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PREFACE 
 
Petri net is being widely accepted by the research community for modeling and simulation of 
discrete event systems. There are a number of Petri net tools available for academic and 
commercial use. These tools are advanced tools powerful enough to model complex and large 
systems. In this book, we introduce a new Petri Net simulator called GPenSIM (General 
Purpose Petri Net Simulator). GPenSIM runs on MATLAB platform. GPenSIM is designed 
with one specific goal: allowing Petri net models to integrate with other MATLAB toolboxes.  
 
By integrating Petri net models with other toolboxes, numerous benefits can be reaped. For 
example, by integrating with MATLAB Fuzzy Toolbox, we can experiment with Fuzzy Petri 
Nets; by combining with MATLAB Control Systems Toolbox, we can create hybrid discrete-
continuous systems. Hence, the main goal of this book is to introduce GPenSIM – a platform 
with which we can create Petri net models incorporating many other toolboxes, libraries, and 
functions that are already available on the MATLAB platform.   
 
There are many examples worked out in this book. These examples are simple and easy to 
follow. However, this book is not an introduction to Petri nets. Reader should know Petri net 
basics beforehand in order to start working with this book. Both the simulator GPenSIM and 
codes for examples (M-files) can be downloaded from the web site: 
http://www.davidrajuh.net/gpensim.  
 
 
Reggie Davidrajuh 
Stavanger, Norway 
September 2010 
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1. Installing GPenSIM  
 
Installation takes five simple steps: 
 
1. Unzip the GPenSIM pack: 
Unzip the GPenSIM toolbox functions file(s) under a directory, say 
“d:\GPenSIM\GPenSIM32\”.  Note: Due to size limitations, there may be one zip file 
(GPenSIM-v4.0.zip) or two zip files (GPenSIM-v4.0-pack-1.zip and GPenSIM-v4.0-pack-
2.zip) zip files.  
 
Similarly, unzip the examples file (Examples-v4.0.zip) under a directory, say 
“d:\GPenSIM\Examples\” 
 
2. Set MATLAB Path Command: 
Start MATLAB. Go to the file menu in MATLAB, and select “set path” command: 
 

 
Setting path command 
 
 
Select “Add folder”: 
 

 
Adding folder 
 
3. Add GPenSIM Directory:  
A new dialog box will appear. Browse through the directories and select the directory where 
you have unzipped the GPenSIM toolbox functions.  
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Adding GPenSIM directory 
 
4. Test Installation   
Go to MATLAB command window and type ‘gpensim’; if the following (or similar) output is 
printed, then the installation is complete. 
 
 
>> gpensim 
-------- 
GPenSIM version 4.0;   Lastupdate: september 2010 
http://www.davidrajuh.net/gpensim 
-------- 
>> 
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2. Introducing Petri net  
 This section gives a brief introduction to Petri nets. For further details, interested readers are 
referred to Murata(1989); Davidrajuh (2003); Cassandras and Lafortune (2007)  [10]. Carl 
Adam Petri invented Petri nets in 1962, as part of his dissertation titled “Kommunikation mit 
Automaten” at the University of Bonn (Petri and Reisig, 2008).  

 

2.1 Elements of Petri nets 

p1

t1

p2

p3

a1
w(p1,t1)=2

a2
w(p2,t1)=1

a3
w(t1,p3)=3

 
 

Figure-1.  Sample Petri net 
 
A Petri net contain four types of elements: tokens, places, arcs, and transitions.  Tokens 
represent objects in the Petri net models, such as materials in a material flow system, data in a 
information flow. A token is represented with a dot in Petri net models. When the number of 
tokens becomes large, it is usually represented with the number of tokens; see figure 1. 
 
Places are passive elements such as input and out buffers, conveyor belts, etc. Places hold 
tokens. Figure 1 shows places p1, p2and p3 with 4, 3 and 1 tokens (black spots). Each place is 
capable of holding any number of tokens. 
 
Arcs are connections between places and transitions. Arcs are bipartite meaning it is not 
possible to have an arc connecting two places together or two transitions together. Each arc 
has a weight, which is the number of tokens that are transported simultaneously when the 
transitions of which the arc is connected to fires.  
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Transitions are active elements like machines, robots, etc. Transitions correspond to events 
and are connected by arcs to places. When a transition fire, the number of tokens within the 
places connected to the firing transition, are changed according to the arcs weights and 
directions; when a transition fires it consumes tokens (input parts) from the input places and 
puts tokens (output parts) into the output places. For a transition to be able to fire, the number 
of tokens in the input places must be equal or higher than the weights of the arcs connecting 
the input places to the transition. The transition will then be an enabled transition. Figure 2 
shows the state of the sample Petri net from figure 1 after the transition T1 has fired once.  
 

 
 

Figure-2.  Sample Petri net after one cycle 
 

2.2 Formal Definition of Petri nets 
A Petri net is a four-tuple ( )0, xP, T, A  

    Where,  
P is the set of places, [ ]npppP ,,, 21 K= , 

T is the set of transitions, [ ]mtttT ,,, 21 K= ,  
A is set of arcs (from places to transitions and from transitions to places),  
 ( ) ( )PTTPA ×∪×⊆ , and 
x is the row vector of markings (tokens) on the set of places  ( ) ( ) ( )[ ] n

npxpxpxx Ν∈=   ,,, 121 K , x0 is the initial marking. 
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2.2.1 Input and Output Places of a Transition 
In the Petri net in figure 2, the places p1 and p2 are inputs to transition t1, and p3 is an out place 
of transition t1. It is convenient to use I(tj) to represent the set of input places to transition tj 
and O(tj) to represent the set of output places to transition tj when describing a Petri net: 

( ) ( ){ }AtpPpTI jiij ∈∈= , :       

( ) ( ){ }AtpPptO jiij ∈∈= , :      

 
We see from figure 2, that the weight of the arc from input place p1 to transition t1 has a 
weight = 2. This is denoted by: ( )1 1, =w p t     2 . 

 

2.3 Enabled Transitions  
A transition Tt j ∈  in a Petri net is said to be enabled if (Cassandras and Lafortune, 2007):  

( ) ( )jii tpwpx ,≥  for all ( )ji tIp  ∈ . 

 
The transition t1 in figure 2 is enabled, since the numbers of tokens in the input places p1 (2) 
and p2 (2) are at least as large as the weight of the arcs connecting them to t1 ( ( )1 1, =w p t     2  

and ( )1 1, =w p t     2 ). 

 

2.4 Petri net dynamics  
The markings of a Petri net, which is the distribution of tokens to the places, represent the 
state of the Petri net. A Petri net representing a discrete event system, where the transitions 
represent events, goes through many states during a simulation process. The different states 
could be represented with the row vector of markings (the 4.th-tuple): 
 ( ) ( ) ( )[ ]121 ,,, npxpxpxx K=   

 
The number of states an infinite capacity net can have is generally infinite, since each place 
can hold an arbitrary non-negative integer number of tokens (Murata, 1989). A finite capacity 
net on the other hand, will have a given number of possible states. 
 
The state transition function, ,: nn Tf ℵ→×ℵ  of a Petri net is defined for a transition Tt j ∈  

if and only if, ( ) ( )jii tpwpx ,≥  for all ( )ji tIp  ∈ . 

If ( )jtxf ,  is defined then ( )jtxfx ,=′ , where  

( ) ( ) ( ) ( )  .,,1     ,,, niptwtpwpxpx ijjiii K=+−=′
 

 

2.4.1 Coverability Tree 
Petri Nets helps proving many behavioral properties of a system, including: 

• Reachability, Boundedness, Conservativeness, Liveness, Reversibility 
 
One technique used to prove properties of a Petri Net is a coverability tree; a coverability tree 
consists of a tree of markings and possible transitions between. Nodes that are a repetitive 
state are left as leaves and not extended. The Coverability tree can be infinite (markings 
consists ‘omega’) or finite (markings do not contain ‘omega’). An infinite coverability tree is 
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unbounded. Reachability is merely a question of whether there is a path from one node to 
another in the tree.  
 

2.5 Why Petri nets?  
Several tools could be used for simulation of discrete event systems; Automata, Stateflow, 
and Petri nets (high level) are some of the most commonly used (Davidrajuh and Molnar, 
2009). The lack of structure possibilities (hierarchy) in Automata is a serious shortcoming, for 
modeling large systems since a large (and complex) system should be decomposed into 
modules and sub systems. Stateflow, developed by The MathWorks, extends the Simulink 
part of MATLAB with functionality similar to Petri net; charts are used for graphical 
representation of hierarchical and parallel states and for the  event-driven transitions between 
them (Stateflow, 2010). A Petri net model of a discrete event system could easily be 
converted into a Stateflow model and vice versa, but learning Stateflow is much more difficult 
than learning Petri net due to the syntactic, semantic, and graphical details in Stateflow. 
Stateflow also requires some knowledge of Simulink, in addition to MATLAB, while the 
GPenSIM tool used for Petri net simulation in this paper runs under the MATLAB 
environment only. Petri nets is widely accepted by the research community for modeling and 
simulation of discrete event-driven systems, mainly due to graphical representation and the 
well defined semantics which makes it possible to use formal analysis of the models (Jensen, 
1997). 
 

2.6 A minute introduction to Petri net:  
The simple Petri net shown in figure-3 is a model for business logic computation. The 
computation takes two database records and one business rule, and produces one business 
decision. In a Petri net, sources (like business rules and database records) and outputs (like 
business decisions) are called places, drawn as circles (e.g. Place-1). Computations (or events) 
are called transitions, drawn as vertical short bars (e.g. Transition-1). An arc connects a place 
to a transition, or a transition to a place, representing a path for a discrete part to flow. A place 
usually holds a number of parts, like database records. The number of parts inside a place is 
indicated by the tokens - black spots within a place.  

Figure-3.  Petri net model for business logic computation 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

Business rules 
(Place-1) 

Database records 
(Place-2) 

Business decisions 
(Place-3) 

Business logic 
computation 

(Transition-1) 
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3. Modeling with GPenSIM: The Basics 
In GPenSIM, definition of a Petri net graph (static details) is given in the Petri net 
Definition File (PDF). There may be a number of PDFs, if the Petri net model is divided into 
many modules, and each module is defined in a separate PDF.  While the Petri net definition 
file has the static details, the main simulation file (MSF) contains the dynamic information 
(such as initial tokens in places, firing times of transitions) of the Petri net.  
 

Figure-4.  Separating the static and dynamic Petri net details 
 

3.1 Transition Definition Files 
In addition to these two files (main simulation file - MSF and Petri net definition file - PDF), 
there can be a number of transition definition files  (TDF) too. These TDF are classified into 
two types: TDF_PRE and TDF_POST. TDF_PRE files are run before firing a transition; 
TDF_POST files are run after firing a transition.  
 

3.1.1 Using  TDF_PRE and TDF_POST 
According to the Petri net theory, a transition can fire (“enabled transition”) when there are 
enough tokens in the input places. However, in real-life situations, an event representing a 
transition can have additional restrictions for firing; for example, event-2 has preferences 
(priority) over event-1, thus event-2 is allowed to fire even though both event-1 and event-2 
are enabled to fire. In GPenSIM literature, these additional restrictions are called “user-
defined conditions”.  
 
The user-defined conditions for firing a transition are kept in a TDF_PRE file. After a 
transition fires, there may be some book keepings need to be done; these can be coded into a 
TDF_POST file.   
 
Names of the TDFs must follow a strict naming policy, as they will be chosen and run 
automatically: for example, the TDF_PRE for the transition ‘trans1’ must be named 
‘trans1_pre.m’; similarly, the TDF_POST for the transition ‘trans1’ must be named 
‘trans1_post.m’. 
 

3.1.2 Using TDF as a test probe 
In addition to executing user-defined conditions, a TDF provides a unique functionality: 
acting as a probe to simulation engine: Let us explain:  

1. The role of PDF: the only use of a PDF is to represent a static Petri net graph.  

 

Main 
Simulation 

File 
E.g.: File: ‘sim1.m’ 
(dynamic details) 

Petri net definition File 
E.g.: File: ‘pn_def.m’ 

(Static Petri net graph) 
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2. The role of MSF: A PDF will be loaded into memory by MSF right before the 
simulation start. Thus, an MSF first loads PDF (or PDFs in modular approach) into 
memory and then starts the simulation. MSF will be blocked during simulation runs, 
and when simulation is complete, the control will be passed back to MSF along with 
the simulation result. Therefore MSF does not have any control of what going on 
during simulation.  

3. The role of TDF: Though MSF does not have any control of what going on during 
simulation, however, TDFs will be called during simulation, before and after 
transition firings. Thus, if we want to inspect run-time (simulation) properties then a 
TDF can be used as a probe (more details given in the section on TDF).  

 

 
Figure-5.  Transition Definition Files 

 
 

3.2 Global info 
The different files (main simulation file MSF, Petri net definition files PDFs, and transition 
definition files TDFs) can access and exchange global parameters values through a packet 
called ‘global_info’. If a set of values is need to be passed to different files then these values 
are packed together as a global_info packet. global_info packet is visible in all the files, so 
that the values in the packet can be read and even changed. See chapter 9 for details. 
 

3.3 Integrating with MATLAB environment 
The most important reason for developing GPenSIM and the most advantage of it is its 
integration with the MATLAB environment, so that we can harness diverse toolboxes 
available in the MATLAB environment; see figure 6. 
 

 

 
 
 
 
 
 
 

Main 
Simulation 

File 
(E.g.: File: ‘sim1.m’) 

(Implementation details of a Petri nets) 

Transition_1   definition file 
 

(Implementation details of transitions) 

… … … 
 

Transition_n    definition file 
 

Petri net-m definition file 
 

Petri net-m definition file 
 

Petri net-m definition file 
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For example, by writing a user M-file that combines GPenSIM with Fuzzy Logic toolbox, we 
can experiment with Fuzzy Petri Nets; by combining GPenSIM with the Control systems 
toolbox, we can experiment hybrid discrete-continuous control applications, etc.  
 

 
Figure-6.  Integrating GPenSIM with the MATLAB environment 

 
 
 

 
Main 

Simulation 
File 

(MSF) 

 
Petri Net 
Definition 

Files 
(PDFs) 

 

 
Transition 
Definition 

Files 
(TDFs) 

 

 

(Optional)  
MATLAB Toolboxes such as  

Fuzzy, Control Systems, Optimization, Statistics, etc 
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4. Using GPenSIM 
The methodology for creating a Petri net model consists of two steps:  
 

Step-1. Defining the Petri net graph in a Petri net Definition File (PDF): this is the static 
part. This step consist of three sub-steps: 

a. Identifying the basic elements of a Petri net graph: the places, 
b. Identifying the basic elements of a Petri net graph: the transitions, and 
c. Connecting the elements with arcs 

 
Step-2.  Assigning the dynamics of a Petri net in the Main Simulation File (MSF):  

a. The initial markings on the places, and possibly 
b.  The firing times of the transitions  

 
After creating a Petri net model, simulations can be done.  
 

4.1 Example-01: A Simple Example 
The two steps are explained below, using the sample Petri net model shown in figure 7.  
 

Figure-7.  A Simple Petri Net Model 
 

4.1.1 Step-1: Defining the Petri net graph 
Defining the elements of a Petri net is done in a Petri net definition file (PDF). PDF is to 
identify the elements (places, transitions) of a Petri net, and to define the way these elements 
are connected.  
 
The Petri net graph shown in figure 7 has three places, one transition, and three arcs. The PDF 
for the graph is given below:  

 
 
 
 
 
 
 
 
 
 
 

Place-1 

Place-2 

Place-3 
Transition-1 
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% Example-01: A Simple Example 
% file: ’simple_pn_def.m’ 
% this file defines the simple petri net graph  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...      
     = simple_pn_def(global_info)  
  
PN_name = 'A Simple Petri Net' ;  
set_of_places = { 'Place-1' , 'Place-2' , 'Place-3' };  
set_of_trans = { 'Transition-1' };  
set_of_arcs =  { 'Place-1' , 'Transition-1' , 1, ...  
    'Place-2' , 'Transition-1' , 2, ...  
    'Transition-1' , 'Place-3' , 1};     

 
Explanation: 
 
First, assign a name (or label) for the Petri net. 
> PN_name = 'A Simple Petri Net' ; 

 
Second, the places are to be identified with place names: 
> set_of_places = { 'Place-1' , 'Place-2' , 'Place-3' };  
 
Third, the transitions are to be identified by stating their names.  
> set_of_trans = { 'Transition-1' };  
 
Finally, how the elements are connected is defined: connecting arcs are to be defined by 
listing the source, the destination and the weights of each arc. For example, the first arc is 
from ‘Place-1’ (source), to ‘Transition-1’ (destination) with a unit arc weight:    
 
> set_of_arcs =  { 'Place-1' , 'Transition-1' , 1, ...  
    'Place-2' , 'Transition-1' , 2, ...  
    'Transition-1' , 'Place-3' , 1};    

 

4.1.2 Step-2: The main simulation file: assigning the initial dynamics  
After writing the Petri net definition file (PDF, e.g. ‘simple_pn_def.m’), we need to write the 
main simulation file (MSF). In the MSF, first we load the static Petri net graph, by passing the 
name of the PDF (without the ending ‘.m’) to the function ‘petrinetgraph’: 
 
> png = petrinetgraph( 'simple_pn_def' ); 

 
Second, the dynamics such as initial markings on the places and the firing times of the 
transition are to be assigned. Normally, we stuff these two information into a packet (e.g. 
‘dynamic_info’ in this example) and then pass this packet to function ‘gpensim’. 
  
> dynamic_info.initial_markings = { 'Place-1' ,3, 'Place-2' ,5}; 
> dynamic_info.firing_times = { 'Transition-1' , 10};  

4.1.3 The Simulations 
Function gpensim will do the simulations if the Petri net graph (the static part) and the initial 
markings and firing times (the dynamic part) are passed to it:  
 
> Sim_Results = gpensim(png, dynamic_info);  



 15

 
The output argument Sim_Results is the simulation results. 
The output argument Sim_Results is a structure for the simulation results. In order to 
comprehend the simulation results easily, the function ‘print_statespace’ could be used. 
 

4.1.4 Viewing the simulation results with ‘print_statespace’ 
 
> print_statespace(Sim_Results); 

 
The output is given below: 
 
Explanation: 
Of course, ‘Transition-1’ takes 10 milliseconds to produce a token on ‘Place-3’, after 
removing 1 and 2 tokens from ‘Place-1’ and ‘Place-2’ respectively. 
 
 

 
Time: 0 
New markings: 
p1        p2        p3         
 3         5         0          
 
At time: 0  enabled transtions are:  t1 
 
At time: 0  firing transtions are:  t1 
 
Time: 10 
Fired Transition: t1 
New markings: 
p1        p2        p3         
 2         3         1          
 
At time: 10  enabled transtions are:  t1 
 
At time: 10  firing transtions are:  t1 
 
Time: 20 
Fired Transition: t1 
New markings: 
p1        p2        p3         
 1         1         2          
 
At time: 20  enabled transtions are:  
 
At time: 20  firing transtions are:  
>> 
 

 
 
 
In addition to the ASCII output, we can also view the output graphically. For example,  
> plotp(Sim_Results, { 'Place-1' , 'Place-2' , 'Place-3' });  
 
The above statement will plot how the tokens in the places vary with time: see the figure 
given below: 
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4.2 Summary 
Step-1 is about creating the PDF that defines the static Petri net graph.  The PDF for the Petri 
net shown in figure 5 is repeated below:  
 

% Example-01: A Simple Example 
% file: ’simple_pn_def.m’ 
% this file defines the simple petri net  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...      
     = simple_pn_def(global_info)  
PN_name = 'A Simple Petri Net implementation' ;  
set_of_places = { 'Place-1' , 'Place-2' , 'Place-3' };  
set_of_trans = { 'Transition-1' };  
set_of_arcs =  { 'Place-1' , 'Transition-1' , 1, ...  
    'Place-2' , 'Transition-1' , 2, ...  
    'Transition-1' , 'Place-3' , 1};     

 
Step-2 is for assigning the initial dynamics (initial markings and firing times) in the MSF. 
After the assignment, the simulations can be run and the results can also be plotted. The MSF 
for the Petri net shown in figure 5 is repeated below: 
 

% Example-01: A Simple Example 
% the main file to run simulation  
dynamic_info.initial_markings = { 'Place-1' ,3, 'Place-2' ,5};  
dynamic_info.firing_times = { 'Transition-1', 10}; 
 
png = petrinetgraph( 'simple_pn_def' ); 
Sim_Results = gpensim(png, dynamic_info);  
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print_statespace(Sim_Results);   
plotp(Sim_Results, { 'Place-1' , 'Place-2' , 'Place-3' });  

 

4.3 Static PN structure  
In the main simulation file given in the previous subsection, first we get a static Petri Net 
structure (called png in the example) as the output parameter of function gpensim: 
 

png = petrinetgraph( 'simple_pn_def' ); 

 
The static PN structure png is a compact representation of the static Petri net graph. A static 
PN structure consists of 5 elelements; e.g. in png:  
 
                  name: 'A Simple Petri Net' 
         global_places: [1x3 struct] 

    No_of_places: 3 
    global_transitions: [1x1 struct] 
           global_arcs: [1x3 struct] 
      incidence_matrix: [1.00 2.00 0 0 0 1.00] 

 
The elements of a static PN structure are: 

1) name: the ASCII string identifier of the Petri net  
2) global_places: the set of all places in the Petri net  
3) global_transitions: the set of all transitions in the Petri net 
4) global_arcs: the set of all arcs in the Petri net, and 
5) incidence_matrix: the matrix that depicts how the places and transitions are connected 

together. 
 
It must be emphasized that static PN structure is much simpler than run-time PN structure. A 
static PN structure is one of the parameters that are input to the function gpensim to start 
simulation. During simulation (‘run-time’), state information and other run-time information 
will be added to the PN structure, thus the PN structure will contain dynamic information in 
addition to static details; during simulation the PN structure is called ‘run-time’ PN structure. 
Details of run-time PN structure is given in the next section.  
 

4.4 Assigning names to Places & Transitions 

CAUTION! There is a serious restriction in naming: 
ONLY first 10 characters of NAMES are significant.  
 
This means, names for two places (pReggieDavidrajuh_1), and (pReggieDavidrajuh_2) are 
the same names (REFER TO THE SAME PLACE) because first 10 characters of these two 
names are the same.  
 
However, (pReggie_1_Davidrajuh), and (pReggie_2_Davidrajuh) are different names simply 
because first 10 characters of these two names are different. 
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5. Transition Definition File (TDF) 
The previous section explained the methodology for modeling and simulation with GPenSIM 
consisting of two steps.  However, in the previous section, the step-1 was limited to creating 
only the PDF; there were no TDFs created.   In this section, we shall discuss about the TDFs 
too, by working through the example shown in figure 8. 

Figure-8.  Petri net model of a production facility 
 

5.1 Example-02: TDF_PRE Example 
Figure 8 shows a Petri net model of a production facility where three robots are involved in 
sorting products (machined parts) from an input buffer (for machined goods) to output 
buffers. There are three output buffers (places) available. There are also three robots 
(transitions) that take the machined parts from the input buffer and put them to the respective 
output buffers.  
 
The conditions: The output buffers have limited capacity. Buffer-1, buffer-2, and buffer-3 
can accommodate a maximum of 3, 5, and 2, machined parts respectively. In addition, the 
robots should be operated in a manner that, at any time, buffer-2 should have more parts than 
buffer-1, and buffer-1 should have more parts than buffer-3.  
 
The conditions stated above shall be coded in the TDF_PRE files.  
 

5.1.1 Creating M-Files  
In this example, the following M-files are created in the two steps: 

• Step-1: In addition to creating the PDF, TDF_PREs for the three transitions must 
be also created. This is because, there are user-defined conditions attached to the 
transitions.   

 
• Step-2: In the MSF: assigning the initial dynamics (initial markings and firing times) 

and running the simulations.  
   

 

Buffer -1 

Machines Goods 
from CNC 

Buffer-3 

Buffer-2 

Robot-3 

Robot-2 

Robot-1 

 



 20

5.2 Step-1: the definition files 
 

5.2.1 Defining the Petri net graph  
Let’s call the PDF for the Petri net in figure 6 as ‘tdf_example_def.m’: 
 

% Example-02: TDF example  
% file: tdf_example_def.m:  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...      
     = tdf_example_def (global_info)  
  
PN_name = 'TDF Example: Petri Net for production facility' ;  
set_of_places = { 'pFrom_CNC' , 'pBuffer_1' , 'pBuffer_2' , 'pBuffer_3' };  
set_of_trans = { 'tRobot_1' , 'tRobot_2' , 'tRobot_3' };  
set_of_arcs = { 'pFrom_CNC' , 'tRobot_1' ,1, 'pFrom_CNC' , 'tRobot_2' ,1, ... 
    'pFrom_CNC' , 'tRobot_3' ,1, ... 
    'tRobot_1' , 'pBuffer_1' ,1, 'tRobot_2' , 'pBuffer_2' ,1, ...  
    'tRobot_3' , 'pBuffer_3' ,1};     

 

5.2.2 Coding the user-defined firing conditions of the Transitions  
tRobot-1 will fire only if the number of tokens (machined parts) already put in output 
pBuffer-1 is less than 3. In addition, number of tokens in pBuffer-1 should be less than that 
of pBuffer-2; coding these two user-defined conditions into the TDF_PRE for tRobot-1 is 
given below. As the name of the transition is ‘tRobot_1’, this TDF must be named 
‘ tRobot_1_pre.m’. 
 

