
IBM Tealeaf CX Mobile
Version 9 Release 0.1
December 4, 2014

IBM Tealeaf CX Mobile iOS Logging
Framework Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 99.

This edition applies to version 9, release 0, modification 1 of IBM Tealeaf CX Mobile iOS Logging Framework and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

IBM Tealeaf CX Mobile iOS Logging
Framework v

Chapter 1. Introduction 1
Introduction 1
Framework version 1
Features 1

Automatic logging 1
Customized data analysis 2
Kill switch 2
Privacy and security 2

How it works 2
Data capture 2
Data storage and communication 2
Performance optimization 2

Related documentation 3
Terminology 3
Next steps 3

Chapter 2. Tealeaf iOS Logging
Framework Installation and
Implementation 5
Client framework versions supported in this
documentation. 5
Integrate the IBM Tealeaf Mobile SDK with your iOS
application 5

Log screen layout for iOS mobile app session
replay 6

Install Tealeaf in an Xcode project 9
Adding the required frameworks to your Xcode
project 10
Adding Tealeaf files to your Xcode project . . . 10
Enabling the Tealeaf framework 10
Setting the Objective-C linker flag 11
Adding Tealeaf Headers to the pch file 11
Modify your application to use Tealaf classes . . 11

Configure Tealeaf 12
Configuring Tealeaf for your application. . . . 13
Configure gesture capture 14
Log Exceptions 17
Configure DOM Capture 19
Integrate Tealeaf and Worklight. 21

Quick start for server configuration 24
Data privacy 24
Target page for traffic capture 25
Traffic volume management 25
Implementing screenViews 25
Traffic capture configuration on the CX Passive
Capture Application 25
Options for monitoring captures and processing 27
Sessionization for iOS applications. 27
Runtime configuration. 29

IBM Tealeaf events for CX Mobile iOS Logging
Framework 29

JSON message type schemas and examples 30
Message header properties 30
Message header properties schema 30
Message header properties schema 31
Client state (Type 1) messages 32
ScreenView (Type 2) messages 34
Connections (Type 3) messages 36
Control (Type 4) messages 37
Custom Event (Type 5) messages 40
Exception (Type 6) messages. 41
Performance (Type 7) messages 42
Web Storage (Type 8) messages 43
Overstat Hover Event (Type 9) messages . . . 43
Layout (Type 10) messages 44
Gesture (Type 11) messages 46
DOM Capture (Type 12) messages 51
Examples 54

Upgrading the CX Mobile iOS Logging Framework 55

Chapter 3. Xamarin MonoTouch iOS
applications 57
Package contents 57
Integrating the IBM Tealeaf MonoTouch Logging
Framework with your application 57

Code changes. 57
How to resolve method swizzling conflicts in
TLFMonotouch 58

Chapter 4. Guidelines for tuning CX
Mobile iOS Logging Framework 61
Session identifiers 61
Data collection 61
Privacy protection 62
Performance optimization 63

Chapter 5. Reference 65
Required framework and library files 65
Logged elements 65
Application data. 65
Environmental data. 66

Captured at initialization 66
Captured during execution 67

User actions and events 68
Table views 68
Text fields 68
Secure text fields 68
Text views 69
Secure text views 69
Alert views 69
View controllers 70
Synchronous server connections 70
Asynchronous server connections 71
Unhandled exception 71
Error 71
Network connectivity 72

© Copyright IBM Corp. 1999, 2014 iii

Crash 72
Button touch events 72

Configurable items 72
Dynamic configuration items 76

Logging templates 78
Logging level legend 78

Custom instrumentation 78
General 78
Error events 79
Exception events. 79
GPS location events 80
Kill Switch events 81
Telephony events 81
Custom events 82
Disabling auto-instrumentation to include
advanced custom instrumentation 83

Methods for managing the framework 87
Session management 87
Performance optimization 88
Delegate callbacks 89

Chapter 6. Sample code 91
Server-side KillSwitch sampling function 91

Sampling function for ASPX 91
Sampling function for JSP 92
Sampling function for PHP 94

Troubleshooting tools 95
Console messages 95
Tools for debugging 95
Runtime information 95
Crashes. 96

Chapter 7. IBM Tealeaf documentation
and help 97

Notices 99
Trademarks 101
Privacy Policy Considerations 101

iv IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

IBM Tealeaf CX Mobile iOS Logging Framework

The IBM Tealeaf CX Mobile iOS Logging Framework for mobile native applications
requires the IBM Tealeaf CX Mobile license for Mobile App.

For more information, contact your IBM Tealeaf representative. Licensees must
implement in their apps code that is provided by IBM Tealeaf. For more
information on downloading IBM Tealeaf, see IBM® Passport Advantage® Online.

The IBM Tealeaf CX Mobile iOS Logging Framework Guide provides guidance on how
to enable the capture of mobile application data directly from the application that
is installed on the visitor's iOS-enabled device.

Note: Whenever possible, use the latest version of the IBM Tealeaf CX Mobile iOS
Logging Framework software.

© Copyright IBM Corp. 1999, 2014 v

vi IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Chapter 1. Introduction

Introduction
With the IBM Tealeaf CX Mobile iOS Logging Framework, you instrument your
native and hybrid iOS applications for logging and analysis. It captures device
context and user activity, so you can monitor and evaluate the performance of your
applications.

It was designed for simple implementation: it uses standard iOS classes and user
interface controls to track user interface events, and minimizes the impact on your
application's performance. Even without the framework, Tealeaf® can monitor the
traffic between your application and your server. With the framework, you get
unprecedented insight into the performance of your application.

Framework version

Before you contact IBM technical support, retrieve the version of the IBM Tealeaf
CX Mobile iOS Logging Framework that you are using.

Server-side

If your installation of IBM Tealeaf CX Mobile iOS Logging Framework is
submitting posts to the server, you can retrieve the version from the [env] section
of the request:
X-Tealeaf: device (iOS) Lib/8.5.6.1

In this example, the version number is 8.5.6.1.

Runtime

Developers can retrieve the version number by using the frameworkVersion
method.

Features

Automatic logging
After you link in the framework and change 2 lines of your application's code, the
framework can record device context and user actions like button taps and
navigation.

Table 1. Automatic logging

Context Notifications Control Events

v Network status

v Device type

v Operating
system version

v App lifecycle

v Table view row selection

v Text view and text field changes

v View controller loading,
appearing

v Button taps

v Alert view and action sheets

v HTTP and web view activity

© Copyright IBM Corp. 1999, 2014 1

Customized data analysis
You can create your own custom log events to mark activity to analyze.

If needed, you can mark the beginning of sessions for analysis and share session
identifiers between the framework and your application's own network traffic.

Kill switch
To manage traffic volume, you can enable the kill switch. You can set up the CX
Mobile iOS Logging Framework to check your server when the application starts
and enable or disable the kill switch.

Privacy and security
Sensitive user input can be omitted or masked, and you can disable local storage
completely.

HTTPS is supported for transmitting data.

How it works
The framework is configurable, efficient, and secure.

Data capture
To detect data for different types of events, IBM Tealeaf CX Mobile iOS Logging
Framework uses different methods.
v The framework listens for global notifications from iOS.
v The framework logs button events through sendEvent: and

sendAction:to:from:forEvent: methods in default TLFApplication
class(subclassing UIApplicaion) or your own customized UIApplication class.

v When no notification, event, or action is available, the framework accesses the
Objective C run time so that standard iOS SDK classes can report user actions.

Data storage and communication
CX Mobile iOS Logging Framework packages data for periodic submission.
v Data is packaged to be sent in bursts, instead of at each event, according to sizes

and times that you can configure.
v Data is sent by HTTPS or HTTP.
v Each submitted JSON message contains data from a single session only.
v Data is sent in JSON format.
v Data can be sent when the screen changes, at application startup, on going to

the background, or when your application tells the framework to send data.
v The maximum cache size is configurable, including the option to avoid local

storage completely.

Performance optimization
To optimize performance, CX Mobile iOS Logging Framework offers these options.
v Separate threads handle read and write operations to local storage, server

interaction, collecting context data and formatting log entries.
v Initialization can be delayed after application launch.

2 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Related documentation
As you implement and use the IBM Tealeaf CX Mobile iOS Logging Framework,
you can reference any of the following documents.

Table 2. CX Mobile iOS Logging Framework documentation resources

Document Description

IBM Tealeaf Client Framework Data Integration
Guide

This document can be referenced by your
IBM Tealeaf administrators whenever you
are implementing an IBM Tealeaf client
framework.
Note: After you deploy your client
framework, extra configuration can be
necessary to capture the data in IBM Tealeaf,
and to make the data available for creating
events, which enables search and reporting.

IBM Tealeaf CX Mobile Administration Manual Information for IBM Tealeaf administrators
on the IBM Tealeaf CX Mobile product.

Requires the IBM Tealeaf CX Mobile license.

IBM Tealeaf CX Mobile User Manual User documentation for IBM Tealeaf CX
Mobile.

v "Search and Replay for Mobile App"

v "Reporting for Mobile App"

Requires the IBM Tealeaf CX Mobile license.

IBM Tealeaf CX Mobile Android Logging
Framework Reference Guide

Installation and implementation guide for
the IBM Tealeaf CX Mobile Android Logging
Framework for Android-based mobile native
applications.

Requires the IBM Tealeaf CX Mobile license.

IBM Tealeaf CX UI Capture for AJAX Installation and implementation guide for
the IBM Tealeaf CX UI Capture for AJAX
solution for AJAX-based web and mobile
web applications.

v Requires the IBM Tealeaf CX license.

v Use of all mobile web functions requires
IBM Tealeaf CX Mobile license.

Terminology
A glossary is available for terminology that is used in this guide and applicable to
IBM Tealeaf.

For more information, see the IBM Tealeaf Glossary.

Next steps
To learn about the IBM Tealeaf CX Mobile iOS Logging Framework, read through
the chapters in this guide and review the sample code.

You can also review "Tealeaf Configuration for Client Frameworks" in the IBM
Tealeaf Client Framework Data Integration Guide.

Chapter 1. Introduction 3

4 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Chapter 2. Tealeaf iOS Logging Framework Installation and
Implementation

Use of the Tealeaf Logging Frameworks for mobile native applications requires the
Tealeaf CX Mobile license for Mobile App. For more information, contact your
Tealeaf representative. Licensees must implement in their apps code that is
provided by Tealeaf. For more information on downloading IBM Tealeaf, see IBM
Passport Advantage Online.

Client framework versions supported in this documentation
The installation and implementation instructions in this guide apply to the
step-based version of JSON messaging from this client framework.

The installation and implementation instructions for the legacy version are similar,
but require configuration in the Windows pipeline.

Integrate the IBM Tealeaf Mobile SDK with your iOS application
You integrate the IBM Tealeaf Mobile SDK with your iOS application so that the
CX Mobile iOS Logging Framework can capture user interface and application
events from your application. You integrate the SDK with every app from which
you want to capture user interface and application events.

Installation package

IBM Tealeaf CX Mobile iOS Logging Framework is delivered in the IBM Tealeaf CX
Mobile iOS Logging Framework 9.0 - iOS Logging Framework for Windows within
the IBM Passport Advantage Online.

The package contains the following software components.
v Tealeaf/Resources/TLFResources.bundle. The Bundle file. This bundle contains

all configuration files needed.
v Tealeaf/Library/libTLFLib.a. Library that is designed for use on iOS devices.

Use this library for development and testing directly on the iOS device, and
include it with your shipping application.

v Tealeaf/Include folder. This folder contains the header files that are required for
customization purposes of the framework implementation.

Hardware and software requirements

To develop iOS applications effectively with CX Mobile iOS Logging Framework,
the following hardware and software is required.

Consult Apple's iOS Dev Center for the most recent iOS technical documentation
and tools.
v Intel based Mac for application development
v Mac OS X 10.6.6 or later
v Xcode 4 or later

© Copyright IBM Corp. 1999, 2014 5

Note: Apple no longer supports armv6 devices. The framework is compatible
with armv7 or later devices.

v iOS SDK 5 for devices that run iOS 5.1.1 or later

Note: If you use iOS SDK 7, there are limitations. Alert view button click events
are not recorded or replayed. the Tab Bar has the style that is used in iOS SKD 6
when you replay iOS native mobile app sessions. Due to changes in the iOS 7
platform [TLFCustomEvent logPrintScreenEvent] no longer captures alert view
dialogs. To capture the alert dialogs, you must run your own screen capture
routine, then call [TLFCustomEvent logImage:] or [TLFCustomEvent
logImageSyncronous:].

v iTunes 10 or later

IBM Tealeaf client frameworks do not support forwarding of application data to
third-party systems. Application data must be forwarded to the server that hosts
the native application.

Impact on device resources

In benchmark tests, the CX Mobile iOS Logging Framework has the following
effects on resources of the visitor's device.
v 2-3% more memory consumption
v Minimal effect on battery life

Note: According to Apple, the API used to retrieve the battery level from the
device can be out of sync with the value that displays on the device. See
http://iphonedevelopertips.com/device/display-battery-state-and-level-of-
charge.html. The value is also updated in 5% increments only. See
http://www.iphonedevsdk.com/forum/iphone-sdk-development/14301-battery-
level.html

Log screen layout for iOS mobile app session replay
You can replay a mobile app session in cxImpact Browser Based Replay as you
would an HTML web session instead of viewing the mobile app session as a series
of screen captures.

The screen layouts of the native mobile app sessions are captured in IBM Tealeaf
JSON format. The screen layouts are then sent back to replay server. The replay
server uses a template engine, which interprets the JSON into HTML format. You
can then replay the screen lay out from the native mobile app session as HTML
pages in cxImpact Browser Based Replay.

There are several advantages to using JSON data to replay mobile app session over
screen captures.
v Reduce bandwidth. Screen captures for each screenview generate relatively large

image data. It not only consumes large amounts of wireless and cellular
bandwidth, but it also consumes more memory inside the device. It also impacts
the app performance.

v Mask sensitive information. You cannot mask sensitive information in a screen
capture. When using JSON data to replay mobile app sessions, you can mask
EditTexts by adding View IDs to the MaskIdList attribute in
TLFConfigurableItems.properties.

v Draw user interactions (UI events) onto the HTML pages that are created from
the JSON data.

6 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

http://iphonedevelopertips.com/device/display-battery-state-and-level-of-charge.html
http://iphonedevelopertips.com/device/display-battery-state-and-level-of-charge.html
http://www.iphonedevsdk.com/forum/iphone-sdk-development/14301-battery-level.html
http://www.iphonedevsdk.com/forum/iphone-sdk-development/14301-battery-level.html

For more information on mobile ap session replay templates, see "Native app
session replay customization" in the IBM Tealeaf CX Configuration Manual.

Replay logging can be automatic, manual, or a combination of the two. To enable
automatic layout logging find LogViewLayoutOnScreenTransition in
TLFConfigurableItems and set it to YES. This will automatically log a view
controller when the view controller's viewDidAppear:(BOOL)animated method is
called.

Note: If the viewController overrode the viewDidAppear, method[super
viewDidAppear:animated] must be called.

Correct
-(void)viewDidAppear:(BOOL)animated
{
[super viewDidAppear:animated];
// Custom code
}

Incorrect
-(void)viewDidAppear:(BOOL)animated
{
// Custom code
}

Several methods are included for manual logging of screen layout.

The following is the most basic manual logging method. The following method
logs the layout of the viewController passed into it.
-(BOOL)logScreenLayoutWithViewController:(UIViewController *)viewController

The following method performs the same action as the first method, but you can
pass in a specific name for the screen layout that is logged. This is helpful when
you log a view controller that can perform several different functions.
-(BOOL)logScreenLayoutWithViewController:(UIViewController *)viewController
andName:(NSString *)name

The following method performs the same action as the first method, but after the
specified delay. This is helpful for logging after certain events, such as reloading
the data in a table. The delay is measured in seconds.
-(BOOL)logScreenLayoutWithViewController:(UIViewController *)viewController

andDelay:(CGFloat)delay

The following method performs the same function as the previous method, but it
allows you to pass in a name for the layout.
-(BOOL)logScreenLayoutWithViewController:(UIViewController *)viewController

andDelay:(CGFloat)delay andName:(NSString *)name

In addition to logging the main view controller passed in, this method allows you
to pass in an array of other views to be logged at the same time. This is useful in
instances where there are elements on screen that are not part of the same view
hierarchy, such as an overlay attached directly to the application's window or an
alert view.
-(BOOL)logScreenLayoutWithViewController:(UIViewController *)viewController
andRelatedViews:(NSArray*)views

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 7

The following method performs the same action as the previous method, but it
allows you to pass in a name for the layout.
-(BOOL)logScreenLayoutWithViewController:(UIViewController *)viewController
andRelatedViews:(NSArray*)views andName:(NSString *)name

Where and when to call manual logging

With automatic logging enabled, view controllers are logged during the
viewDidAppear stage of the view lifecycle. If the view that is logged is loading
remote data, this is not adequate. In this case, the ideal time to call the logging
method is when the remote data is done loading and displaying.
- (void)RESTRequestCompleted:(RESTRequest *)request responseData:
(NSDictionary *)responseData response:(NSHTTPURLResponse *)response
{

[self updateUI: [responseData objectForKey:[self productKeyKey]]];
[self hideActivityIndicator];
[[TLFCustomEvent sharedInstance] logScreenLayoutWithViewController:self];

}

In some cases, you need to delay triggering logging to give time for UI animations
to complete or a UITableView reloadData call to complete. The Custom Event
provides a method to accomplish this.
- (void)RESTRequestCompleted:(RESTRequest *)request responseData:(NSDictionary
*)responseData response:(NSHTTPURLResponse *)response
{

items = [responseData objectForKey:[self itemsKey]];
[self.itemsTable reloadData];
[self hideActivityIndicator];

[[TLFCustomEvent sharedInstance] logScreenLayoutWithViewController:self
andDelay:0.1];
}

After certain UIEvents, it may be beneficial to trigger logging, such as upon
selection of an item on table view that stretches beyond one screen.
- (NSIndexPath *)tableView:(UITableView *)tableView willSelectRowAtIndexPath:
(NSIndexPath *)indexPath
{

[[TLFCustomEvent sharedInstance] logScreenLayoutWithViewController:self];
return indexPath;

}

A manual logging call is required to capture an alert view.
- (IBAction)btnSubmitFormClick:(id)sender {

UIAlertView *alert=[[UIAlertView alloc] initWithTitle:
@"Thank You!" message:@"We will be in touch with you soon."
delegate:self cancelButtonTitle:@"Ok" otherButtonTitles: nil];

[alert show];
[[TLFCustomEvent sharedInstance] logScreenLayoutWithViewController:

self andRelatedViews:@[alert]];
}

You should also log the screen layout after the alert dialog is dismissed.
- (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex
{

[[TLFCustomEvent sharedInstance] logScreenLayoutWithViewController:self];
}

IBM Tealeaf screen layout logging only logs the views and controls that are on
screen when the logging call is made. When UITableView contains more rows than

8 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

can be view on a screen at once, call the screen layout logging when an item is
selected. This ensures that the event matches the row selected. Use the following
code in your UITableViewDelegate to make this change.
- (NSIndexPath *)tableView:(UITableView *)tableView
willSelectRowAtIndexPath:(NSIndexPath *)indexPath
{

[[TLFCustomEvent sharedInstance] logScreenLayoutWithViewController:self];
return indexPath;

}

Supported controls
v UIView
v UIAlertView
v UITableView
v UITableViewCell
v UIScrollView
v UINavigationView - basic navigation bar support only
v UITabView - tab bar icons are not supported
v UIScrollView
v UICollectionView
v UILabel
v UIButton
v UITextField
v UITextView
v UIImageView
v UIActivityIndicator
v UIProgressView - custom graphics are not supported
v UISlider - custom graphics are not supported
v UISegmentedControl

Unsupported controls
v UIStepper
v UIPageControl
v UIPickerView
v UIDatePicker
v UIWebView
v MKMapView

Install Tealeaf in an Xcode project
After you download the IBM Tealeaf CX Mobile iOS Logging Framework package,
you install the CX Mobile iOS Logging Framework libraries into an iOS application
project.

