
The Handel Quick Start Guide:

xMAP

Patrick Franz (software_support@xia.com)

Last Updated: January 17, 2007

Copyright © 2005-2007 XIA LLC

All rights reserved

Information furnished by XIA LLC is believed to be accurate and reliable. However, XIA assumes no
responsibility for its use, nor for any infringements of patents or other rights of third parties, which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of XIA. XIA
reserves the right to change specifications at any time without notice. Patents have been applied for to cover
various aspects of the design of the DXP Digital X-ray Processor.

XAN-DXP-050405

I Intended Audience
This document is intended for those users who would like to interface to the XIA xMAP hardware
using the Handel driver library. Users of the Handel driver library should be reasonably familiar with
the C programming language and this document assumes the same.

II Conventions Used In This Document
• This style is used to indicate source code.
• CHECK_ERROR is a placeholder for user-defined error handling.

III Preliminary Details

Header Files
Before introducing the details of programming with the Handel API, it is important to discuss the
relevant header files and other external details related to Handel. All code intending to call a routine
in Handel needs to include the file handel.h as a header. To gain access to the constants used to define
the various logging levels, the file md_generic.h must be included; additional constants (preset run
types, mapping point controls, etc.) are located in handel_constants.h. The last header that should be
included is handel_errors.h, which contains all of the error codes returned by Handel.

Error Codes
A good programming practice with Handel is to compare the returned status value with
XIA_SUCCESS – defined in handel_errors.h -- and then process any returned errors before
proceeding. All Handel routines (except for some of the debugging routines) return an integer value
indicating success or failure. While not discussed in great detail in this document, Handel does
provide a comprehensive logging and error reporting mechanism that allows an error to be traced
back to a specific line of code in Handel.

.INI Files
The last required file external to the actual Handel source code is the initialization file, also called the
.ini file for short. There are actually two methods one can use to configure Handel, but the most
common method (and the one discussed in this document) is to use an .ini file. Included with this
application note is an .ini file called xmap_reset_std.ini. This is a default .ini file intended for use with a
single xMAP module and a reset-type detector.

The .ini file must be customized for your specific detector and xMAP system. The first step is to
modify the detector settings in “[detector definitions]”, specifically number_of_channels, type,
type_value, channel{n}_gain and channel{n}_polarity.

• number_of_channels: This should be set to the number of elements in your
detector.

• type: The allowed detector types are “reset” and “rc_feedback”. Each type requires
a different set of firmware from XIA.

• type_value: For “reset” detectors, this is the reset delay time of the preamplifier in
microseconds. For “rc_feedback” detectors, this is the RC decay constant in
microseconds.

• channel{n}_gain: This is the preamplifier gain for detector element n in mV/keV.
• channel{n}_polarity: The polarity of detector element n. The allowed values are

“+”, “-“, “pos” and “neg”.

XAN-DXP-050405

After completing the detector configuration, the next step is to customize the firmware
configuration (“[firmware definitions]”). Simply set filename equal to the absolute path of the FDD
file provided by XIA1. The FDD file contains all of the firmware necessary to run an xMAP module.
Its file format and other technical details are beyond the scope of this document, however.

The final configuration step is to edit the module data (“[module definitions]”). The most important
parameters here are pci_bus and pci_slot. The best way to get these values is to extract them from
the file pxisys.ini. On Win32 systems, this file is located in the c:\windows or c:\winnt directory,
depending on the version of Windows you are running. Once you have located this file, you need to
search for the slot number that your xMAP module is installed in and copy the value of
PCIBusNumber to pci_bus and the value of PCIDeviceNumber to pci_slot.

Example Code
Included with this document is a file called hqsg-xmap.c that is meant to illustrate all of the points
presented in this guide. hqsg-xmap.c is a sample program that initializes Handel, configures an xMAP
module, starts a run, stops a run and reads out the MCA spectrum. The executable built from the
sample code should be used in the same directory as the included .ini file: xmap_reset_std.ini. Also
included is separate sample code (hqsg-xmap-mapping.c) and a separate .ini file (xmap_reset_map.ini) for
use with the mapping mode discussion in the later sections of this document.

detChans
Most routines in Handel accept a detChan argument as their first parameter. The detChan is a
unique value assigned to each channel in the system. Handel .ini files generated by the xManager
program automatically assign these values starting at 0 for the first channel in the first module
increasing up to n – 1, where n is the total number of channels in the system, for the last channel in
the last module2.

