
Generating E�cient, Terminating LogicProgramsJonathan C. Martin1 and Andy King21 Department of Electronics and Computer Science, University of Southampton,Southampton, SO9 5NH, UK. jcm93r@ecs.soton.ac.uk2 Computing Laboratory, University of Kent at Canterbury,Canterbury, CT2 7NF, UK. a.m.king@ukc.ac.ukAbstract. The objective of control generation in logic programming isto automatically derive a computation rule for a program that is e�cientand yet does not compromise program correctness. Progress in solvingthis important problem has been slow and, to date, only partial solutionshave been proposed where the generated programs are either incorrector ine�cient. We show how the control generation problem can be tack-led with a simple automatic transformation that relies on informationabout the depths of SLD-trees. To prove correctness of our transformwe introduce the notion of a semi delay recurrent program which gen-eralises previous ideas in the termination literature for reasoning aboutlogic programs with dynamic selection rules.1 IntroductionA logic program can be considered as consisting of a logic component and acontrol component [8]. Although the meaning of the program is largely de�nedby its logical speci�cation, choosing the right control mechanism is crucial inobtaining a correct and e�cient program. In recent years, one of the most popularways of de�ning control is via suspension mechanisms which delay the selection ofan atom in a goal until some condition is satis�ed. Such mechanisms include theblock declarations of SICStus Prolog [7] and the DELAY declarations of G�odel [6].These mechanisms are used to de�ne dynamic selection rules with the two mainaims of enhancing performance through coroutining and ensuring termination.In practise, however, these two aims are not complementary and it is often thecase that termination, and hence program correctness, is sacri�ced for e�ciency.Consider, for instance, the Append program given below (in G�odel stylesyntax) with its standard DELAY declaration which delays the selection of anAppend/3 atom until either the �rst or third argument is instantiated to a non-variable term.Append([], x, x).Append([ujx], y, [ujz])  Append(x, y, z).DELAY Append(x, , z) UNTIL Nonvar(x) _ Nonvar(z).Interestingly, although it is intended to assist termination the delay declara-tion is not su�cient to ensure that all Append/3 goals terminate. The goal



 Append([xjxs], ys, xs), for example, satis�es the condition in the declarationand yet is non-terminating [14].Termination can only be guaranteed by strengthening the condition in thedelay declaration. This is where the trade o� between e�ciency, termination andcompleteness takes place. The stronger the condition, the more goals suspend.Although termination may eventually be assured, it may be at the expense ofnot resolving goals which have �nite derivations. Also the stronger the delaycondition, the more time consuming it usually is to check. Thus one of the mainproblems in generating control of this form is �nding suitable conditions whichare inexpensive to check and guarantee termination and completeness. We willrefer to this as the local termination issue, to contrast it with another globalaspect of the termination problem which we will examine shortly.1.1 Local TerminationThere have been several attempts at solving the local termination problem. Wewill examine each of these in the context of the Append program above, thougheach technique has wider applicability.Linearity In the case of single literal goals, one additional condition su�cientfor termination is that the goal is linear, that is, no variable occurs more thanonce in the goal [10]. Although this restriction would prevent the looping Ap-pend/3 call above from proceeding, it would also unfortunately delay many othergoals with �nite derivations such as  Append([x, x], ys, zs). In addition, thetime complexity for checking linearity is quadratic in the number of variables inthe goal.Rigidity An alternative approach by Marchiori and Teusink [11] and Mesnard[13] proposes delaying Append/3 goals until the �rst or third argument is a listof determinate length. Termination is obtained for a large class of goals, but ata price. Checking such a condition requires the complete traversal of the list andthe condition must be checked on every call to the predicate3. Naish argues thatthis approach can be \... expensive to implement and ... can delay the detectionof failure in a sequential system and restrict parallelism in a stream and-parallelsystem" [14].Modes Naish goes on to solve the problem with the use of modes. Termina-tion can be guaranteed with the above DELAY declaration if the modes of theAppend/3 calls are acyclic, or more generally cycle bounded [14]. This restric-tion essentially stops the output feeding back into the input. Although modesform a good basis for solving the local termination problem, they have not beenshown to be satisfactory for reasoning about another termination problem, thatof speculative output bindings.3 In [13] the check is, in fact, only performed on the initial call, but there is no jus-ti�cation for this optimisation given in the paper. For non-structurally recursivepredicates, e.g. Quicksort/2 of Sect. 1.2, such an optimisation is usually not possible.



