A Tool for Modeling and Simulation of
Discrete-Event Systems

GPenSIM ...

General Purpose Petri Net Simulator

GPenSIM Web site:
http://www.davidrajuh.net/gpensim/

Reggie Davidrajuh
University of Stavanger, Norway
Email: reggie.davidrajuh@uis.no

Version 4.1 © September 2010

CONTENTS:

PREFACE ...ttt e e e e e e e e e e e e e e e e et e aeeaaaeaaaaaaaaens iX
1. INStalliNg GPENSIM ... et e et e e e e e e a e e e e e e e e e eaaeta e e e eeaeeensnnns 1
2. INtroduCing Petri NEL ... e 3
2.1 EIements Of Petri NETS......cccuiiiiiiiiii ettt ettt e e e e 3
2.2 Formal Definition of Petri NeLS......ccoooi i 4
2.2.1 Input and Output Places of a Transition.......cccc..coieiiiieeeeiiiiceeeee s 5
2.3 Enabled TranSitioNS.........ooeiiiiiiiiir e s 5
2.4 Petri NEt AYNAMICS ..oovviiiiiiiiiiie e eeeeee et e e e eeeaaa e e e e e e aaeeaees 5
2.4.1 COVErabIlity TrEe. .. e ittt e e e e e e e e eeeeeeeeeeee 5
2.5 WY Pl NETS? oottt s e e e e e e e e e e e e e e e e s aeeeneeeeeesssennnnns 6
2.6 A minute introduction t0 Petri Net:.......cooceceeiiiiiii e 6
Part-l: GPENSIM BaASICScooiiiiiiiiiiiie ittt ettt e e ettt e e e e e e e e e er e e e e ees 7
3. Modeling with GPenSIM: The BaSICS.......cccciivii ettt 9
3.1 Transition Definition FIleScooiiiieiiiiiiiiiie e 9
3.1.1 Using TDF_PRE and TDF_POSTccuutiiiiiiiemeemeeiiiiiiiieeeeee e e e e 9
3.1.2 Using TDF as atest Probecccooeei i eeeeeiecccee e 9
3.2 GlODAIINFO..cciiiie e 10
3.3 Integrating with MATLAB €nVIrONMENtcvvueieiieeeeeeeeieeeeeeeecenie e 10
4. USING GPENSIM ...t et e ettt e e e e e e e aa s 13
4.1 Example-01: A Simple EXamPle.........uuuiiiiiiiiiiieeeeceieeeeeern e e e 13
4.1.1 Step-1: Defining the Petri net graph....... .o 13
4.1.2 Step-2: The main simulation file: assigning theiaidynamics 14
4.1.3 The SIMUIALIONS.uuuiiiiiieie et e e e e e e e e e e eeeebbeennneeeseren 14
4.1.4 Viewing the simulation results with ‘print_statespa............cccccceeeiiiieeeeeeenne... 15
4.2 SUIMIMI@TY ettt ee e e e et e et memmmm e e e eeesaa e e e et eesaa s e eeeeesann e aesennnnmssnnaaaaeeenes 16
4.3 StAtiC PN SHUCIUIE.....ccoiiiiiii ittt r e e e e e e e e 17
4.4 Assigning names to Places & TranSitioNSccceeeeeiiiiiiiiiiiiiiiiiiiiiee e 17
5. Transition Definition File (TDF) ...ccoviiiiiiies i e e e e e e e e e annees 19
5.1 Example-02: TDF_PRE EXampleoooiiiicmmmmmm oot 19
5.1.1 Creating M-FIlEScccoiiiiiiii e nra e e 19
5.2 Step-1:the definition fileS ... 20
5.2.1 Defining the Petri Net graphccoooe i eeeeeeceei e 20
5.2.2 Coding the user-defined firing conditions of th@fsitionscccccceeeeennn. 20
5.3 Step-2: Assigning the initial dynamics and runniing simulations........................ 21
TR T R O 11 (o0 1 1 1= PP 21
54 RUN-UIME PN SITUCTUIuuiiiiiiiiiiiiiiece ettt 23
5.5 Example-03: Implementing Preference through TDF_PRE............cccoeeeeiiee. 24
5.5.1 Case-l: tl is strictly preferred........... o eeeeeeeeeiiiiiiiiiiiee e eeeeeeeeeeeeeeeeeee 24
5.5.2 Case-ll: t1 is preferred, but t2 can alSO firBcovveveiiiiiiiiiiiiieee e, 26
5.6 USING TDF _POST ...ttt ettt e e e e e e e e e e e e e e e snne e e 27
6. INLEINAI CIOCK. ... e e e e e e e eeaeeee 29
6.1 Example-04: Delay EXampPleooouviiiniieeeeeeeeees e 29
7. Measuring ACtIVAtioN TIMINGcoiiiiiiiiiiiiiiiis et e e e e eeeenees 31
7.1 Example-05: Measuring ACtivation TIMEo eeeerrerrmmmiiniieaeeeeeeeereeeeeennnnnnn 31

7.2 Example-06: Measuring ACtivation tiMeeeereeinnneeeeeeeeeeeeeeeeernnnnnne, 32

8. StOChASHIC FiriNG TIMES ..uuuiiiii i iiiiiiiiiiiis e e e ettt e e e e e e eeete e e e e e e e eeenennes 35
8.1 Example-07: Stochastic firing tIMESuuceeiiiiiieeeeeeeeeee e 35
9. Modular Model BUIIAINGccoiiiiiiiiiiiiiiiiiiis it eeeeeeeenes 37

9.1 Example-08: Modular Model for Adaptive Supply Chain...........cccccoeveeeieeinnnn. 38
9.2 The Modular APPrOaCKcooiiiiii e eeaneeeee 40
9.2.1 The main simulation file: ‘MIC_2006_NEW.M’ommeeeeererrrriiriiiieereeeeeeeaeeenen 40
9.2.2 Client (‘Client_def.mM’)ooeiiiiiiiiiiiiieee et ennnneeenee 40
9.2.3 Internet transmission (‘internet_def.M’), ... ee.eeeeeiiiiiiniieeeeeeeeee e 40
9.2.4 Service Interface Layer (‘Sil_def.m’), ... 41
9.2.5 Iterations module (‘interate_def.m’) ... 41
9.2.6 Strategic module (‘strategy_def.m’) ... 41
9.2.7 Tactical & sub tactical module (‘tactic_def.m e ..vvveciiiiiiiiiee 41
9.2.8 Profile for connecting the modules together (‘cqmo.m’).............coevvvrviivinnnene 42
9.3 Transition definition file for tRES (‘tRES_def.m’)........cccceevviiiriiiiiicccee, 24
O T 00 1Y T = Lo 1111 I (T PRSPPI 43
10.1 Example-09: Cotree with finite Statescceeeeiiciiiiieiiiieeeeee e 43
10.1.1 Petri net definition file.........oooeiiiiiiii e 44
10.1.2 The mMain file ..o e e e e 44
10.1.3 Event simulation instead of coverability tree..............oovviiiiiiiiiiiiiiinnneenn. 45
10.2 Example-10: Cotree with infinite states............cevvvvvvviiiiiiiiiiie e a7
10.2.1 Petri net definition file.........oooiiiiiiiii e 48
10.2.2 The mMain file ... e 48
5 1 (o o T= | 1o | (o 1P UUPPPPPTRPRPN 51
11,1 USE Of ‘MAX _LOOP ...ttt eeee ittt ettt e e e e e e e eeeeee s 51
11.1.1 Example-11: MAX_LOOP ...ooiiiiiiiiiieeeee ettt e e e e e e 51
11.2 Use Of ‘LOOP_NUMBER'ccotiiiiiiiiiiii ittt 52
11.2.1 What @re l0OPS? ... oiieeeiieiiiiiiie e s ettt e e e e e e enaaaneeeas 53
11.3 USE Of ‘DELTA_TIME ...ciiiiiiiiiiiiiiiiee et n e 54
11.3.1 Example-12: DELTA TIME ..ottt 54
I 1 e o © 1) L PP PPPPPPPPPPPP 57
12.1 Example-13: Binary SemMaphOreccooiiioiiiieeiiiiiiiiiee e eeeeeeeieeees 57
12.1.1 Petri net definition file (‘loadbalance_def.m’)iw.......cccooriiiriiiiicceieee e, 57
12.1.2 Main Simulation File (‘loadbalance.m’):cocceooeiiiiiiiiiiiiiiiee e, 58
12.1.3 TDF_PRE fOr tXL ((TXL_Pre.m’) it eeee e et e e e e e e e e e e e e e e s 58
12.1.4 TDF_POST for tX1 (‘tX1_POSt.IM’) . uuiiiiiiiiiieeeeee e 58
12.1.5 TDF_PRE fOr tX2 (‘tX2_Pre.mM’): oo eeeeeeiieiiiiieee e e e e eeeeeeeannnees 58
12.1.6 TDF_POST for tX2 (‘tX2_POSt.M’) .. uiiiiiiiiiieeeee e 59
13. Improving Simulation Results for Printout......... .o 61
13.1 Example-14: Improving results printout of binaryremhorecc.ccvvvvveeennn. 61
14, Prioritizing TranSIIONScooiiiiiiiiiiiiiiies ttiaae e e e e e e eeeettrr e e e e e e eeeeeeeanaaeeeeeeeesnnnns 65
14.1 Priorities Of tranSItiONScoooiiiiiiiiii e 65
14.2 Example-15: AIternating firiNg oeeeeeeemna e e eeeeeeeeeeeeeeseeeenannneees 65
14.3 Example-16: Priority Decrement EXamPIe ... oeeeeeeriierieeeiiiiiiiinnnneeens 6.7.
15, USING RESOUICES. ...ttt eeeeet tiiaa e e e e e e e e ee ettt a e e e e e e e e eeeatan e e eeeaeeennnnns 71
15.1 USING RESOUICES .. .iiiieeeieiieeeeeeeeite s ceemmmn s s s e e e e e e eaaeeeeeeeeessssssnnn s e e e e s 71
15.1.1 Function ‘print_schedule’cooo e 71
15.2 Example-17: Using Resources to realize criticatiSBC................vvvceeiiiiiieeeeeenn.n. 72
LS 200 R |V 1] o g o TSP 72
ST = B | e o o 11 1 o PRSI 72

15.2.3 TDF: TXL_Pre.mM’ oot 73

15.2.4 TDF: tXL _POSE.M i ee ennns 73
15.2.5 RESUILS: PlOL.. ...ttt ettt e e e 73
15.3 Example-18: Using Resource SPECITIC........uuieeereiiiiiiiiiiiiiiiiiiiien e 74
16. Colored GPENSIM.o ettt ettt et e e e e e et e e e e e eeeeeeeeeeenees 80
16.1 SHrUCLUIE Of TOKENS ...eviiiiiiiiii et e e e e e e e e e e e e e eeeeeeeeeenees 80
A ©7o] o] gl [0] 4 [=T 1] r=1 g o = PP PPTPPPPPPPPPP 82
17.1 Example-15: SIMPle Aderoiiiiiii e 82
17.1.1 MSF:'simple_adder.m’ ... 33
17.1.2 PDF:’simple_adder_defim’ ... 83
17.1.3 TDF: TGET_NUMILIM ..oiiiiiiiiiiiiiiieeee s mmmm ittt 84.
17.1.4 TDF: tGET_NUMZ.M ..ottt eeeeiiiieeeee e e e e e e e e e e 84.
17.1.5 TDF: TADD.IM oottt ettt e e e e e e e e e e ennennes 84
17.1.6 TDF: tCONVERT .M oottt e 84
17.1.7 SIMUIAtION RESUITS......cuviiiiiiiiiiiiie e 85
17.2 Example-16: Alternative Design for Simple Adder..........ccoooooiiiiiiiiiiiiiiiiiiinnnns 85
18. Token Selection based 0N ColOrccciiiiiiis eeiiiiiiiiiiieeee e 88
18.1 Example-17: Selecting Input Tokens with SpecifiddCo............cccevvvvvviiiiciinnnnnnn. 88
L18.1.1 MO it e e e e e e e e 89
18.0.2 PO ittt bttt ittt taaeeeaanaanrrrrrnrrees 89
18.1.3 TDF: TGEN_def.mM’ ..ooiiiiiiiiiiiiiieeeeeee e 89
18.1.4 TDFs for tA, tB, and tC......cooi i 90
18.1.5 SIimMUIAION FESUILSceeiiiiiiiiiiiiii i s 90
18.2 Required or Preferred ColOr?ouiicemmmmm oot 91
18.2.1 SIMUIALIONS ...ttt ee e e e e bbbttt et e e e e e e e e e e e e e e e s s snneeeeeees 92
18.2.2 Example-18: Selecting Input Tokens with 2 or maIs...........ccovvvevinnnneee 93
19. Summary: Token Selection based 0N ColOr........... coooiiiiiiiiiieecee e 94
19.1 Token Selection From A Single INPUt Place ..o oo 94.
19.2 Token Selection From Multiple INPUt PlaceS...uueeeeccvivvivivviiiiiiiiiieeee e 95.
20. Token Selection based 0N TIMEccoiiiiiiiiiiis e 98
20.1 Example-19: Token selection based 0N tiMe....eeeeviviiiiiiiiiiiie e 99
20.1.1 PDF: fefS_defim s 99
20.1.2 MSF: fCISM i 100
20.1.3 TDF: tCOL_AefimM . uiiiiiiiiiiiiiiiiieeeeeee e e e 100
20.1.4 TDF:tSEL_defimM . oo 100
20.1.5 Simulation RESUITS..........uuuiiiiiiiiiiiii e 100
20.1.6 Simulation results for LCES............oooitmmeeeeeeeeeiiiiiiiinnn e e e 101
21, USING HOUMY CIOCK ..o i it e e e e e e e e e aaaennes 75
21.1 Example-31: Hourly Clock for Lunching Clerks...........cccooviiiiiiiiiiiiiiieeeeeee 75
21.1.1 Functions for hourly CloCK ..o 75
21.2 Case-A: Two clerks work all the time........coeeiiiiii e 76
21.2.1 SIMUIALION FESUITSeevviiiiiiiiiiei it s 77
21.3 Case-B: Only one clerk functions from 12:00 NOON.........ccovviiiiiiiiiiiiniiiiaeeeenn. 77
21.3.1 SIMUIALION FESUITSevviiiiiiiiieeei it s 78
22. Hybrid Systems: Petri Net Models with Fuzzy Inferen Ce€.......ooooevvvviiiiiinnnnnnn. 79
Part-11: APPICALIONS ettt e e e e n e e e e 103
23. Modeling a Single RUNWAY AINPOIT.......cooiiiiiiis et eeeeeeeees 105
23.1 Description of the Model.........cooo oo 105

23.1.1 ASSUMPLIONS ..t e ettt eeee e et e s e e e e e e e e e e e eeeeeeeseennnsmnnnnsees 105

23.1.2 MoOdel BIEMENTSoiiiiiiiiiiiiieece e ——— 105
23.1.3 Runway (RWY) and taxiways (TWY)uuuooirireeeeieeeeeeeeeeeeeeeeevviinne s 105
23.1.4 The three categories Of A/CS ... 105
23.1.5 GOVEINING FUIES ..ot e e e eeee s 106
23.1.6 Timing for SIMUIALIONScuviiiiiiiii s e a e 106
23.2 The Petri Net MOUEI........coooiiitceeeee e s 106
23.2.1 ThE EIBMENTSuttiiiiiiiiiiiiiiei e e e 107
23.2.2 ProCess MOUUIES........coooiiiiiiiiiie e e e e 107
23.2.3 The Petrinet Model...........ooooiiiceeeee e 108
23.2.4 Places and tranSIitioNScooiieeee e eeeeeeitiiiese e e 108
23.3 Program Code: MSF.........oooviiiiiieeueees s s e ee e e e e e e aaaaaeeeeesesessnssnn e sneeeenann s 109
23.3. L MO ittt e e e e ae e 109
23.4 Program Code: PDFccooiiiiiiiiiiieeeee e et 109
23.5 Program Code: TDFScccoiiiiiuiiuuunn s s sess s s e e e e e e e aaeeeeeesssssnsnnnnnnnsnnns 110
23.5.1 TDF for tGPL (AddiNg CoIOr)coiviiiieiiiieeeee et a1
23.5.2 TDF for tLRA (Landing A-type AC)coooiiiicemmeiiiiieeeee e 110
23.5.3 TDF for tLRB (Landing B-type AC)ceveeerrireeiiiiiiiiiieeeeeeeeeeeeeeeeeeanennnnnns 111
23.5.4 TDF for tLRC (Ianding C-type AC)cciiiii ettt 111
23.5.5 TDF for tTRA (Take Off, A-type AC)....ccooiiiim et 111
23.5.6 TDF for tTRB (Take Off, B-type AC)ccviiiiiiiiiiiiiiiiieeee e 112
23.5.7 TDF for tTRC (Take Off, C-type AC)eeeieimmmmmeeeeseiiiiiiiiiiieeeeeeeeeaa e 112
23.5.8 TDF for tCLC (removing cOlor in tOKENS)ccceeuuuuiiiiiiiiieeeeeeeeeeeeeeeeiiiaens 113
23.6 SIMUIAtION RESUIES.....coiiiiiitt e e 113
23.7 DISCUSSION ...ttt mmmmmm e e e e et ettt ettt a e e e e e e e eeaaaa e e e e e aeeaaaaas 115
23.8 Improvement to simulation model — job arrival iregefined times..................... 115
23.9 Example-26: Arrivals at predefined timesccccccoeviveiiiiiiiiiiiiein 115
23.9.1 MSF ettt 115
23.9.2 PR aaaaa e e 116
23.9.3 TDF TGEN _defim’ . oot ettt 116
23.9.4 SIMUIAtioN RESUIES.....cuiiiiiiiieiee e 116
S Y] 1= To [1o T PSPPSR 117
24.1 Example-81: Minimizing completion tiMecccceoiiiiiiiiiiiiiii e 711
24.1.1 Petri Nt MOUEIcovviiiiiiieieie e 117
P A o (o0 | = 11 0 TS UPPPTPTR 118
24.3 RESUILS ..ttt 120
24.3.1 1N SUMMIAIY: oot e e et e e e e e e e et e e e e e eeenaaeaaaeeeas 122
24.4 Example-82: Scheduling — ll............uviiiicemmeeiiiiee e eee e 122
24.4.1 Petri Net MOUEcooi it e e 123
24.4.2 ProgramMingeeoooeeeeeeeeeaeeessmaaaeeeseeeeeeeenssnsnnnnaaaeaeeeseeeseeeeeeenes 124
24.4.3 Pre-processor for T1, T2, T3, T4 and TO: ... 125
24.4.4 POSE-PIOCESSOIS ..cuuuiiitieeietiieetetseeeetaeeeeta e e eesaeaeetseeeata e eeasnaeeesnnaaaeees 126
P2 T (o o) g F= 1S3 1 [l I 1 1= SO PP PPPPPPPRPPPPPI 127
25.1 Example-25: The Prey-Predator ecological equiliforiu.................ccooovveviiiinnnnns 127
25.2 Converting the dynamics to Petri NetS.........cceeiiiiiiiiiiiiieeeeee e 127
25.3 SIMUIALION FIES ... e 128
25.3.1 The Main SIMulation File ... 128
25.3.2 Petri net Definition File................ e 128
25.3.3 Definition of stochastic timer (‘time_advancemenj.m..............ccccccevunnns 128
25.3.4 Transition Definition File: t1_def.m ... a2

Vi

25.3.5 Transition Definition File: t2_def.m ..., a3

25.3.6 Transition Definition File: t3_def.m ... a3
25.4 The Simulation RESUILSeuuiiiiiii e 131
26. Measuring RODOt USAQE........uuuiiiiiiiiiiiiiiiiis oottt eeeeeeeees 133

26.1.1 The Petrinet MOdeloooviieiiiiiee e 133
26.1.2 The Petrinet Model ... 134
26.1.3 SIMUIALIONSccieiieiieeeeeeeiiee s e e e e e e e e e e e e e e e eaeeeeeaan e e enennnn s 135
27. Norwegian Traffic LIGNTS........uuiiiiiiiis e 136
27.1 Developing a Petri Net Model for Norwegian Traffic Light...............ccceeeeee 136
27.1.1 State-1 (RED) to State-2 (RED & YELLOW)ccccccvvmiiiiiiiiiiiiiiieeeeeeeee, 136
27.1.2 State-2 (RED & YELLOW) to State-3 (GREEN) ...cccceeiviiiiiiiiiiiii, 137
27.1.3 State-3 (GREEN) to State-4 (YELLOW).......oomiiiiiiiineeeeeeeee e 137
27.1.4 State-4 (YELLOW) to State-1 (RED)mmmieiiiiiiiiiiiiiiiiiiiieeeeceeeeenn 138
27.2 Transition DefinitioNS.........ooiiiiii i e e e e e e e e e e e aeanannes 138
27.3 Program Code for the Petri Net Model............ocoeeiiiiiiiiieeee e, 138
27.3.1 Main SIMUIation Fil........uuiiiiiiii s e e e e e eeeaeeees 138
27.3.2 P e e aaaa e e 139
27.3.3 TDF:I TR _RY oottt 139
27.3.4 TDF: LY Rttt oeeee ettt e e e e e e e e 139
Part-1ll: Reference ManuUal.............c.oiiiiiiis ciiiiiie e e e anes 140
28. Design of the GPenSIM SIMUIAtOr.........cooiiiis civiiiiiiee e 142
P2 Tt R I 1= 1Y = 1T 1o o o 142
29. Further Work (FUture EXtENSIONS)...c.cuuuuiiiiiies ittt eeeeeeeees 144
30. Datastructures in GPeNSIM........coooiiiiiiiiies e e e e eaaanes 146
30.1 Static Structures for Petri net and itS elementS..............ccoceevvieiieiiiiiiiiinnne. 146
0.1, NI e 147
30.1.2 global_PIacCeS......ccooiiiiee s 147
10 I G o 1 (o] o = L (= 1 153110 0 P 148
30.1.4 GlODAI_AICS...cutiieiiiiiiiie e 148
30.1.5 INCIAENCE MALIIX ..uieiiiiiiiieeeeeeeeeei s e e e e e e e e e ebaaeeeessesasaeeeeessennnnes 149
10 G T Y o 1 TP 149
30.2 Run-time Structures for Petri net and its elements............ccccceeeeeiieeeeeeeeenen. 50
30.3 Structures for SIMulation reSUILS...........ceiiiiiiiii e 150
00 €= 14T 0] = 151
10 5 X OO PPRR 153
30.4.2 Firing_Transitions and Enabled_transitionS....c.ec..ccooveeiiieeeiiiiveceeeiiiiiis 153
30.4.3 State DIiagramccooiiiiiiiiiiiiiii it e e e e e e e e e e e eeeeeeaesennnnnnee 153
30.4.4 Place_Names and Transition_NamMES.........ccceemmmmeeeeeiriinieeeeiiiieeeeeeeesnannns 156
30.5 Example-2 for State DIagram cummmmeesennaaaaeeeeeeeaeeeeeeeeereernennnnnan—ns 156
30.6 Off-line GraphiCal DISPIAYuuu e eenieeaeeeeeeeeeeaeeeeeeeeeeeeenn e 160
30.7 SErUCLUIE fOF CO-IEE ...uniiiie e e e e 161
30.8 Structure for COIOMMAPuvueeeiiii e e e e e e e e e e e ereeees 162
31. Using MSF and petrinetgraph......coooiiiiiiiiis et 164
32. Description of the Main FUNCLONScccoociiiiis et e e 166
REFERENCES ... 175

vii

viii

PREFACE

Petri net is being widely accepted by the reseaocchmunity for modeling and simulation of
discrete event systems. There are a number of Retrtools available for academic and
commercial use. These tools are advanced toolsnidvemough to model complex and large
systems. In this book, we introduce a new Petri dletulator called GPenSIM (General
Purpose Petri Net Simulator). GPenSIM runs on MABLBlatform. GPenSIM is designed
with one specific goakllowing Petri net models to integrate with other MATLAB tool boxes.

By integrating Petri net models with other toolb®xaumerous benefits can be reaped. For
example, by integrating with MATLAB Fuzzy Toolbowe can experiment with Fuzzy Petri
Nets; by combining with MATLAB Control Systems Tbolx, we can create hybrid discrete-
continuous systems. Hence, the main goal of thik e to introduce GPenSIM — a platform
with which we can create Petri net models incorpogamany other toolboxes, libraries, and
functions that are already available on the MATLpIBtform.

There are many examples worked out in this boolkes&€hexamples are simple and easy to
follow. However, this book is not an introductiam Retri nets. Reader should know Petri net
basics beforehand in order to start working witis titook. Both the simulator GPenSIM and
codes for examples (M-files) can be downloaded frothe web site:
http://www.davidrajuh.net/gpensim

Reggie Davidrajuh
Stavanger, Norway
September 2010

1. Installing GPenSIM

Installation takes five simple steps:

1. Unzip the GPenSIM pack:

Unzip the GPenSIM toolbox functions file(s) undetigectory, say
“d:\GPenSIM\GPenSIM32\". Note: Due to size limitets, there may be one zip file
(GPenSIM-v4.0.zip) or two zip files (GPenSIM-v4.8gk-1.zip and GPenSIM-v4.0-pack-
2.zip) zip files.

Similarly, unzip the examples file (Examples-v4if)ainder a directory, say
“d:\GPenSIM\Examples\”

2. Set MATLAB Path Command:
Start MATLAB. Go to the file menu in MATLAB, and et “set path” command:

) MATLAB

[File Edi View Web Window Help

Hew % Current Direct
Open... Chrl+0
Close Command Window Chr |

Import Data...
Save Workspace As... ent: £l
p3 pd
1 1
Praferences... Lent state: 1
Page Setup...
Prirty. frent: t©l
O G e R ey 3 pd
2 1
1EN. IM_Sipring_cobres.m kent state: 2
2 El..._Sisources_matric.m
3 ...\check_for_dominance.m pent: £
4 e:\...\gpensim_Sicotree.m 4] péd
Exit MATLAB Chrl+0 0 2
ent state: 2
state:§ Firing event: ti
pl p2 p3 pd
o 1 0 o

Setting path command

Select “Add folder™:

3. Add GPenSIM Directory:
A new dialog box will appear. Browse through theediories and select the directory where
you have unzipped the GPenSIM toolbox functions.

T
e, [OEREE
| \--m.

Adding GPenSIM directory

4. Test Installation

Go to MATLAB command window and type ‘gpensim’life following (or similar) output is
printed, then the installation is complete.

>> gpensim

GPenSIM version 4.0; Lastupdate: september 2010
http://www.davidrajuh.net/gpensim

2. Introducing Petri net

This section gives a brief introduction to Pe&is1 For further details, interested readers are
referred to Murata(1989); Davidrajuh (2003); Caslsas and Lafortune (2007) [10]. Carl
Adam Petri invented Petri nets in 1962, as pattigfdissertation titled “Kommunikation mit
Automaten” at the University of Bonn (Petri and $tgj 2008).