In addition to accepting individual detChans, most routines that set values allow the detChan “-1” to
be passed in as an argument. detChan = -1 is a detChan representing all the channels in the system
and it is automatically created by Handel. The “-1” detChan is convenient for operation such as
setting an acquisition value for the entire system.

Unfortunately, not all routines are able to accept the “-1” detChan. xiaBoardOperation(), which does
not support the “-1” detChan, is used with two operations, “apply” and “mapping_pixel_next”, that
need to be done once per module. When using the detChan scheme generated by software like
xManager, it is easy to call xiaBoardOperation() once per module using the following code3:

int i;
int ignored = 0;

for (i = 0; i < TOTAL_CHANNELS_IN_SYSTEM; i += 4) {
 status = xiaBoardOperation(i, “apply”, (void *)&ignored);
 CHECK_ERROR(status);
}

1 XIA does not distribute FDD files with application notes since the firmware is updated at a much faster pace
then the application notes are. Please use the latest FDD file from our website or the version included with
your copy of the xManager software package.
2The detChan values assigned to each channel are easily modified in the .ini file by changing the
channel{n}_alias entries in the [module definitions] section.
3This code will be explained in more detail later. For now, focus on the fact that xiaBoardOperation() is only
being called once per module due to the incrementing of i by 4 each time through the loop.

XAN-DXP-050405

IV Initializing Handel
The first step in any program that uses Handel is to initialize the software library. Handel provides
two routines to achieve this goal: xiaInit() and xiaInitHandel().4 The difference between these two
initialization methods is that the former requires the name of an initialization file. In fact, xiaInit() is
nothing more then a wrapper around the following two functions: xiaInitHandel() and
xiaLoadSystem().

/*
 * Example1: Emulating xiaInit() using
 * xiaInitHandel() and xiaLoadSystem().
 */

int status;

status = xiaInitHandel();
CHECK_ERROR(status);

status = xiaLoadSystem(“handel_ini”, “xmap_reset_std.ini”);
CHECK_ERROR(status);

The above example has the exact same behavior as

int status;

status = xiaInit(“xmap_reset_std.ini”);
CHECK_ERROR(status);

Calling xiaInit() is the preferred method for initializing the library.

V Starting The System
Once the initialization task has been completed, the next step is to “start the system”. Starting the
system performs several operations including validating the hardware information supplied in the
initialization file, testing the specified communication interface (PCI, for the xMAP) and
downloading the specified firmware to the hardware. Calling xiaStartSystem() is simple:

status = xiaStartSystem();
CHECK_ERROR(status);

Once xiaStartSystem() has been called successfully, the system is ready to perform the standard
DAQ operations such as starting a run, stopping a run and reading out the MCA. If a call is made to
a routine like xiaLoadSystem() after xiaStartSystem() is called, then xiaStartSystem() needs to be
called again to account for the data modified by xiaLoadSystem().

VI Configuring The xMAP For Data Acquisition

4 Complete descriptions of all the routines discussed in this manual are in the Handel API, available on the XIA
website: http://www.xia.com/DXP_Software.html

XAN-DXP-050405

Setting Data Acquisition Parameters

By default, the hardware starts up with all of its acquisition values in a nominal state. For most
systems, the default values will be sufficient to obtain some results from the hardware. However, in
order to optimize the hardware for better results, Handel provides access to several “acquisition
values” that provide various controls over the hardware. A partial list of the critical acquisition values
includes5:

• peaking_time
• trigger_threshold
• calibration_energy
• dynamic_range

In this example, the following operating conditions will be assumed: A peaking time of 16 µs, 1000
eV threshold, a calibration energy of 5900 eV (x-rays from an Fe-55 source) and a dynamic range of
47200 eV.

The routine used to control the acquisition values is called xiaSetAcquisitionValues() and takes three
arguments: a detChan, the name of the acquisition value to set and the value to set the acquisition
value to. The most complicated aspect of this routine (and others in the Handel library) is that the
acquisition value is prototyped as a pointer to a void. Many routines in Handel have arguments that
are prototyped in the same manner. This is done so that those routines may accept values of
different types. In the case of xiaSetAcquisitionValues(), all of the values are currently doubles, which
means that calling the routine to set the calibration energy to 5900 eV should have this format:

int status;
double calib = 5900.0;

status = xiaSetAcquisitionValues(0,
 “calibration_energy”,

(void *)&calib);
CHECK_ERROR(status);

In other routines, some of the values are integers while others are unsigned long arrays. Using a
pointer to a void, all of these types can be accommodated in a single routine.

