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Abstract

Many fault-tolerant and intrusion-tolerant systems require the abil-
ity to execute unsafe programs in a realistic environment with-

out leaving permanent damages. Virtual machine technology meets

this requirement perfectly because it provides an execution envi-
ronment that is both realistic and isolated. In this paper, we intro-
duce an OS level virtual machine architecture for Windows applica-
tions calledFeather-weight Virtual MachinéFVM), under which
virtual machines share as many resources of the host machine a
possible while still isolated from one another and from the host
machine. The key technique behind FVMiamespace virtualiza-
tion, which isolates virtual machines by renaming resources at the
OS system call interface. Through a copy-on-write scheme, FVM
allows multiple virtual machines to physically share resources but
logically isolate their resources from each other. A main techni-
cal challenge in FVM is how to achieve strong isolation among
different virtual machines and the host machine, due to numerous

namespaces and interprocess communication mechanisms on Win

dows. Experimental results demonstrate that FVM is more flexible
and scalable, requires less system resource, incurs lower start-u
and run-time performance overhead than existing hardware-level
virtual machine technologies, and thus makes a compelling build-
ing block for security and fault-tolerant applications.

Categories and Subject DescriptorsD.4.5 [Operating Systenfis
Reliability; D.4.6 Operating SystensSecurity and Protection

General Terms Reliability, Security

Keywords virtual machine, namespace virtualization, system call
interception, copy on write, mobile code security

1. Introduction

Virtual machine is a technology that creates one or multiple execu-
tion environments on a single physical machine. Each virtual ma-
chine (VM) represents a distinct instance of the underlying physical
machine, and does not interfere with one another or with the un-
derlying machine. This isolation property makes virtual machine a
possible building block for security and fault-tolerant applications.

For example, running unsafe mobile code in a VM can protect the
underlying physical machine from being compromised.
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When applying virtual machine technology to fault-tolerant and
intrusion-tolerant systems, a common requirement is to run a po-
tentially malicious transaction in a specially created VM, whose
operating environment is analogous to the current host environ-
ment. One can satisfy this requirement by creating a new VM, and
copying the hosting machine’s environment to the new VM. How-
ever, this approach is impractical for most existing virtual machine
technologies [1, 2, 3, 4]. The reason is that these technologies sup-

ort virtualization at an abstraction level close to hardware and are

eavy-weight in that each VM is created as a full-fledged operating
environment. Initializing such a VM incurs too much overhead in
terms of both disk space and invocation latency.

Different from hardware-level virtual machine technologies,
OS-level virtual machines have the virtualization layer between
the operating system and application programs. The virtualization
layer can be designed in a way that allows processes in VMs to ac-
cess as many resources of the host machine as possible, but never
to tamper with them. In other words, every VM shares the same
execution environment as the host machine, and only keeps any
iverges from the host environment in the VM's local state. There-
re, such a VM can have very small resource requirement and thus
can achieve large scalability. Moreover, under this architecture, it is
also possible for the VM and the host machine to synchronize state
changes conveniently when necessary. For example, the legitimate
state change in a VM can be committed to the host machine, while
patches or reconfiguration of the host machine can be synchronized
immediately in a VM.

In this paper, we present a Windows-based OS-level virtual-
ization architecture calleBeather-weight Virtual MachinéFVM),
which is specifically designed to reduce the invocation latency of a
new VM and to scale to a large number of VMs by minimizing per-
VM resource requirement. The key idea behind FVMasnespace
virtualization, which renames system resources through a virtual-
ization layer, called=VM layer, at the OS system call interface.
Microsoft Windows supports numerous types of namespaces for
various system resources, such as files, registries, kernel objects,
network address, daemon services, window classes, etc. The FVM
layer manipulates the names of all these resources when a process
makes system calls to access them. Through resource renaming,
the namespaces visible to processes in one VM are guaranteed to
be disjoint from those visible to processes in another VM. As a
result, two VMs never share any resources and therefore cannot in-
teract with each other directly. For example, suppose an application
in one VM (sayvm1) tries to access a filéa/b, then the FVM layer
will redirect it to accesgvm1/a/b. When a process in another VM
(sayvm2) accessega/b, it will try a different file, i.e.,/vm2/a/b,
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However, completely separating namespaces of different VMs
may require unnecessary duplication of common system resources
and may lead to the same performance overhead as many heavy-
weight virtual machine technologies. Being feather-weight, the



FVM architecture enables VMs to share most resources with the layer. Section 5 shows the performance measurements of the cur-
host environment while isolating state changes of each VM through rent FVM prototype. Section 6 describes FVM's applications, espe-
a specialcopy on writescheme. A new created VM initially can  cially the application on securing mobile code execution. Section 7
share all the resources of the host machine. Later on, if processessummaries the main features of FVM and outlines the future work.
in the VM make only read requests to system resources, they can
simply access the shared resources on the host machine. The VM2, Related Work
does not occupy any private resources until processes in the VM
try to modify the host machine’s resources. Therefore, the resource
requirement of each VM is significantly reduced under the FVM
architecture.

Although the idea ohamespace virtualizatiois not new and
is in fact used in systems such as FreeBSD Jails [5], Solaris Con-
tainers [6] and Linux VServer [7], there are several technical chal-
lenges to implement it correctly on the Windows platform. First of
all, there are too many types of namespaces on Windows. Only han-
dling files and registries virtualization is far from being complete in
providing isolated VMs. For example, many processes use name
kernel objects or named GUI windows to interact with other pro-
cesses. The FVM layer must identify all of these objects and virtu- ; .
alize their namespages. Second, Wf%/ndows comes vjvith a set of dae-head' L.|nux has been pqrted to Xen arch|§ecture and the perfor-
mon services which has special management mechanisms. Some gi/@Nce is close to native Linux. User-Mode Linux (UML) [12] ports
the services are as important as the kernel and are inappropriate 0Fhe Linux kemel to Linux itself and runs the kernel in the user space
difficult to be duplicated in each VM. As a result, namespace vir- ©! the host Linux. The system calls made by UML processes are
tualization must handle special resources created by these Shareg‘ltercepted and redirected to UML kernel.

processes. Finally, there are numerous Windows-specific interpro- '3" of thebatbov? V|r|tual|z‘tat|on tetchnoll?_g:es_ t“t’ to snmuflagi/lth;e
cess communications mechanisms, some of which are not directly araware abstraction layer to create muitiple instances o s for

based on names, for example, GUI window message. These comN€ guest operating system. The advantage of these technologies
munication mechanisms must also be confined in order to achieve'S the full isolation between different VMs and the host machine,

strong isolation between different VMs while their disadvantage are normally due to large resource require-

There are also many Windows-based technologies working at ament and performance overhead. Although para-virtualization in
similar virtualization level to FVM, such as PDS [8] and Softric- Xen and copy-on-write schemes in VMware ESX server [13] can
ity [9]. The main difference between them and FVM is that, FVM improve the runtime performance and scalability, these hardware-

aims to develop a comprehensive virtualization technology with V€l virtualization technologies are not as flexible as operating
strong isolation. Consequently, under FVM architecture, not only system level V|_rtuallza_1t|on technolc_)gle_s for ahppllcatlons fhat re-
files and registries are virtualized, but system objects and interpro- duire frequent invocation and termination of “playground” VMs.
cess communications are also virtualized to a large extent. Without
this effort, it is not even possible to run multiple processes of the
same Windows application (e.g., Microsoft Word) on a single host
machine. Also, under FVM architecture, it is now possible to run
multiple web servers each of which listens to port 80 and uses a
different IP address. As a result, multiple VMs can coexist simul-
taneously without interfering with one another. Another advantage
with FVM architecture is that the FVM layer is more difficult to be
bypassed or subverted because it is mainly at kernel mode instea
of user-mode system libraries.