Install process

To install Tealeaf in your Xcode project you:
1. Add required iOS frameworks to your project
2. Add Tealeaf files to your project
3. Set the Objective C linker flag

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 9

4. Add Tealeaf headers to your pch file
5. Set the UIApplication Class to use the Tealeaf Application class or modify your

custom UIApplicaiton class.

Adding the required frameworks to your Xcode project
The IBM Tealeaf CX Mobile iOS Logging Framework requires a number of Apple
Frameworks to function.

Before you do this task you must have downloaded the installation package and
extracted it to a location on your system.

The iOS Logging Framework requires these frameworks:
v Foundation.framework
v UIKit.framework
v CoreTelephony.framework
v CoreLocation.framework
v libz.dylib
v MediaPlayer.framework
v SystemConfiguration.framework

If these frameworks are already in your project, you do not need to add them a
second time.
1. In your Xcode project, select the project node in the Project Navigator.
2. Select your desired target under the targets list.
3. Select the General tab.
4. In Linked Frameworks and Libraries, click + to search and select frameworks.

Adding Tealeaf files to your Xcode project
You add the Tealeaf files to your Xcode project to add the Tealeaf library to your
project.

Before you begin, you must download the installation package.

Add the Tealeaf files to the main Target.
1. Extract the TLFLibRelease.zip file. The Tealeaf folder is extracted. The Tealeaf

folder contains all necessary files for the CX Mobile iOS Logging Framework.
2. Drag the Tealeaf folder onto the Project Navigator in Xcode. Or, in Xcode,

right-click Project Navigator and choose Add Files to "Your Project"... then
select the Tealeaf folder.

3. In the Choose options for adding these files dialog, check Copy items into
destination group's folder (if needed) and Create Groups for any added
folders.

4. Click Finish.

Enabling the Tealeaf framework
You must start the IBM Tealeaf CX Mobile iOS Logging Framework when you
application starts.

If DynamicConfigurationEnabled in TLFConfigurableItems is set to NO, you do not
have to complete this task.

10 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

1. In Xcode, locate your app delegate file.
2. Search for this code:

-BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

3. Add this line of code as the first line of the method application
didFinishLaunchingWithOptions:

[[TLFApplicationHelper sharedInstance] enableTealeafFramework];

Setting the Objective-C linker flag
Set the Objective C linker flag to load all of the Objective-C static libraries.
1. In Xcode, go to the Build Settings for your project and select the main Target.
2. In the search box, enter Other Linker Flags.
3. If the -ObjC flag is not listed as an Other Linker Flags entry, double-click the

row and select the +, then enter -ObjC. If the -ObjC flag is listed, you are done
with this task.

Adding Tealeaf Headers to the pch file
Adding Tealeaf Headers to the pch file lets you use other IBM Tealeaf functionality
without adding the headers to each file.
1. In Xcode, locate your pch file by typing Option + Command + J to open the

Project Navigator search box. Then, type <ProjectName>-Prefix.pch in the
Project Navigator search box.

2. Open your pch file.
3. Search for the #ifdef_OBJC_block.
4. Copy this code into the #ifdef_OBJC_block:

#import "TLFPublicDefinitions.h"
#import "TLFApplication.h"
#import "TLFCustomEvent.h"
#import "TLFApplicationHelper.h"

5. Save and exit the pch file.

Modify your application to use Tealaf classes
The changes that are needed in the code depend on whether your project
implements a custom UIApplication Class.

No custom UIApplication class

If your application does not have its own custom UIApplication class, you can use
the IBM Tealeaf UIApplication class.

Custom UIApplication class

If your application has its own custom UIApplication class (for example, named
CustomerUIApplication), but there are no sendAction and sendEvent methods in
CustomerUIApplication class, review the following information.

If your application has its own custom UIApplication class (for example, named
CustomerUIApplication), and there are sendAction and sendEvent methods in
CustomerUIApplication class, you can add code to point to the Tealeaf sendAction
and sendEvent classes.

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 11

Using the TLFApplication class
If your application does not have its own custom UIApplication class, it can use
the IBM Tealeaf CX Mobile iOS Logging Framework TLFApplication class. In your
application's main.m file, you must tell UIApplicationMain to use the IBM Tealeaf
subclass of UIApplication.
1. In your main.m class, search for code that uses the UIApplication:

return UIApplicationMain(argc, argv, nil, NSStringFromClass
([AppDelegate class]));

2. Replace the third argument, nil, with the name of the TLFApplication class.
The line should now look like;

return UIApplicationMain(argc, argv, NSStringFromClass
([TLFApplication class]), NSStringFromClass([AppDelegate class]));

Modifying the custom UIApplication class
Modify your custom UIApplication class. If your custom class does not have
sendAction and sendEvent methods, you can add them. If your custom class does
have sendAction and sendEvent methods, you can modify them to point to the
Tealeaf methods. The Tealeaf methods have logging built into them.
1. Optional: If your UIApplication class does not have sendAction and sendEvent

classes, add the sendAction and sendEvent methods to your custom
UIApplication class. For example:
@implementation CustomerUIApplication

- (void)sendEvent:(UIEvent *)event
{

[[TLFApplicationHelper sharedInstance] sendEvent:event];
[super sendEvent:event];

}
- (BOOL)sendAction:(SEL)action to:(id)target from:(id)sender

forEvent:
(UIEvent *)event
{

[[TLFApplicationHelper sharedInstance] sendAction:action
to:target

from:sender forEvent:event];
return [super sendAction:action to:target from:sender

forEvent:event];
}

2. Optional: If your custom UIApplication class has sendAction and sendEvent
methods, modify the methods to point to Tealeaf sendAction and sendEvent.
For example, add this line to the sendEvent method:
[[TLFApplicationHelper sharedInstance] sendEvent:event];

For example, add this line to the sendAction method:
[[TLFApplicationHelper sharedInstance] sendAction:action to:target
from:sender forEvent:event];

Configure Tealeaf
You configure several items for your application in Tealeaf, including how screen
layouts are logged, Target page location, kill switch location, and whether gestures
will be logged.

Configurable items

In Tealeaf, you configure:
v How screen layouts are logged.

12 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

v The Target page URL.
v The kill switch URL.
v Auto-instrumentation

TLFConfigurableItems.plist

Everything that you configure is in the TLFConfigurableItems.plist file. This file
is in the Install Package in the Tealeaf/Resources/TLFResources.bundle file.

How screen layouts are logged

Tealeaf can log screen images as base64 or as MD5 checksum with png or jpg
images. Set GetImageDataOnScreenLayout to YES to capture base 64 data. Set
GetImageDataOnScreenLayout to NO to log MD5 checksum and png or jpg images.
This option creates smaller payloads in production and is the recommended
setting.

Set Target URL

All events that are captured are sent in JSON format to a Target page. The Target
page acknowledges the receipt of the JSON message and forwards the client-side
events to Tealeaf. The person that sets up Tealeaf on the server creates the Target
page. The Target page is set with the PostMessageUrl field.

Set the kill switch URL

The Kill Switch is used to control logging. When the kill switch is enabled, it must
have a URL to check before the framework initializes. When the page is reachable,
the framework initializes. If the page is not reachable, because of network
problems or because you disabled it on your server, the framework does not
initialize. The kill switch URL is set by the person who sets up Tealeaf on the
server. The kill switch URL is set with theKillSwitchUrl field.

Auto-instrumentation

By default, the CX Mobile iOS Logging Framework automatically instruments your
application for a set of predefined events. You can disable auto-instrumentation
and then apply custom instrumentation for elements in your application.
Auto-instrumentation is set with the DisableAutoInstrumentation field. You should
leave this setting as YES.

Configuring Tealeaf for your application
You configure Tealeaf to use specific URLS for logging events and to control
message flow, and set how screen layouts are logged.

All of the configuration in this task involves modifying settings in the
TLFConfigurableItems.plist file in the Tealeaf Resources folder that you added to
your Xcode project.
1. In your project in Xcode, open the TLFConfigurableItems.plist file.
2. Set the GetImageDataOnScreenLayout to NO.
3. Set the PostMessageUrl to the URL of the Target page for your app.
4. Set the KillSwitchUrl to the URL for the kill switch for your app.
5. Save and exit the TLFConfigurableItems.plist file.

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 13

Configure gesture capture
Tealeaf provides a module log user gestures in your application. Tealeaf captures
several gestures. If you are using your own gestures in your application, you
modify the delegate for your Gesture Recognizer to work with the Tealeaf capture
function.

Process

To configure gestures for your application:
1. Modify the TLFConfigurableItems.plist file and set the SetGestureDetector

field to YES to log gestures.
2. If you are using your own gestures, modify the delegate for your Gesture

Recognizer to work with Tealeaf Capture.

Log gestures

You can capture gestures that the user makes on your application. Gesture capture
is set with the SetGestureDetector field. Gestures are logged as Type 11 JSON
messages. The captured gestures include:
v Tap
v Tap and Hold
v Double-tap
v Swipe in any direction
v Swipe up
v Swipe down
v Swipe left
v Swipe right
v Pinch
v Spread

Custom gestures and Tealeaf capture

You might have your own gestures in your application. For Tealeaf to log the
gestures, you need to modify the delegate for your Gesture Recognizer. You only
need to do this if you are using your own gestures in your application. If you are
using the Tealeaf gestures, you do not need to do this.

Gesture events captured
Gestures that are used to select items in an application or to adjust views in the
application are captured by Tealeaf.

Tap gestures

This table lists and describes the tap gestures that are captured from web and
mobile apps:

Note: The arrows that illustrate the direction of a swipe or pinch gesture are not
supported by the Internet Explorer browser.

14 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Table 3. Tap gestures

Gesture name Description Image displayed in Replay

Tap This gesture is a one-finger gesture.

For a tap gesture, one-finger taps and lifts from the
screen in 1 location.

Tap and Hold This gesture is a one-finger gesture.

For a Tap and Hold gesture, one-finger presses and
stays on the screen until information is displayed or
an action occurs.
Note: The response to a Tap and Hold gesture can
vary from one application to another. For example,
a Tap and Hold gesture might display an
information bubble, magnify content under the
finger, or present the user with a context menu.

Double tap This gesture is a one-finger gesture.

For a double tap gesture, one-finger taps twice in
close succession in 1 location of the screen.

Swipe gestures

This table lists and describes the swipe gestures that are captured from web and
mobile apps:

Table 4. Swipe gestures

Gesture name Description Image displayed in Replay

Swipe vertically This gesture is a one-finger gesture.

For a swipe vertically gesture, one-finger:

1. taps and holds in 1 location of screen,

2. continues to engage screen while it moves up or
down

3. lifts from the screen in different location.

Note: The initial tap becomes lighter in color, while
the destination is highlighted by a darker color

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 15

Table 4. Swipe gestures (continued)

Gesture name Description Image displayed in Replay

Swipe
horizontally

This gesture is a one-finger gesture.

For a swipe horizontally gesture, one-finger:

1. taps and holds in 1 location of screen,

2. continues to engage screen while it moves left or
right

3. lifts from the screen in different location.

Note: The initial tap becomes lighter in color, while
the destination is highlighted by a darker color

Resize gestures

This table lists and describes the resize gestures that are captured from web and
mobile apps:

Note: See the IBM Tealeaf Customer Experience 9.0.1 Release Notes for information
about a known limitation for handling some iOS pinch gestures.

Table 5. Resize gestures

Gesture name Description Image displayed in Replay

Pinch open Sometimes referred to as a spread gesture, this is a
two-finger gesture.

For a pinch open gesture, 2 fingers:

1. tap and hold in 1 location of the screen,

2. maintain contact with the screen while the
fingers move apart from each other in any
direction,

3. lift from the screen at a new location.

Note: Accompanying arrows indicate the
direction (open or close) of the pinch

Pinch close This gesture is a two-finger gesture.

For a pinch close resize gesture, 2 fingers:

1. tap and hold in 1 location on the screen,

2. maintain contact with the screen while the
fingers move toward each other,

3. lift from the screen at a new location. Note: Accompanying arrows indicate the
direction (open or close) of the pinch

Configuring Gesture capture for your application
You modify the TLFConfigurableItems.plist file to enable gesture capture for your
application.

All of the configuration in this task involves modifying settings in the
TLFConfigurableItems.plist file in the Tealeaf Resources folder that you added to
your Xcode project.
1. In your project in Xcode, open the TLFConfigurableItems.plist file.
2. Set the SetGestureDetector field to YES to log gestures.
3. Save and exit the TLFConfigurableItems.plist file.

16 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Modifying the delegate for your Gesture Recognizer to work with
Tealeaf capture
If you have your own gestures recognizer in your application, the code might
affect the Tealeaf gesture capture feature. To ensure that your gestures and Tealeaf
capture work together, you add a method to the delegate for your Gesture
Recognizer. You do this task only if you are using your own gesture recognizer.
1. Locate the delegate for your Gesture Recognizer.
2. Add this method to the delegate:

- (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer
shouldRecognizeSimultaneouslyWithGestureRecognizer:
(UIGestureRecognizer *)otherGestureRecognizer
{

return YES;
}

Log Exceptions
Exceptions are the way that a system or framework communicates to the
application that something has gone wrong and not to continue with the execution
of the program unless the exception is one of the expected ones. You can manually
and automatically log caught exceptions using the Tealeaf SDKs so that the
exception information can be used for analytics.

Three ways to log exceptions

In iOS SDK there are three ways to log exceptions that are trapped by your
application exception handler. These methods do not use the Cocoa SDK, which is
not exception- safe. This table lists the methods used to log exceptions and the
parameters used in each method:

Method Parameters

- (BOOL)logNSExceptionEvent:
(NSException *)exception;

Where:

v @param exception - The caught
NSException instance.

v @return if the event was successfully
logged or not.

- (BOOL)logNSExceptionEvent:
(NSException *)exception
dataDictionary:(NSDictionary*)
dataDictionary;

You set the NSSetUncaughtExceptionHandler
of your AppDelegate.m inside of: -
(BOOL)application:
(UIApplication *)application
didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions

Where:

v @param exception - The caught
NSException instance.

v @param dataDictionary - Additional data
about the exception.

v @return if the event was successfully
logged or not.

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 17

Method Parameters

- (BOOL)logNSExceptionEvent:
(NSException *)exception
dataDictionary:(NSDictionary*)
dataDictionary isUnhandled:(BOOL)
unhandled;

Where:

v @param exception - The caught
NSException instance.

v @param dataDictionary - Additional data
about the exception.

v @param unhandled - Indicates whether
the exception was caught by an exception
handler or not.

v @return if the event was successfully
logged or not.

Example

In this example, you have a method that causes an exception:
-(void)aMethod {
[self causesAnException];
}

You add an @try , @catch, and the [[TLFCustomEvent sharedInstance]
logNSExceptionEvent:exception]; method to handle the exception:
-(void)aMethod {
@try {
[self causesAnException];
}
@catch(NSException *exception) {
[[TLFCustomEvent sharedInstance] logNSExceptionEvent:exception];
}
}

Log uncaught exceptions

You can log uncaught exceptions by setting up and adding an
NSUncaughtExceptionHandler.

Logging exceptions
Use the examples in this task as a guide to adding exception logging to your
application.

You might want to use the top-level NSSetUncaughtExceptionHandler(
&SampleAutoUncaughtExceptionHandler); to identify bugs in your application.

The current iOS SDK catches some exceptions and prevents them from being
logged to the target page. In some cases this may prevent an application from
catching the exception.
1. Determine the method for which you want to log exceptions. For example, you

have a method:
-(void)aMethod {
[self causesAnException];
}

2. Optional: Add the exception method that you want to use to the method for
which you want to
Add @try , @catch, and the [[TLFCustomEvent sharedInstance]
logNSExceptionEvent:exception]; method to handle the exception:

18 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

-(void)aMethod {
@try {
[self causesAnException];
}
@catch(NSException *exception) {
[[TLFCustomEvent sharedInstance] logNSExceptionEvent:exception];
}
}

3. Optional: Set up an NSUncaughtExceptionHandler for logging for uncaught
exceptions: For example:
void SampleAutoUncaughtExceptionHandler(NSException *exception) {
[[TLFCustomEvent sharedInstance] logNSExceptionEvent:exception];
}
NSSetUncaughtExceptionHandler(&SampleAutoUncaughtExceptionHandler);

Configure DOM Capture
DOM Capture is an alternative to traditional UI Capture and Replay. DOM
Capture is used to capture anything that is not exposed in response HTML. DOM
Capture configuration is part of the Configuration wizard that you run to
configure UI Capture.

Process

DOM Capture is part of the Replay module. To enable DOM Capture, you must
enable the Replay module. When you configure DOM Capture, you use the
Configuration wizard to:
1. Enable DOM Capture
2. Configure user interaction triggers for DOM Capture (for example, screenview

load or user clicks).
3. Configure maximum threshold size for the DOM Capture message.

Limitations

DOM Capture operates on a page level.

Privacy Rules that specify regular expressions as identifiers are currently not
supported for this release.

DOM Capture can be replayed only in BBR.

Hybrid application and Native applications

How you configure DOM Capture varies based on how you are using DOM
Capture.

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 19

IF you are using DOM Capture for... THEN you...

which PCA cannot be used to listen to
request and responses for Native
applications

1. Install the UIC library in your
application.

2. Modify either the:

v defaultconfiguration.js file in the
UIC library to enable the library to
collect a DOM Capture JSON object.

v Native application to fire DOM
Capture. If the HTML page in the
webview does not fire on page load or
maybe the page changes dramatically
you need to fire DOM capture from
within your application.

You do not use the Configuration wizard for
DOM Capture in Native applications for
situations in which PCA cannot be used.

Hybrid applications that use WebView in
either iOS hybrid applications or Android
hybrid applications

1. Use the Configuration wizard to do basic
configuration and enable DOM Capture.

2. Add .domcapture to the events in your
application for which you want to use
DOM Capture. You can use DOM
Capture in click, change, load, and
unload events. In the event you can
specify:

v targets for the event

v screenview names (for load and
unload events only)

v A delay in milliseconds for the DOC
Capture to wait until the snapshot is
taken.

Configuring DOM Capture and Replay for Native iOS applications
that cannot use PCA
You configure DOM capture for a Native iOS application that cannot use PCA by
modifying the defaultconfiguration.js file. If the HTML page in the webview
does not fire on page load or if the page changes dramatically, you need to fire
DOM capture from within your Native iOS application.

Before you do this task you must install the UIC library in your native application.
All of the modifications that you make are in your Native iOS application.
1. Implement these methods in the UIWebViewDelegate:

(void)webViewDidFinishLoad:(UIWebView *)webView {

[[TLFCustomEvent sharedInstance] logScreenLayoutWithViewController:self];

}

- (BOOL)webView:(UIWebView *)webView shouldStartLoadWithRequest:
(NSURLRequest *)request navigationType:
(UIWebViewNavigationType)navigationType {

return YES;

}

20 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

2. Modify the defaultconfiguration.js file and set the DOM Capture options
that you want to use:
replay: {

// DOM Capture configuration
domCapture: {

enabled: true,
// Filter object for matching rules is similar to the Privacy

configuration
// It accepts a mandatory "event" followed by one or more

optional targets
// as well as an optional delay after which to take the DOM snapshot.
triggers: [

{
event: "load"

}
],
// DOM Capture options
options: {

captureFrames: true, // Should child frames/iframes be
captured

removeScripts: true // Should script tags be removed from
the captured snapshot

}
}

}

3. If DOM Capture does not fire on load, set DOM Capture to fire from your
application by adding this code to your native iOS application for the
screenview that you want to capture:
if (TLT === undefined) {

console.log(’TLT is undefined!’);
} else {

if (TLT.logScreenviewLoad === undefined) {
console.log(’Could not invoke TLT.logScreenviewLoad API!’);

} else {
TLT.logScreenviewLoad("root");
console.log(’logScreenviewLoad:’);

}

if (TLT.logDOMCapture === undefined) {
console.log(’Could not invoke TLT.logDOMCapture API!’);

} else {
dcid = TLT.logDOMCapture(window.document, {});
console.log(’logDOMCapture:’ + dcid);

}
}

4. Optional: If the webview has images that are slow to load, you can add a delay
to the DOM Capture with this method:
-(void)webViewDidFinishLoad:(UIWebView *)webView {

[[TLFCustomEvent sharedInstance] logScreenLayoutWithViewController:self
andDelay:0.2];

}

Integrate Tealeaf and Worklight
Worklight® is IBM's Mobile First Platform for developing both Hybrid and Native
Apps on multiple mobile platforms. For logging activities on your application, you
might want to integrate the Tealeaf library inside of a Worklight "Hybrid"
application. Worklight provides an Eclipse plug-in called "Worklight Developer
Studio" to help Developers create Mobile Apps more productively.

