

A Tool for Modeling and Simulation of

Discrete-Event Systems

GGPPeennSSII MM vv44..00
General Purpose Petri Net Simulator

GPenSIM Web site:
http://www.davidrajuh.net/gpensim/

Reggie Davidrajuh
University of Stavanger, Norway
Email: reggie.davidrajuh@uis.no

Version 4.1 © September 2010

 ii

 iii

CONTENTS:

PREFACE .. ix

1. Installing GPenSIM 1

2. Introducing Petri net 3

2.1 Elements of Petri nets ... 3
2.2 Formal Definition of Petri nets ... 4

2.2.1 Input and Output Places of a Transition ... 5

2.3 Enabled Transitions .. 5
2.4 Petri net dynamics .. 5

2.4.1 Coverability Tree .. 5
2.5 Why Petri nets? .. 6
2.6 A minute introduction to Petri net: ... 6

Part-I: GPenSIM Basics 7

3. Modeling with GPenSIM: The Basics 9

3.1 Transition Definition Files ... 9
3.1.1 Using TDF_PRE and TDF_POST .. 9

3.1.2 Using TDF as a test probe .. 9
3.2 Global info .. 10
3.3 Integrating with MATLAB environment ... 10

4. Using GPenSIM 13

4.1 Example-01: A Simple Example .. 13
4.1.1 Step-1: Defining the Petri net graph ... 13
4.1.2 Step-2: The main simulation file: assigning the initial dynamics 14

4.1.3 The Simulations .. 14
4.1.4 Viewing the simulation results with ‘print_statespace’ 15

4.2 Summary .. 16
4.3 Static PN structure .. 17
4.4 Assigning names to Places & Transitions .. 17

5. Transition Definition File (TDF) 19

5.1 Example-02: TDF_PRE Example .. 19

5.1.1 Creating M-Files .. 19
5.2 Step-1: the definition files .. 20

5.2.1 Defining the Petri net graph ... 20
5.2.2 Coding the user-defined firing conditions of the Transitions 20

5.3 Step-2: Assigning the initial dynamics and running the simulations 21

5.3.1 Outcome-1: ... 21
5.4 Run-time PN structure .. 23
5.5 Example-03: Implementing Preference through TDF_PRE 24

5.5.1 Case-I: t1 is strictly preferred ... 24
5.5.2 Case-II: t1 is preferred, but t2 can also fire .. 26

5.6 Using TDF_POST .. 27
6. Internal Clock 29

6.1 Example-04: Delay Example ... 29
7. Measuring Activation Timing 31

7.1 Example-05: Measuring Activation Time .. 31

 iv

7.2 Example-06: Measuring Activation time ... 32

8. Stochastic Firing Times 35

8.1 Example-07: Stochastic firing times .. 35
9. Modular Model Building 37

9.1 Example-08: Modular Model for Adaptive Supply Chain 38

9.2 The Modular Approach .. 40
9.2.1 The main simulation file: ‘MIC_2006_new.m’ ... 40

9.2.2 Client (‘client_def.m’) .. 40
9.2.3 Internet transmission (‘internet_def.m’), ... 40

9.2.4 Service Interface Layer (‘sil_def.m’), .. 41

9.2.5 Iterations module (‘interate_def.m’) .. 41

9.2.6 Strategic module (‘strategy_def.m’) .. 41

9.2.7 Tactical & sub tactical module (‘tactic_def.m’) ... 41

9.2.8 Profile for connecting the modules together (‘conn_pro.m’) 42

9.3 Transition definition file for tRES (‘tRES_def.m’) ... 42

10. Coverability Tree 43

10.1 Example-09: Cotree with finite states .. 43
10.1.1 Petri net definition file .. 44
10.1.2 The main file .. 44
10.1.3 Event simulation instead of coverability tree ... 45

10.2 Example-10: Cotree with infinite states ... 47
10.2.1 Petri net definition file .. 48
10.2.2 The main file .. 48

11. Global Info 51

11.1 Use of ‘MAX_LOOP’ .. 51
11.1.1 Example-11: MAX_LOOP .. 51

11.2 Use of ‘LOOP_NUMBER’ .. 52
11.2.1 What are loops? .. 53

11.3 Use of ‘DELTA_TIME’ ... 54
11.3.1 Example-12: DELTA_TIME ... 54

12. TDF_POST ... 57

12.1 Example-13: Binary Semaphore .. 57
12.1.1 Petri net definition file (‘loadbalance_def.m’): .. 57

12.1.2 Main Simulation File (‘loadbalance.m’): ... 58

12.1.3 TDF_PRE for tX1 (‘tX1_pre.m’): .. 58

12.1.4 TDF_POST for tX1 (‘tX1_post.m’): .. 58

12.1.5 TDF_PRE for tX2 (‘tX2_pre.m’): .. 58

12.1.6 TDF_POST for tX2 (‘tX2_post.m’): .. 59

13. Improving Simulation Results for Printout 61

13.1 Example-14: Improving results printout of binary semaphore 61

14. Prioritizing Transitions 65

14.1 Priorities of transitions ... 65
14.2 Example-15: Alternating firing .. 65
14.3 Example-16: Priority Decrement Example .. 67

15. Using Resources.................................... ... 71

15.1 Using Resources ... 71
15.1.1 Function ‘print_schedule’ .. 71

15.2 Example-17: Using Resources to realize critical section ... 72

15.2.1 MSF: ’cr.m’ .. 72
15.2.2 PDF: ’cr_def.m’ ... 72

 v

15.2.3 TDF: ’tX1_pre.m’ .. 73
15.2.4 TDF: ’tX1_post.m’ ... 73
15.2.5 Results: Plot .. 73

15.3 Example-18: Using Resource Specific ... 74

16. Colored GPenSIM.................................... .. 80

16.1 Structure of Tokens .. 80
17. Color Inheritance 82

17.1 Example-15: Simple Adder .. 82
17.1.1 MSF: ’simple_adder.m’ ... 83

17.1.2 PDF: ’simple_adder_def.m’ ... 83

17.1.3 TDF: ’tGET_NUM1.m’ ... 84

17.1.4 TDF: ’tGET_NUM2.m’ ... 84

17.1.5 TDF: ’tADD.m’ .. 84
17.1.6 TDF: ’tCONVERT.m’ ... 84

17.1.7 Simulation Results .. 85
17.2 Example-16: Alternative Design for Simple Adder ... 85

18. Token Selection based on Color 88

18.1 Example-17: Selecting Input Tokens with Specific Color 88

18.1.1 MSF .. 89
18.1.2 PDF ... 89
18.1.3 TDF: ‘tGEN_def.m’ ... 89
18.1.4 TDFs for tA, tB, and tC .. 90
18.1.5 Simulation results ... 90

18.2 Required or Preferred Color? ... 91
18.2.1 Simulations ... 92
18.2.2 Example-18: Selecting Input Tokens with 2 or more colors 93

19. Summary: Token Selection based on Color 94

19.1 Token Selection From A Single Input Place .. 94

19.2 Token Selection From Multiple Input Places ... 95

20. Token Selection based on Time 98

20.1 Example-19: Token selection based on time .. 99

20.1.1 PDF: fcfs_def.m ... 99
20.1.2 MSF: fcfs.m .. 100
20.1.3 TDF: tCOL_def.m .. 100
20.1.4 TDF: tSEL_def.m ... 100
20.1.5 Simulation Results .. 100
20.1.6 Simulation results for LCFS ... 101

21. Using Hourly Clock 75

21.1 Example-31: Hourly Clock for Lunching Clerks ... 75

21.1.1 Functions for hourly clock ... 75
21.2 Case-A: Two clerks work all the time .. 76

21.2.1 Simulation results ... 77
21.3 Case-B: Only one clerk functions from 12:00 Noon .. 77

21.3.1 Simulation results ... 78
22. Hybrid Systems: Petri Net Models with Fuzzy Inferen ce 79

Part-II: Applications 103

23. Modeling a Single Runway Airport 105

23.1 Description of the Model .. 105

 vi

23.1.1 Assumptions ... 105
23.1.2 Model elements .. 105
23.1.3 Runway (RWY) and taxiways (TWY) ... 105

23.1.4 The three categories of A/Cs .. 105

23.1.5 Governing rules .. 106
23.1.6 Timing for simulations ... 106

23.2 The Petri net Model .. 106
23.2.1 The Elements .. 107
23.2.2 Process Modules ... 107
23.2.3 The Petri net Model .. 108
23.2.4 Places and transitions ... 108

23.3 Program Code: MSF ... 109
23.3.1 MSF .. 109

23.4 Program Code: PDF ... 109
23.5 Program Code: TDFs ... 110

23.5.1 TDF for tGPL (Adding Color) ... 110

23.5.2 TDF for tLRA (Landing A-type AC) ... 110

23.5.3 TDF for tLRB (Landing B-type AC) ... 111

23.5.4 TDF for tLRC (landing C-type AC) ... 111

23.5.5 TDF for tTRA (Take Off, A-type AC) ... 111

23.5.6 TDF for tTRB (Take Off, B-type AC) ... 112

23.5.7 TDF for tTRC (Take Off, C-type AC) ... 112

23.5.8 TDF for tCLC (removing color in tokens) ... 113

23.6 Simulation Results .. 113
23.7 Discussion .. 115
23.8 Improvement to simulation model – job arrival in predefined times 115

23.9 Example-26: Arrivals at predefined times ... 115

23.9.1 MSF .. 115
23.9.2 PDF ... 116
23.9.3 TDF ‘tGEN_def.m’ .. 116
23.9.4 Simulation Results .. 116

24. Scheduling 117

24.1 Example-81: Minimizing completion time .. 117

24.1.1 Petri net model ... 117
24.2 Programs ... 118
24.3 Results .. 120

24.3.1 In Summary: ... 122
24.4 Example-82: Scheduling – II.. 122

24.4.1 Petri Net Model .. 123
24.4.2 Programming .. 124
24.4.3 Pre-processor for T1, T2, T3, T4 and T9: .. 125

24.4.4 Post-processors ... 126
25. Stochastic Timer 127

25.1 Example-25: The Prey-Predator ecological equilibrium .. 127

25.2 Converting the dynamics to Petri nets .. 127
25.3 Simulation files .. 128

25.3.1 The Main Simulation File .. 128

25.3.2 Petri net Definition File .. 128
25.3.3 Definition of stochastic timer (‘time_advancement.m’) 128

25.3.4 Transition Definition File: t1_def.m .. 129

 vii

25.3.5 Transition Definition File: t2_def.m .. 130

25.3.6 Transition Definition File: t3_def.m .. 130

25.4 The Simulation Results .. 131
26. Measuring Robot Usage 133

26.1.1 The Petri net model .. 133
26.1.2 The Petri net model .. 134
26.1.3 Simulations ... 135

27. Norwegian Traffic Lights 136

27.1 Developing a Petri Net Model for Norwegian Traffic Light 136

27.1.1 State-1 (RED) to State-2 (RED & YELLOW) ... 136

27.1.2 State-2 (RED & YELLOW) to State-3 (GREEN) ... 137

27.1.3 State-3 (GREEN) to State-4 (YELLOW) ... 137

27.1.4 State-4 (YELLOW) to State-1 (RED) .. 138

27.2 Transition Definitions... 138

27.3 Program Code for the Petri Net Model ... 138
27.3.1 Main Simulation File .. 138
27.3.2 PDF ... 139
27.3.3 TDF: tR_RY ... 139
27.3.4 TDF: tY_R .. 139

Part-III: Reference Manual......................... .. 140

28. Design of the GPenSIM Simulator 142

28.1 The Main Loop ... 142
29. Further Work (Future Extensions) 144

30. Data structures in GPenSIM 146

30.1 Static Structures for Petri net and its elements ... 146
30.1.1 name ... 147
30.1.2 global_places .. 147
30.1.3 global_transitions ... 148
30.1.4 Global_arcs ... 148
30.1.5 incidence_matrix .. 149
30.1.6 type ... 149

30.2 Run-time Structures for Petri net and its elements ... 150

30.3 Structures for simulation results ... 150
30.4 Example-1 .. 151

30.4.1 LOG .. 153
30.4.2 Firing_Transitions and Enabled_transitions ... 153

30.4.3 State_Diagram .. 153
30.4.4 Place_Names and Transition_Names ... 156

30.5 Example-2 for State_Diagram .. 156
30.6 Off-line Graphical Display ... 160
30.7 Structure for co-tree ... 161
30.8 Structure for colormap ... 162

31. Using MSF and petrinetgraph 164

32. Description of the Main Functions 166

REFERENCES .. 175

 viii

 ix

PREFACE

Petri net is being widely accepted by the research community for modeling and simulation of
discrete event systems. There are a number of Petri net tools available for academic and
commercial use. These tools are advanced tools powerful enough to model complex and large
systems. In this book, we introduce a new Petri Net simulator called GPenSIM (General
Purpose Petri Net Simulator). GPenSIM runs on MATLAB platform. GPenSIM is designed
with one specific goal: allowing Petri net models to integrate with other MATLAB toolboxes.

By integrating Petri net models with other toolboxes, numerous benefits can be reaped. For
example, by integrating with MATLAB Fuzzy Toolbox, we can experiment with Fuzzy Petri
Nets; by combining with MATLAB Control Systems Toolbox, we can create hybrid discrete-
continuous systems. Hence, the main goal of this book is to introduce GPenSIM – a platform
with which we can create Petri net models incorporating many other toolboxes, libraries, and
functions that are already available on the MATLAB platform.

There are many examples worked out in this book. These examples are simple and easy to
follow. However, this book is not an introduction to Petri nets. Reader should know Petri net
basics beforehand in order to start working with this book. Both the simulator GPenSIM and
codes for examples (M-files) can be downloaded from the web site:
http://www.davidrajuh.net/gpensim.

Reggie Davidrajuh
Stavanger, Norway
September 2010

 x

 1

1. Installing GPenSIM

Installation takes five simple steps:

1. Unzip the GPenSIM pack:
Unzip the GPenSIM toolbox functions file(s) under a directory, say
“d:\GPenSIM\GPenSIM32\”. Note: Due to size limitations, there may be one zip file
(GPenSIM-v4.0.zip) or two zip files (GPenSIM-v4.0-pack-1.zip and GPenSIM-v4.0-pack-
2.zip) zip files.

Similarly, unzip the examples file (Examples-v4.0.zip) under a directory, say
“d:\GPenSIM\Examples\”

2. Set MATLAB Path Command:
Start MATLAB. Go to the file menu in MATLAB, and select “set path” command:

Setting path command

Select “Add folder”:

Adding folder

3. Add GPenSIM Directory:
A new dialog box will appear. Browse through the directories and select the directory where
you have unzipped the GPenSIM toolbox functions.

 2

Adding GPenSIM directory

4. Test Installation
Go to MATLAB command window and type ‘gpensim’; if the following (or similar) output is
printed, then the installation is complete.

>> gpensim

GPenSIM version 4.0; Lastupdate: september 2010
http://www.davidrajuh.net/gpensim

>>

 3

2. Introducing Petri net
 This section gives a brief introduction to Petri nets. For further details, interested readers are
referred to Murata(1989); Davidrajuh (2003); Cassandras and Lafortune (2007) [10]. Carl
Adam Petri invented Petri nets in 1962, as part of his dissertation titled “Kommunikation mit
Automaten” at the University of Bonn (Petri and Reisig, 2008).

2.1 Elements of Petri nets

p1

t1

p2

p3

a1
w(p1,t1)=2

a2
w(p2,t1)=1

a3
w(t1,p3)=3

Figure-1. Sample Petri net

A Petri net contain four types of elements: tokens, places, arcs, and transitions. Tokens
represent objects in the Petri net models, such as materials in a material flow system, data in a
information flow. A token is represented with a dot in Petri net models. When the number of
tokens becomes large, it is usually represented with the number of tokens; see figure 1.

Places are passive elements such as input and out buffers, conveyor belts, etc. Places hold
tokens. Figure 1 shows places p1, p2and p3 with 4, 3 and 1 tokens (black spots). Each place is
capable of holding any number of tokens.

Arcs are connections between places and transitions. Arcs are bipartite meaning it is not
possible to have an arc connecting two places together or two transitions together. Each arc
has a weight, which is the number of tokens that are transported simultaneously when the
transitions of which the arc is connected to fires.

 4

Transitions are active elements like machines, robots, etc. Transitions correspond to events
and are connected by arcs to places. When a transition fire, the number of tokens within the
places connected to the firing transition, are changed according to the arcs weights and
directions; when a transition fires it consumes tokens (input parts) from the input places and
puts tokens (output parts) into the output places. For a transition to be able to fire, the number
of tokens in the input places must be equal or higher than the weights of the arcs connecting
the input places to the transition. The transition will then be an enabled transition. Figure 2
shows the state of the sample Petri net from figure 1 after the transition T1 has fired once.

Figure-2. Sample Petri net after one cycle

2.2 Formal Definition of Petri nets
A Petri net is a four-tuple ()0, xP, T, A

 Where,
P is the set of places, []npppP ,,, 21 K= ,

T is the set of transitions, []mtttT ,,, 21 K= ,
A is set of arcs (from places to transitions and from transitions to places),
 () ()PTTPA ×∪×⊆ , and
x is the row vector of markings (tokens) on the set of places () () ()[] n

npxpxpxx Ν∈= ,,, 121 K , x0 is the initial marking.

 5

2.2.1 Input and Output Places of a Transition
In the Petri net in figure 2, the places p1 and p2 are inputs to transition t1, and p3 is an out place
of transition t1. It is convenient to use I(tj) to represent the set of input places to transition tj
and O(tj) to represent the set of output places to transition tj when describing a Petri net:

() (){ }AtpPpTI jiij ∈∈= , :

() (){ }AtpPptO jiij ∈∈= , :

We see from figure 2, that the weight of the arc from input place p1 to transition t1 has a
weight = 2. This is denoted by: ()1 1, =w p t 2 .

2.3 Enabled Transitions
A transition Tt j ∈ in a Petri net is said to be enabled if (Cassandras and Lafortune, 2007):

() ()jii tpwpx ,≥ for all ()ji tIp ∈ .

The transition t1 in figure 2 is enabled, since the numbers of tokens in the input places p1 (2)
and p2 (2) are at least as large as the weight of the arcs connecting them to t1 (()1 1, =w p t 2

and ()1 1, =w p t 2).

2.4 Petri net dynamics
The markings of a Petri net, which is the distribution of tokens to the places, represent the
state of the Petri net. A Petri net representing a discrete event system, where the transitions
represent events, goes through many states during a simulation process. The different states
could be represented with the row vector of markings (the 4.th-tuple):
 () () ()[]121 ,,, npxpxpxx K=

The number of states an infinite capacity net can have is generally infinite, since each place
can hold an arbitrary non-negative integer number of tokens (Murata, 1989). A finite capacity
net on the other hand, will have a given number of possible states.

The state transition function, ,: nn Tf ℵ→×ℵ of a Petri net is defined for a transition Tt j ∈

if and only if, () ()jii tpwpx ,≥ for all ()ji tIp ∈ .

If ()jtxf , is defined then ()jtxfx ,=′ , where

() () () () .,,1 ,,, niptwtpwpxpx ijjiii K=+−=′

2.4.1 Coverability Tree
Petri Nets helps proving many behavioral properties of a system, including:

• Reachability, Boundedness, Conservativeness, Liveness, Reversibility

One technique used to prove properties of a Petri Net is a coverability tree; a coverability tree
consists of a tree of markings and possible transitions between. Nodes that are a repetitive
state are left as leaves and not extended. The Coverability tree can be infinite (markings
consists ‘omega’) or finite (markings do not contain ‘omega’). An infinite coverability tree is

 6

unbounded. Reachability is merely a question of whether there is a path from one node to
another in the tree.

2.5 Why Petri nets?
Several tools could be used for simulation of discrete event systems; Automata, Stateflow,
and Petri nets (high level) are some of the most commonly used (Davidrajuh and Molnar,
2009). The lack of structure possibilities (hierarchy) in Automata is a serious shortcoming, for
modeling large systems since a large (and complex) system should be decomposed into
modules and sub systems. Stateflow, developed by The MathWorks, extends the Simulink
part of MATLAB with functionality similar to Petri net; charts are used for graphical
representation of hierarchical and parallel states and for the event-driven transitions between
them (Stateflow, 2010). A Petri net model of a discrete event system could easily be
converted into a Stateflow model and vice versa, but learning Stateflow is much more difficult
than learning Petri net due to the syntactic, semantic, and graphical details in Stateflow.
Stateflow also requires some knowledge of Simulink, in addition to MATLAB, while the
GPenSIM tool used for Petri net simulation in this paper runs under the MATLAB
environment only. Petri nets is widely accepted by the research community for modeling and
simulation of discrete event-driven systems, mainly due to graphical representation and the
well defined semantics which makes it possible to use formal analysis of the models (Jensen,
1997).

2.6 A minute introduction to Petri net:
The simple Petri net shown in figure-3 is a model for business logic computation. The
computation takes two database records and one business rule, and produces one business
decision. In a Petri net, sources (like business rules and database records) and outputs (like
business decisions) are called places, drawn as circles (e.g. Place-1). Computations (or events)
are called transitions, drawn as vertical short bars (e.g. Transition-1). An arc connects a place
to a transition, or a transition to a place, representing a path for a discrete part to flow. A place
usually holds a number of parts, like database records. The number of parts inside a place is
indicated by the tokens - black spots within a place.

Figure-3. Petri net model for business logic computation

Business rules
(Place-1)

Database records
(Place-2)

Business decisions
(Place-3)

Business logic
computation

(Transition-1)

 7

Part-I: GPenSIM
Basics

 8

 9

3. Modeling with GPenSIM: The Basics
In GPenSIM, definition of a Petri net graph (static details) is given in the Petri net
Definition File (PDF). There may be a number of PDFs, if the Petri net model is divided into
many modules, and each module is defined in a separate PDF. While the Petri net definition
file has the static details, the main simulation file (MSF) contains the dynamic information
(such as initial tokens in places, firing times of transitions) of the Petri net.

Figure-4. Separating the static and dynamic Petri net details

3.1 Transition Definition Files
In addition to these two files (main simulation file - MSF and Petri net definition file - PDF),
there can be a number of transition definition files (TDF) too. These TDF are classified into
two types: TDF_PRE and TDF_POST. TDF_PRE files are run before firing a transition;
TDF_POST files are run after firing a transition.

3.1.1 Using TDF_PRE and TDF_POST
According to the Petri net theory, a transition can fire (“enabled transition”) when there are
enough tokens in the input places. However, in real-life situations, an event representing a
transition can have additional restrictions for firing; for example, event-2 has preferences
(priority) over event-1, thus event-2 is allowed to fire even though both event-1 and event-2
are enabled to fire. In GPenSIM literature, these additional restrictions are called “user-
defined conditions”.

The user-defined conditions for firing a transition are kept in a TDF_PRE file. After a
transition fires, there may be some book keepings need to be done; these can be coded into a
TDF_POST file.

Names of the TDFs must follow a strict naming policy, as they will be chosen and run
automatically: for example, the TDF_PRE for the transition ‘trans1’ must be named
‘trans1_pre.m’; similarly, the TDF_POST for the transition ‘trans1’ must be named
‘trans1_post.m’.

3.1.2 Using TDF as a test probe
In addition to executing user-defined conditions, a TDF provides a unique functionality:
acting as a probe to simulation engine: Let us explain:

1. The role of PDF: the only use of a PDF is to represent a static Petri net graph.

Main
Simulation

File
E.g.: File: ‘sim1.m’
(dynamic details)

Petri net definition File
E.g.: File: ‘pn_def.m’

(Static Petri net graph)

 10

2. The role of MSF: A PDF will be loaded into memory by MSF right before the
simulation start. Thus, an MSF first loads PDF (or PDFs in modular approach) into
memory and then starts the simulation. MSF will be blocked during simulation runs,
and when simulation is complete, the control will be passed back to MSF along with
the simulation result. Therefore MSF does not have any control of what going on
during simulation.

3. The role of TDF: Though MSF does not have any control of what going on during
simulation, however, TDFs will be called during simulation, before and after
transition firings. Thus, if we want to inspect run-time (simulation) properties then a
TDF can be used as a probe (more details given in the section on TDF).

Figure-5. Transition Definition Files

3.2 Global info
The different files (main simulation file MSF, Petri net definition files PDFs, and transition
definition files TDFs) can access and exchange global parameters values through a packet
called ‘global_info’. If a set of values is need to be passed to different files then these values
are packed together as a global_info packet. global_info packet is visible in all the files, so
that the values in the packet can be read and even changed. See chapter 9 for details.

3.3 Integrating with MATLAB environment
The most important reason for developing GPenSIM and the most advantage of it is its
integration with the MATLAB environment, so that we can harness diverse toolboxes
available in the MATLAB environment; see figure 6.

Main
Simulation

File
(E.g.: File: ‘sim1.m’)

(Implementation details of a Petri nets)

Transition_1 definition file

(Implementation details of transitions)

… … …

Transition_n definition file

Petri net-m definition file

Petri net-m definition file

Petri net-m definition file

 11

For example, by writing a user M-file that combines GPenSIM with Fuzzy Logic toolbox, we
can experiment with Fuzzy Petri Nets; by combining GPenSIM with the Control systems
toolbox, we can experiment hybrid discrete-continuous control applications, etc.