2.1 Elements of Petri nets

)2 e
aj %)
W(p1’t1)=2 W(pz,t1)=1
. 4 . 4
A
as
W(f1p3)=3

Figure-1. Sample Petri net

A Petri net contain four types of elements: tokguaces, arcs, and transitions. Tokens
represent objects in the Petri net models, suchasrials in a material flow system, data in a
information flow. A token is represented with a dotPetri net models. When the number of
tokens becomes large, it is usually representdd thé number of tokens; see figure 1.

Places are passive elements such as input anduffetd) conveyor belts, etc. Places hold
tokens. Figure 1 shows plages p.andps with 4, 3 and 1 tokens (black spots). Each place i
capable of holding any number of tokens.

Arcs are connections between places and transitires are bipartite meaning it is not
possible to have an arc connecting two places hegeir two transitions together. Each arc
has a weight, which is the number of tokens thatteansported simultaneously when the
transitions of which the arc is connected to fires.

Transitions are active elements like machines, tgbetc. Transitions correspond to events
and are connected by arcs to places. When a tan§ite, the number of tokens within the
places connected to the firing transition, are gednaccording to the arcs weights and
directions; when a transition fires it consumesetuk (input parts) from the input places and
puts tokens (output parts) into the output plaEes.a transition to be able to fire, the number
of tokens in the input places must be equal ordrnghan the weights of the arcs connecting
the input places to the transition. The transitiah then be anenabled transition. Figure 2
shows the state of the sample Petri net from figuaéter the transition T1 has fired once.

P1 D2

aj %)
chl,tl)=2 W(l?z’tl)=1

Figure-2. Sample Petri net after one cycle

2.2 Formal Definition of Petri nets
A Petri net is a four-tupl¢P, T, A, x,)
Where,
Pis the set of places®? = [pl, Pyyeees pn]
T is the set of transitiond, = [tl,tz,...,tm]
A'is set of arcs (from places to transitions amanftransitions to places),
A O(PxT)O(TxP), and
X is the row vector of markings (tokens) on theddgilaces
x = [x(p,) x(p,)., X(py)JON", X0 is the initial marking.

2.2.1 Input and Output Places of a Transition

In the Petri net in figure 2, the plagesandp, are inputs to transitiots, andps is an out place
of transitiont;. It is convenient to usKt;) to represent the set of input places to transition
andO(t)) to represent the set of output places to tramsttavhen describing a Petri net:

I{T;) = {p OP:(p.t;)O A
oft;) = {p OP:(p.t;JO A

We see from figure 2, that the weight of the aanfrinput placep; to transitiont; has a
weight = 2. This is denoted byv(p,.t,) = 2.

2.3 Enabled Transitions
A transitiont; OT in a Petri net is said to leeabled if (Cassandras and Lafortune, 2007):

x(pi)zw(p,.t,) forall p, 01 (t;).

The transition tin figure 2 is enabled, since the numbers of tekierthe input places; [{2)
and p (2) are at least as large as the weight of the @vonecting them tq (W(pl,tl) =2

andw(p,t) = 2).

2.4 Petri net dynamics

The markings of a Petri net, which is the distridmtof tokens to the places, represent the
state of the Petri net. A Petri net representirtisarete event system, where the transitions
represent events, goes through many states durangudation process. The different states
could be represented with the row vector of markingthe 4.th-tuple):

x= [X(p) X(P,). X(Pry)]

The number of states anfinite capacity net can have is generally infinite, since each place
can hold an arbitrary non-negative integer numlbéolens (Murata, 1989). Anite capacity
net on the other hand, will have a given number ofspie states.

Thestate transition function, f :O0" xT — O", of a Petri net is defined for a transitiojnDT

if and only if, x(p;) 2 w(p,.t,) for all p, 01 (¢,).
If f(x,t].) is defined thenx' = f(x,t].), where

X'(pi): X(pi)—W(pi,tj)+W(tj,pi), i=1...n

2.4.1 Coverability Tree

Petri Nets helps proving many behavioral propeuies system, including:
* Reachability, Boundedness, Conservativeness, Legrieversibility

One technique used to prove properties of a PetriigNa coverability tree; a coverability tree
consists of a tree of markings and possible tramsitbetween. Nodes that are a repetitive
state are left as leaves and not extended. Ther@ulity tree can be infinite (markings
consists ‘omega’) or finite (markings do not contamega’). An infinite coverability tree is

unbounded. Reachability is merely a question ofthdrethere is a path from one node to
another in the tree.

2.5 Why Petri nets?

Several tools could be used for simulation of discrevent systems; Automata, Stateflow,
and Petri nets (high level) are some of the mostraonly used (Davidrajuh and Molnar,
2009). The lack of structure possibilities (hiehafcin Automata is a serious shortcoming, for
modeling large systems since a large (and compgs)em should be decomposed into
modules and sub systems. Stateflow, developed ey MathWorks, extends the Simulink
part of MATLAB with functionality similar to Petrinet; charts are used for graphical
representation of hierarchical and parallel states$ for the event-driven transitions between
them (Stateflow, 2010). A Petri net model of a thse event system could easily be
converted into a Stateflow model and vice versa)darning Stateflow is much more difficult
than learning Petri net due to the syntactic, seéimaand graphical details in Stateflow.
Stateflow also requires some knowledge of Simulinkaddition to MATLAB, while the
GPenSIM tool used for Petri net simulation in thpaper runs under the MATLAB
environment only. Petri nets is widely acceptedhs/research community for modeling and
simulation of discrete event-driven systems, maahlg to graphical representation and the
well defined semantics which makes it possiblede formal analysis of the models (Jensen,
1997).

2.6 A minute introduction to Petri net:

The simple Petri net shown in figure-3 is a modal business logic computation. The
computation takes two database records and on@dsssrule, and produces one business
decision. In a Petri net, sources (like businesssrand database records) and outputs (like
business decisions) are called places, drawn @e<ife.g. Place-1). Computations (or events)
are called transitions, drawn as vertical shorsljarg. Transition-1). An arc connects a place
to a transition, or a transition to a place, repnéisg a path for a discrete part to flow. A place
usually holds a number of parts, like databaserdsca he number of parts inside a place is
indicated by the tokens - black spots within a @lac

Business rules
(Place-1) Business logic
computation
(Transition-1) Business decisions
(Place-3)

——0O

Database records
(Place-2)

Figure-3. Petri net model for business logic computation

Part-I: GPenSIM
Basics

3. Modeling with GPenSIM: The Basics

In GPenSIM, definition of aPetri net graph (static details) is given in thdPetri net
Definition File (PDF). There may be a number of PDFs, if the Petri nedehis divided into
many modules, and each module is defined in a aep&DF. While the Petri net definition
file has the static details, tmeain simulation file (MSF) contains the dynamic information
(such as initial tokens in places, firing timegrainsitions) of the Petri net.

(Static Petri net graph)

~Main Petri net definition File
Simulation E.g.: File: ‘pn_def.m’
File

E.g.: File: ‘'sim1.m’
(dynamic details)

Figure-4. Separating thetatic and dynamic Petri net details

3.1 Transition Definition Files

In addition to these two files (main simulatiorefd MSF and Petri net definition file - PDF),
there can be a number wénsition definition files (TDF) too. These TDF are classified into
two types: TDF_PRE and TDF_POST. TDF_PRE files rare before firing a transition;
TDF_POST files are run after firing a transition.

3.1.1 Using TDF_PRE and TDF_POST

According to the Petri net theory, a transition ¢iae (“enabled transition”) when there are
enough tokens in the input places. However, in-ligsalsituations, an event representing a
transition can have additional restrictions foiniy, for example, event-2 has preferences
(priority) over event-1, thus event-2 is allowedfitre even though both event-1 and event-2
are enabled to fire. In GPenSIM literature, thedditanal restrictions are called “user-
defined conditions”.

The user-defined conditions for firing a transitiane kept in a TDF_PRE fileAfter a
trangition fires, there may be some book keepings need to be tlzese can be coded into a
TDF_POST file.

Names of the TDFs must follow a strict naming polig, as they will be chosen and run
automatically: for example, the TDF_PRE for the transition ‘transl’ must be named
‘transl_pre.m’; similarly, the TDF_POST for the transition ‘transl’ must be named
‘trans1l_post.m’.

3.1.2 Using TDF as a test probe

In addition to executing user-defined conditionsT@F provides a unique functionality:
acting as a probe to simulation engine: Let usarpl
1. The role of PDF: the only use of a PDF is to re@nés: static Petri net graph.

2. The role of MSF: A PDF will be loaded into memory MSF right before the
simulation start. Thus, an MSF first loads PDF R@Fs in modular approach) into
memory and then starts the simulation. MSF willbbecked during simulation runs,
and when simulation is complete, the control wel i|assed back to MSF along with
the simulation result. Therefore MSF does not hamng control of what going on
during simulation.

3. The role of TDF: Though MSF does not have any @brdf what going orduring
simulation, however, TDFs will be called during simulation, d&ef and after
transition firings. Thus, if we want to inspect ftime (simulation) properties then a
TDF can be used as a probe (more details givemeiséction on TDF).

(Implementation details of a Petri nets)

Petri net-m definition file .
Petri net-m definition file .
‘ Petri net-m definition file .

(Implementation details of transitions)

Main
Simulation
File
(E.g.: File: ‘'sim1.m’)

' Transition_1 definition file

) ciente)
— .
e e

Transition_n definition file

Figure-5. Transition Definition Files

3.2 Global info

The different files (main simulation file MSF, Fetret definition files PDFs, and transition
definition files TDFs) can access and exchangeajlplarameters values through a packet
called global_info'. If a set of values is need to be passed to mffefiles then these values
are packed together aggobal_info packet.global_info packet is visible in all the files, so
that the values in the packet can be read and &vwamged. See chapter 9 for details.

3.3 Integrating with MATLAB environment

The most important reason for developing GPenSIM te most advantage of it is its
integration with the MATLAB environment, so that wean harness diverse toolboxes
available in the MATLAB environment; see figure 6.

10

For example, by writing a user M-file that combir@BenSIM with Fuzzy Logic toolbox, we
can experiment with Fuzzy Petri Nets; by combin®@BenSIM with the Control systems
toolbox, we can experiment hybrid discrete-contimioontrol applications, etc.

(Optional)
MATLAB Toolboxes such as

Fuzzy, Control Systems, Optimization, Statisti¢s, e

A

A 4

A

\ 4

Figure-6. Integrating GPenSIM with the MATLAB environment

A

A 4

11

Main Petri Net Transition
Simulation Definition Definition
File Files Files
(MSF) (PDFs) (TDFs)
I 4 I 4 I 4

12

4. Using GPenSIM

The methodology for creating a Petri net model ia®f two steps:

Step-1Defining the Petri net graph in a Petri net DefonitFile (PDF): this is the static
part. This step consist of three sub-steps:
a. ldentifying the basic elements of a Petri net grdpé places,
b. ldentifying the basic elements of a Petri net grapé transitions, and
c. Connecting the elements with arcs

Step-2.Assigning the dynamics of a Petri net in the Maimulation File (MSF):
a. The initial markings on the places, and possibly
b. The firing times of the transitions

After creating a Petri net model, simulations cardbne.

4.1 Example-01: A Simple Example
The two steps are explained below, using the safgtie net model shown in figure 7.

Place-1

Transition-1
Place-3

F——0

Place-2

Figure-7. A Simple Petri Net Model

4.1.1 Step-1: Defining the Petri net graph

Defining the elements of a Petri net is done ine&rimet definition file (PDF). PDF is to
identify the elements (places, transitions) of &iRet, and to define the way these elements
are connected.

The Petri net graph shown in figure 7 has threegdaone transition, and three arcs. The PDF
for the graph is given below:

13

% Example-01: A Simple Example

% file: 'simple_pn_def.m’

% this file defines the simple petri net graph

function [PN_name, set_of places, set_of trans, set_of arcs]
= simple_pn_def(global_info)

PN _name = 'A Simple Petri Net'

set_of places ={ 'Place-1' , 'Place-2' , 'Place-3' };
set_of trans = { "Transition-1' b
set_of arcs = { 'Place-1' , 'Transition-1' , 1,
'Place-2' , 'Transition-1' , 2,
"Transition-1' , 'Place-3" 1}
Explanation:

First, assign a name (or label) for the Petri net.
> PN_name = 'A Simple Petri Net' ;

Second, the places are to be identified with precees:
> set_of _places ={ 'Place-1' , 'Place-2' , 'Place-3' 1}

Third, the transitions are to be identified by istgtheir names.
> set_of _trans = { ‘Transition-1' h

Finally, how the elements are connected is defirmethnecting arcs are to be defined by
listing the source, the destination and the weigtiteach arc. For example, the first arc is
from ‘Place-1’ (source), to ‘Transition-1’ (desttian) with a unit arc weight:

> set_of _arcs = { 'Place-1' , 'Transition-1' .1
'Place-2" , 'Transition-1' , 2,
Transition-1' , 'Place-3' ,1};

4.1.2 Step-2: The main simulation file: assigning the irtial dynamics

After writing the Petri net definition file (PDF,g ‘simple_pn_def.m’), we need to write the
main simulation file (MSF). In the MSF, first wedd thestatic Petri net graph, by passing the
name of the PDF (without the ending ‘.m’) to thadtion ‘petrinetgraph’:

> png = petrinetgraph('simple_pn_def’);

Second, thadynamics such as initial markings on the places and thiadfitimes of the
transition are to be assigned. Normally, we sthffse two information into a packet (e.g.
‘dynamic_info’ in this example) and then pass fhasket to function ‘gpensim’.

> dynamic_info.initial_markings = { 'Place-1' ,3, 'Place-2" 5}
> dynamic_info.firing_times = { ‘Transition-1' , 10}

4.1.3 The Simulations

Function gpensim will do the simulations if the iPaet graph (the static part) and the initial
markings and firing times (the dynamic part) areged to it:

> Sim_Results = gpensim(png, dynamic_info);

14

The output argument Sim_Results is the simulatsuilts.
The output argument Sim_Results is a structuretifier simulation results. In order to
comprehend the simulation results easily, the foncprint_statespace could be used.

4.1.4 Viewing the simulation results with ‘print_statespace’
> print_statespace(Sim_Results);

The output is given below:

Explanation:

Of course, ‘Transition-1' takes 10 milliseconds pooduce a token on ‘Place-3’, after
removing 1 and 2 tokens from ‘Place-1" and ‘Plates&pectively.

Time: 0
New markings:

pl p2 p3
3 5 0

At time: 0 enabled transtions are: tl1
At time: O firing transtions are: tl1

Time: 10

Fired Transition: t1
New markings:

pl p2 p3
2 3 1

At time: 10 enabled transtions are: tl1
At time: 10 firing transtions are: tl1
Time: 20

Fired Transition: t1
New markings:

pl p2 p3
1 1 2
At time: 20 enabled transtions are:

At time: 20 firing transtions are:
>>

In addition to the ASCII output, we can also vidwe butput graphically. For example,
> plotp(Sim_Results, { 'Place-1' , 'Place-2'" , 'Place-3' });

The above statement will plot how the tokens in pleces vary with time: see the figure
given below:

15

0.5+ .

—+—pl
bk p2
—©® — p3

4.2 Summary

Step-1 is about creating the PDF that definestttecsetri net graph. The PDF for the Petri

net shown in figure 5 is repeated below:

20

% Example-01: A Simple Example

% file: 'simple_pn_def.m’

% this file defines the simple petri net

function
= simple_pn_def(global_info)

PN_name = 'A Simple Petri Net implementation’

set_of places ={ 'Place-1' , 'Place-2'

set_of trans = { ‘Transition-1' h

set_of arcs = { 'Place-1' "Transition-1'
'Place-2' "Transition-1' , 2,
"Transition-1' , 'Place-3" 1}

1,

[PN_name, set_of places, set_of_trans, set_of arcs

, 'Place-3' };

Step-2 is for assigning the initial dynamics (@litmarkings and firing times) in the MSF.
After the assignment, the simulations can be ruhtha results can also be plotted. The MSF

for the Petri net shown in figure 5 is repeatedwbel

% Example-01: A Simple Example
% the main file to run simulation
dynamic_info.initial_markings = {
dynamic_info.firing_times = {

'Place-1'
"Transition-1',

png = petrinetgraph('simple_pn_def');
Sim_Results = gpensim(png, dynamic_info);

131

'Place-2'
10}

5}

16

print_statespace(Sim_Results);
plotp(Sim_Results, { 'Place-1' , 'Place-2" , 'Place-3' });

4.3 Static PN structure

In the main simulation file given in the previousbsection, first we get gatic Petri Net
structure (calleghng in the example) as the output parameter of fungpensim

png = petrinetgraph('simple_pn_def');

The static PN structuneng is a compact representation of the static Petrgregph. A static
PN structure consists of 5 elelements; e.gng:

name: 'A Simple Petri Net'
global_places: [1x3 struct]
No_of places: 3
global_transitions: [1x1 struct]
global_arcs: [1x3 struct]
incidence_matrix: [1.00 2.00 0 0 0 1.00]

The elements of a static PN structure are:
1) name: the ASCII string identifier of the Petri net
2) global_places: the set of all places in the Petti n
3) global_transitions: the set of all transitionshie Petri net
4) global_arcs: the set of all arcs in the Petri apt
5) incidence_matrix: the matrix that depicts how thecps and transitions are connected
together.

It must be emphasized thaitic PN structure is much simpler theum-time PN structure. A
static PN structure is one of the parameters tratirput to the functiomgpensim to start
simulation. During simulation (‘run-time’), state informaticaand other run-time information
will be added to the PN structure, thus the PNcsting will contain dynamic information in
addition to static details; during simulation thd Btructure is called ‘run-time’ PN structure.
Details of run-time PN structure is given in thexngection.

4.4 Assigning names to Places & Transitions

CAUTION! There is a serious restriction in naming:
ONLY first 10 characters of NAMES are significant.

This means, names for two placefkéggieDavdrajuh_1), and fReggieDawdrajuh_2) are
the same names (REFER TO THE SAME PLACE) because1® characters of these two
names are the same.

However, pReggie_1Davidrajuh), and{Reggie_2 Davidrajuh) are different names simply
because first 10 characters of these two namediféeeent.

17

18

5. Transition Definition File (TDF)

The previous section explained the methodologyrfodeling and simulation with GPenSIM
consisting of two steps. However, in the previeastion, the step-1 was limited to creating
only the PDF; there were no TDFs created. Ingbigtion, we shall discuss about the TDFs
too, by working through the example shown in fig8re

Buffer-1

Robot-1

\ 4
—
<">

Machines Goods
from CNC

Robot-2 Buffer-2

| O

Robot-3 Buffer-3

Figure-8. Petri net model of a production facility

5.1 Example-02: TDF_PRE Example

Figure 8 shows a Petri net model of a productiailifg where three robots are involved in

sorting products (machined parts) from an inputfdru{for machined goods) to output

buffers. There are three output buffers (placesjilavle. There are also three robots
(transitions) that take the machined parts fromitipait buffer and put them to the respective
output buffers.

The conditions: The output buffers have limited capacity. Bufferbliffer-2, and buffer-3
can accommodate a maximum of 3, 5, and 2, machpaes$ respectively. In addition, the
robots should be operated in a manner that, atiamgy buffer-2 should have more parts than
buffer-1, and buffer-1 should have more parts thaiifer-3.

The conditions stated above shall be coded in e PRE files.

5.1.1 Creating M-Files

In this example, the following M-files are creaiadhe two steps:
» Step-1: In addition to creating tiRDF, TDF_PREs for the three transitions must
be also created This is because, there are user-defined conditaitached to the
transitions.

» Step-2: In theMISF: assigning the initial dynamics (initial markingad firing times)
and running the simulations.

19

5.2 Step-1: the definition files

5.2.1 Defining the Petri net graph

Let’s call the PDF for the Petri net in figure 6'tatf_example_def.m’:

% Example-02: TDF example

% file: tdf_example_def.m:

function [PN_name, set_of places, set_of trans, set_of arcs
= tdf_example_def (global_info)

PN_name = 'TDF Example: Petri Net for production facility’

'tRobot_3' , 'pBuffer_3' 1}

b

set_of places ={ 'pFrom_CNC' , 'pBuffer_1' , 'pBuffer_2'

set_of trans = { 'tRobot 1' , 'tRobot 2' , 'tRobot_3'

set_of _arcs ={ 'pPFrom_CNC' |, 'tRobot_ 1' ,1, ‘'pFrom_CNC' , 'tRobot 2' 1,
'PFrom_CNC' , 'tRobot_3" ,1, ..
'tRobot_1' , 'pBuffer_1' ,1, 'tRobot_2' , 'pBuffer_2'

, 'pBuffer_3' h

I

5.2.2 Coding the user-defined firing conditions of the Tansitions

tRobot-1 will fire only if the number of tokens (machinedrfs) already put in output
pBuffer-1 is less than 3. In addition, number of tokenpBuffer-1 should be less than that
of pBuffer-2; coding these two user-defined conditions into Tl PRE fortRobot-1 is

given below. As the name of the transition tRdbot 1, this TDF must be named

‘tRobot_1_pre.mi.

% file: tRobot_1_pre.m:
function [fire, new_color,override,selected_tokens,global i
tRobot_1_pre(PN, new_color, override, selected_t

bl = get_place(PN, '‘pBuffer_1');
b2 = get_place(PN, 'pBuffer_2');
fire = (b1l.tokens < b2.tokens)& (bl.tokens < 3);

nfo] =
okens, global_info)

Similarly, the definition files fortRobot-2 and tRobot-3 are created, satisfying the given

conditions:

% file: tRobot_2_pre.m:
function [fire, new_color,override,selected_tokens,global i
tRobot_2_pre(PN, new_color,override,selected_

b2 = get_place(PN, 'pBuffer_2');
fire = (b2.tokens < 5);

nfo] =
tokens,global_info)

% file: tRobot_3_pre.m:
function [fire, new_color,override,selected_tokens,global i
tRobot_3 pre(PN, new_color,override,selected_t

bl = get_place(PN, 'pBuffer_1');
b3 = get_place(PN, '‘pBuffer_3');
fire = (b1l.tokens > b3.tokens) & (b3.tokens < 2);

nfo] =
okens,global_info)

20

5.3 Step-2: Assigning the initial dynamics and runninghe simulations
Given below is the main simulation file (‘tdf _exalamn’):

% Example-02: TDF example
% the main file to run simulation tdf_example.m

png = petrinetgraph('tdf _example_def');
dynamics.initial_markings = { 'pFrom_CNC' , 20}; %initial machined parts
dynamics.firing_times = { 'tRobot_1' ,10, 'tRobot 2" .5, 'tRobot_3' ,15};

Results = gpensim(png, dynamics);
print_statespace(Results);
plotp(Results, {'{pFrom_CNC', 'pBuffer_1', 'pBuffer_ 2', 'pBuffer_31%);

The output oprint_statespaceis given below is one of the 2 possible outcomes.

5.3.1 Outcome-1:

State:0 (Initial State)
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
0 0 0 10
At time: 0
Enabled transtions are:
tRobot_1 tRobot 2 tRobot 3
At time: 0
Firing transtions are:
tRobot_2

Time: 5

State: 1
Fired Transition: tRobot_2
Current State:
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
0 1 0 9
At time: 5

Enabled transtions are:
tRobot_1 tRobot 2 tRobot 3
At time: 5

Firing transtions are:

tRobot_1 tRobot_2

Time: 10

State: 2
Fired Transition: tRobot_2
Current State:
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
0 2 0 7
At time: 10

Enabled transtions are:
tRobot_1 tRobot 2 tRobot 3
At time: 10

Firing transtions are:

tRobot_1 tRobot 2

Time: 15
State: 3
Fired Transition: tRobot_2
Current State:

21

pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
0 3 0 6
At time: 15
Enabled transtions are:
tRobot_1 tRobot 2 tRobot 3
At time: 15
Firing transtions are:
tRobot_1 tRobot 2

Time: 15

State: 4
Fired Transition: tRobot_1
Current State:
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
1 3 0 5
At time: 15

Enabled transtions are:
tRobot_1 tRobot 2 tRobot 3
At time: 15

Firing transtions are:

tRobot_1 tRobot 2 tRobot 3

Time: 45
State: 10
Fired Transition: tRobot_3
Current State:
pBuffer_1 pBuffer_2 pBuffer_3 pFrom_CNC
3 5 2 0
At time: 45
Enabled transtions are:
>>

Given below is the plot of how the number of tokendifferent places varies with time:

1 ‘ ‘
—— pFrom NC

10} --@-- pBuffer, |

--fa--- pBuffer,

90

22

5.4 Run-time PN structure

Incidentally, TDF_PRE can also be used as a pmatioesimulation engine. The MSF prepares
the static Petri net (PN) structure and the inidighamic information so that the simulation
can be started. Once the simulation is startede tiseno way of knowing what’'s going on.

The MSF is blocked until the simulation is complatel the result is given back to the MSF.
Then, we can analyze the results e.g. with the bigipint_statespace

During simulations, control is passed to TDF_PRihdre is any. In the TDF, a copy of run-
time PN structure is available so that we can iosfigo study what's going on. Let’s take a
look into TDF forRobot_1discussed in the previous subsection:

% file: tRobot_1 pre.m:

function [fire, new_color,override,selected_tokens,global i nfo] =
tRobot_1_def(PN, new_color,override,selected_to kens,global_info)

PN 9% dump contents of PN every time tRobot_1 pre is ca lled

In TDF given above, we see thain-time PN structure is one of the 5 input parameters.
This run-time PN structure has all the important-time details; hence, we can inspect this
PN structure to study what's going on during sirtiala Run-time PN structure has 21
elements given below are some of them possessing importamtime properties:
1. PN.global_places: hascomplete set of current tokendor each place
2. PN.global_transtions: has details about how many timegch transition has firedso

far

3. PN.current_time: theinternal clock time

4. PN.token_serial_number: the total number of tokens generated so far
5. PN.X: the current marking (current state)

6. PN.Firing_Transitions: indicateswhich transitions are currently firing
7. PN.Enabled_Transitions indicateswhich transitions are currently enabled
1 STATIC N ame: 'TDF Example: Production facility'
2 Run-time global_places: [1x4 struct]

3 Run-time global_transitions: [1x3 struct]

4 STATIC global_ arcs: [1x6 struct]

5 STATIC incidence_matrix: [3x8 double]

6 Run-time current_time: 45.00

7 Run-time token_serial_number: 30.00

8 Run-time X: [10.00 3.00 5.00 2.00]

9 Run-time Firing_Transitions ;o [011]

10 Run-time Enabled_Transitions : [100]

23

5.5 Example-03: Implementing Preference through TDF_PRE
In this example (figure 9), transitioms andt2 both competes for tokens pg; we prefertl

overt2.

