches the versatility of ESG for modeling and analysis.

6.1. Objectives

The objective of this analytical study is to demonstrate the application of the proposed ESG-based
approach for modeling and risk analysis in the area of safety critical systems. For this purpose we
considered a simple railway crossing as an example. Though the ESG model generated in this study
can be used to generate tests that are use for testing a simulation model of the safety critical system,
this was not an objective of the study.

Railway crossings of the kind considered here are found across minor roads outside of towns. They
often consist of a pair of gates and two traffic lights: red and green, and also a railway signaling
system to control the train movement in the proximity of the crossing, though the latter is ignored
here for simplicity. Note that in this model the human is a part of the system environment, e.g., as a
driver, a gate controller, etc. The ESG-based approach enables the consideration of both the ex-
pected, i.e., correct, and faulty behavior of the human operator. Despite its simplicity, the example
is sufficiently expressive for the purpose intended here. Note, however, that the discussion is based
on an ordinary familiarity of the application and, therefore, the representation may not be quite ac-
curate from a specialist’s point of view.

6.2. System model

An ESG model of such a crossing is shown in Fig. 15. The set of input signals (or events) α (see
(1)) are partitioned into the subsets αsys and αenv with

- αsys = {R, G, C, O} as system signals and
- αenv = {T, V} as environmental events detected by a system that monitors the crossing.

Here, R denotes the traffic signal turning red, G the traffic signal turning green, C gate closing bar-
ring vehicular traffic, as well as other road users, from using the crossing, O for gate opening al-
lowing vehicle traffic through, T train passing the crossing, and V for a vehicle using the crossing.
These events bring about hazardous states posing different risks to road and train users. The nature
of these hazards varies from state to state of the railway crossing system, some posing greater
threats than others. For example, compared to the safest possible state in which all traffic lights are
red, the state in which the gate is open carries a great risk since the road users are now free to cross
the junction, exposing themselves to danger from a passing train. Likewise, the state in which a
train is crossing the junction poses a greater risk than the state in which the gate is closed as the lat-
ter includes also situations when there is no train at the crossing. The example, as modeled in Fig.
15, assumes that the lights turn green “on demand,” that is, when a vehicle reaches the barrier. Once
the lights are changed from red to green, they cannot be returned to red until at least one vehicle has
passed.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 28 of 51

Fig. 15 also indicates the relative risk levels brought about by the occurrence of the different events.
In the ESG, the events posing greater threats to the users of the system are placed vertically higher
than those posing relatively lower risks. In this respect, it is important to note the significance of
placing the events T and V in αenv at the top in Fig. 15. This is because they denote, in effect, hu-
man actions, including potentially erroneous actions. Note also that, as a simplification, the above
representation does not include any means to control the movement of trains and the system is as-
sumed to be initialized with a sequence of signals RC.

Fig. 15. An ESG model of a railway level crossing

6.3. System Functions and Malfunctions
As is shown by directed arcs in Fig. 15, the event pairs in this example are

 RG, GV, VV, VR, RC, CT, CO, TT, TO, OG (18)

 while the complete event sequences (CESs) in any complete cycle of system operation can be
represented by the regular expression

 RE = (RGV+)*R+((RGV+)*RCT*OGV+)*R = ((RGV+)* (λ + RCT*OGV+))*R (19)

where λ denotes the empty event sequence. The faulty event pairs for the railway crossing are gen-
erated from the complete ESG shown in Fig. 12. The FEPs are:

 RR, OO, CC, GG, RO, RT, RV, OR, OC, OT, OV, CR, CV, CG, TR, TC, TV,
TG, VO, VC, VT, VG, GO, GC, GR, GT

(20)

The FEPs are shown as dashed lines in the CESG in Fig. 12 while the EPs are shown as solid lines.
In the context of the framework introduced in Section 3, the expression RE above constitutes the
system function F, while those in (20) the system malfunctions D. We refer to the elements of D
also as vulnerabilities. Each FEP in (20) represents the leading pair of signals of an emerging faulty
behavioral pattern, with the first event being an acceptable one and the second an unacceptable one.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 29 of 51

Should the first event of any of the FEPs, e.g., RV, matches the last event in any of the ESs, e.g., in
(RGV+)*R, then concatenation of the corresponding ES and the FEP, e.g.,

 (RGV+)*RV (21)

describes, or signifies the occurrence of, a specific form of a faulty behavioral pattern.

IN
C

R
EA

S
IN

G
 R

IS
K

TV

G C

O

R

Fig. 16: A CESG model of the railway level crossing with FEPs (dashed lines: FEPs)

Concatenation of the corresponding pairs of ESs and FEPs in the appropriate manner (i.e., by drop-
ping either the last signal of the EP or the first signal of the FEP) results in expressions not belong-
ing to the language described by R(M) for system M. Tab. 4 lists the pairs of event sequences and
vulnerabilities for the railway crossing together with their interpretations. In spite of its simplicity,
the interpretations of the conjunctions of the appropriate pairs (ES, FEP) demonstrate the effective-
ness of the approach in revealing the safety-critical situations. Note that for brevity not all FEPs
have been considered in Tab. 4.