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 21

Development environment

To integrate Tealeaf with Worklight, you need these files:
v Eclipse IDE for Java™ EE Developers (Kepler): http://www.eclipse.org/

downloads/packages/release/Kepler/SR2
v Worklight Developer Studio version 6.1. You need the compressed file

iws_update_site_wde.6.1.0.2.zip

You must also install the:
1. Worklight Developer Studio inside Eclipse following the instructions in the

Worklight documentation.
2. Android ADT plug-in in your Eclipse instance.

Worklight high-level single project

Within Worklight, you can create and manage Mobile project artifacts in a single,
high-level project called "Worklight Project". Artifacts include server-side adapters,
multiple android projects, and multiple iOS projects All artifacts in the single,
high-level project have access to the same resources..

Differences between Worklight 6.1 and Worklight 6.2

In 6.1, Worklight and Tealeaf are packaged together. In Worklight 6.2 they are no
longer packaged together. For 6.2, you must do additional steps to integrate the
two products.

Modify Tealeaf and Worklight classes

Part of integrating Tealeaf and Worklight 6.2 is extending and modfying Tealeaf
and Worklight classes. This table lists the classes and methods that you modify and
shows examples of the modifications:

Method or class Example

OtherSources/main.m #import <UIKit/UIKit.h>
#import "TLFApplication.h"
int main(int argc, char *argv[]) {
@autoreleasepool {
int retVal = UIApplicationMain(argc,
argv, NSStringFromClass([TLFApplication
class]),
@"MyAppDelegate");
return retVal;
}
}

22 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Method or class Example

Classes/HelloWorklight.m - (BOOL)application:(UIApplication
*)application
didFinishLaunchingWithOptions:
(NSDictionary
*)launchOptions
{
BOOL result = [super application:
application
didFinishLaunchingWithOptions
:launchOptions];
// A root view controller must be
created in application:
didFinishLaunchingWithOptions:
self.window = [[UIWindow alloc]
initWithFrame:[[UIScreen mainScreen]
bounds]];
UIViewController* rootViewController
= [[Compatibility50ViewController
alloc] init];
[self.window setRootViewController:
rootViewController];
[self.window makeKeyAndVisible];
[[WL sharedInstance] showSplashScreen];
// By default splash screen will be
automatically hidden once Worklight
JavaScript framework is complete.
// To override this behaviour set
autoHideSplash property in
initOptions.js to false and use
WL.App.hideSplashScreen() API.
[[WL sharedInstance]
initializeWebFrameworkWithDelegate
:self];
[[TLFApplicationHelper sharedInstance]
enableTealeafFramework];
return result;
}

Process

To integrate Tealeaf and Worklight, you:
1. Create a high-level Worklight project called "Worklight Project"
2. Add the Tealeaf SDK to the high-level "Worklight Project".
3. Create an iOS project under the high-level "Worklight Project"
4. Convert the project to Xcode.
5. Modify iOS classes and methods (Integrating with Worklight 6.2 only)

Creating and configuring the high-level Worklight project
You can manage your Tealeaf and Worklight integration with the high-level
Worklight Project. To integrate Tealeaf and Worklight 6.1, you create the high-level
Worklight project, add the Tealeaf SDK to the project, and activate Tealeaf in the
JavaScript layer.

For Worklight 6,2, you must modify and create classes for integrating Tealeaf and
Worklight. Create these files before you begin this task.

In this task, you work in the Eclipse environment then convert the project to
XCode. You modify your application and add libraries to the project.

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 23

1. Create the high-level Worklight project:
a. In Eclipse, select New > Project > Worklight Project.
b. Enter the name of the project, for example Worklight Project and select

Hybrid Application.
c. Enter the name of the Hybrid Application that you are creating. For

example, HelloWorklight. The high-level project is created and a Hybrid
application that is called HelloWorklight is in the apps folder.

2. Activate the Tealeaf SDK on the high-level Worklight project:
a. Copy the configuretealeaf.js file to the apps/HelloWorklight/iphone/js

folder.
3. Create an iphone project under the high-level Worklight Project:

a. Right click on the HelloWorklight folder under Apps.
b. Select New > Worklight Environment.
c. Select iphone.

4. Convert the project to Xcode. Select Run As > XCode Project

5. Optional: For integrating Tealeaf and Worklight 6.2 only: Modify the classes
required for Tealeaf and Worklight integration:
a. Modify Other Sources/main.m.
b. Modify the Classes/HelloWorklight.m.

Quick start for server configuration
This section describes the basic steps to configure the IBM Tealeaf CX Passive
Capture Application and Windows based servers to capture and process data that
is submitted from the CX Mobile iOS Logging Framework.

To enable processing of submitted data, complete the steps in the following
sections.

Data privacy
IBM Tealeaf provides mechanisms for masking or blocking sensitive customer
information, such as credit card numbers, from being transmitted and captured by
IBM Tealeaf.

Through the CX Mobile iOS Logging Framework, you can specify the fields that
must be blocked or masked in your web application. When applied, data privacy
ensures that these data elements are never transmitted to IBM Tealeaf.

Note: Due to the way in which client framework data is submitted to IBM Tealeaf
for capture, to mask or block sensitive data you apply filtering through the
capturing client framework. While other IBM Tealeaf features to manage data
privacy can be deployed, they are not easy to implement on the format of data
captured from the client frameworks.
v See "Data Privacy in IBM Tealeaf Client Frameworks" in the IBM Tealeaf Client

Framework Data Integration Guide.
v For more information about handling sensitive data in general, see "Managing

Data Privacy in IBM Tealeaf CX" in the IBM Tealeaf CX Installation Manual.

24 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Target page for traffic capture
IBM Tealeaf is designed to capture traffic between a client and a web server. To
facilitate capture, you add a target page to your web server environment to which
the CX Mobile iOS Logging Framework can submit posts.

You can use the same target page that is available for IBM Tealeaf CX UI Capture
for AJAX. See "IBM Tealeaf target page" in the IBM Tealeaf CX UI Capture for AJAX
Guide.

After you add the target page to your web environment and enable the
appropriate access permissions, you must configure the URL for the target page in
the TLFConfigurableItems.plist page.

Note: If needed, you can configure the client framework to submit by HTTPS by
adding the protocol identifier to the post URL.

Traffic volume management
You can add a sampling function to work with the CX Mobile iOS Logging
Framework kill switch. This sampling function can be used to throttle the sampling
rate and thus the volume of traffic that is forwarded for capture.

For more information about sampling functions for various server environments,
see Chapter 6, “Sample code,” on page 91.

Implementing screenViews
For pages in which the state or context can be switched without re-rendering the
page, IBM Tealeaf segments the data between states by using an object that is
called a screenView.

For example, if a page contains multiple tabs in it, each of which represents a
different stage in a checkout process, you instrument each tab in the page as a
distinct screenView.

To implement a screenView for a page, complete the following steps.
1. logicalPageName for a screenView is the current UIViewController’s classname

or title.
2. If the prior step is not completed, call [TLFCustomEvent sharedInstance]

logAppContext and pass the logicalPageName. For example:
[[TLFCustomEvent sharedInstance] logAppContext:logicalPageName
applicationContext:applicationContext referrer:referrer] ;

Traffic capture configuration on the CX Passive Capture
Application

Data is submitted from the CX Mobile iOS Logging Framework to the CX Passive
Capture Application by using specific content types.

The CX Passive Capture Application is typically configured to capture these
content types by default. You verify that these content types are enabled for
capture through the CX Passive Capture Application web console.

Note: After the completion of the steps in this section, data is processed by IBM
Tealeaf.

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 25

Verifying CX Passive Capture Application capture type
configuration
You use the CX Passive Capture Application web console to verify that the content
types submitted by the CX Mobile iOS Logging Framework are being captured by
the CX Passive Capture Application.

Note: Depending on the version of the CX Passive Capture Application that you
installed, the required content types may already be configured for capture.

The CX Mobile iOS Logging Framework submits messages by using the
application/json content type.

Note: Each IBM Tealeaf CX Mobile iOS Logging Framework can use a different
content type for submitting events for capture to IBM Tealeaf. Be sure to review
and verify the content type for each deployed client framework.
1. Log in to the CX Passive Capture Application web console.

<PCAServer>:8080

where <PCAServer> is the host name of the CX Passive Capture Application
server.

2. Click the Pipeline tab.
3. Click Edit Type Lists.
4. In the Capture All POST Types box, verify that the following values are

included.
text/json
text/x-json
application/json
application/x-json

5. Click Add.
6. The CX Passive Capture Application is now configured to capture the required

content types. All subsequent hits of this type are captured.
7. Save your changes.

v See "PCA Web Console - Pipeline Tab" in the IBM Tealeaf CX Passive Capture
Application Manual.

Configuring CX Passive Capture Application for screen capture
from CX Mobile iOS Logging Framework
Optionally, you can set up the CX Mobile iOS Logging Framework to do a screen
capture during the initial load of each view or screen of your web application.
These screen captures are forwarded to the IBM Tealeaf Target Page in PNG and JPG
format for use during session display.

PNG files are not compressed, while JPG is a compressed format. APNG file is
approximately 20 KB to 35 KB in size; a JPG file is 6 KB to 15 KB.

When this option is enabled, you must configure the CX Passive Capture
Application to capture these screens. By default, the CX Passive Capture
Application drops capture of binary or static content, so you must configure it to
capture images that are submitted as binary POSTs to the target page. See “Screen
capture at run time” on page 77.
1. Log in to the CX Passive Capture Application web console.

<PCAServer>:8080

Where <PCAServer> is the host name of the CX Passive Capture Application
server.

26 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

2. Click the Pipeline tab.
3. Click Edit Type Lists.
4. In the Excluded File Extensions list, verify that png or jpg is listed.
5. In the Included File Extensions list, verify that png or jpg is not listed.

Note: If a file extension is included in this list, then all instances that are sent
as responses are captured, which greatly expands the volume of data that is
captured by the CX Passive Capture Application. Capture in this manner is not
required.

6. In the Binary POST Types box, enter the following value.
image/png

7. Click Add.
8. The image/png POST type is added and enabled for capture. This setting allows

the PNG posts to be captured by the CX Passive Capture Application.
9. Save your changes.

See "PCA Web Console - Pipeline Tab" in the IBM Tealeaf CX Passive Capture
Application Manual.

Enabling decompression of compressed POSTs
The CX Mobile iOS Logging Framework automatically compresses POST data. You
must configure the CX Passive Capture Application to decompress them.
1. In the CX Passive Capture Application Web Console, click the Pipeline tab.
2. Select Inflate compressed requests and responses.
3. Save your changes.

The compressed POSTs are now automatically decompressed by the CX Passive
Capture Application and processed normally.

Options for monitoring captures and processing
You use different tools for testing your configuration and monitoring captures on
an ongoing basis.

At target page

You can test the basic functionality of the target page by triggering GET and POST
actions on the URL where the target page was installed.

See "Unit tests of target page" in the IBM Tealeaf UI Capture for Ajax Guide.

In Windows pipeline

You can monitor the capture and processing of hits in the Windows pipeline in real
time through the IBM Tealeaf Management System. See "TMS Pipeline Status Tab"
in the IBM Tealeaf cxImpact Administration Manual.

Sessionization for iOS applications
The CX Mobile iOS Logging Framework uses a tiered approach to generating
identifiers for mobile native application sessions. A summary of the approaches for
generating identifiers follows.
v Use TLTSID identifier that is provided by web server.

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 27

This solution uses the session identifier that is provided by your web server
environment, which forces the mobile native application to use identifiers that
are consistent with your non-mobile sessions. Ideally, this identifier is provided
as a TLTSID value, which is the default session identifier value within IBM
Tealeaf.

Important: If possible, use this method of generating the session identifier.
To enable this method of generating session identifiers, the first hit of your
mobile native application session must be forced to be a web hit that touches the
server or servers that generate session identifiers.
Ideally, the session identifier that is generated by your web server is provided
by the IBM Tealeaf Cookie Injector, which generates session IDs that are unique
within IBM Tealeaf. See "Installing and Configuring the Tealeaf Cookie Injector"
in the IBM Tealeaf Cookie Injector Manual.

v Use another identifier that is provided by web server
In some environments, the TLTSID value is not used as the session identifier. In
these cases, you must force the first hit to be a web hit targeting the web server,
and you must deploy a session agent in your Windows pipeline to map the
proper session identifier for IBM Tealeaf.

Important: This method is not validated in a customer environment and is not
officially supported. For more information, contact IBM technical support.
To enable this method of generating session identifiers, the first hit of your
mobile native application session must be forced to be a web hit that touches the
server or servers that generate session identifiers.
If you are using a session identifier other than TLTSID, you must include the
Sessioning session agent in your pipeline to identify your session identifier for
IBM Tealeaf. If you already deployed IBM Tealeaf to capture non-mobile sessions
and the session identifier was already defined by your web server, this
configuration was probably already completed. Verify that it is present and
functioning in the Windows pipeline. See "Sessioning Session Agent" in the IBM
Tealeaf CX Configuration Manual.

v Configure the TLTSID by changing the string value of SessionizationCookieName
from TLFConfigurableItems.plist. SessionTimeout should be set together with
SessionizationCookieName. When the time out happens, CX Mobile iOS Logging
Framework auto generates a new Session ID and assigned it to the variable of
SessionizationCookieName. This customized session identifier is a hashed value
that is submitted as a cookie in the first hit and all subsequent hits.
To get the generated session ID, implemented the following:
@protocol TLFLibDelegate <NSObject>
@optional /** After set a delegate to your TLFApplication implement this
callback to generate your custom Session ID */
- (NSString*)sessionIdGeneration; @end

If you do not configure SessionizationCookieName, by default, it will use TLTSID,
which is generated by Sessioning session agent in your pipeline.

IBM Tealeaf CX provides multiple mechanisms for sessionization. See "Managing
Data Sessionization in Tealeaf CX" in the IBM Tealeaf CX Installation Manual.

A note on sessionization for upgraded environments

If you upgraded your CX Mobile iOS Logging Framework from a version before
8.6.7.3, the method of sessionization changed.

28 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

v Previously, the CX Mobile iOS Logging Framework submitted session identifiers
using the X-Tealeaf-Session header.

v Beginning in iOS 5, the headers are no longer available to the local application.
v To sessionize, IBM Tealeaf now submits session identifiers as cookies.

After you upgrade your CX Mobile iOS Logging Framework from a version before
8.6.7.3, you change how sessionization is managed within your native application.
v If you use the TLTSID value, you do not need the Sessioning session agent to

map session identifiers into the request.
v The CX Mobile Android Logging Framework uses the Sessioning session agent

for session identification. Do not remove it if you are also deploying an Android
mobile native application. See "Tealeaf Android Logging Framework Installation
and Implementation" in the IBM Tealeaf CX Mobile Android Logging Framework
Guide.

Runtime configuration
As needed, you can change framework settings within the client application during
run time. You define these settings during initialization of the application by using
the framework API, and update them as needed.

The following configuration items can be configured dynamically from the client.
v Dynamic PostMessageURL: Changes the target URL for iOS Logging Framework

as needed.
v KillSwitchURL: Activates the killswitch on the iOS Logging Framework as

needed.

See “Dynamic configuration items” on page 76.

IBM Tealeaf events for CX Mobile iOS Logging Framework

The JSON format is used to track data that is captured by the CX Mobile iOS
Logging Framework.

Data type
Description

Client Framework data (JSON)
If you are using step-based eventing, data from the client framework is
submitted in JSON format and is available through browser based replay
for review and eventing. See "Step-Based Eventing" in the IBM Tealeaf Event
Manager Manual.

For a walkthrough of how to capture this data into IBM Tealeaf events, see
"Integrating Client Framework Data into Tealeaf" in the IBM Tealeaf Client
Framework Data Integration Guide.

Client Framework data (hit-splitting)
Legacy method. See “Client framework versions supported in this
documentation” on page 5.

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 29

JSON message type schemas and examples
JSON messages are categorized by type for processing. Tealeaf supports 12 JSON
message types.

This table lists and describes the supported JSON message types:

Table 6. Schema by Message Type

Type Message Type Description

1 “Client state (Type 1) messages” on
page 32

Any object that shows the current
state of client.

2 “ScreenView (Type 2) messages” on
page 34

Any message that indicates changes
in view on the "screen". The "screen"
is the page, view, or activity where
the visitor is in the application.

3 “Connections (Type 3) messages” on
page 36

Any request or response that the
application performs during capture.

4 “Control (Type 4) messages” on page
37

User interface control that fires an
event to which Tealeaf listens for
capture.

5 “Custom Event (Type 5) messages”
on page 40

Any custom log event from any
location in application.

6 “Exception (Type 6) messages” on
page 41

Any exception that the application
can throw.

7 “Performance (Type 7) messages” on
page 42

Performance data from a browser.

8 “Web Storage (Type 8) messages” on
page 43

Any object that contains information
about local storage information on
the browser.

9 “Overstat Hover Event (Type 9)
messages” on page 43

Any object that contains information
about mouse hover and hover-to-click
activity.

10 “Layout (Type 10) messages” on
page 44

Any message that shows the current
display layout of a native page.

11 “Gesture (Type 11) messages” on
page 46

Any message that shows a gesture
that fires a higher touch event that
Tealeaf listens to for capture.

12 “DOM Capture (Type 12) message
example” on page 53

Any object that contains serialized
HTML data (DOM snapshot) of the
page.

Message header properties
All messages contain message header properties consisting of two properties that
contain the message type and the time that is offset from the start of the session in
milliseconds.

Note: All time measurements in the JSON object schema are in milliseconds.

Message header properties schema
"offset": {

"title": "Milliseconds offset from start of stream",
"type": "integer",

30 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

"required": true
},"screenViewOffset": {

"title": "Milliseconds offset from start of ScreenView",
"type": "integer",
"required": true

},"count": {
"title": "The number of the message being sent",
"type": "integer",
"required": only used for UIC

},"fromWeb": {
"title": "Used to identify if it came from Web or Native application",
"type": "boolean",
"required": true

},"type": {
"title": "Message header type",
"type": [{

"enum": [1],
description: "CLIENT_STATE"
},
"enum": [2],
description: "APPLICATION_CONTEXT"
}],
"enum": [3],
description: "CONNECTION"
},
"enum": [4],
description: "CONTROL"
},
"enum": [5],
description: "CUSTOM_EVENT"
}],
"enum": [6],
description: "EXCEPTION"
}],

"required": true
},

Message header properties schema
"offset": {

"title": "Milliseconds offset from start of stream",
"type": "integer",
"required": true

},"screenViewOffset": {
"title": "Milliseconds offset from start of ScreenView",
"type": "integer",
"required": true

},"count": {
"title": "The number of the message being sent",
"type": "integer",
"required": only used for UIC

},"fromWeb": {
"title": "Used to identify if it came from Web or Native application",
"type": "boolean",
"required": true

},"type": {
"title": "Message header type",
"type": [{

"enum": [1],
description: "CLIENT_STATE"
},
"enum": [2],
description: "APPLICATION_CONTEXT"
}],
"enum": [3],
description: "CONNECTION"
},

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 31

"enum": [4],
description: "CONTROL"
},
"enum": [5],
description: "CUSTOM_EVENT"
}],
"enum": [6],
description: "EXCEPTION"
}],

"required": true
},

Client state (Type 1) messages
Client state messages are delivered on a schedule basis or on changes to the
environment state on the client. These are Type 1 JSON messages.