% file: tRobot_1_pre.m:  
function  [fire, new_color,override,selected_tokens,global_i nfo] = ... 
   tRobot_1_pre(PN, new_color, override, selected_t okens, global_info)  
 
b1 = get_place(PN, 'pBuffer_1' );  
b2 = get_place(PN, 'pBuffer_2' );  
fire = (b1.tokens < b2.tokens)& (b1.tokens < 3);   

 
Similarly, the definition files for tRobot-2 and tRobot-3 are created, satisfying the given 
conditions: 
 

% file: tRobot_2_pre.m:  
function  [fire, new_color,override,selected_tokens,global_i nfo] = ... 
      tRobot_2_pre(PN, new_color,override,selected_ tokens,global_info)  
  
b2 = get_place(PN, 'pBuffer_2' );  
fire = (b2.tokens < 5);   

 
 

% file: tRobot_3_pre.m: 
function  [fire, new_color,override,selected_tokens,global_i nfo] = ... 
     tRobot_3_pre(PN, new_color,override,selected_t okens,global_info)  
 
b1 = get_place(PN, 'pBuffer_1' );  
b3 = get_place(PN, 'pBuffer_3' );  
fire = (b1.tokens > b3.tokens) & (b3.tokens < 2);  
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5.3 Step-2: Assigning the initial dynamics and running the simulations 
Given below is the main simulation file (‘tdf_example.m’):  
 

% Example-02: TDF example 
% the main file to run simulation tdf_example.m 
png = petrinetgraph( 'tdf_example_def' ); 
dynamics.initial_markings = { 'pFrom_CNC' , 20}; %initial machined parts  
dynamics.firing_times = { 'tRobot_1' ,10, 'tRobot_2' ,5, 'tRobot_3' ,15};  
 
Results = gpensim(png, dynamics); 
print_statespace(Results);  
plotp(Results, {'pFrom_CNC', 'pBuffer_1', 'pBuffer_ 2', 'pBuffer_3'}); 

 
The output of print_statespace is given below is one of the 2 possible outcomes. 

5.3.1 Outcome-1: 
 
State:0 (Initial State) 
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC  
 0         0         0         10         
At time: 0 
  Enabled transtions are:  
 tRobot_1   tRobot_2   tRobot_3   
At time: 0 
  Firing transtions are:  
 tRobot_2   
 
    Time: 5 
State: 1 
Fired Transition: tRobot_2   
Current State: 
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC  
 0         1         0         9          
At time: 5 
  Enabled transtions are:  
 tRobot_1   tRobot_2   tRobot_3   
At time: 5 
  Firing transtions are:  
 tRobot_1   tRobot_2   
 
    Time: 10 
State: 2 
Fired Transition: tRobot_2   
Current State: 
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC  
 0         2         0         7          
At time: 10 
  Enabled transtions are:  
 tRobot_1   tRobot_2   tRobot_3   
At time: 10 
  Firing transtions are:  
 tRobot_1   tRobot_2   
 
    Time: 15 
State: 3 
Fired Transition: tRobot_2   
Current State: 
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pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC  
 0         3         0         6          
At time: 15 
  Enabled transtions are:  
 tRobot_1   tRobot_2   tRobot_3   
At time: 15 
  Firing transtions are:  
 tRobot_1   tRobot_2   
 
    Time: 15 
State: 4 
Fired Transition: tRobot_1   
Current State: 
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC  
 1         3         0         5          
At time: 15 
  Enabled transtions are:  
 tRobot_1   tRobot_2   tRobot_3   
At time: 15 
  Firing transtions are:  
 tRobot_1   tRobot_2   tRobot_3   
 
…………………. 
……………….. 
   Time: 45 
State: 10 
Fired Transition: tRobot_3   
Current State: 
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC  
 3         5         2         0          
At time: 45 
  Enabled transtions are:  
>> 
 

 
 
Given below is the plot of how the number of tokens in different places varies with time: 
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5.4 Run-time PN structure 
Incidentally, TDF_PRE can also be used as a probe into simulation engine. The MSF prepares 
the static Petri net (PN) structure and the initial dynamic information so that the simulation 
can be started. Once the simulation is started, there is no way of knowing what’s going on. 
The MSF is blocked until the simulation is complete and the result is given back to the MSF. 
Then, we can analyze the results e.g. with the help of print_statespace.  
 
During simulations, control is passed to TDF_PRE if there is any. In the TDF, a copy of run-
time PN structure is available so that we can inspect it to study what’s going on. Let’s take a 
look into TDF for Robot_1 discussed in the previous subsection: 
 

% file: tRobot_1_pre.m:  
function  [fire, new_color,override,selected_tokens,global_i nfo] = ... 
    tRobot_1_def(PN, new_color,override,selected_to kens,global_info)  
... 
PN  % dump contents of PN every time tRobot_1_pre is ca lled  

 
 
In TDF given above, we see that run-time PN structure is one of the 5 input parameters. 
This run-time PN structure has all the important run-time details; hence, we can inspect this 
PN structure to study what’s going on during simulation. Run-time PN structure has 21 
elements, given below are some of them possessing important run-time properties: 
1. PN.global_places: has complete set of current tokens for each place 
2. PN.global_transtions: has details about how many times each transition has fired so 

far 
3. PN.current_time:  the internal clock time 
4. PN.token_serial_number:  the total number of tokens generated so far 
5. PN.X:    the current marking (current state) 
6. PN.Firing_Transitions: indicates which transitions are currently firing   
7. PN.Enabled_Transitions: indicates which transitions are currently enabled 
 
 
1 STATIC N ame: 'TDF Example: Production facility'  
2 Run-time global_places: [1x4 struct]  
3 Run-time global_transitions: [1x3 struct]  
4 STATIC global_ arcs: [1x6 struct]  
5 STATIC incidence_matrix: [3x8 double]  
6 Run-time current_time:  45.00  
7 Run-time token_serial_number:  30.00  
8 Run-time X: [10.00 3.00 5.00 2.00]  
9 Run-time Firing_Transitions : [0 1 1] 

10 Run-time Enabled_Transitions : [1 0 0] 

 



 24

 

5.5 Example-03: Implementing Preference through TDF_PRE 
In this example (figure 9), transitions t1 and t2 both competes for tokens in pS; we prefer t1 
over t2.   

 
Figure-9.  Petri net model of a production facility 

 
 
 
MSF: 
% MSF: prefer.m  
dyn.firing_times = { 't1' ,10, 't2' ,7};  
dyn.initial_markings = { 'pS' ,3};  
  
png = petrinetgraph( 'prefer_def' );  
sim_results = gpensim(png, dyn);  
print_statespace(sim_results); 
plotp(sim_results, { 'pE1' , 'pE2' });  
  
PDF: 
function  [PN_name, set_of_places, set_of_trans, ...  
    set_of_arcs] = prefer_def(global_info)  
% PDF: prefer_def  
  
PN_name='Preference example' ;  
set_of_places={ 'pS' , 'pE1' , 'pE2' };  
set_of_trans={ 't1' , 't2' };  
set_of_arcs = { 'pS' , 't1' ,1, 't1' , 'pE1' ,1, ...  
    'pS' , 't2' ,1, 't2' , 'pE2' ,1};  
 

5.5.1 Case-I: t1 is strictly preferred  
Conditions for firing: 

• t1 will fire if it is enabled (meaning, no TDF for t1).  
• t2 will fire only is t1 is not enabled  

 
Surely, t2 will starve! 
 
function  [fire,PN, new_color,override,selected_tokens,globa l_info] = ...  
    t2_pre (PN, new_color, override, selected_token s, global_info)  

pS

t2 pE1

t3 pE2
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% TDF_PRE for t2  ('t2_pre.m')  
  
% Case-I:  
if  is_enabled(PN, 't1' ),  
    fire = 0;  
else  
    fire = 1;  
end ;  
  
 
 
Simulation results: 
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Time: 0 
New markings: 
pS        pE1       pE2        
 3         0         0          
 
At time: 0  enabled transtions are:  t1 t2 
 
At time: 0  firing transtions are:  t1 
 
Time: 10 
Fired Transition: t1 
New markings: 
pS        pE1       pE2        
 2         1         0          
 
At time: 10  enabled transtions are:  t1 t2 
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At time: 10  firing transtions are:  t1 
 
Time: 20 
Fired Transition: t1 
New markings: 
pS        pE1       pE2        
 1         2         0          
 
At time: 20  enabled transtions are: t1 t2 
 
At time: 20  firing transtions are:  t1 
 
Time: 30 
Fired Transition: t1 
New markings: 
pS        pE1       pE2        
 0         3         0          
 
At time: 30  enabled transtions are: 
At time: 30  firing transtions are: 
 

 
 

5.5.2 Case-II: t1 is preferred, but t2 can also fire   
Conditions for firing: 

• (as before) t1 will fire if it is enabled (meaning, no TDF for t1).  
• t2 will fire is t1 is not enabled or if t1 has fired at least once 

 
Now, t2 can fire as soon as t1 has fired for the first time. 
 
TDF: 
function  [fire,PN, new_color,override,selected_tokens,globa l_info] = ...  
    t2_pre (PN, new_color, override, selected_token s, global_info)  
% TDF for t2  ('t2_pre.m')  
  
% Case-II:  
t1 = get_trans(PN, 't1' );  
  
if  or(~is_enabled(PN, 't1' ), (t1.times_fired >= 1)),  
    fire = 1;  
else  
    fire = 0;  
end ;  
 
Simulation results: 
The following may occur where t2 may also fire. 
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5.6 Using TDF_POST 
We study an application of TDF_POST through an example in section XXX.  
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6. Internal Clock 
Internal clock is discrete in the sense it is updated whenever a transition is complete. If we 
take a close look into the figures generated by the plotp function, the figures look like ramp 
rather than pulses. This is due to poor sampling (recording), as simulation results with timing 
are recorded only when a transition complete firing. In other words, simulation results are 
recorded only when there is a new state.   
 
We will discuss an import internal clock issue thorough an example. When a transition 
completes firing, the internal clock is advanced by the firing time of the transition. When a 
Petri net system has enabled transitions, but none is firing, then the internal clock time is 
advanced by an amount which is equal to ¼ of the minimum firing time of all transitions.  
 

6.1 Example-04: Delay Example  
In the figure shown below, let p1 has 5 initial tokens. Also let firing time of t1 is 7 seconds.   
 
Though t1 can fire 5 times successively, we want it to fire only at the start of every 30 
seconds. This means, t1 is delayed by 30 - 7 = 23 seconds.  
 
 

 
Figure-10.  Delay Example 

 
During the waiting time of 23 seconds (t1 is enabled but not firing), time advancement will be 
done in time units of 7/4 = 1.75 seconds. See the gpensim system file ‘timed_pensim.m’ for 
implementation details.  
 
MSF: 
% Example-04: delay example  
% file: delay_demo.m:  
 
png = petrinetgraph( 'delay_demo_def' );  
  
dynamic.initial_markings = { 'p1' ,3};  
dynamic.firing_times = { 't1' , 7};  
  
sim = gpensim(png, dynamic, global_info);  
print_statespace(sim);  
plotp(sim, { 'p1' , 'p2' });  
 
PDF: 
% Example-04: delay example 
% file: delay_demo_def.m:  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...      
    = delay_demo_def(global_info)  
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PN_name = 'Delay Demo' ;  
set_of_places = { 'p1' , 'p2' };  
set_of_trans = { 't1' };  
set_of_arcs =  { 'p1' , 't1' , 1,  't1' , 'p2' , 1};    
 
 
TDF: 
function  [fire, new_color, over_ride, selected_tokens,globa l_info] = ...  
    t1_def(PN, new_color, over_ride, selected_token s, global_info)  
% function fire = t1_pre  
  
rest = mod(PN.current_time, 30);  
fire =  (rest < 5);   % any number less than 7 would do  
 
 
Simulation results: 
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7. Measuring Activation Timing 
We are going to find out how much time each transitions take or occupy out of the total time. 
From the simulation results, there are two functions that can compute activation time of each 
transition given in the input list. Function ‘extractt’ creates a simple matrix called duration 
matrix in which first column is the transition (transition index) that fired, the second column 
is the start time for firing and the third column is the completion time for firing.  
Function ‘extractt’ returns duration matrix with three columns:  

1) Column-1: The firing transition 
2) Column-2: firing start time 
3) Column-3: firing finishing time 

 
Alternatively, we can use the function ‘occupancy’ to measure activation times: function 
occupancy first computes the duration matrix by calling the function extractt. Then, from the 
duration matrix, it computes the occupancy matrix. Occupancy matrix consists of just two 
rows. The first row presents total activation times of each transition given in the input list. 
The second row presents activation in percentage of the total time.  The function occupancy 
also prints the activation times and percentages on screen.  
 

7.1 Example-05: Measuring Activation Time  
This example is the same delay example, shown in figure 10. This time, we will compute the 
idle time of the transition (activation time of the transition, precisely) with the help of the 
functions extractt and occupancy.  
 
The only change this time in the MSF is that addition of the last two lines: 
 
MSF: 
% Example-05: delay example for measuring activatio n time  
% file: delay_demo.m:  
 
png = petrinetgraph( 'delay_demo_def' );  
  
dynamic.initial_markings = { 'p1' ,3};  
dynamic.firing_times = { 't1' , 7};  
  
sim = gpensim(png, dynamic, global_info);  
% print_statespace(sim);  
% plotp(sim, {'p1','p2'});  
 
duration_matrix  = extractt(sim, { 't1' }) 
occupancy_matrix = occupancy(sim, { 't1' })  
 
 
Simulation results:  
The duration matrix computed form the simulation results shows that the transition t1 was 
fired at 0, 30, and 60 time units, and that every firing took 7 time units to complete. 
 
Thus, the total time t1 fired was 21 time units, and the activation percentage was (21/67 = 
31.3%) percent. 
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duration_matrix = 
     1     0     7 
     1    30    37 
     1    60    67 
 
occupancy t1        :  
  total time: 21 
  Percentage time: 31.3433% 
 
occupancy_matrix = 
   21.0000 
   31.3433 
 

 

7.2 Example-06: Measuring Activation time  
This is another example for measuring activation time. Figure 11 below shows a simple 
system where two transitions fire sequentially, one after the other.  

 
Figure-11.  Transitions firing sequentially 

 
The code below is for the main simulation file.  
 
% Example-06: Measuring Timing  
% MSF: measure_timing.m  
clear, clc;  
global_info.MAX_LOOP = 11; % GLOBAL DATA: MAX. SIMULATION CYCLES  
  
png = petrinetgraph( 'measure_timing_def' );  
dynamicpart.initial_markings = { 'p1' , 10};  
dynamicpart.firing_times = { 't1' , 1, 't2' , 100};  
sim = gpensim(png, dynamicpart, global_info);  
% print_statespace(sim);  plotp(sim, {'p1', 'p2'});  
  
duartion_martix = extractt(sim, { 't1' , 't2' });  
disp( 'Duartion Martix : ' ), disp(duartion_martix);  
fprintf( '\n\n' ); 
occupancy_martix = occupancy(sim, { 't1' , 't2' });  
fprintf( '\n\n' );  
disp( 'Occupancy Martix : ' ), disp(occupancy_martix);  
 

p1 p2 

t1 t2 
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Simulation results: 
 
Duartion Martix :  
     1     0     1 
     1   101   102 
     1   202   203 
     1   303   304 
     1   404   405 
     1   505   506 
     2     1   101 
     2   102   202 
     2   203   303 
     2   304   404 
     2   405   505 
 
 
Simulation Completion Time: 506 
occupancy t1        :  
  total time: 6 
  Percentage time: 1.1858% 
occupancy t2        :  
  total time: 500 
  Percentage time: 98.8142% 
 
 
Occupancy Martix :  
    6.0000  500.0000 
    1.1858   98.8142 
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8. Stochastic Firing Times 
So far, the firing times for transitions are assumed to be deterministic; thus, the simulations 
presented so far are deterministic. However, in real life systems all the firing times are 
stochastic.  GPenSIM provides a limited facility for stochastic firing times. 
 
We can use any of the MATLAB-standard probability distribution functions for stochastic 
firing times. The following are the most used:  

1) Guassian (normal) random function,  
2) Binormial random function,  
3) Poission random function, and 
4) Uniform random function.  

 

8.1 Example-07: Stochastic firing times 
We refer to the CNC production system shown in figure 9; we no longer assume that the 
firing times are deterministic: 

1) Robot-1 takes random time Binaomially distributed with seed 10 and factor 0.9 
milliseconds. (‘binornd(10,0.9) ’) 

2) Robot-2 takes random time normally distributed with mean 1 and standard deviation 
0.1 milliseconds. (‘normrnd(1,0.1) ’) 

3) Robot-3 takes random time uniformly distributed with min 8 and max 10 
milliseconds. (‘unifrnd(8,10) ’) 

 
Thus, the Petri net definition file is to be changed accordingly: 
 

% Example-07: TDF example with stochastic timing  
% the main simulation file  
png = petrinetgraph( 'tdf_example_def' ); 
dynamics.initial_markings = { 'pFrom_CNC' , 20}; % initial tokens  
 
% here comes the STOCHASTIC TIMING  
dynamics.firing_times = { 'tRobot_1' , 'binornd(10,0.9)' , ...  
    'tRobot_2' , 'normrnd(1,0.1)' , 'tRobot_3' , 'unifrnd(8,10)' }; 
 
Results = gpensim(png, dynamics); 
print_statespace(Results);  
plotp(Results, {'pFrom_CNC', 'pBuffer_1', 'pBuffer_ 2', 'pBuffer_3'});  
  

 
Note: Due to stochastic timing, up to three different outcomes are possible!!  
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9. Modular Model Building 
Figure 12 shows architecture of an adaptive supply chain based on service component 
architecture; see Davidrajuh (2007) for details. Figure 13 shows the equivalent Petri net 
model.  

 
Figure-12.  The system assembly 
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9.1 Example-08: Modular Model for Adaptive Supply Chain  
The Petri net model shown in figure 13 has many elements (11 places and 12 transitions) and 
many connections (27 arcs). Though possible, it will be cumbersome to create one Petri net 
definition file PDF for the whole Petri net graph. Instead, we can divide the Petri net graph 
into modules as shown in figure 13, and then create individual PDFs for each of the module; 
finally, all the PDFs are combined to form the complete model.    
 
In the following subsection, we use modular (many PDFs, one PDF for each module) 
approach. Section 9.2 presents the TDF for the transition tRES; interested reader is referred to 
Davidrajuh (2007) for details.  
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Figure-13.  The Petri net model of the distribution chain 
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9.2 The Modular Approach 
Figure 13 shows a modular Petri net model, consisting of a number of modules such as 
‘Service Interface Layer’, ‘Initialization module’, ‘Strategic module’, etc. For each module, a 
PDF will be created. In addition, there will be a PDF for the connection between modules. For 
example, we can cerate a PDF for each of the following: 

1) Client  (‘client_def.m’), 
2) Internet transmission (‘internet_def.m’), 
3) Service Interface Layer (‘sil_def.m’), 
4) Initialization module (‘init_def.m’), 
5) Iterations module (‘interate_def.m’), 
6) Strategic module (‘strategy_def.m’), 
7) Tactical & sub tactical module (tactic_def.m’), and finally 
8) Profile for connecting the modules together (‘conn_pro.m’). 

 
In the main simulation file, all these 8 PDFs must be passed to the function ‘petrinetgraph’. 
 

9.2.1 The main simulation file: ‘MIC_2006_new.m’ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%  MIC – 2006 (modular model)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
png = petrinetgraph({ 'client_def' , 'internet_def' , 'sil_def' , 
'conn_pro' , ...  
    'iterate_def' , 'strategy_def' , 'tactic_def' });  
 
dyn.initial_markings = { 'pSR' ,1, 'pNOI' , round(unifrnd(2,4)), 'pB6' ,1};  
dyn.firing_times = { 'tCS' , 'normrnd(5000,50)' , 'tSC' , 'normrnd(5000,50)' , ...  
    'tINIT' , 'unifrnd(280,320)' , ...  
    'tRES' , 'unifrnd(1, 10)' , 'tSD' , 'unifrnd(80, 100)' , ...  
    'tTD' , 'unifrnd(25, 35)' , 'tSUB1' , 'unifrnd(10, 15)' , ...  
    'tSUB2' , 'unifrnd(10, 15)' , 'tSUB3' , 'unifrnd(10, 15)' , ...  
    'tSUB4' , 'unifrnd(10, 15)' };  
  
Results = gpensim(png, dyn);  
print_statespace(Results); 
 
 

9.2.2 Client (‘client_def.m’) 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
        = client_def()  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% File: client_def.m : Definition of client  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PN_name = 'Client' ;  
set_of_places = { 'pSR' , 'pRR' };  
set_of_trans = [];  
set_of_arcs = [];  
 

9.2.3 Internet transmission (‘internet_def.m’), 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
         = internet_def()  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% File: internat_def.m: Definition of internet tra nsmission  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PN_name='Internet Transmission' ;  
set_of_places = [];  
set_of_trans = { 'tCS' , ' tSC' };  
set_of_arcs = [];  
 

9.2.4 Service Interface Layer (‘sil_def.m’), 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
        = sil_def()  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% File: sil_def.m: Definition of the Service Inter face Layer  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PN_name='Service Interface Layer' ;  
set_of_places = { 'pRFC' , 'pRTC' , 'pB1' };  
set_of_trans = { 'tINIT' };  
set_of_arcs = { 'pRFC' , 'tINIT' ,1, 'tINIT' , 'pB1' ,1};  
 

9.2.5 Iterations module (‘interate_def.m’) 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
         = iterate_def()  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% File: iterate_def.m: Definition of the Iteration s module  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PN_name='Iterations Module' ;  
set_of_places = { 'pNOI' , 'pB6' };  
set_of_trans = { 'tIT' , 'tRES' };  
set_of_arcs = { 'pNOI' , 'tIT' ,1, 'pB6' , 'tIT' ,1, 'pB6' , 'tRES' ,1};  
 

9.2.6 Strategic module (‘strategy_def.m’) 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
         = strategy_def()  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% File: strategy_def.m: Definition of the Strategi c Module  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PN_name = 'Strategic Module' ;  
set_of_places = { 'pB2' , 'pB3' };  
set_of_trans = { 'tSD' };  
set_of_arcs = { 'pB2' , 'tSD' ,1, 'tSD' , 'pB3' ,1};  
 

9.2.7 Tactical & sub tactical module (‘tactic_def.m’) 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
        = tactic_def()  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% File: tactic_def.m: Definition of the Tactical &  subtactical modules  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PN_name = 'Tactical & sub-tactical Module(s)' ;  
set_of_places = { 'pB4' , 'pB5' };  
set_of_trans = { 'tTD' , 'tSUB1' , 'tSUB2' , 'tSUB3' , 'tSUB4' , 'tSUM' };  
set_of_arcs = { 'tTD' , 'pB4' ,4, ...  
    'pB4' , 'tSUB1' ,1, 'pB4' , 'tSUB2' ,1, 'pB4' , 'tSUB3' ,1, 'pB4' , 'tSUB4' ,1, ...  
    'tSUB1' , 'pB5' ,1, 'tSUB2' , 'pB5' ,1, 'tSUB3' , 'pB5' ,1, 'tSUB4' , 'pB5' ,1, ...  
    'pB5' , 'tSUM' ,4};  
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9.2.8 Profile for connecting the modules together (‘conn_pro.m’) 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
         = conn_pro()  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% File: conn_pro.m: Definition of the connections between the modules  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PN_name = 'Connections Profile' ;  
set_of_places = [];  
set_of_trans = [];  
set_of_arcs = { 'pSR' , 'tCS' ,1, ...     % client - internet  
    'tCS' , 'pRFC' ,1, ...              % internet - SIL  
    'pRTC' , 'tSC' ,1, ...              % SIL - internet  
    'tSC' , 'pRR' ,1, ...                % internet - client  
    'pB1' , 'tIT' ,1, ...                % init - iterations  
    'tIT' , 'pB1' ,1, ...               % iterations - init  
    'tIT' , 'pB2' ,1, ...                % iterations - strategy  
    'pB3' , 'tTD' ,1, ...               % strategy - tactical  
    'tSUM' , 'pB6' ,1, ...               % tactical - iterations  
    'tRES' , 'pRTC' ,1, ...              % iterations - SIL     
    };  
 

9.3 Transition definition file for tRES (‘tRES_def.m’) 
function  [fire, new_color, override, selected_tokens, globa l_info] = ...  

tRES_def (PN, new_color, override, selected_tokens,  global_info)  
%% function tRES_def  
%% 
 
p1 = get_place(PN, 'pNOI' );  
fire =  (p1.tokens == 0);  
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10. Coverability Tree 
Coverability tree (co-tree) is a very important issue in the analysis of Petri net models. In 
coverability analysis, we determine the states that are reachable from a given initial state.  
 
This section shows how GPenSIM can be used to obtain co-tree of a Petri net. The 
methodology is creating a co-tree of a Petri net is almost same as running simulations on a 
Petri net; the only difference is that in step-3, instead of the function ‘gpensim’, we use the 
function ‘cotree’: 

Step-1. Creating Petri net definition files (PDFs) and transition definition files (TDFs) 
Step-2. Creating main simulation file (SMF) with dynamic info (initial markings and 

firing times)  
Step-3. Running the SMF using the function ‘cotree’ instead of ‘gpensim’ 

 

10.1 Example-09: Cotree with finite states 
This simple example deals with the Petri net shown in figure 14. The co-tree of this Petri net 
is shown in figure 15. Let us find the co-tree using GPenSIM: 
 

 
Figure-14.  The Petri net for coverability analysis 

 

t1
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p2 t2

t3

p4
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Figure-15.  The reachable states of the Petri net shown in figure 14. 

