
Inserting External Figures with GraphicP

Péter Szabó
Budapest University of Technology and Ecomomics
Department of Analysis
Műegyetem rakpart 3–9.
Budapest
Hungary H-1111
pts+eurotex@math.bme.hu

http://www.inf.bme.hu/~pts/

Abstract

This paper describes GraphicP, a new, unified LATEX and plain TEX package that provides a fast
and reliable method for including external images into TEX documents. The \includegraphics
macro of GraphicP is a drop-in replacement of the same command of LATEX graphics.sty and
graphicx.sty, but with many enhancements. Drivers for xdvi, dvips, pdftex and dvipdfm are in-
cluded. Useful tips are given for converting vector and bitmap images into a format usable for
inclusion (typically EPS or single-page PDF).

Résumé

Cet article présente GraphicP, un nouveau paquettage LATEX/plain pour insérer de manière rapide
et efficace des images externes dans des documents TEX. La macro \includegraphics de Gra-

phicP, remplace au pied levé la commande homonyme de graphics et graphicx, avec un grand
nombre de nouvelles fonctionnalités. Des pilotes pour xdvi, dvips, pdftex et dvipdfm sont également
prévus. Nous donnons un certain nombre de conseils autour de la conversion d’images vectorielles
et bitmap vers un format de fichier utilisable pour l’insertion d’images (typiquement EPS ou PDF

mono-page).

Overview of image inclusion

There are many different technologies to embed exter-
nal images, such as photos, figures, function plots and di-
agrams into TEX documents. Most methods involve the
following steps:

1. designing (drawing) the image in an external pro-
gram;

2. converting it to a file format recognised by TEX;
3. loading an embedder (a TEX package that can em-

bed images);
4. placing inclusion commands at places of the .tex

document where the image should appear;

There are additional, less common steps:

5. providing feedback to the image drawing program
about the final image size and position;

6. replacing fonts and glyph sizes in the image to match
the main text font, compensating for the effect of
scaling and allowing TEX math formulas;

7. changing line widths to compensate for scaling.

In some technologies, these steps are integrated,
so the non-WYSIWYG image code can be typed di-
rectly into the .tex document. Examples are the
LATEX portable picture environment and its variants;

epic, eepic, gastex, Xy-pic, MFpic, ConTEXt’s inline
METAPOST environment. This paper discusses only the
generic process of embedding external images, not these
integrated, specific solutions.

In WYSIWYG word processors, images are usually
inserted by opening them in their appropriate applica-
tion, and using the clipboard to copy them to the docu-
ment inside the word processor. Scale, rotate, move and
resize operations are performed with the mouse, provid-
ing instant feedback to the author about the final appear-
ance of the image and how it affects text flowing around
it. Compared to this, the steps above seem to be over-
complicated, and a real pain to the author. This is partly
because easy handling of images needs aWYSIWYG envi-
ronment with instant feedback while editing. TEX—by
design— lacks both of them. So inserting images to TEX
documents is expected to be a tedious process, no matter
how sophisticated the tools that are used. Nevertheless,
it is worth improving the tools, so TEX can compete with
other document preparation methods. Emphasis should
be put on quality, stability, compatiblity and output size,
not on ease of use.

This paper describes steps 2–4 in detail, using
tools traditional for years, including Ghostscript, dvips,

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 441

Péter Szabó

dvipdfm, pdftex, METAPOST, the convert utility of
ImageMagick, The GIMP, as well as replacement tools
from the new GraphicP package, available from CTAN.
The a2ping.pl utility replaces epstopdf and others,
img_bbox.pl replaces ebb from dvipdfm, pdfboxes.pl
improves PDF files, graphicp.sty replaces traditional
LATEX graphics.sty and plain TEX epsf.tex. These new
tools work together with the sam2p [1] raster image con-
verter, which replaces tiff2ps and the EPS and PDF ex-
port filters of other image processing software such as
convert. This paper compares the new and the replace-
ment tools in detail, and proposes a more reliable and
accurate general image embedding technology for both
LATEX and plain TEX, using the proper combination of
these programs.