The following code illustrates how to set the acquisition values listed above:

int status;

double pt = 16.0; /* microseconds */
double thresh = 1000.0; /* eV */
double calib = 5900.0; /* eV */
double dr = 47200.0 /* eV */

status = xiaSetAcquisitionValues(0,
 “peaking_time”,

(void *)&pt);
CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0,
 “trigger_threshold”,

(void *)&thresh);
5 A complete list of the acquisition values for the xMAP may be found at the end of this application note.

XAN-DXP-050405

CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0,
“calibration_energy”,
(void *)&calib);

CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0,
 “dynamic_range”,
 (void *)&dr);
CHECK_ERROR(status);

Applying Data Acquisition Parameters

When all of the acquisition values have been set to the desired numbers, you must “apply” them to
the hardware using xiaBoardOperation():

int status;
int dummy = 0;

status = xiaBoardOperation(0, “apply”, (void *)&dummy);
CHECK_ERROR(status);

Any time an acquisition value is modified, it must be applied to the hardware for the changes to take
effect. The dummy variable is required since you may not pass a NULL value into
xiaBoardOperation().

VII Controlling The MCA
At this stage, the board is configured and ready to begin data acquisition. For this example, the tasks
we are interested in are starting a run, stopping a run and reading out the MCA spectrum data.

Starting/Stopping a Run
The Handel interface to starting and stopping the run are two simple routines: xiaStartRun() and
xiaStopRun(). Both routines require a detChan (like xiaSetAcquisitionValues()) as their first
argument. xiaStartRun() also requires an unsigned short that determines if the MCA is to be cleared
when the run is started. To start a run with the MCA cleared, run for 5 seconds and then stop the
run, the following code may be used:

int status;

status = xiaStartRun(0, 0);
CHECK_ERROR(status);

/* If not on Windows, use the
* appropriate system routine.
*/

Sleep((DWORD)5000);

status = xiaStopRun(0);
CHECK_ERROR(status);

XAN-DXP-050405

Reading out the MCA Spectrum
The final step in the example program is to read out the collected MCA spectrum. There are two
methods in which this can be done: the first is to statically allocate memory for the spectrum array
and the second is to dynamically allocate memory for the spectrum at run-time. The first method is
dicussed below, while the latter method is covered in the sample source code included with this
document (hqsg-xmap.c).

The xMAP hardware has a maximum MCA spectrum length of 16k bins (or 16384), so to safely
readout the spectrum without dynamically allocating any memory, an array of length 16384 needs to
be statically allocated at compile time:

int status;

unsigned long mca[16384];

status = xiaGetRunData(0, “mca”, (void *)mca);
CHECK_ERROR(status);

At this point, the spectrum may be processed as required.

VIII Cleanup

The last operation that any xMAP application must do is call xiaExit(). This call is essential because it
releases resources required by the xMAP driver back to the OS. If your application repeatedly starts,
but never calls xiaExit(), a situation could occur where the resources required to operate the xMAP
hardware are not available.

int status;

status = xiaExit();
CHECK_ERROR(status);

IX Mapping Mode

The DXP-xMAP is specifically designed to support high speed mapping operations. The current
version can store full spectra for each mapping pixel. Future versions will also store multiple regions
of interest (defined in up to 32 ROIs) or list mode data in each pixel. The control of the mapping
operation is the same independent of the type of data stored.

To better understand how Handel works in mapping mode, it is helpful to briefly describe how the
xMAP's memory is organized:

In order to allow for continuous mapping, the memory is organized into two independent banks
called buffer 'a' and buffer 'b'. A single bank can be read out by the host while the other is filled by
the active data acquisition. Each memory bank is 16 bits wide and 1 Mword (2^20, or 1,048,576
words) deep. For standard spectrum acquisition mode, these banks are combined to form a single
32-bit wide by 1 Mword bank of memory. For continuous mapping, the host computer must be able
to read out one entire buffer for the complete system in less than the time it takes to fill one buffer.
The minimum pixel dwell time for continuous mapping operation is defined by the readout speed
and the size of the system, as well as the number of pixels that can be stored in one buffer; for

XAN-DXP-050405

example, if the system contains four DXP-xMAP modules (so the total data transferred in one
buffer read is 4 * (2 bytes) * 1M = 8 MB) and the burst readout speed is 25 MB/sec (a conservative
estimate that takes into account system overhead), it would take 320 ms to read out one entire
buffer. If that buffer can hold data from 64 pixels (typical when storing full spectra), the minimum
pixel dwell time that allows for continuous mapping would be 320/64 = 5 ms6.