1.2 Global TerminationEven when �nite derivations exist, delay conditions alone are not, in general,su�cient to ensure termination. In�nite computations may arise as a result ofspeculative output bindings [14], which can occur due to the dynamic selectionof atoms. There are several problems associated with speculative output bind-ings (see [14] for a discussion of these). Here we are only interested in the a�ectthat they have on termination, and this is what we call the global terminationissue. To illustrate the problem caused by speculative output bindings considerthe Quicksort program shown below. This is an example of a well known programwhose termination behaviour can be unsatisfactory. With the given delay dec-larations, the program can be shown to terminate in forward mode, that is forqueries of the form Quicksort(x, y) where x is bound and y is uninstantiated.In reverse mode, however, where y is bound and x is uninstantiated, the pro-gram does not always terminate. More precisely, a query such as  Quicksort(x,[1,2,3]) will terminate existentially, i.e. produce a solution, but not universally,i.e. produce all solutions. In fact, experimentation with the G�odel and SICStusimplementations indicates that when the list of elements is not strictly increas-ing, e.g. in  Quicksort(x, [1,1]) and  Quicksort(x, [2,1]), the program doesnot even existentially terminate! This is illustrative of the subtle problems thatdynamic selection rules pose in reasoning about termination, and which suggestthat control should ideally be automated to avoid them.Quicksort([], []).Quicksort([xjxs], ys)  Partition(xs, x, l, b) ^ Quicksort(l, ls) ^Quicksort(b, bs) ^ Append(ls, [xjbs], ys).DELAY Quicksort(x, y) UNTIL Nonvar(x) _ Nonvar(y).Partition([], , [], []).Partition([xjxs], y, [xjls], bs)  x � y ^ Partition(xs, y, ls, bs).Partition([xjxs], y, ls, [xjbs])  x > y ^ Partition(xs, y, ls, bs).DELAY Partition(x, , y, z) UNTIL Nonvar(x) _ (Nonvar(y) ^ Nonvar(z)).To improve matters, the delay conditions can be strengthened in the mannerprescribed by Naish or Marchiori and Teusink. In general, however, no matterhow strong the delay conditions are, they are not always su�cient to ensuretermination, even though a terminating computation exists. To see why, consideraugmenting the Quicksort program with the clauseAppend(x, [ jx], x)  False.The declarative semantics of the program are completely unchanged by the ad-dition of this clause and one would hope that the new program would produceexactly the same set of answers as the original. This will not be the case, how-ever, if this clause is selected before all other Append/3 clauses. Consider thequery  Quicksort(x, [1,2,3]). Following resolution with the second clause ofQuicksort/2, the only atom which can be selected is Append(ls, [xjbs], [1,2,3]).When this uni�es with the above clause, both ls and bs are immediately bound



to the term [1,2,3]. As a result of these speculative output bindings the previ-ously suspended calls Quicksort(l, ls) and Quicksort(b, bs) will be woken before thecomputation reaches the call to False. The net result is an in�nite computationdue to recurring goals of the form Quicksort(x, [1,2,3]).The problem here is that the output bindings are made before it is knownthat the goal will fail and no matter how stringent the conditions are on theQuicksort/2 goals, loops of this kind cannot generally be avoided. The reason forthis is that a delay condition only measures a local property of a goal withoutregard for the computation as a whole. The conditions can ensure that goals arebounded, but are unable to ensure that the bounds are decreasing.Local Computation Rule To remedy this, Marchiori and Teusink [11] proposethe use of a local computation rule. Such a rule only selects atoms from those thatare most recently introduced in a derivation. This ensures that any atom selectedfrom a goal, is completely resolved before any other atom in the goal