Figure-6. Integrating GPenSIM with the MATLAB environment

Main

Simulation
File

(MSF)

Petri Net
Definition

Files
(PDFs)

Transition
Definition

Files
(TDFs)

(Optional)
MATLAB Toolboxes such as

Fuzzy, Control Systems, Optimization, Statistics, etc

 12

 13

4. Using GPenSIM
The methodology for creating a Petri net model consists of two steps:

Step-1. Defining the Petri net graph in a Petri net Definition File (PDF): this is the static
part. This step consist of three sub-steps:

a. Identifying the basic elements of a Petri net graph: the places,
b. Identifying the basic elements of a Petri net graph: the transitions, and
c. Connecting the elements with arcs

Step-2. Assigning the dynamics of a Petri net in the Main Simulation File (MSF):

a. The initial markings on the places, and possibly
b. The firing times of the transitions

After creating a Petri net model, simulations can be done.

4.1 Example-01: A Simple Example
The two steps are explained below, using the sample Petri net model shown in figure 7.

Figure-7. A Simple Petri Net Model

4.1.1 Step-1: Defining the Petri net graph
Defining the elements of a Petri net is done in a Petri net definition file (PDF). PDF is to
identify the elements (places, transitions) of a Petri net, and to define the way these elements
are connected.

The Petri net graph shown in figure 7 has three places, one transition, and three arcs. The PDF
for the graph is given below:

Place-1

Place-2

Place-3
Transition-1

 14

% Example-01: A Simple Example
% file: ’simple_pn_def.m’
% this file defines the simple petri net graph
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = simple_pn_def(global_info)

PN_name = 'A Simple Petri Net' ;
set_of_places = { 'Place-1' , 'Place-2' , 'Place-3' };
set_of_trans = { 'Transition-1' };
set_of_arcs = { 'Place-1' , 'Transition-1' , 1, ...
 'Place-2' , 'Transition-1' , 2, ...
 'Transition-1' , 'Place-3' , 1};

Explanation:

First, assign a name (or label) for the Petri net.
> PN_name = 'A Simple Petri Net' ;

Second, the places are to be identified with place names:
> set_of_places = { 'Place-1' , 'Place-2' , 'Place-3' };

Third, the transitions are to be identified by stating their names.
> set_of_trans = { 'Transition-1' };

Finally, how the elements are connected is defined: connecting arcs are to be defined by
listing the source, the destination and the weights of each arc. For example, the first arc is
from ‘Place-1’ (source), to ‘Transition-1’ (destination) with a unit arc weight:

> set_of_arcs = { 'Place-1' , 'Transition-1' , 1, ...
 'Place-2' , 'Transition-1' , 2, ...
 'Transition-1' , 'Place-3' , 1};

4.1.2 Step-2: The main simulation file: assigning the initial dynamics
After writing the Petri net definition file (PDF, e.g. ‘simple_pn_def.m’), we need to write the
main simulation file (MSF). In the MSF, first we load the static Petri net graph, by passing the
name of the PDF (without the ending ‘.m’) to the function ‘petrinetgraph’:

> png = petrinetgraph('simple_pn_def');

Second, the dynamics such as initial markings on the places and the firing times of the
transition are to be assigned. Normally, we stuff these two information into a packet (e.g.
‘dynamic_info’ in this example) and then pass this packet to function ‘gpensim’.

> dynamic_info.initial_markings = { 'Place-1' ,3, 'Place-2' ,5};
> dynamic_info.firing_times = { 'Transition-1' , 10};

4.1.3 The Simulations
Function gpensim will do the simulations if the Petri net graph (the static part) and the initial
markings and firing times (the dynamic part) are passed to it:

> Sim_Results = gpensim(png, dynamic_info);

 15

The output argument Sim_Results is the simulation results.
The output argument Sim_Results is a structure for the simulation results. In order to
comprehend the simulation results easily, the function ‘print_statespace’ could be used.

4.1.4 Viewing the simulation results with ‘print_statespace’

> print_statespace(Sim_Results);

The output is given below:

Explanation:
Of course, ‘Transition-1’ takes 10 milliseconds to produce a token on ‘Place-3’, after
removing 1 and 2 tokens from ‘Place-1’ and ‘Place-2’ respectively.

Time: 0
New markings:
p1 p2 p3
 3 5 0

At time: 0 enabled transtions are: t1

At time: 0 firing transtions are: t1

Time: 10
Fired Transition: t1
New markings:
p1 p2 p3
 2 3 1

At time: 10 enabled transtions are: t1

At time: 10 firing transtions are: t1

Time: 20
Fired Transition: t1
New markings:
p1 p2 p3
 1 1 2

At time: 20 enabled transtions are:

At time: 20 firing transtions are:
>>

In addition to the ASCII output, we can also view the output graphically. For example,
> plotp(Sim_Results, { 'Place-1' , 'Place-2' , 'Place-3' });

The above statement will plot how the tokens in the places vary with time: see the figure
given below:

 16

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p1

p2
p3

4.2 Summary
Step-1 is about creating the PDF that defines the static Petri net graph. The PDF for the Petri
net shown in figure 5 is repeated below:

% Example-01: A Simple Example
% file: ’simple_pn_def.m’
% this file defines the simple petri net
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = simple_pn_def(global_info)
PN_name = 'A Simple Petri Net implementation' ;
set_of_places = { 'Place-1' , 'Place-2' , 'Place-3' };
set_of_trans = { 'Transition-1' };
set_of_arcs = { 'Place-1' , 'Transition-1' , 1, ...
 'Place-2' , 'Transition-1' , 2, ...
 'Transition-1' , 'Place-3' , 1};

Step-2 is for assigning the initial dynamics (initial markings and firing times) in the MSF.
After the assignment, the simulations can be run and the results can also be plotted. The MSF
for the Petri net shown in figure 5 is repeated below:

% Example-01: A Simple Example
% the main file to run simulation
dynamic_info.initial_markings = { 'Place-1' ,3, 'Place-2' ,5};
dynamic_info.firing_times = { 'Transition-1', 10};

png = petrinetgraph('simple_pn_def');
Sim_Results = gpensim(png, dynamic_info);

 17

print_statespace(Sim_Results);
plotp(Sim_Results, { 'Place-1' , 'Place-2' , 'Place-3' });

4.3 Static PN structure
In the main simulation file given in the previous subsection, first we get a static Petri Net
structure (called png in the example) as the output parameter of function gpensim:

png = petrinetgraph('simple_pn_def');

The static PN structure png is a compact representation of the static Petri net graph. A static
PN structure consists of 5 elelements; e.g. in png:

 name: 'A Simple Petri Net'
 global_places: [1x3 struct]

 No_of_places: 3
 global_transitions: [1x1 struct]
 global_arcs: [1x3 struct]
 incidence_matrix: [1.00 2.00 0 0 0 1.00]

The elements of a static PN structure are:

1) name: the ASCII string identifier of the Petri net
2) global_places: the set of all places in the Petri net
3) global_transitions: the set of all transitions in the Petri net
4) global_arcs: the set of all arcs in the Petri net, and
5) incidence_matrix: the matrix that depicts how the places and transitions are connected

together.

It must be emphasized that static PN structure is much simpler than run-time PN structure. A
static PN structure is one of the parameters that are input to the function gpensim to start
simulation. During simulation (‘run-time’), state information and other run-time information
will be added to the PN structure, thus the PN structure will contain dynamic information in
addition to static details; during simulation the PN structure is called ‘run-time’ PN structure.
Details of run-time PN structure is given in the next section.

4.4 Assigning names to Places & Transitions

CAUTION! There is a serious restriction in naming:
ONLY first 10 characters of NAMES are significant.

This means, names for two places (pReggieDavidrajuh_1), and (pReggieDavidrajuh_2) are
the same names (REFER TO THE SAME PLACE) because first 10 characters of these two
names are the same.

However, (pReggie_1_Davidrajuh), and (pReggie_2_Davidrajuh) are different names simply
because first 10 characters of these two names are different.

 18

 19

5. Transition Definition File (TDF)
The previous section explained the methodology for modeling and simulation with GPenSIM
consisting of two steps. However, in the previous section, the step-1 was limited to creating
only the PDF; there were no TDFs created. In this section, we shall discuss about the TDFs
too, by working through the example shown in figure 8.

Figure-8. Petri net model of a production facility

5.1 Example-02: TDF_PRE Example
Figure 8 shows a Petri net model of a production facility where three robots are involved in
sorting products (machined parts) from an input buffer (for machined goods) to output
buffers. There are three output buffers (places) available. There are also three robots
(transitions) that take the machined parts from the input buffer and put them to the respective
output buffers.

The conditions: The output buffers have limited capacity. Buffer-1, buffer-2, and buffer-3
can accommodate a maximum of 3, 5, and 2, machined parts respectively. In addition, the
robots should be operated in a manner that, at any time, buffer-2 should have more parts than
buffer-1, and buffer-1 should have more parts than buffer-3.

The conditions stated above shall be coded in the TDF_PRE files.

5.1.1 Creating M-Files
In this example, the following M-files are created in the two steps:

• Step-1: In addition to creating the PDF, TDF_PREs for the three transitions must
be also created. This is because, there are user-defined conditions attached to the
transitions.

• Step-2: In the MSF: assigning the initial dynamics (initial markings and firing times)

and running the simulations.

Buffer -1

Machines Goods
from CNC

Buffer-3

Buffer-2

Robot-3

Robot-2

Robot-1

 20

5.2 Step-1: the definition files

5.2.1 Defining the Petri net graph
Let’s call the PDF for the Petri net in figure 6 as ‘tdf_example_def.m’:

% Example-02: TDF example
% file: tdf_example_def.m:
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = tdf_example_def (global_info)

PN_name = 'TDF Example: Petri Net for production facility' ;
set_of_places = { 'pFrom_CNC' , 'pBuffer_1' , 'pBuffer_2' , 'pBuffer_3' };
set_of_trans = { 'tRobot_1' , 'tRobot_2' , 'tRobot_3' };
set_of_arcs = { 'pFrom_CNC' , 'tRobot_1' ,1, 'pFrom_CNC' , 'tRobot_2' ,1, ...
 'pFrom_CNC' , 'tRobot_3' ,1, ...
 'tRobot_1' , 'pBuffer_1' ,1, 'tRobot_2' , 'pBuffer_2' ,1, ...
 'tRobot_3' , 'pBuffer_3' ,1};

5.2.2 Coding the user-defined firing conditions of the Transitions
tRobot-1 will fire only if the number of tokens (machined parts) already put in output
pBuffer-1 is less than 3. In addition, number of tokens in pBuffer-1 should be less than that
of pBuffer-2; coding these two user-defined conditions into the TDF_PRE for tRobot-1 is
given below. As the name of the transition is ‘tRobot_1’, this TDF must be named
‘ tRobot_1_pre.m’.

% file: tRobot_1_pre.m:
function [fire, new_color,override,selected_tokens,global_i nfo] = ...
 tRobot_1_pre(PN, new_color, override, selected_t okens, global_info)

b1 = get_place(PN, 'pBuffer_1');
b2 = get_place(PN, 'pBuffer_2');
fire = (b1.tokens < b2.tokens)& (b1.tokens < 3);

Similarly, the definition files for tRobot-2 and tRobot-3 are created, satisfying the given
conditions:

% file: tRobot_2_pre.m:
function [fire, new_color,override,selected_tokens,global_i nfo] = ...
 tRobot_2_pre(PN, new_color,override,selected_ tokens,global_info)

b2 = get_place(PN, 'pBuffer_2');
fire = (b2.tokens < 5);

% file: tRobot_3_pre.m:
function [fire, new_color,override,selected_tokens,global_i nfo] = ...
 tRobot_3_pre(PN, new_color,override,selected_t okens,global_info)

b1 = get_place(PN, 'pBuffer_1');
b3 = get_place(PN, 'pBuffer_3');
fire = (b1.tokens > b3.tokens) & (b3.tokens < 2);

 21

5.3 Step-2: Assigning the initial dynamics and running the simulations
Given below is the main simulation file (‘tdf_example.m’):

% Example-02: TDF example
% the main file to run simulation tdf_example.m
png = petrinetgraph('tdf_example_def');
dynamics.initial_markings = { 'pFrom_CNC' , 20}; %initial machined parts
dynamics.firing_times = { 'tRobot_1' ,10, 'tRobot_2' ,5, 'tRobot_3' ,15};

Results = gpensim(png, dynamics);
print_statespace(Results);
plotp(Results, {'pFrom_CNC', 'pBuffer_1', 'pBuffer_ 2', 'pBuffer_3'});

The output of print_statespace is given below is one of the 2 possible outcomes.

5.3.1 Outcome-1:

State:0 (Initial State)
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
 0 0 0 10
At time: 0
 Enabled transtions are:
 tRobot_1 tRobot_2 tRobot_3
At time: 0
 Firing transtions are:
 tRobot_2

 Time: 5
State: 1
Fired Transition: tRobot_2
Current State:
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
 0 1 0 9
At time: 5
 Enabled transtions are:
 tRobot_1 tRobot_2 tRobot_3
At time: 5
 Firing transtions are:
 tRobot_1 tRobot_2

 Time: 10
State: 2
Fired Transition: tRobot_2
Current State:
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
 0 2 0 7
At time: 10
 Enabled transtions are:
 tRobot_1 tRobot_2 tRobot_3
At time: 10
 Firing transtions are:
 tRobot_1 tRobot_2

 Time: 15
State: 3
Fired Transition: tRobot_2
Current State:

 22

pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
 0 3 0 6
At time: 15
 Enabled transtions are:
 tRobot_1 tRobot_2 tRobot_3
At time: 15
 Firing transtions are:
 tRobot_1 tRobot_2

 Time: 15
State: 4
Fired Transition: tRobot_1
Current State:
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
 1 3 0 5
At time: 15
 Enabled transtions are:
 tRobot_1 tRobot_2 tRobot_3
At time: 15
 Firing transtions are:
 tRobot_1 tRobot_2 tRobot_3

………………….
………………..
 Time: 45
State: 10
Fired Transition: tRobot_3
Current State:
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
 3 5 2 0
At time: 45
 Enabled transtions are:
>>

Given below is the plot of how the number of tokens in different places varies with time:

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

pFromCNC

pBuffer1

pBuffer2
pBuffer3

 23

5.4 Run-time PN structure
Incidentally, TDF_PRE can also be used as a probe into simulation engine. The MSF prepares
the static Petri net (PN) structure and the initial dynamic information so that the simulation
can be started. Once the simulation is started, there is no way of knowing what’s going on.
The MSF is blocked until the simulation is complete and the result is given back to the MSF.
Then, we can analyze the results e.g. with the help of print_statespace.

During simulations, control is passed to TDF_PRE if there is any. In the TDF, a copy of run-
time PN structure is available so that we can inspect it to study what’s going on. Let’s take a
look into TDF for Robot_1 discussed in the previous subsection:

% file: tRobot_1_pre.m:
function [fire, new_color,override,selected_tokens,global_i nfo] = ...
 tRobot_1_def(PN, new_color,override,selected_to kens,global_info)
...
PN % dump contents of PN every time tRobot_1_pre is ca lled

In TDF given above, we see that run-time PN structure is one of the 5 input parameters.
This run-time PN structure has all the important run-time details; hence, we can inspect this
PN structure to study what’s going on during simulation. Run-time PN structure has 21
elements, given below are some of them possessing important run-time properties:
1. PN.global_places: has complete set of current tokens for each place
2. PN.global_transtions: has details about how many times each transition has fired so

far
3. PN.current_time: the internal clock time
4. PN.token_serial_number: the total number of tokens generated so far
5. PN.X: the current marking (current state)
6. PN.Firing_Transitions: indicates which transitions are currently firing
7. PN.Enabled_Transitions: indicates which transitions are currently enabled

1 STATIC N ame: 'TDF Example: Production facility'
2 Run-time global_places: [1x4 struct]
3 Run-time global_transitions: [1x3 struct]
4 STATIC global_ arcs: [1x6 struct]
5 STATIC incidence_matrix: [3x8 double]
6 Run-time current_time: 45.00
7 Run-time token_serial_number: 30.00
8 Run-time X: [10.00 3.00 5.00 2.00]
9 Run-time Firing_Transitions : [0 1 1]

10 Run-time Enabled_Transitions : [1 0 0]

 24

5.5 Example-03: Implementing Preference through TDF_PRE
In this example (figure 9), transitions t1 and t2 both competes for tokens in pS; we prefer t1
over t2.

Figure-9. Petri net model of a production facility

MSF:
% MSF: prefer.m
dyn.firing_times = { 't1' ,10, 't2' ,7};
dyn.initial_markings = { 'pS' ,3};

png = petrinetgraph('prefer_def');
sim_results = gpensim(png, dyn);
print_statespace(sim_results);
plotp(sim_results, { 'pE1' , 'pE2' });

PDF:
function [PN_name, set_of_places, set_of_trans, ...
 set_of_arcs] = prefer_def(global_info)
% PDF: prefer_def

PN_name='Preference example' ;
set_of_places={ 'pS' , 'pE1' , 'pE2' };
set_of_trans={ 't1' , 't2' };
set_of_arcs = { 'pS' , 't1' ,1, 't1' , 'pE1' ,1, ...
 'pS' , 't2' ,1, 't2' , 'pE2' ,1};

5.5.1 Case-I: t1 is strictly preferred
Conditions for firing:

• t1 will fire if it is enabled (meaning, no TDF for t1).
• t2 will fire only is t1 is not enabled

Surely, t2 will starve!

function [fire,PN, new_color,override,selected_tokens,globa l_info] = ...
 t2_pre (PN, new_color, override, selected_token s, global_info)

pS

t2 pE1

t3 pE2

 25

% TDF_PRE for t2 ('t2_pre.m')

% Case-I:
if is_enabled(PN, 't1'),
 fire = 0;
else
 fire = 1;
end ;

Simulation results:

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

pE1

pE2

Time: 0
New markings:
pS pE1 pE2
 3 0 0

At time: 0 enabled transtions are: t1 t2

At time: 0 firing transtions are: t1

Time: 10
Fired Transition: t1
New markings:
pS pE1 pE2
 2 1 0

At time: 10 enabled transtions are: t1 t2

 26

At time: 10 firing transtions are: t1

Time: 20
Fired Transition: t1
New markings:
pS pE1 pE2
 1 2 0

At time: 20 enabled transtions are: t1 t2

At time: 20 firing transtions are: t1

Time: 30
Fired Transition: t1
New markings:
pS pE1 pE2
 0 3 0

At time: 30 enabled transtions are:
At time: 30 firing transtions are:

5.5.2 Case-II: t1 is preferred, but t2 can also fire
Conditions for firing:

• (as before) t1 will fire if it is enabled (meaning, no TDF for t1).
• t2 will fire is t1 is not enabled or if t1 has fired at least once

Now, t2 can fire as soon as t1 has fired for the first time.

TDF:
function [fire,PN, new_color,override,selected_tokens,globa l_info] = ...
 t2_pre (PN, new_color, override, selected_token s, global_info)
% TDF for t2 ('t2_pre.m')

% Case-II:
t1 = get_trans(PN, 't1');

if or(~is_enabled(PN, 't1'), (t1.times_fired >= 1)),
 fire = 1;
else
 fire = 0;
end ;

Simulation results:
The following may occur where t2 may also fire.

 27

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

pE1

pE2

5.6 Using TDF_POST
We study an application of TDF_POST through an example in section XXX.

 28

 29

6. Internal Clock
Internal clock is discrete in the sense it is updated whenever a transition is complete. If we
take a close look into the figures generated by the plotp function, the figures look like ramp
rather than pulses. This is due to poor sampling (recording), as simulation results with timing
are recorded only when a transition complete firing. In other words, simulation results are
recorded only when there is a new state.

We will discuss an import internal clock issue thorough an example. When a transition
completes firing, the internal clock is advanced by the firing time of the transition. When a
Petri net system has enabled transitions, but none is firing, then the internal clock time is
advanced by an amount which is equal to ¼ of the minimum firing time of all transitions.

6.1 Example-04: Delay Example
In the figure shown below, let p1 has 5 initial tokens. Also let firing time of t1 is 7 seconds.

Though t1 can fire 5 times successively, we want it to fire only at the start of every 30
seconds. This means, t1 is delayed by 30 - 7 = 23 seconds.

Figure-10. Delay Example

During the waiting time of 23 seconds (t1 is enabled but not firing), time advancement will be
done in time units of 7/4 = 1.75 seconds. See the gpensim system file ‘timed_pensim.m’ for
implementation details.

MSF:
% Example-04: delay example
% file: delay_demo.m:

png = petrinetgraph('delay_demo_def');

dynamic.initial_markings = { 'p1' ,3};
dynamic.firing_times = { 't1' , 7};

sim = gpensim(png, dynamic, global_info);
print_statespace(sim);
plotp(sim, { 'p1' , 'p2' });

PDF:
% Example-04: delay example
% file: delay_demo_def.m:
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = delay_demo_def(global_info)

 30

PN_name = 'Delay Demo' ;
set_of_places = { 'p1' , 'p2' };
set_of_trans = { 't1' };
set_of_arcs = { 'p1' , 't1' , 1, 't1' , 'p2' , 1};

TDF:
function [fire, new_color, over_ride, selected_tokens,globa l_info] = ...
 t1_def(PN, new_color, over_ride, selected_token s, global_info)
% function fire = t1_pre

rest = mod(PN.current_time, 30);
fire = (rest < 5); % any number less than 7 would do

Simulation results:

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

p1

p2

 31

7. Measuring Activation Timing
We are going to find out how much time each transitions take or occupy out of the total time.
From the simulation results, there are two functions that can compute activation time of each
transition given in the input list. Function ‘extractt’ creates a simple matrix called duration
matrix in which first column is the transition (transition index) that fired, the second column
is the start time for firing and the third column is the completion time for firing.
Function ‘extractt’ returns duration matrix with three columns:

1) Column-1: The firing transition
2) Column-2: firing start time
3) Column-3: firing finishing time

Alternatively, we can use the function ‘occupancy’ to measure activation times: function
occupancy first computes the duration matrix by calling the function extractt. Then, from the
duration matrix, it computes the occupancy matrix. Occupancy matrix consists of just two
rows. The first row presents total activation times of each transition given in the input list.
The second row presents activation in percentage of the total time. The function occupancy
also prints the activation times and percentages on screen.

7.1 Example-05: Measuring Activation Time
This example is the same delay example, shown in figure 10. This time, we will compute the
idle time of the transition (activation time of the transition, precisely) with the help of the
functions extractt and occupancy.

The only change this time in the MSF is that addition of the last two lines:

MSF:
% Example-05: delay example for measuring activatio n time
% file: delay_demo.m:

png = petrinetgraph('delay_demo_def');

dynamic.initial_markings = { 'p1' ,3};
dynamic.firing_times = { 't1' , 7};

sim = gpensim(png, dynamic, global_info);
% print_statespace(sim);
% plotp(sim, {'p1','p2'});

duration_matrix = extractt(sim, { 't1' })
occupancy_matrix = occupancy(sim, { 't1' })

Simulation results:
The duration matrix computed form the simulation results shows that the transition t1 was
fired at 0, 30, and 60 time units, and that every firing took 7 time units to complete.

Thus, the total time t1 fired was 21 time units, and the activation percentage was (21/67 =
31.3%) percent.

 32

duration_matrix =
 1 0 7
 1 30 37
 1 60 67

occupancy t1 :
 total time: 21
 Percentage time: 31.3433%

occupancy_matrix =
 21.0000
 31.3433

7.2 Example-06: Measuring Activation time
This is another example for measuring activation time. Figure 11 below shows a simple
system where two transitions fire sequentially, one after the other.

Figure-11. Transitions firing sequentially

The code below is for the main simulation file.

% Example-06: Measuring Timing
% MSF: measure_timing.m
clear, clc;
global_info.MAX_LOOP = 11; % GLOBAL DATA: MAX. SIMULATION CYCLES

png = petrinetgraph('measure_timing_def');
dynamicpart.initial_markings = { 'p1' , 10};
dynamicpart.firing_times = { 't1' , 1, 't2' , 100};
sim = gpensim(png, dynamicpart, global_info);
% print_statespace(sim); plotp(sim, {'p1', 'p2'});

duartion_martix = extractt(sim, { 't1' , 't2' });
disp('Duartion Martix : '), disp(duartion_martix);
fprintf('\n\n');
occupancy_martix = occupancy(sim, { 't1' , 't2' });
fprintf('\n\n');
disp('Occupancy Martix : '), disp(occupancy_martix);

p1 p2

t1 t2

 33

Simulation results:

Duartion Martix :
 1 0 1
 1 101 102
 1 202 203
 1 303 304
 1 404 405
 1 505 506
 2 1 101
 2 102 202
 2 203 303
 2 304 404
 2 405 505

Simulation Completion Time: 506
occupancy t1 :
 total time: 6
 Percentage time: 1.1858%
occupancy t2 :
 total time: 500
 Percentage time: 98.8142%

Occupancy Martix :
 6.0000 500.0000
 1.1858 98.8142

 34

 35

8. Stochastic Firing Times
So far, the firing times for transitions are assumed to be deterministic; thus, the simulations
presented so far are deterministic. However, in real life systems all the firing times are
stochastic. GPenSIM provides a limited facility for stochastic firing times.

We can use any of the MATLAB-standard probability distribution functions for stochastic
firing times. The following are the most used:

1) Guassian (normal) random function,
2) Binormial random function,
3) Poission random function, and
4) Uniform random function.