Tab. 4. Level crossing vulnerabilities, the level of the threats posed, and possible defense actions
ES

(Column 1)

FEP

(Column 2)

Interpretation

(Column 3)

Comment

(Column 4)

Defense
action
(Column 5)

RO Gate opens while lights are set to red (No effec-
tive state change is possible except immediately
after initialization when the gate was closed).

Ignored –

RT A train arrives prematurely. Danger RC

(RGV+)*R

RV Vehicle traffic passes through red lights. Danger †
CR Lights to revert to red, though already red. Ignored –
CV Vehicle traffic is attempting to cross the closed

gate and the red lights.
Danger †

(RGV+)*RC

CG Lights turn green from red while the gate is
closed.

Danger †

TR Lights to revert to red while already in red. Ignored –
TC Gates to close while already closed. Ignored –

(RGV+)*RCT+

TV Vehicle traffic crosses as trains pass. Potential None

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 30 of 51

accident
TG Lights turn green as trains pass. Danger
OR Lights to revert to red while already in red. Ignored –
OC Gates to close while already closed. Ignored –
OT A train arrives after the gate opened. Danger RC

(RGV+)*RCT*O

OV Vehicle traffic crosses as soon as the gate
opened but before the lights change to green.

Danger †

GO Gates to open though already opened. Ignored –
GC Gates to close after the lights turn green. Annoyance
GT A train arrives soon after the lights turn green. Danger RC

(RGV+)*RCT*OG,
RG

GR Lights turn red before vehicle passes. Ignored –
VO Gates to open though already opened. Ignored –
VC Gates to close while vehicle traffic moving. Danger VR
VT A train arrives amidst vehicular traffic. Potential

accident
RC

(RGV+)*RCT*OGV+,
RGV+

VG Lights to turn green though already green. Ignored –

† - Any defense action is outside the scope of the current model due to lack of features for controlling train movements.

6.4. Defense Mechanism and Risk Graph
To overcome the possible ambiguity in the descriptive nature of Tab. 3, a risk graph as in Fig. 17
may be used. The graph expresses the relative risk levels of states with a greater formality and pre-
cision. Each node in the risk graph represents a state that is reached when a given sequence of
events occurs. The set of event sequences that bring the system to a given state is indicated as a
regular expression in the risk graph.

Using the notation as in (5), a directed edge from a state some s1 to s2 in Fig.13 is equivalent to s1
� s2, signifying that the risks posed by the state s2 is known to be at the same level as, or exceed,
the risks posed by s1. As a convention in the risk graph, an upward pointing edge signifies that the
state lying above poses a greater risk than the one lying below. Arcs drawn in solid lines, as well as
the states denoted by underlined regular expressions, refer to the normal functional behavior, while
those with dashed lines and other (non-underlined) FES (regular) expressions refer to vulnerability
states. To reduce clutter, the diagram does not show the reflexivity of the permissions in the relation
� (i.e., loops at nodes) and shows the vulnerability states used for demonstrative purposes only,
i.e., it is not complete concerning FEPs. In this particular case, the last event of most regular expres-
sions, describing a vulnerability state pointed at by a dashed arc, denotes a human action, such as
operating a train. More strikingly, each and every state, lying highest in the diagram, is described by
a regular expression ending with one of the two events T and V, each related to a human action of
operating a train or a vehicle, respectively. Therefore, in addition to the risks associated with the
functional behavior, the risk graph allows a way to represent explicitly the risks associated with po-
tential human errors.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 31 of 51

(RGV+)*R
(lights in red)

(RGV+)*RO
(futile transition)

(RGV+)*RC
(lights in red;
gate opened;
trains, if any, passed)

(RGV+)*RCT*O (lights in red; gate opened;
trains, if any, passed)

(RGV+)*RCT+

(lights in red;
gate closed; trains
passing)

(RGV+)*RT

(RGV+)*RCT*OGT
(dangerous train crossing)

(RGV+)*RCT*OT
(belated train crossing)

RGV+T, (RGV+)*RCT*OGT
(potential accident)

(RGV+)*RCT+R ,
(RGV+)*RCT+C
(futile transition)

(RGV+)*RCT*OG

(lights in green;
gate opened)

RGV+

(lights in green;
gate opened;

vehicles passing)

(RGV+)VC

(early gate closure)
(RGV+)*RCT*OV

(early vehicle
traffic crossing)

(RGV+)*RV,
(RGV+)*RCV

(vehicles crossing
red light)

(RGV+)*RCT*OGC
(gate closure from
open; lights green)

(premature train crossing)

(RGV+)*RCT*OGO
(futile transition)

(RGV+)*RCT*OR ,
(RGV+)*RCT*OC
(futile transition)

(RGV+)*RCG
(lights turning
green from red;
gate closed)

(RGV+)*RCR
(futile transition)

RGV+O, RGV+G
(futile transition)

Fig. 17. Risk graph of the railway crossing, covering both the system and vulnerability states

Having identified potential vulnerabilities, it is possible to provide measures that counteract them.
This is the intention of the defense matrix and exception handlers. In this connection, an attempt is
in Fig. 17 to propose the defense actions that may be taken. Due to the limited scope of the model,
these actions only partially address the potential vulnerabilities. This is because all defense actions
at the disposal of the current model are limited to closing the gate or turning the traffic lights to red,
thus affecting only the vehicle traffic.