is selected.The e�ect in the above example is that the call to False would be selected andthe Append/3 goal fully resolved before the calls to Quicksort/2 are woken. Thisprevents an in�nite loop. The main disadvantage of local computation rules isthat they do not allow any form of coroutining. This is clearly a very severerestriction.Delayed Output Uni�cation A similar solution proposed by Naish [14] isthat of delaying output uni�cation. In the example above, assuming a left-to-right computation rule, the extra Append/3 clause would be rewritten asAppend(x, y, z)  False ^ y = [ jx] ^ z = x.The intended e�ect of such a transformation is that no output bindings shouldbe made until the computation is known to succeed. This has parallels with thelocal computation rule and also restricts coroutining.Constraints Mesnard uses interargument relationships compiled as constraintsto guarantee that the bounds on goals decrease [13]. For example, solving theconstraint jysjlength = jlsjlength + 1+ jbsjlength before selecting the atom Append(ls,[xjbs], ys) ensures that bs and ls are only bound to lists with lengths less thanthat of ys. This is enough to guarantee termination, but is expensive to check asit requires calculating the lengths of all three arguments of Append/3.1.3 Our ContributionIn summary, we see that the most promising approaches to control generation,while guaranteeing termination and completeness, produce programs which areine�cient, either directly due to expensive checks which must be performed atrun-time or indirectly by restricting coroutining.In this paper we present an elegant solution to the above problems. To solvethe local termination problem, we use delay declarations in the spirit of [11] com-bined with a novel program transformation which overcomes the ine�cienciesof their approach. Simultaneously, the transformation inexpensively solves the



global termination problem without grossly restricting coroutining. The transfor-mation is simple and is easy to automate. Transformed programs are guaranteedto terminate and are also e�cient. Hence, the technique forms a sound basis forautomatically generating e�cient, terminating logic programs from logical spec-i�cations.The technique is based on the following idea. If the maximum depth of theSLD-tree needed to solve a given query can be determined, then by only searchingto that depth the query will be completely solved, i.e. all answers (if any) will beobtained, in a �nite number of steps. We �rst present the technique through anexample. Then we formalise the transformation and prove termination for thetransformed programs.2 ExampleWe demonstrate our program transformation on the Quicksort program from theintroduction. The transformed program is shown below. Termination is guaran-teed for all queries  Quicksort(x, y). Furthermore when x or y is a ground listof integers, the computation does not ounder and if it succeeds then the set ofanswers produced is complete with respect to the declarative semantics.Quicksort(x, y)  SetDepth Q(x, y, d) ^ Quicksort 1(x, y, d).DELAY Quicksort 1( , , d) UNTIL Ground(d).Quicksort 1(x, y, d)  Quicksort 2(x, y, d).Quicksort 2([], [], d)  d � 0.Quicksort 2([xjxs], ys, d + 1)  d � 0 ^ Partition(xs, x, l, b) ^ Quicksort 2(l, ls, d) ^Quicksort 2(b, bs, d) ^ Append(ls, [xjbs], ys).Partition(xs, x, l, b)  SetDepth P(xs, l, b, d) ^ Partition 1(xs, x, l, b, d).DELAY Partition 1( , , , , d) UNTIL Ground(d).Partition 1(xs, x, l, b, d)  Partition 2(xs, x, l, b, d).Partition 2([], , [], [], d)  d � 0.Partition 2([xjxs], y, [xjls], bs, d + 1)  d � 0 ^ x � y ^ Partition 2(xs, y, ls, bs, d).Partition 2([xjxs], y, ls, [xjbs], d + 1)  d � 0 ^ x > y ^ Partition 2(xs, y, ls, bs, d).Append(x, y, z)  SetDepth A(x, z, d) ^ Append 1(x, y, z, d).DELAY Append 1( , , , d) UNTIL Ground(d).Append 1(x, y, z, d)  Append 2(x, y, z, d).Append 2([], x, x, d)  d � 0.Append 2([ujx], y, [ujz], d + 1)  d � 0 ^ Append 2(x, y, z, d).