The other key component of mapping data acquisition is understanding how the mapping pixels are
advanced. The xMAP supports three modes of pixel advance explained below.

Pixel Advance on GATE Edge
The primary method for advancing the pixel number is to use the GATE digital input as a pixel
clock, where the pixel number advances on a defined transition of the signal. In MCA mode, the
GATE signal is used to disable data taking, or to coordinate the data taking with an external system
(for example, so that the DXP-xMAP data can be correlated with the data from the main ionization
counter in an XAFS beam line); in the default polarity setting, if GATE is pulled low, then data
acquisition is disabled (the signal polarity can also be set to work the opposite way).

For mapping, transitions on this signal (either low-to-high or high-to-low) can be used to trigger a
pixel advance; typically, the trailing edge of the GATE signal (the transition from active data
acquisition to the inactive state) is used to trigger the advance. Using transitions on the GATE signal
requires that the GATE go to the inactive state briefly between pixels; it is possible to set up the
system so that it continues to be active during these transition periods using the acquisition value
“gate_ignore”. Please see the DXP-xMAP User's Manual for information on how to select options
for the GATE signal (polarity, etc).

Pixel Advance using SYNC Clock
The SYNC signal can also be used to generate the pixel advance. Using this method, the pixel will
advance for every N positive pulses on the SYNC line, where N can be set from 1 to 65535. Note
that the pulses must be greater than 40 ns wide to be guaranteed to be recognized.

Pixel Advance under Host Control
It is also possible to advance the pixel using Handel. Manually advancing the pixels is slower and
does not provide real time control, but it does provide an easy way to test mapping operations.

GATE/SYNC Signal Distribution
Before detailing how to configure each pixel advance mode, it is useful to understand how the
xMAP uses the GATE/SYNC signal to synchronize pixel advance across multiple modules. A
typical PXI crate backplane is broken into one or more “bus segments”. Small crates, 8 slots or less,
will contain a single bus segment, while larger crates can contain as many as 3 bus segments. For
GATE/SYNC pixel advance, a single module on each bus segment is designated as a 'master'
module. The master module accepts a GATE/SYNC logic signal via a LEMO connector on the
front panel and routes the signal to the other modules on the segment using a PXI backplane line.
The key point here is that each bus segment needs a master module if GATE and/or SYNC
signals are used.

Now that the memory organization and pixel advance modes are explained, we can discuss the
mechanics of actually configuring the hardware for mapping mode operation7:

6These numbers are meant to be used as simple guidelines. Depending on the specific system in use, the dwell
time may be shorter or longer.
7Since the mapping mode code is more involved the other examples in this guide it is in a separate example file
called hqsg-xmap-mapping.c.

XAN-DXP-050405

1) Enable mapping mode

double mapMode = 1.0;
status = xiaSetAcquisitionValues(-1, “mapping_mode”,
 (void *)&mapMode);
CHECK_ERROR(status);

When “mapping_mode” is set to 1.0, Handel downloads the proper firmware to the xMAP modules
if they are not already running it. Handel also updates any acquisition values that are specific to
mapping mode. Similarly, setting “mapping_mode” to 0.0 switches the hardware back to MCA
acquisition mode.

2) Set the number of bins in the spectrum

double nBins = 2048.0;
status = xiaSetAcquisitionValues(-1, “number_mca_channels”,
 (void *)&nBins);
CHECK_ERROR(status);

The number of bins in the spectrum has a direct impact on the number of pixels that can be fit into
each buffer.

3) Set the total number of pixels to be acquired in this run.

double nMapPixels = 100.0;
status = xiaSetAcquisitionValues(-1, “num_map_pixels”,
 (void *)&nMapPixels);
CHECK_ERROR(status);

Setting “num_map_pixels” to 0 will cause the run to continue indefinitely.