A richer model with features for modeling signaling mechanisms would allow the means to address
other vulnerabilities, namely, those that can be avoided or mitigated by controlling the train move-
ments. Should Tab. 3 be complete in these respects, the event sequences listed under column 5
would be equivalent to the set of the exception handlers X, while the columns 1, 2 and 5 would
amount to a definition of the required defense matrix implicitly, provided that the data in these col-
umns satisfies the condition in (7). Note that the concatenation of expressions in columns 1, 2 and 5
in the appropriate manner (i.e., by dropping common events as appropriate) gives the state aimed at
by the defense matrix as a result of invoking the corresponding exception handler (Leveson, 1986;
IEC 61025; IEC 61508).

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 32 of 51

6.5. Testing Issues
The test process can now be worked out analogous to that described in (6) and (8) in Section 3.2.
Thus, the CES and FCES are systematically constructed and combined to cover the edges of the
CESG as demonstrated in the introductory example in Section 3, i.e., CES and FCES are input to
trigger desirable, and undesirable, situations, respectively.

In the case of an application such as a railway level crossing, testing of the application in requires a
simulation model. Such a model could be in software or a mix of hardware and software. As an ex-
ample, the test input (21) represents the event that the vehicle traffic passes through the red lights,
which cannot be realized as a real-life experiment. Furthermore, in order to generate a complete test
case, a meaningfully reactive controlling system is needed, which is outside the scope of the current
model, given the representation in Fig. 15.

Nevertheless, even this simple model is useful in that it makes such dangerous situations explicit
(visible) and highlights the reactions required of the controlling system in response to such inputs.
Thus, it is evident that one can use the CESG in Fig. 16 to simulate all potential test scenarios.

To avoid unnecessary details, the results of the analysis are summarized below covering all edges of
the CESG given in Fig. 16. It appears that following sets of event sequences, ESs, are of particular
interest when dealing with system vulnerabilities:

 (RGV+)*R, (RGV+)*RC, (RGV+)*RCT+, (RGV+)*RCT*O, (RGV+)*RCT*OG,
(RGV+)*RCT*OGV+, (RGV)*RCT*OGV+R

(22)

These ESs are possible prefixes, i.e., starters, that can be constructed by analyzing the expression
(19). The test inputs can be now constructed as described in the previous section. For example, it is
possible to generate RGVRV as an instance of the sub-string (RGV+)*RV. A correct implementa-
tion of the railway crossing controller should respond to this test by the defense action RC (see Tab.
3). Thus, the particular test input RGVRV is designed to test the system response to a simulation of
a human error, that is, driving a train through the level crossing prior to closing the gate, despite the
signals having turned red. Other kinds of human errors, particularly those related to poor user inter-
face design (Redmill and Rajan, 1997; Shneiderman, 1998), may be addressed in a similar manner.

7. Tool Support
The generation of test cases from ESG and CESG and the determination of the MSCESs and
MSFCESs can be arduous and time consuming if done manually. Here we describe a toolkit that
automates the test generation and viewing process.

7.1. Test Case Generation
GenPath is a tool we developed for the generation of test cases, i.e., ESs and FESs to obtain a given
n-tuple event coverage. The tool takes the ESG as input in the form of an adjacency matrix, or as a
regular expression. Several ESGs, that form a hierarchy, can be input together. In this case an ESG
at a lower level in the hierarchy will be a refinement of a node in a higher level ESG. Fig. 18 repre-
sents the topmost screen of the GenPath tool including the adjacency matrix of an example ESG.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 33 of 51

Shown on the right hand side are the sequences of length 3 for the same given ESG, generated sub-
sequently by another tool PATHFINDER.

Fig. 18. Tool GenPath; mode to generate test cases

GenPath also generates MSCESs given a n-tuple coverage requirement. In addition, it displays the
ESG under consideration and marks its EPs (Fig. 19).

Fig. 19. GenPath to generate MSCES

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 34 of 51

Fig. 20. Excerpt out of the WinRunner GUI-file with information on the GUI component “Open”

7.2. Generation of Test Scripts
We have seen how regular expressions are used as a compact representation of a set of event se-
quences. A regular expression is considered here as representation of test scripts. Consideration of
specific information of the components of the SUT is necessary in order to construct test scripts that
are used in generating test cases. This information can be obtained manually by writing appropriate
test scripts, but this process can, however, be tedious and error-prone since the user has to know all
commands of the test script language. The deployment of a tool with a Capture-Playback facility
suits the purpose better, and can be commercially obtained, e.g., WinRunner of Mercury Interactive
(Fig. 21). Such tools can identify all available windows of a GUI.

Fig. 21. Generated Test Script

The captured properties of each component are stored in a GUI-file of WinRunner which can be
used to generate appropriate test inputs for the corresponding test cases. Fig. 21 represents a part of
WordPad that the test environment has traced.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 35 of 51

8. Discussion
We have introduced an integrated approach to the modeling, analysis, and test generation for em-
bedded, real-time, and interactive systems. Modeling is carried out using event sequence graphs
(ESGs). These graphs and their complements assist with the verification of the expected system be-
havior in the presence of expected inputs as well as the analysis of risks associated with system be-
havior in the event of failure of its exceptional or safety handling mechanisms in unexpected situa-
tions.