Hardware abstraction layer virtualization . VMware [2, 10] and
Microsoft Virtual PC [3] have the virtualization interface at the
hardware abstraction layer. They virtualize common PC hardware
like processor, memory and peripheral I/0O devices such that multi-
ple operating system instances of different type can be installed on
a single physical x86 machine.

Some so-called light-weight virtual machines on the hardware
abstraction layer [11, 4, 12] virtualize only a subset of the hard-
ware. Denali [11] usegpara-virtualization techniques to scale
qup the number of concurrent VMs running server applications.
Xen [4] also uses para-virtualization techniques to support full
multi-application operating systems with small performance over-

Operating system level virtualization The FreeBSDail [5] util-
ity can create multiple virtual execution environments called jails,
each of which has its own file system root and IP address. Processes
in a particular jail can only access resources within that jail. This
utility requireschroot() system call and a few kernel modifications
to separate the namespaces of different jails.

The Linux VServer project [7] is a more advanced jail-like im-
cplementation for Linux. It modifies the kernel code related to pro-
cess management, file system, network address, root capabilities
Compared with many existing virtual machine technologies and_ system V interprocess communications 1o separate user-space

environment into distinc¥irtual Private Serverslt supports aini-

such as VMware [10] and Virtual PC [3], which virtualize at the ficationf h hard link q disk
hardware abstraction layer, or Bochs [1], which emulates at the ficationfeature that uses hard links to reduce disk space consump-

instruction set architecture level, FVM is more flexible and scal- 1ON- The Linux VServer is very similar to what FVM can do except
that FVM supports a copy-on-write scheme to isolate file systems

able, incurs less start-up latency, and yet achieves strong isolation” " . .
among different VMs. In particular, FVM guarantees that even a ©! different VMs, and FVM handles more complicated interprocess
communications on Windows.

high-privileged process in one VM cannot compromise resources L - ) . .

of another VM or the host machine, and therefore can be applied _ SiMmilar to Linux VServers, Solaris Containers [6], or Solaris

to many fault-tolerant and security-related applications that require tZ_ones W'th resotur;:e bme_tnalg(ten;ent fac!htyl, a.”O\;VS mu“}'f;lﬁ e;elcu_-

frequent spawning of new VMs. We have applied the FVM technol- 1O €nvironments 1o be isolated on a single Instance of the Solaris
OS. It achieves a finer isolation granularity than Dynamic System

ogy to protect an end user’s machine from malicious mobile code, D ins 16 h of which : f Solaris OS h

by running each vulnerable application program or downloaded Pomains [6], each of which runs its own copy of Solaris OS on the

mobile code in a separate VM. single physical r_nachlne. Solaris Containers supports dyr_lamlc re-
source reallocation for CPU, memory and network bandwidth, and

The rest of the paper is organized as follows: Section 2 re- : th flexibl hanism f lidation. Soh 14
views virtual machine technologies that work at different levels of 'S thuS & liéxiblé mechanism tor server consolidation. Sp era [14]
and SWsoft's Virtuozzo [15] also provide similar isolated environ-

abstraction, including various confinement mechanisms at the OS - .
g ments calledvirtual Dedicated Serveor Virtual Private Server

level. Section 3 describes the virtualization principles for files, reg- (VPS) on Linux platform. Each VPS can be rebooted independently

istries, kernel objects and other system resources in the FVM ar- dh " ts IP add tem i
chitecture. Section 4 introduces the system call interception mech-&Nd Nave Its own user accounts, I address, processes, system -
braries and configuration files. Virtuozzo can even support virtu-

anism and the implementation issues of each module in the FVYM = ™= . h .
P alization on Microsoft Windows server platform and is therefore



close to FVM, but it is not clear whether it can also be used to iso- There are also several interesting virtualization or emulation
late desktop applications which are normally involved with more technologies at the operating system level with cross-platform
communication channels such as window message. support. Wine [27] provides a Windows API emulation layer
In addition to server consolidation purpose, several products that can enable some unmodified Windows programs to run on
and projects [8, 9, 16, 17] develop isolated execution environment any Unix-like operating system, while Cygwin [28] provides a
for a new software deployment scheme cabigxblication stream- Linux API emulation layer that can rebuild Linux applications
ing [18], under which application software is stored on a central and make them run on Windows. These emulation layers are im-
streaming server but run on local desktops on demand, with eachplemented at the user level and are not designed as a solution
application executed in its own VM without pre-installation. The to create multiple isolated VMs for security-related applications.
Progress Deployment System (PDS) [8] intercepts a subset of Win-
dows APIs to create a separate VM for eaxdsetwithout con- File versioning techniques In some sense, FVM is equal to ver-
flict with each other. It selects the APIs to be intercepted in the sioning of system resources plus visibility control. In particular,
same way as FVM but only handles virtualization of files and The file virtualization module in FVM is similar to many ver-
registries. Some commercial products on Windows with similar sioning file system projects, such as [29, 30, 31], which attempt
goals and techniques are Softricity Desktop [9], AppStream [16] to efficiently maintain multiple versions of the same file. Most if
and Thinstall [17]. In particular, Softricity Desktop [9] implements not all of the versioning file systems use block-based versioning
comprehensive virtualizations to execute sequenced applications.rather than file-based versioning to avoid duplicating common file
It virtualizes all major components of a Windows application’s blocks. For simplicity, the current FVM prototype uses a copy-on-
runtime environment, including process environment variables and write scheme that copies the entire file on the host machine to a
many interprocess communications such as COM and named pipesVM when the file is to be modified by the VM for the first time.
These Windows-based systems have the virtualization layer at the
user-level system library interface. In contrast, FVM’s virtualiza- Windows confinement mechanismsWindows itself implements
tion layer is mainly at the kernel-mode system call interface and several confinement mechanisms [32], suckessionwindow sta-
is thus more difficult to be bypassed. Moreover, because FVM vir- tion, desktopandjob object Sessions are used to support multiple
tualizes kernel objects and network address as well, it can achieveinteractive users in Windows Terminal Services [33]. Each session
better isolations that can support both desktop and server applica-has its own namespace for kernel objects, as well as the keyboard,
tions. mouse and display device. As a result, multiple instances of the
Trigence AE [19] and Meiosys [20] support application encap- same application can run in multiple terminal sessions on the same
sulation/streaming on Solaris/Linux platform. In addition, Meiosys’s terminal server. However, sessions do not isolate access to files and
MetaCluster can further checkpoint an application’s running states, registries, and are not completely supported on Windows platforms
such as opened sockets, in its virtual application containers. Suchother than Windows servers.
a checkpoint/restart feature enables stateful relocation of running  Window station objects [32] are mainly used to separate high-
applications on Linux. MobiDesk [21] also supports stateful migra- privileged daemon services from interactive user applications with
tion of Linux applications through computing sessions. Different normal privilege. Each window station contains multiple desk-
from Meiosys, each of these sessions is hosted on servers in aops [32], each of which has separate window object management
VM while the user’s desktop simply acts as a terminal. The cur- so awindow in one desktop cannot see or send message to windows
rent FVM prototype does not support process checkpoint/restart onon a different desktop. FVM uses a different mechanism to control
Windows and will include it in the future. Moreover, FVM may  window visibility among different VMs by intercepting window-
also work with Windows Terminal Server to support virtualized related APlIs.
hosted clients. A job object [32] allows multiple processes associated with it to
The Alcatraz project [22] provides an isolated environment for be managed as a unit. Restrictions about user-interface and resource
executing untrusted programs on Linux. File modifications by un- utilization can be specified for each job object and in turn applied
trusted processes are redirected toaification cachénvisible to to all its associated processes. FVM integrates this confinement
other processes. It is implemented at the user level through systemmechanism by assigning a job object for each VM to limit the CPU
call interposition and incurs large performance overhead. Safe Ex- and memory utilization of untrusted processes in the VM.
ecution Environment (SEE) [23] extends Alcatraz by implement-
ing isolations within the kernel at the VFS layer. It also intro- .
duces a systematic way to commit file modifications to the out- 3- FVM Architecture
side of a SEE. However, the two projects mainly isolate file system 3.1 Design Overview
changes on Linux instead of supporting a comprehensive virtual-
ization framework which should include virtualization of network *. ; . SN
and interprocess communications, and maintenance of VM states. tion layer at the OS's system call interface, as shown in Figure 1.
All the VMs share the host OS’s kernel-mode component, includ-