The predicate SetDepth Q(x, y, d) calculates the lengths of the lists x andy, delaying until one of the lists is found to be of determinate length, at whichpoint the variable d is instantiated to this length. Only then can the call toQuicksort 1/3 proceed. The purpose of this last argument is to ensure �niteness ofthe subsequent computation. More precisely, d is an upper bound on the numberof calls to the recursive clause of Quicksort 2/3 in any successful derivation.Thus by failing any derivation where the number of such calls has exceeded thisbound (using the constraint d � 0), termination is guaranteed without losingcompleteness. The predicates SetDepth P/4 and SetDepth A/3 are de�ned in asimilar way.2.1 Local and Global ControlThe local control problem is solved in the �rst instance with a rigidity checkin the style of [11]. This ensures that the initial goal is bounded. Boundednessof subsequent goals, however, is enforced by the depth parameter and furtherrigidity checks on these depth bounded goals are redundant. This allows, forexample, the call Quicksort 2(l, ls, d) to proceed, without fear of an in�nitecomputation, even if both l and ls are uninstantiated, providing d is ground. Ahuge improvement in performance is possible by eliminating these checks. Theglobal control problem is also neatly solved. By restricting the search space tobe �nite, even though speculative output bindings may still occur, they cannotlead to in�nite derivations.2.2 A Simple OptimisationEven though many of the rigidity checks have now been removed, the e�ciencyof the program is still unsatisfactory. This is due to the rigidity checks whichare performed on each call to Append/3 and Partition/4. It is easy to show thatthe depths of these subcomputations are bounded by the same depth param-eter occurring in Quicksort 2/3. Hence, we can replace the atoms Partition(xs,x, l, b) and Append(ls, [xjbs], ys) in the body of Quicksort 2/3 with the atomsPartition 2(xs, x, l, b, d) and Append 2(ls, [xjbs], ys, d).This optimised version of the program is quite e�cient. The only rigiditychecks that are performed are those on the initial input, exactly at the pointwhere they are needed to guarantee termination. Following the initial call toQuicksort 2/3 the program runs completely without delays and the only otheroverhead is the decrementation of the depth parameter and some trivial bound-edness checks. The net result is that, with the Bristol G�odel implementation,the program actually runs faster on average than the original program with theNonvar delay declarations!2.3 CoroutiningNotice in particular how the global termination problem is overcome withoutreducing the potential for coroutining. Simply knowing the maximum depth of



any potentially successful branch of the SLD-tree allows us to force any deriva-tions along this branch which extend beyond this depth to fail without losingcompleteness. These forced failures keep the computation tree �nite but do notrestrict the way in which the tree is searched. The addition of the failing Ap-pend/3 clause from the introduction (which would appear here as an Append 2/3clause) cannot e�ect the termination of the algorithm, even if the same corou-tining behaviour of the original program is used. Of course, we need to constrainthe computation rule such that1. the test d � 0 is always selected before any other atoms in the body of theclause with a subterm d, and2. the depth parameter is ground on each recursive call (or for any atom witha subterm d in the optimised version)but this is not nearly as restrictive as using the local computation rule. Indeed,using the standard left-to-right selection rule these conditions will clearly besatis�ed in the above program.2.4 Termination and E�ciencyWith termination guaranteed, the programmer is now free to concentrate onthe program's performance. Notice for the program above that the order of thegoals in the body of Quicksort 2 is critical to the e�ciency of the algorithm. Forthe best performance, they must be arranged so that the computation is datadriven. In fact, by de�ning SetDepth Q/3 bySetDepth Q(x, y, d)  Length(x, d) ^Length(y, d).the computation will be data driven in both forward and reverse modes with theordering of the goals as above. This dependence on the ordering can be reducedby introducing the typical delay declarations used for this program. These dec-larations do not e�ect the terminating nature of the