The embedder. TEX doesn’t understand image files. In
particular, TEX cannot extract an individual pixel, line
or label from an image. The only reason why the em-
bedder macros running in TEX read the image file is that
they need the bounding box for proper scaling. The
bounding box (or bbox) is a rectangular area of the im-
age file that contains all visible parts of it. The bbox is
of the form 〈llx〉 〈lly〉 〈urx〉 〈ury〉, in which the point
at (〈llx〉, 〈lly〉) is the lower-left corner of the image, and
the point at (〈urx〉, 〈ury〉) is the upper-right corner. It
is a common tradition to have 〈llx〉 = 0, 〈lly〉 = 0,
〈urx〉 = image width, 〈ury〉 = image height. Once the
bounding box has been extracted, and the desired width
of the included image is known, the embedder can calcu-
late the actual height and leave empty space for the image
on the paper.

The embedder inserts the image file name, the
computed horizontal and vertical scale factors into the
DVI file as a \special. The printer driver is responsi-
ble for loading the image file and sending it to the printer
properly scaled and rotated. The image file format must
be compatible with the printer driver. For example, the
popular printer driver dvips requires all images to be in
the Encapsulated PostScript (EPS) format. pdftex accepts
PDF, PNG, JPEG and TIFF images. dvipdfm accepts
PDF, PNG, JPEG and METAPOST EPS images. Usually
the author of the image prefers a different file format for
development, so conversion is necessary. Some convert-
ers are safe, efficient and faithful in the sense that they
create valid and small output without information loss,
but others have to be used with great care.

The most important requirements for an embedder
are:

1. ability to specify the image size and/or scaling

2. ability to specify rotation angle and mirroring

3. ability to clip unnecessary parts (crop)

4. extracting the bounding box properly from all file
formats

5. full compatibility with dvips, pdfTeX, dvipdfm

6. compatibility with other printer drivers
7. reuse of the same image object if embedded multi-

ple times
8. running text around the image
9. support for floating figures

Requirement 9 has been well supported for a long
time in LATEX, by the table and figure environments.
However, requirement 8 is solved only, and with limi-
tations, in floatflt.sty. The other requirements are cor-
related more strongly, they are implemented in the de
facto standard for an embedder of LATEX: graphics.sty
(includes both graphics.sty and graphicx.sty). It
is well-documented, and it provides a convenient syntax
and unified (printer driver and file format-independent)
interface for including any kind of rectangular image into
LATEX documents. Using it is rather easy:

...

\usepackage[dvips]{graphicx}

... \begin{document} ...

\begin{figure}

\includegraphics[width=0.9\textwidth]%

{footown.eps}

\caption{The map of Footown}

\end{figure}

... \end{document}

graphics.sty is not available for plain TEX, but there
is a similar but less powerful package (specific to EPS im-
ages), epsf.tex. An example:

\input epsf % in plain \TeX

...

\epsfxsize=0.9\hsize \epsfbox{footown.eps}

Why GraphicP? graphics.sty contains several inconsis-
tencies and weaknesses, which document authors must
care for when embedding images. Some of these prob-
lems are just annoying quirks, others affect the image
placement and scaling, visible to the reader. GraphicP
intends to be a stable and accurate replacement for graph-
ics.sty, fixing many problems, but without changing the
syntax of the \includegraphics command substan-
tially. It doesn’t contain fundamental additions, only
small fixes and additions, and increased consistency and
portability.

As GraphicP evolved, it has been extended with
Perl scripts, for example a2ping.pl and other standalone
programs in addition to the TEX macros in graphicp.sty.
These external programs are optional, because a Unix
system is needed by some of them.

graphics.sty implements a framework, separating
the general high-level functionality from the printer-
driver specific low-level one. For example, the command
\usepackage[pdftex]{graphicx} loads the graph-
icx.sty user interface with the pdftex.def driver. (The

442 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Inserting External Figures with GraphicP

other interface, graphics.sty, differs in the syntax of the
\includegraphics command.)

This separation is a good design choice in general,
but it makes it more difficult to do fundamental changes.
Another drawback of graphics.sty is that it is tightly
integrated into LATEX, so it would be quite difficult to
add plain TEX compatibility. GraphicP has been im-
plemented from scratch. The name of its embedder,
pgraphicp.sty, suggests that it can be used as a replace-
ment of graphics.sty. For example, the LATEX ‘Footown’
example above works by replacing the first line with
\usepackage[dvips]{graphicp}.

Preparing the image for inclusion

PostScript is a two dimensional page description language
that can fully describe the visual appearance of printed
material. A PostScript document is composed of straight
lines, curves, filled regions delimited by these, text, bit-
map images and others. PDF is a portable document
format mainly for distributing two dimensional, mainly
static material in electronic form. The same graphics
model is used in PostScript and PDF, so— in the ideal
case— there is no loss of information or precision when
converting between PostScript and PDF.