Two studies presented indicate how ESGs can be used to model and analyze the behavior of a sys-
tem. We have also shown how the ESG-based model is used for test generation. The effectiveness
of the tests so generated is reported. An ESG-based model allows incorporation of both the desir-
able and undesirable features of the system. The degree of undesirability is represented in the form
of a risk ordering relation – an expression of relative levels of risks posed by hazardous states. This
allows targeting the design of tests at specific system attributes.

The fault model in this work has been intentionally kept simple: states, inputs and outputs of FSA
have been merged into the vertices of an ESG and its complement ESG , which are uniformly inter-
preted as events; with no annotation of edges of either. The test process based on this model gener-
ates test cases as sequences of edges of the ESG and ESG to test whether or not the system behaves
as desired and is robust in the face of interactions with faulty inputs.

As ESG (and thus ESG) is constructed to reflect the user expectations, the acting as an oracle of a
high level of trustworthiness, de facto resolving the oracle problem. Furthermore, criteria are devel-
oped to determine the completeness of the test process, enabling a decision on when to stop testing.
These criteria, based on the coverage of edges of the underlying ESG and ESG , are used to con-
struct a minimal set of test cases.

8.1. Advantages and Disadvantages of Modeling with ESG
The concept of ESG as a simplification of FSA enables the exploitation of the features of the type-3
languages, including decidability results on the recognition problem (necessary for effectively com-
plementing the ESG), well-known algorithms used in automata testing, and compiler construction,
e.g., for handling faulty programs (see Section 5.8). The trade-off between this simplification and
elegance achieved through ESGs is that it neglects the states of the SUT and the hierarchical levels
of the user interactions.

Generation of test cases that rely on information about the internal behavior of the system might be
difficult to achieve with ESGs. An example is a test designed to check that a save operation is not
executed if the loaded file is write-protected. Another is a test designed to check that a button has
not been deactivated inadvertently by a previous operation offered by a menu with many entries for
alternative user inputs. Presentation of such situations with ESGs is generally possible, but could
become tedious. In the latter example, for instance, the likely combinations of different values of
corresponding flags, which could have been set or reset in different menus, could be numerous. In
all these cases, Boolean algebra-based techniques, such as decision tables and Karnaugh-Veitch
diagrams, might be more convenient alternatives for constructing test cases (Binder, 2000). As in
any problem solving activity, there may not be a “silver bullet” type single test that can cope with
every kind of fault.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 36 of 51

8.2. Recommendations for Practice
The ESG-based approach has been applied to the testing of the GUIs of different industrial applica-
tions; e.g., the GUIs of a mobile telephone device, a ticketing machine, etc. (Belli, 2001). In addi-
tion, the approach has also been used to validate requirements definitions and to verify and design
specifications, both mainly represented by ESGs. While some of the results of the analysis of the
detected faults were in compliance with the expectations, other results were surprising, and are
summarized below.

Lesson 1. Start Small, but as Early as Possible

The determination and specification of the CESs and FCESs should ideally be carried out during the
definition of the user requirements, much before the system is implemented; the availability of a
prototype would be helpful in this task. They are then a part of the system and the test specification.
However, CESs and FCESs can also be produced incrementally at a later time, even during the test
stage, in order to discipline the test process.
As a strategy, one starts with the CESs and FCESs that cover all event pairs. Test results and quality
targets determine how to proceed further, i.e., whether to consider testing with event triples and
quadruples.

Lesson 2. Good Exception Handling is not necessarily Expensive but Rare

Most GUIs subjected to tests do not consider the handling of the faulty events. They have only a ru-
dimentary, if any, exception handling mechanism, realized by a “panic mode” (Goodenough, 1975)
that mostly leads to a crash, or ignores the faulty events. The number of the exceptions that should
be handled systematically, but have not been considered at all by the GUIs of the commercial sys-
tems is presumed to be on an average about 80%. Poor handling of exceptions has also been re-
ported by Westley and Necula (Wesley, 2004).

Lesson 3. Analysis Prior to Testing Can Reveal Conceptual Flaws

The analysis of ESGs of the GUIs of some commercial systems has revealed several conceptual
flaws: absence of edges, indicating incomplete exception handling, and missing vertices or events
(approximately 20%). This amounts to defective components in the final product, highlighting the
flaws in the initial concept and the process of product development. In this connection, the proposed
approach offers an important unexpected benefit: it provides a framework for the accelerated matu-
ration of the product and for exercising the creativity of the developers.

9. Future Work
If a more sophisticated fault classification model, e.g., Orthogonal Defect Classification (Chillarege,
1996), is required, the fault model must be extended accordingly, differing across states, inputs and
outputs. Following the guidelines in Section 3.5, the model extension aims at distinguishing be-
tween different kinds of faults and levels of their severity, leading to a general, effective strategy for
fault handling, e.g., to determine the test set and costs for a given safety level.

A first step in this direction has been reported (Gutzeit, 2003) by applying the approach introduced
in this paper to Statecharts (Harel and Naamad, 1996). Further work is planned to consider UML –

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 37 of 51

an approach already exploited for generating test cases (Kim et al., 1999; Briand and Labiche, 2002;
Offutt, 2003). However, further research is needed to extending the notions and algorithms intro-
duced and summarized in this paper, particularly in relation to state explosion caused by additional
nodes while completing the ESG and to account for concurrency in system behavior (Schneider,
1990; Raju and Shaw, 1994).