 
 

10.1.1 Petri net definition file 
The Petri net definition file is given below: 
 
% PDF for Example-09: Cotree example-1  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...   
    = cotree_example_def()  
  
PN_name = 'COTREE Example: Petri Net in Figure 14' ;  
set_of_places = { 'p1' , 'p2' , 'p3' , 'p4' };  
set_of_trans  = { 't1' , 't2' , 't3' };  
set_of_arcs   = { 'p1' , 't1' ,1, 't1' , 'p2' ,1, 't1' , 'p3' ,1, ...  
                  'p2' , 't2' ,1, 'p3' , 't2' ,1, 't2' , 'p2' ,1, 't2' , 'p4' ,1, ...  
                  'p1' , 't3' ,1, 'p3' , 't3' ,1, 'p4' , 't3' ,1};  
 
           

10.1.2 The main file 
The main file (after phases 2 & 3) is given below: 
 
% Example-09: Cotree example-1  
% the main file to find the reachable states  
clear, clc; % clear the workspace & screen first  
 
png = petrinetgraph( 'cotree_example_def' );  
dyn.initial_markings = { 'p1' , 2, 'p4' , 1}; % tokens initially  
Results = cotree(png, dyn.initial_markings);  
print_cotree(Results);  
 
 
The function print_cotree will print the following on the screen, which is equivalent to the 
graphical co-tree shown in figure 14 
 

x1 [2 0 0 1] "R"

x2 [1 1 1 1]

x3 [0 2 2 1] x4 [1 1 0 2] x5 [0 1 0 0 ] "T"

x6 [0 2 1 2] x7 [0 2 1 2] "D"

x8  [0 2 0 3] "'T"

t1

t2

t1

t1

t2

t2

t3
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COTREE Example: Petri Net in Figure 14 
 
state:1  ROOT node 
p1        p2        p3        p4         
 2         0         0         1          
 
state:2    Firing event: t1      
p1        p2        p3        p4         
 1         1         1         1          
Node type: ' '   Parent state: 1 
 
state:3    Firing event: t1      
p1        p2        p3        p4         
 0         2         2         1          
Node type: ' '   Parent state: 2 
 
state:4    Firing event: t2      
p1        p2        p3        p4         
 1         1         0         2          
Node type: ' '   Parent state: 2 
 
state:5    Firing event: t3      
p1        p2        p3        p4         
 0         1         0         0          
Node type: 'T'   Parent state: 2 
 
state:6    Firing event: t2      
p1        p2        p3        p4         
 0         2         1         2          
Node type: ' '   Parent state: 3 
 
state:7    Firing event: t1      
p1        p2        p3        p4         
 0         2         1         2          
Node type: 'D'   Parent state: 4 
 
state:8    Firing event: t2      
p1        p2        p3        p4         
 0         2         0         3          
Node type: 'T'   Parent state: 6 
 
  
Boundedness: 
p1 : 2 
p2 : 2 
p3 : 2 
p4 : 3 
 
>> 

 
The screen output given above is equivalent to the graphic shown in figure 15.  
 

10.1.3 Event simulation instead of coverability tree 
Lets try event simulation of the same Petri net. 
 
% the main file to find the reachable states  
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clear, clc; % clear the workspace & screen first  
 
png = petrinetgraph( 'cotree_example_def' );  
dyn.initial_markings = { 'p1' , 2, 'p4' , 1}; % tokens initially 
dyn.firing_times = { 't1' ,2, 't2' ,1, 't3' ,3}; % tokens initially 
 
Results = gpensim(png, dyn);  
print_statespace(Results);  
 
 
The function print_cotree will print the state flow on the screen:  
 
 
COTREE Example: Petri Net in Figure 15 
 
Time: 0 
New markings: 
p1        p2        p3        p4         
 2         0         0         1          
 
At time: 0  enabled transtions are:  t1 
 
At time: 0  firing transtions are:  t1 
 
Time: 2 
Fired Transition: t1 
New markings: 
p1        p2        p3        p4         
 1         1         1         1          
 
At time: 2  enabled transtions are: t1 t2 t3 
 
At time: 2  firing transtions are:  t1 t2 
 
Time: 3 
Fired Transition: t2 
New markings: 
p1        p2        p3        p4         
 0         1         0         2          
 
At time: 3  enabled transtions are: 
 
At time: 3  firing transtions are:  t1 
 
Time: 4 
Fired Transition: t1 
New markings: 
p1        p2        p3        p4         
 0         2         1         2          
 
At time: 4  enabled transtions are:  t2 
 
At time: 4  firing transtions are:  t2 
 
Time: 5 
Fired Transition: t2 
New markings: 
p1        p2        p3        p4         
 0         2         0         3          
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At time: 5  enabled transtions are:  
 
At time: 5  firing transtions are: 
 

 

10.2 Example-10: Cotree with infinite states 
This simple example deals with the Petri net shown in figure 16. The co-tree of this Petri net 
is shown in figure 17. Let us find the co-tree using GPenSIM: 
 

 
Figure-16.  Cotree example 

 
 
 
 

 
Figure-17.  Co-tree 
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10.2.1 Petri net definition file 
The Petri net definition file is given below: 
 
% PDF Example-10: Cotree example-2  
% file:   
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...      
    = fig_9_def()  
  
PN_name = 'Petri net in fig 4.12' ;  
set_of_places = { 'p1' , 'p2' , 'p3' , 'p4' };  
set_of_trans = { 't1' , 't2' , 't3' };  
set_of_arcs =  { 'p1' , 't1' , 1, 't1' , 'p2' , 1, 't1' , 'p3' , 1, ...  
    'p2' , 't2' ,1, 't2' , 'p1' ,1, 'p2' , 't3' ,1 ...  
    'p3' , 't3' ,1, 't3' , 'p3' ,1, 't3' , 'p4' , 1};    

10.2.2 The main file 
The main file (after phases 2 & 3) is given below: 
 
% Example-10: Cotree example-2  
% the main file to get co-tree  
clear, clc;  
png = petrinetgraph( 'fig_9_def' );  
dyn.initial_markings = { 'p1' ,1};  
  
CT = cotree(png, dyn);  
print_cotree(CT); %  
The print system will print the following on the screen, which is equivalent to the graphical 
co-tree shown in figure 17. 
 
 
Petri net in fig 4.12' 
 
state:1  ROOT node 
p1        p2        p3        p4         
 1         0         0         0          
 
state:2    Firing event: t1      
p1        p2        p3        p4         
 0         1         1         0          
Node type: ' '   Parent state: 1 
 
state:3    Firing event: t2      
p1        p2        p3        p4         
 1         0         Inf       0          
Node type: ' '   Parent state: 2 
 
state:4    Firing event: t3      
p1        p2        p3        p4         
 0         0         1         1          
Node type: 'T'   Parent state: 2 
 
state:5    Firing event: t1      
p1        p2        p3        p4         
 0         1         Inf       0          
Node type: ' '   Parent state: 3 
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state:6    Firing event: t2      
p1        p2        p3        p4         
 1         0         Inf       0          
Node type: 'D'   Parent state: 5 
 
state:7    Firing event: t3      
p1        p2        p3        p4         
 0         0         Inf       1          
Node type: 'T'   Parent state: 5 
 
  
Boundedness: 
p1 : 1 
p2 : 1 
p3 : Inf 
p4 : 1  
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11. Global Info 
Global variables and parameters can be passed through different files (e.g. SMU, PDFs, and 
TDFs) by making use of the ‘global info’ packet. The methodology of using ‘global info’ is 
explained below through the use of an example. 

11.1 Use of ‘MAX_LOOP’ 
‘MAX_LOOP’ value, if added to the ‘global_info’ packet, will be read by the gpensim 
function to limit the simulation cycles to the given value.  
 

NOTE: NOTE: NOTE: NOTE:     
IIIIncrease MAX_LOOP for large number of iterations ncrease MAX_LOOP for large number of iterations ncrease MAX_LOOP for large number of iterations ncrease MAX_LOOP for large number of iterations 
(loops)(loops)(loops)(loops)    
    

11.1.1 Example-11: MAX_LOOP  
This is same as the example-06. This time, we will experiment with global MAX_LOOP 
setting.  

 
Figure-18.  Transitions firing sequentially 

 
The Petri net shown in figure 18 run for ever. Thus, unless specified in the SMU, default 
maximum loop number is 200 (default MAX_LOOP=200). We can stop the simulations after 
a couple of simulation cycles. The statement given below limits the simulation cycles to 11, 
by assigning the value 11 to ‘MAX_LOOP’: 
 
> global_info.MAX_LOOP = 11; % GLOBAL DATA: MAX. SIMULATION CYCLES  
 
The code below is for the main simulation file.  
 
% Example-11: Measuring Timing  
% MSF: measure_timing.m  
clear, clc;  
global_info.MAX_LOOP = 11; % GLOBAL DATA: MAX. SIMULATION CYCLES  
  
png = petrinetgraph( 'measure_timing_def' );  
dynamicpart.initial_markings = { 'p1' , 10};  

p1 p2 

t1 t2 
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dynamicpart.firing_times = { 't1' , 1, 't2' , 100};  
sim = gpensim(png, dynamicpart, global_info);  
plotp(sim, {'p1', 'p2'});  
 

 
Simulation results: When MAX_LOOP is not explicitly specified (meaning by default, 
MAX_LOOP=200): 
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Simulation results: When MAX_LOOP is explicitly specified to be 11 (in SMU, 
MAX_LOOP=11): 
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11.2 Use of ‘LOOP_NUMBER’  
When you simulate large Petri net models, during the simulations you will notice that the 
MATLAB hangs, without giving you any sign of life. It will be better, if you can see some 
outputs during simulations so that you are assured that the simulations are going on and that 
the system is dead (‘hanging’). By setting the LOOP_NUMBER  flag in global_info, you can 
see the loop numbers when the simulation goes on.  
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Let us go back to the simple example given in section 3.2, the simple Petri net. This time, we 
will set the LOOP_NUMBER flag in the MSF: 
 
 
%% LOOP_NUMBER flag is set in global_info  
global_info.LOOP_NUMBER = 1; 
 
png = petrinetgraph( 'simple_pn_def' ); 
dynamic_info.initial_markings = { 'Place-1' ,3, 'Place-2' ,5};  
dynamic_info.firing_times = { 'Transition-1', 10}; 
 
Sim_Results = gpensim(png, dynamic_info, global_iin fo);  
print_statespace(Sim_Results);   
 
 
The output on screen is different as loop numbers are printed during simulations. According 
to the screen output, the simulations are complete after 3 loops.   
Loop nr:  1 
Loop nr:  2 
Loop nr:  3 
 
A Simple Petri Net definition 
Number of places: 3 
Initial Markings: 
Place-1   Place-2   Place-3    
 3         5         0          
step:1    Firing event: Transition- 1     (Starting time: 0)  Finishing 
Time: 10 
Current markings: 
Place-1   Place-2   Place-3    
 2         3         1          
step:2    Firing event: Transition- 1     (Starting time: 10)  Finishing 
Time: 20 
Current markings: 
Place-1   Place-2   Place-3    
 1         1         2          
Completion time: 20  
 

NOTE: NOTE: NOTE: NOTE:     
It is always a good idea to set the LOOP_NUMBER It is always a good idea to set the LOOP_NUMBER It is always a good idea to set the LOOP_NUMBER It is always a good idea to set the LOOP_NUMBER 
flagflagflagflag    ((((global_info.LOOP_NUMBER = 1global_info.LOOP_NUMBER = 1global_info.LOOP_NUMBER = 1global_info.LOOP_NUMBER = 1) in the MSF. By ) in the MSF. By ) in the MSF. By ) in the MSF. By 
setting the LOOP_NUMBER flag, simulation loop setting the LOOP_NUMBER flag, simulation loop setting the LOOP_NUMBER flag, simulation loop setting the LOOP_NUMBER flag, simulation loop 
number will be displayed during the simulation, thus number will be displayed during the simulation, thus number will be displayed during the simulation, thus number will be displayed during the simulation, thus 
we know that simulation is going on and the we know that simulation is going on and the we know that simulation is going on and the we know that simulation is going on and the 
computer is not ‘hanging’.computer is not ‘hanging’.computer is not ‘hanging’.computer is not ‘hanging’.    
 

11.2.1 What are loops?  
(See chapter 19 “Design of GPenSIM” for more details)  
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OK, we do see loop numbers during simulations, a kind of assurance that something is going 
on. But what are loops? To understand loops, we need to understand the theory for general 
discrete event simulations (DES).  
 
Any DES software consists of three main elements: 
1. Global timer: Global timer (or current time) synchronizes all the activities. Global timer 

must not be changed by any transitions (events). In GPenSIM, global timer can be 
accessed in TDFs, by calling pn.current_time, where pn is the run-time Petri net 
structure.  

2. Event Scheduler: Event scheduler is a loop mainly performing two actions: 
a. First: checking for any enabled transitions; if there are any enabled transition and 

if they can fire, then they will be put in queue called firing transitions 
(implemented in file start_firing.m ).  

b. Second: checking the queue for firing transitions. When a firing transition is 
complete, it will be removed from the queue (implemented in file 
complete_firing.m) 

In GPenSIM, file timed_pensim.m implements event scheduler. 
3. Queue: (discussed above) 
 
Thus, loop number comes from timed_pensim which is called by gpensim. The loop number 
states how many cycles of event scheduler has taken place so far.   
NOTE: Chapter 16 “Design of GPenSIM” gives more details 
 
 

11.3 Use of ‘DELTA_TIME’  
Section 6 “Internal Clock” describes an example (example-04: delay) in which there are 
enabled transitions but not firing (blocked). This is situation, the clock is advanced by a time 
interval equal to one-fourth of the minimal firing time of any transition. We can override this 
value for timer advancement, by assigning a new value to “DELTA_TIME”. 
 
Lets repeat the example-04. We will study three cases this time: 

1. DELTA_TIME is not explicitly specified (by default, delta_time equals to ¼ of least 
firing time) 

2. DELTA_TIME = 5 
3. DELTA_TIME = 0.1 

 

11.3.1 Example-12: DELTA_TIME  
This example is the same as example-04. But this time, we will experiment setting 
DELTA_TIME. In the figure shown below, let p1 has 5 initial tokens. Also let firing time of 
t1 is 7 seconds.  Though t1 can fire 5 times successively, we want it to fire only at the start of 
every 30 seconds. This means, t1 is delayed by 30 - 7 = 23 seconds.  
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Figure-19.  Delay Example 
 
During the waiting time of 23 seconds (t1 is enabled but not firing), time advancement will be 
done in time units of 7/4 = 1.75 seconds, if DELTA_TIME is not explicitly specified.  
 
MSF: 
% Example-12: DELTA_TIME  
% file: delay_demo.m: 
global_info.MAX_LOOP = 1000; 
global_info.DELTA_TIME = 0.1;  
 
png = petrinetgraph( 'delay_demo_def' );  
  
dynamic.initial_markings = { 'p1' ,3};  
dynamic.firing_times = { 't1' , 7};  
  
sim = gpensim(png, dynamic, global_info);  
print_statespace(sim);  
plotp(sim, { 'p1' , 'p2' });  
 
 

Simulation results: When DELTA_TIME is not explicitly specified (meaning by default, 
DELTA_TIME =1.75): 
 

 
 

Simulation results: When DELTA_TIME is explicitly specified to be 5.0: 
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Simulation results: When DELTA_TIME is explicitly specified to be 0.1: 
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12. TDF_POST 
As stated in the earlier sections, there are two types of Transition Definition Files (TDF): 

• TDF_PRE, which are run before firing a transition 
• TDF_POST, which are run after firing a transition 

 

12.1 Example-13: Binary Semaphore  
Figure 20 shown below depicts a web server consisting of two server machines that will fire 
alternatively. First, client requests are queued at pSTART. Then two routers (tX1 and tX2) 
remove the client requests from the pSTART queue and put it to the queues for Web Server 1 
(p1) and Web Server 2 (p2) respectively.  In order to evenly distribute client requests to both 
servers, one would expect that the two routers fire alternatively, meaning that no router fires 
more times than the other.  
  

 
 

Figure-20.  Load balancing by alternative firing 
 
 

To allow the routers (transitions) fire alternatively, we can implement a binary semaphore that 
can be read and manipulated by the definition files of both transitions.  
 

12.1.1 Petri net definition file (‘loadbalance_def.m’): 
% PDF for Example-13: Binary Semaphore example  
% file: loadbalance_def.m:  
% definition of petri net graph for Norwegian trafi c lights  
 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
                    = loadbalance_def(global_info)  
PN_name='Web Server Load Balancer' ;  
  
set_of_places={ 'pSTART' , 'p1' , 'p2' };  
set_of_trans={ 'tX1' , 'tX2' };  
  
set_of_arcs={ 'pSTART' , 'tX1' ,1, 'tX1' , 'p1' ,1, ...    
             'pSTART' , 'tX2' ,1, 'tX2' , 'p2' ,1};  
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12.1.2 Main Simulation File (‘loadbalance.m’): 
% Example-13: Example for binary semaphore  
% MSF: loadbalance.m  
  
clear, clc;  
global_info.semafor = 1;    % GLOBAL DATA: binary semafor  
  
png = petrinetgraph( 'loadbalance_def' );  
dynamicpart.initial_markings = { 'pSTART' , 10};  
dynamicpart.firing_times = { 'tX1' , 10, 'tX2' , 20};  
  
sim = gpensim(png, dynamicpart, global_info);  
plotp(sim, { 'p1' , 'p2' });  
 

 
Note: gpensim takes three input parameters: in addition to the usual static (‘png’) and 
dynamic (‘dynampart’) details, the third parameter is the global info (‘global_info’). Global 
info consists of two elements:  

1) The binary semaphore with initial value 1; this means, tX1 should  fire first. 
2) MAX_LOOP: the use of this value is explained in the previous sections   

 

12.1.3 TDF_PRE for tX1 (‘tX1_pre.m’): 
function  [fire, PN,new_color, override, selected_tokens, gl obal_info] = ...  
    tX1_pre(PN, new_color, override, selected_token s, global_info)  
% 
% 
  
if  (global_info.semafor==1),  
    fire = 1;  
else  
    fire = 0;  
end ;  
 
 

12.1.4 TDF_POST for tX1 (‘tX1_post.m’): 
function  [PN, global_info] = ...  
    tX1_post(transition, PN, global_info)  
% function tX1_post  
% 
  
global_info.semafor = 2; % release semafor to tX2  
 
 

12.1.5 TDF_PRE for tX2 (‘tX2_pre.m’): 
function  [fire, PN,new_color, override, selected_tokens, gl obal_info] = ...  
    tX2_pre(PN, new_color, override, selected_token s, global_info)  
% TDF tX2_pre  
% 
  
  
if  (global_info.semafor==2),  
    fire = 1;  
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else  
    fire = 0;  
end ;  
 
 
 

12.1.6 TDF_POST for tX2 (‘tX2_post.m’): 
function  [PN, global_info] = ...  
    tX2_post(transition, PN, global_info)  
% function tX2_post  
% 
  
global_info.semafor = 1; % release semafor to tX1  
 
 
 
The plot given below shows that the queues are filled evenly; this is because of the transitions 
fires alternatively. 
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Figure-21.  Printout of binary semaphore in action 
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13. Improving Simulation Results for Printout  
Let’s take look again at the printout of simulation results from the previous section. The 
figure, given below, look like ramp rather than pulses. This is due to poor sampling 
(recording). Simulation results are recorded only whenever transition complete firing. In other 
words, simulation results are recorded only when there is a new state.   
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Figure-22.  Printout of binary semaphore (same as figure-21) 

 
We can improve sampling by adding a small loop that will generate new states faster.  
Example-14 given below explains the trick. 
 

13.1 Example-14: Improving results printout of binary semaphore 
In this example, we will add a small loop to the system; the small loop consisting of a place 
pXtra  and a transition tXtra  is solely included to speed up the sampling rate (or rate of 
reaching newer states). The firing time of the transition tXtra  has to be small, lets say – one 
tenth of the least firing time of any transition in the system (tX1 or tX2).  Note: Do not assign 
zero value firing time of the transition tXtra; with zero value, the system will never take off.  



 62
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Figure-23.  Adding a small loop to speed up sampling rate 

 
Except adding the small loop (pXtra – tXtra – pXtra), there is no change in coding for 
example-13. 
 
MSF: 
% Example-14: Example for binary semaphore  
% MSF: loadbalance_2.m  
  
clear, clc;  
global_info.semafor = 1;    % GLOBAL DATA: binary semafor  
 
png = petrinetgraph( 'loadbalance_2_def' );  
dynamicpart.initial_markings = { 'pSTART' , 10, 'pXtra' ,1}; % pXtra added  
dynamicpart.firing_times = { 'tX1' , 10, 'tX2' , 20, 'tXtra' ,1}; % tXtra added  
  
sim = gpensim(png, dynamicpart, global_info);  
plotp(sim, { 'p1' , 'p2' });  
print_statespace(sim);  
  
PDF:  
% Example-14: Binary semaphore example with better rpintout  
% file: loadbalance_2_def.m: PDF  
  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
                    = loadbalance_2_def(global_info )  
 PN_name='Web Server Load Balancer' ;  
  
set_of_places = { 'pSTART' , 'p1' , 'p2' , 'pCK' };  
set_of_trans = { 'tX1' , 'tX2' , 'tCK' };  
set_of_arcs = { 'pSTART' , 'tX1' ,1, 'tX1' , 'p1' ,1, ...    
             'pSTART' , 'tX2' ,1, 'tX2' , 'p2' ,1, ...  
             'pCK' , 'tCK' ,1, 'tCK' , 'pCK' ,1};  
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Simulation Results:   
Figure-24 shows the new simulation results after inclusion of the small loop; new simulation 
results and its printout is due to faster sampling.  

Figure-24.  Improved printout due to faster sampling 
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14. Prioritizing Transitions  
In discrete systems, we need to increase or decrease priority of an event(s), in order to give 
fair chance to the competing events. There are some basic facilities in GPenSIM to change 
priorities of transitions.  

1) Initial declaration of priorities in the main simulation file.   
2) Increasing priority of a specific transition 
3) Decreasing priority of a specific transition 

 

14.1 Priorities of transitions 
Initial declaration of priorities in the main simulation file can be done using the global_info.  
global_info.PRIORITY = { 't1' , 5, 't2' ,2, 't3' , 10};  

 
In the above line, we are simply saying that t3 has top priority, followed by t2 and t1 has the 
least priority. When we assign priority, we can assign any integer value, both negative and 
positive. Higher the value, better the priority is.  
  
 Increasing priority of a specific transition can be done using the function 
‘priority_increment ’, which will increase the value just by 1.   
PN = priority_increment(PN, 't1' ); % priority of ’t1’ is now 6   

 
Decreasing priority of a specific transition can be done using the function 
‘priority_decrement’, which will reduce the value by 1.  
PN = priority_decrement(PN, 't3' ); % priority of ’t2’ is now 9  

 

14.2 Example-15: Alternating firing 
Transitions t1, t2, and t3, should fire alternatively (figure 25). 

 
Figure-25.  Alternating firing of t1, t2, and t3 
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MSF: 
 
% Example-15: Priority Increment example  
global_info.MAX_LOOP = 20;  
 
png = petrinetgraph( 'prio_def' );  
dyn.initial_markings = { 'pS' , 1}; % tokens initially  
dyn.firing_times = { 't1' ,1, 't2' ,1, 't3' ,1};  
  
sim = gpensim(png, dyn, global_info);  
plotp(sim, { 'pE1' , 'pE2' , 'pE3' });  
  
 
PDF: 
% Example-15: Priority Increment example  
% file: prio_def.m: definition of petri net  
  
function  [PN_name, set_of_places, set_of_trans, ...  
    set_of_arcs] = prio_def()  
  
PN_name='Priority Example: Petri Net for production facilit y' ;  
set_of_places={ 'pS' , 'pE1' , 'pE2' , 'pE3' };  
  
set_of_trans={ 't1' , 't2' , 't3' };  
  
set_of_arcs={ 'pS' , 't1' ,1, 'pS' , 't2' ,1, 'pS' , 't3' ,1, ...   
    't1' , 'pE1' ,1, 't1' , 'pS' ,1, ...      
    't2' , 'pE2' ,1, 't2' , 'pS' ,1, ...          
    't3' , 'pE3' ,1, 't3' , 'pS' ,1};  
 

 
 
TDF_PRE for t1 (‘t1_pre.m’): 
 
function  [fire, PN,new_color,override,selected_tokens,globa l_info] = ...  
    t1_pre(PN, new_color,override,selected_tokens,g lobal_info)  
% 
% t1_pre  
  
PN = priority_increment(PN, 't2' );  
fire = 1;  
 

 
TDF_PRE for t2 (‘t2_pre.m’): 
 
function  [fire, PN,new_color,override,selected_tokens,globa l_info] = ...  
    t2_pre(PN, new_color,override,selected_tokens,g lobal_info)  
% 
% t2_pre  
  
PN = priority_increment(PN, 't3' );  
fire = 1;  
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TDF_PRE for t3 (‘t3_pre.m’): 
 
function  [fire, PN,new_color,override,selected_tokens,globa l_info] = ...  
    t3_pre(PN, new_color,override,selected_tokens,g lobal_info)  
% 
% t3_pre  
  
PN = priority_increment(PN, 't1' );  
fire = 1;  
 

 
Simulation Results: 
The results show that the mechanism is little bit flawed, and need to be checked.  
 