Other important differences, such as sheet trim-
ming, colors, slide shows and web hyperlinking are not
considered in this document.

Any image (bitmap, vector and combined) can be
faithfully represented in PostScript and PDF. The EPS
(Encapsulated PostScript) file format is a single-page
PostScript document with some other minor restrictions,
so it is perfectly suitable for representing inline images
in a document. There is no restriction in PDF; any one-
page PDF can be treated as an image. Most TEX printer
drivers accept the images in either EPS or PDF, so the
goal of this section is to convert any image to both of these
formats. Note that TEX and dvips cannot embed nor-
mal (non-encapsulated) PostScript documents, because
the bbox is missing, and PostScript documents may con-
tain device dependent or global state changing operators.
Use a2ping.pl to convert PS to EPS.

Most Windows users working with a word proces-
sor haven’t heard of PostScript, and have never used PDF
for embedding. The Windows clipboard and OLE hide
the file format; as long as the image can be copy-pasted,
its format doesn’t matter. This user-friendly approach is
not available in TEX, beacause it is technically impossible
to copy-paste binary image data into the human-readable
.tex source. Thus each image has to be saved into a
separate file, and the .tex file contains only references
to these files in the form of \includegraphics com-
mands. The file format depends on the printer driver; it
should be— in general— EPS for TEX combined with
dvips, and PDF for pdftex and dvipdfm.

Conversion to EPS or PDF. EPS and PDF files are not eas-
ily editable, so they should be converted or exported by
the preferred image drawing appliaction of the author.
Most modern vector graphics editing programs, includ-
ing Illustrator, CorelDRAW, Visio, Acrobat, InDesign
andQuarkXPress have a direct EPS export feature; some
of them can export PDF.

One has to consider the quality, the compatibility
and the size of the exported image. Some programs build
up circles using a constant number of straight lines or can-
not emit glyphs in vector format (⇒ low quality), some
images contain proprietary or legacy junk, or they need
new features of PostScript LanguageLevel 2 or 3 not sup-
ported by old printers (⇒ low compatibility), some pro-
grams emit 100 kB of procedure sets that are not used
anyway, or they represent objects inefficiently (⇒ big
size). Thus it is worth knowing more than one way to
do the same file format conversion. Unfortunately, there
is no golden rule: the best EPS and PDF output can be
found only by experimenting.

If the original image is in raster format, the sam2p
command-line utility can be used to create a small and
compatible PDF or EPS file. sam2p—with the help
of tif22pnm, png22pnm and djpeg—can read today’s
most popular raster image formats. The author should
save the image in an intermediate format (recommended:
PNG or TGA), and feed that to sam2p.

The first page of a normal PostScript document
can be converted to EPS or PDF with a2ping.pl, part of
GraphicP, for example: a2ping.pl in.ps out.eps.
For the PS→PDF conversion, a2ping.pl calls Ghostscript
with the device pdfwrite. Ghostscript 7.00 or later is
recommended to avoid missing objects and low-quality
glyphs. The PDF output is quite small. As an alterna-
tive, Acrobat Distiller can be used for converting PS to
PDF, but it is not free, and the settings should be speci-
fied properly to create a small and compatible PDF.

There is a general EPS export method for any Win-
dows and Macintosh application that is able to print. It
needs the PostScript printer driver freely available from
Adobe [10]. The PostScript printer description should
be adist4.ppd [11]. Select the following features dur-
ing installation: adist4.ppd, print to file, optimize for
compatibility (ADSC), PS LanguageLevel 2, embed all
the Type 1 (vector) and TrueType fonts as Type 1 fonts,
embed even the standard fonts. Onemay choose between
PS (DSC) or EPS output to avoid rotation. Scaling is not
important, because the TEX embedder is able to re-scale
images. Translation can be compensated by editing the
bounding box comment by hand. After setting it up, any
document can be printed from any application to a Post-
Script file— it works similarly to normal printing, but a
file will be created on disk. The bounding box can then
be modified by hand, and a2ping.pl may be applied if

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 443

Péter Szabó

necessary. If the application can create EPS files itself, it
should be compared to the printer-driver-based generic
method.