GreenBorder [24] creates a secure execution environment on’ . X .
Windows called &Desktop DMZin which internet content is ex- ing the hardware abstraction layer, device drivers, OS kernel and

ecuted but isolated from host machine’s resources. So is the se-SXecutive, as well as system boot components. Moreover, the file
curity wrappers for Windows NT/2000 [25], which can secure the SYSIEM image is also shared by default. Each new VM starts with
execution of Outlook, MS Office and Internet Explorer by virtu- SXactly the same operating environment as the current host. There-
alizing process operations that violate security policies. Similarly, for\t/al,v'both th‘? sta_rtug dBeIay and me initial resou_r(t:e rlc_qu:_lrement for
Windows Vista has an interesting feature that enables legitimate ap-fa c?[)e mlnlrrlze ; gcauset € reﬁource V'rtua.“z? IOCT '? per-
plications requiring administrator privilege to run virtually without ormed by simply renaming system call arguments instead of com-
actually granting users the administrator privilege [26]. These sys- Plicated resource mappings or instruction interpretations, an appli-
tems and approaches can stop the damages of malicious code Whilgat'é’” S runhme ?:‘i/n;\‘zrm"’tmcﬁ |nt_a Vll\/l is also |m§>rovefdt.h )

not breaking legitimate applications. However, they do not have ecause the virtualization layer is on top of the system

the FVM's flexibility of starting multiple sandboxed environments call interface, it can see all the resource requests from user-mode
or resolving conflicts among multiple application instances. processes. As a result, it can direct higher level requests targeting
at the same object to lower level requests targeting at different

As an OS-level virtualization technology, FVM puts the virtualiza-



VM-1 VM-n crosoft Office) allow only one instance of itself to be started on the

VM APP Host APP VM APP same machine at one time. In other words, no matter how many
files the program are operating simultaneously, there is at most one
Library interface process of the program on the same machine. This instance limita-
User mode tion can be implemented by checking the existence of certain kernel
—— Kernel mode objects, which share one namespace; or by broadcasting window

FVM virtualization layer - . . .

Kernel-mode system call interface message to other existing windows, which can receive message
OS Executive and make replies. Therefore, to break the instance limitation and

_ 0S Kernel Device Drivers enable multiple instances of the same application program to run

HAL interface e A independently of each other in different VMs, kernel objects must

) are Abs yer (HAL) ! . - o .

ISA interface be virtualized and many Windows-specific interprocess communi-

Hardware (x86)

cations such as window message should be confined. Finally, many
Figure 1. The FVM virtualization layer is at the OS’s system call network server applications (e.g. Apache) start as daemon services,
interface. which are registered to and managed by a special Windows system
component calledService Control ManagerTo enable multiple

. . . ... _instances of the same network server application to run in differ-
versions of the same object. FVM uses namespace virtualization gt y\s, the daemon service management mechanism should be
and resource copy-on-write to implement the access redirection jryalized. Moreover, the network address should be virtualized as
and isolation between different VMs. When a new VM(sayt) - \ye|| 5o each server application instance can start successfully by
is created, it shares all the system resources(e.g. disk files) W'thlistening on the same port but at a different IP address.

the host machine. Later on, when different types of requests from  tpg ¢yrrent FVM architecture consists of 6 modules to perform
a procesg in the VM pass through the FVM layer, these requests ity alization of file, registry, kernel object, network address, inter-
can be redirected as follows: process communication confinement and daemon service virtual-
If p attempts to create a new fila/b, the FVM layer will ization. Their implementation details will be addressed in Section

redirect the request to create a new fitel /a/b.

If p attempts to open an existing file./o, the FVM layer will 32 VM State
redirect the request to open a file1/a/b. If file vm1/a/b ex- :

ists, there is no further processing in the FVM layer; otherwise, Under FVM architecture, the state of a VM refers to the information
the FVM layer will check the access type of the open request. If that should be retained when the VM stops running. A VM’s state
the access is “open for read”, the request will go to the orig- is defined as follows:

inal file /a/v; if it is “open for write”, the FVM layer will . )

copy /a/b to vmi/a/b, and then redirect the request to open  ® A Virtual machine Id,

vm1/a/b. ¢ An IP address,

If p attempts to read or write an existing file, the FVM layer will e Aroot file directory containing file updates by the VM,

simply pass the request through, because read/write request is
based on a file handle, which is returned by a previous open
request. If the open request is redirected, all the subsequent ® A root object directory containing object updates by the VM,
read/write requests based on the same file handle are also redi- o p log of files and registry entries deleted/renamed by the VM,

e Aroot registry hive containing registry updates by the VM,

rected.
L i ¢ A set of policies regarding to resource quota and network ac-
e If pattempts to delete an existing fifa/b, the FVM layer will cess.
simply add the file name /a/b to a per-VM data structure, called
delete log without deleting/a/b. The virtual machine Id is used to identify a VM and the mapping

If p attempts to make any types of interprocess communica- betvyeen a VM and_ its associated processes. It is also used as a
tions, such as sending window message, to another local pro-Prefix when renaming system resources in namespaces such as
cess, the FVM layer will block the communications unless the files, registries, kernel objgcts, daemon services and er)dow titles.
two processes are running in the same VM. An IP addrgss can be a_SS|g_r1ed to a VM when the VM is crt_aate_d,
because this allows multiple instance of the same server application
The above examples describe basic redirection mechanismscoexist on the same host machine, with each running in a different
for implementing namespace virtualization in the FVM layer. Al- VM and binding to different IP address.
though most of these mechanisms are about renaming and redirec- Three types of directories can be specified as the root directories
tion for files, they can be similarly applied for isolating requests to containing private version of files, registries and objects of an VM
registry entries and kernel object as well. Through such resource when the VM is created. Each of these root directories is physically
renaming techniques, resource updates by processes in a VM canmesiding on the host directory namespace of the same type but only
be fully isolated from other VMs and the host machine, although visible to the VM itself. The logical image of a VM’s file directory
all the VMs, including the host machine, are sharing the same op- is the union of the VM’s root file directory and the current host file
erating system. directory, minus the file entries that have been deleted or renamed
There are many types of system resources under different by the VM. The same semantic is applied for a VM’s registry and
namespaces on Windows. A fundamental issue with FVM design kernel object images. To maintain the correct image states during a
is to identify each type of system resources that should be virtual- VM'’s lifecycle, the deleted/renamed files and registries are dumped
ized in order to achieve strong isolation between VMs. First, file into a log file when the VM is stopped, and brought into memory
and registry represent persistent data and system settings and thugshen the VM is restarted. Because FVM currently does not support
must be virtualized. Second, Windows applications can use kernel process checkpoint/restart, the running state of all the processes in
objects and GUI window management mechanisms to synchronizea VM, including kernel objects manipulated by those processes, are
with each other. For example, many application programs (e.g. Mi- not maintained when a VM is stopped.