’

o

Figure-9. Petri net model of a production facility

MSF:
% MSF: prefer.m
dyn.firing_times = { 1" ,10, ‘'t2'° 7}
dyn.initial_markings = { 'pS' 3%
png = petrinetgraph('‘prefer_def');

sim_results = gpensim(png, dyn);
print_statespace(sim_results);
plotp(sim_results, { ‘PE1" , 'pE2' });

PDF:

function [PN_name, set_of places, set_of trans,
set_of arcs] = prefer_def(global_info)
% PDF: prefer_def

PN_name=Preference example' ;

set_of places={ 'pS' , 'pE1' , 'pE2' }

set_of trans={ R A A

set_of arcs ={ 'pS' ,t1" 1, t1' , 'pE1' 1, ..
'pS' 2" 1, 't2° ,'pE2" |1}

5.5.1 Case-I: t1 is strictly preferred

Conditions for firing:
o t1 will fire if it is enabled (meaning, no TDF fdtt).
» t2 will fire only istl is not enabled

Surely, t2 will starve!

function [fire,PN, new_color,override,selected_tokens,globa |_info] =
t2_pre (PN, new_color, override, selected_token s, global_info)

24

% TDF_PRE for t2 ('t2_pre.m)

% Case-l:

if is_enabled(PN, 1),
fire = 0;

else
fire = 1;

end;

Simulation results:

3 T
—*— pE1
***** pE2
2.5+ =
2 - —
1.5+ =
1 - —
0.5 =
o) I I I I I
(o] 5 10 15 20 25 30

Time: 0

New markings:

pS pE1 pE2
3 0 0

Attime: 0 enabled transtions are: t1 t2
At time: O firing transtions are: t1
Time: 10

Fired Transition: t1

New markings:

pS pE1 pE2

2 1 0

At time: 10 enabled transtions are: tl t2

25

At time: 10 firing transtions are: t1

Time: 20

Fired Transition: t1
New markings:

pS pE1 pE2
1 2 0

At time: 20 enabled transtions are: t1 t2
At time: 20 firing transtions are: tl1

Time: 30

Fired Transition: t1
New markings:

pS pE1 pE2
0 3 0

At time: 30 enabled transtions are:
At time: 30 firing transtions are:

5.5.2 Case-ll: t1 is preferred, but t2 can also fire

Conditions for firing:
* (as before}1 will fire if it is enabled (meaning, no TDF fat).
* t2 willfire is t1 is not enabled af t1 hasfired at least once

Now, t2 can fire as soon &% has fired for the first time.

TDF:
function [fire,PN, new_color,override,selected_tokens,globa |_info] =
t2_pre (PN, new_color, override, selected_token s, global_info)

% TDF fort2 (‘t2_pre.m’)

% Case-ll:

t1 = get_trans(PN,),

if or(~is_enabled(PN, ‘1"), (t1.times_fired >= 1)),
fire = 1;

else
fire = 0;

end;

Simulation results:
The following may occur where t2 may also fire.

26

‘ ‘
--9-- pEl
——<— pE2

1.8]
1.6 4
1.4+ —
1.2]

5.6 Using TDF _POST
We study an application of TDF_POST through an gxanm section XXX.

27

28

6. Internal Clock

Internal clock is discrete in the sense it is updavhenever a transition is complete. If we
take a close look into the figures generated byptb&p function, the figures look like ramp
rather than pulses. This is due to poor sampliagofiding), as simulation results with timing
are recorded only when a transition complete firilngother words, simulation results are
recorded only when there is a new state.

We will discuss an import internal clock issue thagh an example. When a transition
completes firing, the internal clock is advancedtly firing time of the transition. When a
Petri net system has enabled transitions, but m®riiging, then the internal clock time is
advanced by an amount which is equal to ¥ of thremmim firing time of all transitions.

6.1 Example-04: Delay Example
In the figure shown below, I@tl has 5 initial tokens. Also let firing time tf is 7 seconds.

Thoughtl can fire 5 times successively, we want it to fiely at the start of every 30
seconds. This meany, is delayed by 30 - 7 = 23 seconds.

e =

Figure-10. Delay Example

During the waiting time of 23 second4 (s enabled but not firing), time advancement ‘bl
done in time units of 7/4 = 1.75 seconds. See gengim system filetimed _pensim.m’ for
implementation details.

MSF:

% Example-04: delay example
% file: delay_demo.m:

png = petrinetgraph('delay_demo_def');
dynamic.initial_markings = { ‘pl" 3}
dynamic.firing_times ={ 't T

sim = gpensim(png, dynamic, global_info);
print_statespace(sim);
plotp(sim, { ~ 'pl" ,'p2" });

PDF:

% Example-04: delay example

% file: delay_demo_def.m:

function [PN_name, set_of places, set_of trans, set_of arcs]...
= delay_demo_def(global_info)

29

PN _name = 'Delay Demo' ;

set_of places ={ Pl , 'p2' }

set_of trans ={ Tk

set_of arcs = { 1, t1' ,1, 1, 'p2' 1}

TDF:

function [fire, new_color, over_ride, selected_tokens,globa |_info] =
tl_def(PN, new_color, over_ride, selected_token s, global_info)

% function fire =t1_pre

rest = mod(PN.current_time, 30);
fire = (rest < 5); % any number less than 7 would do

Simulation results:

30

7. Measuring Activation Timing

We are going to find out how much time each trams# take or occupy out of the total time.
From the simulation results, there are two funditmt can compute activation time of each
transition given in the input list. FunctioexXtractt’ creates a simple matrix calletliration
matrix in which first column is the transition (transiiandex) that fired, the second column
is the start time for firing and the third colunsnthe completion time for firing.
Function ‘extractt’ returns duration matrix withréfe columns:

1) Column-1: The firing transition

2) Column-2: firing start time

3) Column-3: firing finishing time

Alternatively, we can use the functionccupancy to measure activation times: function
occupancyfirst computes the duration matrix by calling thactionextractt. Then, from the
duration matrix, it computes thaccupancy matrix. Occupancy matrix consists of just two
rows. The first row presents total activation tineéseach transition given in the input list.
The second row presents activation in percentagbeofotal time. The function occupancy
also prints the activation times and percentagescogen.

7.1 Example-05: Measuring Activation Time
This example is the same delay example, showrgurdi 10. This time, we will compute the

idle time of the transition (activation time of thensition, precisely) with the help of the
functionsextractt andoccupancy
The only change this time in the MSF is that additf the last two lines:

MSF:

% Example-05: delay example for measuring activatio n time
% file: delay_demo.m:

png = petrinetgraph('delay_demo_def');
dynamic.initial_markings = { ‘Pl 3}
dynamic.firing_times ={ 't T

sim = gpensim(png, dynamic, global_info);
% print_statespace(sim);
% plotp(sim, {p1','p2});

duration_matrix = extractt(sim, { 1}
occupancy_matrix = occupancy(sim, { AU AN

Simulation results:
The duration matrix computed form the simulatiosutes shows that the transitiah was
fired at 0, 30, and 60 time units, and that evergg took 7 time units to complete.

Thus, the total timel fired was 21 time units, and the activation petage was (21/67 =
31.3%) percent.

31

duration_matrix =
1 0 7
1 30 37
1 60 67

occupancy tl
total time: 21
Percentage time: 31.3433%

occupancy_matrix =
21.0000
31.3433

7.2 Example-06: Measuring Activation time

This is another example for measuring activationeti Figure 11 below shows a simple
system where two transitions fire sequentially, after the other.

tl t2

pl p2

Figure-11. Transitions firing sequentially

The code below is for the main simulation file.

% Example-06: Measuring Timing

% MSF: measure_timing.m

clear, clc;

global_info.MAX_LOOP = 11; % GLOBAL DATA: MAX. SIMULATION CYCLES
png = petrinetgraph('measure_timing_def');
dynamicpart.initial_markings = { '‘pl" , 10}
dynamicpart.firing_times = { 't ,1, 't2" , 100}
sim = gpensim(png, dynamicpart, global_info);

% print_statespace(sim); plotp(sim, {'p1', 'p2'});
duartion_martix = extractt(sim, { T, 28)
disp('Duartion Martix : '), disp(duartion_martix);
fprintf(\n\n"),

occupancy_martix = occupancy(sim, { T, 20)
fprintf(\n\n");

disp('Occupancy Martix : '), disp(occupancy_martix);

32

Simulation results:

Duartion Martix :
0 1

101 102
202 203
303 304
404 405
505 506
1 101
102 202
203 303
304 404
405 505

NNNONNNRRRRRRE

Simulation Completion Time: 506
occupancy tl

total time: 6

Percentage time: 1.1858%
occupancy t2

total time: 500

Percentage time: 98.8142%

Occupancy Martix :
6.0000 500.0000
1.1858 98.8142

33

34

8. Stochastic Firing Times

So far, thefiring times for transitions are assumed to d&erministic; thus, the simulations
presented so far are deterministic. However, id liéa systems all the firing times are
stochastic. GPenSIM provides a limited facility for stochadtring times.

We can use any of the MATLAB-standard probabilitgtabution functions for stochastic
firing times. The following are the most used:

1) Guassian (normal) random function,

2) Binormial random function,

3) Poission random function, and

4) Uniform random function.

8.1 Example-07: Stochastic firing times

We refer to the CNC production system shown inriggQ; we no longer assume that the
firing times are deterministic:
1) Robot-1 takes random time Binaomially distributed with ¢e0 and factor 0.9
milliseconds. (binornd(10,0.9) D)
2) Robot-2 takes random time normally distributed with meaantl standard deviation
0.1 milliseconds. @formrnd(1,0.1))
3) Robot-3 takes random time uniformly distributed with min &d max 10
milliseconds. (unifrnd(8,10) D)

Thus, the Petri net definition file is to be chathgecordingly:

% Example-07: TDF example with stochastic timing
% the main simulation file

png = petrinetgraph('tdf _example_def');

dynamics.initial_markings = { 'pFrom_CNC' , 20}; % initial tokens

% here comes the STOCHASTIC TIMING

dynamics.firing_times ={ 'tRobot_1' , ‘'binornd(10,0.9)' -
'tRobot_2' , 'normrnd(1,0.1)' , 'tRobot_3" , ‘unifrnd(8,10)' }

Results = gpensim(png, dynamics);
print_statespace(Results);
plotp(Results, {'{pFrom_CNC', 'pBuffer_1', 'pBuffer_ 2', 'pBuffer_31%);

Note: Due to stochastic timing, up to three different outcomes are possible! !

35

36

9. Modular Model Building

Figure 12 shows architecture of an adaptive sumpblgtin based on service component
architecture; see Davidrajuh (2007) for detailgguFé 13 shows the equivalent Petri net
model.

Subsystem Strategizecisions

StrategicBusinessProcess|

Subsystem InitSystem Subsystem IterativeProcess

Distribution
Chain

Design Initialization HandlelterativeProces

vy

Subsystem TacticalDecisions

n

InventoryWholeSDist

J
B

InventoryRetailer

g

TacticalBusinessProc -
~
TransportWholeSDist
J
)

TransportDistRetail
J

Figure-12. The system assembly

37

9.1 Example-08: Modular Model for Adaptive Supply Chain

The Petri net model shown in figure 13 has mangnelds (11 places and 12 transitions) and
many connections (27 arcs). Though possible, it mél cumbersome to create one Petri net
definition file PDF for the whole Petri net graghstead, we can divide the Petri net graph
into modules as shown in figure 13, and then cremtwidual PDFs for each of the module;
finally, all the PDFs are combined to form the cdetg model.

In the following subsection, we use modular (maryFB, one PDF for each module)

approach. Section 9.2 presents the TDF for thesitian tRES; interested reader is referred to
Davidrajuh (2007) for details.

38

Eﬂmﬂu ﬂ_ﬂ_ﬂﬁﬁ:.ﬂm Hﬁu M_Hﬁumﬂu ﬁm_muOﬂH 131k TEM__NH m_Hﬁ_H_ ”m m_.ﬁﬁm.wm

[5T)

- 1050

SOLTISp

£

@®©

<

o

c

o) srod sy aEars (5 1) L
=

>

a »

U _

2

° (5]

- ST S M
= WO ST TR,
Y

o g
% BT D ueg

o

S

—

S

= WAl (qp) (531

S

- TR qzonstos FEIET =5 o P
% i) FEFETEL OLEEISIEL],
Q

e

—

=ET
TR RARL] LTS

s e,
SETTONT TROTIER T,

WAMTAOH £0TA WA S

Figure-13.

(2]
jsambang
B

LhATT

39

9.2 The Modular Approach

Figure 13 shows a modular Petri net model, comgjstf a number of modules such as
‘Service Interface Layer’, ‘Initialization module’Strategic module’, etc. For each module, a
PDF will be created. In addition, there will be BRPfor the connection between modules. For
example, we can cerate a PDF for each of the falgw

1) Client (‘client_def.m’),

2) Internet transmission (‘internet_def.m’),

3) Service Interface Layer (‘sil_def.m’),

4) Initialization module (‘init_def.m’),

5) lIterations module (‘interate_def.m’),

6) Strategic module (‘strategy_def.m’),

7) Tactical & sub tactical module (tactic_def.m’), ainthlly

8) Profile for connecting the modules together (‘commo.m’).

In the main simulation file, all these 8 PDFs mhasstpassed to the function ‘petrinetgraph’.

9.2.1 The main simulation file: ‘MIC_2006 _new.m’
%%%%%%%%%%% %% % % % %% %% %% %% %% %% % % %% %% %%
%% MIC — 2006 (modular model)
%%%%%%%%%%% %% % % %% %% %% % %% %% %% % % %% %% %%

png = petrinetgraph({ ‘client_def' , 'internet_def' , 'sil_def' ,
‘conn_pro' ...
‘iterate_def' , 'strategy_def' , 'tactic_def' b;
dyn.initial_markings = { 'PSR' ,1, 'pNOI' , round(unifrnd(2,4)), '‘pB6" 1}
dyn.firing_times = { tCS' , 'normrnd(5000,50)' , 'tSC' , 'normrnd(5000,50)') e
TINIT" , 'unifrnd(280,320)') e
tRES' , 'unifrnd(1, 10)' , 'tSD' , 'unifrnd(80, 100)' -
tTD" , 'unifrnd(25, 35)' , tSUB1' , 'unifrnd(10, 15)' -
'tSUB2' , 'unifrnd(10, 15)' , 'tSUB3' , 'unifrnd(10, 15)') e
'tSUB4' , 'unifrnd(10, 15)' h

Results = gpensim(png, dyn);
print_statespace(Results);

9.2.2 Client (‘client_def.m’)

function [PN_name, set_of places, set_of trans, set_of arcs]
= client_def()

%%%%%%% %% %% %% %% %% %% %% %% %% %% % % %% %% %% %

%% File: client_def.m : Definition of client

%%%%%%% %% %% %% %% %% %% %% %% %% %% % % %% %% %% %

PN_name = 'Client’ ;

set_of places ={ 'PSR' , 'pRR' }

set_of trans =];

set_of arcs =];

9.2.3 Internet transmission (‘internet_def.m’),

function [PN_name, set_of places, set_of trans, set_of arcs]
= internet_def()

%%%%%%% %% %% %% %% %% %% %% %% % %% %% % %% % % %% %

%% File: internat_def.m: Definition of internet tra nsmission

40

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PN_name=internet Transmission' ;

set_of places =];

set_of trans = { tCS' ,'tSC' };

set_of arcs =];

9.2.4 Service Interface Layer (‘sil_def.m’),

function [PN_name, set_of places, set_of trans, set_of arcs]
= sil_def()

%%%% %% %% %% %% %% % % %% % % %% % % %% % % %% % % %% % %

%% File: sil_def.m: Definition of the Service Inter face Layer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PN_name=Service Interface Layer'

set_of_places { 'PRFC' , 'pRTC' , 'pBl' h

set_of_trans = { TUNIT)

set_of_arcs = { '‘pPRFC' , 'tINIT ,1, ‘tINIT" ,'pBl" ,1}

9.2.5 Iterations module (‘interate_def.m’)

function [PN_name, set_of places, set_of trans, set_of arcs]
= iterate_def()

%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% % %

%% File: iterate_def.m: Definition of the Iteration s module

%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %% % %

PN_name=lterations Module' ;

set_of places ={ '‘PNOI'" , 'pB6' };

set_of trans = { 1T, tRES' }

set_of arcs ={ '‘pNOI' ,tUT ,1, ‘'pB6' ,'tIT" ,1, 'pB6' ,'tRES' ,1};

9.2.6 Strategic module (‘strategy_def.m’)

function [PN_name, set_of places, set_of trans, set_of arcs]
= strategy_def()

%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% % % %% % %

%% File: strategy_def.m: Definition of the Strategi ¢ Module

%%%% %% %% %% %% %% % % %% % % %% % % %% % % %% % % %% % %

PN_name = 'Strategic Module' ;

set_of places ={ '‘pB2" , 'pB3" };

set_of trans ={ tSD' };

set_of arcs ={ 'pB2' ,'tSD' ,1, 'tsSD' , 'pB3' ,1};

9.2.7 Tactical & sub tactical module (‘tactic_def.m’)

function [PN_name, set_of places, set_of trans, set_of arcs]
= tactic_def()
%%%%%%% % %% %% %% % % %% % % %% % % %% % % %% % % %% % %
%% File: tactic_def.m: Definition of the Tactical & subtactical modules
%%%% %% %% %% %% %% % % %% % % %% % % %% % % %% % % %% % %
PN_name = 'Tactical & sub-tactical Module(s)' ;
set_of places ={ 'pB4" , 'pB5" };
set_of trans = { tTD' , 'tSUB1' ,'tSUB2' ,'tSUB3' ,'tSUB4' ,'tSUM' }
set_of_arcs = { tTD' , 'pB4" 4, ..
'pB4' |, 'tSUB1' ,1, 'pB4' ,'tSUB2' ,1, 'pB4' ,'tSUB3' ,1, 'pB4' ,'tSUB4' 1,
tSUB1' , 'pB5' ,1, 'tSUB2' ,'pB5' ,1, 'tSUB3' ,'pB5' ,1, 'tSUB4' , 'pB5' |1,
'pB5" , tSUM' 4},

41

9.2.8 Profile for connecting the modules together (‘connpro.m’)

function [PN_name, set_of places, set_of trans, set_of arcs]
= conn_pro()
%%%%%%% %% %% %% %% % %% %% %% %% %% %% %% %% %% % %
%% File: conn_pro.m: Definition of the connections between the modules

%%%%%%% %% %% % %% %% %% %% %% %% %% % % %% % % %% % %
PN_name = 'Connections Profile’ ;

set_of places =1];

set_of trans =];

set_of arcs ={ 'PSR' , tCS' 1, .. % client - internet
tCS' , 'pRFC' |1, .. % internet - SIL
'‘pRTC' ,'tSC' ,1, .. % SIL - internet
tSC' , 'pRR' 1, .. % internet - client
'‘pB1" ,tIT 1, .. % init - iterations
T, 'pB1 1, ... % iterations - init
T, 'pB2' 1, % iterations - strategy
'‘pB3" ,tTD' 1, .. % strategy - tactical
tSUM' |, 'pB6" |1, ... % tactical - iterations
tRES' , 'pRTC' ,1, ... % iterations - SIL

9.3 Transition definition file for tRES (‘tRES_def.m’)

function [fire, new_color, override, selected_tokens, globa |_info] =
tRES_def (PN, new_color, override, selected_tokens, global_info)

%% function tRES_def

%%

pl = get_place(PN, ‘PNOI");

fire = (pl.tokens == 0);

42

10. Coverability Tree

Coverability tree (co-tree) is a very importantussn the analysis of Petri net models. In
coverability analysis, we determine the statesdhatreachable from a given initial state.

This section shows how GPenSIM can be used to robtaitree of a Petri net. The
methodology is creating a co-tree of a Petri netlisost same as running simulations on a
Petri net; the only difference is that in step+&teéad of the function ‘gpensim’, we use the
function ‘cotree’

Step-1Creating Petri net definition files (PDFs) and sition definition files (TDFS)

Step-2Creating main simulation file (SMF) with dynamicfan(initial markings and

firing times)
Step-3Running the SMF using the function ‘cotree’ insteftypensim’

10.1 Example-09: Cotree with finite states

This simple example deals with the Petri net showigure 14. The co-tree of this Petri net
is shown in figure 15. Let us find the co-tree gsiPenSIM:

Figure-14. The Petri net for coverability analysis

43

Figure-15. The reachable states of the Petri net shown indig4.

10.1.1 Petri net definition file
The Petri net definition file is given below:

% PDF for Example-09: Cotree example-1
function [PN_name, set_of places, set_of trans, set_of arcs]...
= cotree_example_def()

PN_name = 'COTREE Example: Petri Net in Figure 14" ;

set_of places ={ ‘Pl , 'p2' , 'p3 , 'pd" }
set_of trans ={ T, 't2' , 13"}
set of arcs ={ ‘p1" 't .1, 't ,'p2t .1, 't 'p3t L,

'p2" ,'t2" 1, 'p3' 2" .1, 't20 ,'p2 1, 't2' ,'p4' 1, ..
‘pl' ,'t3" 1, 'p3 ,'t3" .1, 'p4 ,'t3' |1}

10.1.2 The main file
The main file (after phases 2 & 3) is given below:

% Example-09: Cotree example-1
% the main file to find the reachable states

clear, clc; % clear the workspace & screen first
png = petrinetgraph(‘cotree_example_def');
dyn.initial_markings = { Pl ,2, 'p4" 1} % tokens initially

Results = cotree(png, dyn.initial_markings);
print_cotree(Results);

The functionprint_cotree will print the following on the screen, which iguevalent to the
graphical co-tree shown in figure 14

44

COTREE Example: Petri Net in Figure 14

state:1 ROOT node

pl p2 p3 p4
2 0 0 1

state:2 Firing event: t1

pl p2 p3 p4
1 1 1 1
Node type:'' Parent state: 1

state:3 Firing event: t1

pl p2 p3 p4
0 2 2 1
Node type:'' Parent state: 2

state:4 Firing event: t2

pl p2 p3 p4
1 1 0 2
Node type:'' Parent state: 2

state:5 Firing event: t3

pl p2 p3 p4
0 1 0 0
Node type: 'T' Parent state: 2

state:6 Firing event: t2

pl p2 p3 p4
0 2 1 2
Node type:'' Parent state: 3

state:7 Firing event: t1

pl p2 p3 p4
0 2 1 2
Node type: 'D' Parent state: 4

state:8 Firing event: t2

pl p2 p3 p4
0 2 0 3
Node type: 'T' Parent state: 6

Boundedness:
pl:2

12
p3:2
03

The screen output given above is equivalent tgthphic shown in figure 15.

10.1.3 Event simulation instead of coverability tree
Lets try event simulation of the same Petri net.

% the main file to find the reachable states

45

clear, clc; % clear the workspace & screen first

png = petrinetgraph(‘cotree_example_def');
dyn.initial_markings = { Pl ,2, ‘'p4d 1} % tokens initially
dyn.firing_times = { .2, 't2° .1, 't3' ,3}; % tokens initially

Results = gpensim(png, dyn);
print_statespace(Results);

The functionprint_cotree will print the state flow on the screen:

COTREE Example: Petri Net in Figure 15

Time: 0

New markings:

pl p2 p3 p4
2 0 0 1

At time: 0 enabled transtions are: tl
At time: O firing transtions are: t1

Time: 2

Fired Transition: t1

New markings:

pl p2 p3 p4
1 1 1 1

At time: 2 enabled transtions are: t1 t2 t3
At time: 2 firing transtions are: t1 t2

Time: 3

Fired Transition: t2

New markings:

pl p2 p3 p4
0 1 0 2

At time: 3 enabled transtions are:
At time: 3 firing transtions are: t1

Time: 4

Fired Transition: t1

New markings:

pl p2 p3 p4
0 2 1 2

At time: 4 enabled transtions are: t2
At time: 4 firing transtions are: t2

Time: 5

Fired Transition: t2

New markings:

pl p2 p3 p4
0 2 0 3

46

At time: 5 enabled transtions are:

At time: 5 firing transtions are:

10.2 Example-10: Cotree with infinite states

This simple example deals with the Petri net showigure 16. The co-tree of this Petri net
is shown in figure 17. Let us find the co-tree gsiPenSIM:

)
ﬂ B

o) s
L &

Cotree example

®
|

Figure-16.

[1,0,0,0]
151

(0, 1, 1, O]

[1, 0, w, 0] [0, 0, 1, 1]
21

[D? 1, w! 0]

(4] t3

[1, 0, w, 0]]_U‘, 0, w, 1]

Figure-17. Co-tree

10.2.1 Petri net definition file
The Petri net definition file is given below:

% PDF Example-10: Cotree example-2

% file:

function [PN_name, set_of places, set_of trans, set_of arcs]...
=fig_9_def()

PN_name = 'Petri netin fig 4.12' ;

set_of places ={ ‘Pl , 'p2' , 'p3' , 'p4 }

set_of trans ={ T, 12, 3k

set of arcs = { p1, 't2' ,1, 't1* o, 'p2" ,1, 't1' , 'p3" ,1,

2,20 1, 2, plt L1, p2t L3 1 ..
'p3' L3 1, ‘t3' ,'p3 .1, t3' ,'p4' 1)

10.2.2 The main file
The main file (after phases 2 & 3) is given below:

% Example-10: Cotree example-2
% the main file to get co-tree

clear, clc;
png = petrinetgraph(fig_9_def)
dyn.initial_markings = { ‘Pl 1}

CT = cotree(png, dyn);
print_cotree(CT); %

The print system will print the following on thersen, which is equivalent to the graphical
co-tree shown in figure 17.

Petri net in fig 4.12'

state:1 ROOT node

pl p2 p3 p4
1 0 0 0

state:2 Firing event: t1

pl p2 p3 p4

0 1 1 0

Node type:'' Parent state: 1

state:3 Firing event: t2

pl p2 p3 p4

1 0 Inf 0

Node type:'' Parent state: 2

state:4 Firing event: t3

pl p2 p3 p4

0 0 1 1

Node type: 'T' Parent state: 2

state:5 Firing event: t1

pl p2 p3 p4

0 1 Inf 0

Node type:'' Parent state: 3

48

state:6 Firing event: t2

pl p2 p3 p4

1 0 Inf 0

Node type: 'D' Parent state: 5

state:7 Firing event: t3

pl p2 p3 p4

0 0 Inf 1

Node type: 'T' Parent state: 5

Boundedness:
pl:1

p2:1

p3 : Inf

p4:1

49

50

11. Global Info

Global variables and parameters can be passedgthaitferent files (e.g. SMU, PDFs, and
TDFs) by making use of the ‘global info’ packet.eTmethodology of using ‘global info’ is
explained below through the use of an example.

11.1 Use of ‘MAX_LOOP’

‘MAX_LOOP’ value, if added to theglobal info’ packet, will be read by the gpensim
function to limit the simulation cycles to the givealue.

NOTE:
Increase MAX_LOOP for large number of iterations
(loops)

11.1.1 Example-11: MAX_LOOP

This is same as the example-06. This time, we @djperiment with global MAX_LOOP
setting.

t1 t2

pl p2

Figure-18. Transitions firing sequentially

The Petri net shown in figure 18 run for ever. Thusless specified in the SMU, default
maximum loop number is 200 (default MAX_LOOP=200)e can stop the simulations after
a couple of simulation cycles. The statement givelow limits the simulation cycles to 11,
by assigning the value 11 to ‘MAX_LOOP’:

> global_info.MAX_LOOP = 11, % GLOBAL DATA: MAX. SIMULATION CYCLES

The code below is for the main simulation file.