Adobe distributes a utility named PDFWriter that
can be used from any Windows application to print to a
PDF file. Using it is not recommended, because it com-
pletely confuses accented glyphs, and even other glyphs
in some fonts.

PostScript has been the traditional page description
language on Unix systems for a long time, so most Unix
utilities have PostScript output. The most important of
these are:

• Acrobat Reader can print to PostScript, so it can be
used as a PDF to PS converter. In the File/Print dia-
log, select File and Level 2Only, uncheck Fit to Page
and Download Far East fonts, check Download Fonts
Once and Use Printer’s Halftone Screen.

As an alternative, invoke:
acroread -toPostScript -level2 ...

from the command line.

• Ghostscript can convert PostScript to PDF. The
epstopdf utility by Thomas Esser makes this easier,
but a2ping.pl is a better replacement.

• dvips -E creates EPS files, but it sometimes com-
putes the bounding box wrong, so a combination of
dvips and a2ping.pl is necessary.

• Figures created by XFig can be converted to EPS
with a command like fig2dev -L eps in.fig >

out.eps. Also XFig can create EPS files, and newer
versions can even make TEX typeset some of the la-
bels: The Special Flag should be set to Special in the
Text Edit panel, and the file exported as Combined
PS/LATEX, with name out.eps. Then \input

out.eps_t should be called. Unfortunately it is
impossible to post-scale the image this way.

• Both Netscape Navigator and Mozilla can print to
PostScript, but their output is rather ugly. (The
printed output of Internet Explorer is not so ugly,
but tables are often cropped at right.)

• The GIMP can print to both PostScript and EPS, but
sam2p is usually a better solution.

• pdftops from xpdf can convert PDF to PS and EPS.
Unfortunately it doesn’t work with weird fonts or
encodings well, and older versions simply discard
PK fonts embedded by pdftex.

The output of METAPOST doesn’t need conver-
sion, because it’s already EPS, and the PDF-specific
drivers in GraphicP can embed it in a PDF document
without external converters. It is possible to embed TEX
output into TEX: the PDF files created by pdftex can be
included directly, and the PostScript output should be
run through a2ping.pl to create EPS.

Sometimes a multi-step conversion produces the
best results. For example, the author of this article of-
ten uses the pipeline of PostScript printer driver, Acro-
bat Distiller, Acrobat (cropping and EPS output), Acro-
bat Distiller, pdftops to create a small and portable EPS
file that can be embedded.

Content management. Additional information has to be
remembered for each image: proposed image title (cap-
tion), the documents or floating figures containing the
image, the file name, the editable source file of the im-
age, how it was converted from its source, is it available
in another format (e.g. both EPS and PDF), the \label
the figure will have, etc.

Keeping this meta information up to date is im-
portant if either the images or the document containing
them are planned to be reused in the far future. The au-
thor of the document should decide how to face this or-
ganization task. Only some hints are provided here.

On Unix systems it is traditional to write a Make-
file for compilation, even document compilation. The
enough_tex.pl script is provided in the GraphicP dis-
tribution for convenience: it runs TEX enough times
to resolve all references and indices. It can be in-
serted into a Makefile instead of bare latex invoca-
tions. Makefiles may also automate image conversion,
creating EPS and/or PDF from the source images before
compiling the document.

It is wise to retain an EPS, PDF, PNG or JPEG copy
of each image, so they can be opened decades later, be-
cause tools that can open these formats with the same se-
mantics as today are expected to be available for a long
time. On the other hand, proprietary and closed file for-
mats should only be used for temporary storage— if the
company stops supporting the file format, it will be im-
possible to open such images later.

The same is true for TEX texts: one should make
a backup of all classes, styles and auxiliary macro files,
including those that were used to create the format file,
plus all source and image files belonging to the specific
document. A full backup eliminates the risk that a .tex
source doesn’t compile anymore, or it compiles with dif-
ferent line breaks. The Linux strace utility can list all
files opened by latex and other programs.

Features of GraphicP

Runs on both plain TEX and LATEX. It contains a compat-
ibility layer (laemu.sty) in plain TEX that provides the
LATEX package loading, error and warning indication, and
some other simple common macros. Care has been taken
to use plain TEX constructs whenever possible, e.g. \def
instead of \newcommand. During development and test-
ing, I have been using plain TEX, because porting it to
LATEX is almost trivial compared to the other direction.