8.1 Example-07: Stochastic firing times
We refer to the CNC production system shown in figure 9; we no longer assume that the
firing times are deterministic:

1) Robot-1 takes random time Binaomially distributed with seed 10 and factor 0.9
milliseconds. (‘binornd(10,0.9) ’)

2) Robot-2 takes random time normally distributed with mean 1 and standard deviation
0.1 milliseconds. (‘normrnd(1,0.1) ’)

3) Robot-3 takes random time uniformly distributed with min 8 and max 10
milliseconds. (‘unifrnd(8,10) ’)

Thus, the Petri net definition file is to be changed accordingly:

% Example-07: TDF example with stochastic timing
% the main simulation file
png = petrinetgraph('tdf_example_def');
dynamics.initial_markings = { 'pFrom_CNC' , 20}; % initial tokens

% here comes the STOCHASTIC TIMING
dynamics.firing_times = { 'tRobot_1' , 'binornd(10,0.9)' , ...
 'tRobot_2' , 'normrnd(1,0.1)' , 'tRobot_3' , 'unifrnd(8,10)' };

Results = gpensim(png, dynamics);
print_statespace(Results);
plotp(Results, {'pFrom_CNC', 'pBuffer_1', 'pBuffer_ 2', 'pBuffer_3'});

Note: Due to stochastic timing, up to three different outcomes are possible!!

 36

 37

9. Modular Model Building
Figure 12 shows architecture of an adaptive supply chain based on service component
architecture; see Davidrajuh (2007) for details. Figure 13 shows the equivalent Petri net
model.

Figure-12. The system assembly

 Initialization
 Distribution

Chain
Design

HandleIterativeProcess

Subsystem IterativeProcess

Subsystem TacticalDecisions

InventoryWholeSDist

InventoryRetailer

TransportWholeSDist

TransportDistRetail

TacticalBusinessProcess

 StrategicBusinessProcess

Subsystem StrategicDecisions

Subsystem InitSystem

 38

9.1 Example-08: Modular Model for Adaptive Supply Chain
The Petri net model shown in figure 13 has many elements (11 places and 12 transitions) and
many connections (27 arcs). Though possible, it will be cumbersome to create one Petri net
definition file PDF for the whole Petri net graph. Instead, we can divide the Petri net graph
into modules as shown in figure 13, and then create individual PDFs for each of the module;
finally, all the PDFs are combined to form the complete model.

In the following subsection, we use modular (many PDFs, one PDF for each module)
approach. Section 9.2 presents the TDF for the transition tRES; interested reader is referred to
Davidrajuh (2007) for details.

 39

Figure-13. The Petri net model of the distribution chain

 40

9.2 The Modular Approach
Figure 13 shows a modular Petri net model, consisting of a number of modules such as
‘Service Interface Layer’, ‘Initialization module’, ‘Strategic module’, etc. For each module, a
PDF will be created. In addition, there will be a PDF for the connection between modules. For
example, we can cerate a PDF for each of the following:

1) Client (‘client_def.m’),
2) Internet transmission (‘internet_def.m’),
3) Service Interface Layer (‘sil_def.m’),
4) Initialization module (‘init_def.m’),
5) Iterations module (‘interate_def.m’),
6) Strategic module (‘strategy_def.m’),
7) Tactical & sub tactical module (tactic_def.m’), and finally
8) Profile for connecting the modules together (‘conn_pro.m’).

In the main simulation file, all these 8 PDFs must be passed to the function ‘petrinetgraph’.

9.2.1 The main simulation file: ‘MIC_2006_new.m’
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% MIC – 2006 (modular model)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
png = petrinetgraph({ 'client_def' , 'internet_def' , 'sil_def' ,
'conn_pro' , ...
 'iterate_def' , 'strategy_def' , 'tactic_def' });

dyn.initial_markings = { 'pSR' ,1, 'pNOI' , round(unifrnd(2,4)), 'pB6' ,1};
dyn.firing_times = { 'tCS' , 'normrnd(5000,50)' , 'tSC' , 'normrnd(5000,50)' , ...
 'tINIT' , 'unifrnd(280,320)' , ...
 'tRES' , 'unifrnd(1, 10)' , 'tSD' , 'unifrnd(80, 100)' , ...
 'tTD' , 'unifrnd(25, 35)' , 'tSUB1' , 'unifrnd(10, 15)' , ...
 'tSUB2' , 'unifrnd(10, 15)' , 'tSUB3' , 'unifrnd(10, 15)' , ...
 'tSUB4' , 'unifrnd(10, 15)' };

Results = gpensim(png, dyn);
print_statespace(Results);

9.2.2 Client (‘client_def.m’)
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = client_def()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% File: client_def.m : Definition of client
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PN_name = 'Client' ;
set_of_places = { 'pSR' , 'pRR' };
set_of_trans = [];
set_of_arcs = [];

9.2.3 Internet transmission (‘internet_def.m’),
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = internet_def()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% File: internat_def.m: Definition of internet tra nsmission

 41

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PN_name='Internet Transmission' ;
set_of_places = [];
set_of_trans = { 'tCS' , ' tSC' };
set_of_arcs = [];

9.2.4 Service Interface Layer (‘sil_def.m’),
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = sil_def()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% File: sil_def.m: Definition of the Service Inter face Layer
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PN_name='Service Interface Layer' ;
set_of_places = { 'pRFC' , 'pRTC' , 'pB1' };
set_of_trans = { 'tINIT' };
set_of_arcs = { 'pRFC' , 'tINIT' ,1, 'tINIT' , 'pB1' ,1};

9.2.5 Iterations module (‘interate_def.m’)
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = iterate_def()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% File: iterate_def.m: Definition of the Iteration s module
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PN_name='Iterations Module' ;
set_of_places = { 'pNOI' , 'pB6' };
set_of_trans = { 'tIT' , 'tRES' };
set_of_arcs = { 'pNOI' , 'tIT' ,1, 'pB6' , 'tIT' ,1, 'pB6' , 'tRES' ,1};

9.2.6 Strategic module (‘strategy_def.m’)
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = strategy_def()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% File: strategy_def.m: Definition of the Strategi c Module
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PN_name = 'Strategic Module' ;
set_of_places = { 'pB2' , 'pB3' };
set_of_trans = { 'tSD' };
set_of_arcs = { 'pB2' , 'tSD' ,1, 'tSD' , 'pB3' ,1};

9.2.7 Tactical & sub tactical module (‘tactic_def.m’)
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = tactic_def()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% File: tactic_def.m: Definition of the Tactical & subtactical modules
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PN_name = 'Tactical & sub-tactical Module(s)' ;
set_of_places = { 'pB4' , 'pB5' };
set_of_trans = { 'tTD' , 'tSUB1' , 'tSUB2' , 'tSUB3' , 'tSUB4' , 'tSUM' };
set_of_arcs = { 'tTD' , 'pB4' ,4, ...
 'pB4' , 'tSUB1' ,1, 'pB4' , 'tSUB2' ,1, 'pB4' , 'tSUB3' ,1, 'pB4' , 'tSUB4' ,1, ...
 'tSUB1' , 'pB5' ,1, 'tSUB2' , 'pB5' ,1, 'tSUB3' , 'pB5' ,1, 'tSUB4' , 'pB5' ,1, ...
 'pB5' , 'tSUM' ,4};

 42

9.2.8 Profile for connecting the modules together (‘conn_pro.m’)
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = conn_pro()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% File: conn_pro.m: Definition of the connections between the modules
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PN_name = 'Connections Profile' ;
set_of_places = [];
set_of_trans = [];
set_of_arcs = { 'pSR' , 'tCS' ,1, ... % client - internet
 'tCS' , 'pRFC' ,1, ... % internet - SIL
 'pRTC' , 'tSC' ,1, ... % SIL - internet
 'tSC' , 'pRR' ,1, ... % internet - client
 'pB1' , 'tIT' ,1, ... % init - iterations
 'tIT' , 'pB1' ,1, ... % iterations - init
 'tIT' , 'pB2' ,1, ... % iterations - strategy
 'pB3' , 'tTD' ,1, ... % strategy - tactical
 'tSUM' , 'pB6' ,1, ... % tactical - iterations
 'tRES' , 'pRTC' ,1, ... % iterations - SIL
 };

9.3 Transition definition file for tRES (‘tRES_def.m’)
function [fire, new_color, override, selected_tokens, globa l_info] = ...

tRES_def (PN, new_color, override, selected_tokens, global_info)
%% function tRES_def
%%

p1 = get_place(PN, 'pNOI');
fire = (p1.tokens == 0);

 43

10. Coverability Tree
Coverability tree (co-tree) is a very important issue in the analysis of Petri net models. In
coverability analysis, we determine the states that are reachable from a given initial state.

This section shows how GPenSIM can be used to obtain co-tree of a Petri net. The
methodology is creating a co-tree of a Petri net is almost same as running simulations on a
Petri net; the only difference is that in step-3, instead of the function ‘gpensim’, we use the
function ‘cotree’:

Step-1. Creating Petri net definition files (PDFs) and transition definition files (TDFs)
Step-2. Creating main simulation file (SMF) with dynamic info (initial markings and

firing times)
Step-3. Running the SMF using the function ‘cotree’ instead of ‘gpensim’

10.1 Example-09: Cotree with finite states
This simple example deals with the Petri net shown in figure 14. The co-tree of this Petri net
is shown in figure 15. Let us find the co-tree using GPenSIM:

Figure-14. The Petri net for coverability analysis

t1

p3

p2 t2

t3

p4

 44

Figure-15. The reachable states of the Petri net shown in figure 14.

10.1.1 Petri net definition file
The Petri net definition file is given below:

% PDF for Example-09: Cotree example-1
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = cotree_example_def()

PN_name = 'COTREE Example: Petri Net in Figure 14' ;
set_of_places = { 'p1' , 'p2' , 'p3' , 'p4' };
set_of_trans = { 't1' , 't2' , 't3' };
set_of_arcs = { 'p1' , 't1' ,1, 't1' , 'p2' ,1, 't1' , 'p3' ,1, ...
 'p2' , 't2' ,1, 'p3' , 't2' ,1, 't2' , 'p2' ,1, 't2' , 'p4' ,1, ...
 'p1' , 't3' ,1, 'p3' , 't3' ,1, 'p4' , 't3' ,1};

10.1.2 The main file
The main file (after phases 2 & 3) is given below:

% Example-09: Cotree example-1
% the main file to find the reachable states
clear, clc; % clear the workspace & screen first

png = petrinetgraph('cotree_example_def');
dyn.initial_markings = { 'p1' , 2, 'p4' , 1}; % tokens initially
Results = cotree(png, dyn.initial_markings);
print_cotree(Results);

The function print_cotree will print the following on the screen, which is equivalent to the
graphical co-tree shown in figure 14

x1 [2 0 0 1] "R"

x2 [1 1 1 1]

x3 [0 2 2 1] x4 [1 1 0 2] x5 [0 1 0 0] "T"

x6 [0 2 1 2] x7 [0 2 1 2] "D"

x8 [0 2 0 3] "'T"

t1

t2

t1

t1

t2

t2

t3

 45

COTREE Example: Petri Net in Figure 14

state:1 ROOT node
p1 p2 p3 p4
 2 0 0 1

state:2 Firing event: t1
p1 p2 p3 p4
 1 1 1 1
Node type: ' ' Parent state: 1

state:3 Firing event: t1
p1 p2 p3 p4
 0 2 2 1
Node type: ' ' Parent state: 2

state:4 Firing event: t2
p1 p2 p3 p4
 1 1 0 2
Node type: ' ' Parent state: 2

state:5 Firing event: t3
p1 p2 p3 p4
 0 1 0 0
Node type: 'T' Parent state: 2

state:6 Firing event: t2
p1 p2 p3 p4
 0 2 1 2
Node type: ' ' Parent state: 3

state:7 Firing event: t1
p1 p2 p3 p4
 0 2 1 2
Node type: 'D' Parent state: 4

state:8 Firing event: t2
p1 p2 p3 p4
 0 2 0 3
Node type: 'T' Parent state: 6

Boundedness:
p1 : 2
p2 : 2
p3 : 2
p4 : 3

>>

The screen output given above is equivalent to the graphic shown in figure 15.

10.1.3 Event simulation instead of coverability tree
Lets try event simulation of the same Petri net.

% the main file to find the reachable states

 46

clear, clc; % clear the workspace & screen first

png = petrinetgraph('cotree_example_def');
dyn.initial_markings = { 'p1' , 2, 'p4' , 1}; % tokens initially
dyn.firing_times = { 't1' ,2, 't2' ,1, 't3' ,3}; % tokens initially

Results = gpensim(png, dyn);
print_statespace(Results);

The function print_cotree will print the state flow on the screen:

COTREE Example: Petri Net in Figure 15

Time: 0
New markings:
p1 p2 p3 p4
 2 0 0 1

At time: 0 enabled transtions are: t1

At time: 0 firing transtions are: t1

Time: 2
Fired Transition: t1
New markings:
p1 p2 p3 p4
 1 1 1 1

At time: 2 enabled transtions are: t1 t2 t3

At time: 2 firing transtions are: t1 t2

Time: 3
Fired Transition: t2
New markings:
p1 p2 p3 p4
 0 1 0 2

At time: 3 enabled transtions are:

At time: 3 firing transtions are: t1

Time: 4
Fired Transition: t1
New markings:
p1 p2 p3 p4
 0 2 1 2

At time: 4 enabled transtions are: t2

At time: 4 firing transtions are: t2

Time: 5
Fired Transition: t2
New markings:
p1 p2 p3 p4
 0 2 0 3

 47

At time: 5 enabled transtions are:

At time: 5 firing transtions are:

10.2 Example-10: Cotree with infinite states
This simple example deals with the Petri net shown in figure 16. The co-tree of this Petri net
is shown in figure 17. Let us find the co-tree using GPenSIM:

Figure-16. Cotree example

Figure-17. Co-tree

t1

p3

p2 t2

p4

t3

 48

10.2.1 Petri net definition file
The Petri net definition file is given below:

% PDF Example-10: Cotree example-2
% file:
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = fig_9_def()

PN_name = 'Petri net in fig 4.12' ;
set_of_places = { 'p1' , 'p2' , 'p3' , 'p4' };
set_of_trans = { 't1' , 't2' , 't3' };
set_of_arcs = { 'p1' , 't1' , 1, 't1' , 'p2' , 1, 't1' , 'p3' , 1, ...
 'p2' , 't2' ,1, 't2' , 'p1' ,1, 'p2' , 't3' ,1 ...
 'p3' , 't3' ,1, 't3' , 'p3' ,1, 't3' , 'p4' , 1};

10.2.2 The main file
The main file (after phases 2 & 3) is given below:

% Example-10: Cotree example-2
% the main file to get co-tree
clear, clc;
png = petrinetgraph('fig_9_def');
dyn.initial_markings = { 'p1' ,1};

CT = cotree(png, dyn);
print_cotree(CT); %
The print system will print the following on the screen, which is equivalent to the graphical
co-tree shown in figure 17.

Petri net in fig 4.12'

state:1 ROOT node
p1 p2 p3 p4
 1 0 0 0

state:2 Firing event: t1
p1 p2 p3 p4
 0 1 1 0
Node type: ' ' Parent state: 1

state:3 Firing event: t2
p1 p2 p3 p4
 1 0 Inf 0
Node type: ' ' Parent state: 2

state:4 Firing event: t3
p1 p2 p3 p4
 0 0 1 1
Node type: 'T' Parent state: 2

state:5 Firing event: t1
p1 p2 p3 p4
 0 1 Inf 0
Node type: ' ' Parent state: 3

 49

state:6 Firing event: t2
p1 p2 p3 p4
 1 0 Inf 0
Node type: 'D' Parent state: 5

state:7 Firing event: t3
p1 p2 p3 p4
 0 0 Inf 1
Node type: 'T' Parent state: 5

Boundedness:
p1 : 1
p2 : 1
p3 : Inf
p4 : 1

 50

 51

11. Global Info
Global variables and parameters can be passed through different files (e.g. SMU, PDFs, and
TDFs) by making use of the ‘global info’ packet. The methodology of using ‘global info’ is
explained below through the use of an example.

11.1 Use of ‘MAX_LOOP’
‘MAX_LOOP’ value, if added to the ‘global_info’ packet, will be read by the gpensim
function to limit the simulation cycles to the given value.

NOTE: NOTE: NOTE: NOTE:
IIIIncrease MAX_LOOP for large number of iterations ncrease MAX_LOOP for large number of iterations ncrease MAX_LOOP for large number of iterations ncrease MAX_LOOP for large number of iterations
(loops)(loops)(loops)(loops)

11.1.1 Example-11: MAX_LOOP
This is same as the example-06. This time, we will experiment with global MAX_LOOP
setting.

Figure-18. Transitions firing sequentially

The Petri net shown in figure 18 run for ever. Thus, unless specified in the SMU, default
maximum loop number is 200 (default MAX_LOOP=200). We can stop the simulations after
a couple of simulation cycles. The statement given below limits the simulation cycles to 11,
by assigning the value 11 to ‘MAX_LOOP’:

> global_info.MAX_LOOP = 11; % GLOBAL DATA: MAX. SIMULATION CYCLES

The code below is for the main simulation file.

% Example-11: Measuring Timing
% MSF: measure_timing.m
clear, clc;
global_info.MAX_LOOP = 11; % GLOBAL DATA: MAX. SIMULATION CYCLES

png = petrinetgraph('measure_timing_def');
dynamicpart.initial_markings = { 'p1' , 10};

p1 p2

t1 t2

 52

dynamicpart.firing_times = { 't1' , 1, 't2' , 100};
sim = gpensim(png, dynamicpart, global_info);
plotp(sim, {'p1', 'p2'});

Simulation results: When MAX_LOOP is not explicitly specified (meaning by default,
MAX_LOOP=200):

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1

p2

Simulation results: When MAX_LOOP is explicitly specified to be 11 (in SMU,
MAX_LOOP=11):

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1

p2

11.2 Use of ‘LOOP_NUMBER’
When you simulate large Petri net models, during the simulations you will notice that the
MATLAB hangs, without giving you any sign of life. It will be better, if you can see some
outputs during simulations so that you are assured that the simulations are going on and that
the system is dead (‘hanging’). By setting the LOOP_NUMBER flag in global_info, you can
see the loop numbers when the simulation goes on.

 53

Let us go back to the simple example given in section 3.2, the simple Petri net. This time, we
will set the LOOP_NUMBER flag in the MSF:

%% LOOP_NUMBER flag is set in global_info
global_info.LOOP_NUMBER = 1;

png = petrinetgraph('simple_pn_def');
dynamic_info.initial_markings = { 'Place-1' ,3, 'Place-2' ,5};
dynamic_info.firing_times = { 'Transition-1', 10};

Sim_Results = gpensim(png, dynamic_info, global_iin fo);
print_statespace(Sim_Results);

The output on screen is different as loop numbers are printed during simulations. According
to the screen output, the simulations are complete after 3 loops.
Loop nr: 1
Loop nr: 2
Loop nr: 3

A Simple Petri Net definition
Number of places: 3
Initial Markings:
Place-1 Place-2 Place-3
 3 5 0
step:1 Firing event: Transition- 1 (Starting time: 0) Finishing
Time: 10
Current markings:
Place-1 Place-2 Place-3
 2 3 1
step:2 Firing event: Transition- 1 (Starting time: 10) Finishing
Time: 20
Current markings:
Place-1 Place-2 Place-3
 1 1 2
Completion time: 20

NOTE: NOTE: NOTE: NOTE:
It is always a good idea to set the LOOP_NUMBER It is always a good idea to set the LOOP_NUMBER It is always a good idea to set the LOOP_NUMBER It is always a good idea to set the LOOP_NUMBER
flagflagflagflag ((((global_info.LOOP_NUMBER = 1global_info.LOOP_NUMBER = 1global_info.LOOP_NUMBER = 1global_info.LOOP_NUMBER = 1) in the MSF. By) in the MSF. By) in the MSF. By) in the MSF. By
setting the LOOP_NUMBER flag, simulation loop setting the LOOP_NUMBER flag, simulation loop setting the LOOP_NUMBER flag, simulation loop setting the LOOP_NUMBER flag, simulation loop
number will be displayed during the simulation, thus number will be displayed during the simulation, thus number will be displayed during the simulation, thus number will be displayed during the simulation, thus
we know that simulation is going on and the we know that simulation is going on and the we know that simulation is going on and the we know that simulation is going on and the
computer is not ‘hanging’.computer is not ‘hanging’.computer is not ‘hanging’.computer is not ‘hanging’.

11.2.1 What are loops?
(See chapter 19 “Design of GPenSIM” for more details)

 54

OK, we do see loop numbers during simulations, a kind of assurance that something is going
on. But what are loops? To understand loops, we need to understand the theory for general
discrete event simulations (DES).

Any DES software consists of three main elements:
1. Global timer: Global timer (or current time) synchronizes all the activities. Global timer

must not be changed by any transitions (events). In GPenSIM, global timer can be
accessed in TDFs, by calling pn.current_time, where pn is the run-time Petri net
structure.

2. Event Scheduler: Event scheduler is a loop mainly performing two actions:
a. First: checking for any enabled transitions; if there are any enabled transition and

if they can fire, then they will be put in queue called firing transitions
(implemented in file start_firing.m).

b. Second: checking the queue for firing transitions. When a firing transition is
complete, it will be removed from the queue (implemented in file
complete_firing.m)

In GPenSIM, file timed_pensim.m implements event scheduler.
3. Queue: (discussed above)

Thus, loop number comes from timed_pensim which is called by gpensim. The loop number
states how many cycles of event scheduler has taken place so far.
NOTE: Chapter 16 “Design of GPenSIM” gives more details

11.3 Use of ‘DELTA_TIME’
Section 6 “Internal Clock” describes an example (example-04: delay) in which there are
enabled transitions but not firing (blocked). This is situation, the clock is advanced by a time
interval equal to one-fourth of the minimal firing time of any transition. We can override this
value for timer advancement, by assigning a new value to “DELTA_TIME”.

Lets repeat the example-04. We will study three cases this time:

1. DELTA_TIME is not explicitly specified (by default, delta_time equals to ¼ of least
firing time)

2. DELTA_TIME = 5
3. DELTA_TIME = 0.1

11.3.1 Example-12: DELTA_TIME
This example is the same as example-04. But this time, we will experiment setting
DELTA_TIME. In the figure shown below, let p1 has 5 initial tokens. Also let firing time of
t1 is 7 seconds. Though t1 can fire 5 times successively, we want it to fire only at the start of
every 30 seconds. This means, t1 is delayed by 30 - 7 = 23 seconds.

 55

Figure-19. Delay Example

During the waiting time of 23 seconds (t1 is enabled but not firing), time advancement will be
done in time units of 7/4 = 1.75 seconds, if DELTA_TIME is not explicitly specified.

MSF:
% Example-12: DELTA_TIME
% file: delay_demo.m:
global_info.MAX_LOOP = 1000;
global_info.DELTA_TIME = 0.1;

png = petrinetgraph('delay_demo_def');

dynamic.initial_markings = { 'p1' ,3};
dynamic.firing_times = { 't1' , 7};

sim = gpensim(png, dynamic, global_info);
print_statespace(sim);
plotp(sim, { 'p1' , 'p2' });

Simulation results: When DELTA_TIME is not explicitly specified (meaning by default,
DELTA_TIME =1.75):

Simulation results: When DELTA_TIME is explicitly specified to be 5.0:

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

p1

p2

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

p1

p2

 56

Simulation results: When DELTA_TIME is explicitly specified to be 0.1:

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

p1

p2

 57

12. TDF_POST
As stated in the earlier sections, there are two types of Transition Definition Files (TDF):

• TDF_PRE, which are run before firing a transition
• TDF_POST, which are run after firing a transition

12.1 Example-13: Binary Semaphore
Figure 20 shown below depicts a web server consisting of two server machines that will fire
alternatively. First, client requests are queued at pSTART. Then two routers (tX1 and tX2)
remove the client requests from the pSTART queue and put it to the queues for Web Server 1
(p1) and Web Server 2 (p2) respectively. In order to evenly distribute client requests to both
servers, one would expect that the two routers fire alternatively, meaning that no router fires
more times than the other.

Figure-20. Load balancing by alternative firing

To allow the routers (transitions) fire alternatively, we can implement a binary semaphore that
can be read and manipulated by the definition files of both transitions.