4) Set the number of pixels per buffer.

double nMapPixelsPerBuffer = -1.0;
status = xiaSetAcquisitionValues(-1, “num_map_pixels_per_buffer”,
 (void *)&nMapPixelsPerBuffer);
CHECK_ERROR(status);

By setting “num_map_pixels_per_buffer” to -1.0, theDSP will automatically calculate the maximum
number of pixels that can fit in each buffer given the number of MCA bins. A specific number of
pixels per buffer may be set by specifying a value other then -1.0 for “num_map_pixels_per_buffer”.
Setting “num_map_pixels_per_buffer” to -1.0 does not report the number of map pixels per buffer
that will actually be used. To get the calculated number, simply call:

double calculatedPixPerBuf = 0.0;
status = xiaGetAcquisitionValues(0, “num_map_pixels_per_buffer”,
 (void *)&calculatedPixPerBuf);
CHECK_ERROR(status);

If the number of mapping pixels per buffer is set larger then the maximum amount the buffer can
hold, it will be truncated to the maximum value by the DSP.

5) Configure pixel control.

XAN-DXP-050405

At the beginning of a run, the pixel number starts at zero; the pixel number advances in several
possible ways, either using digital hardware lines for real time applications or by computer control.
These methods are described briefly below:

GATE

double enabled = 1.0;
double pixMode = XIA_MAPPING_CTL_GATE;

status = xiaSetAcquisitionValues(0, “gate_master”,
 (void *)&enabled);
CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0, “pixel_advance_mode”,
 (void *)&pixMode);
CHECK_ERROR(status);

This code sets the module containing detChan 0 as a GATE master module.

SYNC

double enabled = 1.0;
double pixMode = XIA_MAPPING_CTL_SYNC;

status = xiaSetAcquisitionValues(0, “sync_master”,
 (void *)&enabled);
CHECK_ERROR(status);

status = xiaSetAcquisitionValues(0, “pixel_advance_mode”,
 (void *)&pixMode);
CHECK_ERROR(status);

This code sets the module containing detChan 0 as a SYNC master module.

HOST

To advance the point manually when using the Host Control method, the following code can be
used:

int ignored = 0;
status = xiaBoardOperation(0, “mapping_pixel_next”,
 (void *)&ignored);
CHECK_ERROR(status);

Note: To advance the pixel, xiaBoardOperation() only needs to be called once per module. Calling it
once for each channel on the module will advance the pixel 4 times per module, which is probably
not the desired result.

6) Start a run.

To start the mapping run, start a run on all channels using the usual method:

XAN-DXP-050405

status = xiaStartRun(-1, 0);
CHECK_ERROR(status);

7) Monitor the buffer status.

At this point, the first buffer ('a') starts to fill with data. If the pixel advance mode is set to host
control, then the points should be advanced manually here. In other pixel advance modes, the pixels
will be added to the buffer until it is full. To check the buffer status, use the following code:

unsigned short isFull = 0;

while (!isFull) {
 status = xiaGetRunData(0, “buffer_full_a”, (void *)&isFull);
 CHECK_ERROR(status);
}

This code only determines the status for a single module. For multi-module systems,
xiaGetRunData() needs to be called once per module.

8) If a buffer is full, read it out.

Once the buffer is full it needs to be read out. However, before reading the buffer it is useful to
know how much memory is required for each buffer:

unsigned long bufferLen = 0;
status = xiaGetRunData(0, “buffer_len”, (void *)&bufferLen);
CHECK_ERROR(status);

The buffer length only needs to be calculated after a change to the number of pixels in each buffer.
When the buffer is ready to be read, we can allocate the memory we need and read the buffer:

unsigned long *buf = NULL;

buf = malloc(bufferLen * sizeof(unsigned long));

if (!buf) {
 /* ERROR */
}

status = xiaGetRunData(0, “buffer_a”, (void *)buf);
CHECK_ERROR(status);

/* Process data here. */

9) Signal that the buffer read is complete.

Now that the buffer has been read, the buffer must be cleared so that the hardware can use it to
store more pixels:

char bufDone = 'a';

status = xiaBoardOperation(0, “buffer_done”, (void *)&bufDone);
CHECK_ERROR(status);

XAN-DXP-050405

10)Wait for the next buffer to fill.

With buffer 'a' now cleared, the next step is to wait for buffer 'b' to be full:

unsigned short isFull = 0;

while (!isFull) {
 status = xiaGetRunData(0, “buffer_full_b”, (void *)&isFull);
 CHECK_ERROR(status);
}

11) Goto (7).