% Example-11: Measuring Timing

% MSF: measure_timing.m

clear, clc;

global_info.MAX_LOOP = 11, % GLOBAL DATA: MAX. SIMULATION CYCLES
png = petrinetgraph('measure_timing_def');

dynamicpart.initial_markings = { '‘pl" , 10}

51

dynamicpart.firing_times = { ‘1,1, 't2' , 100}
sim = gpensim(png, dynamicpart, global_info);
plotp(sim, {'p1’, 'p2});

Simulation results: When MAX_LOORP is not explicitly specified (meaniby default,
MAX_LOOP=200):

2000 4000 6000 8000 10000 12000

Simulation results: When MAX_LOORP is explicitly specified to be 11 @MU,
MAX_LOOP=11):

pl||

\ \ \ \ . oo

0.8F | \ \ \ -
\

\
091

\
0.7+ \ N \ \ i
\ \ \ \
\
\ \ \ \
0.6 \ \ \ . i
\ \ \
0.5F A B
\ \ \ \
\ \ ! \ \
0.4 \ b
\ \ \ \
\ \
\
0.3F \ \ ! \ \ 4
\ \ \ \
\
0.2 ' \ ! \ \ i
X \ \ \

\ \
\ \
0.1- \ \ \ \ | ,
| \
\ \

I I 1\
0 100 200 300 400 500 600

11.2 Use of ‘\LOOP_NUMBER’

When you simulate large Petri net models, durirgy $imulations you will notice that the
MATLAB hangs, without giving you any sign of lifét will be better, if you can see some
outputs during simulations so that you are assthratthe simulations are going on and that
the system is dead (‘hanging’). By setting Hli@OP_NUMBER flag in global_info, you can
see the loop numbers when the simulation goes on.

52

Let us go back to the simple example given in sacs.2, the simple Petri net. This time, we
will set the LOOP_NUMBER flag in the MSF:

%% LOOP_NUMBER flag is set in global_info
global_info.LOOP_NUMBER = 1;

png = petrinetgraph('simple_pn_def');
dynamic_info.initial_markings = { 'Place-1' ,3, 'Place-2'" 5}
dynamic_info.firing_times = { ‘Transition-1', 10},
Sim_Results = gpensim(png, dynamic_info, global_iin fo);

print_statespace(Sim_Results);

The output on screen is different as loop numbergeanted during simulations. According
to the screen output, the simulations are complftée 3 loops.

Loopnr: 1
Loop nr: 2
Loop nr: 3

A Simple Petri Net definition
Number of places: 3

Initial Markings:

Place-1 Place-2 Place-3

3 5 0
step:1 Firing event: Transition- 1 (Starting time: 0) Finishing
Time: 10

Current markings:
Place-1 Place-2 Place-3

2 3 1
step:2 Firing event: Transition- 1 (Starting time: 10) Finishing
Time: 20

Current markings:

Place-1 Place-2 Place-3
1 1 2
Completion time: 20

NOTE:

It is always a good idea to set the LOOP_NUMBER
flag (global_info.LOOP_NUMBER = 1) in the MSF. By
setting the LOOP_NUMBER flag, simulation loop
number will be displayed during the simulation, thus
we know that simulation is going on and the
computer is not ‘hanging’.

11.2.1 What are loops?
(See chapter 19 “Design of GPenSIM” for more detas)

53

OK, we do see loop numbers during simulations,na kif assurance that something is going
on. But what are loops? To understand loops, we teeinderstand the theory for general
discrete event simulations (DES).

Any DES software consists of three main elements:

1. Global timer: Global timer (or current time) synchronizes all ttivities. Global timer
must not be changed by any transitions (events)GRenSIM, global timer can be
accessed in TDFs, by callingn.current_time, where pn is the run-time Petri net
structure.

2. Event Scheduler: Event scheduler islaop mainly performing two actions:

a. First: checking for any enabled transitions; ifrthare any enabled transition and
if they can fire, then they will be put igueue called firing transitions
(implemented in filestart_firing.m).

b. Second: checking the queue for firing transitiodghen a firing transition is
complete, it will be removed from the queue (impbeted in file
complete_firing.m)

In GPenSIM, filetimed_pensim.mimplements event scheduler.

3. Queue: (discussed above)

Thus, loop number comes fraiimed_pensimwhich is called bypensim The loop number
states how many cycles of event scheduler has alkep so far.
NOTE: Chapter 16 “Design of GPenSIM” gives moreadst

11.3 Use of ‘DELTA_TIME’

Section 6 “Internal Clock” describes an examplea(egle-04: delay) in which there are
enabled transitions but not firing (blocked). Thassituation, the clock is advanced by a time
interval equal to one-fourth of the minimal firitigne of any transition. We can override this
value for timer advancement, by assigning a newevtd “DELTA_TIME”.

Lets repeat the example-04. We will study threesdsis time:
1. DELTA_TIME is not explicitly specified (by defaultlelta_time equals to % of least
firing time)
2. DELTA TIME =5
3. DELTA_TIME =0.1

11.3.1 Example-12: DELTA_TIME

This example is the same as example-04. But tmee,tiwe will experiment setting
DELTA_TIME. In the figure shown below, Igtl has 5 initial tokens. Also let firing time of
tl is 7 seconds. Thougdh can fire 5 times successively, we want it to &irdy at the start of
every 30 seconds. This meatisis delayed by 30 - 7 = 23 seconds.

e =

54

Figure-19. Delay Example

During the waiting time of 23 second4 (s enabled but not firing), time advancement ‘el
done in time units of 7/4 = 1.75 seconds, if DELTAME is not explicitly specified.

MSF:

% Example-12: DELTA _TIME
% file: delay_demo.m:
global_info.MAX_LOOP = 1000;
global_info.DELTA_TIME = 0.1;

png = petrinetgraph(‘delay_demo_def');
dynamic.initial_markings = { pl" 3}
dynamic.firing_times = { 1,7

sim = gpensim(png, dynamic, global_info);
print_statespace(sim);
plotp(sim, { ~ 'p1" , 'p2" });

Simulation results: When DELTA_TIME is not explicitly specified (mearjiby default,
DELTA_TIME =1.75):

251

1.5- =

0.5+ / =

0 10 20 30 40 50 60 70

Simulation results: When DELTA_TIME is explicitly specified to be 5.0:

3 7

pl

— p2

251 / P

/
/
2+ /7 _— — — — B
/
15+ B
/
/
/
1k —_— e
//
/
0.5+ / B
/
/
0 | | | | | | |

0 10 20 30 40 50 60 70 80

Simulation results: When DELTA_TIME is explicitly specified to be 0.1:

2.5

15

0.5

56

70

12. TDF_POST

As stated in the earlier sections, there are tywegyof Transition Definition Files (TDF):
* TDF_PRE, which are run before firing a transition
 TDF_POST, which are run after firing a transition

12.1 Example-13: Binary Semaphore

Figure 20 shown below depicts a web server congigif two server machines that will fire
alternatively. First, client requests are queuedSAIART. Then two routerstX1 andtX2)
remove the client requests from {8TART queue and put it to the queues for Web Server 1
(p1) and Web Server 2R) respectively. In order to evenly distribute nigequests to both
servers, one would expect that the two routersditernatively, meaning that no router fires

more times than the other.
A

Figure-20. Load balancing by alternative firing

To allow the routers (transitions) fire alternatiyave can implement a binary semaphore that
can be read and manipulated by the definition fiielsoth transitions.

12.1.1 Petri net definition file (‘loadbalance_def.m’):

% PDF for Example-13: Binary Semaphore example
% file: loadbalance_def.m:
% definition of petri net graph for Norwegian trafi c lights

function [PN_name, set_of places, set_of trans, set_of arcs]1...
= loadbalance_def(global_info)
PN_name=Web Server Load Balancer'

set_of places={ 'PSTART' , 'pl' , 'p2' }
set_of trans={ X1, 'tX2' h

set of arcs={ 'pSTART' ,'tX1' ,1, 'tX1' ,'p1" .1, ..
'PSTART' , 'tX2' ,1, 'tX2' ,'p2' ,1}

57

12.1.2 Main Simulation File (‘loadbalance.m’):

% Example-13: Example for binary semaphore
% MSF: loadbalance.m

clear, clc;

global_info.semafor = 1; % GLOBAL DATA: binary semafor
png = petrinetgraph('loadbalance_def');
dynamicpart.initial_markings = { 'PSTART' , 10};
dynamicpart.firing_times = { t™X1' , 10, 'tX2' , 20}

sim = gpensim(png, dynamicpart, global_info);
plotp(sim, { 'p1" , 'p2" });

Note: gpensim takes three input parameters: intiaddto the usual static (‘png’) and
dynamic (‘dynampart’) details, the third parameatethe global info (‘global_info’). Global
info consists of two elements:

1) The binary semaphore with initial value 1; this mgaX1 should fire first.

2) MAX_LOORP: the use of this value is explained in firevious sections

12.1.3TDF_PRE for tX1 (‘tX1_pre.m’):

function [fire, PN,new_color, override, selected_tokens, gl obal_info] =
tX1_ pre(PN, new_color, override, selected_token s, global_info)

%

%

if (global_info.semafor==1),
fire = 1;

else
fire = 0;

end;

12.1.4TDF_POST for tX1 (‘tX1_post.m’):

function [PN, global_info] =
tX1_post(transition, PN, global_info)

% function tX1_post

%

global_info.semafor = 2; % release semafor to tX2

12.1.5TDF_PRE for tX2 (‘tX2_pre.m’):

function [fire, PN,new_color, override, selected_tokens, gl obal_info] =
tX2_pre(PN, new_color, override, selected_token s, global_info)

% TDF tX2_pre

%

if (global_info.semafor==2),
fire =1,

58

else
fire = 0O;
end;

12.1.6 TDF_POST for tX2 (‘tX2_post.m’):

function [PN, global_info] =
tX2_post(transition, PN, global_info)

% function tX2_post

%

global_info.semafor = 1; % release semafor to tX1

The plot given below shows that the queues amdfilvenly; this is because of the transitions
fires alternatively.

4.5¢ --B- p2 {

2.5 / R

151 / i

1
50 100 150

Figure-21. Printout of binary semaphore in action

59

60

13. Improving Simulation Results for Printout

Let’'s take look again at the printout of simulatieesults from the previous section. The
figure, given below, look like ramp rather than gmd. This is due to poor sampling
(recording). Simulation results are recorded onhemever transition complete firing. In other
words, simulation results are recorded only whenmeths a new state.

5

1
—#— pl
45) --8-- p2 {

ar --g R
35f v |

3t -1 8
25} / i
2t - 8
15f / 1
1r - 1

0.5F / i

50 100 150

Figure-22. Printout of binary semaphore (same as figure-21)

We can improve sampling by adding a small loop thdl generate new states faster.
Example-14 given below explains the trick.

13.1 Example-14: Improving results printout of binary semaphore

In this example, we will add a small loop to thetsyn; the small loop consisting of a place
pXtra and a transitiortXtra is solely included to speed up the sampling rateréte of
reaching newer states). The firing time of the giton tXtra has to be small, lets say — one
tenth of the least firing time of any transitiontire systemtK1 or tX2). Note: Do not assign
zero value firing time of the transition tXtra; Wwizero value, the system will never take off.

61

@ tXtra
» tX1 L p1
Figure-23. Adding a small loop to speed up sampling rate

Except adding the small loop (pXtra — tXtra — pXtrthere is no change in coding for
example-13.

MSEF:

% Example-14: Example for binary semaphore
% MSF: loadbalance_2.m

clear, clc;

global_info.semafor = 1; % GLOBAL DATA: binary semafor

png = petrinetgraph('loadbalance_2_def);

dynamicpart.initial_markings = { '‘PSTART' , 10, ‘'pXtra® ,1}; % pXtra added
dynamicpart.firing_times = { tX1' ,10, 'tX2' ,20, ‘'tXtra® ,1}; % tXtra added

sim = gpensim(png, dynamicpart, global_info);

plotp(sim, { pl , 'p2' });
print_statespace(sim);

PDF:

% Example-14: Binary semaphore example with better rpintout
% file: loadbalance_2_def.m: PDF

function [PN_name, set_of places, set_of trans, set_of arcs]1...
= loadbalance_2_def(global_info)
PN_name="Web Server Load Balancer' ;

set_of places ={ 'PSTART' , 'pl" , 'p2' , 'pCK' }

set_of trans = { X1, 'tX2' , 'tCK' }

set_of arcs ={ 'PSTART' , 'tX1' ,1, 'tX1' ,'pl" .1, ..
'PSTART' |, 'tX2" ,1, 'tX2' ,'p2' .1, ..
'pCK' ,'tCK" ,1, 'tCK' ,'pCK' ,1};

62

Simulation Results:
Figure-24 shows the new simulation results aftelusion of the small loop; new simulation
results and its printout is due to faster sampling.

pl

2.5¢ f

15- -

0.5+ f

0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200

Figure-24. Improved printout due to faster sampling

63

64

14. Prioritizing Transitions

In discrete systems, we need to increase or dexyawity of an event(s), in order to give
fair chance to the competing events. There are dmasi facilities in GPenSIM to change
priorities of transitions.

1) Initial declaration of priorities in the main sinadibn file.

2) Increasing priority of a specific transition

3) Decreasing priority of a specific transition

14.1 Priorities of transitions

Initial declaration of priorities in the main sination file can be done using the global_info.
| global_info.PRIORITY = { 't ,5, 't2° ,2, 't3' 10} |

In the above line, we are simply saying ttgahas top priority, followed by2 andtl has the
least priority. When we assign priority, we canigssany integer value, both negative and
positive. Higher the value, better the priority is.

Increasing priority of a specific transition cane bdone wusing the function
‘priority_increment’, which will increase the value just by 1.
\ PN = priority_increment(PN, 't1'); % priority of 't1’ is now 6 \

Decreasing priority of a specific transition can bdone using the function
‘priority_decrement’, which will reduce the value by 1.
\ PN = priority_decrement(PN, 't3"); % priority of 't2" is now 9 \

14.2 Example-15: Alternating firing
Transitions t1, t2, and t3, should fire alterndidigure 25).

Figure-25. Alternating firing of t1, t2, and t3

65

MSF:

% Example-15: Priority Increment example
global_info.MAX_LOOP = 20;

png = petrinetgraph('prio_def');
dyn.initial_markings = { 'pS' , 1} % tokens initially
dyn.firing_times = { 1,1, 't20 1, 't30 1k

sim = gpensim(png, dyn, global_info);
plotp(sim, { '‘PE1" , 'pE2' , 'pE3' });

PDF:

% Example-15: Priority Increment example
% file: prio_def.m: definition of petri net

function [PN_name, set_of places, set_of_trans,
set_of arcs] = prio_def()

PN_name=Priority Example: Petri Net for production facilit y'
set_of places={ 'pS' , 'pE1' , 'pE2' , 'pE3" }
set_of trans={ T, 2t 13k
set of arcs={ 'pS' ,'t1" ,1, 'pS ,'t2" ,1, 'pS ,'t3" |1,
', 'pE1" 1, 't1' ,'pS' .1,
2", 'pE2' 1, 't2' ,'pS' |1,
3", 'pE3 1, 't3'" ,'pS' 1}
TDF PRE for t1 (‘t1_pre.m’):
function [fire, PN,new_color,override,selected_tokens,globa |_info] =
tl_pre(PN, new_color,override,selected_tokens,g lobal_info)
%
% t1_pre
PN = priority_increment(PN, 2"),
fire = 1;
TDF_PRE for t2 (‘t2_pre.m’):
function [fire, PN,new_color,override,selected_tokens,globa |_info] =
t2_pre(PN, new_color,override,selected_tokens,g lobal_info)

%
% t2_pre

PN = priority_increment(PN, 3"),
fire = 1;

66

TDF_PRE for t3 (‘t3_pre.m’):

function [fire, PN,new_color,override,selected_tokens,globa |_info] =
t3_pre(PN, new_color,override,selected_tokens,g lobal_info)

%

% t3_pre

PN = priority_increment(PN,),
fire = 1,

Simulation Results:
The results show that the mechanism is little bitthwed, and need to be checked.

pE1l
pE2
pE3

0 2 4 6 8 10 12 14 16 18 20

14.3 Example-16: Priority Decrement Example

This example is the same as for the previous exastmwn in figure 25. However, this time,
we will allow t1 to fire 5 times uninterrupted, atiten allow t1 and t2 fire alternatively for 10
more times. After this, all three can fire altervelly.

SMU:

% Example-16: Priority decrement
global_info.MAX_LOOP = 25;

global_info.PRIORITY = { 't ,10, ‘'t2' 5}

png = petrinetgraph('prio_def');

dyn.initial_markings = { 'pS' , 1} % tokens initially
dyn.firing_times = { 1,1, 't20 1, 't30 1k

sim = gpensim(png, dyn, global_info);
plotp(sim, { ~ 'pE1' , 'pE2' , 'pE3' });

67

PDF:

% Example-16: Priority Decrement
% file: prio_def.m: definition of petri net

function [PN_name, set_of places, set_of_trans,
set_of arcs] = prio_def()

PN_name=Priority Example: Petri Net for production facilit y'
set_of places={ 'pS' , 'pE1' , 'pE2' , 'pE3' }
set_of trans={ T, 2t 13k
set of arcs={ 'pS' ,'t1' ,1, 'pS ,'t2" ,1, 'pS ,'t3" |1,
t1' L 'pE1l" 1, 't1' ,'pS' 1,
2" ,'pE2' ,1, 't2' ,'pS' .1,
3", 'pE3" 1, 't3'" ,'pS' 1}
TDF _PRE for tl1 (‘t1_pre.m’):
function [fire, PN,new_color,override,selected_tokens,globa |_info] =
tl_pre(PN, new_color,override,selected_tokens,g lobal_info)
%
% t1_pre
PN = priority_decrement(PN, o),
fire = 1;
TDF PRE for t2 (‘t2_pre.m’):
function [fire, PN,new_color,override,selected_tokens,globa |_info] =
t2_pre(PN, new_color,override,selected_tokens,g lobal_info)
%
% t2_pre
PN = priority_decrement(PN, 2"),
fire = 1;
TDF PRE for t3 (‘t3_pre.m’):
function [fire, PN,new_color,override,selected_tokens,globa |_info] =
t3_pre(PN, new_color,override,selected_tokens,g lobal_info)

%
% t3_pre

PN = priority_decrement(PN, 3"),
fire = 1,

Simulation Results: Again, not perfect!!!

68

14

pE1
pE2
pE3

69

25

70

15. Using Resources

In engineering systems, there are always resoulikeshuman resources to operate some
machines, printers as common resources in a netvedck Just like machines and robots,
resources can also be represented with transif@nglaces, depending on the situation).
However, GPenSIM offers ‘global resources’ as ahmasm to simply the models, also
provided is a print function called ‘print_scheduteprint the usage of the resources.

Given below is a simple example that explains th&ge of resources. An larger example on
scheduling is given in the applications part.

15.1 Using Resources
The resources are to be declared first in the MS¥K. example, if there three (human)
resources named Al, Bob, and Chuck, then the fatigwdeclaration will be added to the

MSF:
| dynamicpart.resources = { 'Al' , 'Bob' , 'Chuck' }; |

Reserving a resource can be done through the imcgsource_request’. For example:

[acquired, PN] = resource_reugest(PN, T1'); % seek any resource

% seek specific resources, both 'Al' and 'Bob’
[acquired, PN] = resource_request(PN, T ,{ 'Al' , 'Bob' });

In the first case, transition 'T1’ seeks (reserv@sg instance of a resource (any resource). If
allocation was successful, the flag ‘acquired’ Ww# true. In the second case, ‘T1’ seeks two
resources, but specific resources like ‘Al and bBdhis time.

Releasing the resources: a transition has to elakhghe resources it is holding, releasing
some or specific resources is not possible.

% release all the resources (if any) held by 'T1’
[released, PN] = resource_ release(PN, T);

15.1.1 Function ‘print_schedule’

% function print_schedule(sim_results)

% For every resource utilized, this function prints

% a matrix where each row represents:

% [the transition that used the resource, start t ime, end time]
%

% In addition the following are also displayed:

% K, ST, LE, SI, and LT

%

71

15.2 Example-17: Using Resources to realize critical sien

This example is the same as the one that is descnimder the section “Global Info”;
however, we make use of ‘resources’ rather thasba@linfo’.

Figure 26 shown below depicts a web server congigif two server machines that will fire
alternatively. First, client requests are queuedSAIART. Then two routerstX1 andtX2)
remove the client requests from {8TART queue and put it to the queues for Web Server 1
(p1) and Web Server 2R) respectively. In order to evenly distribute nigequests to both
servers, one would expect that the two routersditernatively, meaning that no router fires

more times than the other.
A

Figure-26. Load balancing by alternative firing

To allow the routers (transitions) fire alternatethese two transition seek a semafor
(resource). If a transition does not get the sem@opriority is increased so that next time it
will get it.

15.2.1 MSF: ‘cr.m’

% Example-17: use of resource for realizing critica | function
png = petrinetgraph(‘cr_def'");

dynamicpart.initial_markings = { '‘PSTART' , 20};
dynamicpart.firing_times = { ‘tX1' ,10, 'tX2' , 20}
dynamicpart.resources = { 'semafor' }; % resource as semafor

sim = gpensim(png, dynamicpart);

plotp(sim, { ‘Pl , 'p2" }),grid on;
print_schedule(sim);

15.2.2 PDF: 'cr_def.m’

% Example-72: Binary semaphore example
% file: cr_def.m: PDF

function [PN_name, set_of places, set_of trans, set_of arcs]...
= cr_def(global_info)

72

PN_name=Implementing Critical region with resources' ;

set_of_places={ 'PSTART' , 'p1' , 'p2' }
set_of_trans={ X1 ,'tX2' }

set of arcs={ 'pSTART' ,'tX1" ,1, 'tX1' ,'pl" ,1, ..
'PSTART' , 'tX2' 1, 'tX2' ,'p2' ,1}

15.2.3TDF: 'tX1_pre.m’

function [fire, PN,new_color, override, selected_tokens,

global_info] =

tX1 pre(PN, new_color, override, selected_token s, global_info)
% tX1_pre
%
[acquired, PN] = acquire_resource(PN, t™xX1'),
if ~acquired, % if not suceeded

PN = priority_increment(PN, t™X1'"); % increase trans priority
end;

fire = acquired;

15.2.4TDF: 'tX1_post.m’

function [PN,global_info] = tX1_post(transition, PN, global _info)
% tX1_post

%

[released, PN] = release_resource(PN, tX1'); % release semafor

15.2.5 Results: Plot

10 T T T T i
l l l l pL
£ T o T T p2
| | | |
8- - - -~ |- - - - = - - - +- -5 / - — -
| | | | |
| | | | |
T [[I A [
| | | // |
6l - — - — - o Lo /L Vo [
| | | | |
| | / | |
5F—-—-—-—- == === ey el 4 -- == - ==
| | / | |
| | | | |
A - [e oo
| / | | |
[S I T I Q1 [
| | | | |
| | | | |
2F-—-—-- -t - —- -—=-- - - - ===
/ | | | |
) | | | |
i [[E [
| | | | |
0 1 1 1 1 1
0 50 100 150 200 250 300

73

15.3 Example-18: Using Resource Specific

74

16. Using Hourly Clock

So far, we have treated clock as a unitless timhenjl always start at O during simulation
start, and will increase afterwards. However, isibess modeling applications, it will be
much better to use an hourly clock, a clock thasuend shows time in hours, minutes, and
seconds. The following example explains the issue.

CAUTION! CAUTION!

Time in hourly format must be given as a vector with
3 columns (e.g. 1:00 PM as [13, 0, 0]); you can mix
times in 3 column hourly format with single
numbers; however, these single numbers will be
taken as seconds.

E.g.:

[0 40 0] is equivalent to 40 minutes (or 2400 seconds)
'unifrnd(40,40)*60' is equivalent to 2400 seconds (40*60)

180 is equivalent to 180 seconds

16.1 Example-19: Hourly Clock for Lunching Clerks

An office opens at 09:00 AM on every business daystomers arrive at every 30 minutes.
There are two clerks who will interact with the mmers. The clerks take 40 minutes to
service a customer.
The office closes at 01:00 PM, and no customer hellallowed into the office. However,
those customer(s) already reside inside the offiiebe serviced.
1. Case-A: What time the last customer will leave tffice, after finishing his/her
business?
2. Case-B: Suppose, there will only one clerk avadafstbom 12:00 Noon, how the
departure time of the last customer will change?

16.1.1 Functions for hourly clock

First of all, we want to start the simulation at@® AM. This can be fed into the model
through the global_info packet.

global_info.STARTING_AT =[9 0 0]; % start 09:00:00 HH:MM:SS |

In MSF, to assign firing times to clerk (40 minuteach), and customer arrival (every 30
minutes), we may either use the hourly clock fororaimes in seconds:

dyn.firing_times = { tGENNEW', 3060, 'tCRK1' , 'unifrnd(40,40)*60'
tCRK2' , [0 40 OJ};

Note: Because of the use of hourly clock formdts, functionsprint_statespaceandplotp
display time information in hourly formats.

75

16.2 Case-A: Two clerks work all the time

MSF:

% Example-31: Hourly clock for lunching clerks

clear; clc;
global_info.LOOP_NUMBER = 1;
global_info.MAX_LOOP = 50;

global_info.STARTING_AT =[9 0 0]; % start 09:00:00 HH:MM:SS

%%%% COMPOSE %%%%%%%

png = petrinetgraph(‘clerksNEW_def');

%%%% DYNAMIC DETAILS %%%%

dyn.initial_markings = { 'PGEN' ,1, 'pQUE' ,1};

dyn.firing_times = { tGENNEW',30*60, 'tCRK1' , ‘unifrnd(40,40)*60' -

tCRK2' , [0 40 O};

%%%% SIMULATE %%%%%

[RES] = gpensim(png, dyn, global_info);
plotp(RES, { 'PEND' }), grid on;
print_statespace(RES);

PDF:

% Example-31: Hourly clock for lunching clerks

% PDF

function [PN_name, set_of places, set_of trans, set_of arcs]

= clerksNEW_def(global_info)

PN_name = 'The Two Clerks' ;
set_of places ={ 'PGEN' , 'pQUE', 'pEND' };
set_of trans={ tGENNEW', 'tCRK1' , 'tCRK2' }

set of arcs={ 'pGEN' , tGENNEW',1, "GENNEW', 'pGEN' 1,
TGENNEW', 'pQUE' ,1, ..
'PQUE' , TCRK1" ,1, 'tCRK1" ,'pEND' ,1, ...
'PQUE' , tCRK2' ,1, 'tCRK2' ,'pEND' ,1};

TDF for customer arrival:

% Example-31: Hourly clock for lunching clerks
% TDF for customer arrival generation

function [fire,new_color,override, selected_tokens,global i nfo] =
tGENNEW_def (PN, new_color, override, selected tokens, global_info)

ct = compare_time (PN.current_time, [13 0 0]);
if le(ct, 0),
fire = 1;
else
fire=0;
end;

76

16.2.1 Simulation results

Simulation results show that the last customerdsatl4:10 whenboth clerks function all
the time.

Time: 14:10:00
State: 19
Fired Transition: tCRK1
Current State:
pPEND pGEN pQUE
10 1 0

10 :
PCRK1
or PCRK2 |
ol PEND
70 i
6l]
5l —]
4t — i
3l]
20 i
) AL AN AAA
% 10 11 12 13 14 15

16.3 Case-B: Only one clerk functions from 12:00 Noon
The only change will be the introduction of TDF fore of the clearks.