 

14.3 Example-16: Priority Decrement Example  
This example is the same as for the previous example shown in figure 25. However, this time, 
we will allow t1 to fire 5 times uninterrupted, and then allow t1 and t2 fire alternatively for 10 
more times. After this, all three can fire alternatively.  
 
 
SMU: 
% Example-16: Priority decrement  
global_info.MAX_LOOP = 25;  
global_info.PRIORITY = { 't1' ,10, 't2' ,5};  
  
png = petrinetgraph( 'prio_def' );  
dyn.initial_markings = { 'pS' , 1}; % tokens initially  
dyn.firing_times = { 't1' ,1, 't2' ,1, 't3' ,1};  
  
sim = gpensim(png, dyn, global_info);  
plotp(sim, { 'pE1' , 'pE2' , 'pE3' });  
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PDF: 
% Example-16: Priority Decrement  
% file: prio_def.m: definition of petri net  
  
function  [PN_name, set_of_places, set_of_trans, ...  
    set_of_arcs] = prio_def()  
  
PN_name='Priority Example: Petri Net for production facilit y' ;  
set_of_places={ 'pS' , 'pE1' , 'pE2' , 'pE3' };  
  
set_of_trans={ 't1' , 't2' , 't3' };  
  
set_of_arcs={ 'pS' , 't1' ,1, 'pS' , 't2' ,1, 'pS' , 't3' ,1, ...   
    't1' , 'pE1' ,1, 't1' , 'pS' ,1, ...      
    't2' , 'pE2' ,1, 't2' , 'pS' ,1, ...          
    't3' , 'pE3' ,1, 't3' , 'pS' ,1};  
 

 
TDF_PRE for t1 (‘t1_pre.m’): 
function  [fire, PN,new_color,override,selected_tokens,globa l_info] = ...  
    t1_pre(PN, new_color,override,selected_tokens,g lobal_info)  
% 
% t1_pre  
  
PN = priority_decrement(PN, 't1' );  
fire = 1;  
  
 
TDF_PRE for t2 (‘t2_pre.m’): 
function  [fire, PN,new_color,override,selected_tokens,globa l_info] = ...  
    t2_pre(PN, new_color,override,selected_tokens,g lobal_info)  
% 
% t2_pre  
  
PN = priority_decrement(PN, 't2' );  
fire = 1;  
  
 
TDF_PRE for t3 (‘t3_pre.m’): 
function  [fire, PN,new_color,override,selected_tokens,globa l_info] = ...  
    t3_pre(PN, new_color,override,selected_tokens,g lobal_info)  
% 
% t3_pre  
  
PN = priority_decrement(PN, 't3' );  
fire = 1;  
  
 
Simulation Results: Again, not perfect!!! 
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15. Using Resources  
In engineering systems, there are always resources, like human resources to operate some 
machines, printers as common resources in a network, etc. Just like machines and robots, 
resources can also be represented with transitions (or places, depending on the situation). 
However, GPenSIM offers ‘global resources’ as a mechanism to simply the models, also 
provided is a print function called ‘print_schedule’ to print the usage of the resources.  
 
Given below is a simple example that explains the usage of resources. An larger example on 
scheduling is given in the applications part.  
 

15.1 Using Resources 
The resources are to be declared first in the MSF. For example, if there three (human) 
resources named Al, Bob, and Chuck, then the following declaration will be added to the 
MSF:  
dynamicpart.resources = { 'Al' , 'Bob' , 'Chuck' };  

 
Reserving a resource can be done through the function ‘resource_request’. For example: 
 
[acquired, PN] = resource_reuqest(PN, 'T1' ); % seek any resource 

 
% seek specific resources, both ’Al’ and ’Bob’  
[acquired, PN] = resource_request(PN, 'T1' , { 'Al' , 'Bob' });  
 
In the first case, transition ’T1’ seeks (reserves) one instance of a resource (any resource). If 
allocation was successful, the flag ‘acquired’ will be true. In the second case, ‘T1’ seeks two 
resources, but specific resources like ‘Al’ and ‘Bob’, this time.  
 
Releasing the resources: a transition has to release all the resources it is holding, releasing 
some or specific resources is not possible.  
 
% release all the resources (if any) held by ’T1’  
[released, PN] = resource_ release(PN, 'T1' );  
 

15.1.1 Function ‘print_schedule’ 
% function print_schedule(sim_results)  
% For every resource utilized, this function prints  
% a matrix where each row represents:  
%   [the transition that used the resource, start t ime, end time]  
% 
% In addition the following are also displayed: 
%       K, ST, LE, SI, and LT 
% 
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15.2 Example-17: Using Resources to realize critical section 
This example is the same as the one that is described under the section “Global Info”; 
however, we make use of ‘resources’ rather than ‘global info’.  
 
Figure 26 shown below depicts a web server consisting of two server machines that will fire 
alternatively. First, client requests are queued at pSTART. Then two routers (tX1 and tX2) 
remove the client requests from the pSTART queue and put it to the queues for Web Server 1 
(p1) and Web Server 2 (p2) respectively.  In order to evenly distribute client requests to both 
servers, one would expect that the two routers fire alternatively, meaning that no router fires 
more times than the other.  
  

 
 

Figure-26.  Load balancing by alternative firing 
 
 

To allow the routers (transitions) fire alternatively, these two transition seek a semafor 
(resource). If a transition does not get the semafor, its priority is increased so that next time it 
will get it.  
 

15.2.1 MSF: ’cr.m’ 
% Example-17: use of resource for realizing critica l function   
png = petrinetgraph( 'cr_def' ); 
dynamicpart.initial_markings = { 'pSTART' , 20}; 
dynamicpart.firing_times = { 'tX1' , 10, 'tX2' , 20};  
dynamicpart.resources = { 'semafor' }; % resource as semafor  
  
sim = gpensim(png, dynamicpart); 
  
plotp(sim, { 'p1' , 'p2' }), grid on; 
print_schedule(sim); 

 

15.2.2 PDF: ’cr_def.m’ 
% Example-72: Binary semaphore example  
% file: cr_def.m: PDF  
  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
                    = cr_def(global_info)  
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PN_name='Implementing Critical region with resources' ; 
  
set_of_places={ 'pSTART' , 'p1' , 'p2' }; 
set_of_trans={ 'tX1' , 'tX2' };  
  
set_of_arcs={ 'pSTART' , 'tX1' ,1, 'tX1' , 'p1' ,1, ...    
             'pSTART' , 'tX2' ,1, 'tX2' , 'p2' ,1};  

 

15.2.3 TDF: ’tX1_pre.m’ 
function  [fire, PN,new_color, override, selected_tokens, 
global_info] = ...  
    tX1_pre(PN, new_color, override, selected_token s, global_info)  
% tX1_pre  
% 
  
[acquired, PN] = acquire_resource(PN, 'tX1' );  
  
if  ~acquired,   % if not suceeded  
    PN = priority_increment(PN, 'tX1' ); % increase trans priority  
end ;  
  
fire = acquired;  
 
 

15.2.4 TDF: ’tX1_post.m’ 
function  [PN,global_info] = tX1_post(transition, PN, global _info)  
% tX1_post  
% 
[released, PN] = release_resource(PN, 'tX1' ); % release semafor  
 

15.2.5 Results: Plot 
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15.3 Example-18: Using Resource Specific  
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16. Using Hourly Clock 
So far, we have treated clock as a unitless timer; it will always start at 0 during simulation 
start, and will increase afterwards. However, in business modeling applications, it will be 
much better to use an hourly clock, a clock that uses and shows time in hours, minutes, and 
seconds. The following example explains the issue. 
 

CAUTION!CAUTION!CAUTION!CAUTION!    CAUTION! CAUTION! CAUTION! CAUTION!     
Time in hourly format must be giveTime in hourly format must be giveTime in hourly format must be giveTime in hourly format must be given as a vector with n as a vector with n as a vector with n as a vector with 
3 columns (e.g. 1:00 PM as [133 columns (e.g. 1:00 PM as [133 columns (e.g. 1:00 PM as [133 columns (e.g. 1:00 PM as [13,,,,    0000,,,,    0]); you can mix 0]); you can mix 0]); you can mix 0]); you can mix 
times in 3 column hourly format with single times in 3 column hourly format with single times in 3 column hourly format with single times in 3 column hourly format with single 
numbers; however, these single numbers numbers; however, these single numbers numbers; however, these single numbers numbers; however, these single numbers will be will be will be will be 
taken as seconds. taken as seconds. taken as seconds. taken as seconds.     
    
E.g.:E.g.:E.g.:E.g.:    
[0 40 0][0 40 0][0 40 0][0 40 0]            is equivalent to 40 minutes (or 2400 seconds)is equivalent to 40 minutes (or 2400 seconds)is equivalent to 40 minutes (or 2400 seconds)is equivalent to 40 minutes (or 2400 seconds)    
'unifrnd(40'unifrnd(40'unifrnd(40'unifrnd(40,40)*60',40)*60',40)*60',40)*60'    is equivalent to 2400 seconds (40*60)is equivalent to 2400 seconds (40*60)is equivalent to 2400 seconds (40*60)is equivalent to 2400 seconds (40*60)    
180180180180                is equivalent to 180 secondsis equivalent to 180 secondsis equivalent to 180 secondsis equivalent to 180 seconds    
            

16.1 Example-19: Hourly Clock for Lunching Clerks 
An office opens at 09:00 AM on every business day. Customers arrive at every 30 minutes. 
There are two clerks who will interact with the customers. The clerks take 40 minutes to 
service a customer.  
The office closes at 01:00 PM, and no customer will be allowed into the office. However, 
those customer(s) already reside inside the office will be serviced.  

1. Case-A: What time the last customer will leave the office, after finishing his/her 
business? 

2. Case-B: Suppose, there will only one clerk available from 12:00 Noon, how the 
departure time of the last customer will change? 

 

16.1.1 Functions for hourly clock 
First of all, we want to start the simulation at 09:00 AM. This can be fed into the model 
through the global_info packet.  
 
global_info.STARTING_AT = [9 0 0]; % start 09:00:00 HH:MM:SS  
 
In MSF, to assign firing times to clerk (40 minutes each), and customer arrival (every 30 
minutes), we may either use the hourly clock format or times in seconds: 
 
dyn.firing_times = { 'tGENNEW' , 30*60, 'tCRK1' , 'unifrnd(40,40)*60' , ...  
    'tCRK2' , [0 40 0]};   
 
Note: Because of the use of hourly clock formats, the functions print_statespace and plotp 
display time information in hourly formats.  
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16.2 Case-A: Two clerks work all the time 
 
MSF: 
% Example-31: Hourly clock for lunching clerks  
 
clear; clc;  
global_info.LOOP_NUMBER = 1;  
global_info.MAX_LOOP = 50;  
  
global_info.STARTING_AT = [9 0 0]; % start 09:00:00 HH:MM:SS  
  
%%%% COMPOSE %%%%%%% 
png = petrinetgraph( 'clerksNEW_def' );  
  
%%%% DYNAMIC DETAILS %%%% 
dyn.initial_markings = { 'pGEN' ,1, 'pQUE' ,1};  
dyn.firing_times = { 'tGENNEW' ,30*60, 'tCRK1' , 'unifrnd(40,40)*60' , ...  
    'tCRK2' , [0 40 0]};  
  
%%%% SIMULATE %%%%% 
[RES] = gpensim(png, dyn, global_info);  
plotp(RES,  { 'pEND' }), grid on;  
print_statespace(RES); 

 
PDF: 
% Example-31: Hourly clock for lunching clerks  
% PDF 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
    = clerksNEW_def(global_info)  
  
PN_name = 'The Two Clerks' ;  
set_of_places = { 'pGEN' , 'pQUE' , 'pEND' };  
set_of_trans={ 'tGENNEW' , 'tCRK1' , 'tCRK2' };  
  
set_of_arcs={ 'pGEN' , 'tGENNEW' ,1 , 'tGENNEW' , 'pGEN' ,1, ... 

'tGENNEW' , 'pQUE' ,1, ...  
     'pQUE' , 'tCRK1' ,1, 'tCRK1' , 'pEND' ,1, ...  
     'pQUE' , 'tCRK2' ,1, 'tCRK2' , 'pEND' ,1};  
 
 
TDF for customer arrival: 
% Example-31: Hourly clock for lunching clerks  
% TDF for customer arrival generation  
 
function  [fire,new_color,override, selected_tokens,global_i nfo] = ...  
    tGENNEW_def (PN, new_color, override, selected_ tokens, global_info)  
  
ct = compare_time (PN.current_time, [13 0 0]);  
if  le(ct, 0),  
    fire = 1;  
else  
    fire=0;  
end ;  
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16.2.1 Simulation results 
Simulation results show that the last customer leaves at 14:10 when both clerks function all 
the time. 
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16.3 Case-B: Only one clerk functions from 12:00 Noon 
The only change will be the introduction of TDF for one of the clearks. 
 
TDF for clerk-1 (‘tCLR1_def.m’): 
% Example-31: Hourly clock for lunching clerks  
% TDF for clerk-1  
 
function  [fire,new_color,override, selected_tokens,global_i nfo] = ...  
    tCRK1_def (PN, new_color, override, selected_to kens, global_info)  
  
ct = compare_time (PN.current_time, [12 0 0]);  
if  lt(ct, 0),  
    fire = 1;  
else  
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    fire=0;  
end ;  
 

16.3.1 Simulation results 
Simulation results show that the last customer leaves at 14:40 when only one clerk functions 
after 12:00 Noon. 
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Figure-27.  Plot showing time in hourly format.  
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17. Hybrid Systems: Petri Net Models with Fuzzy Inference   
This section talks about incorporating MATLAB toolboxes within Petri net models. This 
section presents an example on how to incorporate fuzzy inference engines in Petri net 
models.  
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18. Colored GPenSIM  
So far, we have treated tokens in place as indistinguishable. All the tokens inside a place are 
the same; it does not matter which token arrived into the place first or last. It does not matter 
either whether a token is deposited into a place by one transition or other. But, all these are 
going to be changed: from now on, every token is unique, identifiable with a unique token ID.  
 
When using colors in GPenSIM, the following issues are important: 

1. Only transitions can manipulate colors  (see section 12) 
2. Colors are inherited by default: that is when a token fires, it collects all the colors 

from the consumed (input) tokens and then it passes these to the deposited (output) 
tokens. However, color inheritance can be prevented by overriding (see section 
12). 

3. An enabled transition can select specific input tokens based on preferred colors 
(see section 13). 

4. An enabled transition can select specific input tokens based on the time tokens are 
created (see section 14). 

5. Structure of tokens; this is discussed in the following subsection 
 
 

18.1 Structure of Tokens 
A token has a structure consisting of 3 elements: 

1. tokID  (integer value): a unique token ID  
2. creation_time (integer value): the time the token was created by a transition. 

Please note that this time may be different from (less than) the time the token was 
actually deposited into a place.   

3. t_color (set of strings): a set of colors 
 

E.g.: 
                 tokID: 101  
         creation_time: 30 
               t_color: {'TAMIL', 'NORSK', 'ENGLISH '} 
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19. Color Inheritance  
In GPenSIM, colored tokens can only utilized by transitions; since transitions are active, 
transition definition files can be coded with controlling colored tokens: 

1. When a transition fire, it inherits colors of all input tokens; thus new tokens 
deposited into output places would have all the colors inherited from the input tokens. 
NOTE: inheritance of colors can be prohibited by overriding .  

2. When a transition fires, it can choose input tokens with specific colors 
3. When new tokens are deposited into the output place, new colors can be added by 

the transition. This new color will in addition to the inherited colors (unless 
inheritance is overridden – in this case of overriding, the deposited tokens into the 
output places will only have the new color added by the transition) 

 
Let us experiment coloring with the help of a simple example candidly called ‘simple_adder’ 
 

19.1 Example-15: Simple Adder 
This example presents an adder that adds two numbers input by the user.   

 
Figure-28.  Simple Adder 

 
Petri net model of a simple adder has 6 places and 4 transitions.  Places p1 and p2 are just to 
keep the initial tokens so that the system can be started. Transitions tGET_NUM1  and 
tGET_NUM2  get an input number each from the user; let say the numbers fed by the user are 
21 and 45. Then these two transitions convert the numbers into strings (‘21’  and ‘45’ ) and 
then add the strings as colors to the output tokens deposited into pNUM1 and pNUM2 
respectively. Thus, the places pNUM1 and pNUM2 have tokens with input numbers as the 
colors.  
 
Transition tADD  does nothing in terms of colors. When it fires, by default, it deposits a token 
into the output place with the inherited colors. Hence, the token in place pADDED will have 
two colors ({‘21’, ‘45’}).  
 
The final transition tCONVERT  does five activities: 

p1 
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pNUM1 

pNUM2 

tADD 

pADDED 

tCONVERT 

pRESULT 

tGET_NUM1 

tGET_NUM2 
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1. First it gets the two colors (strings ‘21’ and ‘45’) of the token in place pADDED.  
2. Then it converts the strings into numbers (21 and 45),  
3. It adds these two numbers together to make the sum (66).  
4. Then it coverts the sum into a string (‘66’), and  
5. Finally, it adds this string as color to the token deposited into the place pRESULT. 

The transition will also override inheritance so that the sum will be the only color of 
the token deposited into pRESULT 

 
 

19.1.1 MSF: ’simple_adder.m’ 
% MSF for Example-15: simple_adder.m  
clear, clc;  
pn = petrinetgraph( 'simple_adder_def' );  
dynamicpart.initial_markings = { 'p1' ,1, 'p2' ,1};  
  
[results] = gpensim(pn, dynamicpart); 
print_colormap(results, { 'p1' , 'p2' , 'pNUM1' , , ...   
                  'pNUM2' , 'pADDED' , 'pRESULT' });  
  
 
 

19.1.2 PDF: ’simple_adder_def.m’ 
% PDF for Example-15: simple_adder_def.m  
 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
                    = simple_adder_def(global_info)   
 
PN_name='Color example: Simple Adder' ;  
set_of_places={ 'p1' , 'p2' , 'pNUM1' , 'pNUM2' , 'pADDED' , 'pRESULT' };  
set_of_trans={ 'tGET_NUM1' , 'tGET_NUM2' , 'tADD' , 'tCONVERT' };  
set_of_arcs={ 'p1' , 'tGET_NUM1' ,1, 'tGET_NUM1' , 'pNUM1' ,1, ...   
             'p2' , 'tGET_NUM2' ,1, 'tGET_NUM2' , 'pNUM2' ,1, ...   
             'pNUM1' , 'tADD' ,1, 'pNUM2' , 'tADD' ,1, ...  
             'tADD' , 'pADDED' ,1, 'pADDED' , 'tCONVERT' ,1, ...  
             'tCONVERT' , 'pRESULT' ,1};  
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19.1.3 TDF: ’tGET_NUM1.m’ 
The TDF will ask the user to input a number:  
 
 
function  [fire, new_color, override, selected_tokens,global _info] = ...  
    tGET_NUM1_def (pn, new_color, override, selecte d_tokens,global_info)  
%% TDF: tGET_NUM1_def  
  
num1 = input( 'input number-1: ' );  
new_color = num2str(num1);  
  
fire=1;  %always fire 
 
 
 

19.1.4 TDF: ’tGET_NUM2.m’ 
The TDF will ask the user to input another number:  
 
 
function  [fire, new_color, override, selected_tokens,global _info] = ...  
    tGET_NUM2_def (pn, new_color, override, selecte d_tokens,global_info)  
%% TDF: tGET_NUM2_def  
  
num2 = input( 'input number-2: ' );  
new_color = num2str(num2);  
  
fire=1;  %always fire 
 
 

19.1.5 TDF: ’tADD.m’ 
There is no need for TDF tADD. It, by default, inherits colors from input tokens and put the 
colors to the output token.  
 

19.1.6 TDF: ’tCONVERT.m’ 
function  [fire, new_color, override, selected_tokens,global _info] = ...  
    tCONVERT_def (pn, new_color, override, selected _tokens,global_info)  
%% TDF: tCONVERT_def  
 
% first, select any token  
tokID = select_token(pn, 'pADDED' , 1);  
 
% second, get the colors of the selected token  
colors = get_color(pn, tokID);  
 
num1 = str2num(colors{1});  % convert color-1 into number  
num2 = str2num(colors{2});  % convert color-2 into number  
  
new_color = num2str(num1+num2);  
override = 1; % only sum as color - NO inheritance  
  
fire=1;  %always fire  
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19.1.7 Simulation Results 
The statement,  
    print_colormap(results, { 'p1' , 'p2' , 'pNUM1' , 'pNUM2' , 'pADDED' , 
'pRESULT' });  
prints colors of all the places. As shown in the screen dump below,  

• p1 has no colors, 
• p2 has no colors, 
• pNUM1 has ‘21’ as the color, 
• pNUM2 has ‘45’ as the color, 
• pADDED has both ‘21’ and ‘45’ as colors, and 
• pRESULT has ‘66’ as the color 

 
 
 
 
input number-1: 21 
input number-2: 45 
  
 
Color Map for place: p1 
   
  
Color Map for place: p2 
  
  
Color Map for place: pNUM1 
Time: 0 
    '21' 
  
  
Color Map for place: pNUM2 
Time: 0 
    '45' 
  
  
Color Map for place: pADDED 
Time: 0 
    '21'    '45' 
 
   
Color Map for place: pRESULT 
Time: 0 
66 
 

 
 

19.2 Example-16: Alternative Design for Simple Adder 
In the previous subsection, the sum is stored as a color inside a token that was deposited on 
the place pRESULT.  You may prefer getting the sum as a variable too so that it can be freely 
used as you want. You can achieve this with a simple design change.  
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In addition to storing the sum as a color on the deposited token, you can also let the transition 
tCONVERT  to store the sum as an element of global_info. In fact, global_info is meant for 
this kind of activities, getting information somewhere within a transition so that the 
information can be passed to subsequent transitions and back to the main simulation file. The 
new tCONVERT  given below does the same five activities, but the last activity includes 
storing the sum as an element of global_info:  
 
The final transition tCONVERT  does five activities: 

1. (no change) It gets the two colors (strings ‘21’ and ‘45’) of the token in place 
pADDED.  

2. (no change) Then it converts the strings into numbers (21 and 45),  
3. (no change) It adds these two numbers together to make the sum (66).  
4. (no change) Then it coverts the sum into a string (‘66’), and  
5. (REVISED) Finally, it adds this string as color to the token deposited into the place 

pRESULT. The transition will also override inheritance so that the sum will be the 
only color of the token deposited into pRESULT In addition, the sum will be stored 
as an element of global_info. 

 
The new TDF for tCONVERT  is given below:  
 
 
function  [fire, new_color, override, selected_tokens,global _info] = ...  
    tCONVERT_def (pn, new_color, override, selected _tokens,global_info)  
%% TDF: tCONVERT_def  
 
% first, select any token from pADDER  
tokID = select_token(pn, 'pADDED' , 1);  
 
% second, get the colors of the selected token  
colors = get_color(pn, tokID); 
 
num1 = str2num(colors{1});  % convert color-1 into number  
num2 = str2num(colors{2});  % convert color-2 into number  
sum = num1 + num2;  
  
new_color = num2str(sum);   % set the sum as the new color  
global_info.sum = sum; %%% sum is added to global_info  
  
override = 1; % only sum as color - NO inheritance  
  
fire=1;  %always fire  
 
 
 
There will be slight modifications in the MSF too: 
1. To start the simulations, we have to pass global_info with the element ‘sum’ to gpensim.  
2. After simulations, we do not need to print the colormap to study the results; instead we 

will inspect the global_info.   
 
 
The new MSF is given below: 
% MSF for Example-16: Simple Adder with Color (Vers ion 2)  
% FILE simple_adder_2.m  
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clear, clc;  
pn = petrinetgraph( 'simple_adder_def' );  
dynamicpart.initial_markings = { 'p1' ,1, 'p2' ,1};  
  
global_info.sum = 0; %% this is necessary  
  
[results, global_info] = gpensim(pn, dynamicpart, g lobal_info);  
  
%% print value of the element 'global_info.sum'  
disp([ 'The sum of two numbers : ' , num2str(global_info.sum)]);  
 
 
The result printed on the screen is given below: 
 
input number-1: 21 
input number-2: 45 
 
  
The sum of two numbers : 66 
>> 
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20. Token Selection based on Color 
A transition may select input tokens based on color. This is done by executing the function 
select_token_color. There are 4 input parameters to this function: the Petri net structure 
at run-time, the input place of the transition, number of tokens to be selected, and finally the 
required color of the token.   
 
The output parameter of the function is a set of IDs of the selected tokens (set of tokID ). Of 
course, the number of returned tokID  may be not equal to the number originally wanted by 
the transition, depending on availability.  
 
Usage example: if a transition wants 4 tokens from the input place pBUFF with color ‘TYPE-
A’, then the transition will execute the following statement:  
 
X = select_token_color(PN, 'pBUFF' ,4, 'TYPE-A' );  
 
The returned value X is a set of tokID  consisting of tokID  for 0-4 tokens. If X is empty then 
no tokens are available with the required color. If X consists on 1, 2, or 3 tokID , then the 
request by the transition is partially fulfilled.  If X consists of 4 tokID , then the request is 
fulfilled fully.   
 

20.1 Example-17: Selecting Input Tokens with Specific Color 
Figure given below depicts a production process. Place pGEN represents raw materials, and 
transition tGEN represents a machine that produces 3 types of products: 
• ‘type-A’ with 10% production rate,   
• ‘type-B’ with 30% production rate, and 
• ‘type-C’ with rest 60% of the time.  
 