algorithm, in that they willnot cause the algorithm to loop, though they may possibly reduce previouslysuccessful or failing derivations to oundering ones. They are inserted solelyto improve the performance through coroutining. Alternatively, one may seek tooptimise the performance for di�erent modes through multiple specialisation, forexample. The important point is that with this approach the trade-o� betweentermination and performance is signi�cantly reduced. In seeking an e�cient al-gorithm, correctness does not have to be compromised.3 PreliminariesTerms, atoms and formulae are de�ned in the usual way [9]. A program P is aset of clauses of the form 8(a w) where a is an atom and w is either absent ora conjunction of atoms. We denote by body(a  w) the set of atoms appearing



in w. Given a program P , then �P denotes the alphabet of predicate symbols inP . We denote by var(o) the set of variables in a syntactic object o. A groundingsubstitution for a syntactic object o is a substitution in which each variable ino is bound to a ground term. We denote by rel(A) the predicate symbol of theatom A. We denote a tuple of elements hd1; : : : ; dni by d and write di 2 d if di isthe ith element of the tuple d. If the atom p(t1; : : : ; tn) is denoted by p(t), thenthe atom p(t1; : : : ; tn; d) is denoted by p(t; d). Finally, we denote the minimalmodel of a program P by M (P ).4 The TransformationOur aim is to develop a program transformation which is able to derive correctand e�cient programs from logical speci�cations. We divide the developmentinto three stages where we consider termination, completeness and e�ciencyrespectively.4.1 TerminationTo prove termination of the transformed programs we will need to introduce anew program class which subsumes that of delay recurrent programs introducedin [11]. Its introduction is motivated by an overly restrictive condition imposedin the de�nition of delay recurrency. By removing this unnecessary conditionwe obtain the new class of programs which we call semi delay recurrent. Ourtransformed programs will lie within this class. The following notions, due toBezem [5], will be needed.De�nition1 level mapping [5]. Let P be a program. A level mapping for Pis a function j:j : BP 7! IN from the Herbrand base to the natural numbers. 2A level mapping is only de�ned for ground atoms. The next de�nition liftsthe mapping to non-ground atoms and goals.De�nition2 bounded atom and goal [5]. An atom A is bounded wrt a levelmapping j:j if j:j is bounded on the set [A] of variable free instances of A. If Ais bounded then j[A]j denotes the maximum that j:j takes on A. A goal G = A1; : : : ; An is bounded if every Ai is bounded. If G is bounded then j[G]j denotesthe (�nite) multiset consisting of the natural numbers j[A1]j; : : : ; j[An]j. 2Level mappings are used to prove termination in the following way. Let G =G0; G1; G2; : : : be the goals in a refutation of G and j:j a level mapping. Giventhat G is bounded wrt j:j and j[Gi]j > j[Gi+1]j for all i, we can deduce thatthe sequence G = G0; G1; G2; : : : is �nite by the well-foundedness of the naturalnumbers. To prove the goal ordering property, that j[Gi]j > j[Gi+1]j for all iand for all possible refutations of G, one must examine the clauses and thecomputation rule used. Various classes of program have been identi�ed, wherethis property is satis�ed for a given computation rule [1, 2, 5, 11]. Bezem, forexample, introduced the class of recurrent programs [5], where the goal orderingproperty is always satis�ed, regardless of the computation rule.



De�nition3 recurrency [5]. Let P be a de�nite logic program and j:j a levelmapping for P . A clause H  B1; : : : ; Bn is recurrent (wrt j:j) if for everygrounding substitution �, jH�j > jBi�j for all i 2 [1; n]. P is recurrent (wrt j:j)if every clause in P is recurrent (wrt j:j). 