Once buffer 'b' is full, it needs to be read out and cleared and buffer 'a' needs to be checked. This
process continues until the total number of pixels are collected. To check the current pixel count:

unsigned long curPixel = 0;

status = xiaGetRunData(0, “current_pixel”, (void *)&curPixel);
CHECK_ERROR(status);

printf(“Current pixel = %lu\n”, curPixel);

12)Stop the run when all of the pixel points are complete.

Once all of the pixels have been collected, the run must be stopped as usual:

status = xiaStopRun(-1);
CHECK_ERROR(status);

That covers the basics of using the xMAP's mapping mode features. Future application notes will
address other advanced modes and uses of the xMAP.

X Mapping Tips
This section describes tips and techniques to be aware of when doing mapping data acquisition runs.
Following these guidelines will ensure that your mapping application runs smoothly.

1) Enabling mapping mode updates all parameters

When mapping_mode is enabled, all of the relevant acquisition values are downloaded
to the hardware. There is no need to try and set these acquisition values again.

2) Create a mapping “channel” for each module

Most of the acquisition values related to mapping mode are module-wide settings and do
not need to be set on each channel. Setting them on a single channel per module is
sufficient. The technique XIA uses in the Configuration Wizard in xManager is to save all
the mapping parameters to the first detChan on each module.

XAN-DXP-050405

3) Remove GATE/SYNC master values to disable them

The temptation with the “gate_master” and “sync_master” values is to set them to 0.0
when they are to be disabled. There is nothing wrong with this technique provided that
another master isn't set to 1.0 at the same time. For instance, do not set “gate_master” to
0.0 and “sync_master” to 1.0 on the same module; the result of doing so is dependent on
the order in which “gate_master” and “sync_master” are evaluated by Handel. The proper
way to remove a module's “gate_master” or “sync_master” status is to use
xiaRemoveAcquisitionValues():

status = xiaRemoveAcquisitionValues(0, “gate_master”);
CHECK_ERROR(status);

4) Cache the mapping buffer length

The mapping buffer length, “buffer_len”, only needs to be read once before the mapping
run starts; it will not change during the mapping run.

5) Assign a single master module per bus segment

For GATE and SYNC pixel advance modes there needs to be exactly one master module of
the appropriate type per bus segment.

6) Check for buffer overruns

If the per-pixel acquisition time is too short for the data acquisition system to keep up with,
it is possible to overrun the mapping buffer. When the mapping buffer is overrun, the
additional pixels will accumulate in the last pixel of the last active buffer. To signal that the
buffer has overrun, the value of “buffer_overrun” will be set to 1.0. Additional
information may be retrieved from the DSP parameters MAPERRORS and
BUFMAPERRORS. MAPERRORS is the total number of overruns in the current run and
BUFMAPERRORS is the number of overruns in the current buffer.

In general, once a buffer overrun condition has occurred it can be problematic to
reconstruct the data even though nothing has been discarded. XIA recommends treating the
buffer overrun condition as an indication that the data acquisition needs more tuning to run
at the speed that caused the overrun.

XI Where To Go Next
The information presented above should serve as a basic introduction to operating the xMAP
hardware using Handel. Handel, of course, has many more features that were not discussed in this
document. The next step to learn more about Handel is to explore the Handel API and become more
familiar with what Handel has to offer.

If you think you have found a bug, have a question or have a suggestion, please contact XIA at
software_support@xia.com.

XAN-DXP-050405

List of Acquisition Values

• peaking_time: Peaking time of the energy filter, specified in µs.

• dynamic_range: Energy range corresponding to 40% of the total ADC range, specified in eV.

• trigger_threshold: Trigger filter threshold, specified in eV.

• baseline_threshold: Baseline filter threshold, specified in eV.

• energy_threshold: Energy filter threshold, specified in eV.

• calibration_energy: Calibration energy, specified in eV.

• adc_percent_rule: Percent of ADC used for a single step with energy equal to the calibration

energy. This parameter is mostly provided for backwards compatibility: recommend that you use

calibration_energy and dynamic_range to set the gain of your xMAP system.

• mca_bin_width: Width of an individual bin in the MCA, specified in eV.

• preamp_gain: Preamplifier gain, specified in mV/keV. This value mirrors the value set in the .ini

file under [detector definitions].

• number_mca_channels: The number of bins in the MCA spectrum, specified in bins.

• detector_polarity: The input signal polarity, specified as “+”, “-”, “pos” or “neg”

• reset_delay: The amount of time that the processor should wait after the detector resets before

processing the input signal, specified in µs. This setting is ignored if the preamplifier type is not

set to reset.