To prevent denial-of-service attacks and also support perfor- Host APP VM APP VM APP VM APP
mance isolation, a set of policies regarding to resource quota and @ @ @ @
network access can be specified when a VM is created. The FVM
layer limits the total system resource allocated to the VM accord- R —

ing to these policies. This is achieved by assigning a Windolws
objectto the VM, initializing the job object with the policy settings |
and associating all the processes in the VM to the job object. A job
object can specify the CPU scheduling priority, physical memory e s e o Kemel mode
limit, working set size, process execution time, etc, all of which are

enforced by Windows at runtime. In addition, FVM periodically
checks and controls the disk space utilization of each active VM.
Although not implemented, FVM can further analyze and limit the Figure 2. The FVM prototype consists of a kernel-mode compo-
network traffic of a VM to stop worms or spam generators running nent and a user-mode component.

in the VM.

Service | Network Interface |Wind0w message

System Libraries(kernel32, user32, advapi32, ws2_32....)

User mode

File I/Ol Registry l Sync Object |Process & Thread

‘Windows NT Executive(Ntoskrnl.exe) | ‘Window UI management(Win32k.sys) |

and discouraged because an executable file whose name is added to
3.3 VM Operation this entry will be launched automatically whenever the OS starts.

FVM provides a comprehensive set of operations for users to ma-3 4 [ imitation

nipulate VMs, as follows: . .
CreateVMcreates a new VM whose initial image is identical to Although FVM has advantages at VM scalability, runtime perfor-

the host environment at the time of creation. The new VM starts Mmance, resource requirement and state synchronization with host
aVM shellprocess, which is similar to the Windows explorer pro- OS it also has several limitations that require further research.
cess. Users can start application processes in the VM shell by click- First, un-trusted applications that interact with kerne| components,
ing a file icon or typing a command. All the descendant processes SUch as mobile code that requires loading a kernel driver, are not
of the VM shell are associated with the same VM automatically. ~ SUPpOrted to run in a VM. This is because the FVM layer and a
CopyVMcreates a new VM whose initial image is duplicated kernel driver are at the same privilege level, and all the kernel com-
from another VM. ponents are shared by all the VMs and the host system. Loading
ConfigureVMcreates a new VM with an initial image that users @ malicious or buggy kernel driver in a VM may subvert the FVM
can configure explicitly. This operation allows one to limit the vis-  |ayer and corrupt other kernel components, which can further infect
ibility of a new VM to part of the host environment. For example, @l the other VMs and the host system. For this reason, the current
one can initiate a new VM configuration that restricts file access to FVM prototype prohibits processes in a VM from accessing kernel

a protected directory from the VM, and thus can prevent leakage of memory or loading kernel drivers. _ _ _
sensitive information. Second, some daemon services on Windows are inappropriate

StartVM starts a stopped VM, initializes it based on previous ©F difficult to be duplicated in each VM, either because they are
VM state and activates its VM shell. started at the system boot time as a boot process component, or be-
StopVMterminates all the active processes running in the VM, Cause they have close dependencies on some kernel drivers. Conse-
saves the VM's state to disk and renders it inactive. quently, these service processes and the kernel objects they create
SuspendVNMuspends all threads of all the processes in a VM. In have to be shared among all the VMs. This limitation may introduce
addition, for each process in the VM, it sets the working set size to IMPlicit resource sharing through shared daemon processes and can
zero and makes all windows of the process invisible. As a result, all décrease the isolation level FVM can achieve. Ideally, FVM should
the processes in the suspended VM stop utilizing CPU and physical identify the VM behind every state update from these shared ser-
memory, and the system resource held by the VM is minimized. ~ VICES SO that the update can be attributed to the responsible VM.
ResumeVMs the reverse operation &uspendVMIt resumes However, this requires detailed understanding of the protocol un-
all threads of all the processes in a VM, sets the working set size of derlying each shared service. The current FVM prototype can vir-

each process in the VM to normal and make the related windows }:alizr:e a limited number of daemon services such as MySQL and
visible. pache.

DeleteVMdeletes a VM and its state completely. ~ Finally, because FVM is based on resource renaming, a mali-

CommitVMmerges file and registry image of a stopped VM to  CioUS program may be able to distinguish the virtual environment
the host machine and then deletes the VM. FVM supports auto- from the host enwr_onment, and temporarily hold off its mallgnant
matic commit and selective commit of file and registry image of actions when running in a VM. As a result, the user may incor-
a VM. Selective commit merges individual file or registry key to "e€ctly commit a downloaded malicious program to the host ma-
the host environment, while automatic commit overwrites files and chine. Even though this is a valid concern, any malicious code that
registries in the host using a VM's local image, and removes files activates itself only when it runs on the host environment may slow
and registries whose names are listed in the VM’s delete log. If a itself down_, because it needs to wait for the user to commit it to the
process on the host machine locks a file which should be overwrit- NSt machine. Moreover, FVM can always mark an untrusted pro-
ten during the commit, the merge operation for the specific file will 9ram that is committed to the host machine, and later on can start a
be held until that process is terminated and the reference count toVM to confine it whenever it is executed.
the file becomes zero.

However, side effects left by malicious programs in a VM's 4, FVM Implementation
image should not be merged to the host environment. Therefore,
FVM analyzes all the resource updates in a VM before they can be
committed, especially files and registry values created or deleted in The FVM virtualization layer is implemented by intercepting Win-
security-related file directory and registry entry. For example, com- dows system calls, which are exposed to user-mode applications
mitting new registry values tatfKEY_LOCAL _MACHINE\SOFTWARE\ through a set of user-mod®/namic Link Librarie§DLL). We pre-
Microsoft\Windows\CurrentVersion\Run” will be warned fer to do the interception at the kernel-mode interface because it is

4.1 System Call Interception



more difficult to be bypassed or subverted than user mode intercep-4.2 File Virtualization
tions.