Though buffer pBUFF contains all three types of products, Transition tA  is supposed to 
select ‘type-A’ products only. Similarly, tB selects ‘type-B’ products and tC selects ‘type-C’ 
products only.  

 
Figure-29.  Selecting tokens with specific color  
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During simulations, tGEN adds new color to tokens that will be deposited in pBUFF. The 
new color will be ‘type-A’ 10% of the time, ‘type-B’ 30% of the time and ‘type-C’ 60% of 
the time. Since tA  will consume only tokens with color ‘type-A’, tokens with color ‘type-A’ 
are deposited in pA; similarly, pB and pC will have only tokens with color ‘type-B’ and 
‘type-C’ respectively.  
  

20.1.1 MSF 
The main simulation file is given below; it shows that number of initial tokens in pGEN is 
100: 
 
% MSF for Example-17: COLOR Selection EXAMPLE  
global_info.ratio_A=0.10;  
global_info.ratio_B=0.30;  
global_info.ratio_C=0.60;  
  
png = petrinetgraph( 'select_color_def' );  
dyn.initial_markings = { 'pGEN' ,30};  
  
[RES] = gpensim(png, dyn, global_info);  
plotp(RES, { 'pA' , 'pB' , 'pC' });  
print_colormap(RES, { 'pA' , 'pB' , 'pC' });  
 
 

20.1.2 PDF  
The Petri net definition file is given below: 
 
% PDF for Example-17: COLOR Selection EXAMPLE  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
    = select_color_def(global_info)  
  
PN_name = 'SELECT COLOR Example' ;  
set_of_places = { 'pGEN' , 'pBUFF' , 'pA' , 'pB' , 'pC' };  
set_of_trans={ 'tGEN' , 'tA' , 'tB' , 'tC' };  
  
set_of_arcs={ 'pGEN' , 'tGEN' ,1 , 'tGEN' , 'pBUFF' ,1, ...  
    'pBUFF' , 'tA' ,1, 'tA' , 'pA' ,1, ...  
    'pBUFF' , 'tB' ,1, 'tB' , 'pB' ,1, ...  
    'pBUFF' , 'tC' ,1, 'tC' , 'pC' ,1};  
 
 
 

20.1.3 TDF: ‘tGEN_def.m’ 
The first transition definition file is for the transition tGEN. The only task of this transition 
definition file is to produce tokens with a color: either ‘type-A’ or ‘type-B’. 
 
 
function  [fire,new_color,over_ride, selected_tokens,global_ info] = ...  
    tGEN_def (PN, new_color, over_ride, selected_to kens, global_info)  
  
random_number = rand(1);  
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if  (random_number < global_info.ratio_A),  
    new_color = 'type-A' ;    
elseif  (random_number < (global_info.ratio_A + global_inf o.ratio_B)),  
    new_color = 'type-B' ;  
else  
    new_color = 'type-C' ;  
end ;  
  
fire = 1;  
 
 
 
From the above code, it is visible, that the transition always fire if enabled (fire=1); however, 
it also add a color (‘type-A’, ‘type-B’ or ‘type-C’) to new tokens deposited into pBUFF.  
 

20.1.4 TDFs for tA, tB, and tC 
The only task of this transition definition file for tA , tB, and tC is to select tokens with 
specific color. In the TDF for tA , we force the transition tA  to select ‘type-A’ tokens only: 
 
function  [fire, new_color, over_ride, selected_tokens,globa l_info] = ...  
    tA_def (PN, new_color, over_ride, selected_toke ns, global_info)  
%%%% TDF: tA_def  
  
tokID = select_token_color(PN, 'pBUFF' ,1, 'type-A' ); 
 
selected_tokens = tokID; % this token must be removed, none other  
fire = (selected_tokens); % FIRE ONLY IF 'Selected_tokens' IS NOT EMPTY  
 
 
First, tokens from input place pBUFF with color ‘type-A’ is selected by using the function 
select_token_color. The third parameter - ‘1’ - is the number of tokens needed. If selection is 
successful, then the identity number of the selected token (tokID ) is returned as the output 
parameter.  By copying tokID to selected_tokens , we inform the system that this token 
must be consumed by the transition. Finally, we allow the transition to fire only if tokID is not 
empty, meaning that there exist a token with ‘type-A’ color.  
 

20.1.5 Simulation results 
Figure-23 shows the plot of tokens in pA, pB, and pC. Since ‘type-C’ is produced 60% of the 
time, there will about 6 times more tokens in pC than in pA and pB. The results shown in 
figure-23 agrees.    



 91

0 50 100 150 200 250
0

10

20

30

40

50

60

 

 

pA

pB
pC

 
Figure-30.  Simulation results of ‘select_color’ demo. 

 
In addition, we can also inspect the colormap. In pA, the only color of any token is ‘type-A’.  
 
 
 
Color Map for place: pA 
Time: 0 
    'type-A' 
 
  
Color Map for place: pB 
Time: 0 
    'type-B' 
  
  
Color Map for place: pC 
Time: 0 
    'type-C' 
 
>>  

 

20.2 Required or Preferred Color? 
This is an important issue. With a very small change, we can allow a transition to prefer 
(‘may’) a color than require (‘must’) a color.  
 
In the example given above, we forced the transition tA  to select a token with color ‘type-A’. 
This is done first by selecting a token with ‘type-A’ color. Function select_token_color  
will return tokID if a token is with ‘type-A’ color is available or else returned tokID value will 
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be empty (‘[]’). And then we forced the transition to fire only if tokID is not zero, meaning 
there is at least one token with the required color, so that the transition can fire.  
 
However, we may also allow transition to prefer ‘type-A’ tokens. This means, if ‘type-A’ 
tokens are available, they will be consumed; if not, one of the other existing tokens of ‘type-
B’ or ‘type-C’will be consumed. The newer TDF given below prefers (rather than forcing) 
‘type-A’ tokens: 
 
 
function  [fire, new_color, over_ride, selected_tokens,globa l_info] = ...  
    tA_def (PN, new_color, over_ride, selected_toke ns, global_info)  
  
selected_tokens = select_token_color(PN, 'pBUFF' ,1, 'type-A' );  
  
fire = 1; 
 
 
This transition always fires if enabled (because fire=1), regardless of ‘type-A’ tokens are 
available or not. It will also consume ‘type-A’ tokens if available (if ‘selected_tokens’ list is 
not empty).  
 
Let us think about a generic case: if a transition needs m tokens from an input place to fire (arc 
weight m), and has obtained n numbers preferred tokens (selected_tokens  list has n 
tokIDs). If m is greater than n, then the system consumes (removes) n number of specific 
tokens (identified by the tokIDs in the selected_tokens  list) and the rest m-n tokens 
will be other arbitrary tokens in the input place. 
   

20.2.1 Simulations  
TDFs for tA , tB, and tC are changed so that tokens with specific colors are preferred (not 
required).  
 
Simulations show that now pA, pB, and pC have tokens with all colors.   
 
 
  
Color Map for place: pA 
Time: 0 
    'type-A'    'type-B'    'type-C' 
 
  
  
Color Map for place: pB 
Time: 0 
    'type-A'    'type-B'    'type-C' 
 
  
  
Color Map for place: pC 
Time: 0 
    'type-A'    'type-B'    'type-C' 
 
>> 
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20.2.2 Example-18: Selecting Input Tokens with 2 or more colors 
In this example, we make a tiny change to tA  so that tA  make select either ‘type-A’ or ‘type-
B’ color.  
 
 
function  [fire, new_color, over_ride, selected_tokens,globa l_info] = ...  
    tA_def (PN, new_color, over_ride, selected_toke ns, global_info)  
%%%% TDF: tA_def  
  
tokID1 = select_token_color(PN, 'pBUFF' ,1, 'type-A' ); 
tokID2 = select_token_color(PN, 'pBUFF' ,1, 'type-B' ); 
 
selected_tokens = [tokID1 tokID2]; % one of these token must be removed  
fire = (selected_tokens); % FIRE ONLY IF 'Selected_tokens' IS NOT EMPTY  
 
 
Now we see that tokens in pA have both ‘type-A’ and ‘type-B’ colors. 
 
 
 
  
Color Map for place: pA 
Time: 0 
    'type-A'    'type-B' 
 
  
Color Map for place: pB 
Time: 0 
    'type-B' 
 
  
Color Map for place: pC 
Time: 0 
    'type-C' 
 
>> 
 

 
 



 94

 

21. Summary: Token Selection based on Color 
 

21.1 Token Selection From A Single Input Place 
Let’s say that place pAB has tokens with many colors including {‘A’, ‘B’, ‘X’, ‘Y’, {‘A’, 
‘B’}, {‘A’, ‘X’}, {‘A’, ‘Y’}, {‘B’, ‘X’}, …. {‘A’, ‘B’, ‘X’, ‘Y’}}. 
 

 
 
• Transition t selects token with color ‘A’ from pAB (meaning tokens with color {‘A’}or 

{‘A’, ‘B’} or {‘A’, ‘X’} are relevant): 
Program code in TDF:  

selected_tokens = select_token_color(PN, 'pAB' ,1, 'A' ); %

fire = (selected_tokens); % MUST

 
 
• Transition t selects ‘A’ or ‘B’ from pAB: 
Program code in TDF:  

tokID1 = select_token_color(PN, 'pAB' ,1, 'A' );

tokID2 = select_token_color(PN, 'pAB' ,1, ‘B' );

selected_tokens = [tokID1 tokID2]; % tokens to be removed

fire = (length(selected_tokens) >= 1); % MUST

 
 
 
• Transition t prefers ‘A’ or ‘B’ from pAB: 
 Program code in TDF:  

tokID1 = select_token_color(PN, 'pAB' ,1, 'A' );

tokID2 = select_token_color(PN, 'pAB' ,1, ‘B' );

selected_tokens = [tokID1 tokID2]; % tokens to be removed

fire = 1; %
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• Transition t selects a token with ‘A’ and ‘B’ from pAB: 
Program code in TDF: 

selected_tokens = select_token_color(PN, 'pAB' ,1, { 'A‘, ‘B’ });

fire = (selected_tokens); % MUST

 
 
 

21.2 Token Selection From Multiple Input Places 
Let’s say that place pAB has tokens with colors {‘’, ‘A’, ‘B’, {‘A’, ‘B’}} and pXY has tokens 
with colors {‘’, ‘X’, ‘Y’, {‘X’, ‘Y’}}. 

 
 
• Transition t selects ‘A’ from pAB and ‘Y’ from pXY : 
Program code in TDF: 

tokID1 = select_token_color(PN, 'pAB' ,1, 'A' );

tokID2 = select_token_color(PN, 'pXY' ,1, 'X' );

selected_tokens = [tokID1 tokID2]; % tokens to be removed

fire = (length(selected_tokens) == 2); % MUST  
 
 
 
• Transition t select ‘A’ from pAB or ‘X’ from pXY (at least one token be ‘A’ or ‘X’): 
Program code in TDF: 

tokID1 = select_token_color(PN, 'pAB' ,1, 'A' );

tokID2 = select_token_color(PN, 'pXY' ,1, 'X' );

selected_tokens = [tokID1 tokID2]; % tokens to be removed

fire = (length(selected_tokens) >= 1); % MUST

 
 
 
• Transition t prefers ‘A’ from pAB or ‘X’ from pXY : 
Program code in TDF: 
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tokID1 = select_token_color(PN, 'pAB' ,1, 'A' );

tokID2 = select_token_color(PN, 'pXY' ,1, 'X' );

selected_tokens = [tokID1 tokID2]; % tokens to be removed

fire = 1; % may
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22. Token Selection based on Time 
A transition may select input tokens based on time. In the current version GPenSIM 3.0, 
selection can be done based on two policies: ‘FCFS’ (First-Come-First-Served) and ‘LCFS’ 
(Last-Come-First-Served). Selection of time based token is done by executing the function 
select_token_time. There are 4 input parameters to this function: the Petri net structure at 
run-time, the input place of the transition, number of tokens to be selected, and finally the 
time-based selection policy (‘FCFS’ or ‘LCFS’).  
 
The output parameter of the function is a set of IDs of the selected tokens (set of tokID ). Of 
course, the number of returned tokID  may be not equal to the number originally wanted by 
the transition, depending on token availability.  
 
Usage example: if a transition wants 4 oldest tokens from the input place pBUFF, then the 
transition will execute the following statement:  
 
function  [fire,new_color,override, selected_tokens,global_i nfo] = ...  
    tLR_A_def (PN, new_color, override, selected_to kens, global_info)  
  
selected_tokens = select_token_time(PN, 'pBUFF' ,4, 'FCFS' );  
  
fire = 1;  
 
 
If pBUFF has more than equal to 4 tokens, then tokIDs of the 4 oldest tokens will be returned 
in selected_tokens . Otherwise, if pBUFF has less than 4 tokens, then tokIDs of all the 
tokens will be returned.  
 
Similarly, if a transition wants 2 youngest tokens from the input place pBUFF, then the 
transition will execute the following statement:  
 
 
function  [fire,new_color,override, selected_tokens,global_i nfo] = ...  
    tLR_A_def (PN, new_color, override, selected_to kens, global_info)  
  
selected_tokens = select_token_time(PN, 'pBUFF' ,2, 'LCFS' );  
  
fire = 1;  
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22.1 Example-19: Token selection based on time 
Figure-24 shows the example for token selection based on time. pSTART has 3 initial tokens 
(initial tokens are of course colorless). tCOL add colors to the tokens it deposits into 
pQUEUE. The branch “pDLY-tDLY-pRDY” is a delay, just to keep tSEL wait until all the 
three tokens are deposited into pQUEUE.  
 
tCOL adds color to tokens followingly: 
• Gets current time from the system.  
• Converts current time into ASCII string 
• Adds the ASCII string as color 
 
This means all the three tokens deposited into pQUEUE will have colors reflecting the time 
they were made by tSEL.  
 

Figure-31.  FCFS example 
 

22.1.1 PDF: fcfs_def.m 
 
% PDF for Example - 19: Token selection based on time  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  

= fcfs_def(global_info) 
  
PN_name = 'FCFS - LCFS DEMO' ; 
set_of_places = { 'pSTART' , 'pQUEUE' , 'pDLY' , 'pRDY' , 'pSEL' }; 
set_of_trans={ 'tCOL' , 'tSEL' , 'tDLY' }; 
set_of_arcs={ 'pSTART' , 'tCOL' ,1, 'tCOL' , 'pQUEUE' ,1, ...  
    'pQUEUE' , 'tSEL' ,1, 'tSEL' , 'pSEL' ,1, ...  
    'pDLY' , 'tDLY' ,1, 'tDLY' , 'pRDY' ,3, ...  
    'pRDY' , 'tSEL' ,1}; 
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22.1.2 MSF: fcfs.m 
 
% MSF for Example-19: Token selection based on time   
png = petrinetgraph( 'fcfs_def' ); 
  
dyn.initial_markings = { 'pSTART' ,3, 'pDLY' ,1}; 
dyn.firing_times = { 'tCOL' ,1, 'tDLY' ,100, 'tSEL' ,10};     
  
RES = gpensim(png, dyn); 
  
print_statespace(RES); 
print_colormap(RES, 'pSEL' ); 

 

22.1.3 TDF: tCOL_def.m 
 
function  [fire, new_color, over_ride, selected_tokens,globa l_info] = 

...  
    tCOL_def (PN, new_color, over_ride, selected_to kens, 

global_info) 
%%%% TDF: tCOL_def  
  
% add color  
new_color = num2str(PN.current_time); 
 
fire = 1;  
 

22.1.4 TDF: tSEL_def.m 
 
function  [fire,new_color,override, selected_tokens,global_i nfo] = 

...  
    tSEL_def (PN, new_color, override, selected_tok ens, global_info) 
  
selected_tokens = select_token_time(PN, 'pQUEUE' ,1, 'FCFS' ); 
fire = 1;  

 

22.1.5 Simulation Results 
The simulation result clearly shows that tSEL selects tokens on “FCFS” basis. At pSEL, 3 
tokens arrive; the first token had color ‘0’ then arrive a token with color ‘1’ and finally, come 
token with color ‘2’.   
 
… 
… 
 
step:7    Firing event: tSEL     (Starting time: 12 0)  Finishing Time: 130 
Current markings: 
pSTART    pQUEUE    pDLY      pRDY      pSEL       
 0         0         0         0         3          
Completion time: 130 
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Displaying token colors (WARNING: processing takes time .... 
  
Color Map for place: pSEL 
  
Time: 110 
    '0' 
 
Time: 120 
    '0'    '1' 
 
Time: 130 
    '0'    '1'    '2' 

 

22.1.6 Simulation results for LCFS 
Let’s change selection policy to LCFS: 
 
function  [fire,new_color,override, selected_tokens,global_i nfo] = 

...  
    tSEL_def (PN, new_color, override, selected_tok ens, global_info) 
  
selected_tokens = select_token_time(PN, 'pQUEUE' ,1, 'LCFS' ); 
fire = 1;  

 
Then the simulation result also depicts LCFS selection by tSEL: 
 
… 
… 
 
step:7    Firing event: tSEL     (Starting time: 12 0)  Finishing Time: 130 
Current markings: 
pSTART    pQUEUE    pDLY      pRDY      pSEL       
 0                     0                0            0             3         
Completion time: 130 
 
 
  
Displaying token colors (WARNING: processing takes time .... 
  
Color Map for place: pSEL 
  
Time: 110 
    '2' 
 
Time: 120 
    '1'    '2' 
 
Time: 130 
    '0'    '1'    '2' 
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23. Modeling a Single Runway Airport 
This project is to model a single runway airport. The aim is to propose a simple dynamic Petri 
net model that describes the traffic flow of a single runway (RWY) due to schedule (i.e. 
estimated times of arrivals and departures).  
 

23.1 Description of the Model 
Though the runway to be modeled is simple, it consists of the important elements of the 
runway dynamics.  
 

23.1.1 Assumptions  
In order to obtain a relatively simple model for simulation and dynamic analysis purposes, the 
following modeling assumptions are made:  
• There are only three types of aircrafts (A/C) handled by the airport.  
• The three types of A/Cs use pre-calculated runway length 
 

23.1.2 Model elements 
The important elements of the model are:  
• Runway (RWY)  
• Four taxiways (TWY)  
• Aircrafts (A/Cs), arriving, taxing, engaged in terminals, and departing  
• Rules that govern the interaction between A/C and use of the RWY  
 
The characteristic properties of each of the model elements are as follows. 
 

23.1.3 Runway (RWY) and taxiways (TWY) 
A single 2500 m runway is considered with two 900 TWY on both end and two rapid exit 
taxiways (RETs) located at approx. 1000 m and 1500 m from approach end threshold (see 
figure 2).  

 

23.1.4  The three categories of A/Cs 
The difference between aircraft is based on International Civil Aviation Organization (ICAO) 
threshold speed categories (A to E). Only aircraft with categories A, B and C are considered. 
The selected traffic mix contains the following types of aircraft with percentage:  
1. Category-A (e.g. lighter Cessna A/C):  30%,  
2. Category-B (e.g. Medium Business Jets): 10%  
3. Category-C (General Passenger Traffic): 60% 
 
Category-A, B, and C A/Cs occupy 1500, 2000, 2500 meters of the RWY for landing and 
take-off, respectively.  
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Figure-32.  Elements of the runway 

 

23.1.5 Governing rules  
The following rules are used to control the interactions between A/C and the use of the runway.  
 
1. Arrivals have priority on departures  
2. A landing aircraft will not normally be permitted to cross the runway threshold on its final 

approach until the preceding departing A/C has crossed the end of the runway, or has started a 
turn, or until all preceding landing A/C are clear off the RWY. That is, the model is governed by 
elementary air traffic control (ATC) principles, such as, only one aircraft at a time on 
RWY, and arrivals have priority over departures.  

 

23.1.6 Timing for simulations 
Runway occupancy times (ROT) for landing and departures are assumed to be equal for a 
specific category A/C: 
• Category-A A/Cs take 5 minutes (and first 1500 m of the RWY) 
• Category-B A/Cs take 7 minutes (and first 2000 m of the RWY) 
• Category-C A/Cs take  9 minutes (and the whole 2500 m of the RWY) 
 
Besides:  
• For arriving A/Cs, taxiing through any TWYs takes 5 minutes;  
• For departing A/Cs, lineup time for take-off is same taxiing time for arriving A/Cs 
• A/Cs arrive at a rate of 15-60 minutes (assume random timing) 
• Arrived A/C take service time (offloading and on-boarding passengers and goods) of 

about 45 minutes 
• Initially, there may be some A/Cs parked on turf or terminals (assume any number of 

A/Cs) 
• YOU MAY ASSUME ANY OTHER TIMING  
 

23.2 The Petri net Model 
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23.2.1 The Elements 
• Air crafts 
• Runway 
• Exit ways (for taxiing) 
• Terminal, and  
• Control tower 

 

23.2.2 Process Modules 

 
 

Figure-33.  Elements of the runway 
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23.2.3 The Petri net Model 
 

 
 

Figure-34.  The Petri net model showing only one terminal 
 
 

23.2.4 Places and transitions 
• Module-1: ARRIVAL: pARR,  tARR  
• Module-2: ABOUT TO LAND: pW4L:  Wait for landing 
  tGPL: Granting Permission for landing 
• Module-3: LANDING: pR2L: Ready to Land;  

  tLR1: Landing RWY length-1;  tLR2: Landing RWY length-2;    
tLR3: Landing RWY length-3; pACL: A/C Landed 

• Module-4: TAXIING: tT2T: Taxiing to Terminal;  
  tT2R: Taxiing to RWY 
• Module-5: TERMINAL: pR2B: Ready to Board;  
  tBRD: Boarding; pR2D: Ready to depart 
• Module-6: ABOUT TO TAKEOFF: pW4T: Wait for Takeoff;   
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  tGPT: Granting Permission for Takeoff 
• Module-7: TAKEOFF: pR2T: Ready to Takeoff;  
  tTR1: Takeoff RWY length-1;  tTR2: Takeoff RWY length-2;   

tTR3: Takeoff RWY length-3;  pACD: A/C Departed 
• Module-8: CONTROL: pCTR1: Runway to Control Tower,   

 pCTR2: Control Tower 2 Runway 
 tCLC: clear token color 

 

23.3 Program Code: MSF 
 

23.3.1 MSF 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  NARVIK; modeling a single runway airport  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; clc;  
global_info.ratio_A=0.30; 
global_info.ratio_B=0.10; 
global_info.ratio_C=0.60;  
  
global_info.MAX_LOOP = 200;  
global_info.LOOP_NUMBER = 1;  
  
ARRIVAL_FREQUENCY = 30;      % the main variable !!!  
 