444 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Inserting External Figures with GraphicP

More accurate calculations. Knuth has designed TEX not
to use floating point numbers. This is an important porta-
bility advantage, because different rounding implemen-
tations of different CPUs don’t affect the positions of line
and page breaks calculated by TEX. It would be a painful
headache, for example, if the same TEX document com-
piled differently on the author’s Linux system and the
publisher’s Solaris system.

Real numbers in TEX are represented in 15.16
signed fixed point notation. That is, 15 bits are reserved
for the integer part and the sign, and the precision is
2−16, so a rounding of up to 2−17 pt may occur after each
operation. Fixed point arithmetic has the important ad-
vantage that additions and subtractions are always accu-
rate.

But what about multiplication and division? When
scaling an image of size wd × ht to the desired width
dwd, the actual height is calculated as ht·dwd/wd. Mul-
tiplication and division are equally important operations
in image scaling, and often the result of the multiplication
exceeds the maximumTEX dimension of about 16000 pt.

TEX provides real number multiplication with the
following trick:

\dimen0=42pt

\dimen1=0.333333333\dimen0

\showthe\dimen1

The calculated result (13.99979pt) is not accurate. An-
other weakness of the built-in multiplication is that it in-
troduces errors larger than the minimum 2−17 pt. For
example 0.00001 in = 0.0011 pt, but 0.000005 in =
0.0 pt.

The TEX primitives are not suitable for scaling; be-
cause multiplication is not accurate enough, it results in
overflow, and there is no built-in real number division at
all. So a high precision, non-overflowable scaling oper-
ation has been implemented from scratch in div16b.sty.
Its internal number representation is 30.32 signed fixed
point, and it stores a number in two TEX \count regis-
ters. Input and output values are still 15.16 real num-
bers. Due to the increased precision, overflow can never
occur, and the multiplication is always accurate, even
1 sp · 1 sp isn’t truncated. The division routine does re-
peated subtraction, possibly doubling or halving the divi-
sor after each subtraction. Halving may introduce small
internal rounding errors, but fortunately no error occurs
when the scaling ratio is a·2b, where a and b are integers.

Empirically, the error of the scaling algorithm in
practical image sizes (100 .. 3000 pt) is 0 .. 2 sp, while the
result of \Gscale@div in graphics.sty deviates some-
times as much as 1 pt, which is noticeable. Another
drawback of graphics.sty is that it calculates different
widths inside normal latex and pdflatex.

Enforced dimensions. When the user specifies [width=
or [height=, these will be enforced (using \hss), ir-
respective of what the driver generates. graphics.sty
doesn’t have this feature, and considering the less accu-
rate image scaling, differences up to a few pt can occur,
which can seriously affect further line and page breaks in
the document.

Gives bbox hints. It is possible to convert a TEX page to
EPS with dvips -E. dvips calculates the bounding box
of the page automatically, taking into account the glyphs
and rules on the page. Unfortunately, version 5.86e still
detects the image bounding box wrong, especially with
images descending below the baseline. GraphicP works
around the problem by forcing dvips to exclude the im-
age from the calculation, and adds two small invisible
(white) rules at the corners. This feature can be disabled.

A similar problem occurs in xdvi, which sometimes
crops too much from the edges of the image. This is
solved by forcing it not to crop at all. Cropping can
be controlled from \special{PSfile=. . .}, but printer
drivers interpret it differently, so the specification emit-
ted by graphicp.sty disables cropping completely. This
also solves a similar problem with dvipdfm, which would
otherwise crop EPS images below the baseline.

File format detection. As opposed to graphics.sty, Gra-
phicP doesn’t rely on the the file name to determine
the file format. Files with bogus or invalid extensions
are treated properly, and EPS files created by META-
POST (img.1, img.2 etc.) are also embedded correctly.
The annoying bug of graphics.sty of failing to recognise
an.image.pdf as .pdf is also eliminated.

File format decisions (implemented in pts_bbox
.sty) are based on the first four bytes read from the file.
GraphicP can distinguish between PNG, TIFF, JPEG,
MPS (EPS created by METAPOST), EPS, DOS EPSF and
PDF properly.

External bbox parsing. graphics.sty can read tiny .bbx

files that contain only a %%BoundingBox comment. This
is faster and more accurate than full image parsing, be-
cause .bbx files have extremely simple syntax. Gra-
phicP accepts \graphicPmeta commands instead of
.bbx files. Each of these commands describes a single
image file, for example:

\graphicPmeta{i.1}{EPS.MPS}{0}{0}{99}{534}

\graphicPmeta{i.2}{EPS.MPS}{8}{9}{10}{76}

A list of these lines can be inserted right into the .tex
document before typesetting the images, or it can be
\input from a separate file (proposed extension: .gpm).