There are two categories of system calls on NT-based Windows
OS according to the functionalities they provide. The first category

is system calls for basic OS services like file I/O and object man- For regular disk files, the FVM layer uses a speciay-on-write
agement, whose kernel-mode interface is well documented in [34]. (¢ oy mechanism, under which the entire file is copied instead
However, the second category of system calls, which are composed '

; . ; of individual file blocks. In other words, the FVM layer copies the
of system calls managing daemon service, GUI window and net- individua’ S woras y pies

Kinterf ither h dind k | mode interf entire file on the host machine to the VM's root file directory when
work interface, either have no corresponding kernel mode interface, 4« fije is opened for write purpose by a process in the VM. Al-

or have a kernel mode interface but have no clear documentation., . ,uh piock-based COW is more efficient than file-based COW,
T.O intercept this category of system calls, we move the virtualiza- it is also more complicated as it needs to duplicate some file sys-
Ec\)/n'vllayir t?. thf usler-mode DLtL |r]1t;erface. Theref?re, thehcurre_nt tem metadata. The current FVM prototype uses file-based COW
Fi V|r2u_a|}r|12ak|0n allyer gon5|s SO Wo.comkponelnds,. as Sh own 'g for simplicity. FVM ensures that the file attribute and its directory
Figure 2. The kernel-mode component is a kernel driver that mod- gy \c1re are also duplicated when the file is being copied. In par-
ifies the system call entry point n tiBystem Service Dispatch T‘."" ticular, FVM may need to convert some DOS 8.3 names to regular
gE(LSﬁDT) vxgt_?ln tl?]e IFErneI,fwhlle the user-mode %mponigt 'S names in order to duplicate the directory structures consistently.
that modifies the library function entry pointin theport Ad- Similar to virtualizing disk files, when a process in a VM tries to
dress Tabl@AT) of the application process. Once the virtualization create a special device file like a named pipe, the FVM layer will

layer is attached to the hOSt. me!Ch'”e' It can redlr'ect_dlffe_rent_ '€ create the file in the VM's root directory. Therefore, such a special
quests from user-mode applications through FVM’s virtualization file can only be communicated by processes in the same VM

logic. In general, file-related system calls that take a file name ar-

For each type of system resources, such as files, registries andy, et sych abltCreateFile() should be intercepted for virtual-
kernel objects, FVM only intercepts a_lsn_,lbset of all the system cal!s ization, while system calls taking a file handle argument, such as
usetd for tr|1|at typebof rgsources. This r'f b;causehmﬁst re"t"déwr'thtWriteFile(). are not necessary to be intercepted because the file
Sys ec;n ﬁa S Ere ased on resou;ce andles, w I(I:I ;“hus € Obhandle already points to the correct (redirected) file version. How-
tained through a previous create/open system call. The currenty, o here are still several handle-based system calls which require
FVM layer redlrgacts requesits at the cr_eate/open time. The.refore’interception and special handling. First, a process in a VM can use
when a read/write system call comes in, the handle it carries al- ;o eryinformationFile(fto query a file's various attributes, in-
ready points to the correctly redirected version. Consequently, SYS-q,,ging the full file path, from a file handle. When the file handle
Item calls for read/write requests are not intercepted in the FVM  ,5ins7tq 4 redirected version of file in this VM, the full file path
ayer. ﬁbtained from the system call must be renamed back to the original

When an application process accesses system resources throug, ; ;
) . . ame on the host machine. Second, when a process in a VM try
the FVM layer, FVM should be able to determine which VM this 1 jelete or rename a file, it eventually invokes MiSetinforma-

process logically belongs to. For this purpose, FVM maintains in- i, rije () system call. Because FVM needs to keep a log of deleted
ternal mappings between VM Ids and associated process Ids. Each, o nameq files for each VM, it must obtain from the file handle

VM is assigned a unique Id at the creation time, and initially only the file name to be removed and then ;
) ) . . put the name into the log. In
the Id of theVM shellprocess is associated with this VM Id. Later particular, when the system call is used to rename a file, FVM still

on, when qcets%eniﬁrltr]processe\/sl\/(l)f:ghb_?nelIgrg crclsated, tthdeltrhlds 1, needs to rename the target file name argument in the same way as
are associated with the same - INIS 1S Implemented through ¢ renaming operating on name-based system callsNireate-

a process creation call-back routine registered by the FVM layer File(). Finall : . .

! . ; L . y, a process in a VM can udétQueryDirectoryFile()
driver (PsSetCreateProcessNotifyRoujiriEne call-back routine is 4 jict file entries under a particular directory. Because the direc-
invoked whenever a process is created, passing in the Ids of bothtory entries for a VM may reside at two branches, with original
the _par((ajnt _prr]oi]ess and t\?& rllgwfprr?cess, whose Id W'lll thﬁ.n be aSgniries on the host machine and updated versions of some entries
sociated with the same of the parent process. In this Way, i, the \/M, the returned directory entries must be the host entries
for a given resource request, the FVM layer can look up the inter- ooy ritten by the VM entries of the same directory. To accom-
nal mappings to find out the requesting process’s VM Id, based on e ths task, FVM first obtains all the qualified VM entries and
which it can rename the resource request accordingly. In addition, ¢ their names in a hash table. When querying file entries in the
the FVM layer does sanity CQeCkS on a process’s VM I\(/jw?nd 'S \/M directory is complete, FVM opens the corresponding directory
resource request’to ensure that a process running in a €annoty, the host and continues to query file entries there. In addition,
access other VM'’s root directories for files, registries and kernel FVM must parse the returned results by removing any duplicates

objects in any way. that h i the VM direct ing file en-
The system call interception mechanism of the FVM layer is trizs a?)\l;egﬁﬁ; %u;réege?gte I?Jg directory, and removing file en
o .

designed to be extensible so that it can serve as a reusable frame-
work for other projects that require similar system call intercep- 4.3 Registry Virtualization
tions. However, recent Windows kernel on x64 platform disables

system call interception through PatchGuard [35]. Fortunately, this
restriction can still be bypassed [35]. The current FVM prototype is

implemented and tested on Windows 2000 Professional and Win-
dows 2000 Server. In terms of implementation complexity, the cur-

rent FVM prototype intercepts 42 kernel-mode system calls and 18
user-mode library functions, with around 10,000 lines of C code in

kernel, and an equal amount of user-level C/C++ code.

File virtualization under the FVM architecture isolates, from the
host environment, both regular disk files (file, directory) and spe-
cial device files (named pipe, mailslot) that are updated by a VM.

Windows registry is the repository where system and user configu-
rations are stored and must be virtualized to isolate any configura-
tion updates in a VM from the host machine. To reduce implemen-
tation complexity, FVM embeds a VM’s registry entries in the host
machine’s registry and manages them using Windows’ own registry
subsystem. More concretely, FVM creates a root registry hive un-
der the key\HKEY_CURRENT_USER for each VM to store the VM’s
local registry entries. For example, when a VM (say) is created,
FVM will add a registry key at HKEY_CURRENT_USER\vm1 as the
VM’s registry root. When a process im1 accesses a registry key,
FVM can rename the registry key argument by adding the prefix



\HKEY_CURRENT _USER\vm1 to the path name of the requested reg- in a VM to run correctly, the application’s access request to such
istry key. global objects must be allowed. Therefore, the FVM layer must be
FVM intercepts all registry-related system calls that use registry able to identify the access request to a global object, and direct the
keys as arguments and utilizes@py-on-writeapproach similar to request using the original object name without any virtualization.
file virtualization to handle registry access in a VM. Depending on Fortunately, recent Windows OS requires an application to append
whether a registry key is opened for read or write, FVM directs a prefixGlobal to an object name when the object the application
the intercepted registry-opening system call to operate on eithertries to access is a global object. The FVM layer can simply check
the original registry key, or a new version of the registry key under the Global prefix in the object name argument of intercepted sys-
the VM's registry root. If a process in a VM tries to create a new tem calls, and stop virtualizing it when the prefix exists.
registry key, it always creates the key under the VM’s registry root.
Registry virtualization requires more than just renaming. For 4.5 Network Interface Virtualization

example, a process running in a VM may need to enumerate all o network server application starts by creating a socket and making
the subkeys or key values under a given registry key, just like to 5 ping() call to specify the local IP address and local port number
list all the subdirectories or files under a given file directory. In o the socket. In order to have multiple instances of the same
order to avoid the implementation effort of merging the subkeys natyork server application to start successfully in multiple VMs,
or key values of a given registry ’key from the version in the host the network interface must be virtualized because the OS does not
registry and the version in the VM's registry, whenever FVM copies )0 more than one process to bind to the same IP address and port
a registry key from the host machine to a VM, it also copies all { mber pair.