12.1.1 Petri net definition file (‘loadbalance_def.m’):
% PDF for Example-13: Binary Semaphore example
% file: loadbalance_def.m:
% definition of petri net graph for Norwegian trafi c lights

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = loadbalance_def(global_info)
PN_name='Web Server Load Balancer' ;

set_of_places={ 'pSTART' , 'p1' , 'p2' };
set_of_trans={ 'tX1' , 'tX2' };

set_of_arcs={ 'pSTART' , 'tX1' ,1, 'tX1' , 'p1' ,1, ...
 'pSTART' , 'tX2' ,1, 'tX2' , 'p2' ,1};

 58

12.1.2 Main Simulation File (‘loadbalance.m’):
% Example-13: Example for binary semaphore
% MSF: loadbalance.m

clear, clc;
global_info.semafor = 1; % GLOBAL DATA: binary semafor

png = petrinetgraph('loadbalance_def');
dynamicpart.initial_markings = { 'pSTART' , 10};
dynamicpart.firing_times = { 'tX1' , 10, 'tX2' , 20};

sim = gpensim(png, dynamicpart, global_info);
plotp(sim, { 'p1' , 'p2' });

Note: gpensim takes three input parameters: in addition to the usual static (‘png’) and
dynamic (‘dynampart’) details, the third parameter is the global info (‘global_info’). Global
info consists of two elements:

1) The binary semaphore with initial value 1; this means, tX1 should fire first.
2) MAX_LOOP: the use of this value is explained in the previous sections

12.1.3 TDF_PRE for tX1 (‘tX1_pre.m’):
function [fire, PN,new_color, override, selected_tokens, gl obal_info] = ...
 tX1_pre(PN, new_color, override, selected_token s, global_info)
%
%

if (global_info.semafor==1),
 fire = 1;
else
 fire = 0;
end ;

12.1.4 TDF_POST for tX1 (‘tX1_post.m’):
function [PN, global_info] = ...
 tX1_post(transition, PN, global_info)
% function tX1_post
%

global_info.semafor = 2; % release semafor to tX2

12.1.5 TDF_PRE for tX2 (‘tX2_pre.m’):
function [fire, PN,new_color, override, selected_tokens, gl obal_info] = ...
 tX2_pre(PN, new_color, override, selected_token s, global_info)
% TDF tX2_pre
%

if (global_info.semafor==2),
 fire = 1;

 59

else
 fire = 0;
end ;

12.1.6 TDF_POST for tX2 (‘tX2_post.m’):
function [PN, global_info] = ...
 tX2_post(transition, PN, global_info)
% function tX2_post
%

global_info.semafor = 1; % release semafor to tX1

The plot given below shows that the queues are filled evenly; this is because of the transitions
fires alternatively.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p1

p2

Figure-21. Printout of binary semaphore in action

 60

 61

13. Improving Simulation Results for Printout
Let’s take look again at the printout of simulation results from the previous section. The
figure, given below, look like ramp rather than pulses. This is due to poor sampling
(recording). Simulation results are recorded only whenever transition complete firing. In other
words, simulation results are recorded only when there is a new state.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p1

p2

Figure-22. Printout of binary semaphore (same as figure-21)

We can improve sampling by adding a small loop that will generate new states faster.
Example-14 given below explains the trick.

13.1 Example-14: Improving results printout of binary semaphore
In this example, we will add a small loop to the system; the small loop consisting of a place
pXtra and a transition tXtra is solely included to speed up the sampling rate (or rate of
reaching newer states). The firing time of the transition tXtra has to be small, lets say – one
tenth of the least firing time of any transition in the system (tX1 or tX2). Note: Do not assign
zero value firing time of the transition tXtra; with zero value, the system will never take off.

 62

pSTART

p1

p2

tX1

tX2

pXtra tXtra

Figure-23. Adding a small loop to speed up sampling rate

Except adding the small loop (pXtra – tXtra – pXtra), there is no change in coding for
example-13.

MSF:
% Example-14: Example for binary semaphore
% MSF: loadbalance_2.m

clear, clc;
global_info.semafor = 1; % GLOBAL DATA: binary semafor

png = petrinetgraph('loadbalance_2_def');
dynamicpart.initial_markings = { 'pSTART' , 10, 'pXtra' ,1}; % pXtra added
dynamicpart.firing_times = { 'tX1' , 10, 'tX2' , 20, 'tXtra' ,1}; % tXtra added

sim = gpensim(png, dynamicpart, global_info);
plotp(sim, { 'p1' , 'p2' });
print_statespace(sim);

PDF:
% Example-14: Binary semaphore example with better rpintout
% file: loadbalance_2_def.m: PDF

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = loadbalance_2_def(global_info)
 PN_name='Web Server Load Balancer' ;

set_of_places = { 'pSTART' , 'p1' , 'p2' , 'pCK' };
set_of_trans = { 'tX1' , 'tX2' , 'tCK' };
set_of_arcs = { 'pSTART' , 'tX1' ,1, 'tX1' , 'p1' ,1, ...
 'pSTART' , 'tX2' ,1, 'tX2' , 'p2' ,1, ...
 'pCK' , 'tCK' ,1, 'tCK' , 'pCK' ,1};

 63

Simulation Results:
Figure-24 shows the new simulation results after inclusion of the small loop; new simulation
results and its printout is due to faster sampling.

Figure-24. Improved printout due to faster sampling

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

p1

p2

 64

 65

14. Prioritizing Transitions
In discrete systems, we need to increase or decrease priority of an event(s), in order to give
fair chance to the competing events. There are some basic facilities in GPenSIM to change
priorities of transitions.

1) Initial declaration of priorities in the main simulation file.
2) Increasing priority of a specific transition
3) Decreasing priority of a specific transition

14.1 Priorities of transitions
Initial declaration of priorities in the main simulation file can be done using the global_info.
global_info.PRIORITY = { 't1' , 5, 't2' ,2, 't3' , 10};

In the above line, we are simply saying that t3 has top priority, followed by t2 and t1 has the
least priority. When we assign priority, we can assign any integer value, both negative and
positive. Higher the value, better the priority is.

 Increasing priority of a specific transition can be done using the function
‘priority_increment ’, which will increase the value just by 1.
PN = priority_increment(PN, 't1'); % priority of ’t1’ is now 6

Decreasing priority of a specific transition can be done using the function
‘priority_decrement’, which will reduce the value by 1.
PN = priority_decrement(PN, 't3'); % priority of ’t2’ is now 9

14.2 Example-15: Alternating firing
Transitions t1, t2, and t3, should fire alternatively (figure 25).

Figure-25. Alternating firing of t1, t2, and t3

 66

MSF:

% Example-15: Priority Increment example
global_info.MAX_LOOP = 20;

png = petrinetgraph('prio_def');
dyn.initial_markings = { 'pS' , 1}; % tokens initially
dyn.firing_times = { 't1' ,1, 't2' ,1, 't3' ,1};

sim = gpensim(png, dyn, global_info);
plotp(sim, { 'pE1' , 'pE2' , 'pE3' });

PDF:
% Example-15: Priority Increment example
% file: prio_def.m: definition of petri net

function [PN_name, set_of_places, set_of_trans, ...
 set_of_arcs] = prio_def()

PN_name='Priority Example: Petri Net for production facilit y' ;
set_of_places={ 'pS' , 'pE1' , 'pE2' , 'pE3' };

set_of_trans={ 't1' , 't2' , 't3' };

set_of_arcs={ 'pS' , 't1' ,1, 'pS' , 't2' ,1, 'pS' , 't3' ,1, ...
 't1' , 'pE1' ,1, 't1' , 'pS' ,1, ...
 't2' , 'pE2' ,1, 't2' , 'pS' ,1, ...
 't3' , 'pE3' ,1, 't3' , 'pS' ,1};

TDF_PRE for t1 (‘t1_pre.m’):

function [fire, PN,new_color,override,selected_tokens,globa l_info] = ...
 t1_pre(PN, new_color,override,selected_tokens,g lobal_info)
%
% t1_pre

PN = priority_increment(PN, 't2');
fire = 1;

TDF_PRE for t2 (‘t2_pre.m’):

function [fire, PN,new_color,override,selected_tokens,globa l_info] = ...
 t2_pre(PN, new_color,override,selected_tokens,g lobal_info)
%
% t2_pre

PN = priority_increment(PN, 't3');
fire = 1;

 67

TDF_PRE for t3 (‘t3_pre.m’):

function [fire, PN,new_color,override,selected_tokens,globa l_info] = ...
 t3_pre(PN, new_color,override,selected_tokens,g lobal_info)
%
% t3_pre

PN = priority_increment(PN, 't1');
fire = 1;

Simulation Results:
The results show that the mechanism is little bit flawed, and need to be checked.

14.3 Example-16: Priority Decrement Example
This example is the same as for the previous example shown in figure 25. However, this time,
we will allow t1 to fire 5 times uninterrupted, and then allow t1 and t2 fire alternatively for 10
more times. After this, all three can fire alternatively.

SMU:
% Example-16: Priority decrement
global_info.MAX_LOOP = 25;
global_info.PRIORITY = { 't1' ,10, 't2' ,5};

png = petrinetgraph('prio_def');
dyn.initial_markings = { 'pS' , 1}; % tokens initially
dyn.firing_times = { 't1' ,1, 't2' ,1, 't3' ,1};

sim = gpensim(png, dyn, global_info);
plotp(sim, { 'pE1' , 'pE2' , 'pE3' });

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

pE1

pE2

pE3

 68

PDF:
% Example-16: Priority Decrement
% file: prio_def.m: definition of petri net

function [PN_name, set_of_places, set_of_trans, ...
 set_of_arcs] = prio_def()

PN_name='Priority Example: Petri Net for production facilit y' ;
set_of_places={ 'pS' , 'pE1' , 'pE2' , 'pE3' };

set_of_trans={ 't1' , 't2' , 't3' };

set_of_arcs={ 'pS' , 't1' ,1, 'pS' , 't2' ,1, 'pS' , 't3' ,1, ...
 't1' , 'pE1' ,1, 't1' , 'pS' ,1, ...
 't2' , 'pE2' ,1, 't2' , 'pS' ,1, ...
 't3' , 'pE3' ,1, 't3' , 'pS' ,1};

TDF_PRE for t1 (‘t1_pre.m’):
function [fire, PN,new_color,override,selected_tokens,globa l_info] = ...
 t1_pre(PN, new_color,override,selected_tokens,g lobal_info)
%
% t1_pre

PN = priority_decrement(PN, 't1');
fire = 1;

TDF_PRE for t2 (‘t2_pre.m’):
function [fire, PN,new_color,override,selected_tokens,globa l_info] = ...
 t2_pre(PN, new_color,override,selected_tokens,g lobal_info)
%
% t2_pre

PN = priority_decrement(PN, 't2');
fire = 1;

TDF_PRE for t3 (‘t3_pre.m’):
function [fire, PN,new_color,override,selected_tokens,globa l_info] = ...
 t3_pre(PN, new_color,override,selected_tokens,g lobal_info)
%
% t3_pre

PN = priority_decrement(PN, 't3');
fire = 1;

Simulation Results: Again, not perfect!!!

 69

0 5 10 15 20 25
0

2

4

6

8

10

12

14

pE1

pE2

pE3

 70

 71

15. Using Resources
In engineering systems, there are always resources, like human resources to operate some
machines, printers as common resources in a network, etc. Just like machines and robots,
resources can also be represented with transitions (or places, depending on the situation).
However, GPenSIM offers ‘global resources’ as a mechanism to simply the models, also
provided is a print function called ‘print_schedule’ to print the usage of the resources.

Given below is a simple example that explains the usage of resources. An larger example on
scheduling is given in the applications part.

15.1 Using Resources
The resources are to be declared first in the MSF. For example, if there three (human)
resources named Al, Bob, and Chuck, then the following declaration will be added to the
MSF:
dynamicpart.resources = { 'Al' , 'Bob' , 'Chuck' };

Reserving a resource can be done through the function ‘resource_request’. For example:

[acquired, PN] = resource_reuqest(PN, 'T1'); % seek any resource

% seek specific resources, both ’Al’ and ’Bob’
[acquired, PN] = resource_request(PN, 'T1' , { 'Al' , 'Bob' });

In the first case, transition ’T1’ seeks (reserves) one instance of a resource (any resource). If
allocation was successful, the flag ‘acquired’ will be true. In the second case, ‘T1’ seeks two
resources, but specific resources like ‘Al’ and ‘Bob’, this time.

Releasing the resources: a transition has to release all the resources it is holding, releasing
some or specific resources is not possible.

% release all the resources (if any) held by ’T1’
[released, PN] = resource_ release(PN, 'T1');

15.1.1 Function ‘print_schedule’
% function print_schedule(sim_results)
% For every resource utilized, this function prints
% a matrix where each row represents:
% [the transition that used the resource, start t ime, end time]
%
% In addition the following are also displayed:
% K, ST, LE, SI, and LT
%

 72

15.2 Example-17: Using Resources to realize critical section
This example is the same as the one that is described under the section “Global Info”;
however, we make use of ‘resources’ rather than ‘global info’.

Figure 26 shown below depicts a web server consisting of two server machines that will fire
alternatively. First, client requests are queued at pSTART. Then two routers (tX1 and tX2)
remove the client requests from the pSTART queue and put it to the queues for Web Server 1
(p1) and Web Server 2 (p2) respectively. In order to evenly distribute client requests to both
servers, one would expect that the two routers fire alternatively, meaning that no router fires
more times than the other.

Figure-26. Load balancing by alternative firing

To allow the routers (transitions) fire alternatively, these two transition seek a semafor
(resource). If a transition does not get the semafor, its priority is increased so that next time it
will get it.

15.2.1 MSF: ’cr.m’
% Example-17: use of resource for realizing critica l function
png = petrinetgraph('cr_def');
dynamicpart.initial_markings = { 'pSTART' , 20};
dynamicpart.firing_times = { 'tX1' , 10, 'tX2' , 20};
dynamicpart.resources = { 'semafor' }; % resource as semafor

sim = gpensim(png, dynamicpart);

plotp(sim, { 'p1' , 'p2' }), grid on;
print_schedule(sim);

15.2.2 PDF: ’cr_def.m’
% Example-72: Binary semaphore example
% file: cr_def.m: PDF

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = cr_def(global_info)

 73

PN_name='Implementing Critical region with resources' ;

set_of_places={ 'pSTART' , 'p1' , 'p2' };
set_of_trans={ 'tX1' , 'tX2' };

set_of_arcs={ 'pSTART' , 'tX1' ,1, 'tX1' , 'p1' ,1, ...
 'pSTART' , 'tX2' ,1, 'tX2' , 'p2' ,1};

15.2.3 TDF: ’tX1_pre.m’
function [fire, PN,new_color, override, selected_tokens,
global_info] = ...
 tX1_pre(PN, new_color, override, selected_token s, global_info)
% tX1_pre
%

[acquired, PN] = acquire_resource(PN, 'tX1');

if ~acquired, % if not suceeded
 PN = priority_increment(PN, 'tX1'); % increase trans priority
end ;

fire = acquired;

15.2.4 TDF: ’tX1_post.m’
function [PN,global_info] = tX1_post(transition, PN, global _info)
% tX1_post
%
[released, PN] = release_resource(PN, 'tX1'); % release semafor

15.2.5 Results: Plot

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10

p1

p2

 74

15.3 Example-18: Using Resource Specific

 75

16. Using Hourly Clock
So far, we have treated clock as a unitless timer; it will always start at 0 during simulation
start, and will increase afterwards. However, in business modeling applications, it will be
much better to use an hourly clock, a clock that uses and shows time in hours, minutes, and
seconds. The following example explains the issue.

CAUTION!CAUTION!CAUTION!CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
Time in hourly format must be giveTime in hourly format must be giveTime in hourly format must be giveTime in hourly format must be given as a vector with n as a vector with n as a vector with n as a vector with
3 columns (e.g. 1:00 PM as [133 columns (e.g. 1:00 PM as [133 columns (e.g. 1:00 PM as [133 columns (e.g. 1:00 PM as [13,,,, 0000,,,, 0]); you can mix 0]); you can mix 0]); you can mix 0]); you can mix
times in 3 column hourly format with single times in 3 column hourly format with single times in 3 column hourly format with single times in 3 column hourly format with single
numbers; however, these single numbers numbers; however, these single numbers numbers; however, these single numbers numbers; however, these single numbers will be will be will be will be
taken as seconds. taken as seconds. taken as seconds. taken as seconds.

E.g.:E.g.:E.g.:E.g.:
[0 40 0][0 40 0][0 40 0][0 40 0] is equivalent to 40 minutes (or 2400 seconds)is equivalent to 40 minutes (or 2400 seconds)is equivalent to 40 minutes (or 2400 seconds)is equivalent to 40 minutes (or 2400 seconds)
'unifrnd(40'unifrnd(40'unifrnd(40'unifrnd(40,40)*60',40)*60',40)*60',40)*60' is equivalent to 2400 seconds (40*60)is equivalent to 2400 seconds (40*60)is equivalent to 2400 seconds (40*60)is equivalent to 2400 seconds (40*60)
180180180180 is equivalent to 180 secondsis equivalent to 180 secondsis equivalent to 180 secondsis equivalent to 180 seconds

16.1 Example-19: Hourly Clock for Lunching Clerks
An office opens at 09:00 AM on every business day. Customers arrive at every 30 minutes.
There are two clerks who will interact with the customers. The clerks take 40 minutes to
service a customer.
The office closes at 01:00 PM, and no customer will be allowed into the office. However,
those customer(s) already reside inside the office will be serviced.

1. Case-A: What time the last customer will leave the office, after finishing his/her
business?

2. Case-B: Suppose, there will only one clerk available from 12:00 Noon, how the
departure time of the last customer will change?

16.1.1 Functions for hourly clock
First of all, we want to start the simulation at 09:00 AM. This can be fed into the model
through the global_info packet.

global_info.STARTING_AT = [9 0 0]; % start 09:00:00 HH:MM:SS

In MSF, to assign firing times to clerk (40 minutes each), and customer arrival (every 30
minutes), we may either use the hourly clock format or times in seconds:

dyn.firing_times = { 'tGENNEW' , 30*60, 'tCRK1' , 'unifrnd(40,40)*60' , ...
 'tCRK2' , [0 40 0]};

Note: Because of the use of hourly clock formats, the functions print_statespace and plotp
display time information in hourly formats.

 76

16.2 Case-A: Two clerks work all the time

MSF:
% Example-31: Hourly clock for lunching clerks

clear; clc;
global_info.LOOP_NUMBER = 1;
global_info.MAX_LOOP = 50;

global_info.STARTING_AT = [9 0 0]; % start 09:00:00 HH:MM:SS

%%%% COMPOSE %%%%%%%
png = petrinetgraph('clerksNEW_def');

%%%% DYNAMIC DETAILS %%%%
dyn.initial_markings = { 'pGEN' ,1, 'pQUE' ,1};
dyn.firing_times = { 'tGENNEW' ,30*60, 'tCRK1' , 'unifrnd(40,40)*60' , ...
 'tCRK2' , [0 40 0]};

%%%% SIMULATE %%%%%
[RES] = gpensim(png, dyn, global_info);
plotp(RES, { 'pEND' }), grid on;
print_statespace(RES);

PDF:
% Example-31: Hourly clock for lunching clerks
% PDF
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = clerksNEW_def(global_info)

PN_name = 'The Two Clerks' ;
set_of_places = { 'pGEN' , 'pQUE' , 'pEND' };
set_of_trans={ 'tGENNEW' , 'tCRK1' , 'tCRK2' };

set_of_arcs={ 'pGEN' , 'tGENNEW' ,1 , 'tGENNEW' , 'pGEN' ,1, ...

'tGENNEW' , 'pQUE' ,1, ...
 'pQUE' , 'tCRK1' ,1, 'tCRK1' , 'pEND' ,1, ...
 'pQUE' , 'tCRK2' ,1, 'tCRK2' , 'pEND' ,1};

TDF for customer arrival:
% Example-31: Hourly clock for lunching clerks
% TDF for customer arrival generation

function [fire,new_color,override, selected_tokens,global_i nfo] = ...
 tGENNEW_def (PN, new_color, override, selected_ tokens, global_info)

ct = compare_time (PN.current_time, [13 0 0]);
if le(ct, 0),
 fire = 1;
else
 fire=0;
end ;

 77

16.2.1 Simulation results
Simulation results show that the last customer leaves at 14:10 when both clerks function all
the time.

 Time: 14:10:00
State: 19
Fired Transition: tCRK1
Current State:
pEND pGEN pQUE
 10 1 0

9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

HOURS

pCRK1

pCRK2

pEND

16.3 Case-B: Only one clerk functions from 12:00 Noon
The only change will be the introduction of TDF for one of the clearks.

TDF for clerk-1 (‘tCLR1_def.m’):
% Example-31: Hourly clock for lunching clerks
% TDF for clerk-1

function [fire,new_color,override, selected_tokens,global_i nfo] = ...
 tCRK1_def (PN, new_color, override, selected_to kens, global_info)

ct = compare_time (PN.current_time, [12 0 0]);
if lt(ct, 0),
 fire = 1;
else

 78

 fire=0;
end ;

16.3.1 Simulation results
Simulation results show that the last customer leaves at 14:40 when only one clerk functions
after 12:00 Noon.

 Time: 14:40:00
State: 19
Fired Transition: tCRK2
Current State:
pEND pGEN pQUE
 10 1 0

9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

6

7

8

9

10

HOURS

pEND

Figure-27. Plot showing time in hourly format.

 79

17. Hybrid Systems: Petri Net Models with Fuzzy Inference
This section talks about incorporating MATLAB toolboxes within Petri net models. This
section presents an example on how to incorporate fuzzy inference engines in Petri net
models.

 80

18. Colored GPenSIM
So far, we have treated tokens in place as indistinguishable. All the tokens inside a place are
the same; it does not matter which token arrived into the place first or last. It does not matter
either whether a token is deposited into a place by one transition or other. But, all these are
going to be changed: from now on, every token is unique, identifiable with a unique token ID.

When using colors in GPenSIM, the following issues are important:

1. Only transitions can manipulate colors (see section 12)
2. Colors are inherited by default: that is when a token fires, it collects all the colors

from the consumed (input) tokens and then it passes these to the deposited (output)
tokens. However, color inheritance can be prevented by overriding (see section
12).

3. An enabled transition can select specific input tokens based on preferred colors
(see section 13).

4. An enabled transition can select specific input tokens based on the time tokens are
created (see section 14).

5. Structure of tokens; this is discussed in the following subsection

18.1 Structure of Tokens
A token has a structure consisting of 3 elements:

1. tokID (integer value): a unique token ID
2. creation_time (integer value): the time the token was created by a transition.

Please note that this time may be different from (less than) the time the token was
actually deposited into a place.

3. t_color (set of strings): a set of colors

E.g.:
 tokID: 101
 creation_time: 30
 t_color: {'TAMIL', 'NORSK', 'ENGLISH '}

 81

 82

19. Color Inheritance
In GPenSIM, colored tokens can only utilized by transitions; since transitions are active,
transition definition files can be coded with controlling colored tokens:

1. When a transition fire, it inherits colors of all input tokens; thus new tokens
deposited into output places would have all the colors inherited from the input tokens.
NOTE: inheritance of colors can be prohibited by overriding .

2. When a transition fires, it can choose input tokens with specific colors
3. When new tokens are deposited into the output place, new colors can be added by

the transition. This new color will in addition to the inherited colors (unless
inheritance is overridden – in this case of overriding, the deposited tokens into the
output places will only have the new color added by the transition)

Let us experiment coloring with the help of a simple example candidly called ‘simple_adder’

19.1 Example-15: Simple Adder
This example presents an adder that adds two numbers input by the user.

Figure-28. Simple Adder

Petri net model of a simple adder has 6 places and 4 transitions. Places p1 and p2 are just to
keep the initial tokens so that the system can be started. Transitions tGET_NUM1 and
tGET_NUM2 get an input number each from the user; let say the numbers fed by the user are
21 and 45. Then these two transitions convert the numbers into strings (‘21’ and ‘45’) and
then add the strings as colors to the output tokens deposited into pNUM1 and pNUM2
respectively. Thus, the places pNUM1 and pNUM2 have tokens with input numbers as the
colors.

Transition tADD does nothing in terms of colors. When it fires, by default, it deposits a token
into the output place with the inherited colors. Hence, the token in place pADDED will have
two colors ({‘21’, ‘45’}).

The final transition tCONVERT does five activities:

p1

p2

pNUM1

pNUM2

tADD

pADDED

tCONVERT

pRESULT

tGET_NUM1

tGET_NUM2

 83

1. First it gets the two colors (strings ‘21’ and ‘45’) of the token in place pADDED.
2. Then it converts the strings into numbers (21 and 45),
3. It adds these two numbers together to make the sum (66).
4. Then it coverts the sum into a string (‘66’), and
5. Finally, it adds this string as color to the token deposited into the place pRESULT.

The transition will also override inheritance so that the sum will be the only color of
the token deposited into pRESULT

19.1.1 MSF: ’simple_adder.m’
% MSF for Example-15: simple_adder.m
clear, clc;
pn = petrinetgraph('simple_adder_def');
dynamicpart.initial_markings = { 'p1' ,1, 'p2' ,1};

[results] = gpensim(pn, dynamicpart);
print_colormap(results, { 'p1' , 'p2' , 'pNUM1' , , ...
 'pNUM2' , 'pADDED' , 'pRESULT' });

19.1.2 PDF: ’simple_adder_def.m’
% PDF for Example-15: simple_adder_def.m

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = simple_adder_def(global_info)

PN_name='Color example: Simple Adder' ;
set_of_places={ 'p1' , 'p2' , 'pNUM1' , 'pNUM2' , 'pADDED' , 'pRESULT' };
set_of_trans={ 'tGET_NUM1' , 'tGET_NUM2' , 'tADD' , 'tCONVERT' };
set_of_arcs={ 'p1' , 'tGET_NUM1' ,1, 'tGET_NUM1' , 'pNUM1' ,1, ...
 'p2' , 'tGET_NUM2' ,1, 'tGET_NUM2' , 'pNUM2' ,1, ...
 'pNUM1' , 'tADD' ,1, 'pNUM2' , 'tADD' ,1, ...
 'tADD' , 'pADDED' ,1, 'pADDED' , 'tCONVERT' ,1, ...
 'tCONVERT' , 'pRESULT' ,1};

 84

19.1.3 TDF: ’tGET_NUM1.m’
The TDF will ask the user to input a number:

function [fire, new_color, override, selected_tokens,global _info] = ...
 tGET_NUM1_def (pn, new_color, override, selecte d_tokens,global_info)
%% TDF: tGET_NUM1_def

num1 = input('input number-1: ');
new_color = num2str(num1);

fire=1; %always fire

19.1.4 TDF: ’tGET_NUM2.m’
The TDF will ask the user to input another number:

function [fire, new_color, override, selected_tokens,global _info] = ...
 tGET_NUM2_def (pn, new_color, override, selecte d_tokens,global_info)
%% TDF: tGET_NUM2_def

num2 = input('input number-2: ');
new_color = num2str(num2);

fire=1; %always fire

19.1.5 TDF: ’tADD.m’
There is no need for TDF tADD. It, by default, inherits colors from input tokens and put the
colors to the output token.