Note: Replay of client state messages is not supported, except for scroll events.
Replay of scroll events that are captured from the client is supported for mobile
sessions only in BBR only. See Search and Replay for Mobile Web.

Client State (Type 1) message schema
This is the schema for the Client State (Type 1) messages.
{

"$ref" : "MessageHeader",
"mobileState": {

"description": "Logical page being loaded for iOS and Android",
"type": "object",
"properties": {

"orientation": {
"title": "Current orientation of the device",
"type": "integer",
"required": true

},
"freeStorage": {

"title": "Amount of available storage in Mbytes",
"type": "number",
"required": true

},
"androidState": {

"description": "Current state in an Android device",
"type": "object",
"properties": {

"keyboardState": {
"title": "Current keyboard state",
"type": [{

"enum": [0],
description: "Keyboard not hidden"
},
"enum": [1],
description: "Keyboard hidden"
},
"enum": [2],
description: "Undefined"
}],

"required": true
},

}
},
"battery": {

"title": "Battery level from 0 to 100",
"type": "number",
"required": true

},
"freeMemory": {

32 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

"title": "Amount of available memory in Mbytes",
"type": "number",
"required": true

},
"connectionType": {

"title": "Current connection type",
"type": "string",
"required": true

},
"carrier": {

"title": "Carrier of device",
"type": "string",
"required": true

},
"networkReachability": {

"title": "Current network reachability",
"type": [{

"enum": [0],
description: "Unknown"
},
"enum": [1],
description: "NotReachable"
},
"enum": [2],
description: "ReachableViaWIFI"
},
"enum": [3],
description: "ReachableViaWWAN"

}],
"required": true

},
"ip": {

"title": "Ip address of device",
"type": "string",
"required": true

}
},
"additionalProperties" : false
"clientState": {
"description": "Logical web page being loaded for UIC",
"type": "object",
"properties": {

"pageWidth": {
"title": "Width of the document of the web page",
"type": "integer",
"required": true

},
"pageHeight": {

"title": "Height of the document of the web page",
"type": "integer",
"required": true

},
"viewPortWidth": {

"title": "Width of viewport",
"type": "integer",
"required": true

},
"viewPortHeight": {

"title": "Height of viewport",
"type": "integer",
"required": true

},
"viewPortX": {

"title": "x position of scrollbar on viewport",
"type": "integer",
"required": true

},

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 33

"viewPortY": {
"title": "y position of scrollbar on viewport",
"type": "integer",
"required": true

},
"event": {

"title": "event that triggered the client state",
"type": "string",
"required": true

},
"deviceScale": {
"title": "scaling factor for fitting
page into window for replay",
"type": "integer",
"required": true
},
"viewTime": {

"title": "time in milliseconds user was on the event triggered",
"type": "integer",
"required": true

},
"viewPortXStart": {

"title": "initial start x position of scrollbar on viewport",
"type": "integer",
"required": only used in scroll events

},
"viewPortYStart": {

"title": "initial start y position of scrollbar on viewport",
"type": "integer",
"required": only used in scroll events

},
},
"additionalProperties" : false

}
}

Client State (Type 1) message example
This is an example of a Client State (Type 1) message. This example comes from an
Android native application.
{

"offset": 667,
"screenViewOffset": 4556,
"type": 1,
"mobileState": {

"orientation": 0,
"freeStorage": 33972224,
"androidState": {

"keyboardState": 0
},
"battery": 50,
"freeMemory": 64630784,
"connectionType": "UMTS",
"carrier": "Android",
"networkReachability": "ReachableViaWWAN",
"ip": "0.0.0.0"

}
}

ScreenView (Type 2) messages
ScreenView messages indicate steps in a visitor's experience with your application.
These steps can be logical page views in a web application, screen changes in a
mobile application, or steps in a business process. ScreenView messages are Type 2
JSON messages.

34 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

In Release 8.5 and earlier, these messages were called Application Context
messages.

ScreenView (Type 2) message schema
This is the schema for the ScreenView (Type 2) JSON messages.
{

"$ref" : "MessageHeader",
"screenview/context": {
"description": "Logical page being loaded or unloaded",
"type": "object",
"properties": {

"type": {
"title": "Type of ScreenView - LOAD or UNLOAD",
"type": "string",
"required": true

},
"name": {

"title": "Name of the logical page",
"type": "string",
"required": true

},
"url": {

"title": "Url of the logical page",
"type": "string",
"required": true

},
"renderTime": {

"title": "Time it took page to render, only used in LOAD",
"type": "integer",
"required": false

},
"referrer": {

"title": "Previous logical page loaded, only used in LOAD",
"type": "string",
"required": false

}
},
"additionalProperties" : false,
"required": false

}
}

ScreenView (Type 2) message example
This is an example of a ScreenView (Type 2) message. This example contains three
ScreenView messages, indicating page load and page unload events.
{

"type": 2,
"offset": 0,
"screenviewOffset": 0,
"count": 1,
"fromWeb": true,
"screenview": {

"type": "LOAD",
"name": "root",
"url": "/",
"referrer": ""

}
},

{
"type": 2,
"offset": 40824,
"screenviewOffset": 0,
"count": 12,
"fromWeb": true,

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 35

"screenview": {
"type": "UNLOAD",
"name": "root",
"url": "/",
"referrer": ""

}
}
{

"type": 2,
"offset": 2144,
"screenViewOffset": 0,
"count": 9,
"fromWeb": true,
"screenview": {

"type": "LOAD",
"name": "Ford",
"url": "/example/dynamic/",
"referrer": "BMW",

}
}

Connections (Type 3) messages
Connection messages provide information about how requests or responses are
managed by the client application. Connections messages are Type 3 JSON
messages.

Connections (Type 3) messages schema
This is the schema for Connections (Type 3) JSON messages.
{

"$ref" : "MessageHeader",
"connection": {

"description": "Connection in application",
"type": "object",
"properties": {

"statusCode": {
"title": "Status code of connection",
"type": "integer",
"required": true

},
"responseDataSize": {

"title": "Response data size",
"type": "number",
"required": true

},
"initTime": {

"title": "Initial time of connection",
"type": "number",
"required": true

},
"responseTime": {

"title": "Response time of connection",
"type": "number",
"required": true

},
"url": {

"title": "Url of connection",
"type": "string",
"required": true

},
"loadTime": {

"title": "Load time from connection",
"type": "number",
"required": true

}

36 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

},
"additionalProperties" : false

}
}

Connections example
The following example provides information on the status code of the response
returned from example.com.
{

"offset": 03829,
"type": 3,
"screenViewOffset": 45560,

"type": 3,
"connection": {

"statusCode": 200,
"responseDataSize": 0272,

"initTime": 01333669478556,
"responseTime": 02237,
"url": "http://google.com",
"url": "/store/js/tealeaf/

TeaLeafTarget.php??width=540&height=960&orientation=0",
"loadTime": 0

}
}

Control (Type 4) messages
Control messages are used to log user action and behavior. These messages consist
of a control identifier and a value that is returned by the identified control. Control
messages are Type 4 JSON messages.

The control identifiers are mapped to specific controls for the submitting client
framework. The value can be a number, a text string, or structured data.

Control (Type 4) message schema
This is the schema for Control (Type 4) messages.

The X and Y properties are not present in the UI Capture frameworks.
{

"$ref" : "MessageHeader",
"offset": {

"title": "Milliseconds offset from offset
for when focusIn of text fields occur",

"type": "integer",
"required": true

},
"target": {

"description": "Control being logged",
"type": "object",
"properties": {

"position": {
"description": "Position of control being logged",
"type": "object",
"properties": {

"x": {
"title": "X of the control",
"type": "integer",
"required": true

},
"y": {

"title": "Y of the control",
"type": "integer",
"required": true

},

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 37

"height": {
"title": "height of control",
"type": "integer",
"required": true

},
"width": {

"title": "width of control",
"type": "integer",
"required": true

},
"relXY": {

"title": "relative X & Y ratio that
can be from 0 to 1 with a
default value of 0.5",

"type": "string",
"required": true for click events

},
},
"additionalProperties" : false

}
"id": {

"title": "Id/Name/Tag of control",
"type": "string",
"required": true

},
idType": {

"title": "To indicate what id is based on id, name or xPath",
"type": "integer",
"required": only for UIC due to replay

},
"dwell": {

"title": "Dwell time of control",
"type": "integer value that is in milliseconds",
"required": false

},
"visitedCount": {

"title": "Number of times a form control has
been visited to be filled by user.",

"type": "integer",
"required": false

},
"isParentLink": {

"title": "To indicate if control a A type tag",
"type": "boolean",
"required": false only in UIC for usability

},
"name": {

"title": "Name of control",
"type": "string",
"required": true in UIC

},
"type": {

"title": "Type of control",
"type": "string",
"required": true

},
"subType": {

"title": "SubType of control",
"type": "string",
"required": true

},
"tlType": {

"title": "tlType of control that normalizes
the control type for eventing",

"type": "string",
"required": true

},

38 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

"prevState": {
"title": "Previous state of control",
"type": "object",
"required": true,

"properties": {
"?": { // Could be any variable name given by developer

"title": "Additional data in string format",
"type": "string",
"required": false

}
},
"currState": {

"title": "Current state of control",
"type": "object",
"required": true,
"properties": {

"?": { // Could be any variable name given by developer
"title": "Additional data in string format",
"type": "string",
"required": false

}
}

},
"additionalProperties" : false

}
"event": {

"description": "Event from control",
"type": "object",
"properties": {

"tlEvent": {
"title": "Tealeaf type of event",
"type": "string",
"required": true

},
"type": {

"title": "Type of event",
"type": "string",
"required": true

},
"subType": {

"title": "Subtype of event",
"type": "string",
"required": true

}
},
"additionalProperties" : false

}
}

Control (Type 4) message example
This is an example of a Control Type 4) message.

This control message identifies the new value (MyDataEntry) of a textbox
(id=com.tl.uiwidget:id\/editText_c3_1), in which the visitor was dwelling for
3.586 seconds.
{

"target": {
"position": {

"y": 38,
"height": 96,
"width": 720,
"x": 0

},
"id": "com.tl.uiwidget:id\/editText_c3_1",
"dwell": 3586,

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 39

"currState": {
"text": "MyDataEntry"

},
"subType": "TextView",
"type": "EditText",
"tlType": "textBox",
"prevState": {

"text": ""
}

},
"screenViewOffset": 4706,
"focusInOffset": 23418,
"offset": 27004,
"type": 4,
"event": {

"type": "OnFocusChange_Out",
"tlEvent": "textChange"

}
}

Custom Event (Type 5) messages
The Custom Event messages are used to custom log any event from any place in
the application. Custom Event messages are Type 5 JSON messages.

Custom Event (Type 5) message schema
This is the schema for the Custom Event (Type 5) messages.

The only required field is the name of the custom event (name value).
Application-specific code must be created to process this logged message type.
{

"$ref" : "MessageHeader",
"customEvent": {

"description": "Custom event message",
"type": "object",
"properties": {

"name": {
"title": "Exception name/type",
"type": "string",
"required": true

},
"data": "Additional properties given by developer",

"type": "object",
"required": truefalse,
"properties": {

"?": { // Could be any variable name given by developer
"title": "Additional data in string format",
"type": "string",
"required": false

}
},

},
"additionalProperties" : false

}
}

Custom Event (Type 5) message example
This is an example of a Custom Event (Type 5) message. This custom event
message provides the name of the custom event (MyEvent_1) and several custom
properties in the data section.
{

"type": 5,
"offset": 17981,

"screenViewOffset": 4556,

40 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

"customEvent": {
"name": "MyEvent_1",
"data": {

"Foo": "Bar",
"validationError": "Invalid zipcode.",
"ajaxPerformance": 56734

}
}

}

Exception (Type 6) messages
The exceptions messages type records the name and description of an exception
occurring on the client application. Exception messages are Type 6 JSON messages.

Exception (Type 6) message schema
This is the schema for the Exception (Type 6) messages.
{

"$ref" : "MessageHeader",
"exception": {

"description": "Exception description message",
"type": "object",
"properties": {

"description": {
"title": "Exception Name",
"type": "string",
"required": true

},
"name": {

"title": "Exception name/type",
"type": "string",
"required": true

},
"stackTrace": {
"title": "Exception stacktrace given by framework",
"type": "string",
"required": true

},
},
"additionalProperties" : false

}
}

Exception (Type 6) message example
This is an example of an Exception (Type 6) message. This exception message
indicates a divide-by-zero error and includes a stack trace from the client.
{

"offset": 0,
"screenViewOffset": 4556,
"type": 6,
"exception": {

"description": "divide by zero",
"name": "class java.lang.ArithmeticException"

"stackTrace": "java.lang.ArithmeticException: divide by zero\n\tat
com.tl.uic.test.model.JSONTest.testException(JSONTest.java:391)\n\tat
java.lang.reflect.Method.invokeNative(Native Method)\n\tat
java.lang.reflect.Method.invoke(Method.java:507)\n\tat
android.test.InstrumentationTestCase.runMethod(InstrumentationTestCase.java:204
)\n\tat
android.test.InstrumentationTestCase.runTest(InstrumentationTestCase.java:194)\
n\tat
android.test.ActivityInstrumentationTestCase2.runTest(ActivityInstrumentationTe
stCase2.java:186)\n\tat
junit.framework.TestCase.runBare(TestCase.java:127)\n\tat
junit.framework.TestResult$1.protect(TestResult.java:106)\n\tat

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 41

junit.framework.TestResult.runProtected(TestResult.java:124)\n\tat
junit.framework.TestResult.run(TestResult.java:109)\n\tat
junit.framework.TestCase.run(TestCase.java:118)\n\tat
android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:169)\n\tat
android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:154)\n\tat
android.test.InstrumentationTestRunner.onStart(InstrumentationTestRunner.java:5
29)\n\tat
android.app.Instrumentation$InstrumentationThread.run(Instrumentation.java:1448
)\n",

}
}

Performance (Type 7) messages
Performance messages show performance data from a browser. Performance
messages are Type 7 JSON messages.

Performance (Type 7) message schema
This is the schema for Performance (Type 7) messages.
{

"$ref" : "MessageHeader",
"performance": {

"description": "Performance message",
"type": "object",
"properties": {

},
"additionalProperties" : false

}
}

Performance (Type 7) message example
This is an example of a Performance (Type 7) message.
{

"type": 7,
"offset": 9182,
"screenviewOffset": 9181,
"count": 3,
"fromWeb": true,
"performance": {

"timing": {
"redirectEnd": 0,
"secureConnectionStart": 0,
"domainLookupStart": 159,
"domContentLoadedEventStart": 2531,
"domainLookupEnd": 159,
"domContentLoadedEventEnd": 2551,
"fetchStart": 159,
"connectEnd": 166,
"responseEnd": 1774,
"domComplete": 2760,
"responseStart": 728,
"requestStart": 166,
"redirectStart": 0,
"unloadEventEnd": 0,
"domInteractive": 2531,
"connectStart": 165,
"unloadEventStart": 0,
"domLoading": 1769,
"loadEventStart": 2760,
"navigationStart": 0,
"loadEventEnd": 2780,
"renderTime": 986
},

"navigation": {
"type": "NAVIGATE",

42 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

"redirectCount": 0
}

}
}

Web Storage (Type 8) messages
Web Storage messages are any objects that contain information about local storage
information on the browser. Web Storage messages are Type 8 JSON messages.

Web Storage (Type 8) message schema
This is the schema for the Web Storage (Type 8) messages.
"$ref" : "MessageHeader",
webStorage: {

key : “string”,
value: “string”,

}

Web Storage (Type 8) message example
This is an example of a Web Storage (Type 8) message.
{

type: 8,
offset: 25,
screenviewOffset: 23,
count: 2,
fromWeb: true,
webStorage: {

key: "vistCount"
value: "5"

}
}

Overstat Hover Event (Type 9) messages
Overstat® Hover Event messages are any object containing information about
mouse hover and hover-to-click activity. Overstat Hover Event messages are Type 9
JSON messages.

Overstat Hover Event (Type 9) message schema
This is the schema for Overstat Hover Event (Type 9) messages
"$ref" : "MessageHeader",
event: {

xPath: "string",
hoverDuration: int,
hoverToClick: boolean,
gridPosition: {

x: int,
y: int

}
}

Overstat Hover Event (Type 9) message example
This is an example of a Overstat Hover Event (Type 9) message.
{

type: 9,
offset: 25,
screenviewOffset: 23,
count: 2,
fromWeb: true,
event: {

xPath: "[\"ii\"]",
hoverDuration: 5457,
hoverToClick: false,

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 43

gridPosition: {
x: 3,
y: 2

}
}

Layout (Type 10) messages
Layout messages show the current display layout of a native page. Layout
messages are Type 10 JSON messages.

Layout (Type 10) message schema
This is the schema for Layout (Type 10) messages.
"$ref" : "MessageHeader",
"layoutControl": {

"description": "Control on application page",
"type": "object",
"properties": {

"position": {
"description": "Position of control",
"type": "object",
"properties": {

"x": {
"title": "X of the control",
"type": "integer",
"required": true

},
"y": {

"title": "Y of the control",
"type": "integer",
"required": true

},
"height": {

"title": "height of control",
"type": "integer",
"required": true

},
"width": {

"title": "width of control",
"type": "integer",
"required": true

}
},
"additionalProperties" : false

}
"id": {

"title": "Id/Name/Tag of control",
"type": "string",
"required": true

},
"type": {

"title": "Type of control",
"type": "string",
"required": true

},
"subType": {

"title": "SubType of control",
"type": "string",
"required": true

},
"tlType": {

"title": "tlType of control that normalizes the control
type for eventing",

"type": "string",
"required": true

},

44 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

"currState": {
"title": "Current state of control",
"type": "object",
"required": true,
"properties": {

"?": { // Could be any variable name given by developer
"title": "Additional data in string format",
"type": "string",
"required": false

}
}

},
"style" : {

"title": "Style of the control",
"type": "object",
"required": true,
"properties": {

"textColor": {
"title": "Text color",
"type": "string",
"required": true

},
"textAlphaColor": {

"title": "Text alpha color",
"type": "string",
"required": true

},
"textBGColor": {

"title": "Text background color",
"type": "string",
"required": true

},
"textBGAlphaColor": {

"title": "Text background alpha color",
"type": "string",
"required": true

},
"bgColor": {

"title": "Background color",
"type": "string",
"required": true

},
"bgAlphaColor": {

"title": "Background alpha color",
"type": "string",
"required": true

}
}

}
},
"additionalProperties" : false

}

Layout (Type 10) message example
This is an example of a Layout (Type 10) message.
{

"offset": 27004,

"screenviewOffset": 4706,

"count": 16,

"fromWeb": false,

"type": 10,

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 45

"layout": {

"name": "loginPage",

"controls": [

{

"position": {

"y": 38,

"height": 96,

"width": 720,

"x": 0

},

"id": "com.tl.uiwidget:id\/userNameLabel",

"type": "UILabel",

"subType": "UIView",

"tlType": "label",

"currState": {

"text": "User name*"

},

"style": {

"textColor": 16777215,

"textAlphaColor": 1,

"textBGColor": 0,

"textBGAlphaColor": 0,

"bgColor": 0,

"bgAlphaColor": 0

}

},

{...},

{...}

]

}

}

Gesture (Type 11) messages
Gesture messages are used to log user action and behavior. A Gesture message
consists of a control identifier and a the value returned by that control. The control

46 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

identifiers are mapped to specific controls on the client logging platform. The value
can be a number, a text string or structured data. Gesture messages are Type 12
JSON messages.

Gesture (Type 11) message schema
This is the schema for Gesture (Type 11) messages.