TDF for clerk-1 (‘tCLR1_def.m’):

% Example-31: Hourly clock for lunching clerks
% TDF for clerk-1

function [fire,new_color,override, selected_tokens,global i nfo] =
tCRK1_def (PN, new_color, override, selected_to kens, global_info)

ct = compare_time (PN.current_time, [12 0 0]);
if It(ct, 0),

fire = 1;
else

77

fire=0;
end;

16.3.1 Simulation results

Simulation results show that the last customerdsatl4:40 whenonly one clerk functions
after 12:00 Noon

Time: 14:40:00
State: 19
Fired Transition: tCRK2
Current State:
pEND pGEN pQUE
10 1 0

10

0 L L L L L L L L L
9 10 11 12 13 14 15 16 17 18 19

HOURS

Figure-27. Plot showing time in hourly format.

78

17. Hybrid Systems: Petri Net Models with Fuzzy Infererce

This section talks about incorporating MATLAB tookles within Petri net models. This
section presents an example on how to incorponaeyfinference engines in Petri net

models.

79

18. Colored GPenSIM

So far, we have treated tokens in place as indisigmable. All the tokens inside a place are
the same; it does not matter which token arrived the place first or last. It does not matter
either whether a token is deposited into a placers transition or other. But, all these are
going to be changed: from now on, every token igus identifiable with a unique token ID.

When using colors in GPenSIM, the following issaes important:

1. Only transitions can manipulate colors (see sedR)

2. Colors are inherited by default: that is when aetokres, it collects all the colors
from the consumed (input) tokens and then it pabsese to the deposited (output)
tokens. However, color inheritance can be prevehteadverriding (see section
12).

3. An enabled transition can select specific inputettk based on preferred colors
(see section 13).

4. An enabled transition can select specific inpuettkbased on the time tokens are
created (see section 14).

5. Structure of tokens; this is discussed in the foilhg subsection

18.1 Structure of Tokens

A token has a structure consisting of 3 elements:
1. tokID (integer value): a unique token ID
2. creation_time (integer value): the time the token was createdabtyansition.
Please note that this time may be different fromsgIthan) the time the token was
actually deposited into a place.
3. t_color (set of strings): a set of colors

E.g.:
tokID: 101
creation_time: 30
t_color: {TAMIL', 'NORSK', 'ENGLISH 1

80

81

19. Color Inheritance

In GPenSIM, colored tokens can only utilized bynsiions; since transitions are active,
transition definition files can be coded with caiing colored tokens:

1. When a transition firejt inherits colors of all input tokens; thus new tokens
deposited into output places would have all thermsoinherited from the input tokens.
NOTE: inheritance of colors can be prohibited by oerriding .

When a transition firest can choose input tokens with specific colors

When new tokens are deposited into the output pla@e colors can be added by
the transition. This new color will in addition to the inheritedolors (unless
inheritance is overridden — in this case of ovémgd the deposited tokens into the
output places will only have the new color addedhgytransition)

w N

Let us experiment coloring with the help of a simpkample candidly called ‘simple_adder’

19.1 Example-15: Simple Adder
This example presents an adder that adds two nenrigaut by the user.

tGET_NUM1
pl U pNUM1 tCONVERT
tGET_NUM2 pADDED PRESULT

O
—

pNUM2

Figure-28. Simple Adder

Petri net model of a simple adder has 6 placedanansitions. Placgsl andp2 are just to
keep the initial tokens so that the system can thgesl. TransitiondGET_NUM1 and
tGET_NUM2 get an input number each from the user; let sayntimbers fed by the user are
21 and 45. Then these two transitions convert thabers into strings'21’ and‘45) and
then add the strings as colors to the output toldemosited intgpNUM1 and pNUM2
respectively. Thus, the placedlUM1 andpNUM2 have tokens with input numbers as the
colors.

TransitiontADD does nothing in terms of colors. When it fires,default, it deposits a token
into the output place with the inherited colorsnike, the token in plaggADDED will have
two colors ({'21’, ‘45}).

The final transitiotCONVERT does five activities:

82

First it gets the two colors (strings ‘21’ and ‘}6¥ the token in placeADDED.

Then it converts the strings into numbers (21 &g 4

It adds these two numbers together to make the(66n

Then it coverts the sum into a string (‘66’), and

Finally, it adds this string as color to the toladgposited into the plagegRESULT.
The transition will also override inheritance sattthe sum will be the only color of
the token deposited iNIRESULT

aorwnhE

19.1.1 MSF: 'simple_adder.m’

% MSF for Example-15: simple_adder.m

clear, clc;

pn = petrinetgraph('simple_adder_def');

dynamicpart.initial_markings = { 'pl" 1, 'p2" 1}

[results] = gpensim(pn, dynamicpart);

print_colormap(results, { ‘pl" , 'p2' ,'pNUML',, ..
‘PNUM2' , 'PADDED', 'pRESULT' });

19.1.2 PDF: 'simple_adder_def.m’

% PDF for Example-15: simple_adder_def.m

function [PN_name, set_of places, set_of trans, set_of arcs]...
= simple_adder_def(global_info)

PN_name=Color example: Simple Adder' ;
set_of places={ ‘Pl , 'p2' , 'pNUM1', 'pNUM2', 'pADDED', 'pRESULT" };
set_of trans={ tGET_NUM1' , tGET_NUM2' , tADD' , ‘tCONVERT' };
set of arcs={ 'p1' ,'tGET_NUM1',1, "1GET _NUML1' 6 'pNUM1',1, ...
'p2' ,tGET_NUM2' ,1, 'tGET_NUM2' , 'pNUM2' 1, ...
‘PNUM1' , tADD' ,1, 'pNUMZ2', 'tADD' ,1,
tADD' , 'pADDED',1, 'pADDED', tCONVERT' ,1,
tCONVERT' , '/pRESULT' ,1};

83

19.1.3TDF: tGET_NUM1.m’
The TDF will ask the user to input a number:

function [fire, new_color, override, selected_tokens,global _info] =
tGET_NUM1_def (pn, new_color, override, selecte d_tokens,global_info)
%% TDF: tGET_NUM1_def

numl =input('input number-1:");
new_color = num2str(hum1l);

fire=1; %always fire

19.1.4TDF: tGET_NUM2.m’
The TDF will ask the user to input another number:

function [fire, new_color, override, selected_tokens,global _info] =
tGET_NUMZ2_def (pn, new_color, override, selecte d_tokens,global_info)
%% TDF: tGET_NUM2_def

numz2 = input(‘input number-2:");
new_color = num2str(hum2);

fire=1; %always fire

19.1.5TDF: tADD.m’

There is no need for TDF tADD It, by default, inherits colors from input tokesausd put the
colors to the output token.

19.1.6 TDF: tCONVERT.m’

function [fire, new_color, override, selected_tokens,global _info] =
tCONVERT_def (pn, new_color, override, selected _tokens,global_info)
%% TDF: tCONVERT _def

% first, select any token
tokID = select_token(pn, 'PADDED' , 1);

% second, get the colors of the selected token
colors = get_color(pn, tokID);

numl = str2num(colors{1}); % convert color-1 into number
numz2 = str2num(colors{2}); % convert color-2 into number

new_color = num2str(hnuml+num?2);
override = 1; % only sum as color - NO inheritance

fire=1; %always fire

84

19.1.7 Simulation Results

The statement,
print_colormap(results, { 'pl" ,'p2' , 'pNUML', 'pNUM2' , 'pADDED',

'PRESULT" });
prints colors of all the places. As shown in theeso dump below,

* plhas no colors,

* p2has no colors,

* pNUML1 has ‘21’ as the color,

e pNUM2 has ‘45’ as the color,

* pADDED has both ‘21’ and ‘45’ as colors, and

« pRESULT has ‘66’ as the color

input number-1: 21
input number-2: 45

Color Map for place: p1

Color Map for place: p2

Color Map for place: pNUM1
Time: 0
3t

Color Map for place: pNUM2
Time: 0
45"

Color Map for place: pADDED
Time: 0
‘21" '45

Color Map for place: pRESULT
Time: 0
66

19.2 Example-16: Alternative Design for Simple Adder

In the previous subsection, the sum is stored @d@ inside a token that was deposited on
the placgpRESULT. You may prefer getting the sum as a variablesmthat it can be freely
used as you want. You can achieve this with a grdpkign change.

85

In addition to storing the sum as a color on thgodéed token, you can also let the transition
tCONVERT to store the sum as an elemenglabal_info. In fact,global_info is meant for
this kind of activities, getting information somesvk within a transition so that the
information can be passed to subsequent transiindsack to the main simulation file. The
new tCONVERT given below does the same five activities, but st activity includes
storing the sum as an elemengtdbal_info:

The final transitiotCONVERT does five activities:

1. (no change) It gets the two colors (strings ‘21d&A5’) of the token in place
pADDED.
(no change) Then it converts the strings into nusfZl and 45),
(no change) It adds these two numbers togetheate@the sum (66).
(no change) Then it coverts the sum into a striég’), and
(REVISED) Finally, it adds this string as color to the toldaposited into the place
PRESULT. The transition will also override inheritance that the sum will be the
only color of the token deposited iIf&RESULT In addition, the sum will be stored
as an element of global_info.

agkrwpd

The new TDF fotCONVERT is given below:

function [fire, new_color, override, selected_tokens,global _info] =
tCONVERT _def (pn, new_color, override, selected _tokens,global_info)
%% TDF: tCONVERT _def

% first, select any token from pADDER
tokID = select_token(pn, 'PADDED' , 1);

% second, get the colors of the selected token
colors = get_color(pn, tokiD);

numl = str2num(colors{1}); % convert color-1 into number
numz2 = str2num(colors{2}); % convert color-2 into number
sum = numl + numz2;

new_color = num2str(sum); % set the sum as the new color
global_info.sum = sum; %%% sum is added to global_info
override = 1; % only sum as color - NO inheritance

fire=1; %always fire

There will be slight modifications in the MSF too:

1. To start the simulations, we have to pgleal_info with the elementsum’ to gpensim

2. After simulations, we do not need to print the colap to study the results; instead we
will inspect theglobal_info.

The new MSF is given below:

% MSF for Example-16: Simple Adder with Color (Vers ion 2)
% FILE simple_adder_2.m

86

clear, clc;

pn = petrinetgraph('simple_adder_def');
dynamicpart.initial_markings = { 'pl" 1, 'p2" 1}

global_info.sum = 0; %% this is necessary

[results, global_info] = gpensim(pn, dynamicpart, g lobal_info);

%% print value of the element 'global_info.sum'
disp(['The sum of two numbers : ' , hum2str(global_info.sum)]);

The result printed on the screen is given below:

input number-1: 21
input number-2: 45

The sum of two numbers : 66
>>

87

20. Token Selection based on Color

A transition may select input tokens based on cdlbis is done by executing the function
select_token_color. There are 4 input parameters to this function:Re&i net structure
at run-time, the input place of the transition, f@mof tokens to be selected, and finally the
required color of the token.

The output parameter of the function is a set of tDthe selected tokens (settokID). Of
course, the number of returneaklID may be not equal to the number originally wantgd b
the transition, depending on availability.

Usage example: if a transition wants 4 tokens ftioeninput placegBUFF with color ‘TYPE-
A’, then the transition will execute the followirsgatement:

X = select_token_color(PN, '‘PBUFF' 4, 'TYPE-A');

The returned valuX is a set otokID consisting otokID for 0-4 tokens. If X is empty then
no tokens are available with the required colorX I€onsists on 1, 2, or ®kID, then the
request by the transition is partially fulfilledf X consists of 4tokID, then the request is
fulfilled fully.

20.1 Example-17: Selecting Input Tokens with Specific or

Figure given below depicts a production procesacédGEN represents raw materials, and
transitiontGEN represents a machine that produces 3 types otiptaid

* ‘type-A’ with 10% production rate,

* ‘type-B’ with 30% production rate, and

* ‘type-C’ with rest 60% of the time.

Though bufferpBUFF contains all three types of products, Transiti@nis supposed to
select ‘type-A’ products only. SimilarlyB selects ‘type-B’ products an@ selects ‘type-C’
products only.

pGEN

Figure-29. Selecting tokens with specific color

88

During simulationstGEN adds new color to tokens that will be depositepBUFF. The
new color will be ‘type-A’ 10% of the time, ‘type:B0% of the time and ‘type-C’ 60% of
the time. SinceA will consume only tokens with color ‘type-A’, toke with color ‘type-A’
are deposited ipA; similarly, pB andpC will have only tokens with color ‘type-B’ and
‘type-C’ respectively.

20.1.1 MSF

The main simulation file is given below; it showst number of initial tokens ipGEN is
100:

% MSF for Example-17: COLOR Selection EXAMPLE
global_info.ratio_A=0.10;
global_info.ratio_B=0.30;
global_info.ratio_C=0.60;

png = petrinetgraph('select_color_def');
dyn.initial_markings = { 'PGEN' ,30};

[RES] = gpensim(png, dyn, global_info);
plotp(RES,{ 'pA" , 'pB' , 'pC' });
print_colormap(RES, { 'pA" , 'pB'" , 'pC' };

20.1.2PDF
The Petri net definition file is given below:

% PDF for Example-17: COLOR Selection EXAMPLE
function [PN_name, set_of places, set_of trans, set_of arcs]
= select_color_def(global_info)

PN_name = 'SELECT COLOR Example' ;
set_of places ={ 'PGEN' , 'pBUFF' , 'pA" , 'pB' , 'pC' }
set_of trans={ tGEN' , 'tA" , 'tB" , 'tC' }

set of arcs={ 'pGEN',tGEN' ,1, 'GEN' ,'pBUFF' |1,
'PBUFF" |, tA" 1, tA" ,'pA" 1, ..
'‘PBUFF' ,tB' ,1, 'tB' ,'pB' 1, ..
'‘pPBUFF ,'tC' ,1, tC' ,'pC' ,1}

20.1.3 TDF: tGEN_def.m’

The first transition definition file is for the maitiontGEN. The only task of this transition
definition file is to produce tokens with a colerther ‘type-A’ or ‘type-B'.

function [fire,new_color,over_ride, selected_tokens,global__ info] =
tGEN_def (PN, new_color, over_ride, selected_to kens, global_info)

random_number = rand(1);

89

if (random_number < global_info.ratio_A),
new_color = ‘type-A'

elseif (random_number < (global_info.ratio_A + global_inf o.ratio_B)),
new_color = 'type-B'

else
new_color = ‘type-C'

end;

fire = 1;

From the above code, it is visible, that the tramsialways fire if enabled (fire=1); however,
it also add a color (‘type-A’, ‘type-B’ or ‘type-¢Cto new tokens deposited imp@UFF.

20.1.4 TDFs for tA, tB, and tC

The only task of this transition definition file rfdA, tB, andtC is to select tokens with
specific color. In the TDF farA, we force the transitioth to select ‘type-A’ tokens only:

function [fire, new_color, over_ride, selected_tokens,globa |_info] =
tA_def (PN, new_color, over_ride, selected_toke ns, global_info)
%%%% TDF: tA def

tokID = select_token_color(PN, '‘PBUFF' |1, ‘'type-A');
selected_tokens = tokID; % this token must be removed, none other
fire = (selected_tokens); % FIRE ONLY IF 'Selected_tokens' IS NOT EMPTY

First, tokens from input plaggBUFF with color ‘type-A’ is selected by using the furmct
select_token_color The third parameter - ‘1’ - is the number of tokeneeded. If selection is
successful, then the identity number of the setetd&en {okiD) is returned as the output
parameter. By copying tokID teelected_tokens , we inform the system that this token
must be consumed by the transition. Finally, wevalihe transition to fire only if tokID is not
empty, meaning that there exist a token with ‘typeolor.

20.1.5 Simulation results

Figure-23 shows the plot of tokensgA, pB, andpC. Since ‘type-C’ is produced 60% of the
time, there will about 6 times more tokenspi@ than inpA and pB. The results shown in
figure-23 agrees.

90

250

Figure-30. Simulation results of ‘select_color’ demo.

In addition, we can also inspect the colormagpA the only color of any token is ‘type-A’.

Color Map for place: pA
Time: 0
‘type-A'

Color Map for place: pB
Time: 0
'type-B'

Color Map for place: pC
Time: 0
'type-C'

>>

20.2 Required or Preferred Color?

This is an important issue. With a very small cltgnge can allow a transition to prefer
(‘may’) a color than require (‘must’) a color.

In the example given above, we forced the transitfoto select a token with color ‘type-A’.

This is done first by selecting a token with ‘typecolor. Functionselect_token_color
will return tokID if a token is with ‘type-A’ colors available or else returned tokID value will

91

be empty (‘[]). And then we forced the transititm fire only if tokID is not zero, meaning
there is at least one token with the required ¢c@orthat the transition can fire.

However, we may also allow transition poefer ‘type-A’ tokens. This means, if ‘type-A’
tokens are available, they will be consumed; if woie of the other existing tokens of ‘type-
B’ or ‘type-C'will be consumed. The newer TDF giveéelow prefers (rather than forcing)
‘type-A’ tokens:

function [fire, new_color, over_ride, selected_tokens,globa |_info] =
tA_def (PN, new_color, over_ride, selected_toke ns, global_info)

selected_tokens = select_token_color(PN, '‘PBUFF' |1, 'type-A');

fire = 1;

This transition always fires if enabled (because=l), regardless of ‘type-A’ tokens are
available or not. It will also consume ‘type-A’ teks if available (if ‘selected_tokens’ list is
not empty).

Let us think about a generic case: if a transitieadantokens from an input place to fire (arc
weight m), and has obtained numbers preferred tokensef{ected tokens list hasn
tokIDs). If mis greater tham, then the system consumes (removesjumber of specific
tokens (identified by the tokIDs in theelected_tokens list) and the resin-n tokens
will be other arbitrary tokens in the input place.

20.2.1 Simulations

TDFs fortA, tB, andtC are changed so that tokens with specific coloespmeferred (not
required).

Simulations show that now pA, pB, and pC have tshkeith all colors.

Color Map for place: pA
Time: O
type-A' 'type-B' 'type-C'

Color Map for place: pB
Time: 0
type-A' 'type-B' 'type-C'

Color Map for place: pC
Time: 0
type-A' ‘'type-B' 'type-C'

>>

92

20.2.2 Example-18: Selecting Input Tokens with 2 or more @ors

In this example, we make a tiny change¢Acso thatA make select either ‘type-A’ or ‘type-
B’ color.

function [fire, new_color, over_ride, selected_tokens,globa |_info] =
tA_def (PN, new_color, over_ride, selected_toke ns, global_info)
%%%% TDF: tA_def

tokID1 = select_token_color(PN, '‘PBUFF' |1, ‘'type-A');
tokID2 = select_token_color(PN, 'PBUFF' |1, 'type-B');
selected_tokens = [tokID1 tokID2]; % one of these token must be removed
fire = (selected_tokens); % FIRE ONLY IF 'Selected_tokens' IS NOT EMPTY

Now we see that tokens pA have both ‘type-A’ and ‘type-B’ colors.

Color Map for place: pA
Time: 0
type-A' 'type-B'

Color Map for place: pB
Time: 0
'type-B'

Color Map for place: pC
Time: 0
'type-C'

>>

93

21. Summary: Token Selection based on Color

21.1 Token Selection From A Single Input Place

Let’s say that placpAB has tokens with many colors including {{A’, ‘B’X’, ‘Y’, {A’,
‘B}, {A, X}, {A, Y} {B, X}, ... {A, ‘B’, ‘X', ‘Y'}}.

« Transitiont selects token with color ‘A’ frorpAB (meaning tokens with color {*A’}or
{A’, ‘B’} or {'A’, ‘X’} are relevant):
Program code in TDF:
selected_tokens = select_token_color(PN, 'PAB" |1, 'A"); %

fire = (selected_tokens); % MUST

» Transitiont selects ‘A’or ‘B’ from pAB:
Program code in TDF:

toklD1 = select_token_color(PN, 'PAB' 1, A");

toklD2 = select_token_color(PN, 'PAB' |1, ‘B');
selected_tokens = [tokID1 tokiD2]; % tokens to be removed
fire = (length(selected_tokens) >= 1); % MUST

» Transitiont prefers ‘A’ or ‘B’ from pAB:
Program code in TDF:

toklD1 = select_token_color(PN, 'PAB' 1, A");

toklD2 = select_token_color(PN, 'PAB' |1, ‘B');
selected_tokens = [tokID1 tokiD2]; % tokens to be removed
fire =1, %

94

» Transitiont selects a token with ‘Aand ‘B’ from pAB:
Program code in TDF:
selected tokens = select_token_color(PN, 'PAB' 1,{ 'A,'B b;

fire = (selected_tokens); % MUST

21.2 Token Selection From Multiple Input Places

Let’s say that placpAB has tokens with colors {", ‘A’, ‘B’, {{A’, ‘B’}} and pXY has tokens

with colors {*, X', *Y", {X’, “Y'}}.

PAB

* Transitiont selects ‘A’ frompAB and ‘Y’ from pXY:
Program code in TDF:

tokID1 = select_token_color(PN, 'PAB' ,1, 'A');

toklD2 = select_token_color(PN, PXY' 1, X);

selected _tokens = [tokID1 tokID2]; % tokens to be removed
fire = (length(selected_tokens) == 2); % MUST

* Transitiont select ‘A’ frompAB or ‘X’ from pXY (at least one token be ‘A’ or ‘X’):

Program code in TDF:

toklD1 = select_token_color(PN, 'PAB' 1, ‘A");

toklD2 = select_token_color(PN, PXY' 1, X);
selected_tokens = [tokID1 toklD2]; % tokens to be removed
fire = (length(selected_tokens) >= 1); % MUST

» Transitiont prefers ‘A’ from pAB or ‘X’ from pXY:
Program code in TDF:

95

toklD1 = select_token_color(PN, 'PAB' 1, ‘A");

toklD2 = select_token_color(PN, PXY' 1, X');
selected_tokens = [tokID1 toklD2]; % tokens to be removed
fire = 1; % may

96

97

22. Token Selection based on Time

A transition may select input tokens based on tiinethe current version GPenSIM 3.0,
selection can be done based on two policies: ‘FGFBst-Come-First-Served) and ‘LCFS’
(Last-Come-First-Served). Selection of time bas#den is done by executing the function
select_token_time. There are 4 input parameters to this function:Rb#&i net structure at
run-time, the input place of the transition, numbéitokens to be selected, and finally the
time-based selection policy (‘FCFS’ or ‘LCFS’).

The output parameter of the function is a set of tDthe selected tokens (settokID). Of
course, the number of returneaklD may be not equal to the number originally wantgd b
the transition, depending on token availability.

Usage example: if a transition wat®ldest tokens from the input plagegBUFF, then the
transition will execute the following statement:

function

[fire,new_color,override, selected_tokens,global_i

tLR_A_def (PN, new_color, override, selected_to

selected_tokens = select_token_time(PN,

'‘PBUFF" 4,

nfo] =
kens, global_info)

'FCFS');

fire = 1;

If pPBUFF has more than equal to 4 tokens, then tokIDse#tbldest tokens will be returned
in selected_tokens . Otherwise, ifpBUFF has less than 4 tokens, then tokIDs of all the
tokens will be returned.

Similarly, if a transition want® youngesttokens from the input placeBUFF, then the
transition will execute the following statement:

function

[fire,new_color,override, selected_tokens,global i

tLR_A_def (PN, new_color, override, selected_to
selected_tokens = select_token_time(PN,

fire = 1;

'PBUFF' 2,

nfo] =
kens, global_info)

'LCFS');

98

22.1 Example-19: Token selection based on time

Figure-24 shows the example for token selectiord@s time. pSTART has 3 initial tokens
(initial tokens are of course colorless). tCOL aclmlors to the tokens it deposits into
pPQUEUE. The branch “pDLY-tDLY-pRDY” is a delay, juso keep tSEL wait until all the
three tokens are deposited into pPQUEUE.

tCOL adds color to tokens followingly:

» Gets current time from the system.

» Converts current time into ASCII string
* Adds the ASCII string as color

This means all the three tokens deposited into pQEJ&ill have colors reflecting the time
they were made by tSEL.

DL
O, >
. -
tCOL pSEL
pSTART U
pJUEUE
Figure-31. FCFS example

22.1.1 PDF: fcfs_def.m

% PDF for Example - 19: Token selection based on time
function [PN_name, set_of places, set_of trans, set_of_arcs]
= fcfs_def(global_info)

PN_name = 'FCFS - LCFS DEMO"
set_of places = { 'PSTART' , 'pQUEUE', 'pDLY' , 'pRDY' , 'pSEL' };
set_of_trans={ tCOL' , 'tSEL' , 'tDLY' };
set of arcs={ 'pSTART' ,'tCOL" ,1, 'tCOL' ,'pQUEUE',1, ...
'PQUEUE', tSEL' ,1, 'tSEL' , 'pSEL' ,1, ...
'pDLY" , tDLY" ,1, 'tDLY' ,'pRDY' 3, ...
'‘PRDY" |, tSEL" ,1};

99

22.1.2 MSF: fcfs.m

% MSF for Example-19: Token selection based on time

png = petrinetgraph('fcfs_def');
dyn.initial_markings = { 'PSTART' ,3, 'pDLY" 1}
dyn.firing_times = { tcoL' ,1, 'tbLY' ,100, 'tSEL' ,10};

RES = gpensim(png, dyn);

print_statespace(RES);
print_colormap(RES, 'PSEL");

22.1.3TDF: tCOL_def.m

function [fire, new_color, over_ride, selected_tokens,globa |_info] =
tCOL_def (PN, new_color, over_ride, selected_to kens,
global_info)

%%%% TDF: tCOL_def

% add color
new_color = num2str(PN.current_time);

fire = 1;

22.1.4TDF: tSEL_def.m

function [fire,new_color,override, selected_tokens,global_i nfo] =
tSEL_def (PN, new_color, override, selected_tok ens, global_info)

selected_tokens = select_token_time(PN, 'PQUEUE' ,1, 'FCFS');

fire = 1;

22.1.5 Simulation Results

The simulation result clearly shows tH&EL selects tokens on “FCFS” basis. p$EL, 3
tokens arrive; the first token had color ‘0’ theniae a token with color ‘1" and finally, come
token with color ‘2’.

step:7 Firing event: tSEL (Starting time: 12 0) Finishing Time: 130
Current markings:

pSTART pQUEUE pDLY pRDY pSEL

0 0 0 0 3

Completion time: 130

100

Displaying token colors (WARNING: processing takes time
Color Map for place: pSEL
Time: 110
0
Time: 120
o 7
Time: 130
0 "1 2

22.1.6 Simulation results for LCFS
Let’s change selection policy to LCFS:

function [fire,new_color,override, selected_tokens,global i nfo] =
tSEL_def (PN, new_color, override, selected_tok ens, global_info)

selected_tokens = select_token_time(PN, 'PQUEUE' ,1, 'LCFS'),

fire = 1;

Then the simulation result also depicts LCFS seladiytSEL:

step:7 Firing event: tSEL (Starting time: 12 0) Finishing Time: 130

Current markings:

pSTART pQUEUE pDLY pRDY PpSEL
0 0 0

Completion time: 130

Displaying token colors (WARNING: processing takes time
Color Map for place: pSEL
Time: 110
o
Time: 120
lll l2l
Time: 130
0 2

101

102

Part-Il: Applications

104

23. Modeling a Single Runway Airport
This project is to model a single runway airpotieTaim is to propose a simple dynamic Petri

net model that describes the traffic flow of a &ngunway (RWY) due to schedule (i.e.
estimated times of arrivals and departures).