19.1.6 TDF: ’tCONVERT.m’
function [fire, new_color, override, selected_tokens,global _info] = ...
 tCONVERT_def (pn, new_color, override, selected _tokens,global_info)
%% TDF: tCONVERT_def

% first, select any token
tokID = select_token(pn, 'pADDED' , 1);

% second, get the colors of the selected token
colors = get_color(pn, tokID);

num1 = str2num(colors{1}); % convert color-1 into number
num2 = str2num(colors{2}); % convert color-2 into number

new_color = num2str(num1+num2);
override = 1; % only sum as color - NO inheritance

fire=1; %always fire

 85

19.1.7 Simulation Results
The statement,
 print_colormap(results, { 'p1' , 'p2' , 'pNUM1' , 'pNUM2' , 'pADDED' ,
'pRESULT' });
prints colors of all the places. As shown in the screen dump below,

• p1 has no colors,
• p2 has no colors,
• pNUM1 has ‘21’ as the color,
• pNUM2 has ‘45’ as the color,
• pADDED has both ‘21’ and ‘45’ as colors, and
• pRESULT has ‘66’ as the color

input number-1: 21
input number-2: 45

Color Map for place: p1

Color Map for place: p2

Color Map for place: pNUM1
Time: 0
 '21'

Color Map for place: pNUM2
Time: 0
 '45'

Color Map for place: pADDED
Time: 0
 '21' '45'

Color Map for place: pRESULT
Time: 0
66

19.2 Example-16: Alternative Design for Simple Adder
In the previous subsection, the sum is stored as a color inside a token that was deposited on
the place pRESULT. You may prefer getting the sum as a variable too so that it can be freely
used as you want. You can achieve this with a simple design change.

 86

In addition to storing the sum as a color on the deposited token, you can also let the transition
tCONVERT to store the sum as an element of global_info. In fact, global_info is meant for
this kind of activities, getting information somewhere within a transition so that the
information can be passed to subsequent transitions and back to the main simulation file. The
new tCONVERT given below does the same five activities, but the last activity includes
storing the sum as an element of global_info:

The final transition tCONVERT does five activities:

1. (no change) It gets the two colors (strings ‘21’ and ‘45’) of the token in place
pADDED.

2. (no change) Then it converts the strings into numbers (21 and 45),
3. (no change) It adds these two numbers together to make the sum (66).
4. (no change) Then it coverts the sum into a string (‘66’), and
5. (REVISED) Finally, it adds this string as color to the token deposited into the place

pRESULT. The transition will also override inheritance so that the sum will be the
only color of the token deposited into pRESULT In addition, the sum will be stored
as an element of global_info.

The new TDF for tCONVERT is given below:

function [fire, new_color, override, selected_tokens,global _info] = ...
 tCONVERT_def (pn, new_color, override, selected _tokens,global_info)
%% TDF: tCONVERT_def

% first, select any token from pADDER
tokID = select_token(pn, 'pADDED' , 1);

% second, get the colors of the selected token
colors = get_color(pn, tokID);

num1 = str2num(colors{1}); % convert color-1 into number
num2 = str2num(colors{2}); % convert color-2 into number
sum = num1 + num2;

new_color = num2str(sum); % set the sum as the new color
global_info.sum = sum; %%% sum is added to global_info

override = 1; % only sum as color - NO inheritance

fire=1; %always fire

There will be slight modifications in the MSF too:
1. To start the simulations, we have to pass global_info with the element ‘sum’ to gpensim.
2. After simulations, we do not need to print the colormap to study the results; instead we

will inspect the global_info.

The new MSF is given below:
% MSF for Example-16: Simple Adder with Color (Vers ion 2)
% FILE simple_adder_2.m

 87

clear, clc;
pn = petrinetgraph('simple_adder_def');
dynamicpart.initial_markings = { 'p1' ,1, 'p2' ,1};

global_info.sum = 0; %% this is necessary

[results, global_info] = gpensim(pn, dynamicpart, g lobal_info);

%% print value of the element 'global_info.sum'
disp(['The sum of two numbers : ' , num2str(global_info.sum)]);

The result printed on the screen is given below:

input number-1: 21
input number-2: 45

The sum of two numbers : 66
>>

 88

20. Token Selection based on Color
A transition may select input tokens based on color. This is done by executing the function
select_token_color. There are 4 input parameters to this function: the Petri net structure
at run-time, the input place of the transition, number of tokens to be selected, and finally the
required color of the token.

The output parameter of the function is a set of IDs of the selected tokens (set of tokID). Of
course, the number of returned tokID may be not equal to the number originally wanted by
the transition, depending on availability.

Usage example: if a transition wants 4 tokens from the input place pBUFF with color ‘TYPE-
A’, then the transition will execute the following statement:

X = select_token_color(PN, 'pBUFF' ,4, 'TYPE-A');

The returned value X is a set of tokID consisting of tokID for 0-4 tokens. If X is empty then
no tokens are available with the required color. If X consists on 1, 2, or 3 tokID , then the
request by the transition is partially fulfilled. If X consists of 4 tokID , then the request is
fulfilled fully.

20.1 Example-17: Selecting Input Tokens with Specific Color
Figure given below depicts a production process. Place pGEN represents raw materials, and
transition tGEN represents a machine that produces 3 types of products:
• ‘type-A’ with 10% production rate,
• ‘type-B’ with 30% production rate, and
• ‘type-C’ with rest 60% of the time.

Though buffer pBUFF contains all three types of products, Transition tA is supposed to
select ‘type-A’ products only. Similarly, tB selects ‘type-B’ products and tC selects ‘type-C’
products only.

Figure-29. Selecting tokens with specific color

 89

During simulations, tGEN adds new color to tokens that will be deposited in pBUFF. The
new color will be ‘type-A’ 10% of the time, ‘type-B’ 30% of the time and ‘type-C’ 60% of
the time. Since tA will consume only tokens with color ‘type-A’, tokens with color ‘type-A’
are deposited in pA; similarly, pB and pC will have only tokens with color ‘type-B’ and
‘type-C’ respectively.

20.1.1 MSF
The main simulation file is given below; it shows that number of initial tokens in pGEN is
100:

% MSF for Example-17: COLOR Selection EXAMPLE
global_info.ratio_A=0.10;
global_info.ratio_B=0.30;
global_info.ratio_C=0.60;

png = petrinetgraph('select_color_def');
dyn.initial_markings = { 'pGEN' ,30};

[RES] = gpensim(png, dyn, global_info);
plotp(RES, { 'pA' , 'pB' , 'pC' });
print_colormap(RES, { 'pA' , 'pB' , 'pC' });

20.1.2 PDF
The Petri net definition file is given below:

% PDF for Example-17: COLOR Selection EXAMPLE
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = select_color_def(global_info)

PN_name = 'SELECT COLOR Example' ;
set_of_places = { 'pGEN' , 'pBUFF' , 'pA' , 'pB' , 'pC' };
set_of_trans={ 'tGEN' , 'tA' , 'tB' , 'tC' };

set_of_arcs={ 'pGEN' , 'tGEN' ,1 , 'tGEN' , 'pBUFF' ,1, ...
 'pBUFF' , 'tA' ,1, 'tA' , 'pA' ,1, ...
 'pBUFF' , 'tB' ,1, 'tB' , 'pB' ,1, ...
 'pBUFF' , 'tC' ,1, 'tC' , 'pC' ,1};

20.1.3 TDF: ‘tGEN_def.m’
The first transition definition file is for the transition tGEN. The only task of this transition
definition file is to produce tokens with a color: either ‘type-A’ or ‘type-B’.

function [fire,new_color,over_ride, selected_tokens,global_ info] = ...
 tGEN_def (PN, new_color, over_ride, selected_to kens, global_info)

random_number = rand(1);

 90

if (random_number < global_info.ratio_A),
 new_color = 'type-A' ;
elseif (random_number < (global_info.ratio_A + global_inf o.ratio_B)),
 new_color = 'type-B' ;
else
 new_color = 'type-C' ;
end ;

fire = 1;

From the above code, it is visible, that the transition always fire if enabled (fire=1); however,
it also add a color (‘type-A’, ‘type-B’ or ‘type-C’) to new tokens deposited into pBUFF.

20.1.4 TDFs for tA, tB, and tC
The only task of this transition definition file for tA , tB, and tC is to select tokens with
specific color. In the TDF for tA , we force the transition tA to select ‘type-A’ tokens only:

function [fire, new_color, over_ride, selected_tokens,globa l_info] = ...
 tA_def (PN, new_color, over_ride, selected_toke ns, global_info)
%%%% TDF: tA_def

tokID = select_token_color(PN, 'pBUFF' ,1, 'type-A');

selected_tokens = tokID; % this token must be removed, none other
fire = (selected_tokens); % FIRE ONLY IF 'Selected_tokens' IS NOT EMPTY

First, tokens from input place pBUFF with color ‘type-A’ is selected by using the function
select_token_color. The third parameter - ‘1’ - is the number of tokens needed. If selection is
successful, then the identity number of the selected token (tokID) is returned as the output
parameter. By copying tokID to selected_tokens , we inform the system that this token
must be consumed by the transition. Finally, we allow the transition to fire only if tokID is not
empty, meaning that there exist a token with ‘type-A’ color.

20.1.5 Simulation results
Figure-23 shows the plot of tokens in pA, pB, and pC. Since ‘type-C’ is produced 60% of the
time, there will about 6 times more tokens in pC than in pA and pB. The results shown in
figure-23 agrees.

 91

0 50 100 150 200 250
0

10

20

30

40

50

60

pA

pB
pC

Figure-30. Simulation results of ‘select_color’ demo.

In addition, we can also inspect the colormap. In pA, the only color of any token is ‘type-A’.

Color Map for place: pA
Time: 0
 'type-A'

Color Map for place: pB
Time: 0
 'type-B'

Color Map for place: pC
Time: 0
 'type-C'

>>

20.2 Required or Preferred Color?
This is an important issue. With a very small change, we can allow a transition to prefer
(‘may’) a color than require (‘must’) a color.

In the example given above, we forced the transition tA to select a token with color ‘type-A’.
This is done first by selecting a token with ‘type-A’ color. Function select_token_color
will return tokID if a token is with ‘type-A’ color is available or else returned tokID value will

 92

be empty (‘[]’). And then we forced the transition to fire only if tokID is not zero, meaning
there is at least one token with the required color, so that the transition can fire.

However, we may also allow transition to prefer ‘type-A’ tokens. This means, if ‘type-A’
tokens are available, they will be consumed; if not, one of the other existing tokens of ‘type-
B’ or ‘type-C’will be consumed. The newer TDF given below prefers (rather than forcing)
‘type-A’ tokens:

function [fire, new_color, over_ride, selected_tokens,globa l_info] = ...
 tA_def (PN, new_color, over_ride, selected_toke ns, global_info)

selected_tokens = select_token_color(PN, 'pBUFF' ,1, 'type-A');

fire = 1;

This transition always fires if enabled (because fire=1), regardless of ‘type-A’ tokens are
available or not. It will also consume ‘type-A’ tokens if available (if ‘selected_tokens’ list is
not empty).

Let us think about a generic case: if a transition needs m tokens from an input place to fire (arc
weight m), and has obtained n numbers preferred tokens (selected_tokens list has n
tokIDs). If m is greater than n, then the system consumes (removes) n number of specific
tokens (identified by the tokIDs in the selected_tokens list) and the rest m-n tokens
will be other arbitrary tokens in the input place.

20.2.1 Simulations
TDFs for tA , tB, and tC are changed so that tokens with specific colors are preferred (not
required).

Simulations show that now pA, pB, and pC have tokens with all colors.

Color Map for place: pA
Time: 0
 'type-A' 'type-B' 'type-C'

Color Map for place: pB
Time: 0
 'type-A' 'type-B' 'type-C'

Color Map for place: pC
Time: 0
 'type-A' 'type-B' 'type-C'

>>

 93

20.2.2 Example-18: Selecting Input Tokens with 2 or more colors
In this example, we make a tiny change to tA so that tA make select either ‘type-A’ or ‘type-
B’ color.

function [fire, new_color, over_ride, selected_tokens,globa l_info] = ...
 tA_def (PN, new_color, over_ride, selected_toke ns, global_info)
%%%% TDF: tA_def

tokID1 = select_token_color(PN, 'pBUFF' ,1, 'type-A');
tokID2 = select_token_color(PN, 'pBUFF' ,1, 'type-B');

selected_tokens = [tokID1 tokID2]; % one of these token must be removed
fire = (selected_tokens); % FIRE ONLY IF 'Selected_tokens' IS NOT EMPTY

Now we see that tokens in pA have both ‘type-A’ and ‘type-B’ colors.

Color Map for place: pA
Time: 0
 'type-A' 'type-B'

Color Map for place: pB
Time: 0
 'type-B'

Color Map for place: pC
Time: 0
 'type-C'

>>

 94

21. Summary: Token Selection based on Color

21.1 Token Selection From A Single Input Place
Let’s say that place pAB has tokens with many colors including {‘A’, ‘B’, ‘X’, ‘Y’, {‘A’,
‘B’}, {‘A’, ‘X’}, {‘A’, ‘Y’}, {‘B’, ‘X’}, …. {‘A’, ‘B’, ‘X’, ‘Y’}}.

• Transition t selects token with color ‘A’ from pAB (meaning tokens with color {‘A’}or

{‘A’, ‘B’} or {‘A’, ‘X’} are relevant):
Program code in TDF:

selected_tokens = select_token_color(PN, 'pAB' ,1, 'A'); %

fire = (selected_tokens); % MUST

• Transition t selects ‘A’ or ‘B’ from pAB:
Program code in TDF:

tokID1 = select_token_color(PN, 'pAB' ,1, 'A');

tokID2 = select_token_color(PN, 'pAB' ,1, ‘B');

selected_tokens = [tokID1 tokID2]; % tokens to be removed

fire = (length(selected_tokens) >= 1); % MUST

• Transition t prefers ‘A’ or ‘B’ from pAB:
 Program code in TDF:

tokID1 = select_token_color(PN, 'pAB' ,1, 'A');

tokID2 = select_token_color(PN, 'pAB' ,1, ‘B');

selected_tokens = [tokID1 tokID2]; % tokens to be removed

fire = 1; %

 95

• Transition t selects a token with ‘A’ and ‘B’ from pAB:
Program code in TDF:

selected_tokens = select_token_color(PN, 'pAB' ,1, { 'A‘, ‘B’ });

fire = (selected_tokens); % MUST

21.2 Token Selection From Multiple Input Places
Let’s say that place pAB has tokens with colors {‘’, ‘A’, ‘B’, {‘A’, ‘B’}} and pXY has tokens
with colors {‘’, ‘X’, ‘Y’, {‘X’, ‘Y’}}.

• Transition t selects ‘A’ from pAB and ‘Y’ from pXY :
Program code in TDF:

tokID1 = select_token_color(PN, 'pAB' ,1, 'A');

tokID2 = select_token_color(PN, 'pXY' ,1, 'X');

selected_tokens = [tokID1 tokID2]; % tokens to be removed

fire = (length(selected_tokens) == 2); % MUST

• Transition t select ‘A’ from pAB or ‘X’ from pXY (at least one token be ‘A’ or ‘X’):
Program code in TDF:

tokID1 = select_token_color(PN, 'pAB' ,1, 'A');

tokID2 = select_token_color(PN, 'pXY' ,1, 'X');

selected_tokens = [tokID1 tokID2]; % tokens to be removed

fire = (length(selected_tokens) >= 1); % MUST

• Transition t prefers ‘A’ from pAB or ‘X’ from pXY :
Program code in TDF:

 96

tokID1 = select_token_color(PN, 'pAB' ,1, 'A');

tokID2 = select_token_color(PN, 'pXY' ,1, 'X');

selected_tokens = [tokID1 tokID2]; % tokens to be removed

fire = 1; % may

 97

 98

22. Token Selection based on Time
A transition may select input tokens based on time. In the current version GPenSIM 3.0,
selection can be done based on two policies: ‘FCFS’ (First-Come-First-Served) and ‘LCFS’
(Last-Come-First-Served). Selection of time based token is done by executing the function
select_token_time. There are 4 input parameters to this function: the Petri net structure at
run-time, the input place of the transition, number of tokens to be selected, and finally the
time-based selection policy (‘FCFS’ or ‘LCFS’).

The output parameter of the function is a set of IDs of the selected tokens (set of tokID). Of
course, the number of returned tokID may be not equal to the number originally wanted by
the transition, depending on token availability.

Usage example: if a transition wants 4 oldest tokens from the input place pBUFF, then the
transition will execute the following statement:

function [fire,new_color,override, selected_tokens,global_i nfo] = ...
 tLR_A_def (PN, new_color, override, selected_to kens, global_info)

selected_tokens = select_token_time(PN, 'pBUFF' ,4, 'FCFS');

fire = 1;

If pBUFF has more than equal to 4 tokens, then tokIDs of the 4 oldest tokens will be returned
in selected_tokens . Otherwise, if pBUFF has less than 4 tokens, then tokIDs of all the
tokens will be returned.

Similarly, if a transition wants 2 youngest tokens from the input place pBUFF, then the
transition will execute the following statement:

function [fire,new_color,override, selected_tokens,global_i nfo] = ...
 tLR_A_def (PN, new_color, override, selected_to kens, global_info)

selected_tokens = select_token_time(PN, 'pBUFF' ,2, 'LCFS');

fire = 1;

 99

22.1 Example-19: Token selection based on time
Figure-24 shows the example for token selection based on time. pSTART has 3 initial tokens
(initial tokens are of course colorless). tCOL add colors to the tokens it deposits into
pQUEUE. The branch “pDLY-tDLY-pRDY” is a delay, just to keep tSEL wait until all the
three tokens are deposited into pQUEUE.

tCOL adds color to tokens followingly:
• Gets current time from the system.
• Converts current time into ASCII string
• Adds the ASCII string as color

This means all the three tokens deposited into pQUEUE will have colors reflecting the time
they were made by tSEL.

Figure-31. FCFS example

22.1.1 PDF: fcfs_def.m

% PDF for Example - 19: Token selection based on time
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...

= fcfs_def(global_info)

PN_name = 'FCFS - LCFS DEMO' ;
set_of_places = { 'pSTART' , 'pQUEUE' , 'pDLY' , 'pRDY' , 'pSEL' };
set_of_trans={ 'tCOL' , 'tSEL' , 'tDLY' };
set_of_arcs={ 'pSTART' , 'tCOL' ,1, 'tCOL' , 'pQUEUE' ,1, ...
 'pQUEUE' , 'tSEL' ,1, 'tSEL' , 'pSEL' ,1, ...
 'pDLY' , 'tDLY' ,1, 'tDLY' , 'pRDY' ,3, ...
 'pRDY' , 'tSEL' ,1};

 100

22.1.2 MSF: fcfs.m

% MSF for Example-19: Token selection based on time
png = petrinetgraph('fcfs_def');

dyn.initial_markings = { 'pSTART' ,3, 'pDLY' ,1};
dyn.firing_times = { 'tCOL' ,1, 'tDLY' ,100, 'tSEL' ,10};

RES = gpensim(png, dyn);

print_statespace(RES);
print_colormap(RES, 'pSEL');

22.1.3 TDF: tCOL_def.m

function [fire, new_color, over_ride, selected_tokens,globa l_info] =

...
 tCOL_def (PN, new_color, over_ride, selected_to kens,

global_info)
%%%% TDF: tCOL_def

% add color
new_color = num2str(PN.current_time);

fire = 1;

22.1.4 TDF: tSEL_def.m

function [fire,new_color,override, selected_tokens,global_i nfo] =

...
 tSEL_def (PN, new_color, override, selected_tok ens, global_info)

selected_tokens = select_token_time(PN, 'pQUEUE' ,1, 'FCFS');
fire = 1;

22.1.5 Simulation Results
The simulation result clearly shows that tSEL selects tokens on “FCFS” basis. At pSEL, 3
tokens arrive; the first token had color ‘0’ then arrive a token with color ‘1’ and finally, come
token with color ‘2’.

…
…

step:7 Firing event: tSEL (Starting time: 12 0) Finishing Time: 130
Current markings:
pSTART pQUEUE pDLY pRDY pSEL
 0 0 0 0 3
Completion time: 130

 101

Displaying token colors (WARNING: processing takes time

Color Map for place: pSEL

Time: 110
 '0'

Time: 120
 '0' '1'

Time: 130
 '0' '1' '2'

22.1.6 Simulation results for LCFS
Let’s change selection policy to LCFS:

function [fire,new_color,override, selected_tokens,global_i nfo] =

...
 tSEL_def (PN, new_color, override, selected_tok ens, global_info)

selected_tokens = select_token_time(PN, 'pQUEUE' ,1, 'LCFS');
fire = 1;

Then the simulation result also depicts LCFS selection by tSEL:

…
…

step:7 Firing event: tSEL (Starting time: 12 0) Finishing Time: 130
Current markings:
pSTART pQUEUE pDLY pRDY pSEL
 0 0 0 0 3
Completion time: 130

Displaying token colors (WARNING: processing takes time

Color Map for place: pSEL

Time: 110
 '2'

Time: 120
 '1' '2'

Time: 130
 '0' '1' '2'

 102

 103

Part-II: Applications

 104

 105

23. Modeling a Single Runway Airport
This project is to model a single runway airport. The aim is to propose a simple dynamic Petri
net model that describes the traffic flow of a single runway (RWY) due to schedule (i.e.
estimated times of arrivals and departures).

23.1 Description of the Model
Though the runway to be modeled is simple, it consists of the important elements of the
runway dynamics.

23.1.1 Assumptions
In order to obtain a relatively simple model for simulation and dynamic analysis purposes, the
following modeling assumptions are made:
• There are only three types of aircrafts (A/C) handled by the airport.
• The three types of A/Cs use pre-calculated runway length

23.1.2 Model elements
The important elements of the model are:
• Runway (RWY)
• Four taxiways (TWY)
• Aircrafts (A/Cs), arriving, taxing, engaged in terminals, and departing
• Rules that govern the interaction between A/C and use of the RWY

The characteristic properties of each of the model elements are as follows.

23.1.3 Runway (RWY) and taxiways (TWY)
A single 2500 m runway is considered with two 900 TWY on both end and two rapid exit
taxiways (RETs) located at approx. 1000 m and 1500 m from approach end threshold (see
figure 2).

23.1.4 The three categories of A/Cs
The difference between aircraft is based on International Civil Aviation Organization (ICAO)
threshold speed categories (A to E). Only aircraft with categories A, B and C are considered.
The selected traffic mix contains the following types of aircraft with percentage:
1. Category-A (e.g. lighter Cessna A/C): 30%,
2. Category-B (e.g. Medium Business Jets): 10%
3. Category-C (General Passenger Traffic): 60%

Category-A, B, and C A/Cs occupy 1500, 2000, 2500 meters of the RWY for landing and
take-off, respectively.

 106

Figure-32. Elements of the runway

23.1.5 Governing rules
The following rules are used to control the interactions between A/C and the use of the runway.

1. Arrivals have priority on departures
2. A landing aircraft will not normally be permitted to cross the runway threshold on its final

approach until the preceding departing A/C has crossed the end of the runway, or has started a
turn, or until all preceding landing A/C are clear off the RWY. That is, the model is governed by
elementary air traffic control (ATC) principles, such as, only one aircraft at a time on
RWY, and arrivals have priority over departures.

23.1.6 Timing for simulations
Runway occupancy times (ROT) for landing and departures are assumed to be equal for a
specific category A/C:
• Category-A A/Cs take 5 minutes (and first 1500 m of the RWY)
• Category-B A/Cs take 7 minutes (and first 2000 m of the RWY)
• Category-C A/Cs take 9 minutes (and the whole 2500 m of the RWY)

Besides:
• For arriving A/Cs, taxiing through any TWYs takes 5 minutes;
• For departing A/Cs, lineup time for take-off is same taxiing time for arriving A/Cs
• A/Cs arrive at a rate of 15-60 minutes (assume random timing)
• Arrived A/C take service time (offloading and on-boarding passengers and goods) of

about 45 minutes
• Initially, there may be some A/Cs parked on turf or terminals (assume any number of

A/Cs)
• YOU MAY ASSUME ANY OTHER TIMING

23.2 The Petri net Model

 107

23.2.1 The Elements
• Air crafts
• Runway
• Exit ways (for taxiing)
• Terminal, and
• Control tower

23.2.2 Process Modules

Figure-33. Elements of the runway

 108

23.2.3 The Petri net Model

Figure-34. The Petri net model showing only one terminal

23.2.4 Places and transitions
• Module-1: ARRIVAL: pARR, tARR
• Module-2: ABOUT TO LAND: pW4L: Wait for landing
 tGPL: Granting Permission for landing
• Module-3: LANDING: pR2L: Ready to Land;

 tLR1: Landing RWY length-1; tLR2: Landing RWY length-2;
tLR3: Landing RWY length-3; pACL: A/C Landed

• Module-4: TAXIING: tT2T: Taxiing to Terminal;
 tT2R: Taxiing to RWY
• Module-5: TERMINAL: pR2B: Ready to Board;
 tBRD: Boarding; pR2D: Ready to depart
• Module-6: ABOUT TO TAKEOFF: pW4T: Wait for Takeoff;

 109

 tGPT: Granting Permission for Takeoff
• Module-7: TAKEOFF: pR2T: Ready to Takeoff;
 tTR1: Takeoff RWY length-1; tTR2: Takeoff RWY length-2;

tTR3: Takeoff RWY length-3; pACD: A/C Departed
• Module-8: CONTROL: pCTR1: Runway to Control Tower,

 pCTR2: Control Tower 2 Runway
 tCLC: clear token color

23.3 Program Code: MSF

23.3.1 MSF

%%%
% NARVIK; modeling a single runway airport
%%%
clear; clc;
global_info.ratio_A=0.30;
global_info.ratio_B=0.10;
global_info.ratio_C=0.60;

global_info.MAX_LOOP = 200;
global_info.LOOP_NUMBER = 1;

ARRIVAL_FREQUENCY = 30; % the main variable !!!