• gap_time: The gap time of the energy filter, specified in µs. NOTE: This acquisition value is

read-only. To set the gap time, please see minimum_gap_time.

• trigger_peaking_time: The peaking time of the trigger filter, specified in µs.

• trigger_gap_time: The gap time of the trigger filter, specified in µs.

• baseline_average: The number of samples averaged in the baseline, specified as number of

samples.

• preset_type: Sets the preset run type. See handel_constants.h for constants that can be used to set

this value.

• preset_value: When a preset run type other then 0 is set, this value is either the number of

counts or the time (specified in seconds).

• number_of_scas: Sets the number of SCAs. (SCAs are discussed in a seperate application note.)

• sca{n}_[lo|hi]: The SCA limit (low or high) for the requested SCA (n), specified as a bin

number. (SCAs are discussed in a seperate application note.)

XAN-DXP-050405

• mapping_mode: Toggles between the various mapping modes by switching the firmware as

appropriate and downloading the necessary acquisition values. Currently, the following values are

allowed: 0.0 = standard MCA mode, 1.0 = MultiMCA mapping mode.

• num_map_pixels: Total number of pixels to acquire in the next mapping mode run. If set to

0.0, then the mapping run will continue indefinitely.

• num_map_pixels_per_buffer: The number of pixels to be stored in each buffer during a

mapping mode run. If the value specified is larger then the maximum number of pixels the buffer

can hold, it will be rounded down to the maximum. Setting this to -1.0 will automatically set the

value to the maximum allowed per buffer.

• input_logic_polarity: Sets the polarity of the logic signal connected to the front panel of the

xMAP to either non-inverted (0.0) or inverted (1.0). The default is non-inverted.

• gate_master: Sets the current module as a GATE master. Only one GATE master is needed per

PXI bus segment. If gate_master is set for a given module, all of the other detChans in that

module are considered to be GATE master also. Setting gate_master to 1.0 enables this feature.

Note: To disable gate_master in a module, either set gate_master to 0.0 or replace

gate_master with sync_master, provided you want to use SYNC control instead of GATE. Do

not define gate_master and sync_master at the same time even if one is set 0.0 and the other is

set to 1.0. The result of doing such an operation is undefined in Handel. Another solution is to

remove gate_master from the acquisition value list via xiaRemoveAcquisitionValues(), which

requires an additional call to xiaStartSystem() to properly reset the system.

• sync_master: Sets the current module as a SYNC master. Only one SYNC master is needed per

PXI bus segment. If sync_master is set for a given module, all of the other detChans in that

module are considered to be SYNC master also. To disable/remove sync_master, see the

discussion for gate_master.
• sync_count: Sets the number of SYNC pulses to use for each pixel. Once sync_count pulses

have been detected, the pixel will be advanced.

• gate_ignore: Determines if data acquisition should continue or be halted during pixel advance

while GATE is asserted.

• lbus_master: Sets the current module as an LBUS master. To disable/remove lbus_master, see

the discussion for gate_master.
• pixel_advance_mode: Sets the pixel advance mode to be used in mapping mode. The supported

types are XIA_MAPPING_CTL_GATE and XIA_MAPPING_CTL_SYNC, defined in

handel_constants.h. Note: Manual pixel advance via. xiaBoardOperation() is always available

and does not need to be set using this acquisition value.

XAN-DXP-050405

• peak_sample_offset{n}: Sets the peak sampling time offset constant for DECIMATION n.

This value is optional; setting it will override the defined value of the offset in the FDD file. This

value is specified in µseconds.

• minimum_gap_time: Sets the minimum gap time for the energy/slow filter in µseconds.

• synchronous_run: This parameter is used in conjunction with lbus_master to enable a

synchronous data acquisition run.

• maxwidth: Sets the maximum peak width for Pile-Up Inspection in µseconds.

• preamp_type: Sets the detector preamplifier type. The allowed types are

XIA_PREAMP_RESET and XIA_PREAMP_RC, defined in handel_constants.h. The value set for

preamp_type is synchronized with the detector settings and can be set either in the .ini file or via

this acquisition value.

• decay_time: Sets the decay time, in µs, for an RC preamplifier. This setting is ignored if the

preamplifier type is not RC.

XAN-DXP-050405

List of Run Data Values and Types†

• mca_length: (unsigned long) The current size of the MCA data buffer for the specified channel.