Tap event schema

This is the schema for tap events:
{

"$ref" : "MessageHeader",
"event": {

"description": "Event from control",
"type": "object",
"properties": {

"tlEvent": {
"title": "Tealeaf type of event",
"type": "string",
"required": true

},
"type": {

"title": "Type of event framework reports",
"type": "string",
"required": false

}
}

},
"touches": {

"description": "Gestures touch objects per finger.",
"type": "array",
"required": true
"items": {

"description": "Touch objects per finger starting with intial and
ends with last object when finger is lifted from device.",

"type": "array",
"required": true,
"$ref": "Touch"

}
}

}
}

Swipe event schema

The swipe event contains only one touch object which will be the initial location
with its corresponding direction and velocity. This is the schema for swipe events:
{

"$ref" : "MessageHeader",
"event": {

"description": "Event from control",
"type": "object",
"properties": {

"tlEvent": {
"title": "Tealeaf type of event",
"type": "string",
"required": true

},
"type": {

"title": "Type of event framework reports",
"type": "string",
"required": false

}
}

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 47

},
"touches": {

"description": "Gestures touch objects per finger.",
"type": "array",
"required": true
"items": {

"description": "Touch objects per finger starting with intial
and ends with last object when finger is lifted from device.",

"type": "array",
"required": true,
"$ref": "Touch"

}
}

},
"direction": {

"title": "The direction of the swipe which can be up, down. left or
right.",

"type": "string",
"required": true

},
"velocityX": {

"title": "The velocity of this measured in pixels per second along the
x axis",

"type": "float",
"required": true

},
"velocityY": {

"title": "The velocity of this measured in pixels per second along the
y axis",

"type": "float",
"required": false

}
}

Pinch events

The pinch event contains only an initial touch object per finger and the last touch
object per finger, with the corresponding direction. This is the schema for pinch
events:
{

"$ref" : "MessageHeader",
"event": {

"description": "Event from control",
"type": "object",
"properties": {

"tlEvent": {
"title": "Tealeaf type of event",
"type": "string",
"required": true

},
"type": {

"title": "Type of event framework reports",
"type": "string",
"required": false

}
}

},
"touches": {

"description": "Gestures touch objects per finger.",
"type": "array",
"required": true
"items": {

"description": "Touch objects per finger starting with intial and
ends with last object when finger is lifted from device.",

"type": "array",
"required": true,

48 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

"$ref": "Touch"
}

}
},
"direction": {

"title": "Direction of pinch which can be open or close",
"type": "string",
"required": true

}
}

Gesture (Type 11) message example
This is an example of a Gesture (Type 11) message.

Tap events

This example is a gesture message for a tap event:
{

"type": 11,
"offset": 2220,
"screenviewOffset": 2022,
"count": 6,
"fromWeb": false,
"event": {

"tlEvent": "tap",
"type": "ACTION_DOWN"

},
"touches": [

[
{

"position": {
"y": 388,
"x": 0

},
"control": {

"position": {
"height": 20,
"width": 250,
"relXY": "0.6,0.8"

},
"id": "com.tl.uic.appDarkHolo:id/textView1",
"type": "TextView",
"subType": "View",
"tlType": "label"

}
}

]
]

}

Swipe event example

The swipe event contains only one touch object which will be the initial location
with its corresponding direction and velocity. This example is a message for a
swipe event:
{

"type": 11,
"offset": 2220,
"screenviewOffset": 2022,
"count": 6,
"fromWeb": false,
"event": {

"tlEvent": "swipe",
"type": "ACTION_DOWN"

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 49

},
"touches": [

[
{

"position": {
"y": 388,
"x": 400

},
"control": {

"position": {
"height": 100,
"width": 100,
"relXY": "0.4,0.7"

},
"id": "com.tl.uic.appDarkHolo:id/imageView1",
"type": "ImageView",
"subType": "View",
"tlType": "image"

}
}

]
],
"direction": "right",
"velocityX": 23.2,
"velocityY": 455.14

}

Pinch events

The pinch event contains only an initial touch object per finger and the last touch
object per finger, with the corresponding direction. This example is a message for a
pinch event:
{

"type": 11,
"offset": 2220,
"screenviewOffset": 2022,
"count": 6,
"fromWeb": false,
"event": {

"tlEvent": "pinch",
"type": "onScale"

},
"touches": [

[
{

"position": {
"y": 388,
"x": 0

},
"control": {

"position": {
"height": 100,
"width": 100,
"relXY": "0.6,0.8"

},
"id": "com.tl.uic.appDarkHolo:id/imageView1",
"type": "ImageView",
"subType": "View",
"tlType": "image"

}
},
{

"position": {
"y": 388,
"x": 400

},

50 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

"control": {
"position": {

"height": 100,
"width": 100,
"relXY": "0.4,0.7"

},
"id": "com.tl.uic.appDarkHolo:id/imageView1",
"type": "ImageView",
"subType": "View",
"tlType": "image"

}
}

],
[

{
"position": {

"y": 388,
"x": 800

},
"control": {

"position": {
"height": 100,
"width": 100,
"relXY": "0.6,0.8"

},
"id": "com.tl.uic.appDarkHolo:id/imageView1",
"type": "ImageView",
"subType": "View",
"tlType": "image"

}
},
{

"position": {
"y": 388,
"x": 500

},
"control": {

"position": {
"height": 100,
"width": 100,
"relXY": "0.4,0.7"

},
"id": "com.tl.uic.appDarkHolo:id/imageView1",
"type": "ImageView",
"subType": "View",
"tlType": "image"

}
}

]
],
"direction": "close"

}

DOM Capture (Type 12) messages
DOM Capture messages are objects that contain serialized HTML data (DOM
snapshot) of the page. DOM Capture Messages are Type 12 JSON messages.

DOM Capture (Type 12) message schema
This is the schema for the DOM Capture (Type 12) messages.
"$ref" : "MessageHeader",
"domCapture": {

"description": "Serialized HTML snapshot of the document.",
"type": "object",
"properties": {

"dcid": {

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 51

"title": "Unique identifier of this DOM snapshot.",
"type": "string",
"required": true

}
"charset": {

"title": "Browser reported charset of the document.",
"type": "string",
"required": false

},
"root": {

"title": "Serialized HTML of the document.",
"type": "string",
"required": false

},
"error": {

"title": "Error message",
"type": "string",
"required": false

},
"errorCode": {

"title": "Error code corresponding to the error message.",
"type": "integer",
"required": false

},
"frames": {

"title": "Serialized HTML of any child frames of the document",
"type": "array",
"required": false,
"Item": {

"title": "An object containing serialized HTML of the frame",
"type": "object",
"required": false,
"properties": {

"tltid": {

"title": "Unique identifier for this frame. Same
tltid is added to the serialized HTML source of the parent."

"type": "string",
"required": true

},

"charset": {
"title": "Browser reported charset of the document.",
"type": "string",
"required": true

},
"root": {

"title": "Serialized HTML of the document.",
"type": "string",
"required": true

}
}

}
},
"canvas" : {

"title": "Serialized data of the canvas snapshot.",
"type": "array",
"required": false,

}
},
"additionalProperties" : false

}

52 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

DOM Capture (Type 12) message example
This is an example of a DOM Capture (Type 12) message.

This example shows a DOM message without frame or iframe capture:
{

// DOM Capture messages use type 12
"type": 12,

// The standard UIC message properties
"offset": 16821,
"screenviewOffset": 16817,
"count": 5,
"fromWeb": true,

// The DOM Capture data is namespaced in the domCapture object
"domCapture": {

// The "root" contains the serialized HTML of the live DOM
"root": "<html><body>Hello, World</body></html>",

// The "charset" contains the value of the document.charset
property returned by the browser

"charset": "ISO-8859-1",

// The "dcid" property contains the unique string identifying this DOM
Capture within the page instance.

"dcid": "dcid-1.1414088027401"
}

}

This example shows a DOM capture message with frame and iframe capture:
{

// DOM Capture messages use type 12
"type": 12,

// The standard UIC message properties
"offset": 16821,
"screenviewOffset": 16817,
"count": 5,
"fromWeb": true,

// The DOM Capture data is namespaced in the domCapture object
"domCapture": {

// The "root" contains the serialized HTML of the live DOM
"root": "<html><body>Hello, World</body></html>",

// The "charset" contains the value of the document.charset
property returned by the browser

"charset": "ISO-8859-1",

// The "dcid" property contains the unique string identifying this
DOM Capture within the page instance.

"dcid": "dcid-1.1414088027401"
}

}

This example shows the error message when the captured DOM message length
exceeds the configured threshold:
{

// DOM Capture messages use type 12
"type": 12,

// The standard UIC message properties
"offset": 16821,
"screenviewOffset": 16817,

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 53

"count": 5,
"fromWeb": true,

// The DOM Capture data is namespaced in the domCapture object
"domCapture": {

// The "error" contains the verbose error message explaining why the
DOM Capture couldn’t be performed.

"error": "Captured length (18045) exceeded limit (10000).",

// The "errorCode" contains the numeric code for this error message.
Currently, there is only 1 error message.

"errorCode": 101,

// The "dcid" property contains the unique string identifying this
DOM Capture within the page instance.

"dcid": "dcid-1.1414088027401"
}

}

Examples
Below is an example of a message consisting of two sessions that uses all of the
message types except the custom event message.
{

"serialNumber": 0,
"messageVersion": "0.0.0.1",
"sessions": [

{
"startTime": 1328311295574,
"id": "945202AC4E93104E05EDADE1F6059B97",
"messages": [

{
"offset": 124,
"screenViewOffset": 4556,
"type": 2,
"logicalPageName": "HomeActivity"

},
{

"offset": 667,
"screenViewOffset": 66778,
"type": 1,
"mobileState": {

"orientation": 0,
"freeStorage": 33972224,
"androidState": {

"keyboardState": 0
},
"battery": 50,
"freeMemory": 64630784,
"connectionType": "UMTS",
"carrier": "Android",
"networkReachability": "ReachableViaWWAN",
"ip": "0.0.0.0"

}
},
{

"customEvent": {
"name": "Screenshot Taken for file:
HomeActivity_1328311296341.jpg"

},
"offset": 855,
"screenViewOffset": 4556,
"type": 5

}
]

}

54 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

],
"clientEnvironment": {

"mobileEnvironment": {
"android": {

"keyboardType": "QWERTY",
"brand": "generic",
"fingerPrint": "generic/sdk/generic/
:2.2/FRF91/43546:eng/test-keys"

},
"totalMemory": 63422464,
"totalStorage": 12288,
"orientationType": "PORTRAIT",
"appVersion": "1.0.5",
"manufacturer": "unknown",
"userId": "android-build",
"locale": "English (United States)",
"deviceModel": "sdk",
"language": "English"

},
"width": 0,
"height": 0,
"osVersion": "2.2"

}
}

Upgrading the CX Mobile iOS Logging Framework
When you upgrade the IBM Tealeaf CX Mobile iOS Logging Framework, complete
the following general tasks.

Note: Some tasks can vary depending on your development and application
environments.
1. Review current requirements. See Requirements.
2. Review the package contents. See Package contents.
3. Verify that your application environment is configured to meet the project

requirements. See “Install Tealeaf in an Xcode project” on page 9.
4. Verify that the requirement code changes were applied. See “Modify your

application to use Tealaf classes” on page 11.
5. Apply the basic configuration.

Note: The latest version of the iOS Logging Framework includes new
configuration requirements. See Basic configuration.

6. Verify that the appropriate content types are being captured and forwarded by
the IBM Tealeaf CX Passive Capture Application. See “Traffic capture
configuration on the CX Passive Capture Application” on page 25.

Note: This step turns on the switch to begin capturing and processing data
from the mobile application into IBM Tealeaf. Depending on the volume of
data, you may want to use the kill switch. See “Traffic volume management”
on page 25.

7. Test your upgraded solution.

Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation 55

56 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Chapter 3. Xamarin MonoTouch iOS applications

If you develop an iOS application with Xamarin, you can use IBM Tealeaf capture
and replay technology with the iOS MonoTouch Binding Library.

The Xamarin MonoTouch Binding Library exposes the same APIs as the iOS
library, in C# style.

Package contents

The package contains the following software components.
v TLFMontouchBinding/TLFResources.bundle. This bundle file contains all of the

configuration files needed.
v TLFMontouchBinding/TLFMonotouchBinding.dll. This is the library that is

designed for use on iOS devices. Use this library for development and testing
directly on an iOS device, and include it with your shipping application.

Integrating the IBM Tealeaf MonoTouch Logging Framework with your
application

To integrate the IBM Tealeaf MonoTouch Logging Framework with your
application, complete these steps.
1. Start the Xamarin IDE and open your project.
2. Expand the project in the Project Navigator. Right click References, then

choose Edit References
3. Select the correct TLFMonotouchBinding.dll and make sure that it is visible in

the Selected references panel. Click OK to close this dialog.
4. Right-click the project and click Add, then Add Existing Folder
5. Select the correct TLFResources.bundle and click Open.
6. Click Include All to make sure both the folder and files are chosen. Click OK.
7. In the Add File to Folder dialog, make sure that you select Copy the file to the

directory, and click OK. The TLFResources.bundle is now added to your
project.

8. Expand the bundle, right-click each of the files, and choose Properties to open
the Properties panel. In the panel, make sure each file's Copy to output
directory attribute is Always copy. By default, it is set to Do not copy, which
can lead to Fail to load Bundle exception errors.

Next, you complete the code changes described in the “Code changes” topic.

Code changes
If your project does not have a customized MonoTouch.UIKit.UIApplication class,
you must edit the Main.cs.

Add using TLFMonotouchBinding; in the header.

In the static void Main(), add

© Copyright IBM Corp. 1999, 2014 57

{
.........
TLFApplicationHelper.sharedInstance (); //Initialize the Tealeaf framework
UIApplication.Main (args, "TLFApplication", "AppDelegate");
//Use TLFApplication instead of default MonoTouch.UIKit.UIApplication

}

If your project has its own customized MonoTouch.UIKit.UIApplication class (for
example, named CustomerUIApplication), but there is no SendEvent and
SendAction methods in CustomerUIApplication class.

Verify that your Main.cs looks like the following example. You do not need to
change anything.
static void Main (string[] args)
{

.........
UIApplication.Main (args, "CustomerUIApplication", "AppDelegate");

}

You must add SendEvent and SendAction methods in your
CustomerUIApplication.cs similarly to the following example.

[Register ("CustomUIApplication")]
public class CustomUIApplication : MonoTouch.UIKit.UIApplication
{

public CustomUIApplication () : base()
{
}

public override void SendEvent (UIEvent uievent){

TLFApplicationHelper.sharedInstance ().sendEvent(uievent);
base.SendEvent (uievent);

}

public override bool SendAction (Selector action, NSObject target,
NSObject sender, UIEvent forEvent){

TLFApplicationHelper.sharedInstance ().sendAction(action, target,
sender,forEvent);
return base.SendAction (action, target, sender,forEvent);

}
}

If your project has its own customized MonoTouch.UIKit.UIApplication class (for
example, named CustomerUIApplication), but there is already SendAction and
SendEvent methods in CustomerUIApplication class. If so, you only need to insert
TLFApplicationHelper.sharedInstance ().sendEvent(uievent); into SendEvent
and TLFApplicationHelper.sharedInstance ().sendAction(action, target,
sender,forEvent); into SendAction like the example above.

How to resolve method swizzling conflicts in TLFMonotouch
In the IBM Tealeaf iOS logging library, the Objective-C method swizzling technique
is used to log user interactions. Xamarin uses the same method to build their SDK.
You can resolve the "Method cannot be found" exceptions that occur for some
classes after you instrument with the IBM Tealeaf TLFMonotouch Dll.

The following table lists the classes with methods that trigger this kind of
exception error.

58 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Class Method

MonoTouch.UIKit.UITableViewSource RowSelected

MonoTouch.UIKit.UIAlertViewDelegate Clicked

MonoTouch.Foundation.NSUrlConnectionDelegate ReceivedResponse,
FinishedLoading, FailedWithError

MonoTouch.UIKit.UIWebViewDelegate ShouldStartLoad, LoadStarted,
LoadingFinished, LoadFailed

MonoTouch.UIKit.UIPopoverControllerDelegate ShouldDismiss, DidDismiss

MonoTouch.UIKit.UISplitViewControllerDelegate WillShowViewController,
WillHideViewController,
WillPresentViewController

The solution to these exceptions is to replace the default Xamarin class with the
IBM Tealeaf TLFMonotouchBinding classes in the following table.

Xamarin class TLFMonotouchBinding class

MonoTouch.UIKit.UITableViewSource TLFMonotouchBinding.TLUITableView
Source

MonoTouch.UIKit.UIAlertViewDelegate TLFMonotouchBinding.TLUIAlertView
Delegate

MonoTouch.Foundation.NSUrlConnection
Delegate

TLFMonotouchBinding.TLNSUrlConnection
Delegate

MonoTouch.UIKit.UIWebViewDelegate TLFMonotouchBinding.TLUIWebView
Delegate

MonoTouch.UIKit.UIPopoverController
Delegate

TLFMonotouchBinding.TLUIPopover
ControllerDelegate

MonoTouch.UIKit.UISplitViewController
Delegate

TLFMonotouchBinding.TLUISplitView
ControllerDelegate

Chapter 3. Xamarin MonoTouch iOS applications 59

60 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Chapter 4. Guidelines for tuning CX Mobile iOS Logging
Framework

After you get started with the IBM Tealeaf CX Mobile iOS Logging Framework,
you make configuration changes that data is collected in a way that is easy to
analyze and respectful of your users' privacy. You can also tune the framework so
that its work does not interfere with your application's performance.

Session identifiers
The CX Mobile iOS Logging Framework is most powerful as part of a complete
IBM Tealeaf system that shows the user activity and device information that is
captured by the framework alongside your application's own network activity. The
key to organizing all these events is the notion of a session.

A session is a set of related actions that are marked by a common identifier. To join
the data from the CX Mobile iOS Logging Framework with your application's own
data, both sets must share this common identifier.

The best solution for generating session identifiers is to force the first hit of your
mobile native application to be a web hit to the web server. Then, the mobile
native application can use the generated session identifier as the identifier for the
session on the client. Ideally, this value is the TLTSID value that is generated for
non-mobile sessions. Other methods of generating session identifiers are not
officially currently supported.

For more information about configuring sessioning, see “Sessionization for iOS
applications” on page 27.

If you cannot force the first hit to be a web server hit, then the mobile native
application must generate a session identifier locally. This session identifier is
submitted as a cookie. See Chapter 5, “Reference,” on page 65.

Data collection
To collect data with the CX Mobile iOS Logging Framework, you assign logging
levels and identify elements in the user interface. You can also collect extra data
and custom events.

Establishing logging levels

Each logging element (a user action, event, or environment data item) has a
logging level, 1 - 5. The logging levels are nested. For example, all level 1 elements
are included in level 2. Therefore, you assign low logging levels for the most
important items.

Tip: The logging level is sometimes referred to in the code as a monitoring level
and the terms are interchangeable. The framework can have a monitoring level of
0, meaning that no logging takes place. However, each element must have a
logging level 1 - 5.

© Copyright IBM Corp. 1999, 2014 61

You assign logging levels in the file TLFLevelsConfiguration.plist, part of
TLFResources.bundle. Each element is represented by a numeric Item ID, listed in
the reference. See Chapter 5, “Reference,” on page 65.

Note: Do not modify the IBM Tealeaf provided property lists. Be sure to not
change the structure or the key names in the property list files that are located
inside the bundle TLFResources.bundle.

The framework maintains a current logging level. The item LoggingLevel inside
TLFConfigurableItems.plist is used the first time your application launches. You
can change the current logging level at run time by using a method of the
TLFApplicationHelper class:
-(void)setCurrentMonitoringLevelType:(kTLFMonitoringLevelType)

monitoringLevelType;

The framework remembers this logging level even when the application goes to
the background or exits.

Identifying user interface elements

If your view controllers and buttons inherit from the standard iOS classes, like
UIViewController and UIButton, the framework can record their activity. The
framework also sends the class names of view controllers and controls, so analysts
see these names when they study the application's behavior. The framework sends
tag values and puts them in the path names that are used to identify captured
data. Therefore, choosing unique tag values for your controls make it much easier
to analyze data once it reaches the server.

Collecting extra data

The framework can be configured to log extra data through convenience methods
that present data to the server in a standard format. Examples follow.
v Error return values, where you can log NSError values.
v Objective-C exceptions, so you can pass in NSException objects from your

application's exception handler.
v GPS location coordinates, so you can log location from your application's

location change handler.
v Wireless carrier information.