%%%% STATIC DETAILS %%%%
png = petrinetgraph('single_rwy_def');

%%%% DYNAMIC DETAILS %%%%
dyn.initial_markings = { 'pARR' ,100, 'pCTR2' , 1};
dyn.firing_times = { 'tARR' , ARRIVAL_FREQUENCY, 'tGPL' , 0, ...
 'tLRA' ,5, 'tLRB' ,7, 'tLRC' ,9, ...
 'tT2T' ,5, 'tBRD' ,45, 'tT2R' ,5, 'tGPT' ,0, ...
 'tTRA' ,5, 'tTRB' ,7, 'tTRC' ,9};

%%%% SIMULATE %%%%%
[RES, global_info] = gpensim(png, dyn, global_info) ;
print_statespace(RES);
plotp(RES, { 'pW4L' , 'pR2B' , 'pW4T' });

23.4 Program Code: PDF

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = single_rwy_def(global_info)
% PDF: single_rwy_def

PN_name = 'SINGLE RWY' ;

set_of_places = { 'pARR' , 'pW4L' , 'pR2L' , 'pACL' , 'pR2B' , ...
 'pR2D' , 'pW4T' , 'pR2T' , 'pACD' , 'pCTR1' , 'pCTR2' };

 110

set_of_trans = { 'tARR' , 'tGPL' , 'tLRA' , 'tLRB' , 'tLRC' , ...
 'tT2T' , 'tBRD' , 'tT2R' , 'tGPT' , ...
 'tTRA' , 'tTRB' , 'tTRC' , 'tCLC' };

set_of_arcs = { ...
 'pARR' , 'tARR' ,1, 'tARR' , 'pARR' ,1, 'tARR' , 'pW4L' ,1, ...
 'pW4L' , 'tGPL' ,1, 'tGPL' , 'pR2L' ,1, ...
 'pR2L' , 'tLRA' ,1, 'pR2L' , 'tLRB' ,1, 'pR2L' , 'tLRC' ,1, ...
 'tLRA' , 'pACL' ,1, 'tLRB' , 'pACL' ,1, 'tLRC' , 'pACL' ,1, ...
 'pACL' , 'tT2T' ,1, 'tT2T' , 'pR2B' ,1, ...
 'pR2B' , 'tBRD' ,1, 'tBRD' , 'pR2D' ,1, ...
 'pR2D' , 'tT2R' ,1, 'tT2R' , 'pW4T' ,1, ...
 'pW4T' , 'tGPT' ,1, 'tGPT' , 'pR2T' ,1, ...
 'pR2T' , 'tTRA' ,1, 'pR2T' , 'tTRB' ,1, 'pR2T' , 'tTRC' ,1, ...
 'tTRA' , 'pACD' ,1, 'tTRB' , 'pACD' ,1, 'tTRC' , 'pACD' ,1, ...
 'tLRA' , 'pCTR1' ,1, 'tLRB' , 'pCTR1' ,1, 'tLRC' , 'pCTR1' ,1, ...
 'tTRA' , 'pCTR1' ,1, 'tTRB' , 'pCTR1' ,1, 'tTRC' , 'pCTR1' ,1, ...
 'pCTR1' , 'tCLC' ,1, 'tCLC' , 'pCTR2' ,1, ...
 'pCTR2' , 'tGPL' ,1, 'pCTR2' , 'tGPT' ,1, ...
 };

23.5 Program Code: TDFs

23.5.1 TDF for tGPL (Adding Color)

function [fire,new_color,over_ride, selected_tokens,global_ info] = ...
 tGPL_def (PN, new_color, over_ride, selected_to kens, global_info)

% function [fire,new_color,selected_tokens,global_i nfo] = t2_def (PN,...
% new_color, selected_tokens, global_info)

over_ride = 1;

random_number = rand(1);
if (random_number < global_info.ratio_A),
 new_color = 'CAT-A' ;
 global_info.A_count = global_info.A_count + 1;
elseif and ((random_number >= global_info.ratio_A), ...
 (random_number < (global_info.ratio_A + glo bal_info.ratio_B))),
 new_color = 'CAT-B' ;
 global_info.B_count = global_info.B_count + 1;
else
 new_color = 'CAT-C' ;
 global_info.C_count = global_info.C_count + 1;
end ;

fire = 1;

23.5.2 TDF for tLRA (Landing A-type AC)

function [fire, new_color, over_ride, selected_tokens,globa l_info] = ...

 111

 tLRA_def (PN,new_color, over_ride, selected_tok ens, global_info)

% function [fire,new_color,selected_tokens,global_i nfo] = ...
% tLRA_def (PN,new_color, selected_tokens, global _info)

selected_tokens = select_token_with_colors(PN, 'pR2L' ,1, 'CAT-A');

if ~isempty(selected_tokens),
 global_info.tLRA_count = global_info.tLRA_count + 1;
 fire = 1;
else
 fire = 0;
end ;

23.5.3 TDF for tLRB (Landing B-type AC)

function [fire, new_color, over_ride, selected_tokens,globa l_info] = ...
 tLRB_def (PN,new_color, over_ride, selected_tok ens, global_info)

% function [fire,new_color,selected_tokens,global_i nfo] = ...
% tLRB_def (PN,new_color, selected_tokens, global _info)

selected_tokens = select_token_with_colors(PN, 'pR2L' ,1, 'CAT-B');

if ~isempty(selected_tokens),
 global_info.tLRB_count = global_info.tLRB_count + 1;
 fire = 1;
else
 fire = 0;
end ;

23.5.4 TDF for tLRC (landing C-type AC)

function [fire, new_color, over_ride, selected_tokens,globa l_info] = ...
 tLRC_def (PN,new_color, over_ride, selected_tok ens, global_info)

% function [fire,new_color,selected_tokens,global_i nfo] = ...
% tLRC_def (PN,new_color, selected_tokens, global _info)

selected_tokens = select_token_with_colors(PN, 'pR2L' ,1, 'CAT-C');

if ~isempty(selected_tokens),
 global_info.tLRC_count = global_info.tLRC_count + 1;
 fire = 1;
else
 fire = 0;
end ;

23.5.5 TDF for tTRA (Take Off, A-type AC)

 112

function [fire, new_color, over_ride, selected_tokens,globa l_info] = ...
 tTRA_def (PN,new_color, over_ride, selected_tok ens, global_info)

% function [fire,new_color,selected_tokens,global_i nfo] = ...
% tTRA_def (PN,new_color, selected_tokens, global _info)

selected_tokens = select_token_with_colors(PN, 'pR2T' ,1, 'CAT-A');

if ~isempty(selected_tokens),
 fire = 1;
else
 fire = 0;
end ;

23.5.6 TDF for tTRB (Take Off, B-type AC)

function [fire, new_color, over_ride, selected_tokens,globa l_info] = ...
 tTRB_def (PN,new_color, over_ride, selected_tok ens, global_info)

% function [fire,new_color,selected_tokens,global_i nfo] = ...
% tTRB_def (PN,new_color, selected_tokens, global _info)

selected_tokens = select_token_with_colors(PN, 'pR2T' ,1, 'CAT-B');

if ~isempty(selected_tokens),
 fire = 1;
else
 fire = 0;
end ;

23.5.7 TDF for tTRC (Take Off, C-type AC)

function [fire, new_color, over_ride, selected_tokens,globa l_info] = ...
 tTRC_def (PN,new_color, over_ride, selected_tok ens, global_info)

% function [fire,new_color,selected_tokens,global_i nfo] = ...
% tTRC_def (PN,new_color, selected_tokens, global _info)

selected_tokens = select_token_with_colors(PN, 'pR2T' ,1, 'CAT-C');

if ~isempty(selected_tokens),
 fire = 1;
else
 fire = 0;
end ;

 113

23.5.8 TDF for tCLC (removing color in tokens)

function [fire,new_color,over_ride, selected_tokens,global_ info] = ...
 tCLC_def (PN, new_color, over_ride, selected_to kens, global_info)

% function [fire,new_color,selected_tokens,global_i nfo] = ...
% tCLC_def (PN,new_color, selected_tokens, global _info)

over_ride = 1;
fire = 1;

23.6 Simulation Results
Finding the Bottleneck for varying arrival rate:

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pW4L

pR2B
pW4T

Figure-35. Arrival of ACs: every 60 min

 114

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

pW4L

pR2B
pW4T

Figure-36. Arrival of ACs: every 40 min

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

pW4L

pR2B

pW4T

Figure-37. Arrival of ACs: every 20 min

 115

23.7 Discussion
• For all frequencies (like flights every 60 min, 40 min, and 20 min), maximum number

of flights waiting in the air (‘pW4L’) is 1. Therefore RWY is not the bottleneck.
• Condition-1 (at any time, only one AC in RWY) is satisfied structurally.
• How to satisfy ATC Condition-2: Landing has priority over takeoff?
• Only one gate is used in the model. Thus, Gate is the bottleneck in simulations

(‘pR2B’)
• However, single RWY is obviously a problem considering close-down for

maintenance and for fault-tolerance
• How can the Petri net model easily modified for Stavanger-Sola (Double RWY)

23.8 Improvement to simulation model – job arrival in predefined times
In the Petri net model shown in figure-30, the aircraft arrival generator (or generally, job
arrival generator) is given as a loop that will create aircraft arrivals with specific intervals; this
could be slightly improved by using a stochastic value e.g. ‘normrnd(45, 5)’ meaning that
aircraft arrives at about every 45 minutes with STD 5 minutes. But, still this will not help we
have to generate arrivals at specific (or predefined) times. Generating arrivals at predefined
times can be elegantly done with the help of global_info, as shown in the following example.

23.9 Example-26: Arrivals at predefined times

Figure-38. Arrival at predefined times

Let us assume that jobs arrive at pre-defined times, e.g. at the following time: 4, 10, 22, 34,
36, and 75.

23.9.1 MSF
% Example-26: A Example for pre-defined arrival tim es
% file: profile_pn_def.m:
clear, clc;

global_info.MAX_LOOP = 500;
global_info.Arrival_Times = [4, 10, 22, 34, 36, 75] ;

png = petrinetgraph({ 'arrivals_def' });
dynamic.initial_markings = { 'pGEN' ,1};
sim = gpensim(png, dynamic, global_info);

print_statespace(sim);
plotp(sim, { 'pBUFF' });

 116

23.9.2 PDF
% Example-26: A Example for pre-defined arrival tim es
% file: arrivals_def.m:

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = predefined_def(global_info)

PN_name = 'Demo for pre-assigned arrival times' ;
set_of_places = { 'pGEN' , 'pBUFF' };
set_of_trans = { 'tGEN' };
set_of_arcs = { 'pGEN' , 'tGEN' ,1, 'tGEN' , 'pGEN' ,1, 'tGEN' , 'pBUFF' , 1};

23.9.3 TDF ‘tGEN_def.m’
function [fire,new_color,override, selected_tokens,global_i nfo] = ...
 tGEN_def (PN, new_color, override, selected_tok ens, global_info)

fire = 0; % to start with

if ~isempty(global_info.Arrival_Times),
 Current_AT = global_info.Arrival_Times(1);

 if le(Current_AT, PN.current_time), % less than or equal
 global_info.Arrival_Times = global_info .Arrival_Times(2:end);
 fire = 1;
 end ;
end ;

23.9.4 Simulation Results

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

pBUFF

Figure-39. Jobs generation at predefined times

 117

24. Scheduling
We present two examples in this section. Example-xx is a warm up example. In example-xx,
we go through the “better-intended, worst-happened” phenomena normally associated with
scheduling. Problems stated in the examples are taken from Stein (2008).

24.1 Example-81: Minimizing completion time
Figure-34, a digraph, shows the tasks to be done to complete a work. The figure shows the
order in which the tasks to be done and the time required to complete each task. E.g. Task T1
requires 4 time units and tasks T1 and T2 must be completed before task T4.

Figure-40. Digraph showing order of tasks to be completed

Note that it will take a minimum of 16 time units to complete all the tasks, as task T2
followed by T4, which requires 16 time units, is the critical path – the path of longest
duration.

The algorithm used for simulations is the priority-list scheduling. The order of priority (high
to low) is assumed to be T1, T2, … , and T6. finally, we assume two human resources,
generic and can do any task, named ‘Al, and ‘Bob’.

24.1.1 Petri net model

 118

Figure-41. Petri Net model of the scheduling digraph

The PDF for the Petri net model shown in figure –XX2 is given below:

PDF (‘schedule01_def.m’):

% Example-81: Scheduling-01
% file: schedule01_def.m: PDF

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = schedule01_def(global_info)

PN_name='Scheduling example 01' ;

set_of_places={ 'pS1' , 'pS2' , 'pS3' , 'pS6' , 'pE' , ...
 'p14' , 'p24' , 'p35' };
set_of_trans={ 'T1' , 'T2' , 'T3' , 'T4' , 'T5' , 'T6' };

set_of_arcs={ 'pS1' , 'T1' ,1, 'pS2' , 'T2' ,1, 'pS3' , 'T3' ,1, 'pS6' , 'T6' ,1, ...
 'T1' , 'p14' ,1, 'T2' , 'p24' ,1, 'T3' , 'p35' ,1, ...
 'p14' , 'T4' ,1, 'p24' , 'T4' ,1, 'p35' , 'T5' ,1, ...
 'T4' , 'pE' ,1, 'T5' , 'pE' ,1, 'T6' , 'pE' ,1, };

24.2 Programs
In the preprocessor of each task, we will try to grab a resource that is available; the resources
are implemented as a semafors.

The pre-processor for task T1 (‘T1_pre.m’) is given below; other pre-processors for other
tasks are similar – the only change is the task_nr, which is underlined in the code snippet
given below:

function [fire, new_color,override,selected_tokens,global_i nfo] = ...
 T1_pre(PN, new_color,override,selected_tokens,g lobal_info)

% T1_pre

task_nr = 1; % TASK-1

occu_semafor = global_info.semafor;
semafor = ~occu_semafor;

[row, cols] = find(semafor); % find any available semafor (value ~= 0)

if ~isempty(cols),
 sema = cols(1); % which is the first avialble semafor
 global_info.my_semafor(task_nr) = sema; % that will be mine
 global_info.semafor(sema) = task_nr; % then reserve it

 % pack results
 global_info.timing(task_nr, 1) = sema; % task handler
 global_info.timing(task_nr, 2) = PN.current_tim e; % task starting time

 119

 fire = 1;
else
 fire = 0;
end ;

In the post-processor of each task, we will release the semafor after use. The post-processor
for task T1 (‘T1_post.m’) is given below; again, the post-processors for the other task are
similar, we only need to change the task_nr.

function [global_info] = ...
 T1_post(transition, PN, global_info)
% function T1_post
%

task_nr = 1; % TASK-1

my_semafor = global_info.my_semafor(task_nr); % which is my semafor
global_info.semafor(my_semafor) = 0; % release that

% Pack results: task completion time
global_info.timing(task_nr, 3) = PN.current_time; % task completion time

Finally, the MSF (‘schedule01.m’) is given below:

% Example-81:
% MSF: scheule01.m
clear, clc;

no_of_employees = 2;
no_of_tasks = 6;

global_info.semafor = zeros(1, no_of_employees); % employees available
global_info.my_semafor = zeros(1, no_of_tasks);

global_info.PRIORITY = { 'T1' , 'T2' , 'T3' , 'T4' , 'T5' , 'T6' };

global_info.timing = zeros(no_of_tasks, 3);

png = petrinetgraph('schedule01_def');

dynamicpart.initial_markings = { 'pS1' ,1, 'pS2' ,1, 'pS3' ,1, 'pS6' ,1};
dynamicpart.firing_times = { 'T1' ,4, 'T2' ,6, 'T3' ,5, 'T4' ,10, 'T5' ,2,
'T6' ,7};

[sim, global_info] = gpensim(png, dynamicpart, glob al_info);

timing = global_info.timing;
print_schedule(timing, { 'Al' , 'Bob' });

 120

In the MSF, we are using a print function called ‘print_schedule.m’, to make better printout.
This function is given below:

function print_schedule(timing, list_of_names)
% function print_schedule(timing, list_of_names)

no_of_employees = length(list_of_names);

[timing_rows, timing_cols] = size(timing);

for employee = 1:no_of_employees,
 disp(' ');
 disp([' *** ' , list_of_names{employee}, ' ***']);

 for i=1:timing_rows,
 if eq(timing(i,1), employee),
 disp(['Task' , num2str(i), ': [' , ...
 num2str(timing(i,2)), ', ' , num2str(timing(i,3)), ']']);
 end ;
 end ;
end ;
disp(' ');

24.3 Results

When we use only one resource (‘Al’), the time taken will be summation of all the time for
individual tasks, 34 time units.

% Example-81:
% MSF: scheule01.m
no_of_employees = 1;
…
…
…
print_schedule(timing, { 'Al' });

The result of simulation is:

*** Al ***
Task1: [0, 4]
Task2: [4, 10]
Task3: [10, 15]
Task4: [15, 25]
Task5: [25, 27]
Task6: [27, 34]

 121

When we use two resources (‘Al’ and ‘Bob’), the time taken is 18 time units to complete all
the tasks:

% Example-81:
% MSF: scheule01.m
no_of_employees = 2;
…
…
print_schedule(timing, { 'Al' , 'Bob' });

 *** Al ***
Task1: [0, 4]
Task3: [4, 9]
Task5: [9, 11]
Task6: [11, 18]

 *** Bob ***
Task2: [0, 6]
Task4: [6, 16]

However, if we use three resources (‘Al’, ‘Bob’, and ‘Carter’), then the maximum time
needed is the critical path time, that is 16 time units.

% Example-81:
% MSF: scheule01.m
no_of_employees = 3;
…
…
print_schedule(timing, { 'Al' , 'Bob' , 'Carter' });

 *** Al ***
Task1: [0, 4]
Task6: [4, 11]

 *** Bob ***
Task2: [0, 6]
Task4: [6, 16]

 *** Carter ***
Task3: [0, 5]
Task5: [5, 7]

 122

24.3.1 In Summary:
When only one resource (‘Al’) is used:
Completion time: 34 time units
Usage of resources = 100%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

T1 T2 T3 T4 T5 T6

When two resources (‘Al’ and ‘Bob’) are used:
Completion time: 18 time units
Idle time: Bob: 2 time units

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Al T1 T3 T5 T6
Bob T2 T4

When three resources (‘Al’, ‘Bob’, and ‘Carter’) are used:
Completion time: 16 time units
Idle time:

Al: 5 time units
Carter: 9 time units

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Al T1 T6
Bob T2 T4
Carter T3 T5

24.4 Example-82: Scheduling – II
Figure-36 shows another example.

Figure-42. Digraph for example-82

In this example too, the priority of tasks are assumed as previously (top to bottom): T1, T2,
…, T9

When three resources (‘Al’, ‘Bob’, ‘Carter’) are used, the completion time is found to be 12
time units. This is a “perfect storm” scenario, finishing the job by the time of the critical path
(T1, T3), which is 12 time units.

 123

 1 2 3 4 5 6 7 8 9 10 11 12

Al T1 T9
Bob T2 T4 T5 T7
Carter T3 Idle T8

Let’s add another resource (‘Don’) and see how much the completion times are reduced.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Al T1 T8
Bob T2 T5 T9
Carter T3 T6
Don T4 T7

The results above shows that when we add more resources, we make things worse as
completion time is now increased. Now the completion time is 15 time units.

24.4.1 Petri Net Model

Figure given below shows the Petri net model. Note that the weight of arc between T4 and pX
is 4. This means, every time T4 fires, it puts 4 tokens into pX.

pS1 T1

pS2 T2

pS3 T3

pS4 T4

T9p19

pX

T5

pE

T8

T7

T6

4

This means, we have to make sure that these 4 tokens are consumed by the 4 transitions T5,
T6, T7 and T8, one token for each transition.

 124

24.4.2 Programming

PDF (‘schedule02_def.m’):

% Example-82: Scheduling-02
% file: schedule02_def.m: PDF

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = schedule02_def(global_info)

PN_name='Scheduling example 02' ;

set_of_places={ 'pS1' , 'pS2' , 'pS3' , 'pS4' , 'pE' , ...
 'p19' , 'pX' };
set_of_trans={ 'T1' , 'T2' , 'T3' , 'T4' , 'T5' , 'T6' , 'T7' , 'T8' , 'T9' };

set_of_arcs={ 'pS1' , 'T1' ,1, 'pS2' , 'T2' ,1, 'pS3' , 'T3' ,1, 'pS4' , 'T4' ,1, ...
 'T1' , 'p19' ,1, 'p19' , 'T9' ,1, ...
 'T9' , 'pE' ,1, 'T2' , 'pE' ,1, 'T3' , 'pE' ,1, ...
 'T4' , 'pX' ,4, ...
 'pX' , 'T5' ,1, 'pX' , 'T6' ,1, 'pX' , 'T7' ,1, 'pX' , 'T8' ,1, ...
 'T5' , 'pE' ,1, 'T6' , 'pE' ,1, 'T7' , 'pE' ,1, 'T8' , 'pE' ,1};

MSF (‘schedule02.m’):
% Example-82:
% MSF: scheule02.m
clear, clc;

no_of_employees = 4;
no_of_tasks = 9;

global_info.semafor = zeros(1, no_of_employees); % employees available
global_info.my_semafor = zeros(1, no_of_tasks);
global_info.PRIORITY = { 'T1' , 'T2' , 'T3' , 'T4' , 'T5' , 'T6' , 'T7' , 'T8' , 'T9' };

global_info.timing = zeros(no_of_tasks, 3);

png = petrinetgraph('schedule02_def');

dynamicpart.initial_markings = { 'pS1' ,1, 'pS2' ,1, 'pS3' ,1, 'pS4' ,1};
dynamicpart.firing_times = { 'T1' ,3, 'T2' ,2, 'T3' ,2, 'T4' ,2, ...
 'T5' ,4, 'T6' ,4, 'T7' ,4, 'T8' ,4, 'T9' ,9};

[sim, global_info] = gpensim(png, dynamicpart, glob al_info);
%grid on, plotp(sim, {'p14', 'p24','p35','pE'});

timing = global_info.timing;
three_chaps = { 'Al' , 'Bob' , 'Chuck' };
four_chaps = { 'Al' , 'Bob' , 'Chuck' , 'Don' };

if (no_of_employees==3),
 print_schedule(timing, three_chaps);
else
 print_schedule(timing, four_chaps);
end ;

 125

24.4.3 Pre-processor for T1, T2, T3, T4 and T9:
The only job of the preprocessors T1_pre to T4_pre, and T9_pre is to grab an available so that
they can start. However, the preprocessors for T5-T8 have one more job to do, that is to make
sure that they fire only once (or consume only one token after T4 has fired).

Pre-processor for T1, T2, T3, T4 and T9 are similar:

function [fire, new_color,override,selected_tokens,global_i nfo] = ...
 T1_pre(PN, new_color,override,selected_tokens,g lobal_info)

% T1_pre

task_nr = 1 ; % TASK-1

occu_semafor = global_info.semafor;
semafor = ~occu_semafor;

[row, cols] = find(semafor); % find any available semafor (value ~= 0)

if ~isempty(cols),
 sema = cols(1); % which is the first avialble semafor
 global_info.my_semafor(task_nr) = sema; % that will be mine
 global_info.semafor(sema) = task_nr; % then reserve it

 % pack results
 global_info.timing(task_nr, 1) = sema; % task handler
 global_info.timing(task_nr, 2) = PN.current_tim e; % task starting time

 fire = 1;
else
 fire = 0;
end ;

Pre-processor for T5, T6, T7, and T8 are similar; they first check whether the transition is
already fired once. If yes, then no more firing. Other wise, they try to grab a semafor.

function [fire, new_color,override,selected_tokens,global_i nfo] = ...
 T5_pre(PN, new_color,override,selected_tokens,g lobal_info)

% T5_pre

task_nr = 5; % TASK-5

occu_semafor = global_info.semafor;
semafor = ~occu_semafor;

[row, cols] = find(semafor); % find any available semafor (value ~= 0)

tx = get_trans(PN, 'T5');

 126

if (tx.times_fired), %if T5 has already fired once, then dont fire anymo re
 fire = 0;
 return ;
end ;

if ~isempty(cols),
 sema = cols(1); % which is the first avialble semafor
 global_info.my_semafor(task_nr) = sema; % that will be mine
 global_info.semafor(sema) = task_nr; % then reserve it

 % pack results
 global_info.timing(task_nr, 1) = sema; % task handler
 global_info.timing(task_nr, 2) = PN.current_tim e; % task starting time

 fire = 1;
else
 fire = 0;
end ;

24.4.4 Post-processors
Post-processors for all the transition are similar; they just release the semafor the transitions
were holding. The post-processor for T1 (‘T1_post.m’):

function [global_info] = ...
 T1_post(transition, PN, global_info)
% function t1_post
%

task_nr = 1; % TASK-1

my_semafor = global_info.my_semafor(task_nr); % which is my semafor
global_info.semafor(my_semafor) = 0; % release that

% Pack results: task completion time
global_info.timing(task_nr, 3) = PN.current_time; % task completion time

 127

25. Stochastic Timer
This is an advanced topic, dealing with discretizing of continuous systems. We know that
Petri net is for discrete event simulations only. However, if we could discretize continuous
systems then these systems can also be modeled with Petri nets. However, this is not easy and
needs some understanding of Petri net formalism and matrix representation. Interest reader is
referred to a good book on this topic, Darren J. Wilkinson, “Stochastic Modelling for Systems
Biology”, Chapman & Hall/CRC, NY, 2006. ISBN-10 1-58488-540-8. Read especially about
Gillespi’s algorithm in chapter 06.