its subkeys and key values. For performance reasons, this copy  pyM allows uses to specify a distinct IP address for each VM at
operation is not recursive and stops at the first-level children of o creation time, and then usaliasingto assign the VM's P

the copied registry key. FVM can further verify whether a registry 5qqress to the physical network interface: when the VM is started,
keyinaVM has its first-level children copled_from the hostregistry jis |p address is added to the host machine’s physical network
when a process in the VM opens the key. This approach also allowsjnierface as an IP alias; when it is stopped, its IP address is removed
many Windows applications that use a numeric index to access afom the physical interface.

subkey to reach the correct subkey when they are runningina VM.~ Lgwever, IP aliasing itself does not segregate network packets

However, this approach cannot be applied to file directories in file gestined to different VMs. For example, when port 80 is not active
virtualization because copying all subdirectories and files under a i, 5 M, a packet destined to port 80 of this VM can still be

directory incurs too much overhead. delivered to a process that listens on port 80 at a wildcard IP
_ _ o addresdNADDR ANY) in another VM. To resolve this problem,
4.4 Object Virtualization FVM intercepts the socket bind call made by a process running in

Windows provides many types of named objects in the kernel, in- @ VM and transparently changes the original IP address argument
cluding mutant(mutex), semaphore, event, timer, section(shared'” the bind call to the VM's IP address. The original IP address
memory or file mapping object), port(local/remote procedure argument in a bind call can be a wildcard IP address, an explicit IP
calls [36]), etc. Most of these objects are used for synchronization address, or an IP address in network 127.0.0.0/8 such as 127.0.0.1.
between processes and threads, and are sharing a common globateégardless of any of the three forms it is, FVM simply makes the
namespace on a physical machine. Many Windows applications usenetwork application bind to the IP address of the VM. In this way,
such named objects to ensure that at most one instance (procesd)focesses in one VM can r}elther receive packets d_estlned to other
of the application can be running on the same machine. More con- YMS nor spoof another VM's IP address when sending packets.
cretely, whenever such an application starts, it will check whether ~ Currently FVM does not intercept the bind call made by a
some named object exists under the global namespace. If the objec€rver process running on the host machine. If such a process binds
does not exist, the application creates the object and starts a procesiS Socket to a port with a wildcard IP addresSiADDRANY),

as usual; otherwise, no new process will be started and the controlthe operating system will not allow this port to be reused by any
will be forwarded to the existing process that created the object. Other processes, even if they are running in a VM and binding
This execution scheme is not appropriate for applications running t© & different IP address. A simple solution to this problem is to
under FVM architecture, where each VM should be allowed to run 2PPly the special socket opti@O.REUSEADDRo all the network

a separate instance of the same application simultaneously. As aS€'Ver processes running in VMs.

result, these named objects must be virtualized.

Named objects are named in a hierarchical form similar to
files and registries, and are normally created under some objectTo achieve strong isolation, FVM requires that a process running
directories. FVM intercepts the create/open system calls that accessn one VM not communicate with processes running in other VMs
named objects and creates a root object directory for each VM or in the host machine through interprocess communications (IPC),
when the VM is started. When processes in the VM invoke object- unless it has to talk with a daemon service on the host machine that
related system calls to create a named object, the FVM layer will cannot be virtualized, or it intends to use the IPC to talk to another
rename the object name argument and create the object under th@hysical machine.

VM'’s root object directory. By this means, the created object is Common IPC mechanisms supported by Windows include
only visible to processes running in the same VM. When the VM shared memory, named pipe, mailslot, local procedure calls, socket,
is stopped, the VM's root object directory will be removed after all etc. Through file, object and network interface virtualization de-
the opened objects under it are closed. scribed earlier, these common IPC mechanisms across multiple

In some special cases, an application mayarsatestyle sys- VMs have been largely confined. However, there are still a few
tem calls, such adltCreateEvent()to open an existing global  Windows-specific IPC mechanisms that require further virtualiza-
named object, which is normally created by some critical daemon tion or confinement.
services. Because these daemon services are difficult to be dupli- Window message is a simple IPC mechanism that allows a pro-
cated in each VM, they have to be shared among different VMs. cess to send various types of messages to any window on the same
Consequently, those named objects created by them only exists in adesktop. The sender process and receiver window may belong to
global namespace on the host machine. In order for an applicationdifferent processes. A special type of messageDignamic Data

4.6 Interprocess Communication Confinement



ExchanggDDE) is widely used by Windows shell to find whether  root file directory, such agm1/a/b.exe, is to be created by SCM,
there is already a running instance of a particular application. The it can associate the process Id with the VM Id, and save this map-
current FVM prototype does not assign each VM a separate desk-ping into the same data structure used for generic processes. In this
top, therefore FVM must confine the window message across mul- way, a service installed from a VM can be started successfully in
tiple VMs by intercepting system calls related to message exchangethe same VM'’s context. Although not used for mappings between a
(at the user-mode library interface). For example, whenever an ap-service process and a VM, the name of a service must be renamed
plication invokes a message-sending system call, suSeadMes- because SCM does not allow more than one service with the same
sage() the FVM layer will obtain the receiver window’s process Id name to be installed in the SCM’s database.

from the window handle argument. It then queries the FVM driver However, the name of a service may be used in the service pro-
for the VM Id of the receiver process and compares it with the VM gram code, such as dispatching service control command received
Id of the sender process. The message to be sent will be blocked unfrom SCM based on service names. Although renaming a service
less the sender and receiver processes are both running in the sameame is fine at the installation time, it may cause inconsistency
VM or in the host machine. Window message confinement, plus ob- that breaks the service application at run time. Although the cur-
ject virtualization, enables many applications suctMasrosoft rent FVM prototype resolves some inconsistency problems and can
Office to start a separate instance in each VM. virtualize a large number of service processes, including Apache

Window visibility across multiple VMs also requires confine- and MySQL, similar inconsistency problems may still exist with
ment because processes in one VM are not supposed to see winuntested service applications. Our future goal to service virtual-
dows belonging to processes in other VMs. Each window has a ization is to intercept and modify the whole service management
window name and a class name, based on which any process catibrary in order to remove the service application’s dependency on
use system calls related to window enumeration to find such a win- a single shared SCM on the host machine.
dow. FVM intercepts these system calls, and prevents the calling
process from obtain@ng a found window’s handle unless the_ found 5. Performance Evaluation
window and the calling process belong to the same VM. Window
visibility confinement, plus object virtualization, enables more ap- The performance overhead of FVM comes from the overhead of
plications such a&dobe Acrobat to start a separate instance in executing additional instructions associated with every intercepted
each VM. system call. This overhead includes two aspects:

In addition to window message and window visibility, FVM
also renames the titles of active top-level windows belonging to a
VM by appending the VM’'s name and Id to the original window
title. Finally, other Windows-specific IPC mechanisms, such as
clipboard data transfer and interactions betw€emponent Object
Model (COM) applications also need to be virtualized.

e The system call interception overhead, which refers to the over-
head of mapping a process to a VM, allocating additional mem-
ory, parsing and renaming the name argument, etc. In other
words, it is equivalent to the total system call overhead when
there is no file or registry copying involved.