Experience with the ESG based approach suggests that the number of selected test cases can be re-
duced by considering structural features of the SUT, e.g., identifying windows that cannot invoke
any child windows, or that cannot simultaneously exist with windows of the same hierarchy level,
etc. Such terminal windows need not be considered combinatorial while generating test cases. This
aspect is likely to help in the elimination of unnecessary and/or infeasible test cases and thus in a
significant cost reduction. Consideration of further modeling notions, e.g., based on Kripke struc-
tures (Peled, 2001), may offer further research avenues.

Finally, additional vulnerability attributes are to be considered, particularly in applications that can
be modeled in a state-based formulation. These include, for example, security (Eckmann et al.,
2002).

References

A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Principles of Compiler Design. Addison-Wesley, 1977.

A. V. Aho, A. T. Dahbura, D. Lee, and M.Ü. Uyar, “An Optimization Technique for Protocol Conformance Test
Generation Based on UIO Sequences and Rural Chinese Postman Tours,” IEEE Trans. Commun., vol. 39, no. 11, pp.
1604-1615, 1991.

V.R. Basili, R.W. Selby, and D.H. Hutchens, “Experimentation in Software Engineering,” IEEE Trans. On Softw.
Eng., vol. 12, no. 7, pp. 733-743, 1986.

F. Belli and J. Dreyer, “Program Segmentation for Controlling Test Coverage,” Proc. 8th Int’l Symp. Softw. Reliability
Eng. (ISSRE ‘97), pp. 72-83, 1997.

F. Belli and K.E. Grosspietsch, “Specification of Fault-Tolerant System Issues by Predicate/Transition Nets and
Regular Expressions – Approach and Case Study,” IEEE Trans. On Softw. Eng., vol. 17, no. 6, pp. 513-526, 1991.

F. Belli, “Finite-State Testing and Analysis of Graphical User Interfaces,” Proc. 12th Int’l Symp. Softw. Reliability
Eng. (ISSRE ‘01), pp. 34-43, 2001.

R.V. Binder, Testing Object-Oriented Systems. Addison-Wesley, 2000.

G. V. Bochmann, A. Petrenko, “Protocol Testing: Review of Methods and Relevance for Software Testing,” Softw.
Eng. Notes, ACM SIGSOFT, pp. 109-124, 1994.

L. Briand and Y. Labiche, “A UML-Based Approach to System Testing,” Software and System Modeling, vol. 1, no.1,
pp.10-42, 2002.

R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, and Man-Yuen Wong, “Orthogonal
Defect Classification – Concept for In-Process Measurements,” IEEE Trans. On Softw. Eng., vol.18, no. 11, pp. 943-
956, 1992.

R.S. Chhikara and R.P. Heydorn, “Event Sequence Diagrams for Dynamic Probabilistic Risk Analysis,” Annual Report
of the Institute for Space Systems Operations, The University of Houston, Clearlake, 1999-2000.

T.S. Chow, “Testing Software Design Modeled by Finite-State Machines,” IEEE Trans. On Softw. Eng., vol. 4, no. 3,
pp. 178-187, 1978.

E.W. Dijkstra, “A Note on Two Problems in Connection With Graphs,” J. of Numerische Mathematik, pp. 269-271,
1959.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 38 of 51

M.E. Delamaro, J.C. Maldonado, and A. Mathur, “Interface Mutation: An Approach for Integration Testing,” IEEE
Trans. on Softw. Eng., vol. 27, no. 3, pp. 228-247, 2001.

R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on Test Data Selection: Help for the Practicing Programmer,”
IEEE Computer, vol. 11, no. 4, pp. 34-41, 1978.

R.A. DeMillo and A.J. Offutt, “Constraint-Based Automatic Test Data Generation,” IEEE Trans. On Softw. Eng., vol.
17, no. 9, pp. 900-910, 1991.

S.T. Eckmann, G. Vigna, and R. Kemmerer, “STATL: An Attack Language for State-Based Intrusion Detection,”
Journal of Computer Security, vol. 10, no. 1-2, pp. 71-103, 2002.

J. Edmonds and E.L. Johnson, “Matching, Euler Tours, and the Chinese Postman”, Math. Programming, vol. 5, pp. 88-
124, 1973.

B. Eggers, F. Belli, “A Theory on Analysis and Construction of Fault-Tolerant Systems” (in German), Informatik-
Fachberichte, Springer-Verlag, Berlin, vol. 84, pp. 139-149, 1984.

S.C.P.F. Fabbri, J.C. Maldonado, P.C. Masiero, and M.E. Delamaro, “Mutation Analysis Testing for Finite State
Machines,” Proc. 5th Int’l Symp. Softw. Reliability Eng. (ISSRE ‘94), pp. 220-229, 1994.

X. Fetzer and Z. Xiao, “Increasing the Robustness of C-libraries Using Robustness Wrappers,” Proc. of the Int’l Conf.
on Dependable Systems & Networks, 2002.

S. Fujiwara, G.V. Bochmann, F. Khendek, and M. Amalou, “Test Selection Based on Finite State Models,” IEEE
Trans. on Softw. Eng., vol. 17, no. 6, pp. 591-603, 1991.