Stochastic timer: So far, we have been using inbuilt global timer for simulations. We did not
use any user-defined timer or time series for advancing the clock. Sometimes, we do need to
use special timers to advance the simulation time by ourselves. In this case, we use stochastic
timer.

Figure-43. Petri net model of the Prey-Predator interaction

25.1 Example-25: The Prey-Predator ecological equilibrium
The equilibrium is stated by 2 simple differential equations (known as Lotka & Volterra
equation):

• The specimen prey (e.g. rabbit - r) mutates by itself and depleted by predators (e.g.
foxes - f):

)()(frr
dt

dr ⋅⋅−⋅= βα

• The specimen predator (e.g. fox) grows due to rabbits (access to food) and depleted by
its own population (competition for food):

)()(frf
dt

df ⋅⋅+⋅−= δγ

• ,,, γβα and δ are parameters representing the interaction of the two species.

25.2 Converting the dynamics to Petri nets
Of course, the equilibrium is determined by classical (partial) differential equations. Without
using mathematical solutions, which demands high mathematical skills for higher order

 128

systems when many specimen types are involved, we go for the analytical reasoning using
Petri nets. Equivalent Petri net model for the interaction is given below:

25.3 Simulation files
The program snippets using GPenSIM is given below:

• First, in the main simulation file, we have to set the flag for ‘stochastic timer’
(global_info.STOCHASTIC = 1;)

• Second, we have to define the stochastic timer in the file ‘time_advancement.m’

25.3.1 The Main Simulation File
% MSF file for Example-25: Predator-Pey example
% THIS EXAMPLE USES STOCHASTIC TIMER !!!
global_info.MAX_LOOP = 10000;
global_info.c = [1 .005 .6];

global_info.STOCHASTIC = 1; % set the flag for stochastic timer
global_info.LOOP_NUMBER = 1; % set this flag as MAX_LOOP is large

pn = petrinetgraph('predator_prey_def');
dynamicpart.initial_markings = { 'Prey' ,50, 'Predator' , 100};

sim = gpensim(pn, dynamicpart, global_info);
% NOTE: !!!
% print function ‘print_statespace’
% can not be used applications using stochastic t imer !!!!!
% !!!!!
plotp(sim, { 'Prey' , 'Predator' }); %%%% figure 28
plot(sim.LOG(:,2), sim.LOG(:,3)); %%%% figure 29

25.3.2 Petri net Definition File
%% PDF for Example-25: predator_prey_def.m:

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = predator_prey_def(global_info)
PN_name='predator-prey p/151' ;
set_of_places={ 'Prey' , 'Predator' , 'DUMP' };
set_of_trans={ 't1' , 't2' , 't3' };
set_of_arcs={ 'Prey' , 't1' ,1, 't1' , 'Prey' ,2, ...
 'Prey' , 't2' ,1, 'Predator' , 't2' ,1, 't2' , 'Predator' ,2, ...
 'Predator' , 't3' ,1, 't3' , 'DUMP' ,1};

25.3.3 Definition of stochastic timer (‘time_advancement.m’)
%%%% !!!!!!!! CHANGING GLOBAL TIME !!!
%%%% time_advancement is for CHANGING GLOBAL TIME ! !!
%%% this time series is a realization of “Gilespi a lgorithm”

function [pn, global_info] = time_advancement(pn, global_in fo)

c1=global_info.c(1); c2=global_info.c(2); c3=glob al_info.c(3);

 129

Prey = get_place(pn, 'Prey');
PRED = get_place(pn, 'Predator');

h1 = c1 * Prey.tokens;
h2 = c2 * Prey.tokens * PRED.tokens;
h3 = c3 * PRED.tokens;
H = h1 + h2 + h3;

%%%% probabilities
global_info.pro1 = (h1/H);
global_info.pro2 = (h2/H);
global_info.pro3 = (h3/H);

delta_T = 1-exp(-1/H);
pn.current_time = pn.current_time + delta_T ; %%%% CHANGING GLOBAL TIME
!!!

25.3.4 Transition Definition File: t1_def.m

function [fire, new_color, override, selected_tokens,global _info] = ...
 t1_def (pn, new_color, override, selecte d_tokens,global_info)
% function t1_def

c1=global_info.c(1); c2=global_info.c(2); c3=global _info.c(3);

Prey = get_place(pn, 'Prey');
PRED = get_place(pn, 'Predator');

h1 = c1 * Prey.tokens;
h2 = c2 * Prey.tokens * PRED.tokens;
h3 = c3 * PRED.tokens; H = h1 + h2 + h3;

%%%% probabilities
pro1=(h1/H); pro2=(h2/H); pro3=(h3/H);

R = rand*(1);
fire = (R <= pro1);

 130

25.3.5 Transition Definition File: t2_def.m
function [fire, new_color, override, selected_tokens,global _info] = ...
 t2_def (pn, new_color, override, selected_token s,global_info)
% function fire = t2_def(pn, global_info)

c1=global_info.c(1); c2=global_info.c(2); c3=glob al_info.c(3);

Prey = get_place(pn, 'Prey');
PRED = get_place(pn, 'Predator');

h1 = c1 * Prey.tokens;
h2 = c2 * Prey.tokens * PRED.tokens;
h3 = c3 * PRED.tokens;
H = h1 + h2 + h3;

%%%% probabilities
pro1=(h1/H); pro2=(h2/H); pro3=(h3/H);

R = rand*(1);
fire = (R <= pro2);

25.3.6 Transition Definition File: t3_def.m
function [fire, new_color, override, selected_tokens,global _info] = ...
 t3_def (pn, new_color, override, selected_token s,global_info)
% function fire = t3_def(pn, global_info)
% tRES_implementation

c1=global_info.c(1); c2=global_info.c(2); c3=glob al_info.c(3);

Prey = get_place(pn, 'Prey');
PRED = get_place(pn, 'Predator');

h1 = c1 * Prey.tokens;
h2 = c2 * Prey.tokens * PRED.tokens;
h3 = c3 * PRED.tokens;
H = h1 + h2 + h3;

%%%% probabilities
pro1=(h1/H); pro2=(h2/H); pro3=(h3/H);

R = rand*(1);
fire = (R <= pro3);

CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
PrPrPrPrint functions ‘int functions ‘int functions ‘int functions ‘print_statespaceprint_statespaceprint_statespaceprint_statespace’’’’ can not be used can not be used can not be used can not be used
for applications that use stochastic timer. for applications that use stochastic timer. for applications that use stochastic timer. for applications that use stochastic timer.

This is the reason for manipulating simulation results log file directly, as done in the example
above. We give below code snippet from MSF for prey-predator example:

 131

% NOTE: !!!
% print function ‘print_statespace’
% can not be used applications using stochastic t imer !!!!!
% !!!!!
plotp(sim, { 'Prey' , 'Predator' }); %%%% figure 28
plot(sim.LOG(:,2), sim.LOG(:,3)); %%%% figure 29

25.4 The Simulation Results

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

Prey

Predator

Figure-44. Composition of specimens Prey-Predator with time

 132

Figure-45. Prey-Predator Equilibrium

0 50 100 150 200 250 300
50

100

150

200

250

300

350

400

Y1

Y
2

 133

26. Measuring Robot Usage
The flexible manufacturing cell at the Narvik Institute of Technology (NIT), Norway, consists
of a CNC vertical machining center (Mori Seiki), a CNC horizontal machining center (Mori
Seiki), an ABB IRB2000 robot, and a conveyor belt; figure 12 shows the system.

Figure-46. Flexible Manufacturing Cell at Narvik Institute of Technology (NIT)

Here is the operational specification of the system, somewhat simplified for our modeling
purposes:
1. To start a cycle, a raw part must be available on the incoming conveyor belt, and the

robot is also available.
2. The robot moves a raw part from the conveyor and loads it at the horizontal machining

center (HMC).
3. The milling operation is performed at HMC while the robot backs off (returns).
4. The robot unloads the work piece from HMC, loads it to the vertical machining center

(VMC) and returns.
5. The drilling operation is performed at VMC, and simultaneously the robot perform step 2.
6. The robot unloads the finished part from VMC, deposits it on the conveyor and returns.

In steady-state steps 2-6 repeat. Note that the specifications are very similar to the one given
in Zhou and Robbi (1994). Well, it has to be similar, considering the simple systems we and
they have, there is only one way to do it.

26.1.1 The Petri net model

CNC vertical
machining center

(VMC)

CNC horizontal
machining center

(HMC)

ABB IRB2000
Robot

Conveyor belts
(both for incoming

and outgoing)
ing center (VMC)

 134

The Petri net model for flexible manufacturing cell at NIT is given in figure 13. It is possible
that one could come up with a slightly different model for the same system than the one
shown in figure 13.

Figure-47. Timed PN model for flexible manufacturing cell at NIT.

26.1.2 The Petri net model

The upper arm of the model consisting place p1 is the start mode. The left arm of the model is
for the milling operation at HMC, the right arm is for the drilling operation at VMC, the
bottom arm is for the transition between these two operations, and finally the central part is
for the robot movements. Table-III shows the meaning of the different places and transitions.

Table-III: Meanings of places and transitions for the PN model.

It must be noted that there are potentials for parallel operations. For example, after loading a
part into the HMC, while the milling operation is going on, the robot can retreat to its ready
position, and also load a part from the output buffer of HMC into VMC(t1 and t2 are parallel).

p1

p2
p3

p4

p5

p6

p7

p8

p9

p10

p11 t1

t3

t2 t4

t5

t7

t6

t8

place interpretation trans interpretation time
p1 Raw parts t1 Robot/part to HMC 1
p2 Robot available t2 Milling operation vary
p3 Part loaded to HMC t3 Robot/part to VMC 1
p4 Out buffer VMC t4 Drilling operation vary
p5 Out buffer HMC t5 Robot/part to output 1
p6 Part loaded to VMC t6 Robot returns 0.5
p7 HMC available t7 Robot returns 0.5
p8 VMC available t8 Robot returns 0.5
p9 Robot ready return (specimen operation times are given

in minutes) p10 Robot ready return
p11 Robot ready return

 135

26.1.3 Simulations
Lets vary the machining times of both milling and drilling operations and see for what
combination of operations robot is overloaded (a second robot should be commissioned).

!!!!!

 Milling operation
Drilling op. 0.3 0.5 1.0 5.0

0.3 100% 100% 90% 50%
0.5 100% 100% 90% 50%
1.0 90% 90% 82% 47%
5.0 50% 50% 47% 33%

Table-IV: Robot usage for different operation times.

 136

27. Norwegian Traffic Lights
As shown in the figure below, Norwegian traffic lights have 4 states:
Red -> Red & Yellow -> Green -> Yellow

Figure-48. Norwegian Traffic Lights

27.1 Developing a Petri Net Model for Norwegian Tra ffic Light

27.1.1 State-1 (RED) to State-2 (RED & YELLOW)

RED

YELLOW

GREEN

R -> RY

R

B

G

B

R R

 137

27.1.2 State-2 (RED & YELLOW) to State-3 (GREEN)

27.1.3 State-3 (GREEN) to State-4 (YELLOW)

RED

YELLOW

GREEN

R -> RY

RY -> G

RED

YELLOW

GREEN

R -> RY

RY -> G G -> Y

 138

27.1.4 State-4 (YELLOW) to State-1 (RED)

27.2 Transition Definitions
State-1 (RED) to state-2 (RED & YELLOW):

Transition tR->RY will fire only if there is a token in place RED and there is no token
in place YELLOW (if there are tokens in both places, then tRY->G will fire)

State-4 (YELLOW) to state-1 (RED):

Transition tY->R will fire only if there is a token in place YELLOW and there is no
token in place RED

27.3 Program Code for the Petri Net Model

27.3.1 Main Simulation File
% the main file to run simulation
clear, clc;
global_info.MAX_LOOP = 5; % stop after 5 states (one cycle)

pn = petrinetgraph('NO_light_def');
dynamic_info.initial_markings = { 'pRED' , 1};

Results = gpensim(pn, dynamic_info, global_info);
print_statespace(Results);
plotp(Results, { 'pRED' , 'pYELLOW' , 'pGREEN' });

G -> Y

RED

YELLOW

GREEN

R -> RY

RY -> G

Y -> R

 139

27.3.2 PDF
function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = NO_light_def(global_info)
% file: pn_def.m:
% definition of petri net graph for Norwegian trafi c lights

PN_name='Pet Net graph for trafic light (NOR)' ;
set_of_places={ 'pRED' , 'pYELLOW' , 'pGREEN' };

set_of_trans={ 'tR_RY' , 'tRY_G' , 'tG_Y' , 'tY_R' };

set_of_arcs={ 'pRED' , 'tR_RY' ,1, 'tR_RY' , 'pRED' ,1, 'tR_RY' , 'pYELLOW' ,1, ...
 'pRED' , 'tRY_G' ,1, 'pYELLOW' , 'tRY_G' ,1, 'tRY_G' , 'pGREEN' ,1, ...
 'pGREEN' , 'tG_Y' ,1, 'tG_Y' , 'pYELLOW' ,1, ...
 'pYELLOW' , 'tY_R' ,1, 'tY_R' , 'pRED' ,1};

27.3.3 TDF: tR_RY
function [fire, new_color, override, selected_tokens, globa l_info] = ...
 tR_RY_def(pn, new_color, override, selected_tok ens, global_info)
% function fire = tR_RY_def(PN)

pR = get_place(pn, 'pRED');
pY = get_place(pn, 'pYELLOW');

tRRY = get_trans(pn, 'tR_RY');

fire = (pR.tokens) & not(pY.tokens);

27.3.4 TDF: tY_R
function [fire, new_color, override, selected_tokens, globa l_info] = ...
 tY_R_def(pn, new_color, override, selected_toke ns, global_info)
% function fire = tY_R_def(PN)

pR = get_place(pn, 'pRED');
pY = get_place(pn, 'pYELLOW');
fire = not(pR.tokens) & (pY.tokens);

 140

Part-III: Reference
Manual

 141

 142

28. Design of the GPenSIM Simulator
In this section, we will look into the internals of GPenSIM simulator. Like any simulators,
GPenSIM also has the following two major components: a (global) timer, and a queue to keep
firing transitions (active events); in addition, GPenSIM also has mechanisms (‘functions’) to
manipulate these two components - a push function to push firing transitions into queue, and a
pop function to eject a firing transition from queue in order to complete (or finish) firing.

28.1 The Main Loop
Components in the main loop:

• A Global Timer (“pn.current_time”)
• A Queue (“EIP” – events in progress)

Mechanisms (functions) that manipulate the components:

• Pushing firing transitions into Queue (function ‘start_firing’)
• Popping a firing transition from Queue, in order to complete it (function

‘complete_firing’)

 The components and the functions are realized in the M-file “timed_pensim.m”. Figure-37
shown below summarizes the main loop realized in the M-file “timed_pensim.m”:

Start firing any enabled

transitions

(add firing transitions to EIP

queue sorted in increasing

completion time)

Complete a firing transition

(from the top of EIP – with the

shortest completion time)

Increase global timer

(copy transition completion time

into global timer if any transition

is copmpleted; otherwise, if EIP

was empty, just move global

timer by an incremental value)

Figure-49. Simplified main loop of the simulation

However, actual coding of M-file “timed_pensim.m” is little more complicated due to the
processing of stochastic systems, as shown in the following figure.

Figure-38 presents the actual loop for simulation, coded in the M-file “timed_gpensim.m”.

 143

START

Simulations

Complete?

Pack simulation

results

YES

END

get currently

enabled

transitions

NO

Any Enabled

Transition?

record firing

transitions

start_firing

YES

Empty EIP?

NO

complete_firing

NO

Stochastic

system?

stochastic_

timer_

advancement

start_firing pushes a firing

transition into EIP queue,

sorted in increasing

compltion time

complete_firing pops a firing

transition from EIP queue

(the firing transition with least

completion time – top of EIP)

YES

YES

was Empty

EIP?

NO

global_

timer_

advancement

Increases global timer value

by ”gillespi’s algorithm”, etc.

Increases global timer value

by a fixed percentage of the

minimal firing time of any

transition

Figure-50. Main loop for simulation

 144

29. Further W ork (Future Extensions)

There are numerous possibilities for extending GPenSIM. We give blow just two:

• Adaptive GPenSIM: a version of GPenSIM in which the arc weights are not fixed and
can vary during the simulation run.

o Self adaptive: In each TDF, the arc weight of the transition can be changed.
o Forced adaptive: in a specific TDF, arc weights of any transition can be varied

• Real-time (“soft PLC”) simulator: Instead of global timer, the real-time clock of the

computer can be used. In this case, the GPenSIM is no longer just a simulator, but it
becomes a soft Programmable Logic Controller.

 145

 146

30. Data structures in GPenSIM
GPenSIM uses data structures to pass information between the functions. Some of the
structures:
1. Structure for Petri net (PN): there are two Petri net structures

a. Static PN structure is created by the function petrinetgraph
b. Run-time PN structure is available during simulation; copy of run-time PN

structure is available in TDFs.
2. Structure for Place: this structure is created by the function place
3. Structure for Transition: this structure is created by the function transition
4. Structure for Arc: this structure is created by the function arc
5. Structure for Token: tokens are removed (consumed) and added (deposited) during

simulations
6. Structure for simulation results: this structure is created by the function gpensim
7. Structure for Co-Tree: this structure is created by the function cotree
8. Structure for Co-Tree: this structure is created by the function gpensim

30.1 Static Structures for Petri net and its elements
In order to inspect these structures, let us visit the example given in section-3 again. The
program code snippet given below shows the main simulation file:

pn = petrinetgraph('simple_pn_def');
dynamic_info.initial_markings = { 'Place-1' ,1, 'Place-2' ,2};
dynamic_info.firing_times = { 'Transition-1' , 10};

Sim_Results = gpensim(pn, dynamic_info);
print_statespace(Sim_Results);

After execution of the first line of the program snippet given above, the function gpensim
returns the Petri net structure as an output variable called ‘pn’. Lets inspect this variable:

>> pn

pn =
 name: 'A Simple Petri Net impleme ntation'
 global_places: [1x3 struct]
 global_transitions: [1x1 struct]
 global_arcs: [1x3 struct]
 incidence_matrix: [1.00 2.00 0 0 0 1.00]

Screen dump given above shows that the Petri net structure has 7 elements. The elements are:

1) name: the ASCII string identifier of the Petri net
2) global_places: the set of all places in the Petri net
3) global_transitions: the set of all transitions in the Petri net
4) global_arcs: the set of all arcs in the Petri net
5) incidence_matrix: the matrix that depicts how the places and transitions are connected

together, and
6) type: (not used)

Let us study the elements and their respective data structures one by one:

 147

30.1.1 name
Name is an ASCII string identifier for the Petri net. From the screen dump given above, we
already know the name of the Petri net, which is 'A Simple Petri Net implementation'.
We can also inspect the name anytime by typing Sim_Res.name:

>> Sim_Res.name

ans =
A Simple Petri Net implementation

30.1.2 global_places
global_places is the set of all places in the Petri net. Let’s inspect the global_places by
typing Sim_res.global_places:

>> Sim_Res.global_places

ans =
1x3 struct array with fields:
 type
 name
 tokens
 max_capacity

The screen dump given above shows that there are three places inside the global_places
([1X3]), and that each place has the following elements: type, name, tokens, and
max_capacity. Let’s inspect the places individually: The first place:

>> Sim_Res.global_places(1)

ans =

 type: 'place'
 name: 'Place-1'
 tokens: 0
 max_capacity: Inf

The first place is identified by its name as ‘Place-1’. It has no tokens at the simulation end.
The element ‘max_capacity’ is NOT USED.

We can also inspect a place by passing its identifier to the function ‘get_place’:

>> p1 = get_place(Sim_Res, 'Place-1')

p1 =
 type: 'place'
 name: 'Place-1'
 tokens: 0
 max_capacity: Inf

 148

30.1.3 global_transitions
global_transitions is the set of all transitions in the Petri net. global_transitions can be
studied by the same approach applied to inspecting global_places.

30.1.4 Global_arcs
global_arcs is the set of all arcs in the Petri net.

>> Sim_Res.global_arcs

ans =
1x3 struct array with fields:
 type
 from
 to
 weight
 name

Screen dump shows that global_arcs consists of three arcs. Let’s inspect the first arc of
global_arcs:

>> Sim_Res.global_arcs(1)

ans =

 type: 'arc'
 from: [1x1 struct]
 to: [1x1 struct]
 weight: 1.00
 name: 'Arc.475'

The first arc of the set of arcs has 5 elements:

1. type: this element identifies the type (‘arc’) of the element as an arc
2. from: this element identifies the source of the arc
3. to: this element identifies the destination of the arc
4. weight: this element identifies the weight of the arc (the weight of the arc is 1)
5. name: an ASCII string identifier to the arc (a unique identifier is generated for every

arc: the unique identifier for this arc is ‘Arc.475’)

Further let’s inspect the source and the destination of this arc:

>> Sim_Res.global_arcs(1).from

ans =

 type: 'place'
 name: 'Place-1'
 tokens: 0
 max_capacity: Inf

The source of this arc is the place ‘Place-1’. The destination of the arc is:

>> Sim_Res.global_arcs(1).to

ans =

 149

 type: 'transition'
 name: 'Transition-1'
 firing_time: 100.00
 firing_cost: 0
 firing_condition: ''
 times_fired: 0

The destination of the arc is the transition ‘Transition-1’. Of course, figure 6 verifies the
results.

30.1.5 incidence_matrix
The incidence matrix is a matrix that depicts how the places and transitions are connected
together. GPenSIM uses a compact and unique format to convey this information. Incidence
matrix in GPenSIM is actually two matrices put together:

incidence_matrix = [input_incidence_matrix output _incidence_matrix]

Please refer to any standard text on Petri nets to know the details of incidence matrix.

30.1.6 type
‘type’ identifies a Petri net type. A Petri net can be un-timed (no concern about the firing
times of the transitions), timed, or stochastic (firing times are not deterministic).

 150

30.2 Run-time Structures for Petri net and its elements
[Also discussed in the section on “TDF”].
Run-time Petri net structure is available in all TDFs. It consists of the following elements:

1 STATIC PN.Name: 'TDF Example: Production facility'
2 Run-time PN.global_places: [1x n struct]

A set of sturctures; one structure
per place, consisiting the
following:

type: 'place'
name: 'p1'

tokens: 3.00
max_capacity: Inf

token_bank: [1x3 struct]

Token_bank is also a set of
structures - one for each token in

the place - consisitng the
following.

tokID: 1.00
creation_time: 0

color: {‘A’, ‘B’}
3 Run-time PN.global_transitions: [1x m struct]

A set of sturctures; one structure

per transition, consisiting the
following:

type: 'transition'
name: 't1'

firing_time: 10.00
firing_cost: 0
times_fired: 0

4 STATIC PN.global_arcs: [1x6 struct]
5 STATIC PN.incidence_matrix: [3x8 double]
6 Run-time PN.current_time: 45.00
7 Run-time PN.token_serial_number: 30.00
8 Run-time PN.X: [10.00 3.00 5.00 2.00]

(Current Markings)
9 Run-time PN.Firing_Transitions: [0 1 1]

Transitions Firing at the moment;
one bit per transition; 0 – not

firing;
1 – firing

10 Run-time PN.Enabled_Transitions: [1 0 0]
Transitions enabled at the start of

the cycle (Apriori); one bit per
transition; 0 – not enabled;

1 - enabled)

30.3 Structures for simulation results
Simulation results from the function gpensim are kept in a structure that has two elements:

 151

1. type: ‘simulation’
2. LOG: a matrix
3. Firing_Transitions: a matrix
4. Enabled_Transitions: a matrix
5. State_Diagram: a matrix
6. Place_Names: Block of strings
7. Transition_names: Block of strings

Matrices LOG, Firing_Transitions, and Enabled_Transitions have same the number of rows.
(Exception: for stochastic timer applications, LOG generally has less rows).

The LOG matrix can become large as it has all the simulation results. Each raw of LOG
matrix represents changes due to firing of a transition, and has the following elements:

1. The new markings (the new state)
2. Fired transition
3. Parent state (matrix raw number) from which this state was obtained
4. Firing start time, and
5. Firing completion time

The Firing_Transitions matrix contains information about all the firing transitions at each
inspection time. Each row of the Firing_Transitions starts with inspection time (element 1),
and then rest of the elements are represents transitions; if element is ‘1’ then the
corresponding transitions was firing at the inspection time.

Similarly, the Enabled_Transitions matrix contains information about all the enabled
transitions at each inspection time. Each row of the Enabled_Transitions starts with
inspection time (element 1), and then rest of the elements are represents transitions; if element
is ‘1’ then the corresponding transitions was enabled at the inspection time.