For more information about how to log these events, see Chapter 5, “Reference,”
on page 65.

Custom events

If the standard elements tracked by the framework are still not enough, you can
create your own custom events.

You can use the TLFCustomEvent class to define your own events.

See Chapter 5, “Reference,” on page 65.

Privacy protection
Mobile devices contain a lot of personal information. The framework provides
multiple layers of protection for your users' private data.

62 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

For information about data masking and blocking, see "Data Privacy in Tealeaf
Client Frameworks" in the IBM Tealeaf Client Framework Data Integration Guide.

Performance optimization
Different techniques are available for optimizing device and network performance.

Kill switch

The kill switch is a control mechanism that prevents the framework from
initializing and having any further effect on your application. To disable the
framework:
v Disable a page on your server.
v Force the server to return a status code outside the range of 200-399.

The kill switch is checked each time that the application starts.

For the kill switch to function, you must configure it in the file
TLFConfigurableItems.plist inside TLFResources.bundle.
v KillSwitchEnabled:YES means that the URL is checked before the rest of the

framework initializes; NO means that the framework is always initialized.
v KillSwitchURL: The URL to check. When the page is reachable, the framework

initializes. If the page is not reachable, because of network problems or because
you disabled it on your server, the framework does not initialize.

v KillSwitchTimeout: How long in seconds to wait for a response from the kill
switch before the next try or giving up.

v KillSwitchTimeInterval: If there is no response from the page, this tells the
framework how many seconds to wait before the next try.

v KillSwitchMaxNumberOfTries: How many times to try to get a response from the
kill switch page before giving up.

Initialization

You can configure the framework to delay its initialization for a fixed time so that
it does not interfere with your application's responsiveness when starting.
DelayTimeOfTLFInitialization inside TLFConfigurableItems.plist tells the
framework how long to wait, in seconds, before initializing.

Network performance

You can define when the framework synchronizes data with the server so that you
can optimize network performance and make sure that logging data gets sent to
the server in a timely way.

The framework monitors the following situations. You can set them up to cause a
post of data to the server.
v When the application goes to the background, which gives the framework a

chance to send the most recent data to the server. The user's intention may be to
quit and not run the application soon. See DoPostAppGoesToBackground.

v When the application comes from the background, to check for any data that the
framework was unable to send. See DoPostAppComesFromBackground.

Chapter 4. Guidelines for tuning CX Mobile iOS Logging Framework 63

v When the application is started, to check for any data the framework was unable
to send, as well as a report of the app crashing last time it was run. See
DoPostAppIsLaunched.

v When the screen changes, so data is sent to the server when a screen's worth of
interactions were logged. See DoPostOnScreenChange.

While the application is running, you can also set up posts:
v At regular time intervals. See DoPostOnIntervals and PostTimeIntervals.
v When you call a method that tells the framework to post. See ManualPostEnabled

and the method requestManualServerPost. See Chapter 5, “Reference,” on page
65.

You can limit the packet size that is used for posting to the server with
PostMessageMaxBytesSize if you need to make sure that the framework does not
take too much time to transmit.

You can also limit the total network activity per launch of your application. See
MaxNumberOfPostsPerActivation and MaxNumberOfBytesPerActivation.

For more information about how each setting affects posting to the server, see
Chapter 5, “Reference,” on page 65.

Intelligent local cache

You can configure the framework to balance its use of local storage, memory, and
network bandwidth.
v You can turn off the cache, which makes the framework rely on RAM, but

prevents it from writing potentially sensitive data to local storage. See
HasToPersistLocalCache.

v You can adjust the size of the cache in local storage. See CachedFileMaxBytesSize
and {MaxLoggedElementsSize.

v You can adjust the size of what is cached in memory. See
MemoryWarningMaxMemoryBytesSize to have the framework respond automatically
to low memory warnings.

The framework uses logging levels to manage how much it logs, stores, and posts.
These are independent from one another. For example, if it can log at a high level
and transmit over WiFi at that same level, you can collect much data when the
user has a good connection. However, you could set the caching level lower so that
if you lose your network connection, only the most important data gets stored and
sent later.

See CachingLevel, PostMessageLevelCellular, and PostMessageLevelWiFi.

For more information about how each property affects the local cache, see
Chapter 5, “Reference,” on page 65.

64 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Chapter 5. Reference

This section contains reference information about environmental data and events
that are submitted by the CX Mobile iOS Logging Framework from the client.
Additionally, you can review logging and framework management information and
basic troubleshooting steps.

Required framework and library files
The IBM Tealeaf CX Mobile iOS Logging Framework requires the following
frameworks to be linked to your application.

Most applications already include Foundation.framework and UIKit.framework.
SystemConfiguration.framework is used for controlling and monitoring the
framework's networking.
v Foundation.framework

v UIKit.framework

v SystemConfiguration.framework

v CoreTelephony.framework

v libz.dylib

Logged elements
Every logged element is part of a session, and every session belongs to an
application.

Application data
Application data is consistent across each run of your application on a specific
device, except for changes to software version numbers after application upgrades.
This data is reported in the [AppEnv] section of the request.

The user ID is generated by the framework and is unique for each installation of
your application on a device.
v It is consistent each time your application starts.
v A single user with multiple devices receives multiple user IDs.

Table 7. Application data

Name Short Name Value

Device Model deviceModel The model of the device: Unknown, iPad, iPhone,
or iPod.

User ID userId A unique framework-generated ID for this user.

iOS Version osVersion The iOS system version of the device.

Application
Name

appName The name of the application.

Application
Version

appVersion The version of the application. For example,
CFBundleVersion.

© Copyright IBM Corp. 1999, 2014 65

Table 7. Application data (continued)

Name Short Name Value

Tag tag All the controls on which you would like to
create events must have unique ids. For
example, if there is a text field for Total of
prices of all the items in the cart, and on server
you want to create an event for Total > 300,
you should to assign unique ids to the text filed
control. This can be done by setting the tag
property of the UIView.

Environmental data
The framework automatically handles environmental data that is captured when
the framework initializes, typically when your application starts, and at regular
time intervals during execution. It also provides support for your application to
report environmental data that needs special privacy attention or requires special
frameworks.

Environmental data can be distributed among multiple hits.
v Data that is captured when the framework initializes generally appears in one of

the first hits of a session.
v Data that is captured at regular time intervals appears along with events.

Multiple values can be submitted in a single hit where the number of events is
low.

v Data that is captured by your application (location and carrier information) can
appear at any time, independently or in hits with the other types of
environmental data. Multiple values for a single hit can be submitted if your
application makes multiple calls to the framework.

Captured at initialization
These values are captured one time per launch of your application when the
framework initializes.

Environment data is collected based on a timer. Environment data related to
initialization can be, but is not always, submitted on the first hit of the session. As
environment data is passed through the framework, it is prioritized based on its
logging level. The order that it is posted to the server and even whether it is
posted to the server depends on the following.
v Budgets for in-memory and local storage caches
v Network packet size
v The send level for the type of network available to the application

Note: Data is not posted to the server in the order that it was captured.

Name Description

pixelDensity Value that is returned by [[UIScreen mainScreen] scale].

deviceWidth Value that is returned by [[UIScreen mainScreen]
bounds].size.width.

deviceHeight Value that is returned by [[UIScreen mainScreen]
bounds].size.height.

66 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Name Description

width Value that is returned by pixelDensity*deviceWidth.

height Value that is returned by pixelDensity*deviceHeight.

osVersion Version of iOS running on the device.

totalStorage Total storage on the device, free+used.

totalMemory Total memory of the device, free+used.

manufacturer Apple Inc. on all iOS devices.

userID Unique user ID generated by the CX Mobile iOS Logging
Framework SDK for current instance of the application.

appVersion Version of the iOS application.

deviceModel Type of iPhone, iPad, and so on.

appName Name of the current application.

orientationType The orientation of the device (PORTRAIT, LANDSCAPE, FLAT, or
UNKNOWN).

locale Current locale (for example, en).

language Current language (for example, English).

osType The type of device used during capture.

tag All the controls on which you would like to create events must
have unique ids. For example, if there is a text field for Total
of prices of all the items in the cart, and on server you want to
create an event for Total > 300, you should to assign unique
ids to the text filed control. This can be done by setting the tag
property of the UIView.

Captured during execution
These values are captured at a regular time interval you can set for each logging
level with TimeBetweenSnapshots in TLFLevelsConfiguration.plist.

By default, the CX Mobile iOS Logging Framework does not enable battery
monitoring, which can drain the battery. Apple suggests enabling battery
monitoring only when necessary. When disabled, the following values are reported:
BatteryLevel = -100

To monitor the battery's state, your application must enable it through the
UIDevice class.

Note: According to Apple, the API used to retrieve the battery level from the
device is not always in sync with the value that displays on the device. See
http://iphonedevelopertips.com/device/display-battery-state-and-level-of-
charge.html. In addition, the value is updated only in 5% increments. See
http://www.iphonedevsdk.com/forum/iphone-sdk-development/14301-battery-
level.html.

Table 8. Captured during execution

Name Description

freeMemory The memory that is remaining.

freeStorage The storage that is remaining.

battery The value that is returned by ([UIDevice
currentDevice].batteryLevel) * 100.

Chapter 5. Reference 67

http://iphonedevelopertips.com/device/display-battery-state-and-level-of-charge.html
http://iphonedevelopertips.com/device/display-battery-state-and-level-of-charge.html
http://www.iphonedevsdk.com/forum/iphone-sdk-development/14301-battery-level.html
http://www.iphonedevsdk.com/forum/iphone-sdk-development/14301-battery-level.html

Table 8. Captured during execution (continued)

Name Description

carrier The current network carrier.

networkReachability The network status (Unknown, NotReachable,
ReachableViaWiFi, or ReachableViaWWAN).

ip The IP address of the device.

orientation 0 if [[UIDevice currentDevice] orientation] returns
UIDeviceOrientationPortrait,
UIDeviceOrientationFaceDown, or
UIDeviceOrientationFaceUp.

90 if UIDeviceOrientationLandscapeRight.

180 if UIDeviceOrientationPortraitUpsideDown.

270 if UIDeviceOrientationLandscapeLeft.

User actions and events
With the CX Mobile iOS Logging Framework, you can track every navigation
choice, every touched button, and the contents of every field.

Table views
Table view events are posted when the selected row in the posting table view
changes.

Table 9. Table views

Name Short name Description

Table View Selection
Did Change

selectList:valueChange Posted when the selected row in the
posting table view changes.

Text fields
Text field events are posted when a text field loses focus.

Note: A text field end editing event occurs only when the keyboard is hidden, or
the text cursor moves to another text field or text view. If the user interacts with
other controls before dismissing the keyboard or editing other text, this event can
seem to appear out of sequence.

Table 10. Text fields

Name Short Name Description

Text Field Did End Editing textBox:textChange Posted when a text field
loses focus.

Secure text fields
Secure text field events are posted when a security text field loses focus.

Secure text fields are instances of UITextField, where the secureTextEntry
property of its UITextInputTraits is set to YES.

68 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Table 11. Secure text fields

Name Short Name Description

Secure Text Field Did
End Editing

textBox:textChange Posted when a security text field
loses focus

The name-value pairs are the same as for “Text fields” on page 68.

Text views
Text view events are posted when a text view loses focus.

Note: Text views can contain a great deal of information. For large text views, try
masking the data by setting the masking level to 1. See Chapter 4, “Guidelines for
tuning CX Mobile iOS Logging Framework,” on page 61.

Table 12. Text views

Name Short Name Description

Text View Did End Editing textBox:textChange Posted when a text view loses focus.

Note: A text field end editing event
occurs only when the keyboard is
hidden or the text cursor moves to
another text field or text view. If the
user interacts with other controls
before dismissing the keyboard or
editing other text, this event can
seem to appear out of sequence.

Secure text views
Secure text view events are posted when a secure text view loses focus.

Secure text views are instances of UITextView, where the secureTextEntry property
of its UITextInputTraits is set to YES.

Table 13. Secure text views

Name Short Name Description

Secure Text View Did
End Editing

textBox:textChange Posted when a secure text view loses
focus.

Alert views
Alert view events are posted for alerts. There are different types of alert views:
show and clicked button.

Show

Table 14. Show alert views

Name Short Name Description

Alert View Show In
View

AlertViewShowInView Posted when an alert view appears.

Each alert view show event generates a series of name-value pairs.

Chapter 5. Reference 69

Name Value

baseClass
The base class name, UIAlertView.

title The title of the alert view.

message
The message body of the alert view.

Clicked button

Table 15. Clicked button alert views

Name Short Name Description

Alert View Clicked
Button

AlertViewClickedButton Posted when an alert view's button is
clicked.

Each alert view clicked button event generates a series of name-value pairs.

Name Value

baseClass
The name of the class, usually UIAlertView.

title The text that appears in the alert view's title bar.

message
The message that is displayed in the body of the alert view.

buttonTitle
The title of the clicked button.

View controllers
View controller events are posted when a view controller either appears or
disappears.

Table 16. View controllers

Name Short Name Description

View Controller Did
Appear

screenview Posted after a view controller appears. Posted as
JSON message screenview and type LOAD.

View Controller Did
Disappear

screenview Posted after a view controller disappears. Posted
as JSON message screenview and type UNLOAD.

Synchronous server connections
Synchronous server connection events are posted when a request is either sent or
results in an error.

Table 17. Synchronous server connections

Name Short Name Description

Send Synchronous
Request

connection Posted when a request is sent.

Send Synchronous
Request With Error

connection Posted when a request results in an error.

70 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Asynchronous server connections
Asynchronous server connection events are posted when a request starts, receives a
response, completes successfully, or results in an error.

Requests

Table 18. Asynchronous server requests

Name Short Name Description

Connection Init connection Posted when a request starts.

Responses

Table 19. Asynchronous server responses

Name Short Name Description

Connection Did Receive
Response

connection Posted when a request receives a
response.

Successful responses

Table 20. Asynchronous server successful responses

Name Short Name Description

Connection Did Finish
Loading

connection Posted when a request
successfully completes.

Responses with an error

Table 21. Asynchronous server response errors

Name Short Name Description

Connection Did Fail
With Error

connection Posted when a request results in
an error.

Unhandled exception
Unhandled exception events are posted when there is an unhandled Objective-C
exception.

Table 22. Unhandled exception

Item ID Name Short Name Description

241 Exception exception Posted when there is an unhandled
Objective-C exception.

Error
An error event is logged by a call to the error logging method.

Table 23. Error

Name Short Name Description

Error exception An NSError logged by a call to one of the
logNSErrorEvent: methods.

Chapter 5. Reference 71

Network connectivity
A network connectivity event is posted when the network status changes.

Table 24. Network connectivity

Name Short Name Description

Network Reachability
Changed

networkReachability Posted when the network status
changes. The statuses follow.

v Unknown

v NotReachable

v ReachableViaWiFi

v ReachableViaWWAN

Crash
A crash event is posted when an abnormal termination is detected.

Table 25. Crash

Name Short Name Description

Crash exception Posted when the CX Mobile iOS Logging
Framework notices (during a subsequent run) that
the application did not terminate normally while in
the foreground for the session in which this event
appears.

Button touch events
Button touch events are posted when a button touch is complete.

Table 26. Button touch events

Name Short Name Description

Button Touch Up Inside button:click Posted when a button touch is
complete.

Configurable items
You edit TLFConfigurableItems.plist to change the levels that are set for
configurable items.

Note: The logging level that is defined by the configuration value LoggingLevel is
changed by setCurrentMonitoringLevelType: and can be read with
currentMonitoringLevelType. The terms "logging level" and "monitoring level" are
interchangeable.

Table 27. Configurable Items

ItemID Description Values

CachedFileMaxBytesSize The maximum size for the local cache.
At least 10 times MaxLoggedElementSize.

Bytes

CachingLevel The current caching level, applies only
when HasToPersistLocalCache is YES

Integer, 0-5

72 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Table 27. Configurable Items (continued)

ItemID Description Values

CompressPostMessage When set to YES, HTTP POSTs
submitted from the CX Mobile iOS
Logging Framework are compressed.
Note: To enable decompression of
compress POSTs, some additional
server-side configuration can be
necessary. See Chapter 2, “Tealeaf iOS
Logging Framework Installation and
Implementation,” on page 5.

YES/NO

DelayTimeOfTLFInitialization Delay after app launch before the CX
Mobile iOS Logging Framework
initializes.

Seconds

DisableAutoInstrumentation When set to YES, the CX Mobile iOS
Logging Framework does not
automatically instrument the
application elements for logging based
on the logging level. Some elements are
still captured.

See “Disabling auto-instrumentation to
include advanced custom
instrumentation” on page 83.

YES/NO

DisableTLFFrameworkFlush When set to YES during the
disableTealeafFramework call, the CX
Mobile iOS Logging Framework posts
cached data to the server.

When set to NO (default) during the
disableTealeafFramework call, the CX
Mobile iOS Logging Framework does
not post cached data to the server.

For more information about the
required calls, see “Enable or disable
IBM Tealeaf” on page 77.

YES/NO

DoPostAppComesFromBackground If YES, the CX Mobile iOS Logging
Framework sends data to the server
when the application comes from
background.
Note: You cannot enable this setting
and ManualPostEnabled together.

YES/NO

DoPostAppGoesToBackground If YES, the CX Mobile iOS Logging
Framework sends data to the server
when the application goes to the
background.
Note: You cannot enable this setting
and ManualPostEnabled together.

YES/NO

DoPostAppIsLaunched If YES, the CX Mobile iOS Logging
Framework sends data to the server
when the application starts.
Note: You cannot enable this setting
and ManualPostEnabled together.

YES/NO

Chapter 5. Reference 73

Table 27. Configurable Items (continued)

ItemID Description Values

DoPostOnIntervals If YES, the CX Mobile iOS Logging
Framework sends data to the server at
regular time intervals that are specified
by PostMessageTimeIntervals when the
application is in the foreground.
Note: You cannot enable this setting
and ManualPostEnabled together.

YES/NO

DoPostOnScreenChange If YES, the CX Mobile iOS Logging
Framework sends data when the screen
changes, subject to
ScreenTimeNeededToPost.

YES/NO

DynamicConfigurationEnabled To use the kill switch,
DynamicConfigurationEnabled must be
set to YES to enable the kill switch.

To use the CX Mobile iOS Logging
Framework libraries:

v If
DynamicConfigurationEnabled==YES,
you need to call
enableTealeafFramework.

v If you do not have the kill switch
implemented, you need to have
DynamicConfigurationEnabled==NO
for libraries to load.

See Chapter 2, “Tealeaf iOS Logging
Framework Installation and
Implementation,” on page 5.

YES/NO

FilterMessageTypes If set to TRUE, only the MessageTypes
included in the comma-separated list
are sent back to the server. If set to
FALSE, all message types are sent back
to the server.

TRUE/ FALSE

HasToPersistLocalCache If YES, data is stored in local storage,
instead of in memory.

YES/NO

KillSwitchEnabled If YES, the CX Mobile iOS Logging
Framework checks the kill switch target
page before starting; if NO the CX
Mobile iOS Logging Framework always
starts.

YES/NO

KillSwitchMaxNumberOfTries The number of times the CX Mobile
iOS Logging Framework checks for the
kill switch URL before giving up.

Integer

KillSwitchTimeInterval The time to wait before rechecking the
kill switch URL if it is not responding.

Seconds

KillSwitchTimeout The timeout value for the HTTP request
that checks for the kill switch.

Seconds

KillSwitchUrl Defines the URL to check for the kill
switch. The framework requires a
successful response to initialize when
KillSwitchEnabled is set to YES.

URL

74 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Table 27. Configurable Items (continued)

ItemID Description Values

LoggingLevel The initial logging level the first time
the application runs.

Depending on the configured logging
level, a template of selected application
elements is configured to be logged and
submitted to IBM Tealeaf for capture.
See “Logging templates” on page 78.

integer 0-5

LogViewLayoutOnScreenTransition When set to YES, on every screenview
LOAD, a type 9 message is automatically
logged.