The file and registry copying overhead for an “open-for-write”
system call. This overhead occurs only when an application
opens a file or registry key for write for the first time. In
Daemon processes on Windows are naw@tB2 serviceand are some sense, this overhead can be considered as a part of the
managed by a system process caliservice Control Manager total overhead in starting up a new heavy-weight VM, only
(SCM). An application can install a service by adding the service distributed over time.

name and its program image path into the SCM'’s database. Later . . .

on, SCM can start the service process at system startup time or I the following experiments, we evaluate the system call inter-
upon an application’s request. To support running service processesception overhead, runtime overhead of command line programs,
in a VM, FVM needs to ensure that a service process is executed@nd startup latency of interactive applications under FVM, and
within the context of a VM where the service is installed. However, compare them with same types of measurements on the host ma-
the SCM process is a critical system process with complicated ¢hine and VMware Workstation 5.0. We also discuss the resource
communications with other OS components and thus cannot be€duirement and scalability of VMs under FVM architecture. The
duplicated in each VM. Therefore, different VM contexts have to test-bed we are using is a Pentium-4 2.8GHz Dell Dimension 4700
share the same SCM and the same service database in SCM. with 512MB memory running Windows 2000 Server.

FVM intercepts service-related function calls at the system li-
brary interface because service management is not at the kerne
mode system call interface. The idea is to make some implicit map- To measure the system call interception overhead, we first disable
ping between a service image name and a VM Id at the service in- the FVM virtualization layer, run a set of Windows applications
stallation time and then convert it to the mapping between a processnatively on the host environment, and count the average CPU cycles
Id and the VM Id at run time. spent in each system call througtitsc instruction. Second, we

To be specific, when a process in a VM invokéseateSer- enable the FVM layer and run the same applications in a VM to
vice() to install a new service, FVM intercepts the API call and do the test again. To exclude the overhead due to file and registry
renames the service name and image path arguments in a way simeopying, we run each application at least once in the VM before
ilar to renaming file names in file virtualization. For example, if we start the measurement. This is because most files and registries

4.7 Daemon Service Virtualization

|5.1 System Call Interception Overhead

the new service namegiwith program image patfia/b.exe is to required by an application are copied to the VM’s local space at
be installed in a VM (saym1), the actual service name and image the first time this application is executed. In both tests, the average
path added to the SCM's database after renaming wil§-ben1 CPU cycles for each system call is calculated from 500 invokes.
andvm1/a/b.exe, respectively. In addition to the renaming oper- A set of file-related system calls and their average CPU cycles in
ation, FVM also needs to copy the image file frofa/b.exe to our test-bed are shown in Table 1. These file-related system calls

vml/a/b.exe. Later on, when an application in the same VM asks usually require more CPU cycles to complete than other types of
SCM to start the service, FVM will redirect it to start service system calls due to disk access.

nameds-vm1 by interceptingOpenService(fall. When the FVM The large overhead dftOpenFile()shown in the table is largely
kernel driver detects a new process with an image file in a VM's due to the current redirection algorithm. To be specific, when a



System Calls Native FVM Difference
(CPU Cycles) | (CPU Cycles) (%)

Average startup time in Host OS, FVM and VMware

NtCreateFile 340568 412087 21%

NtOpenFile 171508 303560 77% 1600

NtQueryAttributesFile 144010 263355 83% 1400

NtQueryFullAtiributesFile 198261 330123 67% _ 1200

NtSetInformationFile 47244 48814 3% -g 1000 O Host OS

g 800 EFVM
Table 1. A few file-related system calls have large interception % ﬁ B C YMware
overhead (more than 60%), but many others not shown in this table 0 ﬁ:’:
have zero overhead, e.g., system calls used for file read and write. o ] | I:.
1.doc file(35KB); 2.pdf file(6KB); 3.xls file(153KB); 4.ppt file(1.6MB)

Test Native FVM VMWare Fi 3 R - int i licati h M tart
Program (msec) (msec) (msec) |guLe y L(ljnnlgg/l\l/lntﬁrac_ |v\e}N?pp IC?/\Ilonlft ?s smaller startup
Winzip32 | 687(100%)|  747(109%)| 1110(162%) overnead under an in viiware workstation.

Reg 15(100%) 16(107%) 32(213%)
BCC32 25640(100%)| 30306(118%)| 35563(139%)

; . Initial Startup Time and Average Startup Time
Table 2. Running command line programs under FVM has less 9000 P 8 P

than 20% overhead, which is smaller than the overhead of VMware d=594
Workstation. (Win32 unzips a 667KB file; Reg imports a 92KB file; jggg
BCC32 complies a set of C++ files whose total size is 127KB.) = 6000

é 5000 +—d=298
tested application in a VM invokeNtOpenFile()to open a file, £ 4000 4
the FVM layer needs to check whether this file has a version in £ 30001 a=47
the VM'’s local space. It does so by trying to open that version. If 2000 1 d=5d
the open request fails, the FVM layer then dirddt®©penFile()to 1000 4 d=62 -’ j:g« d=16
open the original file without renaming. Consequently, this system L ——— pdUTIKE): S e15okDy 4t Hle(LovEy
call may be invoked twice for one open request and therefore incurs N _ - i
large overhead. The same reason is for the large overhead of other O Initial Startup Time(Native) 8 Initial Startup Time(FVM)
system calls likeNtQueryAttributesFile() However, this kind of O Average Startup Time(Native) ® Average Startup Time(FVM)

overhead can be reduced by caching file names in the future. In— — - -
addition, the system calls with large interception overhead are only Figure 4. The initial startup time and the average startup time of
a small portion of all the system calls an application will invoke at four Windows applications when they are executed natively and
run time. Most system calis likdtWriteFile()have no interception ~ under FVM.

overhead because they are not intercepted. As a result, the overall

impact of system call interception on an application’s execution

time is still insignificant, as shown in the next subsection. the Waitforlnputldie()API to monitor the application’s initializa-

tion status. The startup time for each application is obtained by
measuring the elapsed time between the moments when these two
In this experiment, we measure the runtime overhead of several APIs return. The test results indicate that the application startup
command line programs and the startup latency of several inter- overhead in VMware Workstation can be twice larger than FVM.
active applications. The runtime overhead refers to the average To recognize the file and registry copying overhead under FVM,
elapsed time from when a program starts to execute to when it ter- we define thenitial startup timeas the startup time when an inter-
minates, while the startup latency refers to the average elapsed timeactive application runs for the first time after the machine reboots,
from when the application process is created to when it finishes and theaverage startup timas the startup time on average when
initialization and is waiting for user input. All the test results are the application runs for the second time onwards. These two values
calculated from 10 runs. have the following attributes: (1) The initial startup time is larger

Table 2 shows the runtime overhead of three command line than the average startup time, no matter whether the tested appli-
programs running in an FVM virtual machine and in a VM of cation process runs natively (on the host machine) or under FVM,
VMware WorkstationWinzip32 andReg have runtime overhead  because the process needs to build up its working set at the first run;
less than 10% when they are running under FVM, because they (2) The initial startup time is larger when an application runs under
only invoke a small number of system calls intercepted by FVM. FVM than it runs natively, due to both the system call intercep-
However,BCC32 has higher overhead than the other two programs tion overhead and file/registry copying overhead; (3) The average
because it opens many C/C++ source and header files, most ofstartup time is larger when an application runs under FVM than it
which are not in the VM's local space and requires two system runs natively, only due to system call interception overhead. Based
calls in order to be opened. In contrast, the run-time overhead of on the second and third attributes, we can estimate the file and reg-
VMware Workstation for the three applications are 62%, 113% and istry copying overhead for a tested application under FVM. For
39%, respectively. example, in the test of runningdobe Acrobat Reader against

Figure 3 shows the startup time of four interactive applications a 6KB pdf file, the total virtualization overhead is 594 msec, 110
when they are running in an FVM virtual machine and in a VM msec of which belongs to the system call interception overhead,
of VMware Workstation. We use a testing program to launch the and the rest 484 msec can be attributed to file/registry copying over-
tested application through thereateProcess(API, and then use head, as shown in Figure 4.