State_Diagram represents sequences of states and the transitions that make state changes.
State_Diagram is used by the print system (‘print_statespace’). NB: State_Diagram is also
designed for making off-line graphical simulations; explained in the following
subsection.

State_Diagram consists of three different types of information: Row-1 is the new state; Row-2
is the enabled transitions after the new state; Row-3 is the firing transitions after the new
state; This is further explained in example given below.

Places_Names and Transition_Names are names of all the places and the transitions
respectively.

30.4 Example-1
In order to inspect the structure for simulation results, let us visit a small example. The
program code snippet given below shows the main simulation file:

png = petrinetgraph('simple_pn_def');
dynamic.initial_markings = { 'p1' ,3, 'p2' ,5};
dynamic.firing_times = { 't1' , 10.11};

[sim] = gpensim(png, dynamic, global_info);

 152

print_statespace(sim);
sim.LOG

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = simple_pn_def(global_info)

PN_name = 'A Simple Petri Net definition' ;
set_of_places = { 'p1' , 'p2' , 'p3' };
set_of_trans = { 't1' , 10};
set_of_arcs = { 'p1' , 't1' , 1, 'p2' , 't1' , 2, 't1' , 'p3' , 1};

Let us inspect the structure sim_RESULTS:
>> sim

sim =
 type: 'simulation'
 LOG: [3x7 double]
 Firing_Transitions: [3x2 double]
 Enabled_Transitions: [3x2 double]

 State_Diagram: [9x6 double]
Place_Names: [3x2 char]

 Transition_Names: 't1'

 153

30.4.1 LOG
Type ‘simulation’ identifies that the structure was obtained by after simulation run, and was
output by the function gpensim.

The LOG matrix is a 3 X 10 matrix containing the simulation results. The easiest way to
understand the simulation results is to use the function print_statespace. However, we can
inspect this structure on our own:

>> sim.LOG

ans =

Columns (1:3) Column 4 Col 5 Col 6 Col 7
New state (marking) Firing

Transition
Parent
state
(raw
no.)

Firing
Start
Time

Firing
Stop
Time

3.00 5.00 0 0 0 0 0
2.00 3.00 1.00 1.00 1.00 0 10.11
1.00 1.00 2.00 1.00 2.00 10.11 20.22

30.4.2 Firing_Transitions and Enabled_transitions
Firing_Transitions represents status (firing or not) of all the transitions at different inspection
times. The first element in each row is the inspection time, followed by the status of the
transitions.

>> sim.Enabled_Transitions

ans =

 0 1.00
 10.00 1.00
 20.00 0

Row-1: at time 0, t1 was enabled.
Row-2: at time 10, t1 was also enabled.
Row-3: at time 20, t1 was NOT enabled.

30.4.3 State_Diagram
>> sim.State_Diagram

ans =

0 0 3 5 0 0
0 0 0 0 0 1
0 0 0 0 0 1
10 1 2 3 1 0
10 0 0 0 0 1
10 0 0 0 0 1

 154

20 1 1 1 2 0
20 0 0 0 0 0
20 0 0 0 0 0

EXPLANATION:

row no.1 (state info)

Time NOT USED

Initial State NOT USED
number of

cells =
number of

transitions
0 0 3 5 0 0

row no.2 (enabled transitions)

Time NOT USED
number of cells = (number of places + 1)

Enabled
Transitions

0 0 0 0 0 1

row no.3 (firing transitions)

Time NOT USED
number of cells = (number of places + 1)

Enabled
Transitions

0 0 0 0 0 1

Row no. 4 (state info)

Time Fired
Transitions
(Transition

that
created the
new state)

New State (not used)

10 1 2 3 1 0

row no.5 (enabled transitions)

Time NOT USED
number of cells = (number of places + 1)

Enabled
Transitions

10 0 0 0 0 1

row no.6 (firing transitions)

Time NOT USED
number of cells = (number of places + 1)

Enabled
Transitions

10 0 0 0 0 1

Row no. 7 (state info)

Time Fired
Transitions
(Transition

that
created the
new state)

New State (not used)

20 1 1 1 2 0

 155

row no.8 (enabled transitions)
Time NOT USED

number of cells = (number of places + 1)
Enabled

Transitions
20 0 0 0 0 0

row no.9 (firing transitions)

Time NOT USED
number of cells = (number of places + 1)

Enabled
Transitions

20 0 0 0 0 0

Function ‘print_statespace’ uses the matrix State_Diagram to print out simulation results:

State:0 Time: 0
Initial State:
p1 p2 p3
 3 5 0
At time: 0 enabled transitions are:
 t1

At time: 0 firing transitions are:
 t1

State: 1 Time: 10
Fired Transition: t1
Current State:
p1 p2 p3
 2 3 1
At time: 10 enabled transitions are:
 t1
At time: 10 firing transitions are:
 t1

State: 2 Time: 20
Fired Transition: t1
Current State:
p1 p2 p3
 1 1 2
At time: 20 enabled transitions are:
At time: 20 firing transitions are:

Explanation:

Print_statespace lines Equivalent row of the
matrix ’State_Diagram’

State:0 Time: 0
Initial State:
p1 p2 p3
 3 5 0

Row-1

At time: 0 enabled transitions are:
 t1

Row-2

At time: 0 firing transitions are: Row-3

 156

 t1

State: 1 Time: 10
Fired Transition: t1
Current State:
p1 p2 p3
 2 3 1

Row-4

At time: 10 enabled transitions are:
 t1

Row-5

At time: 10 firing transitions are:
 t1

Row-6

State: 2 Time: 20
Fired Transition: t1
Current State:
p1 p2 p3
 1 1 2

Row-7

At time: 20 enabled transitions are:

Row-8

At time: 20 firing transitions are:

Row-9

30.4.4 Place_Names and Transition_Names

>> sim.Place_Names

ans =

p1
p2
p3

Since there is only 1 transition is the system,
>> sim.Transition_Names

ans =

30.5 Example-2 for State_Diagram
Figure shown below depicts a web server consisting of two server machines (tX1 and tX2)
that will fire alternatively. To allow alternative firing, we can implement a binary semaphore
that can be read and manipulated by the definition files of both transitions.

 157

MSF:
global_info.semafor = 1; % GLOBAL DATA: binary semafor

png = petrinetgraph('loadbalance_def');
dynamicpart.initial_markings = { 'pSTART' , 10};
dynamicpart.firing_times = { 'tX1' , 10, 'tX2' , 15};

sim = gpensim(png, dynamicpart, global_info);

plotp(sim, { 'p1' , 'p2' });
print_statespace(sim);

Let’s inspect the ‘State_Diagram’ element of the simulation results ‘sim’

>> sim.State_Diagram

ans =

 0 0 10 0 0 0 0
 0 0 0 0 0 1 1
 0 0 0 0 0 1 0
 10 1 9 1 0 0 0
 10 0 0 0 0 1 1
 10 0 0 0 0 0 1
 25 2 8 1 1 0 0
 25 0 0 0 0 1 1
 25 0 0 0 0 1 0
 35 1 7 2 1 0 0
 35 0 0 0 0 1 1
 35 0 0 0 0 0 1
 50 2 6 2 2 0 0
 50 0 0 0 0 1 1
 50 0 0 0 0 1 0
 60 1 5 3 2 0 0
 60 0 0 0 0 1 1
 60 0 0 0 0 0 1
 75 2 4 3 3 0 0
 75 0 0 0 0 1 1
 75 0 0 0 0 1 0
 85 1 3 4 3 0 0
 85 0 0 0 0 1 1
 85 0 0 0 0 0 1

 158

 100 2 2 4 4 0 0
 100 0 0 0 0 1 1
 100 0 0 0 0 1 0
 110 1 1 5 4 0 0
 110 0 0 0 0 1 1
 110 0 0 0 0 0 1
 125 2 0 5 5 0 0
 125 0 0 0 0 0 0
 125 0 0 0 0 0 0

>>

Explanation:

Row-1: [0 0 10 0 0 0 0]

At time=0, the initial row shows the initial markings (at time 0)

Row-2: [0 0 0 0 0 1 1]

At time=0,, both tX1 and tX2 are enabled.

Row-3: [0 0 0 0 0 1 0]

At time=0, only tX1 is allowed to fire.

Row-4: [10 1 9 1 0 0 0]
tX1 (1) takes 10 minutes to fire. After tX1 is fired, new state is [9 1 0]

Row-5: [10 0 0 0 0 1 1]

At time = 10, both tX1 and tX2 are enabled.

Row-6: [10 0 0 0 0 0 1]

At time = 10, only tX2 is allowed to fire.

Row-7: [25 2 8 1 1 0 0]

When tX2 (2) completes firing, time moves from 10 to 25 seconds. The new state is [8 1 1].

Row-8: [25 0 0 0 0 1 1]

At time = 25, both tX1 and tX2 are enabled.

Row-9: [25 0 0 0 0 1 0]

At time = 25, only tX1 is allowed to fire.

Row-10: [35 1 7 2 1 0 0]

When tX1 (1) completes firing, time moves from 25 to 35 seconds. The new state is [7 2 1].

Row-11: [35 0 0 0 0 1 1]

At time = 35, both tX1 and tX2 are enabled.

Row-12: [35 0 0 0 0 0 1]

At time = 35, only tX2 is allowed to fire.

…

 159

 160

30.6 Off-line Graphical Display
After simulations by the function ‘gpensim’, the simulation results has all the necessary
information for off-line graphical display. The simulation results, lets call it ‘Sim_Results’,
has three elements that can be used for graphical display (figure-32):

Figure-51. Off-line graphical display

1. State_Diagram: a matrix
2. Place_Names: Block of strings
3. Transition_names: Block of strings

 161

30.7 Structure for co-tree
Section 7.1 discusses obtaining co-tree of a Petri net. The program is given below:

% the main file to get the co-tree
png = petrinetgraph('fig_8_def');
sources = { 'p1' ,1};
CT = cotree(png, sources);
print_cotree(CT); %

Execution of line 4 gives a structure called CT for the co-tree. Let us inspect this structure:

>> CT

CT =

 type: 'COTREE'
 LOG: [3x6 double]

The structure has two elements, element ‘type’ identifies that this structure is for co-tree, and
the element ‘LOG’ has the rows of data for co-tree.

>> size(CT.LOG)

ans =

 3.00 6.00

The above screen dump shows that the LOG element is a 3 X 6 matrix. Only way to see co-
tree properly is to feed the structure (CT) to function print_cotree.

 162

30.8 Structure for colormap
Section 12.1 discusses colormap of a Petri net. The program is given below:

clear, clc;
pn = petrinetgraph('simple_adder_def');
dynamicpart.initial_markings = { 'p1' ,1, 'p2' ,1};

[results, global_info, colormap] = gpensim(pn, dyna micpart);
…

Execution of line 4 gives a structure called colormap. Let us inspect this structure:

>> colormap

colormap =

 type: 'color_map'
 LOG: [1x5 struct]

The structure has two elements, element ‘type’ identifies that this structure is for colormap,
and the element ‘LOG’ has the rows of data for colormap.

>> size(colormap.LOG)

ans =

 7.00 5.00

The above screen dump shows that the LOG element is a 7 X 5 matrix, meaning it has colors
of 7 tokens. Colormap structure as an output of gpensim contains properties (color, creation
time, and place) of all the tokens that were existed during simulation run. Let us see what the
color of the first token is:

>> colormap.LOG(1)

ans =

 time: 0
 place: 4
 color: {'21', '45'}

The screen dump shows that the colors of the token were ‘21’ and ‘45’. We can see the colors
of all the tokens that were involved during simulation, by feeding colomap structure to the
function print_colormap .

 163

 164

31. Using MSF and petrinetgraph
Main Simulation File (MSF) calls at least three other GPenSIM functions directly:

• ‘petrinetgraph’
• ‘gpensim’, and
• ‘print_statespace’, ‘print_colormap’, ‘plotp’, etc.

P
N
 graph, initial_dynam

ics, global_info

sim
ulation_results,glovbal_info

s
im
u
la
t i
o
n
 r
e
s
u
lt
s
 (
o
r
c
o
tr
e
e
)

Figure-52. Collaboration Diagram for MSF

 165

s
e
t_
o
f_
a
rc
s

g
lo
b
a
l_
a
rc
s

se
t_
o
f_
tra
n
s

g
lo
b
a
l_
tra
n
sitio

n
s

P
N
, tra

n
s_
n
a
m
e

0
..n

Figure-53. Collaboration Diagram for ‘petrinetgraph’

 166

32. Description of the Main Functions
This section presents detailed description of some of the main GPenSIM functions. The
following functions are described in detail: cotree, extractp, gpensim, gpensim_ver, MSF,
PDF, petrinetgraph, plotp, print_cotree, print_finalcolors, print_statespace, timed_pensim,
TDF.

Name: cotree
Purpose: Creates the coverability tree of a Petri net
Input
parameters:

Static Petri net sturcture (the structure output by ‘petrinetgraph’)
Intial_markings

Out parameters: Cotree structure
Uses: sources_matrix

enabled_transition
new_marking
check_for_dominance
good_name

Used by: [main simulation file]
NOTE: Cotree algorithm is similar to the one by Cassandras & Lafortune (1998)
Example:
% in main simulation file
png = petrinetgraph('cotree_example_def');
dyn.initial_markings = { 'p1' ,2, 'p4' , 1};
cotree_sturcture = cotree(png, dyn.initial_markings);
print_cotree(cotree_sturcture);

cotree sources_matrix

check_for_dom.

enabled_transit.

new_markings

> (PN.global_places, sources)
< (X)

> (old_state, COTREE, parent)
< (new_state)

> (transition, PN)
< (true / false)

> (transition, PN)
< (new_markings)

 167

Name: extractp
Purpose: To extract tokens from the Simulation results structure.
Input
parameters:

Simulation Results (the structure output by ‘gpensim’)
{set_of_place_names}

Out parameters: TOKEN_MATRIX
First row :[0 set_of_place_indices]
Second & subsequent rows:

[first column is time, other columns are tokens]
Uses: None
Used by: [main simulation file],

Plotp
Example:
% in main simulation file
sim = gpensim(png, dynamic);
plotp(sim, { 'p1' , 'p2' , 'p3' });
extractp(sim, { 'p1' , 'p2' , 'p3' }) % print the token matrix

Name: gpensim
Purpose: To run simulations and output simulation results

When the results are returned, they can be also analyzed (with tools like
print_statespace, plotp, extract, occupancy, etc.)

Input
parameters:

Static Petri net structure (output from ‘petrinetgraph’)
initial dynamics
global_info

Out parameters: Simulation results
global info

Uses: gpensim_ver, initial_markings, init_token_bank, firing_times, state_space,
timed_gpensim

Used by: [main simulation file]
Example:
% in main simulation file
[simualtion_Results, global_info] = gpensim(png, dy n, global_info);
print_statespace(simualtion_Results);

 168

Name: gpensim_ver
Purpose: Prints the current version of gpensim
Input
parameters:

None

Out parameters: None
Uses: None
Used by: gpensim, [main simulation file]
Example:
% in main simulation file
gpensim
% equivalently,
gpensim_ver

gpensim gpensim_ver

initial_markings

init_token_bank

firing_times

timed_pensim c

> ()
< ()

> (static PN sturcture, initial_markings)
< (initial state, static PN sturcture)

> (initial run-time PN sturcture, global_info)
< (initial run-time PN structure)

> (initial run-time PN structure, firing_times)
< (firing_times, initial run-time PN structure)

> (initial run-time PN structure, global_info)
< (sim_results, global_info, color_map)

 169

Name: Main Simula tion File (MSF)
Purpose: 1. To declare global variables (global_info),

2. To load Petri net graphs (PDFs), and to create a static Petri net graph with the
function ‘petrinetgraph’

3. To assign initial dynamics, and
4. To start the simulation (with ‘gpensim’).
When the results are returned, they can be also analyzed (with tools like
‘print_statespace’, ‘plotp’, ‘extractp’, ‘occupancy’, etc.)

Input
parameters:

-

Out parameters: -
Uses: petrinetgraph, gpensim, etc.

tools like plotp, print_statespace, etc.
Used by: -
Example:

%%% FILE: MSF for MIC (mic_new.m)
global_info.LOOP_NUMBER = 1; %% print loop number during simulation

%%%% COMPOSE %%%%%%%
png = petrinetgraph({ 'client_def' , 'internet_def' , ...
 'sil_def' , 'conn_pro' , 'iterate_def' , 'strategy_def' , ...
 'tactic_def' }); %% 7 modules

%%%% DYNAMIC DETAILS %%%%
dyn.initial_markings = { 'pSR' ,1, 'pNOI' , round(unifrnd(2,4)), 'pB3' ,1};
dyn.firing_times = { 'tCS' , 'normrnd(5000,50)' , 'tSC' , 'normrnd(5000,50)' , ...
 'tINIT' , 'unifrnd(280,320)' , ...
 'tRES' , 'unifrnd(1, 10)' , 'tSD' , 'unifrnd(80, 100)' , ...
 'tTD' , 'unifrnd(25, 35)' , 'tSUB1' , 'unifrnd(10, 15)' , ...
 'tSUB2' , 'unifrnd(10, 15)' , 'tSUB3' , 'unifrnd(10, 15)' , ...
 'tSUB4' , 'unifrnd(10, 15)' };
%%%% SUIMULATE %%%%%
RES = gpensim(png, dyn);
print_statespace(RES);

 170

Name: Petri net Definition File (PDF)
Purpose: To define a static Petri net graph
Input
parameters:

Optional: global_info

Out parameters: PN_name: a text string of text,
set_of_places: array of place structures
set_of_trans: array of transition structures
set_of_arcs: array of arc structures

Uses: -
Used by: Petrinetgraph
Example:

function [PN_name, set_of_places, set_of_trans, set_of_arcs] ...
 = simple_adder_def(global_info)
%% PDF: simple_adder_def.m:

PN_name='Color example: Simple Adder' ;
set_of_places={ 'p1' , 'p2' , 'pNUM1' , 'pNUM2' , 'pADDED' , 'pRESULT' };
set_of_trans={ 'tGET_NUM1' , 'tGET_NUM2' , 'tADD' , 'tCONVERT' };
set_of_arcs={ 'p1' , 'tGET_NUM1' ,1, 'tGET_NUM1' , 'pNUM1' ,1, ...
 'p2' , 'tGET_NUM2' ,1, 'tGET_NUM2' , 'pNUM2' ,1, ...
 'pNUM1' , 'tADD' ,1, 'pNUM2' , 'tADD' ,1, ...
 'tADD' , 'pADDED' ,1, 'pADDED' , 'tCONVERT' ,1, ...
 'tCONVERT' , 'pRESULT' ,1};

Name: petrinetgraph
Purpose: To make a static Petri net structure from the Petri net definition file(s) (PDF(s))
Input
parameters:

{ Names of One or more PDFs }

Out parameters: Static Petri net structure
Uses: build_places, build_trans, build_arcs, incidencematrix
Used by: [main simulation file]
Example:
% in main simulation file

% one PDF file
png = petrinetgraph('simple_pn_def');

% multiple PDF files
png = petrinetgraph({ 'client_def' , 'internet_def' , ...
 'sil_def' , 'conn_pro' , ...
 'iterate_def' , 'strategy_def' , 'tactic_def' });

 171

Name: plotp
Purpose: To plot simulation results; to plot how tokens change with time
Input
parameters:

Simulation Results (the structure output by ‘gpensim’)
{set_of_place_names}
global_info (optional)

Out parameters: TOKEN_MATRIX (contains tokens of places with time)
Uses: extractp (extracts tokens from the SIM results structure)
Used by: [main simulation file]
Example:
% in main simulation file
sim = gpensim(png, dynamic);
plotp(sim, { 'p1' , 'p2' , 'p3' });

Name: print_statespace
Purpose: To print simulation results
Input
parameters:

Simulation Results (the structure output by ‘gpensim’)

Out parameters: None
Uses: print_markings,

print_statespace_enabled_trans,
print_statespace_firing_trans
print_statespace_state

Used by: [main simulation file]
NOTE: Not for use with simulations using stochastic timer
Example:
% in main simulation file
Simulation_results = gpensim(png, dynamic);
print_statespace(Simulation_results);

Name: print_colormap
Purpose: To print colors of the tokens
Input
parameters:

Simulation Results (the structure output by ‘gpensim’)
{set_of_place_names}

Out parameters: None
Uses: print_colormap_for_place
Used by: [main simulation file]
Example:
% in main simulation file
results = gpensim(pn, dynamicpart);
print_colormap(results, { 'pNUM1' , 'pADDED' , 'pRESULT' });

 172

Name: print_finalcolors
Purpose: To print colors of the final state (colors of the tokens that are left in the system

when the simulations are complete)
Input
parameters:

Simulation Results (the structure output by ‘gpensim’)

Out parameters: None
Uses: None
Used by: [main simulation file]
Example:
% in main simulation file
results = gpensim(pn, dynamicpart);
print_finalcolors(results);

Name: print_cotree
Purpose: To print cotree structure
Input
parameters:

Cotree structure (the structure output by ‘cotree’)

Out parameters: None
Uses: print_markings
Used by: [main simulation file]
Example:
% in main simulation file
cotree_structure = cotree(png, dyn.initial_markings);
print_cotree(cotree_ structure);

 173

Name: timed_pensim
Purpose: This is the main M-function for Petri net simulation.

Inside the main loop, transitions are randomly chosen and
checked whether they are enabled or not. If they are enabled, the token removal
and deposition in respective places happens. Then the happenings are recorded
in the simulation results LOG.

Input
parameters:

Static Petri net structure (output from ‘petrinetgraph’)
global_info

Out parameters: Simulation results
global info

Uses: max_loop, print_loop_nr, simulations_complete
enabled_transition
start_firing
complete_firing
stochastic_timer_advancement, global_timer_advancement
pack_sim_results

Used by: gpensim
Note: This is one of the most important M-files, as it realizes the main simulation

loop
Example:
% inside gpensim
[sim_results, global_info] = timed_pensim(png, glob al_info);

timed_pensim max_loop_logsize

complete_firing c

time_advancement

start_firing c

simulations_complete

> (global_info)
< (MAX_LOOP, MAX_LOG_SIZE)

> (PN, EIP, time_punch)
< (PN, EIP, time_punch, log_record,

colormap_record)

> (PN, global_info)
< (PN, global_info)

> (PN, EIP, parent_index, global_info)
< (PN, EIP, global_info)

> (EIP,PN,LOG,MAX_LOG_SIZE, Loop_Nr,
MAX_LOOP)
< (true / false)

 174

Name: Transition Definition File (TDF)
Purpose: To run user-defined conditions, and to test probe simulation
Input
parameters:

PN: run-time Petri net structure
global_info : global info packet
(Dummy variables: new_color = {}, override=false, selected_tokens=[])

Out parameters: fire_or_not: fire (≠ 0), don’t fire (=0)
new_color: colors assigned by transition,
override: override (≠ 0), don’t override (=0),
selected_tokens: tokIDs of any selected tokens for removal (consumption),
global_info: updated (if updated by the transition) global info packet

Uses: -
Used by: Firing_conditions
Example:

function [fire, new_color, override, selected_tokens,global _info] = ...
 tCONVERT_def (pn, new_color, override, selected _tokens,global_info)
%% TDF: tCONVERT_def

% first, select an token
tokID = select_token(pn, 'pADDED' , 1);

% second, get the colors of the selected token
colors = get_color(pn, tokID);
num1 = str2num(colors{1}); % convert color into number
num2 = str2num(colors{2}); % convert color into number
sum = num1 + num2;
new_color = num2str(sum);
override = 1; % only sum as color - NO inheritance
global_info.sum = sum; %%% sum is added to global_info
fire=1; %always fire

firing_condition TDF
> (transition, PN, global_info)

< (fire_or_not, new_color, override,
seleted_tokens, global_info)

 175

REFERENCES

• C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Boston, MA:

Springer Science+Business Media, LLC, 2007.

• GPenSIM web page: http://www.davidrajuh.net/gpensim/

• Darren J. Wilkinson, “Stochastic Modelling for Systems Biology”, Chapman &

Hall/CRC, NY, 2006. ISBN-10 1-58488-540-8. Read especially about Gillespi’s
algorithm in chapter 06.

• [James D. Stein]

• T. Murata, "Petri nets: Properties, analysis and applications," Proceedings of the IEEE,

vol. 77, pp. 541-580, 1989.

• R. Davidrajuh, "Event-driven simulation, modeling, and analysis with GPenSIM,"

Communications of the IIMA (Published by the International Information Management
Association), vol. 3, pp. 53-71, 2003

• C. A. Petri and W. Reisig, "Petri net," Scholarpedia, vol. 3, p. 6477, 2008

• R. Davidrajuh and I. Molnar, "Designing a new tool for modeling and simulation of

discrete event systems," Issues in Information Systems, vol. X, pp. 472-477, 2009

• Stateflow (2010) The MathWorks Inc, "Stateflow 7.4 - Design and simulate state

machines and control logic," http://www.mathworks.com/products/stateflow/, 2010.

• K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use, 2.

ed. vol. 1: Springer, 1997

• Zhou, M.C. and Robbi, A.D., 1994, “Application of Petri net methodology
to manufacturing systems”, Computer Control of Flexible Manufacturing
Systems : Research and Development (Edited by : Joshi, S.B. and
Smith, J.S.), Chapman & Hall , Hong Hong.

• Davidrajuh, R. (2007). “A Service-Oriented Approach for Developing Adaptive

Distribution Chain”, International Journal of Services and Standards (ISSN (Online):
1740-8857 - ISSN (Print): 1740-8849), Vol. 3, No.1, pp. 64 – 78.