2One problem with recurrency, as noted in [3], is that it does not intuitivelyrelate to the principal cause of non-termination in a logic program { recursion.The de�nition requires that level mappings decrease from clause heads to clausebodies irrespective of the recursive relation between the two. This relation isformalised in the following de�nition.De�nition4 predicate dependency. Given �p de�ned by a program P , wesay that p 2 �p directly depends on q 2 �p if there is a statement in P withhead p(t) and a body atom q(t0). The depends on relation is de�ned as the reex-ive, transitive closure of the directly depends on relation. p and q are mutuallydependent, written p ' q, if p depends on q and q depends on p. 2Notice that there is a well-founded ordering among the predicates of a programinduced by the depends on relation. We write p = q whenever p depends on q butq does not depend on p, i.e. p calls q as a subprogram. By abuse of terminologywe will say that two atoms are mutually dependent (with each other) if theyhave mutually dependent predicate symbols.Apt and Pedreschi [3] observed that while it is necessary for the level map-ping to decrease between the head p(t) of a clause and each body atom q(t0)with p ' q, a strict decrease is not required for the other atoms in the body.They introduced the notion of semi-recurrent program which exploited this ob-servation. Their de�nition still insisted, however, that the level of the head wasat least greater or equal to the level of all body atoms, whereas in fact it doesnot matter if the level of non-mutually dependent atoms is greater than in thehead provided that these atoms are bounded whenever they are selected.Marchiori and Teusink [11] noticed that boundedness of atoms could be en-forced by using delay declarations but did not fully exploit this fact combinedwith the above observation in de�ning delay recurrency, a version of recurrencyfor programs using dynamic selection rules. Their de�nition required a decreasein the level mapping from the head to the non-mutually dependent atoms whenin fact boundedness was already guaranteed by the delay declarations.We generalise their de�nition here by removing this restriction. The newde�nition will prove useful for de�ning a large class of terminating programswhich permit coroutining. We �rst need the following two de�nitions from [11].De�nition5 direct cover [11]. Let j:j be a level mapping and c : H  B aclause. Let A 2 body(c) and C � body(c) such that A 62 C. Then C is a directcover for A wrt j:j in c, if there exists a substitution � such that A� is boundedwrt j:j and dom(�) � var(H;C). A direct cover C for A is minimal if no propersubset of C is a direct cover for A. 2



De�nition6 cover [11]. Let j:j be a level mapping and c : H  B a clause.Let A 2 body(c) and C � body(c). Then C is a cover for A wrt j:j in c, if (A;C)is an element of the least set S such that1. (A; ;) 2 S whenever the empty set is the minimal direct cover for A wrt j:jin c, and2. (A;C) 2 S whenever A 62 C, and C is of the formfA1; : : : ; Akg [D1 [ : : :[Dksuch that fA1; : : : ; Akg is a minimal direct cover of A in c, and for i 2[1; k]; (Ai; Di) 2 S. 2Intuitively, a cover of an atom A in a clause is a subset of the body atomswhich must be (partially) resolved in order for A to become bounded wrt somelevel mapping. Where possible, we will assume in the following that the levelmapping is �xed for a given program. The following de�nition generalises thatof a delay recurrent program in [11].De�nition7 semi delay recurrency. Let j:j be a level mapping and I an in-terpretation for a program P . A clause c : H  B1; : : : ; Bn: is semi delayrecurrent wrt j:j and I if1. I is a model for c and2. if rel(H) ' rel(Bi), then for every cover C for Bi and for every groundingsubstitution � for c such that I j= C�, we have that jH�j > jBi�j.A program P is semi delay recurrent wrt j:j and I if every clause is semi delayrecurrent wrt j:j and I. 2Note that delay recurrency is not equivalent to semi delay recurrency. Everydelay recurrent program is semi delay recurrent, but the converse is not true.Example 1. The following program is semi delay recurrent, but not delay recur-rent.P([xjy])  Append( , , ) ^ P(y). 2Due to the possibility of speculative output bindings, in order to be sure thatthe condition I j= C� holds, each atom in C must be completely resolved. In [11]local selection rules are used to ensure this property. A local selection rule onlyselects the most recently introduced atoms in a derivation and thus completelyresolves sub-computations before proceeding with the main computation.Notice, however, that for semi delay recurrency, it is only necessary for thecovers of those atoms which are mutually dependent with the head of the clauseto be resolved completely. This means that following the resolution of thesecovers, an arbitrary amount of coroutiningmay take place amongst the remainingatoms of the clause. To formalise a selection rule based on this idea we introducethe notion of covers and covered atoms in a goal.