YES/NO

ManualPostEnabled If YES, the CX Mobile iOS Logging
Framework sends data to the server
only when your application calls
requestManualServerPost.
Note: You cannot enable this setting
and DoPostOnIntervals together.

YES/NO

MaxLoggedElementsSize Size of the cache for logged elements. Bytes

MaxNumberOfBytesPerActivation Limits the data sent to the server for
each launch of the app.

Bytes

MaxNumberOfPostsPerActivation Limits the number of posts to the
server for each launch of the app.

Bytes

MaxStringsLength Prevents long strings from taking up
storage and bandwidth.
Note: This value must be set to at least
1.

Number of
characters

MemoryWarningMaxMemoryBytesSize The maximum memory that is allowed
for cached logged items after the
framework receives a memory warning.

Bytes

PercentOfScreenshotsSize Percentage of screen capture's original
pixel dimensions at which posted
screen captures are submitted.

integer 0-100

PostMessageDelayTimeToSendData The time to wait after your application
posts data before the framework posts
its own.

Seconds

PostMessageLevelCellular The logging level of events to be sent to
the server over the cellular (3G)
network. Set to 0 if you only want
logging data that is sent over WiFi.

integer 0-5

PostMessageLevelWiFi The logging level of events to be sent to
the server over WiFi when network
performance is good.

integer 0-5

PostMessageMaxBytesSize The maximum size for a post to the
server.
Note: This value must be set to at least
1024.

Bytes

PostMessageMaxTimeToSendData Used to calculate network quality.
Note: This value must be set to at least
1.

Seconds

Chapter 5. Reference 75

Table 27. Configurable Items (continued)

ItemID Description Values

PostMessageSecondLevel The logging level of events to be sent to
the server when the network
performance is poor.

integer 0-5

PostMessageTimeIntervals How often the CX Mobile iOS Logging
Framework sends data to the server
when DoPostOnIntervals is set to YES.
Note: This value must be set to be
greater than PostMessageTimeout plus
PostMessageDelayTimeToSendData.

Seconds

PostMessageTimeout The timeout for posts by the CX Mobile
iOS Logging Framework to the server.
While the framework does not receive a
server response within this time frame,
the framework keeps trying to send
data.

Seconds

PostMessageUrl The URL for posting data to your
server
Note: To force transport from the client
framework to the target page by
HTTPS, begin the specified URL with
the https:// protocol identifier.

URL

ScreenshotFormat The file format for screen captures. PNG or JPG

ScreenTimeNeededToPost When DoPostOnScreenChange is set to
YES, the minimum time a screen must
be shown to cause a post.

Seconds

SessionizationCookieName A cookie name that is defined by the
user, which is used to track customer
action. It is unique within theCX
Mobile iOS Logging Framework
environment.

TLTSID

SessionTimeout The time interval for the amount of
time a session is kept in the
background before a new session is
created. If this session is moved to the
foreground after this interval, a new
session is created. The default value is
30 minutes.

Minutes

SetGestureDetector Whether user interface gestures are
logged for the app. When set to YES, all
supported gestures are logged.

YES/NO

TimeIntervalBetweenSnapshots The time interval for taking snapshots
of environmental data.

Seconds

Dynamic configuration items
At run time, the following items can be configured.

sharedApplication API
See “Session management” on page 87.

76 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Configure PostMessageUrl
You set PostMessageUrl with a URL string.
- (BOOL) setPostMessageUrl: (NSString *)value

Returns YES if PostMessageUrl is successfully set.

Declared in TLFApplicationHelper.h .
[[TLFApplicationHelper sharedInstance] setPostMessageUrl:(NSString *)];

Parameter
Description

value PostMessage URL string.

Configure KillSwitchUrl
You set KillSwitchUrl with a URL string.
- (BOOL) setKillSwitchUrl: (NSString *)value

Returns YES if the KillSwitchUrl is successfully set.

Declared in TLFApplicationHelper.h.
[[TLFApplicationHelper sharedInstance] setKillSwitchUrl:
(NSString *)];

Parameter
Description

value KillSwitch URL string. Do not include any query parameters.

Enable or disable IBM Tealeaf
At run time, you can enable or disable IBM Tealeaf.

Enable

Declared in TLFApplicationHelper.h.
[[TLFApplicationHelper sharedInstance] enableTealeafFramework];

Note: Set PostMessageUrl and KillSwitchUrl before initializing framework. If not,
the framework initializes with default settings from the configuration file. Also, no
information is logged until the framework is initialized.

Disable

Declared in TLFApplicationHelper.h.
[[TLFApplicationHelper sharedInstance] disableTealeafFramework];

To enable the posting of this command to the server, you must set
DisableTLFFrameworkFlush to YES.

Screen capture at run time
To capture a screen at run time, use logPrintScreenEvent in your application per
your needs.

Note: To enable capture of screens into IBM Tealeaf, you must configure the CX
Passive Capture Application to capture binary POSTs of png or jpg images. See
Chapter 2, “Tealeaf iOS Logging Framework Installation and Implementation,” on
page 5.

Chapter 5. Reference 77

[[TLFCustomEvent sharedInstance] logPrintScreenEvent];

If needed, you can take a capture of the current screen at any time. Screen captures
are bundled with other CX Mobile iOS Logging Framework data and submitted to
IBM Tealeaf for capture and processing.

Note: By default, the CX Mobile iOS Logging Framework sends screens for
capture over WiFi connections only. Sending screen captures over networks with
less bandwidth can affect application and client framework performance. Use
screen capture in a limited capacity initially before you expand capture.

Images are captured as grayscale PNG files or compressed JPG files. Images are
captured with a resolution that matches the point resolution of the device.

When a screen is captured, the image is saved locally to be submitted with the
next POST to the IBM Tealeaf target page. If caching is disabled, the image is
saved in memory.

Note: Screen captures cannot be taken from OpenGL ES views.

Logging templates
Logging levels can be set from 0 to 3. Logging templates can be configured to
assist with these settings.

You can configure logging templates for the following network types.

Table 28. Logging templates

Network Configuration Setting Default Logging Level

Cellular PostMessageLevelCellular 1

WiFi PostMessageLevelWiFi 3

When you configure the base logging level for the CX Mobile iOS Logging
Framework, a template of items is preselected for logging.

Logging level legend
To configure the logging level, you set the LoggingLevel value in the
TLFLevelsConfiguration.plist file.

Use one of the following values.
v If any control event is set to 0, that event is never logged.
v Based on the device network (Cellular or WiFi) and the UI control values in

TLFLevelsConfiguration.plist, events are captured and posted to the IBM
Tealeaf Target page.

Custom instrumentation

General
To log custom events, you use sharedInstance in TLFCustomEvent.h.

78 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

sharedInstance

Returns the shared instance of TLFCustomEvent. Use this instance to log custom
events.

+ (TLFCustomEvent *)sharedInstance

Returns a shared instance of TLFCustomEvent.

Declared in TLFCustomEvent.h.

Error events
To log errors, you use logNSErrorEvent in TLFCustomEvent.h.

logNSErrorEvent:message:[file:line:level:]

Logs an error as described in an NSError instance.

- (void)logNSErrorEvent:(NSError *)error message:(NSString *)message
[file:(const] char *)file line:(unsigned int)line
level:(kTLFMonitoringLevelType)level

- (void)logNSErrorEvent:(NSError *)error message:(NSString *)message
level:(kTLFMonitoringLevelType)level

Parameter
Description

error The NSError returned by the SDK or your own method.

message
A message for your own use.

file The source code file name, usually from the FILE preprocessor macro
(optional).

line The source code line number, usually from the LINE preprocessor macro
(optional).

level The minimum logging level for this error to be logged.

Declared in TLFCustomEvent.h. kTLFMonitoringLevelType is declared in
TLFPublicDefinitions.h.

Exception events
Use this method to log exceptions.

logNSExceptionEvent

Requests that the framework logs an exception trapped by your own exception
handler. These methods do not use the Cocoa SDK, which is not exception-safe.
Sets the Unhandled flag to false.

This example shows how to call the method:

Chapter 5. Reference 79

- (BOOL)logNSExceptionEvent:(NSException *)exception;
- (BOOL)logNSExceptionEvent:(NSException *)exception dataDictionary:(NSDictionary*)
dataDictionary;
- (BOOL)logNSExceptionEvent:(NSException *)exception dataDictionary:
(NSDictionary*)dataDictionary isUnhandled:(BOOL)unhandled;

Parameter
Description

exception
The caught NSexception instance.

This value is whether the event was successfully logged. Values are true or
false.

dataDictionary
This value is additional data about the exception.

unhandled
Indicates whether the exception was caught by an exception handler.

GPS location events
To avoid making unnecessary location updates, and to protect the privacy of your
application's users by ensuring that location is reported only when the application
has some other reason to request it, location events are not logged automatically.
To log location updates, you use logLocationUpdateEventWithLatitude.

logLocationUpdateEventWithLatitude:longitude:level

This method is meant to be called inside your handler for
locationManager:didUpdateToLocation:fromLocation:. Your application must
include the Core Location framework (CoreLocation.framework).
#import "CoreLocation/CoreLocation.h"
#import "TLFCustomEvent.h"

...

- (void)locationManager:(CLLocationManager *)manager didUpdateToLocation:
(CLLocation *)
newLocation fromLocation:(CLLocation *)oldLocation {

CLLocationCoordinate2D c = newLocation.coordinate;
...
[[TLFCustomEvent sharedInstance] logLocationUpdateEventWithLatitude:c.latitude
longitude:longitude];

}

- (void)logLocationUpdateEventWithLatitude:(double)latitude longitude:(double)
longitude level:(kTLFMonitoringLevelType)level

Parameter
Description

latitude
The latitude to log.

longitude
The longitude to log.

level The minimum logging level for locations.

Declared in TLFCustomEvent.h. kTLFMonitoringLevelType is declared in
TLFPublicDefinitions.h.

80 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Kill Switch events

- (BOOL)setDeviceId:(NSString*)value;

This sets the Device ID.
[[TLFApplicationHelper sharedInstance] setDeviceId:@"CustomID"];

Parameter
Description

@param
The string that represents the new Device ID.

@return
Indicates whether the Device ID was set.

- (NSString*)getDeviceId;

This returns a string representation of the Device ID.
[[TLFApplicationHelper sharedInstance] getDeviceId];

Parameter
Description

@return
A string representation of the Device ID.

Telephony events
Telephony events are not logged automatically, as the Core Telephony framework
(CoreTelephony.framework) is required. To log carrier information, you use
logCarrierEvent.

logCarrierEvent:isoCountryCode:level

You can log carrier information by linking the Core Telephony framework in your
application and then including the code that follows.
#import "CoreTelephony/CTTelephonyNetworkInfo.h"
#import "CoreTelephony/CTCarrier.h"

...
CTTelephonyNetworkInfo *networkInfo = [[CTTelephonyNetworkInfo alloc] init];
CTCarrier *carrier = [networkInfo subscriberCellularProvider];
[[TLFCustomEvent sharedInstance] logCarrierEvent:[carrier carrierName]
isoCountryCode:
[carrier iosCountryCode]level:kTLFMonitoringLevel1];
[networkInfo release];

...

- (void)logCarrierEvent:(NSString *)carrierName country:(NSString *)
isoCountryCode level:(kTLFMonitoringLevelType)level

Parameter
Description

carrierName
The carrier name.

isoCountryCode
The country code.

level The minimum logging level for carrier events.

Chapter 5. Reference 81

Declared in TLFCustomEvent.h. kTLFMonitoringLevelType is declared in
TLFPublicDefinitions.h.

Custom events
You can log a specified event with or without also logging an associated value or
dictionary.

logEvent:level

Logs a named event with no additional information.
- (void)logEvent:(NSString *)eventName level:
(kTLFMonitoringLevelType)level

- (void)logEvent:(NSString *)eventName

Parameter
Description

eventName
The name of the event. Must not contain equal signs or square brackets.

level The minimum logging level for this event (optional, default is 1).

Declared in TLFCustomEvent.h. kTLFMonitoringLevelType is declared in
TLFPublicDefinitions.h.

logEvent:value:level

Logs a named event and a value.

- (void)logEvent:(NSString *)eventName value:(NSString *)value
level:(kTLFMonitoringLevelType)level

- (void)logEvent:(NSString *)eventName value:(NSString *)value

Parameter
Description

eventName
The name of the event. Must not contain equal signs or square brackets.

value More information that is associated with the event.

level The minimum logging level for this event logged (optional, default is 1).

Declared in TLFCustomEvent.h. kTLFMonitoringLevelType is declared in
TLFPublicDefinitions.h.

logEvent:values:level

Logs a named event and associated dictionary. The dictionary is converted to its
JSON representation.

Note: To be convertible to a JSON representation, the values of the dictionary must
be NSDictionary, NSArray, NSString, NSNumber or NSNull objects.

- (void)logEvent:(NSString *)eventName values:(NSDictionary *)values

82 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

- (void)logEvent:(NSString *)eventName values:(NSDictionary *)values
level:(kTLFMonitoringLevelType)level

Parameter
Description

eventName
The name of the event. Must not contain equal signs or square brackets.

values More data items that are associated with the event.

level The minimum logging level for this event logged (optional, default is 1).

Declared in TLFCustomEvent.h. kTLFMonitoringLevelType is declared in
TLFPublicDefinitions.h.

Disabling auto-instrumentation to include advanced custom
instrumentation

By default, the CX Mobile iOS Logging Framework automatically instruments your
application by using a template of selected items that are based on the configured
logging level.

See “Logging templates” on page 78.

As needed, you can configure the CX Mobile iOS Logging Framework for custom
instrumentation. A predefined set of events and objects are instrumented in the
application, and the rest can be instrumented through custom methods.

Note: Before you begin, complete the initial configuration tasks that are associated
with instrumentation. For more information, see Tealeaf iOS Logging Framework
Deployment.
v Optionally, you can disable auto-instrumentation. See “Manual instrumentation.”
v In your implementation file, import TLFCustomEvent.h.
v You can use any of the available APIs to meet your application requirements.

See “Custom instrumentation APIs” on page 86.

Manual instrumentation
You turn off the auto-instrumentation feature in the TLFConfigurableItems.plist
file. When you do so, no method swizzling occurs, the application state is not
monitored, and screen changes or any other events are not automatically tracked.

To disable auto-instrumentation, in the TLFConfigurableItems.plist file, which is
in the TLFResources.bundle, set DisableAutoInstrumentation flag to YES.

Note: Auto-instrumentation is not recommended because of the large
configuration effort, high chance of errors, and possibility of incomplete coverage.
If you choose to use auto-instrumentation, you are responsible for implementing
theses changes.

Required actions

When you use the iOS SDK with auto-instrumentation turned OFF, you must
configure a set of actions to occur that auto-instrumentation would otherwise do.
The list of required actions follows.
v View Controller changes must be logged by using the API logAppContext from

the TLFCustomEvent class.

Chapter 5. Reference 83

v HTTP Connection updates must be logged by using the API logConnection from
the TLFCustomEvent class.
There are three logConnection APIs: one each for initialization, successful
response, and failure.

v Button click events must be logged by using API logClickEvent from the
TLFCustomEvent.

v UITableViewCell tap events must be logged by using the API
logValueChangeEvent from the TLFCustomEvent class.

v Text change events for UITextField, UITextView, and UILabel must be logged by
using the API logTextChangeEvent from the TLFCustomEvent class.

v To sessionize all NSURLMutableRequest objects, you use the API
sessionizeRequest from the TLFApplicationHelper class.

v To track all requests that are made by UIWebView from the UIWebViewDelegate
shouldStartLoadWithRequest, you use the API isTealeafHybridBridgeRequest
from the TLFApplicationHelper class.

v To inject the IBM Tealeaf hybrid bridge into the JavaScript for all web page loads
from UIWebViewDelegate webViewDidFinishLoad, you use the API
InjectTealeafHybridBridgeOnWebViewDidFinishLoad from the
TLFApplicationHelper class.

TLFCustomEvent class

Use the following information to manually track various events with the
TLFCustomEvent class.
v -(BOOL)logAppContext:(NSString*)logicalPageName

applicationContext:(NSString*)applicationContext referrer:
(NSString*)referrer

v -(BOOL)logEvent:(NSString*)eventName values: (NSDictionary*)values;

v -(BOOL)logConnection:(NSURLConnection*)connection error: (NSError*)error

Use this API to log failures that occur when a connection is attempted; typically
from NSURLConnectionDelegate didFailWithError or when
sendSynchronousRequest returns an error. The first parameter is the connection
object, and the second parameter is the error that you received.

v -(BOOL)logConnection: (NSURLConnection*)connection response:
(NSURLResponse*)response responseTimeInMilliseconds:(long
long)responseTime;

Use this API to log successful connections; typically from
NSURLConnectionDelegate didReceiveResponse or when sendSynchronousRequest
returns success. The first parameter is the connection object. The second
parameter is the response that you received, and the third is the connection's
response type in milliseconds.

v -(BOOL)logConnection:(NSURLConnection*)connection request:
(NSURLRequest*)request;

Use this API to log connection initialization; typically before or after a
NSURLConnection initWithRequest call. The first parameter is connection object,
and the second parameter is the request object.

v -(BOOL)logNSURLSession:(NSObject*)urlSession error:(NSError*)error;

Use this API to log failures that occur when a connection is attempted; typically
from NSURLConnectionDelegate didFailWithError or when
sendSynchronousRequest returns an error. The first parameter is the connection
object, and the second parameter is the error that you received.

84 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

v -(BOOL)logNSURLSession:(NSObject*)urlSession
response:(NSURLResponse*)response responseTimeInMilliseconds:(long
long)responseTime;

Use this API to log successful connections; typically from
NSURLConnectionDelegate didReceiveResponse or when sendSynchronousRequest
returns success. The first parameter is the connection object. The second
parameter is the response that you received, and the third is the connection's
response type in milliseconds.

v -(BOOL)logNSURLSession:(NSObject*)urlSession
request:(NSURLRequest*)request;

Use this API to log connection initialization; typically before or after a call
NSURLConnection initWithRequest. The first parameter is connection object, and
the second parameter is the request object.

v -(BOOL)logClickEvent:(UIView*)view data:(NSDictionary*)data;

Use this API to log button click events. Call this from your button click event
handlers. The first parameter view is the UIButton object on which the click
event happened. The second parameter is optional, and is for future use. You
can pass Nil for now.

v -(BOOL)logValueChangeEvent:(UIView*)view data: (NSDictionary*)data;

Use this API to log UITableViewCell tap events. Call this from your
UITableViewDelegate didSelectRowAtIndexPath. The first parameter view is the
UITableViewCell object on which the tap event happened The second parameter
is optional, and is for future use. You can pass Nil for now.

v -(BOOL)logTextChangeEvent:(UIView*)view data: (NSDictionary*)data;

Use this API to log text change events for UITextField, UITextView, and UILabel.
Call this from your application wherever contents of these three controls
changed. If you add the UITextViewTextDidEndEditingNotification observer,
you can call it from there. The first parameter view is the object of any of
UITextField, UITextView, and UILabel whose text was edited. The second
parameter is optional, and is for future use. You can pass Nil for now.

v All APIs are blocking calls. They are all optional and can be called based on
your application's design and state machine.

v All the APIs return YES if data is logged, and NO in case of failure. The console
debug log shows the reason for failure.

TLFApplicationHelper class
v -(BOOL) sessionizeRequest:(NSMutableURLRequest*)request;

Use this API so that the IBM Tealeaf iOS SDK can add various Headers and
Cookies that can be used to tie all the application session hits together on the
server. Call this API as soon as you create the NSMutableURLRequest object, and
before you start the HTTP connection. The first parameter is the object of
NSMutableURLRequest that the IBM Tealeaf SDK updates.

v -(BOOL) isTealeafHybridBridgeRequest:(NSURLRequest*)request
webView:(UIWebView*)webView;

Start this API from UIWebViewDelegate shouldStartLoadWithRequest. The first
parameter is object of NSURLRequest, and the second is object of the current
UIWebView. The API determines whether the request is specific to and meant for
the IBM Tealeaf iOS SDK from the IBM Tealeaf JavaScript SDK. If it is, the API
consumes the data that is sent by the IBM Tealeaf JavaScript SDK. If not, handle
the request inside your shouldStartLoadWithRequest. For example, if this API
returns YES, ignore the request and return NO from shouldStartLoadWithRequest.