%%%% STATIC DETAILS %%%% 
png = petrinetgraph( 'single_rwy_def' );  
  
%%%% DYNAMIC DETAILS %%%% 
dyn.initial_markings = { 'pARR' ,100, 'pCTR2' , 1};  
dyn.firing_times = { 'tARR' , ARRIVAL_FREQUENCY, 'tGPL' , 0, ...  
    'tLRA' ,5, 'tLRB' ,7, 'tLRC' ,9, ...  
    'tT2T' ,5, 'tBRD' ,45, 'tT2R' ,5, 'tGPT' ,0, ...   
    'tTRA' ,5, 'tTRB' ,7, 'tTRC' ,9};     
  
%%%% SIMULATE %%%%% 
[RES, global_info] = gpensim(png, dyn, global_info) ;  
print_statespace(RES);  
plotp(RES, { 'pW4L' , 'pR2B' , 'pW4T' });  
 

 

23.4 Program Code: PDF 
 
 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
    = single_rwy_def(global_info)  
% PDF: single_rwy_def  
  
PN_name = 'SINGLE RWY' ;  
  
set_of_places = { 'pARR' , 'pW4L' , 'pR2L' , 'pACL' , 'pR2B' , ...  
    'pR2D' , 'pW4T' , 'pR2T' , 'pACD' , 'pCTR1' , 'pCTR2' };  
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set_of_trans =  { 'tARR' , 'tGPL' , 'tLRA' , 'tLRB' , 'tLRC' , ...  
    'tT2T' , 'tBRD' , 'tT2R' , 'tGPT' , ...  
    'tTRA' , 'tTRB' , 'tTRC' , 'tCLC' };  
  
set_of_arcs = { ...  
    'pARR' , 'tARR' ,1, 'tARR' , 'pARR' ,1, 'tARR' , 'pW4L' ,1, ...   
    'pW4L' , 'tGPL' ,1, 'tGPL' , 'pR2L' ,1, ...  
    'pR2L' , 'tLRA' ,1, 'pR2L' , 'tLRB' ,1, 'pR2L' , 'tLRC' ,1, ...  
    'tLRA' , 'pACL' ,1, 'tLRB' , 'pACL' ,1, 'tLRC' , 'pACL' ,1, ...  
    'pACL' , 'tT2T' ,1, 'tT2T' , 'pR2B' ,1, ...  
    'pR2B' , 'tBRD' ,1, 'tBRD' , 'pR2D' ,1, ...  
    'pR2D' , 'tT2R' ,1, 'tT2R' , 'pW4T' ,1, ...   
    'pW4T' , 'tGPT' ,1, 'tGPT' , 'pR2T' ,1, ...  
    'pR2T' , 'tTRA' ,1, 'pR2T' , 'tTRB' ,1, 'pR2T' , 'tTRC' ,1, ...      
    'tTRA' , 'pACD' ,1, 'tTRB' , 'pACD' ,1, 'tTRC' , 'pACD' ,1, ...      
    'tLRA' , 'pCTR1' ,1, 'tLRB' , 'pCTR1' ,1, 'tLRC' , 'pCTR1' ,1, ...  
    'tTRA' , 'pCTR1' ,1, 'tTRB' , 'pCTR1' ,1, 'tTRC' , 'pCTR1' ,1, ...          
    'pCTR1' , 'tCLC' ,1, 'tCLC' , 'pCTR2' ,1, ...  
    'pCTR2' , 'tGPL' ,1, 'pCTR2' , 'tGPT' ,1, ...  
    };  
 
 

23.5 Program Code: TDFs 
 

23.5.1 TDF for tGPL (Adding Color) 
 
function  [fire,new_color,over_ride, selected_tokens,global_ info] = ...  
    tGPL_def (PN, new_color, over_ride, selected_to kens, global_info)  
  
% function [fire,new_color,selected_tokens,global_i nfo] = t2_def (PN,...  
%     new_color, selected_tokens, global_info)  
  
over_ride = 1;  
  
random_number = rand(1);  
if  (random_number < global_info.ratio_A),  
    new_color = 'CAT-A' ;  
    global_info.A_count = global_info.A_count + 1;  
elseif  and ((random_number >= global_info.ratio_A), ...  
        (random_number < (global_info.ratio_A + glo bal_info.ratio_B))),  
    new_color = 'CAT-B' ;  
    global_info.B_count = global_info.B_count + 1;  
else  
    new_color = 'CAT-C' ;  
    global_info.C_count = global_info.C_count + 1;  
end ;  
  
fire = 1;  
  

 

23.5.2 TDF for tLRA (Landing A-type AC) 
 
function  [fire, new_color, over_ride, selected_tokens,globa l_info] = ...  
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    tLRA_def (PN,new_color, over_ride, selected_tok ens, global_info)  
  
% function [fire,new_color,selected_tokens,global_i nfo] = ...  
%   tLRA_def (PN,new_color, selected_tokens, global _info)  
  
selected_tokens = select_token_with_colors(PN, 'pR2L' ,1, 'CAT-A' );  
  
if  ~isempty(selected_tokens),  
    global_info.tLRA_count = global_info.tLRA_count  + 1;  
    fire = 1;  
else  
    fire = 0;  
end ;  
  
 

23.5.3 TDF for tLRB (Landing B-type AC) 
 
function  [fire, new_color, over_ride, selected_tokens,globa l_info] = ...  
    tLRB_def (PN,new_color, over_ride, selected_tok ens, global_info)  
  
% function [fire,new_color,selected_tokens,global_i nfo] = ...  
%   tLRB_def (PN,new_color, selected_tokens, global _info)  
  
selected_tokens = select_token_with_colors(PN, 'pR2L' ,1, 'CAT-B' );  
  
if  ~isempty(selected_tokens),  
    global_info.tLRB_count = global_info.tLRB_count  + 1;  
    fire = 1;  
else  
    fire = 0;  
end ;  
 
 

23.5.4 TDF for tLRC (landing C-type AC) 
 
function  [fire, new_color, over_ride, selected_tokens,globa l_info] = ...  
    tLRC_def (PN,new_color, over_ride, selected_tok ens, global_info)  
  
% function [fire,new_color,selected_tokens,global_i nfo] = ...  
%   tLRC_def (PN,new_color, selected_tokens, global _info)  
  
selected_tokens = select_token_with_colors(PN, 'pR2L' ,1, 'CAT-C' );  
  
if  ~isempty(selected_tokens),  
    global_info.tLRC_count = global_info.tLRC_count  + 1;  
    fire = 1;  
else  
    fire = 0;  
end ;  
 
 

23.5.5 TDF for tTRA (Take Off, A-type AC) 
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function  [fire, new_color, over_ride, selected_tokens,globa l_info] = ...  
    tTRA_def (PN,new_color, over_ride, selected_tok ens, global_info)  
  
% function [fire,new_color,selected_tokens,global_i nfo] = ...  
%   tTRA_def (PN,new_color, selected_tokens, global _info)  
  
selected_tokens = select_token_with_colors(PN, 'pR2T' ,1, 'CAT-A' );  
  
if  ~isempty(selected_tokens),  
    fire = 1;  
else  
    fire = 0;  
end ;  
  
 

23.5.6 TDF for tTRB (Take Off, B-type AC) 
 
function  [fire, new_color, over_ride, selected_tokens,globa l_info] = ...  
    tTRB_def (PN,new_color, over_ride, selected_tok ens, global_info)  
  
% function [fire,new_color,selected_tokens,global_i nfo] = ...  
%   tTRB_def (PN,new_color, selected_tokens, global _info)  
  
selected_tokens = select_token_with_colors(PN, 'pR2T' ,1, 'CAT-B' );  
  
if  ~isempty(selected_tokens),  
    fire = 1;  
else  
    fire = 0;  
end ;  
  
 

23.5.7 TDF for tTRC (Take Off, C-type AC) 
 
function  [fire, new_color, over_ride, selected_tokens,globa l_info] = ...  
    tTRC_def (PN,new_color, over_ride, selected_tok ens, global_info)  
  
% function [fire,new_color,selected_tokens,global_i nfo] = ...  
%   tTRC_def (PN,new_color, selected_tokens, global _info)  
  
selected_tokens = select_token_with_colors(PN, 'pR2T' ,1, 'CAT-C' );  
  
if  ~isempty(selected_tokens),  
    fire = 1;  
else  
    fire = 0;  
end ;  
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23.5.8 TDF for tCLC (removing color in tokens) 
 
function  [fire,new_color,over_ride, selected_tokens,global_ info] = ...  
    tCLC_def (PN, new_color, over_ride, selected_to kens, global_info)  
  
% function [fire,new_color,selected_tokens,global_i nfo] = ...  
%   tCLC_def (PN,new_color, selected_tokens, global _info)  
  
over_ride = 1;  
fire = 1;  
 
 
 
 

23.6 Simulation Results 
Finding the Bottleneck for varying arrival rate:  
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Figure-35.  Arrival of ACs: every 60 min 

 



 114

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

 

 

pW4L

pR2B
pW4T

 
Figure-36.  Arrival of ACs: every 40 min 
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Figure-37.  Arrival of ACs: every 20 min 
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23.7 Discussion 
• For all frequencies (like flights every 60 min, 40 min, and 20 min), maximum number 

of flights waiting in the air (‘pW4L’) is 1. Therefore RWY is not the bottleneck.  
• Condition-1 (at any time, only one AC in RWY) is satisfied structurally. 
• How to satisfy ATC Condition-2: Landing has priority over takeoff?  
• Only one gate is used in the model. Thus, Gate is the bottleneck in simulations 

(‘pR2B’) 
• However, single RWY is obviously a problem considering close-down for 

maintenance and for fault-tolerance 
• How can the Petri net model easily modified for Stavanger-Sola (Double RWY)   

 
 

23.8 Improvement to simulation model – job arrival in predefined times 
In the Petri net model shown in figure-30, the aircraft arrival generator (or generally, job 
arrival generator) is given as a loop that will create aircraft arrivals with specific intervals; this 
could be slightly improved by using a stochastic value e.g. ‘normrnd(45, 5)’ meaning that 
aircraft arrives at about every 45 minutes with STD 5 minutes. But, still this will not help we 
have to generate arrivals at specific (or predefined) times.  Generating arrivals at predefined 
times can be elegantly done with the help of global_info, as shown in the following example.  
  

23.9 Example-26: Arrivals at predefined times 
 

 
 

Figure-38.  Arrival at predefined times 
 

Let us assume that jobs arrive at pre-defined times, e.g. at the following time: 4, 10, 22, 34, 
36, and 75. 

23.9.1 MSF  
% Example-26: A Example for pre-defined arrival tim es  
% file: profile_pn_def.m:  
clear, clc;  
  
global_info.MAX_LOOP = 500;  
global_info.Arrival_Times = [4, 10, 22, 34, 36, 75] ;  
  
png = petrinetgraph({ 'arrivals_def' });  
dynamic.initial_markings = { 'pGEN' ,1};  
sim = gpensim(png, dynamic, global_info);  
  
print_statespace(sim);  
plotp(sim, { 'pBUFF' });  
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23.9.2 PDF  
% Example-26: A Example for pre-defined arrival tim es  
% file: arrivals_def.m:  
  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...      
    = predefined_def(global_info)  
  
PN_name = 'Demo for pre-assigned arrival times' ;  
set_of_places = { 'pGEN' , 'pBUFF' };  
set_of_trans = { 'tGEN' };  
set_of_arcs =  { 'pGEN' , 'tGEN' ,1, 'tGEN' , 'pGEN' ,1, 'tGEN' , 'pBUFF' , 1};    
 

23.9.3 TDF ‘tGEN_def.m’ 
function  [fire,new_color,override, selected_tokens,global_i nfo] = ...  
    tGEN_def (PN, new_color, override, selected_tok ens, global_info)  
  
fire = 0; % to start with  
  
if  ~isempty(global_info.Arrival_Times),  
    Current_AT = global_info.Arrival_Times(1);  
    
    if  le(Current_AT, PN.current_time),  % less than or equal  
            global_info.Arrival_Times = global_info .Arrival_Times(2:end);  
            fire = 1;  
    end ;  
end ;  
 

23.9.4 Simulation Results 
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Figure-39.  Jobs generation at predefined times  
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24. Scheduling 
We present two examples in this section. Example-xx is a warm up example. In example-xx, 
we go through the “better-intended, worst-happened” phenomena normally associated with 
scheduling. Problems stated in the examples are taken from Stein (2008).  
 

24.1 Example-81: Minimizing completion time  
Figure-34, a digraph, shows the tasks to be done to complete a work. The figure shows the 
order in which the tasks to be done and the time required to complete each task. E.g. Task T1 
requires 4 time units and tasks T1 and T2 must be completed before task T4.  
 

 
Figure-40.  Digraph showing order of tasks to be completed  

 
 
Note that it will take a minimum of 16 time units to complete all the tasks, as task T2 
followed by T4, which requires 16 time units, is the critical path – the path of longest 
duration.  
 
The algorithm used for simulations is the priority-list scheduling. The order of priority (high 
to low) is assumed to be T1, T2, … , and T6. finally, we assume two human resources, 
generic and can do any task, named ‘Al, and ‘Bob’.  
 

24.1.1 Petri net model 
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Figure-41.  Petri Net model of the scheduling digraph  
 
The PDF for the Petri net model shown in figure –XX2 is given below: 
 
PDF (‘schedule01_def.m’): 
 
% Example-81: Scheduling-01  
% file: schedule01_def.m: PDF  
  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
                    = schedule01_def(global_info)  
  
PN_name='Scheduling example 01' ;  
  
set_of_places={ 'pS1' , 'pS2' , 'pS3' , 'pS6' , 'pE' , ...  
                'p14' , 'p24' , 'p35' };  
set_of_trans={ 'T1' , 'T2' , 'T3' , 'T4' , 'T5' , 'T6' };  
  
set_of_arcs={ 'pS1' , 'T1' ,1, 'pS2' , 'T2' ,1, 'pS3' , 'T3' ,1, 'pS6' , 'T6' ,1, ...  
             'T1' , 'p14' ,1, 'T2' , 'p24' ,1, 'T3' , 'p35' ,1, ...  
             'p14' , 'T4' ,1, 'p24' , 'T4' ,1, 'p35' , 'T5' ,1, ...  
             'T4' , 'pE' ,1, 'T5' , 'pE' ,1, 'T6' , 'pE' ,1, };  
                   

 
 

24.2 Programs  
In the preprocessor of each task, we will try to grab a resource that is available; the resources 
are implemented as a semafors. 
  
The pre-processor for task T1 (‘T1_pre.m’) is given below; other pre-processors for other 
tasks are similar – the only change is the task_nr, which is underlined in the code snippet 
given below: 
 
 
function  [fire, new_color,override,selected_tokens,global_i nfo] = ...  
    T1_pre(PN, new_color,override,selected_tokens,g lobal_info)  
  
% T1_pre  
  
task_nr = 1;   % TASK-1  
  
occu_semafor = global_info.semafor;  
semafor = ~occu_semafor;  
  
[row, cols] = find(semafor);    % find any available semafor (value ~= 0)  
  
if  ~isempty(cols),  
    sema = cols(1); % which is the first avialble semafor  
    global_info.my_semafor(task_nr) = sema; % that will be mine  
    global_info.semafor(sema) = task_nr;  % then reserve it  
   
    % pack results  
    global_info.timing(task_nr, 1) = sema;   % task handler  
    global_info.timing(task_nr, 2) = PN.current_tim e; % task starting time  
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    fire = 1;  
else  
    fire = 0;  
end ; 
 
 
In the post-processor of each task, we will release the semafor after use. The post-processor 
for task T1 (‘T1_post.m’) is given below; again, the post-processors for the other task are 
similar, we only need to change the task_nr.   
 
 
function  [global_info] = ...  
    T1_post(transition, PN, global_info)  
% function T1_post  
% 
  
task_nr = 1;   % TASK-1  
  
my_semafor = global_info.my_semafor(task_nr);  % which is my semafor  
global_info.semafor(my_semafor) = 0;     % release that  
  
% Pack results: task completion time  
global_info.timing(task_nr, 3) = PN.current_time; % task completion time  
 

 
 
Finally, the MSF (‘schedule01.m’) is given below: 
 
 
% Example-81:  
% MSF: scheule01.m  
clear, clc;  
  
no_of_employees = 2;  
no_of_tasks = 6;  
  
global_info.semafor    = zeros(1, no_of_employees);  % employees available  
global_info.my_semafor = zeros(1, no_of_tasks);  
  
global_info.PRIORITY = { 'T1' , 'T2' , 'T3' , 'T4' , 'T5' , 'T6' };  
  
global_info.timing = zeros(no_of_tasks, 3);     
  
png = petrinetgraph( 'schedule01_def' );  
  
dynamicpart.initial_markings = { 'pS1' ,1, 'pS2' ,1, 'pS3' ,1, 'pS6' ,1};  
dynamicpart.firing_times = { 'T1' ,4, 'T2' ,6, 'T3' ,5, 'T4' ,10, 'T5' ,2, 
'T6' ,7};  
  
[sim, global_info] = gpensim(png, dynamicpart, glob al_info);  
  
timing = global_info.timing;  
print_schedule(timing, { 'Al' , 'Bob' });  
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In the MSF, we are using a print function called ‘print_schedule.m’, to make better printout. 
This function is given below: 
 
 
function  print_schedule(timing, list_of_names)  
% function print_schedule(timing, list_of_names)  
  
no_of_employees = length(list_of_names);  
  
[timing_rows, timing_cols] = size(timing);  
  
for  employee = 1:no_of_employees,  
    disp( '  ' );  
    disp([ ' *** ' , list_of_names{employee}, ' ***' ]);  
     
    for  i=1:timing_rows,  
        if  eq(timing(i,1), employee),  
            disp([ 'Task' , num2str(i), ':   [' , ...  
                num2str(timing(i,2)), ', ' , num2str(timing(i,3)), ']' ]);  
        end ;  
    end ;  
end ;  
disp( '  ' );  
   
  
 

24.3 Results 
 
When we use only one resource (‘Al’), the time taken will be summation of all the time for 
individual tasks, 34 time units.  
  
% Example-81:  
% MSF: scheule01.m  
no_of_employees = 1; 
… 
… 
… 
print_schedule(timing, { 'Al' });   
  
The result of simulation is: 
 
 
*** Al *** 
Task1:   [0, 4] 
Task2:   [4, 10] 
Task3:   [10, 15] 
Task4:   [15, 25] 
Task5:   [25, 27] 
Task6:   [27, 34] 
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When we use two resources (‘Al’ and ‘Bob’), the time taken is 18 time units to complete all 
the tasks: 
 
 
% Example-81:  
% MSF: scheule01.m  
no_of_employees = 2; 
… 
… 
print_schedule(timing, { 'Al' ,  'Bob' });   
  
   
 
 *** Al *** 
Task1:   [0, 4] 
Task3:   [4, 9] 
Task5:   [9, 11] 
Task6:   [11, 18] 
   
 *** Bob *** 
Task2:   [0, 6] 
Task4:   [6, 16] 
   

 
However, if we use three resources (‘Al’, ‘Bob’, and ‘Carter’), then the maximum time 
needed is the critical path time, that is 16 time units. 
 
 
% Example-81:  
% MSF: scheule01.m  
no_of_employees = 3; 
… 
… 
print_schedule(timing, { 'Al' ,  'Bob' ,  'Carter' });   
  

 
   
 *** Al *** 
Task1:   [0, 4] 
Task6:   [4, 11] 
   
 *** Bob *** 
Task2:   [0, 6] 
Task4:   [6, 16] 
   
 *** Carter *** 
Task3:   [0, 5] 
Task5:   [5, 7] 
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24.3.1 In Summary: 
When only one resource (‘Al’) is used: 
Completion time: 34 time units 
Usage of resources = 100% 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

T1 T2 T3 T4 T5 T6 
 
 
When two resources (‘Al’ and ‘Bob’) are used: 
Completion time: 18 time units 
Idle time: Bob: 2 time units 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Al T1 T3 T5 T6 
Bob T2 T4   
 
 
When three resources (‘Al’, ‘Bob’, and ‘Carter’) are used: 
Completion time: 16 time units 
Idle time:  

Al: 5 time units 
Carter: 9 time units 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Al T1 T6      
Bob T2 T4 
Carter T3 T5          
 
 
 
 

24.4 Example-82: Scheduling – II 
Figure-36 shows another example.  
 

 
 

Figure-42.  Digraph for example-82  
 
In this example too, the priority of tasks are assumed as previously (top to bottom): T1, T2, 
…, T9 
  
When three resources (‘Al’, ‘Bob’, ‘Carter’) are used, the completion time is found to be 12 
time units. This is a “perfect storm” scenario, finishing the job by the time of the critical path 
(T1, T3), which is 12 time units.  
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 1 2 3 4 5 6 7 8 9 10 11 12 

Al T1 T9 
Bob T2 T4 T5 T7 
Carter T3 Idle  T8 
 
Let’s add another resource (‘Don’) and see how much the completion times are reduced. 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Al T1 T8         
Bob T2 T5 T9 
Carter T3 T6          
Don T4 T7          
 
The results above shows that when we add more resources, we make things worse as 
completion time is now increased. Now the completion time is 15 time units. 
 
 

24.4.1 Petri Net Model 
 
Figure given below shows the Petri net model. Note that the weight of arc between T4 and pX 
is 4. This means, every time T4 fires, it puts 4 tokens into pX. 

pS1 T1

pS2 T2

pS3 T3

pS4 T4

T9p19

pX

T5

pE

T8

T7

T6

4

 
 
 

This means, we have to make sure that these 4 tokens are consumed by the 4 transitions T5, 
T6, T7 and T8, one token for each transition.   
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24.4.2 Programming 
 
PDF (‘schedule02_def.m’): 
     
% Example-82: Scheduling-02  
% file: schedule02_def.m: PDF  
  
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
                    = schedule02_def(global_info)  
  
PN_name='Scheduling example 02' ;  
  
set_of_places={ 'pS1' , 'pS2' , 'pS3' , 'pS4' , 'pE' , ...  
                'p19' , 'pX' };  
set_of_trans={ 'T1' , 'T2' , 'T3' , 'T4' , 'T5' , 'T6' , 'T7' , 'T8' , 'T9' };  
  
set_of_arcs={ 'pS1' , 'T1' ,1, 'pS2' , 'T2' ,1, 'pS3' , 'T3' ,1, 'pS4' , 'T4' ,1, ...  
             'T1' , 'p19' ,1, 'p19' , 'T9' ,1, ...  
             'T9' , 'pE' ,1, 'T2' , 'pE' ,1, 'T3' , 'pE' ,1, ...  
             'T4' , 'pX' ,4, ...  
             'pX' , 'T5' ,1, 'pX' , 'T6' ,1, 'pX' , 'T7' ,1, 'pX' , 'T8' ,1, ...  
             'T5' , 'pE' ,1, 'T6' , 'pE' ,1, 'T7' , 'pE' ,1, 'T8' , 'pE' ,1};                   

 
 
MSF (‘schedule02.m’): 
% Example-82:  
% MSF: scheule02.m  
clear, clc;  
  
no_of_employees = 4;  
no_of_tasks = 9;  
  
global_info.semafor    = zeros(1, no_of_employees);  % employees available  
global_info.my_semafor = zeros(1, no_of_tasks);  
global_info.PRIORITY = { 'T1' , 'T2' , 'T3' , 'T4' , 'T5' , 'T6' , 'T7' , 'T8' , 'T9' };  
  
global_info.timing = zeros(no_of_tasks, 3);     
  
png = petrinetgraph( 'schedule02_def' );  
  
dynamicpart.initial_markings = { 'pS1' ,1, 'pS2' ,1, 'pS3' ,1, 'pS4' ,1};  
dynamicpart.firing_times = { 'T1' ,3, 'T2' ,2, 'T3' ,2, 'T4' ,2, ...  
                'T5' ,4, 'T6' ,4, 'T7' ,4, 'T8' ,4, 'T9' ,9};  
  
[sim, global_info] = gpensim(png, dynamicpart, glob al_info);  
%grid on, plotp(sim, {'p14', 'p24','p35','pE'});  
  
 
timing = global_info.timing;  
three_chaps = { 'Al' , 'Bob' , 'Chuck' };  
four_chaps  = { 'Al' , 'Bob' , 'Chuck' , 'Don' };  
  
if  (no_of_employees==3),  
    print_schedule(timing, three_chaps);  
else  
    print_schedule(timing, four_chaps);  
end ;  
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24.4.3 Pre-processor for T1, T2, T3, T4 and T9: 
The only job of the preprocessors T1_pre to T4_pre, and T9_pre is to grab an available so that 
they can start. However, the preprocessors for T5-T8 have one more job to do, that is to make 
sure that they fire only once (or consume only one token after T4 has fired). 
 
Pre-processor for T1, T2, T3, T4 and T9 are similar: 
 
 
function  [fire, new_color,override,selected_tokens,global_i nfo] = ...  
    T1_pre(PN, new_color,override,selected_tokens,g lobal_info)  
  
% T1_pre  
  
task_nr = 1 ;   % TASK-1  
  
occu_semafor = global_info.semafor;  
semafor = ~occu_semafor;  
  
[row, cols] = find(semafor);    % find any available semafor (value ~= 0)  
  
if  ~isempty(cols),  
    sema = cols(1); % which is the first avialble semafor  
    global_info.my_semafor(task_nr) = sema; % that will be mine  
    global_info.semafor(sema) = task_nr;  % then reserve it  
   
    % pack results  
    global_info.timing(task_nr, 1) = sema;   % task handler  
    global_info.timing(task_nr, 2) = PN.current_tim e; % task starting time  
     
    fire = 1;  
else  
    fire = 0;  
end ;  
  
 
 
Pre-processor for T5, T6, T7, and T8 are similar; they first check whether the transition is 
already fired once. If yes, then no more firing. Other wise, they try to grab a semafor. 
 
function  [fire, new_color,override,selected_tokens,global_i nfo] = ...  
    T5_pre(PN, new_color,override,selected_tokens,g lobal_info)  
  
% T5_pre  
  
task_nr = 5;   % TASK-5  
  
occu_semafor = global_info.semafor;  
semafor = ~occu_semafor;  
  
[row, cols] = find(semafor);    % find any available semafor (value ~= 0)  
  
tx = get_trans(PN, 'T5' );  
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if  (tx.times_fired), %if T5 has already fired once, then dont fire anymo re  
    fire = 0;  
    return ;  
end ;  
  
if  ~isempty(cols),  
    sema = cols(1); % which is the first avialble semafor  
    global_info.my_semafor(task_nr) = sema; % that will be mine  
    global_info.semafor(sema) = task_nr;  % then reserve it  
   
    % pack results  
    global_info.timing(task_nr, 1) = sema;   % task handler  
    global_info.timing(task_nr, 2) = PN.current_tim e; % task starting time  
     
    fire = 1;  
else  
    fire = 0;  
end ;  
 
 
 

24.4.4 Post-processors 
Post-processors for all the transition are similar; they just release the semafor the transitions 
were holding. The post-processor for T1 (‘T1_post.m’): 
 
 
function  [global_info] = ...  
    T1_post(transition, PN, global_info)  
% function t1_post  
% 
  
task_nr = 1;   % TASK-1  
  
my_semafor = global_info.my_semafor(task_nr);  % which is my semafor  
global_info.semafor(my_semafor) = 0;     % release that  
  
% Pack results: task completion time  
global_info.timing(task_nr, 3) = PN.current_time; % task completion time  
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25. Stochastic Timer 
This is an advanced topic, dealing with discretizing of continuous systems. We know that 
Petri net is for discrete event simulations only. However, if we could discretize continuous 
systems then these systems can also be modeled with Petri nets. However, this is not easy and 
needs some understanding of Petri net formalism and matrix representation. Interest reader is 
referred to a good book on this topic, Darren J. Wilkinson, “Stochastic Modelling for Systems 
Biology”, Chapman & Hall/CRC, NY, 2006. ISBN-10 1-58488-540-8. Read especially about 
Gillespi’s algorithm in chapter 06.   
 
Stochastic timer: So far, we have been using inbuilt global timer for simulations. We did not 
use any user-defined timer or time series for advancing the clock. Sometimes, we do need to 
use special timers to advance the simulation time by ourselves. In this case, we use stochastic 
timer. 