A Perl script called img_bbox.pl is included in
GraphicP to generate these lines. For example, use
the command img_bbox.pl –tex *.eps *.pdf *.

jpg *.tiff *.png >all.gpm. The script supports

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 445

Péter Szabó

more than 42 image formats, included all formats em-
beddable by graphicp.sty. File names may contain TEX
control characters; they are properly escaped.

Getting the bbox of a PDF (the /MediaBox) is
rather complicated, because it is deeply hidden some-
where in the page tree of the binary PDF file. Nei-
therGraphicP, nor graphics.sty can do this reliably when
running inside tex; both of them expect the /MediaBox
to be in a line on its own, and they can be confused when
there are multiple such lines. The solution is to run Gra-
phicP inside pdftex, or— to get all four bbox coordi-
nates— to use img_bbox.pl, which can navigate the PDF
page tree properly.

As an alternative, GraphicP contains another Perl
script, pdfboxes.pl, which modifies an existing PDF file
so that the bounding box will be available right in the
beginning. This is essentially a proof-of-concept imple-
mentation: it proves that it is possible to insert a new
object into a PDF file and modify all offset references to
other objects, without the need to parse and regenerate
the full PDF. sam2p 0.43 and above emits the bounding
box early enough, so pdfboxes.pl is not needed.

a2ping.pl can detect all three bounding box types,
the setpagedevice and other PostScript operators.

Internal bbox parsing. The bbox extraction capability of
graphicp.sty is limited by the fact that TEX reads files
line-by-line, thus it is hardly possible to parse a binary file
properly. \catcodes are used extensively to ignore most
of the binary “junk”, so the dimensions of PNG,TIFF and
JPEG files cannot be extracted, and PDF parsing is very
limited. Fortunately, pdftex provides primitives to ex-
tract the bounding boxes of these binary files, and dvips
doesn’t support these file formats anyway.

All three types of EPS bounding boxes are sup-
ported; the user can choose between the exact and the
rounded bbox, if both of them are present. The default
is to choose Exact, then Hires, then normal (rounded
to integer) bounding box. This can be overridden by
[hiresbb] and [exactbb].

Nonzero depth. Images can be lowered below the base-
line, for example:
\includegraphics[lower=20]{t.eps}

moves the image down by 20 bp. Also GraphicP can
recognise negative lower-left in the bbox, and move
the image below the baseline automatically (only with
[below]). Horizontal movement is not possible, but the
user can insert the appropriate \kern commands before
and after the image.

Raster images are always aligned onto the baseline,
so an explicit [lower=] or [raise=] should be used in-
stead of [below] to move them vertically. Alternatively,
sam2p has the -m:lower:〈dimen〉 option that creates a
pre-lowered EPS or PDF from the raster image.

a2ping.pl automatically raises images up to the base-
line, unless the --below option is given.

Avoids duplication. dvipdfm and newer versions of pdf-
tex both support FormXObjects, a means for reusing ma-
terial already typeset. GraphicP uses Form XObjects to
embed an image file only once, nomatter howmany times
it appears in the document. This optimization is im-
possible in PostScript documents, because they are read
sequentially, and caching images already read imposes a
high risk of memory shortage.

METAPOST with all drivers. Although METAPOST

generates EPS, these text files follow such a simple struc-
ture that they can be converted to PDF drawing op-
erators (\pdfliteral) within TEX, as done in Con-
TEXt’s supp-pdf.tex, written by Hans Hagen. Gra-
phicP loads this routine in case such an MPS image is to
be loaded. However, these macros consume a lot of TEX
memory, so they can be disabled by saying

\usepackage[nopdftexmpost]{graphicp}

In fact, METAPOST output is the only image for-
mat that is supported by all drivers of GraphicP. It is
recognised by an ADSC comment in the EPS header; the
file name doesn’t matter— it can be t.1, t.eps, t.ps
or anything else.