A. Gargantini and C. Heitmeyer, “Using Model Checking to Generate Tests from Requirements Specification,” Proc.
7th ESEC/FSE ’99, ACM SIGSOFT, pp. 146-162, 1999.

A. Gill, Introduction to the Theory of Finite-State Machines. McGraw-Hill, 1962.

J.B. Goodenough, “Exception Handling – Issues and a Proposed Notation”, Comm. ACM, vol. 18, no. 12, pp. 683-696,
1975.

T. Gutzeit, “Testcase Generation from Statecharts to Validate Graphical User Interfaces” (in German), TR 2003/6
(Master Thesis), Univ. Paderborn, Angewandte Datentechnik, 2003.

S. Gossens, F. Belli, S. Beydeda, and M. Dal Cin, “View Graphs for Analysis and Testing of Programs at Different
Abstraction Levels,” Proc. of High-Assurance Systems Eng. Symp. (HASE 2005), IEEE Comp. Society Press, pp. 201-
208, 2005.

D. Hamlet, “Foundation of Software Testing: Dependability Theory,” Proc. of the 2nd ACM SIGSOFT Symp. on
Foundations of Softw. Eng., pp. 128-139, 1994.

D. Harel and A. Naamad, “The STATEMATE Semantics of Statecharts”, ACM Trans. Softw. Eng. Meth. (TOSEM),
vol. 5, no. 4, pp. 293-333, 1996.

M.N. Huhns and V.T. Holderfield, “Robust software,” IEEE Internet Computing, vol. 6, no. 2, pp. 80-82, 2002.

IEC 60300-3-1. Dependability Management – Part 3-1: Application Guide – Analysis Techniques for Dependability –
Guide on Methodology.

IEC 61025. Fault Tree Analysis.

IEC 61508. Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems, especially
Part 3: Software Requirements.

IEEE Std. 610.12 1990, IEEE Standard Glossary of Software Engineering Terminology.

ISO/IEC 9126,Software Product Evaluation – Quality Characteristics and Guidelines for Their Use.

K. Jensen and N. Wirth, Pascal, User Manual and Report. Springer-Verlag, New York, 1974.

Y.I. Ianov, “Logic Schemes of Algorithms,” Problems of Cybernetics, Pergamon Press, New York, vol. 1, pp. 82-140,
1960.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 39 of 51

Y.G. Kim, H.S. Hong, D.H. Bae, and S.D. Cha, “Test Cases Generation from UML State Diagrams,” IEE Proc. Softw.,
vol. 146, no. 4, pp. 187-192, 1999.

B. Korel, “Automated Test Data Generation for Programs with Procedures,” Int’l Symp. on Softw. Testing and Analysis
(ISSTA ‘96), pp. 209-215, 1996.

M.-K. Kwan, “Graphic Programming Using Odd or Even Points,” Chinese Math., vol. 1, pp. 273-277, 1962.

N.P. Kropp, P.J. Koopman, and D.P. Siewiorek, “Automated Robustness Testing of Off-The-Shelf Software Com-
ponents,” 28th Annual Inter’l Symp. on Fault-Tolerant Computing, Digest of Papers. pp. 230 – 239, 1998.

N.G. Leveson, “Software Safety: Why, what, and how,” ACM Comp. Surveys, vol. 18, no. 2, pp. 125-163, 1986.

L. Libeaut, J.J. Loiseau, “Admissible initial conditions and control of timed event graphs,” Proc. 34th IEEE Conf. on
Decision and Control, vol. 2, pp. 2011 - 2016, 1995.

M. Lyu, Handbook of Software Reliability Engineering. McGraw-Hill & IEEE CS Press, Los Alamitos, Calif, 1996.

M. Marré and A. Bertolino, “Using Spanning Sets for Coverage Testing,” IEEE Trans. On Softw. Eng., vol. 29, no. 11,
pp. 974-984, 2003.

A.M. Memon, M.E. Pollack, and M.L. Soffa, “Automated Test Oracles for GUIs,” SIGSOFT 2000, pp. 30-39, 2000.

A.M. Memon, M.E. Pollack, and M.L. Soffa, “Hierarchical GUI test case generation using automated planning,” IEEE
Trans. On Softw. Eng., vol. 27, no. 2, pp. 144 - 155, 2001.

J. Myhill, “Finite Automata and the Representation of Events,”, TR 57-624, Wright Air Devel. Command, pp. 112-137,
1957.

S. Naito and M. Tsunoyama, “Fault Detection for Sequential Machines by Transition Tours,” Proc. of IEEE Fault
Tolerant Computing Conference (FTCS), pp. 238-243, 1981.

N. Nissanke and H. Dammag, “Design for Safety in Safecharts With Risk Ordering of States,” Safety Science, vol. 40,
no. 9, pp. 753-763, 2002.

J. Offutt, L. Shaoying, A. Abdurazik, and P. Ammann, “Generating Test Data From State-Based Specifications,” The
Journal of Software Testing, Verification and Reliability, vol. 13, no. 1, pp. 25-53, March, 2003.

D.L. Parnas, “On the Use of Transition Diagrams in the Design of User Interface for an Interactive Computer System,”
Proc. 24th ACM Nat’l Conf., pp. 379-385, 1969.

D.A. Peled, “Software Reliability Methods,” Texts in Computer Science, Springer-Verlag, New York, 2001.