 
Figure-43.  Petri net model of the Prey-Predator interaction 

 

25.1 Example-25: The Prey-Predator ecological equilibrium 
The equilibrium is stated by 2 simple differential equations (known as Lotka & Volterra 
equation): 

• The specimen prey (e.g. rabbit - r) mutates by itself and depleted by predators (e.g. 
foxes - f):  

)()( frr
dt

dr ⋅⋅−⋅= βα  

• The specimen predator (e.g. fox) grows due to rabbits (access to food) and depleted by 
its own population (competition for food):  

)()( frf
dt

df ⋅⋅+⋅−= δγ  

• ,,, γβα  and δ  are parameters representing the interaction of the two species. 
 

25.2 Converting the dynamics to Petri nets 
Of course, the equilibrium is determined by classical (partial) differential equations. Without 
using mathematical solutions, which demands high mathematical skills for higher order 
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systems when many specimen types are involved, we go for the analytical reasoning using 
Petri nets. Equivalent Petri net model for the interaction is given below: 
 

25.3 Simulation files     
The program snippets using GPenSIM is given below: 

• First, in the main simulation file, we have to set the flag for ‘stochastic timer’ 
(global_info.STOCHASTIC = 1; )  

• Second, we have to define the stochastic timer in the file ‘time_advancement.m’ 
 

25.3.1 The Main Simulation File 
% MSF file for Example-25: Predator-Pey example 
% THIS EXAMPLE USES STOCHASTIC TIMER !!!  
global_info.MAX_LOOP = 10000; 
global_info.c = [1 .005 .6]; 
 
global_info.STOCHASTIC = 1; % set the flag for stochastic timer  
global_info.LOOP_NUMBER = 1; % set this flag as MAX_LOOP is large 
 
pn = petrinetgraph( 'predator_prey_def' ); 
dynamicpart.initial_markings = { 'Prey' ,50, 'Predator' , 100}; 
  
sim = gpensim(pn, dynamicpart, global_info); 
% NOTE: !!! 
%   print function ‘print_statespace’  
%   can not be used applications using stochastic t imer !!!!! 
%   !!!!!  
plotp(sim, { 'Prey' , 'Predator' });   %%%% figure 28  
plot(sim.LOG(:,2), sim.LOG(:,3));   %%%% figure 29  
 

 

25.3.2 Petri net Definition File 
%% PDF for Example-25: predator_prey_def.m:  
 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
                    = predator_prey_def(global_info )  
PN_name='predator-prey p/151' ;  
set_of_places={ 'Prey' , 'Predator' , 'DUMP' };  
set_of_trans={ 't1' , 't2' , 't3' };  
set_of_arcs={ 'Prey' , 't1' ,1, 't1' , 'Prey' ,2, ...   
    'Prey' , 't2' ,1, 'Predator' , 't2' ,1, 't2' , 'Predator' ,2, ...   
    'Predator' , 't3' ,1, 't3' , 'DUMP' ,1};     
 
 

25.3.3 Definition of stochastic timer (‘time_advancement.m’) 
%%%% !!!!!!!! CHANGING GLOBAL TIME !!! 
%%%% time_advancement is for CHANGING GLOBAL TIME ! !!  
%%% this time series is a realization of “Gilespi a lgorithm” 
 
function  [pn, global_info] = time_advancement(pn, global_in fo) 
 
c1=global_info.c(1);  c2=global_info.c(2);  c3=glob al_info.c(3); 
  



 129

Prey = get_place(pn, 'Prey' ); 
PRED = get_place(pn, 'Predator' ); 
  
h1 = c1 * Prey.tokens; 
h2 = c2 * Prey.tokens * PRED.tokens; 
h3 = c3 * PRED.tokens; 
H = h1 + h2 + h3; 
  
%%%%  probabilities  
global_info.pro1 = (h1/H); 
global_info.pro2 = (h2/H); 
global_info.pro3 = (h3/H); 
  
delta_T = 1-exp(-1/H); 
pn.current_time = pn.current_time + delta_T ; %%%%  CHANGING GLOBAL TIME 
!!!  
 

 

25.3.4 Transition Definition File: t1_def.m   
 
function  [fire, new_color, override, selected_tokens,global _info] = ...        
           t1_def (pn, new_color, override, selecte d_tokens,global_info) 
% function t1_def  
 
c1=global_info.c(1); c2=global_info.c(2); c3=global _info.c(3); 
 
Prey = get_place(pn, 'Prey' ); 
PRED = get_place(pn, 'Predator' );  
 
h1 = c1 * Prey.tokens;  
h2 = c2 * Prey.tokens * PRED.tokens;  
h3 = c3 * PRED.tokens; H = h1 + h2 + h3; 
 
%%%%  probabilities  
pro1=(h1/H); pro2=(h2/H); pro3=(h3/H); 
 
R = rand*(1);  
fire =  (R <= pro1); 
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25.3.5 Transition Definition File: t2_def.m   
function  [fire, new_color, override, selected_tokens,global _info] = ...  
    t2_def (pn, new_color, override, selected_token s,global_info)  
% function fire = t2_def(pn, global_info)  
  
c1=global_info.c(1);  c2=global_info.c(2);  c3=glob al_info.c(3);  
  
Prey = get_place(pn, 'Prey' );  
PRED = get_place(pn, 'Predator' );  
  
h1 = c1 * Prey.tokens;  
h2 = c2 * Prey.tokens * PRED.tokens;  
h3 = c3 * PRED.tokens;  
H = h1 + h2 + h3;  
  
%%%%  probabilities  
pro1=(h1/H);  pro2=(h2/H);  pro3=(h3/H);  
  
R = rand*(1);  
fire =  (R <= pro2);  

 
 

25.3.6 Transition Definition File: t3_def.m   
function  [fire, new_color, override, selected_tokens,global _info] = ...  
    t3_def (pn, new_color, override, selected_token s,global_info)  
% function fire = t3_def(pn, global_info)  
% tRES_implementation  
  
c1=global_info.c(1);  c2=global_info.c(2);  c3=glob al_info.c(3);  
  
Prey = get_place(pn, 'Prey' );  
PRED = get_place(pn, 'Predator' );  
  
h1 = c1 * Prey.tokens;  
h2 = c2 * Prey.tokens * PRED.tokens;  
h3 = c3 * PRED.tokens;  
H = h1 + h2 + h3;  
  
%%%%  probabilities  
pro1=(h1/H);  pro2=(h2/H);  pro3=(h3/H);  
  
R = rand*(1);  
fire =  (R <= pro3);  
 
 

 

CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!     
PrPrPrPrint  functions ‘int  functions ‘int  functions ‘int  functions ‘print_statespaceprint_statespaceprint_statespaceprint_statespace’’’’    can not be used can not be used can not be used can not be used 
for applications that use stochastic timer. for applications that use stochastic timer. for applications that use stochastic timer. for applications that use stochastic timer.  
 
This is the reason for manipulating simulation results log file directly, as done in the example 
above. We give below code snippet from MSF for prey-predator example:   
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% NOTE: !!! 
%   print function ‘print_statespace’  
%   can not be used applications using stochastic t imer !!!!! 
%   !!!!! 
plotp(sim, { 'Prey' , 'Predator' });   %%%% figure 28  
plot(sim.LOG(:,2), sim.LOG(:,3));   %%%% figure 29  
 

 
 

25.4 The Simulation Results 
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Figure-44.  Composition of specimens Prey-Predator with time 
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Figure-45.  Prey-Predator Equilibrium 
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26. Measuring Robot Usage 
The flexible manufacturing cell at the Narvik Institute of Technology (NIT), Norway, consists 
of a CNC vertical machining center (Mori Seiki), a CNC horizontal machining center (Mori 
Seiki), an ABB IRB2000 robot, and a conveyor belt; figure 12 shows the system. 

Figure-46.  Flexible Manufacturing Cell at Narvik Institute of Technology (NIT) 
 
Here is the operational specification of the system, somewhat simplified for our modeling 
purposes: 
1. To start a cycle, a raw part must be available on the incoming conveyor belt, and the 

robot is also available.  
2. The robot moves a raw part from the conveyor and loads it at the horizontal machining 

center (HMC).  
3. The milling operation is performed at HMC while the robot backs off (returns). 
4. The robot unloads the work piece from HMC, loads it to the vertical machining center 

(VMC) and returns. 
5. The drilling operation is performed at VMC, and simultaneously the robot perform step 2. 
6. The robot unloads the finished part from VMC, deposits it on the conveyor and returns. 
 
In steady-state steps 2-6 repeat. Note that the specifications are very similar to the one given 
in Zhou and Robbi (1994). Well, it has to be similar, considering the simple systems we and 
they have, there is only one way to do it. 
 

26.1.1 The Petri net model 

CNC vertical  
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ing center (VMC) 
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The Petri net model for flexible manufacturing cell at NIT is given in figure 13. It is possible 
that one could come up with a slightly different model for the same system than the one 
shown in figure 13.  

Figure-47.   Timed PN model for flexible manufacturing cell at NIT.  
 
 

26.1.2 The Petri net model 
 
The upper arm of the model consisting place p1 is the start mode. The left arm of the model is 
for the milling operation at HMC, the right arm is for the drilling operation at VMC, the 
bottom arm is for the transition between these two operations, and finally the central part is 
for the robot movements. Table-III shows the meaning of the different places and transitions.  
 

Table-III: Meanings of places and transitions for the PN model. 

It must be noted that there are potentials for parallel operations. For example, after loading a 
part into the HMC, while the milling operation is going on, the robot can retreat to its ready 
position, and also load a part from the output buffer of HMC into VMC( t1 and t2 are parallel).  

 

 

 

 

 

 

 

 

 

 

 

p1 

p2 
p3 

p4 

p5 

p6 

p7 

p8 

p9 

p10 

p11 t1 

t3 

t2 t4 

t5 

t7 
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t8 

 

place interpretation trans interpretation time 
p1 Raw parts t1 Robot/part to HMC 1 
p2 Robot available t2 Milling operation vary 
p3 Part loaded to HMC t3 Robot/part to VMC 1 
p4 Out buffer VMC t4 Drilling operation vary 
p5 Out buffer HMC t5 Robot/part to output 1 
p6 Part loaded to VMC t6 Robot returns 0.5 
p7 HMC available t7 Robot returns 0.5 
p8 VMC available t8 Robot returns 0.5 
p9 Robot ready return  (specimen operation times are given 

in minutes) p10 Robot ready return  
p11 Robot ready return  
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26.1.3 Simulations 
Lets vary the machining times of both milling and drilling operations and see for what 
combination of operations robot is overloaded (a second robot should be commissioned).  
 
 
 
 

 
 

!!!!! 
 

 Milling operation 
Drilling op. 0.3 0.5 1.0 5.0 

0.3 100% 100% 90% 50% 
0.5 100% 100% 90% 50% 
1.0 90% 90% 82% 47% 
5.0 50% 50% 47% 33% 

Table-IV: Robot usage for different operation times. 
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27. Norwegian Traffic Lights 
As shown in the figure below, Norwegian traffic lights have 4 states: 
Red -> Red & Yellow -> Green -> Yellow 
 

 
Figure-48.  Norwegian Traffic Lights  

 

27.1 Developing a Petri Net Model for Norwegian Tra ffic Light 
 

27.1.1 State-1 (RED) to State-2 (RED & YELLOW) 
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27.1.2 State-2 (RED & YELLOW) to State-3 (GREEN) 

 
 

27.1.3 State-3 (GREEN) to State-4 (YELLOW) 
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27.1.4 State-4 (YELLOW) to State-1 (RED) 
 

 

27.2 Transition Definitions 
State-1 (RED) to state-2 (RED & YELLOW):  

Transition tR->RY will fire only if there is a token in place RED and there is no token 
in place YELLOW (if there are tokens in both places, then tRY->G will fire) 

 
State-4 (YELLOW) to state-1 (RED):  

Transition tY->R will fire only if there is a token in place YELLOW and there is no 
token in place RED 

 
 

27.3 Program Code for the Petri Net Model 
 

27.3.1 Main Simulation File 
% the main file to run simulation  
clear, clc;  
global_info.MAX_LOOP = 5; % stop after 5 states (one cycle)  
  
pn = petrinetgraph( 'NO_light_def' );  
dynamic_info.initial_markings = { 'pRED' , 1};  
  
Results = gpensim(pn, dynamic_info, global_info);  
print_statespace(Results);  
plotp(Results, { 'pRED' , 'pYELLOW' , 'pGREEN' });  
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RY -> G 
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27.3.2 PDF 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
        = NO_light_def(global_info)  
% file: pn_def.m:  
% definition of petri net graph for Norwegian trafi c lights  
  
PN_name='Pet Net graph for trafic light (NOR)' ;  
set_of_places={ 'pRED' , 'pYELLOW' , 'pGREEN' };  
  
set_of_trans={ 'tR_RY' , 'tRY_G' , 'tG_Y' , 'tY_R' };  
  
set_of_arcs={ 'pRED' , 'tR_RY' ,1, 'tR_RY' , 'pRED' ,1, 'tR_RY' , 'pYELLOW' ,1, ...   
    'pRED' , 'tRY_G' ,1, 'pYELLOW' , 'tRY_G' ,1, 'tRY_G' , 'pGREEN' ,1, ...   
    'pGREEN' , 'tG_Y' ,1, 'tG_Y' , 'pYELLOW' ,1, ...      
    'pYELLOW' , 'tY_R' ,1, 'tY_R' , 'pRED' ,1};  
 

27.3.3 TDF: tR_RY 
function  [fire, new_color, override, selected_tokens, globa l_info] = ...  
    tR_RY_def(pn, new_color, override, selected_tok ens, global_info)  
% function fire = tR_RY_def(PN)  
  
pR = get_place(pn, 'pRED' );  
pY = get_place(pn, 'pYELLOW' );  
  
tRRY = get_trans(pn, 'tR_RY' );  
  
fire = (pR.tokens) & not(pY.tokens);  
 

27.3.4 TDF: tY_R 
function  [fire, new_color, override, selected_tokens, globa l_info] = ...  
    tY_R_def(pn, new_color, override, selected_toke ns, global_info)  
% function fire = tY_R_def(PN)  
  
pR = get_place(pn, 'pRED' );  
pY = get_place(pn, 'pYELLOW' );  
fire = not(pR.tokens) & (pY.tokens);  
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28. Design of the GPenSIM Simulator 
In this section, we will look into the internals of GPenSIM simulator. Like any simulators, 
GPenSIM also has the following two major components: a (global) timer, and a queue to keep 
firing transitions (active events); in addition, GPenSIM also has mechanisms (‘functions’) to 
manipulate these two components - a push function to push firing transitions into queue, and a 
pop function to eject a firing transition from queue in order to complete (or finish) firing.  
 

28.1 The Main Loop 
Components in the main loop:  

• A Global Timer (“pn.current_time”) 
• A Queue  (“EIP” – events in progress) 

 
Mechanisms (functions) that manipulate the components: 

• Pushing firing transitions into Queue (function ‘start_firing’) 
• Popping a firing transition from Queue, in order to complete it (function 

‘complete_firing’)   
 
 The components and the functions are realized in the M-file “timed_pensim.m”. Figure-37 
shown below summarizes the main loop realized in the M-file “timed_pensim.m”: 
 

Start firing any enabled 

transitions

(add firing transitions to EIP 

queue sorted in increasing 

completion time)   

Complete a firing transition 

(from the top of EIP – with the 

shortest completion time) 

Increase global timer 

(copy transition completion time 

into global timer if any transition 

is copmpleted; otherwise, if EIP 

was empty, just move global 

timer by an incremental value)

 
Figure-49.  Simplified main loop of the simulation 

 
However, actual coding of M-file “timed_pensim.m” is little more complicated due to the 
processing of stochastic systems, as shown in the following figure. 
 
Figure-38 presents the actual loop for simulation, coded in the M-file “timed_gpensim.m”.   
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Figure-50.  Main loop for simulation 
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29. Further W ork (Future Extensions) 
 
There are numerous possibilities for extending GPenSIM. We give blow just two: 
 

• Adaptive GPenSIM: a version of GPenSIM in which the arc weights are not fixed and 
can vary during the simulation run. 

o Self adaptive: In each TDF, the arc weight of the transition can be changed. 
o Forced adaptive: in a specific TDF, arc weights of any transition can be varied  

 
• Real-time (“soft PLC”) simulator: Instead of global timer, the real-time clock of the 

computer can be used. In this case, the GPenSIM is no longer just a simulator, but it 
becomes a soft Programmable Logic Controller.     
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30. Data structures in GPenSIM 
GPenSIM uses data structures to pass information between the functions. Some of the 
structures: 
1. Structure for Petri net (PN): there are two Petri net structures 

a. Static PN structure is created by the function petrinetgraph 
b. Run-time PN structure is available during simulation; copy of run-time PN 

structure is available in TDFs.  
2. Structure for Place: this structure is created by the function place 
3. Structure for Transition: this structure is created by the function transition   
4. Structure for Arc: this structure is created by the function arc 
5. Structure for Token: tokens are removed (consumed) and added (deposited) during 

simulations 
6. Structure for simulation results: this structure is created by the function gpensim 
7. Structure for Co-Tree: this structure is created by the function cotree 
8. Structure for Co-Tree: this structure is created by the function gpensim 
 

30.1 Static Structures for Petri net and its elements 
In order to inspect these structures, let us visit the example given in section-3 again. The 
program code snippet given below shows the main simulation file: 
 

pn = petrinetgraph( 'simple_pn_def' ); 
dynamic_info.initial_markings = { 'Place-1' ,1, 'Place-2' ,2}; 
dynamic_info.firing_times = { 'Transition-1' , 10};  
 
Sim_Results = gpensim(pn, dynamic_info); 
print_statespace(Sim_Results); 

 
After execution of the first line of the program snippet given above, the function gpensim 
returns the Petri net structure as an output variable called ‘pn’. Lets inspect this variable: 
 
>> pn 
 
pn =  
                  name: 'A Simple Petri Net impleme ntation' 
         global_places: [1x3 struct] 
    global_transitions: [1x1 struct] 
           global_arcs: [1x3 struct] 
      incidence_matrix: [1.00 2.00 0 0 0 1.00] 
                    

 
Screen dump given above shows that the Petri net structure has 7 elements. The elements are: 

1) name: the ASCII string identifier of the Petri net  
2) global_places: the set of all places in the Petri net  
3) global_transitions: the set of all transitions in the Petri net 
4) global_arcs: the set of all arcs in the Petri net 
5) incidence_matrix: the matrix that depicts how the places and transitions are connected 

together, and 
6) type: (not used)  

 
Let us study the elements and their respective data structures one by one: 
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30.1.1 name 
Name is an ASCII string identifier for the Petri net. From the screen dump given above, we 
already know the name of the Petri net, which is 'A Simple Petri Net implementation'.   
We can also inspect the name anytime by typing Sim_Res.name:  
 
>> Sim_Res.name 
 
ans = 
A Simple Petri Net implementation  
 
 

30.1.2 global_places 
global_places is the set of all places in the Petri net. Let’s inspect the global_places by 
typing Sim_res.global_places: 
 
>> Sim_Res.global_places 
 
ans =  
1x3 struct array with fields: 
    type 
    name 
    tokens 
    max_capacity 

 
The screen dump given above shows that there are three places inside the global_places 
([1X3]), and that each place has the following elements: type, name, tokens, and 
max_capacity. Let’s inspect the places individually: The first place: 
 
>> Sim_Res.global_places(1) 
 
ans =  
 
            type: 'place' 
            name: 'Place-1' 
          tokens: 0 
    max_capacity: Inf 

 
The first place is identified by its name as ‘Place-1’. It has no tokens at the simulation end. 
The element ‘max_capacity’ is NOT USED.  
 
We can also inspect a place by passing its identifier to the function ‘get_place’:  
 
>> p1 = get_place(Sim_Res, 'Place-1') 
 
p1 =  
            type: 'place' 
            name: 'Place-1' 
          tokens: 0 
    max_capacity: Inf 
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30.1.3 global_transitions 
global_transitions is the set of all transitions in the Petri net. global_transitions can be 
studied by the same approach applied to inspecting global_places.  
 
 

30.1.4 Global_arcs 
global_arcs is the set of all arcs in the Petri net. 
 
>> Sim_Res.global_arcs 
 
ans =  
1x3 struct array with fields: 
    type 
    from 
    to 
    weight 
    name 

 
Screen dump shows that global_arcs consists of three arcs.  Let’s inspect the first arc of 
global_arcs: 
 
>> Sim_Res.global_arcs(1) 
 
ans =  
 
      type: 'arc' 
      from: [1x1 struct] 
        to: [1x1 struct] 
    weight: 1.00 
      name: 'Arc.475' 

  
The first arc of the set of arcs has 5 elements: 

1. type: this element identifies the type (‘arc’) of the element as an arc 
2. from: this element identifies the source of the arc 
3. to: this element identifies the destination of the arc 
4. weight: this element identifies the weight of the arc (the weight of the arc is 1) 
5. name: an ASCII string identifier to the arc (a unique identifier is generated for every 

arc: the unique identifier for this arc is ‘Arc.475’) 
 
Further let’s inspect the source and the destination of this arc:  
 
>> Sim_Res.global_arcs(1).from 
 
ans =  
 
            type: 'place' 
            name: 'Place-1' 
          tokens: 0 
    max_capacity: Inf 
 

The source of this arc is the place ‘Place-1’. The destination of the arc is: 
 
>> Sim_Res.global_arcs(1).to 
 
ans =  
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                type: 'transition' 
                name: 'Transition-1' 
         firing_time: 100.00 
         firing_cost: 0 
    firing_condition: '' 
         times_fired: 0 
 

 
The destination of the arc is the transition ‘Transition-1’. Of course, figure 6 verifies the 
results.  
 
 

30.1.5 incidence_matrix 
The incidence matrix is a matrix that depicts how the places and transitions are connected 
together. GPenSIM uses a compact and unique format to convey this information. Incidence 
matrix in GPenSIM is actually two matrices put together: 
 
incidence_matrix =  [input_incidence_matrix  output _incidence_matrix] 
 

Please refer to any standard text on Petri nets to know the details of incidence matrix.  
 
 

30.1.6 type 
‘type’ identifies a Petri net type. A Petri net can be un-timed (no concern about the firing 
times of the transitions), timed, or stochastic (firing times are not deterministic).  
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30.2 Run-time Structures for Petri net and its elements 
[Also discussed in the section on “TDF”]. 
Run-time Petri net structure is available in all TDFs. It consists of the following elements: 
 
 
1 STATIC PN.Name: 'TDF Example: Production facility'  
2 Run-time PN.global_places: [1x n struct] 

A set of sturctures; one structure 
per place, consisiting the 
following: 

type: 'place' 
name: 'p1' 

tokens: 3.00 
max_capacity: Inf 

token_bank: [1x3 struct] 
 

Token_bank is also a set of 
structures - one for each token in 

the place - consisitng the 
following. 

tokID: 1.00 
creation_time: 0 

color: {‘A’, ‘B’}  
3 Run-time PN.global_transitions: [1x m struct] 

 
A set of sturctures; one structure 

per transition, consisiting the 
following: 

type: 'transition' 
name: 't1' 

firing_time: 10.00 
firing_cost: 0 
times_fired: 0 

 
4 STATIC PN.global_arcs: [1x6 struct]  
5 STATIC PN.incidence_matrix: [3x8 double]  
6 Run-time PN.current_time:  45.00  
7 Run-time PN.token_serial_number:  30.00  
8 Run-time PN.X: [10.00 3.00 5.00 2.00] 

(Current Markings)  
9 Run-time PN.Firing_Transitions: [0 1 1] 

Transitions Firing at the moment; 
one bit per transition; 0 – not 

firing;  
1 – firing  

10 Run-time PN.Enabled_Transitions: [1 0 0] 
Transitions enabled at the start of 

the cycle (Apriori); one bit per 
transition; 0 – not enabled; 

1 - enabled)  
 

 

30.3 Structures for simulation results 
Simulation results from the function gpensim are kept in a structure that has two elements: 
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1. type:    ‘simulation’ 
2. LOG: a matrix  
3. Firing_Transitions: a matrix 
4. Enabled_Transitions: a matrix 
5. State_Diagram: a matrix 
6. Place_Names: Block of strings 
7. Transition_names: Block of strings 

 
Matrices LOG, Firing_Transitions, and Enabled_Transitions have same the number of rows. 
(Exception: for stochastic timer applications, LOG generally has less rows). 
 
The LOG matrix can become large as it has all the simulation results. Each raw of LOG 
matrix represents changes due to firing of a transition, and has the following elements: 

1. The new markings (the new state)  
2. Fired transition   
3. Parent state (matrix raw number) from which this state was obtained  
4. Firing start time, and  
5. Firing completion time 

 
The Firing_Transitions matrix contains information about all the firing transitions at each 
inspection time. Each row of the Firing_Transitions starts with inspection time (element 1), 
and then rest of the elements are represents transitions; if element is ‘1’ then the 
corresponding transitions was firing at the inspection time.  
 
Similarly, the Enabled_Transitions matrix contains information about all the enabled 
transitions at each inspection time. Each row of the Enabled_Transitions starts with 
inspection time (element 1), and then rest of the elements are represents transitions; if element 
is ‘1’ then the corresponding transitions was enabled at the inspection time.  
 
State_Diagram represents sequences of states and the transitions that make state changes. 
State_Diagram is used by the print system (‘print_statespace’). NB: State_Diagram is also 
designed for making off-line graphical simulations; explained in the following 
subsection.  
 