METAPOST doesn’t emit a high resolution bbox by
default, but context/mp-tool.mp adds the appropri-
ate code to extra_endfig. Alternatively, one can type
this into the beginning to the .mp file:

extra_endfig := extra_endfig & "special ("

& ditto & "%%HiResBoundingBox: " & ditto

&"&decimal xpart llcorner currentpicture&"

& ditto & " " & ditto

&"&decimal ypart llcorner currentpicture&"

& ditto & " " & ditto

&"&decimal xpart urcorner currentpicture&"

& ditto & " " & ditto

&"&decimal ypart urcorner currentpicture"

& ");";

METAPOST creates EPS files with the wrong exten-
sion. When reading ajob.mp, the figure under the scope
of beginfig(42) will have the file named ajob.42.
Passing a negative number of beginfig will create
ajob.ps. These settings are hard-wired into META-
POST, thus the files have to be renamed before inclusion
with graphics.sty. GraphicP doesn’t have this limitation.

Better Babel compatibility. Many Babel languages make
the characters " and ‘ active. This conflicts with the
METAPOST loader and other PDF-specific code graph-
ics.sty borrows from ConTEXt, so

\usepackage[pdftex]{graphicx}

\usepackage[magyar]{babel}

446 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Inserting External Figures with GraphicP

is the correct loading order. Users of GraphicP don’t
have to care, because it uses external code only for
METAPOST EPS to PDF conversion, wrapped by proper
\catcode resets, so no error occurs.

Backward compatibility. Although the TEX and LATEX
interfaces used haven’t changed much in the last few
years, pdftex is under development. GraphicP adjusts
itself to the version of pdftex running it. GraphicP has
been tested with pdftex 0.12r (Debian Slink), 0.14 and
1.00a (Debian Woody).

graphics.sty is not Unix-specific; it should work in
any architecture or OS to which TEX has been ported,
but the Perl scripts provided in theGraphicP distribution
currently require a Unix system. They can be ported to
other platforms easily if there is considerable interest.

For educational purposes, graphicp.sty (which pro-
vides \includegraphicP) and graphicx.sty (which pro-
vides \includegraphics) can be loaded in this order.

Draft support. It is often desirable to omit images
from the document, especially in the development phase
where fast compile–redisplay cycles are of primary im-
portance. Of course, the space for the images still has
to be reserved. Contrary to graphics.sty, GraphicP sup-
ports this kind of draft mode by specifying the appropri-
ate driver, e.g.:

\usepackage[driver=invisible]{graphicp}

The supported draft drivers are:

invisible a transparent rectangle is displayed without the
image

blackbox a solid black box is displayed, showing the
bounding box—wastes a lot of ink

frame a black rectangular frame shows the bounding box

namedframe the image file name is displayed in the black
rectangular frame. Uses \textan (in asciiall.sty) if
available to display weird characters in file names.

The real drivers are:

pdftex the default driver when pdfTEX is detected.
Cannot display EPS images.

dvi a common subset of dvips and dvipdfm. This is the
default when running under normal (non-pdf-)TEX.
Can display EPS and MPS only.

dvips cannot display PDF and raster images.

dvipdfm calls Ghostscript to convert EPS to PDF auto-
matically.

The file texmf/dvipdfm/config should be up-
dated to improve bounding box calculation and others
during EPS to PDF conversion (don’t forget to enter the
actual path to a2ping.pl):

D "zcat -f %i | ./a2ping.pl --below - %o"

EPS fixups. a2ping.pl detects and emits all three bbox
types with proper rounding, removes DOS EPSF binary
junk, removes HP UEL header, adds some ADSC com-
ments, can read and write from a pipe, converts PS to
EPS, calls sam2p to convert raster images to EPS, removes
form feed from end of EPS.

For the PDF→EPS direction, a2ping.pl invokes
pdftops. a2ping.pl can output multiple-page PS, PDF
and HP PCL5 documents, with corrected paper size
(forced), resolution, duplex and tumble settings. The
ouput of Ghostscript is post-processed if necessary.

a2ping.pl can shift images, so the lower-left corner
is in the origin, but it can also retain the original bbox.
This works for both EPS and PDF.

a2ping.pl is not only a converter, but it contains
many fixup routines, so it can be used to fix EPS files from
a source incompatible with dvips.

Work pending

cropping Now \includegraphics always embeds the
whole image. It should have a clip= option, just as
in graphics.sty.

transformations all 8 combinations of flipping and rota-
tion by 90◦ should be added.

imtrix a unified way for replacing labels in EPS and PDF
images by those generated by TEX. Would be sim-
ilar to psfrag.sty.

compatible options \includegraphics should have
the following options, with the same meanings as in
graphics.sty: bb=, totalheight=, keepaspect
ratio=, type=, ext=, read=, viewport=.

optional bbox dots the 1 sp wide white dots that forcibly
mark the bounding box of the image should be made
optional.

arithmetic more complex arithmetic expressions than
width=0.9\textwidth should be allowed in the
width= and similar options.

testing with images originating from various programs.