23.1 Description of the Model

Though the runway to be modeled is simple, it cgtesof the important elements of the
runway dynamics.

23.1.1 Assumptions

In order to obtain a relatively simple model famsiation and dynamic analysis purposes, the
following modeling assumptions are made:

e There are only three types of aircrafts (A/C) haddby the airport.

* The three types of A/Cs use pre-calculated runwagth

23.1.2 Model elements

The important elements of the model are:

* Runway (RWY)

* Four taxiways (TWY)

» Aircrafts (A/Cs), arriving, taxing, engaged in tenals, and departing
* Rules that govern the interaction between A/C aselaf the RWY

The characteristic properties of each of the metlghents are as follows.

23.1.3 Runway (RWY) and taxiways (TWY)

A single 2500 m runway is considered with twd WY on both end and two rapid exit
taxiways (RETS) located at approx. 1000 m and 1®m0fflom approach end threshold (see
figure 2).

23.14 The three categories of A/Cs

The difference between aircraft is based on Inteynal Civil Aviation Organization (ICAO)
threshold speed categories (A to E). Only aironafih categories A, B and C are considered.
The selected traffic mix contains the following égpof aircraft with percentage:

1. Category-A (e.g. lighter Cessna A/C): 30%,

2. Category-B (e.g. Medium Business Jets): 10%

3. Category-C (General Passenger Traffic): 60%

Category-A, B, and C A/Cs occupy 1500, 2000, 25@ens of the RWY for landing and
take-off, respectively.

105

Figure-32. Elements of the runway

23.1.5 Governing rules
The following rules are used to control the intéats between A/C and the use of the runway.

1. Arrivals have priority on departures

2. A landing aircraft will not normally be permitted ttross the runway threshold on its final
approach until the preceding departing A/C hassadghe end of the runway, or has started a
turn, or until all preceding landing A/C are cledithe RWY. That is,he model is governed by
elementary air traffic control (ATC) principles,uas, only one aircraft at a time on
RWY, and arrivals have priority over departures.

23.1.6 Timing for simulations

Runway occupancy times (ROT) for landing and dejest are assumed to be equal for a
specific category A/C:

» Category-A A/Cs take 5 minutes (and first 1500 nthef RWY)

» Category-B A/Cs take 7 minutes (and first 2000 nthefRWY)

» Category-C A/Cs take 9 minutes (and the whole 280ff the RWY)

Besides:

* For arriving A/Cs, taxiing through any TWYs takemtutes;

» For departing A/Cs, lineup time for take-off is sataxiing time for arriving A/Cs

* A/Cs arrive at a rate of 15-60 minutes (assumeagamtiming)

* Arrived A/C take service time (offloading and onabding passengers and goods) of
about 45 minutes

* Initially, there may be some A/Cs parked on turfterminals (assume any number of
A/Cs)

* YOU MAY ASSUME ANY OTHER TIMING

23.2 The Petri net Model

106

23.2.1 The Elements

e Air crafts

* Runway

» Exit ways (for taxiing)
e Terminal, and

e Control tower

23.2.2 Process Modules

Figure-33. Elements of the runway

107

23.2.3 The Petri net Model

SBOUT T l LAMNDING
LAND —

ARRIVAL

:

_|
=
s
=
Gl
ABOUT TO
TAKECFF
TAKE OFF I__.
Figure-34. The Petri net model showing only one terminal

23.2.4 Places and transitions

* Module-1: ARRIVAL: pARR, tARR
* Module-2: ABOUT TO LAND: pW4L: Wait for landing
tGPL: Granting Permission for landing
* Module-3: LANDING: pR2L: Ready to Land;
tLR1: Landing RWY length-1; tLR2: Landing RWYngth-2;
tLR3: Landing RWY length-3; pACL: A/C Landed
e Module-4: TAXIING: tT2T: Taxiing to Terminal;
tT2R: Taxiing to RWY
e Module-5: TERMINAL: pR2B: Ready to Board,;
tBRD: Boarding; pR2D: Ready to depart
e Module-6: ABOUT TO TAKEOFF: pWA4T: Wait for Takeoff;

108

IYMIWEIL

tGPT: Granting Permission for Takeoff
* Module-7: TAKEOFF: pR2T: Ready to Takeoff;
tTR1: Takeoff RWY length-1; tTR2: Takeoff RWYngth-2;
tTR3: Takeoff RWY length-3; pACD: A/C Departed
e Module-8: CONTROL: pCTR1: Runway to Control Tower,
pCTR2: Control Tower 2 Runway
tCLC: clear token color

23.3 Program Code: MSF

23.3.1 MSF

%%%%%6%%% %% %% %% %% %% %% %% %% % %% % % %% % % %% % % %% % % %% % % %%
% NARVIK; modeling a single runway airport

%%%%%%%%%%% %% %% % %% %% % %% % % %% % % %% % %% %% % %% % % %% %0 % %%
clear; clc;

global_info.ratio_A=0.30;

global_info.ratio_B=0.10;

global_info.ratio_C=0.60;

global_info.MAX_LOOP = 200;
global_info.LOOP_NUMBER = 1;

ARRIVAL_FREQUENCY = 30; % the main variable !!!

%%%% STATIC DETAILS %%%%

png = petrinetgraph('single_rwy_def’);

%%%% DYNAMIC DETAILS %%%%

dyn.initial_markings = { 'PARR' ,100, 'pCTR2' ,1};
dyn.firing_times = { tARR' , ARRIVAL_FREQUENCY, 'tGPL"' ,0,

tLRA" 5, 'tLRB' ,7, 'tLRC')9, ..
tr2Tm 5, 'tBRD' ,45, 'tT2R' .5, 'tGPT" ,0, ...
tTTRA' 5, 't{TRB' 7, 'tTRC' ,9}

%%%% SIMULATE %%%%%

[RES, global_info] = gpensim(png, dyn, global_info) ;
print_statespace(RES);

plotp(RES,{ 'pw4L' , 'pR2B' , 'pWAT' });

23.4 Program Code: PDF

function [PN_name, set_of places, set_of trans, set_of arcs]
= single_rwy_def(global_info)
% PDF: single_rwy_def

PN_name = 'SINGLE RWY" ;

set_of places ={ 'PARR' , 'pW4L' , 'pR2L' , 'pACL' , 'pR2B' ,
'‘pR2D' , 'pWAT' , 'pR2T' , 'pACD', 'pCTR1' , 'pCTR2' };

109

set_of trans = { tARR' , 'tGPL' , 'tLRA' ,'tLRB'
727" , 'tBRD' , 'tT2R" , "tGPT' ,
tTTRA" ,'tTRB' ,'tTRC' , 'tCLC' }

set_of arcs ={

'PARR' , tARR' ,1, 'tARR' ,'pARR' 1,
‘w4l tGPLY 1, tGPL' , 'pR2L' 1,
‘pPR2L" ,'tLRA" 1, 'pR2L" ,'tLRB' 1,
tLRA' |, 'pACL" ,1, 'tLRB' ,'pACL"' ,1,
'‘PACL" ,tT2T" 1, 'tT2T" ,'pR2B' ,1, ..
'‘pPR2B' , 'tBRD' ,1, 'tBRD' ,'pR2D' ,1,
'pR2D" |, 'tT2R' ,1, 'tT2R' ,'pW4T' |1,
PWAT' |, tGPT' |1, "tGPT' , 'pR2T' 1,
‘pPR2T" ,tTTRA" |1, 'pR2T' ,'1tTRB' .1,
tTTRA'" ,'pACD' ,1, 'tTRB' ,'pACD' 1,

tLRA' , 'pCTR1'
'tTRA' , 'pCTR1'
'pCTR1' , tCLC'
'pCTR2' , tGPL'

, 'tLRB'" , 'pCTR1' ,1,
tTTRB' , 'pCTR1" ,1,
, tCLC" ,'pCTRZ' .1, ..
, 'PCTRZ2' , tGPT" ,1,

PR PR P

, tLRC' , ...

tARR' , 'pWA4L' |1, ..

'pR2L" ,'tLRC' 1,
tLRC' , 'pACL' 1, ...

‘PR2T" ,tTTRC" 1,
tTRC' , 'pACD' 1, ...
tLRC' ,'pCTR1' 1, ..
tTTRC' , 'pCTR1' 1, ..

23.5 Program Code: TDFs

23.5.1 TDF for tGPL (Adding Color)

function [fire,new_color,over_ride, selected_tokens,global__

tGPL_def (PN, new_color, over_ride, selected_to

% function [fire,new_color,selected_tokens,global _i
% new_color, selected_tokens, global_info)

over_ride = 1;

random_number = rand(1);

if (random_number < global_info.ratio_A),
new_color = 'CAT-A" ;
global_info.A_count = global_info.A_count + 1;

elseif and ((random_number >= global_info.ratio_A),

(random_number < (global_info.ratio_A + glo

new_color = 'CAT-B' ;
global_info.B_count = global_info.B_count + 1;

else
new_color = 'CAT-C' ;
global_info.C_count = global_info.C_count + 1;

end;

fire = 1;

info] =
kens, global_info)

nfo] = t2_def (PN,...

Bél_info.ratio_B))),

23.5.2 TDF for tLRA (Landing A-type AC)

function [fire, new_color, over_ride, selected_tokens,globa

|_info] =

110

tLRA_def (PN,new_color, over_ride, selected_tok ens, global_info)

% function [fire,new_color,selected_tokens,global i nfo] = ...
% tLRA def (PN,new_color, selected_tokens, global _info)
selected_tokens = select_token_with_colors(PN, '‘pR2L" ,1, 'CAT-A");
if ~isempty(selected_tokens),

global_info.tLRA_count = global_info.tLRA_count +1;

fire = 1;
else

fire = 0;
end;

23.5.3 TDF for tLRB (Landing B-type AC)

function [fire, new_color, over_ride, selected_tokens,globa |_info] =
tLRB_def (PN,new_color, over_ride, selected_tok ens, global_info)
% function [fire,new_color,selected_tokens,global_i nfo] = ...
% tLRB_def (PN,new_color, selected_tokens, global _info)
selected_tokens = select_token_with_colors(PN, '‘pR2L" ,1, 'CAT-B');
if ~isempty(selected_tokens),
global_info.tLRB_count = global_info.tLRB_count +1;
fire = 1;
else
fire = 0;
end;

23.5.4 TDF for tLRC (landing C-type AC)

function [fire, new_color, over_ride, selected_tokens,globa |_info] =
tLRC_def (PN,new_color, over_ride, selected_tok ens, global_info)
% function [fire,new_color,selected_tokens,global i nfo] = ...
% tLRC_def (PN,new_color, selected_tokens, global _info)
selected_tokens = select_token_with_colors(PN, '‘pR2L" ,1, 'CAT-C');
if ~isempty(selected_tokens),
global_info.tLRC_count = global_info.tLRC_count +1;
fire = 1;
else
fire = 0;
end;

23.5.5 TDF for tTRA (Take Off, A-type AC)

111

function [fire, new_color, over_ride, selected_tokens,globa |_info] =

tTRA_def (PN,new_color, over_ride, selected_tok ens, global_info)
% function [fire,new_color,selected_tokens,global i nfo] = ...
% tTRA_def (PN,new_color, selected tokens, global _info)
selected_tokens = select_token_with_colors(PN, '‘PR2T" ,1, 'CAT-A");
if ~isempty(selected_tokens),

fire = 1;
else

fire = 0;
end;

23.5.6 TDF for tTRB (Take Off, B-type AC)

function [fire, new_color, over_ride, selected_tokens,globa |_info] =
tTRB_def (PN,new_color, over_ride, selected_tok ens, global_info)
% function [fire,new_color,selected_tokens,global_i nfo] = ...
% tTRB_def (PN,new_color, selected_tokens, global _info)
selected_tokens = select_token_with_colors(PN, 'PR2T" ,1, 'CAT-B');
if ~isempty(selected_tokens),
fire = 1;
else
fire = 0;
end;

23.5.7 TDF for tTRC (Take Off, C-type AC)

function [fire, new_color, over_ride, selected_tokens,globa |_info] =
tTRC_def (PN,new_color, over_ride, selected_tok ens, global_info)
% function [fire,new_color,selected_tokens,global i nfo] = ...
% tTRC_def (PN,new_color, selected_tokens, global _info)
selected_tokens = select_token_with_colors(PN, '‘PR2T" ,1, 'CAT-C');
if ~isempty(selected_tokens),
fire = 1;
else
fire = 0;
end;

112

23.5.8 TDF for tCLC (removing color in tokens)

function [fire,new_color,over_ride, selected_tokens,global__ info] =
tCLC_def (PN, new_color, over_ride, selected_to kens, global_info)

% function [fire,new_color,selected_tokens,global i nfo] = ...

% tCLC_def (PN,new_color, selected_tokens, global _info)

over_ride = 1;
fire = 1;

23.6 Simulation Results
Finding the Bottleneck for varying arrival rate:

il

0 5
0 200 400 600 800 1000 1200 1400

1

0.9F

0.8+

0.7

0.6

0.5

0.4H

0.3

0.2

0.1

Figure-35. Arrival of ACs: every 60 min

113

2.5+

1.5+

200 300 400 500 600 700 800 900

100

Arrival of ACs: every 40 min

Figure-36.

600

pWa4L
--<-- pR2B
——e—- pWA4T

500

400

300

200

100

16
14+

Arrival of ACs: every 20 min
114

Figure-37.

23.7 Discussion

« For all frequencies (like flights every 60 min, #in, and 20 min), maximum number
of flights waiting in the air (‘pWA4L’) is 1. Therefe RWY is not the bottleneck.

e Condition-1 (at any time, only one AC in RWY) idiséied structurally.

* How to satisfy ATC Condition-2: Landing has prigrdver takeoff?

* Only one gate is used in the model. Thus, Gateedottleneck in simulations
(‘PR2B)

* However, single RWY is obviously a problem considgiclose-down for
maintenance and for fault-tolerance

* How can the Petri net model easily modified fon@teger-Sola (Double RWY)

23.8 Improvement to simulation model — job arrival in predefined times

In the Petri net model shown in figure-30, the raficarrival generator (or generally, job
arrival generator) is given as a loop that willateeaircraft arrivals with specific intervals; this
could be slightly improved by using a stochastitugae.g. ‘normrnd(45, 5)' meaning that
aircraft arrives at about every 45 minutes with SE'Biinutes. But, still this will not help we
have to generate arrivals at specific (or predéfinenes. Generating arrivals at predefined
times can be elegantly done with the help of gloindd, as shown in the following example.

23.9 Example-26: Arrivals at predefined times

Figure-38. Arrival at predefined times

Let us assume that jobs arrive at pre-defined tiragps at the following time: 4, 10, 22, 34,
36, and 75.

23.9.1 MSF

% Example-26: A Example for pre-defined arrival tim es
% file: profile_pn_def.m:
clear, clc;

global_info.MAX_LOOP = 500;
global_info.Arrival_Times = [4, 10, 22, 34, 36, 75]

png = petrinetgraph({ ‘arrivals_def' b;
dynamic.initial_markings = { 'PGEN'" ,1};
sim = gpensim(png, dynamic, global_info);

print_statespace(sim);
plotp(sim, { '‘PBUFF" });

115

23.9.2PDF

% Example-26: A Example for pre-defined arrival tim
% file: arrivals_def.m:

function [PN_name, set_of places, set_of trans, set_of arcs
= predefined_def(global_info)

PN_name = 'Demo for pre-assigned arrival times' ;

set_of places ={ 'PGEN' , 'pBUFF' };
set_of trans = { tGEN' };
set_of arcs = { 'PGEN' , tGEN' ,1, "'tGEN' ,'pGEN' 1,

es

tGEN' , 'pBUFF' , 1}

23.9.3 TDF ‘tGEN_def.m’

function [fire,new_color,override, selected_tokens,global _i
tGEN_def (PN, new_color, override, selected_tok

fire = 0; % to start with

if ~isempty(global_info.Arrival_Times),
Current_AT = global_info.Arrival_Times(1);

nfo] =
ens, global_info)

Arrival_Times(2:end);

if le(Current_AT, PN.current_time), % less than or equal
global_info.Arrival_Times = global_info
fire = 1;

end;

end;

23.9.4 Simulation Results

6 L |
5 [-
4+ B
3 [-
2 [-
l [-
0 ! 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Figure-39. Jobs generation at predefined times

116

24. Scheduling

We present two examples in this section. Exampléxawarm up example. In example-xx,
we go through the “better-intended, worst-happerg@®nomena normally associated with
scheduling. Problems stated in the examples aentlikm Stein (2008).

24.1 Example-81: Minimizing completion time

Figure-34, a digraph, shows the tasks to be dorenaplete a work. The figure shows the
order in which the tasks to be done and the timgaired to complete each task. E.g. Task T1
requires 4 time units and tasks T1 and T2 musobepteted before task T4.

task: T1 task: T2 task: T3 task: T6
time: 4 time: 6 time: 5 time: 7
\\/ v
task: T4 task: T
time: 10 time: 2
Figure-40. Digraph showing order of tasks to be completed

Note that it will take a minimum of 16 time unite tomplete all the tasks, as task T2
followed by T4, which requires 16 time units, isthritical path — the path of longest
duration.

The algorithm used for simulations is the priotist-scheduling. The order of priority (high
to low) is assumed to be T1, T2, ... , and T6. fynalke assume two human resources,
generic and can do any task, named ‘Al, and ‘Bob’.

24.1.1 Petri net model

e

N
@
T3 ‘9

Pood

117

Figure-41. Petri Net model of the scheduling digraph
The PDF for the Petri net model shown in figure -2XX given below:

PDF (‘schedule01_def.m’):

% Example-81: Scheduling-01
% file: schedule01_def.m: PDF

function [PN_name, set_of places, set_of trans, set_of arcs]...
= schedule01_def(global_info)

PN_name=Scheduling example 01' ;

set_of places={ 'pPS1' , 'pS2' , 'pS3' ,'pS6' , 'pE' ,
'p14' |, 'p24' , 'p35' }
set_of trans={ T, T2, T3, T4, TS, 'T6' }

set of arcs={ 'pS1' ,'T1" |1, 'pS2' ,'T2' ,1, 'pS3 ,'T3 ,1, 'pSe6 ,'T6" ,1,
T1' |, 'pl4’ 1, 'T2' ,'p24' 1, 'T3 ,'p35 1,
'‘pl4' ,'T4 |1, 'p24' ,'T4" |1, 'p35 ,'T5 |1,
‘T4 ,'pE' ,1, 'T5 ,'pE' ,1, 'T6 ,'pE' ,1,}

24.2 Programs

In the preprocessor of each task, we will try talga resource that is available; the resources
are implemented as a semafors.

The pre-processor for task TIT{ pre.m’) is given below; other pre-processors for other
tasks are similar — the only change is tagk nr, which is underlined in the code snippet
given below:

function [fire, new_color,override,selected_tokens,global _i nfo] =
T1 pre(PN, new_color,override,selected_tokens,g lobal_info)

% T1 pre

task nr=1; % TASK-1

occu_semafor = global_info.semafor;
semafor = ~occu_semafor;

[row, cols] = find(semafor); % find any available semafor (value ~= 0)

if ~isempty(cols),

sema = cols(1); % which is the first avialble semafor
global_info.my_semafor(task_nr) = sema; % that will be mine
global_info.semafor(sema) = task_nr; % then reserve it

% pack results
global_info.timing(task _nr, 1) = sema,; % task handler
global_info.timing(task_nr, 2) = PN.current_tim e; % task starting time

118

fire = 1;
else

fire = 0O;
end;

In the post-processor of each task, we will reldhsesemafor after use. The post-processor
for task T1 (T1_post.m) is given below; again, the post-processors fa dther task are
similar, we only need to change tiask nr.

function [global_info] =
T1_post(transition, PN, global_info)

% function T1_post

%

task_nr =1, % TASK-1
my_semafor = global_info.my_semafor(task_nr); % which is my semafor
global_info.semafor(my_semafor) = 0; % release that

% Pack results: task completion time
global_info.timing(task_nr, 3) = PN.current_time; % task completion time

Finally, the MSF (5chedule01.m) is given below:

% Example-81:
% MSF: scheule01.m
clear, clc;

no_of _employees = 2;
no_of tasks = 6;

global_info.semafor = zeros(1, no_of employees); % employees available
global_info.my_semafor = zeros(1, no_of_tasks);

global_info.PRIORITY = { T, T2, ‘T3, ‘T4, TS, 'T6)

global_info.timing = zeros(no_of_tasks, 3);

png = petrinetgraph(‘'schedule01_def');

dynamicpart.initial_markings = { '‘pS1" 1, 'pS2' 1, 'pS3 ,1, 'pSe6' 1}
dynamicpart.firing_times = { T1' 4, 'T2' 6, 'T3 /)5, 'T4" ,10, 'T5 ,2,
T6 7}

[sim, global_info] = gpensim(png, dynamicpart, glob al_info);

timing = global_info.timing;
print_schedule(timing, { ‘Al' 1, 'Bob' });

119

In the MSF, we are using a print function callpdnt_schedule.m, to make better printout.
This function is given below:

function print_schedule(timing, list_of _names)
% function print_schedule(timing, list_of _names)

no_of _employees = length(list_of _names);

[timing_rows, timing_cols] = size(timing);

for employee = 1:no_of_employees,
disp(")

disp([vext o ist_of_names{employee}, e):

for i=1:timing_rows,
if eq(timing(i,1), employee),

disp([‘Task' , num2str(i), Tl
num2str(timing(i,2)), L', numa2str(timing(i,3)), T D
end;
end;
end;
disp(" ")
24.3 Results

When we use only one resource (‘Al’), the time takéll be summation of all the time for
individual tasks, 34 time units.

% Example-81:
% MSF: scheule01.m

no_of employees = 1,

arint_schedule(timing, { AlYY);

The result of simulation is:

*k%k AI *k%

Taskl: [0, 4]
Task2: [4, 10]
Task3: [10, 15]
Task4: [15, 25]
Task5: [25, 27]
Task6: [27, 34]

120

When we use two resources (‘Al’ and ‘Bob’), the ¢iaken is 18 time units to complete all
the tasks:

% Example-81:
% MSF: scheule01.m

no_of _employees = 2;

Hrint_schedule(timing,{ ‘Al 'Bob'),

*k%k AI *kk

Taskl: [0, 4]
Task3: [4, 9]
Task5: [9, 11]
Task6: [11, 18]

**k% Bob *k*k
Task2: [0, 6]
Task4: [6, 16]

However, if we use three resources (‘Al', ‘Bob’,darCarter’), then the maximum time
needed is the critical path time, that is 16 timésu

% Example-81:
% MSF: scheule01.m

no_of employees = 3;

b.rint_schedule(timing,{ ‘Al' , 'Bob' , 'Carter’ b;

*k%k AI *k%

Taskl: [0, 4]
Task6: [4, 11]

*k% Bob *kk
Task2: [0, 6]
Task4: [6, 16]

*k% Carter *k%
Task3: [0, 5]
Task5: [5, 7]

121

24.3.1In Summary:
When only one resource (‘Al') is used:
Completion time: 34 time units
Usage of resources = 100%

1] 2] 3] 4 5] 6] 7] 8] 9] 10 11 12] g | 1 1 [T 1o E)21| m| 24] 2;_25| 27 3q 31 3‘ 3E
T1 T2 T3 T4 T5 T6
When two resources (‘Al’ and ‘Bob’) are used:
Completion time: 18 time units
Idle time: Bob: 2 time units
1 [2 [3] 4 s [6] 7] 8] o9 10 [11 12] 13 14 13 16 17
Al T1 T3 T5 T6
Bob T2 T4 |
When three resources (‘Al', ‘Bob’, and ‘Carter’)eaused:
Completion time: 16 time units
Idle time:
Al: 5 time units
Carter: 9 time units
1 [2 [3] 4 s | 6] 7] 8] o[10] 11 12 13| 14 1 1]
Al T1 T6
Bob T2 T4
Carter T3 s
24.4 Example-82: Scheduling — Il
Figure-36 shows another example.
task: T1 task: T2 task: T3
time: 2 time: 1 time: 1
4 /N
task: T9 task: T5 task: T6 task: T7 task: T8
time: 8 time: 3 time: 3 time: 3 time: 3
Figure-42. Digraph for example-82

In this example too, the priority of tasks are assd as previously (top to bottom): T1, T2,

e 19

When three resources (‘Al’, ‘Bob’, ‘Carter’) areads the completion time is found to be 12
time units. This is a “perfect storm” scenariojgimng the job by the time of the critical path
(T1, T3), which is 12 time units.

122

1 | 2 | 3 4 1 5 | 6 [7] 8] 9] 10] 11 | 12

Al T1 T9
Bob T2 T4 T5 T7
Carter T3 Idle T8

Let’'s add another resource (‘Don’) and see how nthelcompletion times are reduced.

1 [2 [3 4] 5 | 6 | 7 8 9 10 11 12 13 14 15
Al T1 T8
Bob T2 T5 T9
Carter T3 T6
Don T4 T7

The results above shows that when we add more nessmyuwe make things worse as
completion time is now increased. Now the comptetime is 15 time units.

24.4.1 Petri Net Model

Figure given below shows the Petri net model. Nlo& the weight of arc betwedd andpX
is 4. This means, every tinfet fires, it puts 4 tokens infoX.

This means, we have to make sure that these 44akenconsumed by the 4 transitions T5,
T6, T7 and T8, one token for each transition.

123

24.4.2 Programming

PDF (‘schedule02_def.m’):

% Example-82: Scheduling-02
% file: schedule02_def.m: PDF

function [PN_name, set_of places, set_of trans, set_of arcs]...
= schedule02_def(global_info)

PN_name=Scheduling example 02' ;
set_of places={ 'pS1' , 'pS2' ,'pS3 , 'pS4' , 'pE' ,
'p19" , pX' }
set_of trans={ T2, T2, ‘T3, ‘T4 , ‘T , 'Teé , ‘T7 , T8 , 'T9 }

set of arcs={ 'pS1' ,'T1" |1, 'pS2' ,'T2' ,1, 'pS3 ,'T3 ,1, 'pS4' ,'T4" 1,
T1' ,'p1l9" ,1, 'p19" ,'T9 .1,

T9" ,'pE" ,1, 'T2' ,'pE' ,1, 'T3' ,'pE' ,1,

T4, 'pX' 4, ..

px' , TS5 ,1, 'pX' ,'T6" ,1, ‘'pX' ,T7 ,1, 'pX' ,'T8 1,
‘TS5 |, 'pE' ,1, 'T6'" ,'pE" ,1, 'T7" ,'pE' ,1, 'T8 ,'pE' ,1}

MSF (‘schedule02.m’):

% Example-82:
% MSF: scheule02.m
clear, clc;

no_of _employees = 4;
no_of tasks = 9;

global_info.semafor = zeros(1, no_of employees); % employees available
global_info.my_semafor = zeros(1, no_of_tasks);
global_info.PRIORITY ={ T ,'T2" , T3 ,'T4 ,'T5' ,'T6" ,'T7 ,'T8 ,'T9 }

global_info.timing = zeros(no_of_tasks, 3);

png = petrinetgraph('schedule02_def');
dynamicpart.initial_markings = { '‘pS1" 1, 'pS2' ,1, 'pS3 ,1, 'psS4’ 1}
dynamicpart.firing_times = { T 3, 'T2')2, T3)2, T4 2, ..