R.E. Prather, “Regular Expressions for Program Computations,” The American Mathematical Monthly, vol. 104, no. 2,
pp. 120-130, 1997.

S.C.V. Raju and A. Shaw, A., “A Prototyping Environment for Specifying, Executing and Checking Communicating
Real-Time State Machines,” Software – Practice and Experience, vol. 24, no. 2, pp. 175-195, 1994.

B. Randell, “Reliability Issues in Computing System Design,” ACM Comp. Surveys, vol. 10, no. 2, pp. 123-165, 1978.

RTCA/DO-178B. Software Considerations in Airborne Systems and Equipment Certification

F. Redmill and J. Rajan, Human Factors in Safety-Critical Systems. Butterworth-Heniemann, 1997.

A. Salomaa, Theory of Automata. Pergamon Press, Oxford, 1969.

B. Sarikaya, “Conformance Testing: Architectures and Test Sequences,” Computer Networks and ISDN Systems, vol.
17, no. 2, North-Holland, pp. 111-126, 1989.

F.B. Schneider, “Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial”, ACM Com-
puting Surveys, vol. 22, no. 4, pp. 299-319, 1990.

L.W. Schruben, “Building reusable simulators using hierarchical event graphs,” Winter Simulation Conference
Proceedings, pp. 472 -475, 1995.

A.C. Shaw, “Software Specification Languages Based on Regular Expressions,” Software Development Tools, ed.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 40 of 51

W.E. Riddle, R.E. Fairley, Springer-Verlag, Berlin, pp. 148-176 , 1980.

R.K. Shehady and D.P. Siewiorek, “A Method to Automate User Interface Testing Using Finite State Machines,” Proc.
27th Annual Int'l Symp. Fault-Tolerant Computing (FTCS '97), pp. 80-88, 1997.

B. Shneiderman, Designing the User Interface. Addison Wesley Longman, 1998.

N. Storey, Safety-Critical Computer Systems. Addison-Wesley, 1996.

K. Tai and Y. Lei, “A Test Generation Strategy for Pairwise Testing,” IEEE Trans. On Softw. Eng., vol. 28, no. 1, pp.
109-111, 2002.

H. Thimbleby, “The directed Chinese Postman Problem,” Softw., Pract. Exper., vol. 33, no. 11, pp. 1081-1096, 2003.

W. Westley and G. Necula, “Finding and Preventing Run-Time Error Handling Mistakes,” Proc. 19th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA '04), pp 419-431,
Vancouver, British Columbia, Canada, October 2004.

D.B. West, Introduction to Graph Theory. Prentice Hall, 1996.

L. White and H. Almezen, “Generating Test Cases for GUI Responsibilities Using Complete Interaction Sequences,”
Proc. 11th Int’l Symp. Softw. Reliability Eng. (ISSRE ‘00), pp. 110-121, 2000.

T. W. Williams and K.P. Parker, “Design for Testability - A Survey,” IEEE Trans. Comp., vol. 31, no. 1, pp. 2-15,
1982.

L. Williams, “Formal Methods in the Development of Safety Critical Software System,” Technical Report No. SERM-
014-91, Software Engineering Research, Boulder, CO, November, 1991.

C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in Software
Engineering – An Introduction, Kluwer Academic Publisher.

Appendix
A. ESGs of the Case Study 1

Function 1: Play and Record a CD or Track

Select Track:

Mode:

Playing Track:

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 41 of 51

Function 2: Create and Play a Playlist

NewAutoplaylist:

Genre/Artists:
New Playlist:

Function 3: Edit Playlists and/or AutoPlaylists

Edit Track Playlist/AutoPlaylist:

Add Tracks:

2

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 42 of 51

Function 4: View Lists and/or Tracks

Load Track:

View Track:

Function 5: Edit a Track

Edit Track in all Tracks:

Edit Track in Playlist:

Move Track:

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 43 of 51

Function 6: Visit the Sites

Download Music:

Real Guide:

Buy Music:

Find Music:

Function 7: Visualization

Frame Rate:

Visualization Options:

Special Effects:

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 44 of 51

Function 8: Skins Function 9: Screen Sizes

Function 10: Different Views of Windows

Select Skin:

Function 11: Find Music

Searching Tracks:

Matching Item:

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 45 of 51

Function 12: Configure RJB

General:

Preferences:

B. List of Faults Revealed

Function n-tuple to
be covered Faults detected by CES Fault Type Faults detected by

FCES
Shuffle can be enabled when
only one track has been se-
lected.

functional

Recording an existing track re-
moves (overwrites) the old
track from list before recording
is completed.

sequencing

functional

While recording, it is
also possible to
forward and/or
rewind, causing the
recording process to
stop.

functional

Rewind can be
activated during
playing a CD or a
track in shuffle mode.

1 2

Menu item Play/Pause is not
the same as the control buttons

functional

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 46 of 51

displayed on the main window.
Therefore, pushing start button
on the control panel, while the
track is playing, stops it.
The interaction
Play>Pause>Controls>Jump_T
o>Beginning continues playing
the same track while Pause is
still displayed.

sequencing

 functional

Setting the track
position, when it is
paused, continues
playing the file.