De�nition8 covers and covered atoms in a goal. Let G = A1; : : : ; Anbe a goal and suppose that the atomAi is resolved with the semi delay recurrentclause c : H  B giving � 2 mgu(H;Ai). If A 2 body(B) and rel(A) ' rel(H),then A� is a covered atom in G0 and C� is a cover of A� in G0 where C is acover of A in c and G0 is the resolvent of G. 2De�nition9 semi local selection rule. A semi local selection rule only se-lects a covered atom in a goal if one of its covers in a previous goal has beencompletely resolved. 2A semi local selection rule ensures that before selecting a covered atomA, we�rst fully resolve a cover of A. Before giving the main result of our construction,we need the following de�nition taken from [11].De�nition10 safe delay declaration [11]. A delay declaration for a predi-cate p is safe wrt j:j if for every atom A with predicate symbol p, if A satis�esits delay declaration, then A is bounded wrt j:j. 2Theorem11. Let P be a program with a delay declaration for each predicatein P . Let j:j be a level mapping and I an interpretation. Suppose that1. P is semi delay recurrent wrt j:j and I2. The delay declarations for P are safe wrt j:jThen every SLD-derivation for a query Q, using a semi-local selection rule is�nite. 2We are now able to develop a program transformation based on the aboveresult. We begin by transforming a given program into one which is semi delayrecurrent, but with equivalent declarative semantics. Then by adding safe delaydeclarations we can obtain a program which terminates for all queries using asemi-local selection rule.De�nition12 semi delay recurrent transform sdr. The transform sdr is de-�ned as follows.p 2 �P ) p 2 �sdr(P ) ^ psdr 2 �sdr(P ) where psdr 62 �P8(p(t) ) 2 P ) 8(psdr(t; ) ) 2 sdr(P )c = 8(p(t) w) 2 P ) 8(psdr(t; d) d = �c(d) ^ w0) 2 sdr(P )where w0 is obtained from w by replacing each atom in w of the form qi(s) withqisdr(s; di) if p ' qi, d is a tuple such that di 2 d if p ' qi and �c is a functionwith the property that �c(d) > di 8di 2 d. The variables d and di; 8i are domainvariables over IN. Finally for each p 2 �P we introduce the auxiliary clause8(p(t) pdepth(t; d)^ psdr(t; d)) 2 sdr(P )where t is a tuple of variables. 2



Lemma13 semi delay recurrency. If for each p 2 �P , the clauses de�ningpdepth are semi delay recurrent wrt M (sdr(P )) and jj:jj, then the program sdr(P)is semi delay recurrent wrt M (sdr(P )) and the level mapping j:j de�ned byjpsdr(t; d)j = djp(t)j = 0jpdepth(t)j = jjpdepth(t)jjfor all p 2 �P . 2By Theorem 11 and Lemma 13 we can obtain a program which terminatesfor all queries under a semi-local computation rule by adding for each predicate,a delay declaration which is safe wrt the level mapping de�ned in Lemma 13.Note also that d = �(d) is the only atom in the body of each non-auxiliary clausewhich will be a covering atom in a goal. This means that after its resolution, anarbitrary amount of coroutining may take place between the atoms in w0.Example 2. The program of Section 2 is obtained by applying the above trans-form, with �(d) = d + 1, to the Quicksort program of Section 1 and addingsafe delay declarations. Notice that the number of suspension checks performedhas been minimised by introducing an auxiliary clause p1(t)  p2(t) for eachpredicate p. 24.2 CompletenessHaving obtained a terminating program, we need to prove that the declara-tive semantics of the transformed program coincide with those of the originalprogram. In this way, under the assumption that the transformed program isdeadlock free [12], we can guarantee that all computed answers of this programare complete wrt the declarative semantics of the original program. We have thefollowing result.Lemma14 equivalence. If M (P ) j= p(t) and d 2 fd j M (sdr(P )) j= p(t; d)gimplies M (sdr(P )) j= pdepth(t; d) then for all p 2 �Pp(t) 2M (P ), p(t) 2M (sdr(P ))The problem then is to de�ne pdepth for each p 2 �P such that the aboveequivalence result holds. Our novel solution to this problem uses informationabout the success set of the program. Suppose we can deduce, for example, thatfor a given goal G, all computed answers for G can be found in an SLD-treeof �xed depth, then we can compute the SLD-tree to that depth and no more,and be sure that we have found all answers for G. In reality, the granularity is�ner, relying not on the depth of the SLD-tree as a whole but rather on thelengths of individual branches. More precisely, for each predicate p we �nd anupper bound on the number of calls to p. It will often be the case that thisbound relates to the input arguments of the predicate. We thus use interargu-ment relationships to capture this relation. Essentially, we de�ne pdepth as theinterargument relationship of the predicate padr.