‘TS 4, 'T6'" 4, 'T7" 4, 'T8 4, 'T9 9}

[sim, global_info] = gpensim(png, dynamicpart, glob al_info);
%grid on, plotp(sim, {'p14', 'p24','p35','pE"Y});

timing = global_info.timing;
three_chaps = { ‘Al' , 'Bob' , 'Chuck' }
four_chaps ={ ‘Al' ', 'Bob'" , 'Chuck' , 'Don' }

if (no_of employees==3),
print_schedule(timing, three_chaps);
else
print_schedule(timing, four_chaps);
end;

124

24.4.3 Pre-processor for T1, T2, T3, T4 and T9:

The only job of the preprocessors T1 pre to T4 _gme, T9_pre is to grab an available so that
they can start. However, the preprocessors for §Hdve one more job to do, that is to make
sure that they fire only once (or consume only twken after T4 has fired).

Pre-processor for T1, T2, T3, T4 and T9 are similar

function [fire, new_color,override,selected_tokens,global _i nfo] =
T1_pre(PN, new_color,override,selected_tokens,g lobal_info)

% T1 pre
task nr=1 ; % TASK-1

occu_semafor = global_info.semafor;
semafor = ~occu_semafor;

[row, cols] = find(semafor); % find any available semafor (value ~= 0)

if ~isempty(cols),

sema = cols(1); % which is the first avialble semafor
global_info.my_semafor(task_nr) = sema; % that will be mine
global_info.semafor(sema) = task_nr; % then reserve it

% pack results
global_info.timing(task_nr, 1) = sema,; % task handler
global_info.timing(task_nr, 2) = PN.current_tim e; % task starting time

fire = 1;
else

fire = 0;
end;

Pre-processor for T5, T6, T7, and T8 are similaeytfirst check whether the transition is
already fired once. If yes, then no more firingh@twise, they try to grab a semafor.

function [fire, new_color,override,selected_tokens,global i nfo] =
T5_pre(PN, new_color,override,selected_tokens,g lobal_info)

% TS5 _pre
task_nr =5; % TASK-5

occu_semafor = global_info.semafor;
semafor = ~occu_semafor;

[row, cols] = find(semafor); % find any available semafor (value ~= 0)

tx = get_trans(PN, T5'),

125

if (tx.times_fired), %if T5 has already fired once, then dont fire anymo re
fire = O;
return ;
end;

if ~isempty(cols),

sema = cols(1); % which is the first avialble semafor
global_info.my_semafor(task_nr) = sema; % that will be mine
global_info.semafor(sema) = task_nr; % then reserve it

% pack results
global_info.timing(task _nr, 1) = sema; % task handler
global_info.timing(task_nr, 2) = PN.current_tim e; % task starting time

fire = 1;
else

fire = 0;
end;

24.4 .4 Post-processors

Post-processors for all the transition are similaey just release the semafor the transitions
were holding. The post-processor for T1 (‘'T1_po§t.m

function [global_info] =
T1_post(transition, PN, global_info)

% function t1_post

%

task_nr=1; % TASK-1
my_semafor = global_info.my_semafor(task_nr); % which is my semafor
global_info.semafor(my_semafor) = 0; % release that

% Pack results: task completion time
global_info.timing(task_nr, 3) = PN.current_time; % task completion time

126

25. Stochastic Timer

This is an advanced topic, dealing with discreggizof continuous systems. We know that
Petri net is for discrete event simulations onlpweéver, if we could discretize continuous

systems then these systems can also be modeleée&tiimets. However, this is not easy and
needs some understanding of Petri net formalismnaauitix representation. Interest reader is
referred to a good book on this topic, Darren JkiWson, “Stochastic Modelling for Systems

Biology”, Chapman & Hall/CRC, NY, 2006. ISBN-10 B488-540-8. Read especially about
Gillespi's algorithm in chapter 06.

Stochastic timer: So far, we have been using inbuilt global timerdonulations. We did not

use any user-defined timer or time series for advanthe clock. Sometimes, we do need to
use special timers to advance the simulation tigneusselves. In this case, we use stochastic

timer.
'
Pr=y %’I,
..

iiﬁ:)

Predator
_____‘_‘—‘——_
e () \I)
Figure-43. Petri net model of the Prey-Predator interaction

25.1 Example-25: The Prey-Predator ecological equilibrim

The equilibrium is stated by 2 simple differenggjuations (known as Lotka & Volterra
equation):
* The specimen prey (e.g. rabbit - r) mutates byfitsel depleted by predators (e.g.
foxes - f):
dr _
E—(GDT)—(,G’DT [¥)
« The specimen predator (e.g. fox) grows due to talfhccess to food) and depleted by
its own population (competition for food):
%:—(y[}f)ﬂdl])
e a,B,y, andd are parameters representing the interaction afbespecies.

25.2 Converting the dynamics to Petri nets

Of course, the equilibrium is determined by clasls{partial) differential equations. Without
using mathematical solutions, which demands highhemaatical skills for higher order

127

systems when many specimen types are involved, ov®rgthe analytical reasoning using
Petri nets. Equivalent Petri net model for therat&on is given below:

25.3 Simulation files

The program snippets using GPenSIM is given below:
« First, in the main simulation file, we have to 8t flag for ‘stochastic timer’
(global_info.STOCHASTIC = 1;)
« Second, we have to define the stochastic timdrerfite ‘time_advancement.m’

25.3.1 The Main Simulation File

% MSF file for Example-25: Predator-Pey example
% THIS EXAMPLE USES STOCHASTIC TIMER !
global_info.MAX_LOOP = 10000;

global_info.c =1 .005 .6];

global_info.STOCHASTIC = 1; % set the flag for stochastic timer
global_info.LOOP_NUMBER = 1; % set this flag as MAX_LOORP is large
pn = petrinetgraph('‘predator_prey_def');
dynamicpart.initial_markings = { 'Prey’ ,50, 'Predator' , 100};
sim = gpensim(pn, dynamicpart, global_info);

% NOTE: !l

% print function ‘print_statespace’

% can not be used applications using stochastic t imer !
% 1

plotp(sim, { '‘Prey’ , 'Predator’ }); %%%% figure 28
plot(sim.LOG(:,2), sim.LOG(:,3)); %%%% figure 29

25.3.2 Petri net Definition File

%% PDF for Example-25: predator_prey_def.m:

function [PN_name, set_of places, set_of trans, set_of arcs]...
= predator_prey_def(global_info)

PN_name=predator-prey p/151' ;

set_of places={ 'Prey’ , 'Predator’ , 'DUMP'};

set_of trans={ T, 2t 13k

set_of arcs={ 'Prey’ ,'t1' /1, 't1' ,'Prey’ ,2, ..
'Prey’ ,'t2" ,1, 'Predator , 2" 1, 't2" , 'Predator 2, ...
'‘Predator’ 13,1, 13", 'DUMP" 1}

25.3.3 Definition of stochastic timer (‘time_advancement.r)

%%%% 1111 CHANGING GLOBAL TIME !

%%%% time_advancement is for CHANGING GLOBAL TIME ! I

%% % this time series is a realization of “Gilespi a Igorithm”
function [pn, global_info] = time_advancement(pn, global_in fo)
cl=global_info.c(1); c2=global_info.c(2); c3=glob al_info.c(3);

128

Prey = get_place(pn, ‘Prey');
PRED = get_place(pn, 'Predator’);

hl = cl1 * Prey.tokens;

h2 = c2 * Prey.tokens * PRED.tokens;
h3 = ¢3 * PRED.tokens;

H=h1+h2 + h3;

%%%% probabilities

global_info.prol = (h1/H);
global_info.pro2 = (h2/H);
global_info.pro3 = (h3/H);

delta_T = 1-exp(-1/H);
pn.current_time = pn.current_time + delta_T ; %%%% CHANGING GLOBAL TIME
mn

25.3.4 Transition Definition File: t1_def.m

function [fire, new_color, override, selected_tokens,global _info] =
t1_def (pn, new_color, override, selecte d_tokens,global_info)
% function t1_def

cl=global_info.c(1); c2=global_info.c(2); c3=global _info.c(3);
Prey = get_place(pn, ‘Prey');
PRED = get_place(pn, '‘Predator’);

hl = cl * Prey.tokens;
h2 = c2 * Prey.tokens * PRED.tokens;
h3 = ¢3 * PRED.tokens; H = hl + h2 + h3;

%%%% probabilities
prol=(h1/H); pro2=(h2/H); pro3=(h3/H);

R =rand*(1);
fire = (R <= prol);

129

25.3.5 Transition Definition File: t2_def.m

function [fire, new_color, override, selected_tokens,global _info] =
t2_def (pn, new_color, override, selected_token s,global_info)
% function fire = t2_def(pn, global_info)

cl=global_info.c(1); c2=global_info.c(2); c3=glob al_info.c(3);
Prey = get_place(pn, ‘Prey');
PRED = get_place(pn, 'Predator’);

hl = cl1 * Prey.tokens;

h2 = c2 * Prey.tokens * PRED.tokens;
h3 = ¢3 * PRED.tokens;
H=hl+h2+ h3;

%%%% probabilities
prol=(h1/H); pro2=(h2/H); pro3=(h3/H);

R =rand*(1);
fire = (R <= pro2);

25.3.6 Transition Definition File: t3_def.m

function [fire, new_color, override, selected_tokens,global _info] =
t3_def (pn, new_color, override, selected_token s,global_info)

% function fire = t3_def(pn, global_info)

% tRES_implementation

cl=global_info.c(1); c2=global_info.c(2); c3=glob al_info.c(3);
Prey = get_place(pn, ‘Prey');
PRED = get_place(pn, 'Predator’);

hl = c1 * Prey.tokens;

h2 = c2 * Prey.tokens * PRED.tokens;
h3 = ¢3 * PRED.tokens;
H=hl+h2+ h3;

%%%% probabilities
prol=(h1/H); pro2=(h2/H); pro3=(h3/H);

R =rand*(1);
fire = (R <= pro3);

CAUTION! CAUTION!
Print functions ‘print_statespace’ can not be used
for applications that use stochastic timer.

This is the reason for manipulating simulation hsslog file directly, as done in the example
above. We give below code snippet from MSF for gyegdator example:

130

% NOTE: !l

% print function ‘print_statespace’

% can not be used applications using stochastic t imer !

% 1

plotp(sim, { 'Prey’ , 'Predator
plot(sim.LOG(;,2), sim.LOG(:,3));

b; %%%% figure 28
%%%% figure 29

25.4 The Simulation Results

400

350

300

250

200

150

100 -

50

Predator

Figure-44.

10 15 20 25

Composition of specimens Prey-Predator with time

131

Y2

400

350

300

250

200

150

100

50
0

I
100

Figure-45.

I I
200 250 300

Prey-Predator Equilibrium

132

26. Measuring Robot Usage

The flexible manufacturing cell at the Narvik Iiste of Technology (NIT), Norway, consists
of a CNC vertical machining center (Mori Seiki)C&C horizontal machining center (Mori
Seiki), an ABB IRB2000 robot, and a conveyor bigdire 12 shows the system.

Conveyor belts
(both for incoming
and outgoing)

ABB IRB2000
Robot/

(VMC)

CNC vertical
machining cent

s N -ﬁﬁis e

CNC horizontal
machining center
(HMCQC)

Figure-46. Flexible Manufacturing Cell at Narvik Institute ©échnology (NIT)

Here is the operational specification of the systeomewhat simplified for our modeling

purposes:

1. To start a cycle, a raw part must be available @ibcoming conveyor belt, and the
robot is also available.

2. The robot moves a raw part from the conveyor amddat at the horizontal machining
center (HMC).

3. The milling operation is performed at HMC while ttodot backs off (returns).

4. The robot unloads the work piece from HMC, load®ithe vertical machining center

(VMC) and returns.
5. The drilling operation is performed at VMC, and gitaneously the robot perform step 2.
6. The robot unloads the finished part from VMC, defsas on the conveyor and returns.

In steady-state steps 2-6 repeat. Note that thefgagions are very similar to the one given
in Zhou and Robbi (1994). Well, it has to be similzonsidering the simple systems we and
they have, there is only one way to do it.

26.1.1 The Petri net model

133

The Petri net model for flexible manufacturing cINIT is given in figure 13. It is possible
that one could come up with a slightly differentdebfor the same system than the one
shown in figure 13.

Figure-47. Timed PN model for flexible manufacturing cellNifT.

26.1.2 The Petri net model

The upper arm of the model consisting placespghe start mode. The left arm of the model is
for the milling operation at HMC, the right arm fier the drilling operation at VMC, the
bottom arm is for the transition between these dperations, and finally the central part is
for the robot movements. Table-Ill shows the meguihthe different places and transitions.

Table-1ll: Meanings of places and transitions for he PN model.

place | interpretation trans | interpretation time
o]} Raw parts 4 | Robot/part to HMC 1
P2 Robot available ot | Milling operation vary
[0 Part loaded to HMC st | Robot/part to VMC 1
p;s | Out buffer VMC 1 Drilling operation vary
ps | Out buffer HMC § Robot/part to output 1
Ps Part loaded to VMC st | Robot returns 0.5
p; HMC available 1 Robot returns 0.5
Ps VMC available & Robot returns 0.5
Po Robot ready return (specimen operation timesgaren
pw | Robot ready return in minutes)
p.; | Robot ready return

It must be noted that there are potentials for lraperations. For example, after loading a
part into the HMC, while the milling operation isigg on, the robot can retreat to its ready
position, and also load a part from the outputdudf HMC into VMC(§ and t are parallel).

134

26.1.3 Simulations
Lets vary the machining times of both milling andllthg operations and see for what
combination of operations robot is overloaded @ogd robot should be commissioned).

Milling operation
Drilling op. 0.3 0.5 1.0 5.0
0.3 100% 100% 90% 50%
0.5 100% 100% 90% 50%
1.0 90% 90% 82% 47%
5.0 50% 50% 47% 33%
Table-IV: Robot usage for different operation times

135

27. Norwegian Traffic Lights

As shown in the figure below, Norwegian traffichtg have 4 states:
Red -> Red & Yellow -> Green -> Yellow

i
GC@DO
OgO
OC@DQ

Figure-48. Norwegian Traffic Lights
27.1 Developing a Petri Net Model for Norwegian Tra ffic Light

27.1.1 State-1 (RED) to State-2 (RED & YELLOW)

RED

‘ YELLOW

O GREEN

136

27.1.2 State-2 (RED & YELLOW) to State-3 (GREEN)

R ->RY

YELLOW
]

Y

RY ->G

Y

O GREEN

27.1.3 State-3 (GREEN) to State-4 (YELLOW)

YELLOW

GREEN

137

27.1.4 State-4 (YELLOW) to State-1 (RED)

e

->
Y>R YELLOW
o

G->Y RY ->G
L@ GREEN

27.2 Transition Definitions

State-1 (RED) to state-2 (RED & YELLOW):
Transition tR->RY will fire only if there is a tokein place RED and there is no token
in place YELLOW (if there are tokens in both pladden tRY->G will fire)

State-4 (YELLOW) to state-1 (RED):
Transition tY->R will fire only if there is a token place YELLOW and there is no
token in place RED

27.3 Program Code for the Petri Net Model

27.3.1 Main Simulation File

% the main file to run simulation

clear, clc;

global_info.MAX_LOOP =5; % stop after 5 states (one cycle)
pn = petrinetgraph('NO_light_def');
dynamic_info.initial_markings = { '‘PRED' , 1};

Results = gpensim(pn, dynamic_info, global_info);
print_statespace(Results);
plotp(Results, { 'PRED' , 'pYELLOW', 'pGREEN'});

138

27.3.2PDF

function [PN_name, set_of places, set_of trans, set_of arcs]...
= NO_light_def(global_info)

% file: pn_def.m:

% definition of petri net graph for Norwegian trafi c lights

PN_name=Pet Net graph for trafic light (NOR)' ;
set_of places={ 'PRED' , 'pYELLOW', 'pGREEN'};

set_of trans={ tR_RY' ,tRY_G' ,tG Y' ,tY_ R }

set of arcs={ 'pRED' ,'tR_RY' ,1, 'tR_RY' ,'pRED',1, 'tR_RY' ,'pYELLOW .1, ..

'PRED' , tRY_G' ,1, 'pYELLOW','RY G' ,1, 'tRY_G' , pGREEN',1, ..
'PGREEN', tG_Y' ,1, 'tG_Y' ,'pYELLOW' .1, ..
'PYELLOW', 'tY_ R' ,1, 'tY_R' ,'pRED' 1}

27.3.3TDF: tR_RY

function [fire, new_color, override, selected_tokens, globa |_info] =
tR_RY_def(pn, new_color, override, selected_tok ens, global_info)
% function fire = tR_RY_def(PN)

pR = get_place(pn, '‘PRED');
pY = get_place(pn, '‘PYELLOW");
tRRY = get_trans(pn, tR_RY');

fire = (pR.tokens) & not(pY.tokens);

27.3.4TDF: tY_R

function [fire, new_color, override, selected_tokens, globa |_info] =
tY_R_def(pn, new_color, override, selected_toke ns, global_info)
% function fire =tY_R_def(PN)

pR = get_place(pn, '‘PRED');
pY = get_place(pn, '‘PYELLOW");
fire = not(pR.tokens) & (pY.tokens);

139

Part-lll: Reference
Manual

141

28. Design of the GPenSIM Simulator

In this section, we will look into the internals GPenSIM simulator. Like any simulators,

GPenSIM also has the following two major componeatglobal) timer, and a queue to keep
firing transitions (active events); in addition, &/SIM also has mechanisms (‘functions’) to
manipulate these two components - a push functigoush firing transitions into queue, and a
pop function to eject a firing transition from qeeitn order to complete (or finish) firing.

28.1 The Main Loop

Components in the main loop:
* A Global Timer (“pn.current_time”)
* A Queue (“EIP” — events in progress)

Mechanisms (functions) that manipulate the comptsen
* Pushing firing transitioginto Queue (function ‘start_firing’)
« Popping a firing transition from Queue, in order to complete (function
‘complete_firing’)

The components and the functions are realizetienM-file “timed_pensim.ni. Figure-37
shown below summarizes the main loop realizedenMHKfile “timed_pensim.m”:

Start firing any enabled
transitions

(add firing transitions to EIP

queue sorted in increasing

completion time)

v

Complete a firing transition
(from the top of EIP — with the
shortest completion time)

Increase global timer
(copy transition completion time
into global timer if any transition
is copmpleted; otherwise, if EIP

was empty, just move global
timer by an incremental value)

Figure-49. Simplified main loop of the simulation

However, actual coding of M-file “timed_pensim.n¥ little more complicated due to the
processing of stochastic systems, as shown iroftening figure.

Figure-38 presents the actual loop for simulatamded in the M-file “timed_gpensim.m”.

142

Simulations

Increases global timer value

by a fixed percentage of the g{obal_
minimal firing time of any timer_
advancement

transition

»
v

Q
Complete? YES ¢

Pack simulation
NO results

v

get currently
enabled END
transitions

Any Enabled
Transition?

YES

start_firing pushes a firing
transition into EIP queue,

I start_firing R

Increases global timer value . sorted in increasing
by "gillespi’s algorithm”, etc. |~ stochastic_ compltion time
timer_ NO
was Empty advancement record firing
EIP? transitions
T YES i
NO
Stochastic
?
system? Empty EIP?
YES
NO complete_firing pops a firing

transition from EIP queue
(the firing transition with least
completion time — top of EIP)

complete_firing ‘ }

Figure-50.

Main loop for simulation

143

29. Further Work (Future Extensions)

There are numerous possibilities for extending G&PdnWe give blow just two:

* Adaptive GPenSIM: a version of GPenSIM in which #ne weights are not fixed and
can vary during the simulation run.
o Self adaptive: In each TDF, the arc weight of tla@sition can be changed.
o Forced adaptive: in a specific TDF, arc weightamy transition can be varied

* Real-time (“soft PLC”) simulator: Instead of glokaher, the real-time clock of the

computer can be used. In this case, the GPenSihd isnger just a simulator, but it
becomes a soft Programmable Logic Controller.

144

145

30. Data structures in GPenSIM

GPenSIM uses data structures to pass informatidwele@ the functions. Some of the
structures:
1. Structure for Petri net (PN): there are two Pettistructures
a. Static PN structure is created by the funcpetrinetgraph
b. Run-time PN structure is available during simulaticopy of run-time PN
structure is available in TDFs.
Structure for Place: this structure is createdheyftinctionplace
Structure for Transition: this structure is creabgdhe functiortransition
Structure for Arc: this structure is created by filmectionarc
Structure for Token: tokens are removed (consunad) added (deposited) during
simulations
Structure for simulation results: this structurensated by the functiogpensim
Structure for Co-Tree: this structure is createdhgyfunctioncotree
Structure for Co-Tree: this structure is createdhgyfunctiongpensim

aghRrwn

©o~NoO

30.1 Static Structures for Petri net and its elements

In order to inspect these structures, let us ‘st example given in section-3 again. The
program code snippet given below shows the maimlsiton file:

pn = petrinetgraph('simple_pn_def');
dynamic_info.initial_markings = { 'Place-1' ,1, 'Place-2' 2}
dynamic_info.firing_times = { "Transition-1' , 10}

Sim_Results = gpensim(pn, dynamic_info);
print_statespace(Sim_Results);

After execution of the first line of the programigret given above, the functiagpensim
returns the Petri net structure as an output vigrieddled ‘pn’. Lets inspect this variable:

>>pn

pn =
name: 'A Simple Petri Net impleme ntation’
global_places: [1x3 struct]
global_transitions: [1x1 struct]
global_arcs: [1x3 struct]
incidence_matrix: [1.00 2.00 0 0 0 1.00]

Screen dump given above shows that the Petri nattgte has 7 elements. The elements are:
1) name: the ASCII string identifier of the Petri net
2) global_places: the set of all places in the Petti n
3) global_transitions: the set of all transitionshe Petri net
4) global_arcs: the set of all arcs in the Petri net
5) incidence_matrix: the matrix that depicts how theces and transitions are connected
together, and
6) type: (not used)

Let us study the elements and their respectivestatatures one by one:

146

30.1.1 name

Name is an ASCII string identifier for the PetritnEBrom the screen dump given above, we
already know the name of the Petri net, whicia Smple Petri Net implementation'.
We can also inspect the name anytime by typing B@s.name:

>> Sim_Res.name

ans =
A Simple Petri Net implementation

30.1.2 global_places

global_placesis the set of all places in the Petri net. Letispect theglobal placesby
typing Sim_res.global_places:

>> Sim_Res.global_places

ans =
1x3 struct array with fields:
type
name
tokens

max_capacity

The screen dump given above shows that there aee thlaces inside thglobal places
([1X3]), and that each place has the following edeis: type, name, tokens, and
max_capacity. Let’s inspect the places individuallige first place:

>> Sim_Res.global_places(1)
ans =

type: 'place’

name: 'Place-1'

tokens: 0
max_capacity: Inf

The first place is identified by its name as ‘PHcelt has no tokens at the simulation end.
The element ‘max_capacity’ is NOT USED.

We can also inspect a place by passing its identii the function ‘get_place’:
>>pl = get_place(Sim_Res, 'Place-1")

pl=
type: 'place’
name: 'Place-1'
tokens: 0
max_capacity: Inf

147

30.1.3 global_transitions

global_transitions is the set of all transitions in the Petri nglobal_transitions can be
studied by the same approach applied to inspegtoizpl_places

30.1.4 Global_arcs
global_arcsis the set of all arcs in the Petri net.

>> Sim_Res.global_arcs

ans =
1x3 struct array with fields:
type
from
to
weight
name

Screen dump shows thgtobal arcs consists of three arcs. Let's inspect the first af
global_arcs

>> Sim_Res.global_arcs(1)
ans =

type: 'arc'
from: [1x1 struct]
to: [1x1 struct]
weight: 1.00
name: 'Arc.475'

The first arc of the set of arcs has 5 elements:

type: this element identifies the type (‘arc’) bételement as an arc

from: this element identifiethe source of the arc

to: this element identifiethe destination of the arc

weight: this element identifidbe weight of the arc (the weight of the arc is 1)

name: an ASCII string identifier to the arc (a wragdentifier is generated for every
arc: the unique identifier for this arc is ‘Arc.4Y5

agrwnE

Further let’s inspect the source and the destinaifahis arc:
>> Sim_Res.global_arcs(1).from
ans =
type: 'place’
name: 'Place-1'
tokens: 0
max_capacity: Inf
The source of this arc is the place ‘Place-1’. d@astination of the arc is:

>> Sim_Res.global_arcs(1).to

ans =

148

type: 'transition'
name: 'Transition-1'
firing_time: 100.00
firing_cost: 0
firing_condition: "
times_fired: 0

The destination of the arc is the transition ‘Tiaos-1". Of course, figure 6 verifies the
results.

30.1.5incidence_matrix

The incidence matrix is a matrix that depicts htw places and transitions are connected
together. GPenSIM uses a compact and unique famainvey this information. Incidence
matrix in GPenSIM is actually two matrices put tibgpe:

incidence_matrix = [input_incidence_matrix output _incidence_matrix]

Please refer to any standard text on Petri nétadw the details of incidence matrix.

30.1.6type

‘type’ identifies a Petri net type. A Petri net cha un-timed (no concern about the firing
times of the transitions), timed, or stochastidgr(fj times are not deterministic).

149

30.2 Run-time Structures for Petri net and its elements

[Also discussed in the section on “TDF”].
Run-time Petri net structure is available in allHDIt consists of the following elements:

1 STATIC PN.Name: 'TDF Example: Production facility'
2 Run-time PN.global_places: [1x n struct]
A set of sturctures; one structure
per place, consisiting the
following:
type: 'place’
name: 'pl'
tokens: 3.00
max_capacity: Inf
token_bank: [1x3 struct]

Token_bank is also a set of
structures - one for each token in
the place - consisitng the
following.
tokID: 1.00
creation_time: 0
color: {A’, ‘B’}
3 Run-time PN.global_transitions: [1x mstruct]

A set of sturctures; one structure
per transition, consisiting the
following:
type: 'transition'
name: 't1'
firing_time: 10.00
firing_cost: 0
times_fired: 0

4 STATIC PN.global_arcs: [1x6 struct]
5 STATIC PN.incidence_matrix: [3x8 double]
6 Run-time PN.current_time: 45.00
7 Run-time PN.token_serial_number: 30.00
8 Run-time PN.X: [10.00 3.00 5.00 2.00]
(Current Markings)
9 Run-time PN.Firing_Transitions: [011]
Transitions Firing at the nonent;
one bit per transition; 0 — not
firing;
1 —firing
10 Run-time PN.Enabled_Transitions: [100]

Transitions enabled at the start of
the cycle (Apriori); one bit per
transition; 0 — not enabled;
1 - enabled)

30.3 Structures for simulation results
Simulation results from the functiggpensimare kept in a structure that has two elements:

150

type: ‘simulation’

LOG: a matrix

Firing_Transitions: a matrix
Enabled_Transitions: a matrix
State_Diagram: a matrix
Place_Names: Block of strings
Transition_names: Block of strings

NoohkwhE

Matrices LOG, Firing_Transitions, and Enabled_Titmss have same the number of rows.
(Exception: for stochastic timer applications, LQé&nerally has less rows).