5.2 Runtime and Startup Overhead



5.3 Resource Requirement and Scalability

Finally, we compare FVM with VMware Workstation in terms of
resource requirement and scalability. Each VM under FVM re-
quires minimal disk space because it shares most files with the hos
machine. It only needs the space to hold its VM state and file sys-

tem image updates, often from several kilobytes to megabytes. In

contrast, each VM of VMware Workstation may require gigabytes
of disk space. Unlike VMware that takes minutes to start a VM,

In addition, such confined updates can be selectively committed to
the host environment. To hide confidential files on the host machine
from untrusted mobile code in a VM, the default file system image

tvisible to this VM can be set to a subset of the file system image of
the host machine.

It is relatively straightforward to implement a secure execution

environment for untrusted mobile code based on the FVM infras-
tructure. The only additional work is the following:

FVM needs no more than a second to perform the same operation, e Automatically start a new VM to host a vulnerable application

including VM creation. The memory requirement of an FVM vir-
tual machine consists of the memory used by applications running
in the VM, and an additional 2MB used by FVM itself, while each
VM of VMware Workstation needs at least 180MB memory. The
difference in memory requirement between FVM and VMware re-
sults at significant difference in their scalability. In our test-bed ma-

process, such as Internet Explorer, whenever such an applica-
tion is launched, and

e Mark an untrusted binary or document file when the file is
committed to the host environment. When the file is opened
later on from the host, automatically start a new VM to host the
opening process.

chine with 512MB memory, VMware Workstation can start at most

two VMs simultaneously without serious performance degradation, e have tested several adwares and spywares that corrupt Win-
whereas the total number of concurrent VMs under FVM can be an dows’s registries or file systems in a VM. The experimental results

order of magnitude higher, only depending on the memory utiliza- demonstrate FVM's effectiveness in isolating any side effects in a
tion of the applications running in these VMs. VM from the host environment.
Overall, all the experimental results demonstrate FVM'’s advan-
tage in performance overhead and resource requirement over exist- .
ing heavy-weight virtual machines. However, one cannot say that /- Conclusion
OS-level virtual machines such as FVM are a better design than The ability to test-drive one or multiple potentially malicious pro-
hardware-level virtual machines. Being at the hardware abstraction grams in a realistic execution environment has become an impor-
layer, VMware and other heavy-weight virtual machines have an tant building block for many security-related applications. Virtual
obvious advantage that FVM does not provide: full isolation. As a machine technology meets this requirement perfectly because it
result, FVM is more suitable to support light-weight “playground”  provides an execution environment that is both realistic and iso-
VMs that wrap user-mode applications for security and manage- jated. Unfortunately, most existing virtual machine technologies
ment purpose, while hardware-level virtual machines are more suit- virtualize the system resources at an abstraction level close to the
able to support application scenarios requiring full isolation or dif- - hardware, and therefore incur large startup overhead which may not
ferent OS, such as software debugging and testing. be acceptable when VMs need to be started and terminated on an
routine basis. The Feather-weight Virtual Machine (FVM) archi-
T . . tecture described in this paper attempted to address this deficiency
6. Application: Secure Mobile Code Execution through namespace virtualization at the system call interface. Al-
Mobile code refers to programs that come into an end user’s com- though many projects have applied similar ideas of resource renam-
puter over the network and start to execute with or without the ing at the OS level to build isolated execution environments, they
user’s knowledge or consent [37, 38]. Examples of mobile code are either not working on Windows platform, or not as comprehen-
include self-contained binaries, such as an explicitly downloaded sive as FVM in terms of the set of namespaces virtualized, and the
installer program or an implicitly installed plug-in file, and various degree of isolation achieved.
active scripts embedded within downloaded documents and web A major contribution of the paper is to demonstrate that it is in-
content [39]. Because mobile code typically runs in the context of deed possible to create strongly isolated OS-level virtual machines
the user who downloads it, it can invoke any system calls that the on Windows platform through interception at the system call in-
user is allowed to make, such as modifying registries and deleting terface. On the other hand, FVM’s implementation efforts also in-
files, and thus can compromise the system when it is malicious.  dicate that the idea of namespace virtualization should be more
A conventional technique against malicious mobile code is comfortable with a platform that does not have such complicated
signature-based anti-virus, which scans suspicious content basednterprocess communications as Windows. We hope this paper can
on signatures of existing malicious code. This approach is not suffi- provide researchers and developers a clear picture of how a com-
cient because there is always a time gap between when an unknowmrehensive virtual machine system is accomplished on the Win-
malicious code first attacks and when its signature is derived and dows platform, and promote more novel system development on
distributed to user sites. A different technique targeting at zero-day this platform.
exploits is behavior blocking [40], which sandboxes the execution We also demonstrate the effectiveness of FVM by successfully
of untrusted applications by monitoring runtime behavior accord- applying it to a secure mobile code execution system, which takes
ing to pre-defined security policies. However, it is difficult to set an intrusion-tolerant approach and is able to protect an end user’s
up a proper sandboxing policy that can block all attacks without machine from zero-day attacks or exploits. Performance measure-
breaking legitimate applications. ments on a fully operational FVM prototype show that the latency
In contrast, FVM enables antrusion-tolerantapproach, which of creating and starting a new VM is less than one second, and
is more effective in protecting the host machine from malicious mo- the run-time virtualization overhead is below 20% of the total exe-
bile code. Vulnerable network applications, such as email clients cution time of the tested applications. More aggressive optimiza-
and web browsers, and any untrusted content, such as downloadedions, such as name caching and block-based copy-on-write for
programs and documents, can be executed in the context of one offiles, should reduce this overhead to below 10%.
multiple VMs. Processes in a VM see the entire host environment,  We are currently improving the isolation between VMs and the
and have similar runtime performance as they run natively. Their host machine by implementing our own daemon service manage-
modifications to the host environment, regardless of being legiti- ment APIs in order to reduce the number of shared service pro-
mate or malicious, are automatically confined in the VM'’s context. cesses. Name caching is also to be added to reduce the system call



interception overhead. In addition, we are applying the FVM ar-
chitecture to other application areas, such as application stream-
ing [18] and un-intrusive vulnerability assessment [41] to further
stress-test its completeness. Finally, we will investigate process mi-
gration techniques [42] on Windows to support checkpoint/restart
of FVM processes.
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