De�nition15 interargument relationship. Given p 2 �P , a norm j:j anda model M for p=n, an interargument relationship for p=n wrt S is a relationI � INn, such that if M j= p(t) then p(jtj) 2 I. 2Interargument relationships can be automatically deduced using, for exam-ple, the analysis described in [4].Example 3. The analysis in [4] can be used to deduce the argument size relationsIQuicksortabs=3 = fhx; y; di j x = y; d = xg, IAppendabs=4 = fhx; y; z; di j z = x+ y; d =xg and IPartitionabs=5 = fhw; x; y; z; di j w = y + z; d = wg. These relations can beused to derive the de�nitions of SetDepth Q/3, SetDepth A/3 and SetDepth P/4for the program sdr(Quicksort) in Section 2. 2Example 4. Given the following predicate Split from the program MergesortSplit([], [], []).Split([xjxs], [xjo], e)  Split(xs, e, o).the argument size relation ISplitabs=3 = fhx; y; z; di j d = x; d � 2y; d � 2z + 1gcan be derived. From this we can derive a program which terminates for allqueries  Split(x, y, z) where either x, y or z is a list of determinate length andthe remaining two arguments are (optionally) unbound. We know of no othertechnique in the literature which can prove termination of these queries. Themajority of approaches can only reason about the decrease in the level mappingof successive goals in a derivation. For the level mappings jSplit(t1; t2; t3)j1 = jt1jand jSplit(t1; t2; t3)j2 = jt2j the decrease only occurs on every second goal. Asimilar problem which our approach can also deal with occurs in [13].4.3 E�ciencyWe now give a brief appraisal of our approach from a performance perspective.In theory, the rigidity checks should not incur much more overhead than theoriginal delay declarations. For example, checking rigidity of the �rst argumentof the query  Append([1,2,3], y, z) requires three Nonvar tests - exactly thesame number that would be required if the query were executed using the con-ventional delay declarations. There are additional costs due to uni�cation andthe calculation of the depth bound, but these costs could be minimised throughcareful implementation. We have naively implemented and tested some sampleprograms and some of the preliminary results are given below. The experimentshave been carried out in SICStus Prolog [7] on a Sparc 4.Program Goal Length Time(s) for P [fGg Time(s) for sdr(P ) [fGgP G of list L one solution all solutions one solution all solutions8-queens qn( ) - 0.4 6.8 0.3 5.3permsort ps(L, ) 10 6.8 1 0.7 0.7permsort ps( , L) 8 1.7 10.5 2.6 10.8quicksort qs(L, ) 4000 3.7 4.5 4.8 6.0quicksort qs( , L) 8 12ms 1 6ms 83.0



The main overhead is due to the rigidity checks and our implementation inthis respect is rather naive and could be improved. Even in our experimentalimplementation this overhead only reaches a maximum factor of about three forthe simplest programs, e.g. Append. The power of our approach, however, lies inits scalability and it is here where we believe the most impressive performancegains are to be made. Preliminary tests indicate that the most bene�t is obtainedfrom larger programs where only one rigidity test is performed at the beginningof the program and the rest of the computation is bounded by the depth bounds.Then our programs can outperform the original ones with the delay declarations,particularly as the amount of backtracking or coroutining increases.5 ConclusionThe aim of control generation is to automatically derive a computation rule fora program that is e�cient but does not compromise program correctness. In ourapproach to this problem we have transformed a program into a semanticallyequivalent one, introduced delay declarations and de�ned a exible computa-tion rule which ensures that all queries for the transformed program terminate.Furthermore, we have shown that the answers computed by the transformed pro-gram are complete with respect to the declarative semantics. This is signi�cant.Beyond the theoretical aspects of the work, we have demonstrated its prac-ticality. In particular, we have shown how transformed programs can be easilyimplemented in a standard logic programming language and how such a programcan be optimised to reduce the number of costly rigidity checks needed to en-sure termination, dramatically improving its performance. Furthermore, we haveseen how the termination problems caused by speculative output bindings canbe eliminated without the use of a local computation rule or other costly over-head. The coroutining behaviour which is then possible contributes signi�cantlyto the e�ciency of the generated code.In terms of correctness, we have only considered termination and complete-ness in this work, though other correctness issues also need investigating. Webelieve the connection between acyclic modes and rigid terms may provide asolution in our approach to the occur check problem, since the check is neverneeded for acyclic moded goals. Also, the example of Section 2.2 illustrates howthe problem of deadlock freedom may be handled.The e�ciency issues also require further investigation. We have separated tosome extent the issues of termination and performance and it is not now clearwhat role extra delay declarations might play in improving the performance ofthe transformed programs, or even whether other techniques such as multiplespecialisation would be more appropriate.AcknowledgementsThe authors would like to thank Elena Marchiori for providing useful literatureand clarifying their understanding of delay recurrency.
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