• mca: (unsigned long *) The MCA data for the specified channel.

• baseline_length: (unsigned long) The current size of the baseline data buffer for the specified

channel.

• baseline: (unsigned long *) The baseline data for the specified channel.

• runtime: (double) The realtime run statistic, reported in seconds.

• realtime: (double) Alias for runtime.

• events_in_run: (unsigned long) The total number of events in the current run.

• trigger_livetime: (double) The livetime run statistic as measured by the trigger filter, reported in

seconds.

• livetime: (double) The calculated energy filter livetime, reported in seconds.

• input_count_rate: (double) The measured input count rate reported as counts/second.

• output_count_rate: (double) The output count rate reported as counts/secound.

• sca_length: (unsigned short) The number of elements in the SCA data buffer for the specified

channel.

• sca: (double *) The SCA data buffer for the specified channel.

• run_active: (unsigned long) The current run status for the specified channel. If the value is non-

zero then a run is currently active on the channel.

• buffer_full_a: (unsigned short) The current status of buffer 'a'. If the value is non-zero then the

buffer is full. NOTE: Requires mapping mode.

• buffer_full_b: (unsigned short) The current status of buffer 'b'. If the value is non-zero then the

buffer is full. NOTE: Requires mapping mode.

• buffer_len: (unsigned long) Size of the mapping buffer. For a given mapping run, this value will

remain constant and, therefore, only needs to be read out once at the start of a run. NOTE:

Requires mapping mode.

• buffer_a: (unsigned long *) The data in buffer 'a'. NOTE: Requires mapping mode.

• buffer_b: (unsigned long *) The data in buffer 'b'. NOTE: Requires mapping mode.

• current_pixel: (unsigned long) The current pixel number. The pixel number is reset to 0 at the start

of each new mapping run. NOTE: Requires mapping mode.

• buffer_overrun: (unsigned short) If non-zero, indicates that the current buffer has overflowed.

NOTE: Requires mapping mode.

†The italicized value indicates the type of the argument passed into the value parameter.

XAN-DXP-050405

• module_statistics: (double *) Returns an array containing all of the statistics for the module. This

array must contain a minimum of 28 elements and must be allocated prior to calling

xiaGetRunData(). The returned data is stored in the array as follows:

[channel0_realtime,

 channel0_trigger_livetime,

 channel0_energy_livetime,

 channel0_triggers,

 channel0_events,

 channel0_icr,

 channel0_ocr,

 ...

 channel3_realtime,

 channel3_trigger_livetime,

 etc.]

• module_mca: (unsigned long *) Returns the MCA data for all 4 channels in a module flattened into

a single array. Requires that the MCA length be the same for each channel. The array that the

MCA data is stored in must be allocated prior to calling this routine.

XAN-DXP-050405

List of Board Operations†

• apply: Apply any recent acquisition value changes to the firmware.

• buffer_done: (char) Signal that the specified buffer ('a' or 'b') has been read out and may be used

for mapping acquisition again. NOTE: Requires mapping mode.

• mapping_pixel_next: Advance to the next pixel in a mapping data acquisition run. NOTE:

Requires mapping mode.

†The italicized value indicates the type of the argument passed into the value parameter. If no type is given,
then a non-null dummy value needs to be passed in.

XAN-DXP-050405

	The Handel Quick Start Guide:
	xMAP
	Patrick Franz (software_support@xia.com)
	Last Updated: January 17, 2007
	Copyright © 2005-2007 XIA LLC
	All rights reserved
	IIntended Audience
	IIConventions Used In This Document
	IIIPreliminary Details
	Header Files
	Error Codes
	Example Code

	IVInitializing Handel
	VStarting The System
	VIConfiguring The xMAP For Data Acquisition
	Setting Data Acquisition Parameters
	Applying Data Acquisition Parameters

	VIIControlling The MCA
	Starting/Stopping a Run
	Reading out the MCA Spectrum

	VIIICleanup
	IXMapping Mode
	XMapping Tips
	1)Enabling mapping mode updates all parameters
	2)Create a mapping “channel” for each module
	3)Remove GATE/SYNC master values to disable them
	4)Cache the mapping buffer length
	5)Assign a single master module per bus segment
	6)Check for buffer overruns

	XIWhere To Go Next
	List of Acquisition Values
	List of Run Data Values and Types†
	List of Board Operations†