If one track is selected but the
arrow shows to another track,
hitting play starts playing the
selected track.

functional

Check one track on/off is not as
a menu item available. functional

Track position could not be set
before playing the file. functional

Open a file starts playing it. functional

 sequencing

Mute button of RJB
ignores the situation
where the loudspeaker
has been reset.

CD has been removed; RJB ig-
nored this and lists the track
names.

sequencing

Autoplay cannot start a CD that
is already set. functional

Display does not adjust upon
inserting a CD, i.e., its content
will not be displayed.

functional

If another track is played in
background, following error
message occurs: „ An unknown
Error occurred. For more
information...”

sequencing

Pause is ignored if rewind/fast
forward is activated
(REW/FF/Track position).

functional

Even if pause is activated,
beginning starts the track. functional

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 47 of 51

functional
Track position is
disabled when stop is
activated.

functional

Even if Checknone is
enabled,
Play/Pause/Stop/Rew/
FF/Record/Beginning
can be activated.

functional

Checkall and
Checknone cannot be
used although a CD is
set.

During saving a track on the
hard disk, the track played
sounds jerkily.

sequencing

REW /rewind) farther than
begin of a track does not start
the track before.

functional

Record Shuffle does not cause
shuffling the tracks; the track
list is proceeded sequentially.

sequencing

In the Pause mode, pushing the
Record button causes to play
the track.

sequencing

functional

After activating
Checkall and
Checknone, the
system doe not
recognize that the
action has been
concluded, i.e., the
related buttons are not
enabled.

functional

A song that is played
during Record can be
neither rewound nor
fast forwarded.

Checkall / Checkone++ and
Checkoneoff cause during play
jerking.

sequencing

Record Control and Eject
causes removing the CD
without warning.

functional 3

Activating Shuffle causes
jerking the replay. sequencing

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 48 of 51

 sequencing

Multiple changes of
songs recorded cause
the warning that PC
performance would
not be sufficient a
replay.

4

Temporarily no jump to the se-
lected track, and Stop of the re-
play although not all of the se-
lected tracks are replayed.

sequencing

2

In AutoPlaylist a new Playlist
can be created. If desired, then
should the way around be also
possible, i.e., a new AutoPlay-
list should be created out of a
Playlist.

functional

3

3
Play replays the active playlist;
Remix can only be activated at
Stop.

functional

 sequencing

If neither a Genre nor
an Artist is selected
while creating a new
AutoPlaylist, every
track is listed in the
appropriate list.

2

Tacks that are recorded from a
CD are temporarily not
included In the actual list,

functional

3
If the menu entry File->Move
is disabled, no track can be
moved.

sequencing

4

Deleting the Track Info Styles
starts the Windows Explorer
also from which the tracks can
be replayed.

functional

NBCi Homepage cannot be
visited because the link is
obsolete.

functional 6 2

 functional

Quick pushing of
MySimon-ad (bottom
right) after clicking
any link triggers the IE
error message „Page
cannot be displayed“.

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 49 of 51

functional

Unmotivated, random
error message: "Audio
Instant Message Error
in Program Real-
Jukebox"

functional

When Reset is pushed,
the button should be
disabled until any
radio button has been
touched.

functional

If Vis.Settings are
activated, all of the
other windows should
be blocked until close
button is pressed.

2

functional
If RJB is minimized,
then also Vis. is
minimized.

sequencing

The list of the song
titles of Vis. in Un-
dock-Mode does not
adjust if AllTracks of
the view bar is not
clicked at the moment
of changing to
another song.

sequencing

If Vis.Settings are
opened, prev and next
Vis. toggle Slide fea-
tures.

3

When another task active,
changing the size of the Vls.
windows causes switching to
RJB.

sequencing

sequencing

Changing the Vls. in
Undoc mode does not
change into Dock
mode when closing
the Undock mode.

functional
Special Effects should
be disabled if they do
not control any effect.

7

4

When Vls. window in Dock
mode is clicked and moved
several times during the

functional

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 50 of 51

window is settled, causes the
settling to be abandoned.
A newly installed Vls. cannot
be removed. functional

 sequencing An active Skin can be
deleted. 3

Clicking Delete Skin makes
Explorer open. functional

In Skin mode, clicking Play
twice causes Stop, not Pause as
expected.

functional

sequencing

In Skin mode,
minimizing of the
window and
immediately maxi-
mizing it moves the
window up to left,
northwest.

8

4

sequencing

Random error: Closing
in Skin mode blocks
an immediate starting
right after.

After a search and replaying the
tracks found, the original
Playlist is forgotten.

sequencing

 functional

Searchnow should
disable the buttons
Search and Matching
until the end of the
search process.

2

Shuffle Mode does not function
during a search process. sequencing

3
Changing from SearchInternet
to Searchalltrack via Menu
never functions.

sequencing

11

4 sequencing

During replaying a
track out of a track
list, a search and the
Stop of the track
thereafter causes the
track list of the search
step to be active.

12 4 sequencing
A re-opening of
Preferences, followed
by moving the

University of Paderborn, Institute for Electrical Engineering and Information Technology Software Engineering

F. Belli, N. Nissanke, Ch. Budnik, Aditya Mathur, TR 2005/6, „Test Generation Using ESGs“ Version 1.1 (September 2005) Page 51 of 51

window and clicking
from Display reveals a
graphical defect for a
short time.