Conclusion

The most important benefit of TEX is that it helps au-
thors and typesetters to produce beautiful printed doc-
uments. Although inserting figures in TEX documents
isn’t easy, TEX helps us to make the images consistent and
pretty. There are serious quirks and limitations during
production, conversion and inclusion, but once the im-
age has been included properly, it remains there without
accident: it won’t overlap the bottom margin (unless ex-
plicitly requested), it will be numbered and floated prop-
erly, it will never be torn from its caption, etc. The to-
tal size of the images doesn’t affect TEX: it runs happily
(albeit slowly) on a book with thousands of large images,
and never crashes. Beyond creativity, the authors must

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 447

Péter Szabó

have the technical knowledge to create documents with
images, but they can also enjoy many benefits unique in
computer typography.

The author uses several tools when dealing with im-
ages: image editors, converters, the embedder and the
printer driver. It is essential that these tools work prop-
erly and they can communicate with each other. Gra-
phicP provides an embedder implemented from scratch
that gives more flexibility to the author and instructs the
printer drivers in a more compatible way than the tra-
ditional LATEX embedder, graphics.sty. GraphicP also
contains many converters that fill the gap between the
various output file formats of the powerful image editors
and the formats the printer drivers work well with. The
converters do not enhance the visual appearance of the
image, but they ensure that bounding box and orientation
information is emitted properly, and they also do some
syntactical changes. They try to work smartly, without
image-specific instructions from the caller.

Existing printer drivers are fairly good, provided
that the embedder gives them specific and correct in-
structions what to do. However, existingWYSIWYG im-
age editors cannot cooperate well with TEX. Their out-
put often has to be adjusted by hand, or by using specific
converters.

The aim of graphicp.sty is not to compete with or
replace graphics.sty, but to provide a proof-of-concept
alternative showing that some of its functionality can be
implemented better. The key, unmatched benefits of
graphics.sty are the framework approach, support for
many printer drivers, and the extent of testing. Extend-
ing graphics.sty with the features of GraphicP while re-
taining these benefits would be a glorious, but enormous,
work.

The scripts and other programs of GraphicP are, as
far as its author knows, unique. They can be used to-
gether with both graphics.sty and graphicx.sty, and even
for generic image processing purposes unrelated to TEX.
GraphicP is hoped to increase the efficiency of everyday
image processing tasks done by TEX authors and publish-
ers.

References

[1] Péter Szabó. Inserting figures into TEX documents. In
proceedings to EuroBachoTEX 2003.

[2] HànThế Thánh, Sebastian Rahtz andHansHagen.
The pdfTEX user manual. teTeX:doc/pdftex/

base/pdftexman.pdf.gz, 1999.

[3] Mark A. Wicks. Dvipdfm User’s Manual. teTeX:
doc/programs/dvipdfm.dvi.gz, 1999.

[4] Tomas Rokicki. Dvips: A DVI-to-PostScript Trans-
lator. teTeX:doc/programs/dvips.dvi.gz,
1997.

[5] D.P. Carlisle. Packages in the ‘graphics’ bundle.
teTeX:doc/programs/grfguide.ps.gz,
1999.

[6] Keith Reckdahl. Using Imported Graphics in
LATEX2ε. teTeX:doc/programs/epslatex.

ps.gz, 1997.

[7] Adobe Developer Support. PostScript Language
Document Structuring Conventions Specification,
Version 3.0. Adobe Developer Technologies.
1992.

[8] Ed Taft, Steve Chernicoff and Carline Rose. Post-
Script Language Reference. Addison-Wesley, 1999.

[9] Jim Meehan, Ed Taft, Steve Chernicoff and Car-
line Rose. PDF Reference. Second edition. Addison-
Wesley, 2000.

[10] http://www.adobe.com/support/

downloads/main.html, select PostScript
printer drivers.

[11] PPD for a generic printer. http://www.

uniprint.ee/Web/OpenResource.aspx?

ResFile=47 and http://www.rgraphics.

com/downloads/ADIST4.PPD

448 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