The LOG matrix can become large as it has all the simutatesults. Each raw dfOG
matrix represents changes due to firing of a tteomsiand has the following elements:
The new markings (the new state)

Fired transition

Parent state (matrix raw number) from which thégestvas obtained

Firing start time, and

Firing completion time

gk

The Firing_Transitions matrix contains information about all the firingansitions at each
inspection time. Each row of tHéring_Transitions starts with inspection time (element 1),
and then rest of the elements are represents tioanssi if element is ‘1’ then the
corresponding transitions was firing at the insjpectime.

Similarly, the Enabled Transitions matrix contains information about all the enabled
transitions at each inspection time. Each row of Hnabled Transitions starts with
inspection time (element 1), and then rest of tements are represents transitions; if element
is ‘1’ then the corresponding transitions was eedlat the inspection time.

State_Diagram represents sequences of states anaatisitions that make state changes.
State_Diagram is used by the print systgmir{t_statespace’). NB: State Diagram is also
designed for making off-line graphical simulations; explained in the following
subsection.

State_Diagram consists of three different typeimfoirmation: Row-1 is the new state; Row-2
is the enabled transitions after the new state; -Baw the firing transitions after the new
state; This is further explained in example gibelow.

Places_Names and Transition_Names are names dfhallplaces and the transitions
respectively.

30.4 Example-1

In order to inspect the structure for simulatiosules, let us visit a small example. The
program code snippet given below shows the maimlsiton file:

png = petrinetgraph('simple_pn_def');
dynamic.initial_markings = { 'pl" ,3, 'p2" ,5}
dynamic.firing_times = { ‘1", 10.11}

[sim] = gpensim(png, dynamic, global_info);

151

print_statespace(sim);
sim.LOG

function [PN_name, set_of places, set_of trans, set_of arcs]
= simple_pn_def(global_info)

PN_name = 'A Simple Petri Net definition’
set_of places = { 'pl" , 'p2' , 'p3 }
set_of trans = { ‘t1" 10}

set of arcs = { pl , 't 1, 'p2r , 't1' ,2, 't

Let us inspect the structure sim_RESULTS:
>> sim

sim =

type: 'simulation’

LOG: [3x7 double]
Firing_Transitions: [3x2 double]
Enabled_Transitions: [3x2 double]

State Diagram: [9x6 double]
Place_Names: [3x2 char]
Transition_Names: 't1'

152

30.4.1LOG

Type ‘simulation’ identifies that the structure walstained by after simulation run, and was
output by the functiogpensim

The LOG matrix is a 3 X 10 matrix containing thenslation results. The easiest way to
understand the simulation results is to use thetiom print_statespace However, we can
inspect this structure on our own:

>>sim.LOG
ans =
Columns (1:3) Column 4 Col 5 Col 6 Col 7
New state (marking) Firing Parent Firing Firing
Transition state Start Stop
(raw Time Time
no.)
3.00 5.00 0 0 0 0 0
200 3.00 1.00 1.00 1.00 0 10.11
1.00 1.00 2.00 1.00 200 10.11 20.22

30.4.2 Firing_Transitions and Enabled_transitions

Firing_Transitions represents status (firing or) radtall the transitions at different inspection
times. The first element in each row is the inspectime, followed by the status of the
transitions.

>> sim.Enabled_Transitions

ans =
0 1.00
10.00 1.00
20.00 0

Row-1: at time 01 was enabled.
Row-2: at time 10t1 was also enabled.
Row-3: at time 20t1 was NOT enabled.

30.4.3 State_Diagram

>> sim.State_Diagram

ans =

corCe©e
conOOWw
cowOou
coRr©@e©e
PRORRO

153

20 1 1 1 2
20 0 0 0 0
20 0 0 0 0
EXPLANATION:
row no.1 (state info)
Time NOT USED Initial State NOJT USED
number of
cells =
number of
transitions
0 0 3 | 5 0
row no.2 (enabled transitions)
Time NOT USED Enabled
number of cells = (humber of places + 1) Transitions
0 0 | 0 | 0 1
row no.3 (firing transitions)
Time NOT USED Enabled
number of cells = (humber of places + 1) Transitions
0 0 | 0 | 0 1
Row no. 4 (state info)
Time Fired New State not used)
Transitions
(Transition
that
created the
new state)
10 1 2 | 3 0
row no.5 (enabled transitions)
Time NOT USED Enabled
number of cells = (humber of places + 1) Transitions
10 0 | 0 | 0 1
row no.6 (firing transitions)
Time NOT USED Enabled
number of cells = (humber of places + 1) Transitions
10 0 | 0 | 0 1
Row no. 7 (state info)
Time Fired New State not used)
Transitions
(Transition
that
created the
new state)
20 1 1 | 1 0

154

row no.8 (enabled transitions)

Time NOT USED Enabled
number of cells = (humber of places + 1) Transitions
20 0 | 0 | 0 | 0 0
row no.9 (firing transitions)
Time NOT USED Enabled
number of cells = (humber of places + 1) Transitions
20 0 | 0 | 0 | 0 0

Function print_statespace uses the matriState_Diagramto print out simulation results:

State:0 Time: 0

Initial State:

pl p2 p3

3 5 0

At time: 0 enabled transitions are:
t1

At time: O firing transitions are:
tl

State: 1 Time: 10

Fired Transition: t1

Current State:

pl p2 p3

2 3 1

At time: 10 enabled transitions are:
t1

At time: 10 firing transitions are:

t1

State: 2 Time: 20

Fired Transition: t1

Current State:

pl p2 p3

1 1 2

At time: 20 enabled transitions are:
At time: 20 firing transitions are:

Explanation:
Print statespace lines Equivalent row of the
matrix_'State Diagram’
State:0 Time: 0
Initial State:
ol 02 03 Row-1
3 5 0
At time: O enabled transitions are: Row-2
t1
At time: O firing transitions are: Row-3

155

t1

State: 1 Time: 10 Row-4
Fired Transition: t1
Current State:

pl p2 p3

2 3 1

At time: 10 enabled transitions are: Row-5
t1

At time: 10 firing transitions are: Row-6
t1

State: 2 Time: 20 Row-7

Fired Transition: t1
Current State:

pl p2 p3

1 1 2
At time: 20 enabled transitions are: Row-8
At time: 20 firing transitions are: Row-9

30.4.4 Place_Names and Transition_Names

>> sim.Place_Names

ans =

pl
p2
p3

Since there is only 1 transition is the system,
>> sim.Transition_Names

ans =

30.5 Example-2 for State_Diagram

Figure shown below depicts a web server consigiinlyvo server machinegX1 andtX2)
that will fire alternatively. To allow alternatiie@ing, we can implement a binary semaphore
that can be read and manipulated by the definfties of both transitions.

156

» tX2 > p2
MSF:
global_info.semafor = 1; % GLOBAL DATA: binary semafor
png = petrinetgraph('loadbalance_def');
dynamicpart.initial_markings = { 'PSTART' , 10};
dynamicpart.firing_times = { ‘tX1' ,10, 'tX2' , 15}

sim = gpensim(png, dynamicpart, global_info);

plotp(sim,{ 'p1l" , 'p2" });
print_statespace(sim);

Let’s inspect theState Diagrani element of the simulation resultsirm’

>> sim.State_Diagram

ans =

[E=Y

&
OCOROONOOHROONOOROONOOROOO
CoOwoOoOROOUOOODOO~NOO®O®MOO OO o
OCOoORODOWOOWOONOONOOROORCPCOCo
OCOWOOWOONOONOOROOROOOPOCo
OrRPORRPROORORROORORRLROOROPPO
PRPrOORORRLROORORRLROORORROCFOo

157

100 2 2 4 4 0 O
100 0 O O 0 1 1
100 0 O O O 1 O
110 1 1 5 4 0 O
1170 0 O O 0 1 1
1170 0 O O O o0 1
125 2 0O 5 5 0 O
125 0 O O O O o
125 0 O O O O o

>>

Explanation:

Row-1: 0 0 10 0 O 0 0

At time=0, the initial row shows the initial markjs (at time 0)

Row-2: O o 0 0 o0 1 1]
At time=0,, bothtX1 andtX2 are enabled.

Row-3: 0 o 0o 0 0 1 O]
At time=0, only tX1 is allowed to fire.

Row-4: [0 1 _ 9 1 0 0 0
tX1 (1) takes 10 minutes to fire. AftéX1 is fired, new state is [9 1 0]

Row-5: O 0O 0 0 0 1 1]
At time = 10, bothtX1 andtX2 are enabled.

Row-6: [0 0 0O 0 0 0 1]
At time = 10, onlytX2 is allowed to fire.

Row-7: 25 2 8 1 1 0 0]
When tX2 (3 completes firing, time moves from 10 to 25 secrithe new state is [8 1 1].

Row-8: 25 0 0 0 0 1 1]
At time = 25, bothtX1 andtX2 are enabled.

Row-9: 25 0 0 0 0 1 O]
At time = 25, onlytX1 is allowed to fire.

Row-10: (5 1 7 2 1 0 Q]
When tX1 (3 completes firing, time moves from 25 to 35 sesrithe new state is [7 2 1].

Row-11: B35 0 0 0 0 1 1]
At time = 35, bothX1 andtX2 are enabled.

Row-12: 35 0 0 0 0 0 1]
At time = 35, onlytX2 is allowed to fire.

158

159

30.6 Off-line Graphical Display

After simulations by the function ‘gpensim’, themsilation results has all the necessary
information for off-line graphical display. The suhation results, lets call it ‘Sim_Results’,
has three elements that can be used for graphsgbg (figure-32):

Pixe-]

Off-line graphical display of simulatioen results

A Java/Cletc,
based pro gram for
Graphical Display of
simulation results

Simulation
Eesults

Elements:
Staf T agram
Flace Names

Tramsifory_Names

Figure- 16: Off-line (alter gpensin simulation) graphical display of
simulation results step-by-step

Figure-51. Off-line graphical display
1. State_Diagram: a matrix
2. Place_Names: Block of strings
3. Transition_names: Block of strings

160

30.7 Structure for co-tree
Section 7.1 discusses obtaining co-tree of a RetriThe program is given below:

% the main file to get the co-tree

png = petrinetgraph('fig_8_def');
sources={ 'pl1' ,1}

CT = cotree(png, sources);
print_cotree(CT); %

Execution of line 4 gives a structure called CTtfor co-tree. Let us inspect this structure:
>>CT
CT=

type: 'COTREE'
LOG: [3x6 double]

The structure has two elements, element ‘type’tiflen that this structure is for co-tree, and
the element ‘LOG’ has the rows of data for co-tree.

>> size(CT.LOG)
ans =

3.00 6.00

The above screen dump shows that the LOG elemenBiX 6 matrix. Only way to see co-
tree properly is to feed the structure (CT) to fiorTtprint_cotree.

161

30.8 Structure for colormap
Section 12.1 discusses colormap of a Petri netpfbgram is given below:

clear, clc;

pn = petrinetgraph('simple_adder_def');
dynamicpart.initial_markings = { 'pl" 1, 'p2" 1}

[results, global_info, colormap] = gpensim(pn, dyna micpart);

Execution of line 4 gives a structure called colapmLet us inspect this structure:

>> colormap
colormap =

type: 'color_map'
LOG: [1x5 struct]

The structure has two elements, element ‘type’tiflea that this structure is for colormap,
and the element ‘LOG’ has the rows of data for ookap.

>> size(colormap.LOG)
ans =

7.00 5.00

The above screen dump shows that the LOG element iX 5 matrix, meaning it has colors
of 7 tokens. Colormap structure as an outpujpEnsimcontains properties (color, creation
time, and place) of all the tokens that were eslistering simulation run. Let us see what the
color of the first token is:

>> colormap.LOG(1)
ans =

time: 0

place: 4

color: {'21', '45"}

The screen dump shows that the colors of the talae ‘21’ and ‘45’. We can see the colors
of all the tokens that were involved during simuaat by feeding colomap structure to the
functionprint_colormap.

162

163

31. Using MSF and petrinetgraph

Main Simulation File (MSF) calls at least threeatEPenSIM functions directly:
e ‘petrinetgraph’
e ‘gpensim’, and
* ‘print_statespace’, ‘print_colormap’, ‘plotp’, etc.

PDFs —»
<4—PN graph
MainSimulationFile | petrinetgraph
B
¢
"%
2%
O
% %\/
\
N 9%
% %,
®©
™ %,
é 6‘9/%6
Q Ny
2 %514
o D
2 X
=
(72}
]
[
Ke]
=
3
£
y
print_statespace
Figure-52. Collaboration Diagram for MSF

164

global_info —»
<4—PNname,set_of_places, set_of_trans, set_of_arcs

petrinetgraph PDFs
QSQ/O
o~ OF
Pbay s,
NS
Cog
%
%, <
%%
‘9/\0/“
\%\4 place_name —»
2 2
4 A %% <—place
L @ % -
2 <o ® build_places place
a o T\g
[D e
5 Z N
9« (S
'; s 39
3~ v
Zv
trans_name —»
<—trans
build_trans trans
source, destination, arc_weight —»
<-arc
build_arcs arc
— - Py
incidencematrix) oI,
Cae
V\o \ﬂa,n
N e -
2 2
o 0
= L.
2 < ®, %,
g 7 ot
= X% R
o @ o % A -
f @ £ “5\s is_place
o 45 S
c8 w S >
°J 52 ®
s E8 M
o N
2 Z
z
< v
o
£
g
‘ et_place
search_names
. ,
Figure-53. Collaboration Diagram for ‘petrinetgraph

165

32. Description of the Main Functions

This section presents detailed description of sohtee main GPenSIM functions. The
following functions are described in detail: cotregtractp, gpensim, gpensim_ver, MSF,
PDF, petrinetgraph, plotp, print_cotree, print_kwéors, print_statespace, timed_pensim,
TDF.

Name: cotree

Purpose: Creates the coverability tree of a Petri net

Input Static Petri net sturcture (the structure output by ‘petrinetgraph’)
parameters: Intial_markings

Out parameters: | Cotree structure

Uses: sources_matrix

enabled_transition
new_marking
check_for_dominance

good name
Used by: [main simulation file]
NOTE: Cotree algorithm is similar to the one by Cassandras & Lafortune (1998)
Example:
% in main simulation file
png = petrinetgraph(‘cotree_example_def');
dyn.initial_markings = { ‘Pl 2, 'pd" 1}
cotree_sturcture = cotree(png, dyn.initial_markings);

print_cotree(cotree_sturcture);

> (PN.global_places, sources)

<09 —{ sources_matrix JJ]

> (old_state, COTREE, parent)

A

cotree

< < (new_state) —Pl CheCk_fOI’_dom I
> (transition, PN) "

< < (iue /false) —>| enabled_transit. I
> (transition, PN) .

< < (new_markings) —>| new_markings |

166

Name: extractp

Purpose: To extract tokens from the Simulation results structure.
Input Simulation Results (the structure output by ‘gpensim’)
parameters: {set_of place names}

Out parameters:

TOKEN_MATRIX
First row :[0 set_of place_indices]
Second & subsequent rows:
[first column is time, other columns are tokens]

Uses: None

Used by: [main simulation file],
Plotp

Example:

% in main simulation file
sim = gpensim(png, dynamic);

plotp(sim, { Pl ,'p2" , 'p3)

extractp(sim, { Pl ,'p2' ,'p3' }) % print the token matrix

Name: gpensim

Purpose: To run simulations and output simulation results
When the results are returned, they can be also analyzed (with tools like
print_statespace, plotp, extract, occupancy, etc.)

Input Static Petri net structure (output from ‘petrinetgraph’)

parameters: initial dynamics
global_info

Out parameters: | Simulation results
global info

Uses: gpensim_ver, initial_markings, init_token_bank, firing_times, state_space,
timed_gpensim

Used by: [main simulation file]

Example:

% in main simulation file

[simualtion_Results, global_info] = gpensim(png, dy

n, global_info);

print_statespace(simualtion_Results);

167

Name: gpensim_ver

Purpose: Prints the current version of gpensim
Input None

parameters:

Out parameters: | None

Uses: None

Used by: gpensim, [main simulation file]
Example:

% in main simulation file

gpensim

% equivalently,
gpensim_ver

>0
<0

gpensim gpensim_ver

T

> (static PN sturcture, initial_markings)
< (initial state, static PN sturcture)

initial_markings

> (initial run-time PN sturcture, global_info) |

< < (initial run-time PN structure)

init_token_bank

P > (initial run-time PN structure, firing_times) 5o 5

[< (firing_times, initial run-time PN structure)] fll’lng_tlmes
> (initial run-time PN structure, global_info) T .

< < (sim_results, global_info, color_map) —>| t|med penSIm

168

Name: Main Simula tion File (MSF)

Purpose: 1. To declare global variables (global_info),

2. To load Petri net graphs (PDFs), and to create a static Petri net graph with the
function ‘petrinetgraph’

3. To assign initial dynamics, and

4. To start the simulation (with ‘gpensim’).

When the results are returned, they can be also analyzed (with tools like

‘print_statespace’, ‘plotp’, ‘extractp’, ‘occupancy’, etc.)

Input -
parameters:

Out parameters: | -

Uses: petrinetgraph, gpensim, etc.
tools like plotp, print_statespace, etc.

Used by: -

Example:

%%% FILE: MSF for MIC (mic_new.m)

global_info.LOOP_NUMBER = 1; %% print loop number during simulation
%%%% COMPOSE %%%%%%%
png = petrinetgraph({ ‘client_def' , 'internet_def' -
'sil_def' ,‘conn_pro' , 'iterate_def' , 'strategy_def') e
‘tactic_def' b; %% 7 modules

%%%% DYNAMIC DETAILS %%%%

dyn.initial_markings = { 'PSR' ,1, 'pNOI' , round(unifrnd(2,4)), 'pB3" 1}
dyn.firing_times = { tCS' , 'normrnd(5000,50)' , 'tSC' , 'normrnd(5000,50)' -
TNIT" , 'unifrnd(280,320)' -
tRES' , 'unifrnd(1, 10)' , 'tSD' , 'unifrnd(80, 100)') e
tTD' , 'unifrnd(25, 35)' , 'tSUB1' , 'unifrnd(10, 15)') e
'tSUB2' , 'unifrnd(10, 15)' , 'tSUB3' , 'unifrnd(10, 15)') e
tSUB4' , 'unifrnd(10, 15)' h

%%%% SUIMULATE %%%%%
RES = gpensim(png, dyn);
print_statespace(RES);

169

Name: Petri net Definition File (PDF)

Purpose: To define a static Petri net graph
Input Optional: global_info
parameters:

Out parameters: | PN_name: a text string of text,

set_of places: array of place structures
set_of trans: array of transition structures
set of arcs: array of arc structures

Uses: -

Used by: Petrinetgraph

Example:

function [PN_name, set_of places, set_of trans, set_of arcs]1...

= simple_adder_def(global_info)
%% PDF: simple_adder_def.m:

PN_name=Color example: Simple Adder' ;
set_of places={ ‘Pl , 'p2' , 'pNUM1', 'pNUM2', 'pADDED', 'pRESULT" };
set_of trans={ tTGET_NUML' |, tGET_NUMZ2' | tADD' , tCONVERT' };
set of arcs={ 'p1' ,'tGET_NUM1',1, "1GET _NUML1' ,6 'pNUM1',1, ..
'p2' ,tGET_NUM2' ,1, 'tGET_NUM2', 'pNUM2' 1, ...
‘PNUM1' |, tADD" ,1, 'pNUMZ2','tADD' ,1, ...
tADD' , 'pADDED',1, 'pADDED', tCONVERT' 1,
tCONVERT' , 'pRESULT" ,1};

Name: petrinetgraph

Purpose: To make a static Petri net structure from the Petri net definition file(s) (PDF(s))
Input { Names of One or more PDFs }

parameters:

Out parameters: | Static Petri net structure

Uses: build_places, build_trans, build_arcs, incidencematrix

Used by: [main simulation file]

Example:

% in main simulation file

% one PDF file

png = petrinetgraph(‘'simple_pn_def');
% multiple PDF files
png = petrinetgraph({ ‘client_def' , 'internet_def') e
'sil_def' , ‘conn_pro' ...
iterate_def' , 'strategy_ def' , 'tactic_def' b;

170

Name: plotp

Purpose: To plot simulation results; to plot how tokens change with time
Input Simulation Results (the structure output by ‘gpensim’)
parameters: {set_of place _names}

global_info (optional)

Out parameters:

TOKEN MATRIX (contains tokens of places with time)

Uses:

extractp (extracts tokens from the SIM results structure)

Used by:

[main simulation file]

Example:

% in main simulation file
sim = gpensim(png, dynamic);

plotp(sim, { 'p1" ,'p2" ,'p3" })

Name: print_statespace

Purpose: To print simulation results

Input Simulation Results (the structure output by ‘gpensim’)
parameters:

Out parameters:

None

Uses:

print_markings,
print_statespace_enabled_trans,
print_statespace_firing_trans
print_statespace_state

Used by: [main simulation file]
NOTE: Not for use with simulations using stochastic timer
Example:

% in main simulation file

Simulation_resu

Ilts = gpensim(png, dynamic);

print_statespace(Simulation_results);

Name: print_colormap

Purpose: To print colors of the tokens

Input Simulation Results (the structure output by ‘gpensim’)
parameters: {set_of place names}

Out parameters:

None

Uses:

print_colormap_for_place

Used by:

[main simulation file]

Example:

% in main simulation file
results = gpensim(pn, dynamicpart);

print_colormap(results, {

'‘PNUM1' , 'pADDED', 'pRESULT' });

171

Name: print_finalcolors

Purpose: To print colors of the final state (colors of the tokens that are left in the system
when the simulations are complete)

Input Simulation Results (the structure output by ‘gpensim’)

parameters:

Out parameters: | None

Uses: None

Used by: [main simulation file]

Example:

% in main simulation file
results = gpensim(pn, dynamicpart);
print_finalcolors(results);

Name: print_cotree

Purpose: To print cotree structure

Input Cotree structure (the structure output by ‘cotree’)
parameters:

Out parameters:

None

Uses:

print_markings

Used by:

[main simulation file]

Example:

% in main simulation file
cotree_structure = cotree(png, dyn.initial_markings);
print_cotree(cotree_ structure);

172

Name: timed_pensim
Purpose: This is the main M-function for Petri net simulation.
Inside the main loop, transitions are randomly chosen and
checked whether they are enabled or not. If they are enabled, the token removal
and deposition in respective places happens. Then the happenings are recorded
in the simulation results LOG.
Input Static Petri net structure (output from ‘petrinetgraph’)
parameters: global_info
Out parameters: | Simulation results
global info
Uses: max_loop, print_loop_nr, simulations_complete
enabled_transition
start_firing
complete_firing
stochastic_timer_advancement, global_timer_advancement
pack_sim_results
Used by: gpensim
Note: This is one of the most important M-files, as it realizes the main simulation
loop
Example:

% inside gpensim

[sim_results, global_info] = timed_pensim(png, glob al_info);

> (global_info)

timed_pensim |e— . oo o, [max_loop logsize]

> (PN, EIP, time_punch)

< (PN, EIP, time_punch, log_record, > |
colormap_record)

T

complete firing ¢

> (PN, global_info)

-« Z (N, gobalinfo) —»[time_advancement |

A

> (PN, EIP, parent_index, global_info)
< (PN, EIP, global_info) —PI

start_firing lc

> (EIP,PN,LOG,MAX_LOG_SIZE, Loop_Nr,

MAX_LOOP) —>| simulations_complete I

< (true / false)

A

173

Name: Transition Definition File (TDF)
Purpose: To run user-defined conditions, and to test probe simulation
Input PN: run-time Petri net structure
parameters: global_info : global info packet

(Dummy variables: new_color = {}, override=false, selected_tokens=[])

Out parameters:

fire_or_not: fire (# 0), don't fire (=0)

new_color: colors assigned by transition,

override: override (# 0), don't override (=0),

selected_tokens: tokIDs of any selected tokens for removal (consumption),
global_info: updated (if updated by the transition) global info packet

Uses: -

Used by: Firing_conditions

Example:

function [fire, new_color, override, selected_tokens,global _info] =
tCONVERT_def (pn, new_color, override, selected _tokens,global_info)

%% TDF: tCONVERT_def

% first, select an token
tokID = select_token(pn, 'PADDED' , 1);

% second, get the colors of the selected token

colors = get_color(pn, tokID);

numl = str2num(colors{1}); % convert color into number
numz2 = str2num(colors{2}); % convert color into number
sum = numl + num2;

new_color = num2str(sum);

override = 1; % only sum as color - NO inheritance
global_info.sum = sum; %% % sum is added to global_info
fire=1; %always fire
— — > (transition, PN, global_info)
f||‘|ng condition |€ < fire_or_not, new _color, override, [P TDF I
— seleted_tokens, global_info)

174

REFERENCES

e C. G. Cassandras and S. Lafortumé;,oduction to Discrete Event Systems. Boston, MA:
Springer Science+Business Media, LLC, 2007.

* GPenSIM web pagehttp://www.davidrajuh.net/gpensim/

« Darren J. Wilkinson, “Stochastic Modelling for Ssmts Biology”, Chapman &
Hall/lCRC, NY, 2006. ISBN-10 1-58488-540-8. Read ezsally about Gillespi’s
algorithm in chapter 06.

* [James D. Stein]

* T. Murata, "Petri nets: Properties, analysis angliegtions,"Proceedings of the |EEE,
vol. 77, pp. 541-580, 1989.

* R. Davidrajuh, "Event-driven simulation, modelirgd analysis with GPenSIM,"
Communications of the IIMA (Published by the International Information Management
Association), vol. 3, pp. 53-71, 2003

e C. A. Petri and W. Reisig, "Petri ne§tholarpedia, vol. 3, p. 6477, 2008

* R. Davidrajuh and I. Molnar, "Designing a new téml modeling and simulation of
discrete event systemgssues in Information Systems, vol. X, pp. 472-477, 2009

» Stateflow (2010) The MathWorks Inc, "Stateflow 7 Besign and simulate state
machines and control logidjttp://www.mathworks.com/products/stateflo®010.

* K. JensenColoured Petri Nets - Basic Concepts, Analysis Methods and Practical Use, 2.
ed. vol. 1: Springer, 1997

e Zhou, M.C. and Robbi, A.D., 1994, “Application of Petri net methodology
to manufacturing systems”, Computer Control of Flexible Manufacturing
Systems : Research and Development (Edited by : Joshi, S.B. and
Smith, J.S.), Chapman & Hall , Hong Hong.

e Davidrajuh, R. (2007). “A Service-Oriented Apprbdor Developing Adaptive
Distribution Chain”, International Journal of Seres and Standards (ISSN (Online):
1740-8857 - ISSN (Print): 1740-8849), Vol. 3, Ngp. 64 — 78.

175