State_Diagram consists of three different types of information: Row-1 is the new state; Row-2 
is the enabled transitions after the new state; Row-3 is the firing transitions after the new 
state;    This is further explained in example given below.  
 
Places_Names and Transition_Names are names of all the places and the transitions 
respectively. 
 

30.4 Example-1 
In order to inspect the structure for simulation results, let us visit a small example. The 
program code snippet given below shows the main simulation file: 
 
png = petrinetgraph( 'simple_pn_def' );  
dynamic.initial_markings = { 'p1' ,3, 'p2' ,5};  
dynamic.firing_times = { 't1' , 10.11}; 
 
[sim] = gpensim(png, dynamic, global_info);  
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print_statespace(sim);  
sim.LOG  
 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs] ...      
    = simple_pn_def(global_info) 
  
PN_name = 'A Simple Petri Net definition' ; 
set_of_places = { 'p1' , 'p2' , 'p3' }; 
set_of_trans = { 't1' , 10}; 
set_of_arcs =  { 'p1' , 't1' , 1, 'p2' , 't1' , 2, 't1' , 'p3' , 1};    

 
 
 
Let us inspect the structure sim_RESULTS: 
>> sim 
 
sim =  
                   type: 'simulation' 
                    LOG: [3x7 double] 
     Firing_Transitions: [3x2 double] 
    Enabled_Transitions: [3x2 double] 

    State_Diagram: [9x6 double] 
Place_Names: [3x2 char] 

       Transition_Names: 't1'           
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30.4.1 LOG 
Type ‘simulation’ identifies that the structure was obtained by after simulation run, and was 
output by the function gpensim.  
 
The LOG matrix is a 3 X 10 matrix containing the simulation results. The easiest way to 
understand the simulation results is to use the function print_statespace. However, we can 
inspect this structure on our own:  
 
>> sim.LOG 
 
ans = 
 

Columns (1:3)  Column 4  Col 5  Col 6  Col 7  
New state (marking)  Firing 

Transition  
Parent 
state 
(raw 
no.) 

Firing 
Start 
Time 

Firing 
Stop 
Time 

3.00 5.00 0 0 0 0 0 
2.00 3.00 1.00 1.00 1.00 0 10.11 
1.00 1.00 2.00 1.00 2.00 10.11 20.22 

 
 
 

30.4.2 Firing_Transitions and Enabled_transitions 
Firing_Transitions represents status (firing or not) of all the transitions at different inspection 
times. The first element in each row is the inspection time, followed by the status of the 
transitions. 
 
>> sim.Enabled_Transitions 
 
ans = 
 
             0          1.00 
       10.00          1.00 
         20.00             0 

 
 
Row-1: at time 0, t1 was enabled.  
Row-2: at time 10, t1 was also enabled.  
Row-3: at time 20, t1 was NOT enabled.  
 
 

30.4.3 State_Diagram 
>> sim.State_Diagram 
 
ans = 
 
0           0          3          5          0          0 
0           0          0          0          0          1 
0           0          0          0          0          1 
10          1          2          3          1          0 
10          0          0          0          0          1 
10          0          0          0          0          1 
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20          1          1          1          2          0 
20          0          0          0          0          0 
20          0          0          0          0          0 
 
 
 
 
 
EXPLANATION: 
 
 
row no.1 (state info) 

Time NOT USED 
 

Initial State NOT USED 
number of 

cells = 
number of 

transitions 
0 0 3 5 0 0 

 
row no.2 (enabled transitions)  

Time NOT USED 
number of cells = (number of places + 1)  

Enabled 
Transitions 

0 0 0 0 0 1 
 
row no.3 (firing transitions) 

Time NOT USED 
number of cells = (number of places + 1)  

Enabled 
Transitions 

0 0 0 0 0 1 
 
 
Row no. 4 (state info) 

Time Fired 
Transitions 
(Transition 

that 
created the 
new state) 

New State (not used) 

10 1 2 3 1 0 
 
row no.5 (enabled transitions)  

Time NOT USED 
number of cells = (number of places + 1)  

Enabled 
Transitions 

10 0 0 0 0 1 
 
row no.6 (firing transitions) 

Time NOT USED 
number of cells = (number of places + 1)  

Enabled 
Transitions 

10 0 0 0 0 1 
 
 
 
Row no. 7 (state info) 

Time Fired 
Transitions 
(Transition 

that 
created the 
new state) 

New State (not used) 

20 1 1 1 2 0 
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row no.8 (enabled transitions)  
Time NOT USED 

number of cells = (number of places + 1)  
Enabled 

Transitions 
20 0 0 0 0 0 

 
row no.9 (firing transitions) 

Time NOT USED 
number of cells = (number of places + 1)  

Enabled 
Transitions 

20 0 0 0 0 0 
 

Function ‘print_statespace’ uses the matrix State_Diagram to print out simulation results:  
 
 
State:0    Time: 0 
Initial State: 
p1        p2        p3         
 3         5         0          
At time: 0  enabled transitions are:  
 t1 
 
At time: 0  firing transitions are:  
 t1 
 
State: 1    Time: 10 
Fired Transition: t1 
Current State: 
p1        p2        p3         
 2         3         1          
At time: 10  enabled transitions are:  
 t1 
At time: 10  firing transitions are:  
 t1 
 
State: 2    Time: 20 
Fired Transition: t1 
Current State: 
p1        p2        p3         
 1         1         2          
At time: 20  enabled transitions are:  
At time: 20  firing transitions are: 

 
 
 
 
Explanation: 
 
 

Print_statespace lines  Equivalent row of the 
matrix  ’State_Diagram’ 

State:0    Time: 0 
Initial State: 
p1        p2        p3         
 3         5         0          

 

 
Row-1  

At time: 0  enabled transitions are:  
 t1 

 

Row-2 

At time: 0  firing transitions are:  Row-3 
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 t1 

 
State: 1    Time: 10 
Fired Transition: t1 
Current State: 
p1        p2        p3         
 2         3         1          

 

Row-4 

At time: 10  enabled transitions are:  
 t1 

 

Row-5 

At time: 10  firing transitions are:  
 t1 
 

 

Row-6 

State: 2    Time: 20 
Fired Transition: t1 
Current State: 
p1        p2        p3         
 1         1         2          

 

Row-7 

At time: 20  enabled transitions are:  

 
Row-8 

At time: 20  firing transitions are: 

 
Row-9 

  
 
 

30.4.4 Place_Names and Transition_Names  
 
>> sim.Place_Names 
 
ans = 
 
p1 
p2 
p3 

 
Since there is only 1 transition is the system,  
>> sim.Transition_Names 
 
ans = 
 
 
 
 

30.5 Example-2 for State_Diagram 
Figure shown below depicts a web server consisting of two server machines (tX1 and tX2) 
that will fire alternatively. To allow alternative firing, we can implement a binary semaphore 
that can be read and manipulated by the definition files of both transitions.  
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MSF: 
global_info.semafor = 1;    % GLOBAL DATA: binary semafor  
  
png = petrinetgraph( 'loadbalance_def' );  
dynamicpart.initial_markings = { 'pSTART' , 10};  
dynamicpart.firing_times = { 'tX1' , 10, 'tX2' , 15};  
  
sim = gpensim(png, dynamicpart, global_info);  
 
plotp(sim, { 'p1' , 'p2' });  
print_statespace(sim);  
 
 
Let’s inspect the ‘State_Diagram’ element of the simulation results ‘sim’ 
 
>> sim.State_Diagram 
 
ans = 
 

     0     0    10     0     0     0     0 
     0     0     0     0     0     1     1 
     0     0     0     0     0     1     0 
    10     1     9     1     0     0     0 
    10     0     0     0     0     1     1 
    10     0     0     0     0     0     1 
    25     2     8     1     1     0     0 
    25     0     0     0     0     1     1 
    25     0     0     0     0     1     0 
    35     1     7     2     1     0     0 
    35     0     0     0     0     1     1 
    35     0     0     0     0     0     1 
    50     2     6     2     2     0     0 
    50     0     0     0     0     1     1 
    50     0     0     0     0     1     0 
    60     1     5     3     2     0     0 
    60     0     0     0     0     1     1 
    60     0     0     0     0     0     1 
    75     2     4     3     3     0     0 
    75     0     0     0     0     1     1 
    75     0     0     0     0     1     0 
    85     1     3     4     3     0     0 
    85     0     0     0     0     1     1 
    85     0     0     0     0     0     1 
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   100     2     2     4     4     0     0 
   100     0     0     0     0     1     1 
   100     0     0     0     0     1     0 
   110     1     1     5     4     0     0 
   110     0     0     0     0     1     1 
   110     0     0     0     0     0     1 
   125     2     0     5     5     0     0 
   125     0     0     0     0     0     0 
   125     0     0     0     0     0     0 

 
>> 

 
 

Explanation: 
 
Row-1: [0     0    10     0     0      0     0] 

At time=0, the initial row shows the initial markings (at time 0)  
 
Row-2: [0     0     0     0     0     1     1 ] 

At time=0,, both tX1 and tX2 are enabled. 
 
Row-3: [0     0     0     0     0     1     0 ] 

At time=0, only tX1 is allowed to fire.  
 
Row-4:   [10     1      9     1     0      0     0]  
tX1 (1) takes 10 minutes to fire. After tX1 is fired, new state is [9 1 0] 
 
Row-5:  [10     0     0     0     0     1     1 ] 

At time = 10, both tX1 and tX2 are enabled.  
 
Row-6:  [10     0     0     0     0     0     1 ] 

At time = 10, only tX2 is allowed to fire.  
 
Row-7:  [25     2      8     1     1     0     0] 

When tX2 (2) completes firing, time moves from 10 to 25 seconds. The new state is [8 1 1].  
 
Row-8:  [25     0     0     0     0     1     1 ] 

At time = 25, both tX1 and tX2 are enabled.  
 
Row-9:  [25     0     0     0     0     1     0 ] 

At time = 25, only tX1 is allowed to fire.  
     

Row-10:  [35     1      7     2     1      0     0] 

When tX1 (1) completes firing, time moves from 25 to 35 seconds. The new state is [7 2 1].  
 
Row-11:  [35     0     0     0     0     1     1 ] 

At time = 35, both tX1 and tX2 are enabled.  
 
Row-12:  [35     0     0     0     0     0     1 ] 

At time = 35, only tX2 is allowed to fire.  
 

… 
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30.6 Off-line Graphical Display 
After simulations by the function ‘gpensim’, the simulation results has all the necessary 
information for off-line graphical display. The simulation results, lets call it ‘Sim_Results’, 
has three elements that can be used for graphical display (figure-32):  

 
Figure-51.  Off-line graphical display 

1. State_Diagram: a matrix 
2. Place_Names: Block of strings 
3. Transition_names: Block of strings 
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30.7 Structure for co-tree 
Section 7.1 discusses obtaining co-tree of a Petri net. The program is given below: 
 
% the main file to get the co-tree  
png = petrinetgraph( 'fig_8_def' );  
sources = { 'p1' ,1};  
CT = cotree(png, sources);  
print_cotree(CT); %  
 
Execution of line 4 gives a structure called CT for the co-tree. Let us inspect this structure: 
 
>> CT 
 
CT =  
 
    type: 'COTREE' 
     LOG: [3x6 double] 
 

The structure has two elements, element ‘type’ identifies that this structure is for co-tree, and 
the element ‘LOG’ has the rows of data for co-tree.   
 
>> size(CT.LOG) 
 
ans = 
 
          3.00          6.00 
 

The above screen dump shows that the LOG element is a 3 X 6 matrix. Only way to see co-
tree properly is to feed the structure (CT) to function print_cotree. 
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30.8 Structure for colormap 
Section 12.1 discusses colormap of a Petri net. The program is given below: 
 
clear, clc;  
pn = petrinetgraph( 'simple_adder_def' );  
dynamicpart.initial_markings = { 'p1' ,1, 'p2' ,1};  
  
[results, global_info, colormap] = gpensim(pn, dyna micpart); 
… 
 
 
Execution of line 4 gives a structure called colormap. Let us inspect this structure: 
 
>> colormap 
 
colormap =  
 
    type: 'color_map' 
     LOG: [1x5 struct] 
 

The structure has two elements, element ‘type’ identifies that this structure is for colormap, 
and the element ‘LOG’ has the rows of data for colormap.   
 
>> size(colormap.LOG) 
 
ans = 
 
          7.00          5.00 
 

The above screen dump shows that the LOG element is a 7 X 5 matrix, meaning it has colors 
of 7 tokens. Colormap structure as an output of gpensim contains properties (color, creation 
time, and place) of all the tokens that were existed during simulation run. Let us see what the 
color of the first token is: 
  
>> colormap.LOG(1) 
 
ans =  
 
     time: 0 
    place: 4 
    color: {'21', '45'} 

 
The screen dump shows that the colors of the token were ‘21’ and ‘45’. We can see the colors 
of all the tokens that were involved during simulation, by feeding colomap structure to the 
function print_colormap . 
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31. Using MSF and petrinetgraph 
Main Simulation File (MSF) calls at least three other GPenSIM functions directly:  

• ‘petrinetgraph’  
• ‘gpensim’, and 
• ‘print_statespace’, ‘print_colormap’, ‘plotp’, etc. 
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Figure-52.  Collaboration Diagram for MSF 
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Figure-53.  Collaboration Diagram for ‘petrinetgraph’ 
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32. Description of the Main Functions 
This section presents detailed description of some of the main GPenSIM functions. The 
following functions are described in detail: cotree, extractp, gpensim, gpensim_ver, MSF, 
PDF, petrinetgraph, plotp, print_cotree, print_finalcolors, print_statespace, timed_pensim, 
TDF. 
 
 
Name: cotree  
Purpose: Creates the coverability tree of a Petri net  
Input 
parameters: 

Static Petri net sturcture (the structure output by ‘petrinetgraph’) 
Intial_markings 

Out parameters: Cotree structure  
Uses: sources_matrix 

enabled_transition 
new_marking 
check_for_dominance 
good_name 

Used by: [main simulation file] 
NOTE: Cotree algorithm is similar to the one by Cassandras & Lafortune (1998) 
Example:  
% in main simulation file  
png = petrinetgraph( 'cotree_example_def' );  
dyn.initial_markings = { 'p1' ,2, 'p4' , 1};  
cotree_sturcture = cotree(png, dyn.initial_markings );  
print_cotree(cotree_sturcture);  
 

 

cotree sources_matrix

check_for_dom.

enabled_transit.

new_markings

> (PN.global_places, sources)
< (X)

> (old_state, COTREE, parent)
< (new_state)

> (transition, PN)
< (true / false)

> (transition, PN)
< (new_markings)
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Name: extractp  
Purpose: To extract tokens from the Simulation results structure.  
Input 
parameters: 

Simulation Results (the structure output by ‘gpensim’) 
{set_of_place_names} 

Out parameters: TOKEN_MATRIX  
First row :[0 set_of_place_indices] 
Second & subsequent rows:  

[first column is time, other columns are tokens] 
Uses: None 
Used by: [main simulation file],  

Plotp 
Example:  
% in main simulation file  
sim = gpensim(png, dynamic);  
plotp(sim, { 'p1' , 'p2' , 'p3' }); 
extractp(sim, { 'p1' , 'p2' , 'p3' }) % print the token matrix  
 

 
 
Name: gpensim  
Purpose: To run simulations and output simulation results 

When the results are returned, they can be also analyzed (with tools like 
print_statespace, plotp, extract, occupancy, etc.)   

Input 
parameters: 

Static Petri net structure (output from ‘petrinetgraph’) 
initial dynamics 
global_info 

Out parameters: Simulation results 
global info 

Uses: gpensim_ver, initial_markings, init_token_bank, firing_times, state_space,   
timed_gpensim 

Used by: [main simulation file] 
Example:  
% in main simulation file  
[simualtion_Results, global_info] = gpensim(png, dy n, global_info);  
print_statespace(simualtion_Results); 
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Name: gpensim_ver  
Purpose: Prints the current version of gpensim  
Input 
parameters: 

None  
 

Out parameters: None  
Uses: None 
Used by: gpensim, [main simulation file] 
Example:  
% in main simulation file  
gpensim  
% equivalently,  
gpensim_ver  
 
 
 

gpensim gpensim_ver

initial_markings

init_token_bank

firing_times

timed_pensim c

> ()
< ()

> (static PN sturcture, initial_markings)
< (initial state, static PN sturcture)

> (initial run-time PN sturcture, global_info)
< (initial run-time PN structure)

> (initial run-time PN structure, firing_times)
< (firing_times, initial run-time PN structure)

> (initial run-time PN structure, global_info)
< (sim_results, global_info, color_map)
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Name: Main Simula tion File (MSF)  
Purpose: 1. To declare global variables (global_info),  

2. To load Petri net graphs (PDFs), and to create a static Petri net graph with the 
function ‘petrinetgraph’ 

3. To assign initial dynamics, and  
4. To start the simulation (with ‘gpensim’).  
When the results are returned, they can be also analyzed (with tools like 
‘print_statespace’, ‘plotp’, ‘extractp’, ‘occupancy’, etc.)   

Input 
parameters: 

- 

Out parameters: - 
Uses: petrinetgraph, gpensim, etc. 

tools like plotp, print_statespace, etc. 
Used by: - 
Example:  
 
%%% FILE: MSF for MIC (mic_new.m)  
global_info.LOOP_NUMBER = 1; %% print loop number during simulation 
 
%%%% COMPOSE %%%%%%% 
png = petrinetgraph({ 'client_def' , 'internet_def' , ...  
  'sil_def' , 'conn_pro' ,  'iterate_def' , 'strategy_def' , ...  
  'tactic_def' });  %% 7 modules  
  
%%%% DYNAMIC DETAILS %%%% 
dyn.initial_markings = { 'pSR' ,1, 'pNOI' , round(unifrnd(2,4)), 'pB3' ,1};  
dyn.firing_times = { 'tCS' , 'normrnd(5000,50)' , 'tSC' , 'normrnd(5000,50)' , ...  
    'tINIT' , 'unifrnd(280,320)' , ...  
    'tRES' , 'unifrnd(1, 10)' , 'tSD' , 'unifrnd(80, 100)' , ...  
    'tTD' , 'unifrnd(25, 35)' , 'tSUB1' , 'unifrnd(10, 15)' , ...  
    'tSUB2' , 'unifrnd(10, 15)' , 'tSUB3' , 'unifrnd(10, 15)' , ...  
    'tSUB4' , 'unifrnd(10, 15)' };  
%%%% SUIMULATE %%%%% 
RES = gpensim(png, dyn);  
print_statespace(RES); 
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Name: Petri net Definition File (PDF)  
Purpose: To define a static Petri net graph 
Input 
parameters: 

Optional: global_info 

Out parameters: PN_name: a text string of text,  
set_of_places: array of place structures  
set_of_trans: array of transition structures 
set_of_arcs: array of arc structures 

Uses: - 
Used by: Petrinetgraph 
Example:  
 
function  [PN_name, set_of_places, set_of_trans, set_of_arcs ] ...  
                    = simple_adder_def(global_info)   
%% PDF: simple_adder_def.m:  
  
PN_name='Color example: Simple Adder' ;  
set_of_places={ 'p1' , 'p2' , 'pNUM1' , 'pNUM2' , 'pADDED' , 'pRESULT' };  
set_of_trans={ 'tGET_NUM1' , 'tGET_NUM2' , 'tADD' , 'tCONVERT' };  
set_of_arcs={ 'p1' , 'tGET_NUM1' ,1, 'tGET_NUM1' , 'pNUM1' ,1, ...   
             'p2' , 'tGET_NUM2' ,1, 'tGET_NUM2' , 'pNUM2' ,1, ...   
             'pNUM1' , 'tADD' ,1, 'pNUM2' , 'tADD' ,1, ...  
             'tADD' , 'pADDED' ,1, 'pADDED' , 'tCONVERT' ,1, ...  
             'tCONVERT' , 'pRESULT' ,1};  
          
 
 
Name: petrinetgraph  
Purpose: To make a static Petri net structure from the Petri net definition file(s) (PDF(s))  
Input 
parameters: 

{ Names of One or more PDFs } 

Out parameters: Static Petri net structure 
Uses: build_places, build_trans, build_arcs, incidencematrix 
Used by: [main simulation file] 
Example:  
% in main simulation file  
 
% one PDF file  
png = petrinetgraph( 'simple_pn_def' );  
 
% multiple PDF files  
png = petrinetgraph({ 'client_def' , 'internet_def' , ...   
            'sil_def' , 'conn_pro' , ...  
            'iterate_def' , 'strategy_def' , 'tactic_def' });  
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Name: plotp  
Purpose: To plot simulation results;  to plot how tokens change with time  
Input 
parameters: 

Simulation Results (the structure output by ‘gpensim’) 
{set_of_place_names} 
global_info (optional) 

Out parameters: TOKEN_MATRIX (contains tokens of places with time) 
Uses: extractp  (extracts tokens from the SIM results structure) 
Used by: [main simulation file] 
Example:  
% in main simulation file  
sim = gpensim(png, dynamic);  
plotp(sim, { 'p1' , 'p2' , 'p3' });  
 
 
 
Name: print_statespace  
Purpose: To print simulation results 
Input 
parameters: 

Simulation Results (the structure output by ‘gpensim’) 

Out parameters: None 
Uses: print_markings,  

print_statespace_enabled_trans,  
print_statespace_firing_trans 
print_statespace_state 

Used by: [main simulation file] 
NOTE: Not for use with simulations using stochastic timer 
Example:  
% in main simulation file  
Simulation_results = gpensim(png, dynamic);  
print_statespace(Simulation_results);  
 
 
 
 
Name: print_colormap  
Purpose: To print colors of the tokens 
Input 
parameters: 

Simulation Results (the structure output by ‘gpensim’) 
{set_of_place_names} 

Out parameters: None 
Uses: print_colormap_for_place  
Used by: [main simulation file] 
Example:  
% in main simulation file  
results = gpensim(pn, dynamicpart); 
print_colormap(results, { 'pNUM1' , 'pADDED' , 'pRESULT' });  
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Name: print_finalcolors  
Purpose: To print colors of the final state (colors of the tokens that are left in the system 

when the simulations are complete) 
Input 
parameters: 

Simulation Results (the structure output by ‘gpensim’) 

Out parameters: None 
Uses: None 
Used by: [main simulation file] 
Example:  
% in main simulation file  
results = gpensim(pn, dynamicpart); 
print_finalcolors(results);  
 
 
 
Name: print_cotree  
Purpose: To print cotree structure  
Input 
parameters: 

Cotree structure (the structure output by ‘cotree’) 

Out parameters: None 
Uses: print_markings  
Used by: [main simulation file] 
Example:  
% in main simulation file  
cotree_structure = cotree(png, dyn.initial_markings );  
print_cotree(cotree_ structure);  
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Name: timed_pensim  
Purpose: This is the main M-function for Petri net simulation.  

Inside the main loop, transitions are randomly chosen and   
checked whether they are enabled or not. If they are enabled, the token removal 
and deposition in respective places happens. Then the happenings are recorded 
in the simulation results LOG. 
 

Input 
parameters: 

Static Petri net structure (output from ‘petrinetgraph’) 
global_info 

Out parameters: Simulation results 
global info 

Uses: max_loop, print_loop_nr, simulations_complete 
enabled_transition 
start_firing 
complete_firing 
stochastic_timer_advancement, global_timer_advancement 
pack_sim_results 

Used by: gpensim 
Note: This is one of the most important M-files, as it realizes the main simulation 

loop  
Example:  
% inside gpensim  
[sim_results, global_info] = timed_pensim(png, glob al_info);  
 
 
 

timed_pensim max_loop_logsize

complete_firing c

time_advancement

start_firing c

simulations_complete

> (global_info)
< (MAX_LOOP, MAX_LOG_SIZE)

> (PN, EIP, time_punch)
< (PN, EIP, time_punch, log_record, 

colormap_record)

> (PN, global_info)
< (PN, global_info)

> (PN, EIP, parent_index, global_info)
< (PN, EIP, global_info)

> (EIP,PN,LOG,MAX_LOG_SIZE, Loop_Nr, 
MAX_LOOP)
< (true / false)
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Name: Transition Definition File (TDF)  
Purpose: To run user-defined conditions, and to test probe simulation   
Input 
parameters: 

PN: run-time Petri net structure  
global_info : global info packet  
(Dummy variables: new_color = {}, override=false, selected_tokens=[])  

Out parameters: fire_or_not: fire (≠ 0), don’t fire (=0)  
new_color: colors assigned by transition,  
override: override (≠ 0), don’t override (=0),  
selected_tokens: tokIDs of any selected tokens for removal (consumption), 
global_info: updated (if updated by the transition) global info packet 

Uses: - 
Used by: Firing_conditions 
Example:  
 
function  [fire, new_color, override, selected_tokens,global _info] = ...  
    tCONVERT_def (pn, new_color, override, selected _tokens,global_info)  
%% TDF: tCONVERT_def  
  
% first, select an token  
tokID = select_token(pn, 'pADDED' , 1);  
  
% second, get the colors of the selected token  
colors = get_color(pn, tokID);  
num1 = str2num(colors{1}); % convert color into number  
num2 = str2num(colors{2}); % convert color into number  
sum = num1 + num2;  
new_color = num2str(sum);  
override = 1; % only sum as color - NO inheritance  
global_info.sum = sum; %%% sum is added to global_info  
fire=1;  %always fire  
 
 
 

firing_condition TDF
> (transition, PN, global_info)

< (fire_or_not, new_color, override, 
seleted_tokens, global_info)
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