Chapter 5. Reference 85

It was not an actual page navigation request from your HTML or JavaScript. If
this API returns NO, handle the request as it came from your own HTML page or
JavaScript.

v -(BOOL) InjectTealeafHybridBridgeOnWebViewDidFinishLoad: (UIWebView
*)webView;

Use this API to inject IBM Tealeaf specific JavaScript into your web page. The
JavaScript injection helps transfer data from the IBM Tealeaf JavaScript CX UI
Capture j2 SDK to the IBM Tealeaf Native iOS SDK. The first parameter is the
object of UIWebView in which the current web page is loaded. Call it every time a
new page is loaded into the UIWebView. Place it in UIWebViewDelegate
webViewDidFinishLoad.

Base instrumentation
The objects and events to populate the following sections are automatically
instrumented, even if you enable custom instrumentation.

Environmental Data: This data set is automatically captured during initialization.
See “Environmental data” on page 66.

Note: User Actions and Behaviors are not captured when auto-instrumentation is
disabled. These events must be manually instrumented. See “Logging level legend”
on page 78.

Custom instrumentation APIs
The CX Mobile iOS Logging Framework logs many events automatically, but you
can also use it to log errors, exceptions, and custom events.

To log custom events, you can use the TLFCustomEvent class. This singleton class
offers different methods to log custom events.

For convenience, IBM Tealeaf provides standard events for location tracking and
wireless carrier recording.

Example
//
// [[TLFCustomEvent sharedInstance] logEvent:@"PurchaseConfirmed"];
//

API - log event:

You use the logEvent API to log a simple custom event quickly.
- (void)logEvent:(NSString*)eventName;

Example
[[TLFCustomEvent sharedInstance] logEvent:@"EventName1"];

API - log event value:

You use the logEvent API to log a custom event and any value that is related to
that event.
- (void)logEvent:(NSString*)eventName value:(NSString*)value;

Example
[[TLFCustomEvent sharedInstance] logEvent:@"EventName2" value:@"EventValue2"];

86 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

API - log event and dictionary of values:

You use the logEvent API to log a custom event and a dictionary of values that are
related to that event.
- (void)logEvent:(NSString*)eventName values:(NSDictionary*)values;

Example
[[TLFCustomEvent sharedInstance] logEvent:@"EventName3" values:dictionary];

API - log event and set monitoring level:

You use the logEvent API to log a custom event and set TLFMonitoringLevel.
- (void)logEvent:(NSString*)eventName level:(kTLFMonitoringLevelType)level;

Example
[[TLFCustomEvent sharedInstance] logEvent:@"EventName4" level:2];

API - log event, value, and set monitoring level:

You use the logEvent API to log a custom event, any related value, and set a
specific TLFMonitoringLevel.
- (void)logEvent:(NSString*)eventName value:(NSString*)
value level:(kTLFMonitoringLevelType)level;

Example
[[TLFCustomEvent sharedInstance] logEvent:@"EventName5"
value:@"EventValue5" level:2];

API - log event, dictionary of values, and set monitoring level:

You use the logEvent API to log a custom event, a dictionary of values, and set a
specific TLFMonitoringLevel.
- (void)logEvent:(NSString*)eventName values:(NSDictionary*)values
level:(kTLFMonitoringLevelType)level;

Example
[[TLFCustomEvent sharedInstance] logEvent:@"EventName6" values:
dictionary level:2];

Methods for managing the framework

Session management
Whenever possible, the approach for managing session identifiers is to allow your
web server to generate the session identifier for insertion into the TLTSID field in
the request. This session identifier is consumed and used seamlessly in IBM
Tealeaf.

See Chapter 4, “Guidelines for tuning CX Mobile iOS Logging Framework,” on
page 61.

If necessary, you can generate a session identifier locally by using the CX Mobile
iOS Logging Framework. Information about this method follows; however, use this
method only if your web server cannot be configured to generate the session
identifier.

Chapter 5. Reference 87

See Chapter 4, “Guidelines for tuning CX Mobile iOS Logging Framework,” on
page 61.

The CX Mobile iOS Logging Framework starts a session whenever the application
starts. It must completely terminate to start a new session and not go to the
background.
v To generate a session identifier through the IBM Tealeaf CX Mobile iOS Logging

Framework, you implement the sessionIdGeneration API of TLFLibDelegate.
v To acquire the current session identifier, call the currentSessionId method of

TLFApplicationHelper.

This behavior may not make sense for your application. For example, if you want
a new session to begin after every successful purchase, you can use the
startNewTLFSession method of TLFApplicationHelper.

The locally generated session ID is reported as a cookie with all framework posts
and is automatically stored.

It is stored in the request that is based on how your IBM Tealeaf environment is
configured to manage session identifiers. See "Managing Data Sessionization in
Tealeaf CX" in the IBM Tealeaf CX Installation Manual.

startNewTLFSession

Tells the IBM Tealeaf CX Mobile iOS Logging Framework to start a new session.
This does not affect the behavior of the CX Mobile iOS Logging Framework on the
client, but helps you to analyze data that is received by the server. For example, at
the end of a purchase, you can count further user interactions as belonging to a
separate session, so you can call this method whenever the user completes a
purchase.

- (void)startNewTLFSession

Declared in TLFApplicationHelper.h.

currentSessionId

Returns the session ID for the current session. This can be a session ID generated
by the CX Mobile iOS Logging Framework, but if you implemented the
sessionIdGeneration method, then it is the session ID last returned by that
method.

- (NSString *)currentSessionId

Returns the current session ID.

Declared in TLFApplicationHelper.h.

Performance optimization
You can improve the performance of your application by choosing logging levels
carefully, and by advising the CX Mobile iOS Logging Framework about when to
post its data to the server.

88 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

requestManualServerPost

Requests the CX Mobile iOS Logging Framework to post to the server as soon as
possible. It is a good idea to call this method after you finished your own network
transmissions. The device shuts down the WiFi and cell radios when there is no
activity. Powering up the radio takes time and battery power, so it is better to
transmit in bursts. Refer to the "Tuning for Performance and Responsiveness"
chapter of the Apple iOS Application Programming Guide.

You must set ManualPostEnabled in TLFConfigurableItems.plist to YES for this
method to succeed.

- (void)requestManualServerPost

Declared in TLFApplicationHelper.h.

setCurrentMonitoringLevelType

Sets the current logging level, also known as the monitoring level.
- (void)setCurrentMonitoringLevelType:(kTLFMonitoringLevelType)
monitoringLevelType

Parameter
Description

monitoringLevelType
The new logging level, 0-5. 0 turns off logging.

Declared in TLFApplicationHelper.h.

currentMonitoringLevelType

Returns the current logging level, also known as the monitoring level.

- (kTLFMonitoringLevelType)currentMonitoringLevelType

Returns the current logging level.

Declared in TLFApplicationHelper.h. kTLFMonitoringLevelType is declared in
TLFPublicDefinitionsHelper.h.

Delegate callbacks
You can implement some or all of these methods of TLFLibDelegate to help the CX
Mobile iOS Logging Framework to work with your application and its server.

The easiest way is to add the TLFLibDelegate protocol to your application delegate
class, as shown.
#import "TLFLibDelegate.h"
...
@interface MyAppDelegate : NSObject <UIApplicationDelegate, TLFLibDelegate> {
...
}

sessionIdGeneration

Implemented by your application to provide a session ID to the framework. This
does not affect how the framework operates on the client, but is useful when

Chapter 5. Reference 89

analyzing logged data later. This lets you tie sessions on your server with sessions
recorded by the CX Mobile iOS Logging Framework.

- (NSString *)sessionIdGeneration

Returns the session ID for the framework to record with its logs.

Declared in TLFPublicDefinitions.h.

Table 29. Delegate callbacks

Go: Tealeaf
iOS Logging
Framework
Reference
Guide

Quick Start:
Chapter 2,
“Tealeaf iOS
Logging
Framework
Installation and
Implementation,”
on page 5

Chapter 4, “Guidelines
for tuning CX Mobile
iOS Logging
Framework,” on page
61

Reference Chapter 6,
“Sample
code,” on
page 91

90 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Chapter 6. Sample code

This section contains sample code for use in implementing the IBM Tealeaf CX
Mobile iOS Logging Framework. Modify any samples for use with your web
server environment or native application.

Server-side KillSwitch sampling function
When KillSwitch is enabled in the client configuration, the CX Mobile iOS Logging
Framework queries the KillSwitch URL to determine whether to enable or disable
the CX Mobile iOS Logging Framework for that session.

If the CX Mobile iOS Logging Framework is disabled, then the session is not
captured and is excluded from the sampled data.

In the samples below, the KillSwitch URL returns 1 to enable the CX Mobile iOS
Logging Framework and 0 to disable the CX Mobile iOS Logging Framework.

Sampling function for ASPX

killswitch.aspx
Sample code for ASPX follows.

<%@ Page Language="C#" AutoEventWireup="true"%>
<script runat="server">

public int Sampler()
{

Random rand = new Random();
int nextRandom = rand.Next(1,100);
int samplepercent = Convert.ToInt32(ConfigurationManager.AppSettings["rate"]);
if(nextRandom <= samplepercent){

return 1;
}
else{

return 0;
}

}

</script>
<%

if (ConfigurationManager.AppSettings["killswitchtype"].Equals("percentagesample")) {
%>

<%= Sampler() %>
<% } else{ } %>

Figure 1. killswitch.aspx

© Copyright IBM Corp. 1999, 2014 91

web.config configuration file for ASPX
A sample configuration file for ASPX follows.

Sampling function for JSP

killswitch.jsp
Sample code for JSP follows.
v If the request does not have parameters, the client framework is always disabled.
v If the id request parameter exists, it is used to check the whitelist.
v If the randomsample parameter exists, the percentage rate from the

config.properties file is used to determine how the server responds.

Debug Logs: Generated if the debug property is set to true.
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>
<%@page import="java.util.Properties"%>
<%@page import="java.util.Date" %>
<%@ page import="java.net.*"%>
<%@ page import="java.io.*" errorPage=""%>
<%

InputStream stream = application
.getResourceAsStream("/config.properties");

Properties props = new Properties();
props.load(stream);
Boolean DEBUG = false;

DEBUG = ("true").equals(props.getProperty("debug"));
String id = request.getParameter("id");
String randomsample = request.getParameter("randomsample");
String killSwitchResponse = "";
String debugstr = "";

// white list
if (id != null && !id.isEmpty()) {

InputStream whitestream = application.getResourceAsStream(props
.getProperty("WhiteListFile"));

BufferedReader input = new BufferedReader(
new InputStreamReader(whitestream));

String line = "";
Boolean match = false;
while ((line = input.readLine()) != null) {

line = line.trim();
if (line.equals(id)) {

killSwitchResponse = "1";
match = true;
break;

<?xml version="1.0"?>

<!--
For more information on how to configure your ASP.NET application,
please visit http://go.microsoft.com/fwlink/?LinkId=169433

-->
<configuration>

<appSettings>
<add key="killswitchtype" value="percentagesample"/>
<add key="rate" value="50"/>

</appSettings>
</configuration>

Figure 2. web.config

92 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

}
}
input.close();
if (!match) {

killSwitchResponse = "0";
}

}

// If kill switch is by sample rate
else if (randomsample != null) {

int rand = (int) (Math.random() * 100);
int sampleRate = Integer.parseInt(props

.getProperty("samplerate"));
if (rand <= sampleRate) {

killSwitchResponse = "1";
} else {

killSwitchResponse = "0";
}

} else {
killSwitchResponse = "0";

}

out.print(killSwitchResponse);

//always give the path from root. This way it almost always works.
String nameOfTextFile = props.getProperty("logfile");
PrintWriter pw;

if (DEBUG) {
try {

pw = new PrintWriter(new FileOutputStream(nameOfTextFile,
true));

Date date = new java.util.Date();
debugstr = date.toString() + "\t";
if (request.getQueryString() != null) {

debugstr += request.getQueryString();
}
if("0".equals(killSwitchResponse))

pw.println(debugstr + "\tDisable");
else

pw.println(debugstr + "\tEnable");
//clean up
pw.close();

} catch (IOException e) {
out.println(e.getMessage());

}
}

%>

web.config configuration file for JSP
A sample configuration file for JSP follows.

WhiteListFile=whitelist.txt
samplerate =50
debug=true
logfile=/killswitchlog.txt

Figure 3. config.properties

Chapter 6. Sample code 93

Sampling function for PHP

killswitch.php
Sample code for PHP follows.

web.config configuration file for PHP
A sample configuration file for PHP follows.

<?php
$ini_array = parse_ini_file("config.ini", true);
//print_r($ini_array);

// if sample by percent
if($ini_array[’configtype’][’killswitchtype’] === ’percentagesample’){

$sampleRate = intval($ini_array[’percentagesample’][’rate’]);
killbysamplerate($sampleRate);

}
// if sample by whitelist
else {

}

function killbysamplerate($sampleRate){
$randomnumber = rand(1,100);
if($randomnumber <= $sampleRate){

echo ’1’;
}
else {

echo ’0’;
}

}

function killbywhitelist($whitelistpath){

}
?>

Figure 4. killswitch.php

; This is a sample configuration file
; Comments start with ’;’, as in php.ini

[configtype]
killswitchtype=percentagesample

[percentagesample]
rate = 50

[whitelist]
x
y
z

Figure 5. config.ini

94 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Troubleshooting tools

Console messages
When you set the TLF_DEBUG environment variable to a non-zero value, the CX
Mobile iOS Logging Framework creates console messages with NSLog showing
when it logs and transmits data.

Note: Support for the TLF_DEBUG environment variable and console messages is
available for beta testing, and is not necessarily a part of the final release. The
message format is subject to change.

Types of console messages
When you set the TLF_DEBUG environment variable to 1, the CX Mobile iOS
Logging Framework creates console messages with NSLog showing when it logs
and transmits data. You can set this variable in the Build Arguments panel of your
project's Scheme.

Sending messages to the console slows down your application, but shows you:
v User actions and how they are being logged.
v Server posts, both when they are being packaged and when they are finally sent.
v Server responses so you can see that logging framework data is being received

by your target page.

Tools for debugging
To help debug problems that are found during testing, you use the TLF_DEBUG
environment variable and logger view.

Note: Support for the TLF_DEBUG environment variable and logger view is available
for beta testing. They are not necessarily a part of the final release. The message
formats are subject to change.

Runtime information
To find runtime information, you can check the current version of the CX Mobile
iOS Logging Framework and whether the CX Mobile iOS Logging Framework is
initialized at runtime.

frameworkVersion
Returns the version string for the CX Mobile iOS Logging Framework that you are
running.

- (NSString *)frameworkVersion

Returns the framework version string.

Declared in TLFApplicationHelper.h.

isTLFEnabled
Checks if the IBM Tealeaf CX Mobile iOS Logging Framework is enabled.

- (BOOL)isTLFEnabled

Returns YES if the CX Mobile iOS Logging Framework is enabled, NO otherwise.

Chapter 6. Sample code 95

Declared in TLFApplicationHelper.h.

Crashes
During normal operations, accumulated events are written to a local file on the iOS
device. If a power failure occurs while some events are contained in the file, the
CX Mobile iOS Logging Framework posts the contents of the file on restart of the
application.
v If the local file contains no data, nothing is done on restart.
v If the file is corrupted, an error is logged on restart.

96 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Chapter 7. IBM Tealeaf documentation and help

IBM Tealeaf provides documentation and help for users, developers, and
administrators.

Viewing product documentation

All IBM Tealeaf product documentation is available at the following website:

https://tealeaf.support.ibmcloud.com/

Use the information in the following table to view the product documentation for
IBM Tealeaf:

Table 30. Getting help

To view... Do this...

Product documentation On the IBM Tealeaf portal, go to ? > Product
Documentation.

Help for a page on the IBM Tealeaf Portal On the IBM Tealeaf portal, go to ? > Help
for This Page.

Help for IBM Tealeaf CX PCA On the IBM Tealeaf CX PCA web interface,
select Guide to access the IBM Tealeaf CX
PCA Manual.

Available documents for IBM Tealeaf products

Use the following table to view a list of available documents for all IBM Tealeaf
products:

Table 31. Available documentation for IBM Tealeaf products

IBM Tealeaf products Available documents

IBM Tealeaf CX v IBM Tealeaf Customer Experience Overview
Guide

v IBM Tealeaf CX Client Framework Data
Integration Guide

v IBM Tealeaf CX Configuration Manual

v IBM Tealeaf CX Cookie Injector Manual

v IBM Tealeaf CX Databases Guide

v IBM Tealeaf CX Event Manager Manual

v IBM Tealeaf CX Glossary

v IBM Tealeaf CX Installation Manual

v IBM Tealeaf CX PCA Manual

v IBM Tealeaf CX PCA Release Notes

© Copyright IBM Corp. 1999, 2014 97

https://tealeaf.support.ibmcloud.com/

Table 31. Available documentation for IBM Tealeaf products (continued)

IBM Tealeaf products Available documents

IBM Tealeaf CX v IBM Tealeaf CX RealiTea Viewer Client Side
Capture Manual

v IBM Tealeaf CX RealiTea Viewer User
Manual

v IBM Tealeaf CX Release Notes

v IBM Tealeaf CX Release Upgrade Manual

v IBM Tealeaf CX Support Troubleshooting
FAQ

v IBM Tealeaf CX Troubleshooting Guide

v IBM Tealeaf CX UI Capture j2 Guide

v IBM Tealeaf CX UI Capture j2 Release Notes

IBM Tealeaf cxImpact v IBM Tealeaf cxImpact Administration Manual

v IBM Tealeaf cxImpact User Manual

v IBM Tealeaf cxImpact Reporting Guide

IBM Tealeaf cxConnect v IBM Tealeaf cxConnect for Data Analysis
Administration Manual

v IBM Tealeaf cxConnect for Voice of Customer
Administration Manual

v IBM Tealeaf cxConnect for Web Analytics
Administration Manual

IBM Tealeaf cxOverstat IBM Tealeaf cxOverstat User Manual

IBM Tealeaf cxReveal v IBM Tealeaf cxReveal Administration Manual

v IBM Tealeaf cxReveal API Guide

v IBM Tealeaf cxReveal User Manual

IBM Tealeaf cxVerify IBM Tealeaf cxVerify Administration Manual

IBM Tealeaf cxView IBM Tealeaf cxView User Manual

IBM Tealeaf CX Mobile v IBM Tealeaf CX Mobile Android Logging
Framework Guide

v IBM Tealeaf Android Logging Framework
Release Notes

v IBM Tealeaf CX Mobile Administration
Manual

v IBM Tealeaf CX Mobile User Manual

v IBM Tealeaf CX Mobile iOS Logging
Framework Guide

v IBM Tealeaf iOS Logging Framework Release
Notes

98 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1999, 2014 99

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Bay Area Lab
1001 E Hillsdale Boulevard
Foster City, California 94404
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

100 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Privacy Policy Considerations
IBM Software products, including software as a service solutions, ("Software
Offerings") may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. A cookie is a piece of data that a web site can
send to your browser, which may then be stored on your computer as a tag that
identifies your computer. In many cases, no personal information is collected by
these cookies. If a Software Offering you are using enables you to collect personal
information through cookies and similar technologies, we inform you about the
specifics below.

Depending upon the configurations deployed, this Software Offering may use
session and persistent cookies that collect each user's user name, and other
personal information for purposes of session management, enhanced user usability,
or other usage tracking or functional purposes. These cookies can be disabled, but
disabling them will also eliminate the functionality they enable.

Various jurisdictions regulate the collection of personal information through
cookies and similar technologies. If the configurations deployed for this Software
Offering provide you as customer the ability to collect personal information from
end users via cookies and other technologies, you should seek your own legal
advice about any laws applicable to such data collection, including any
requirements for providing notice and consent where appropriate.

IBM requires that Clients (1) provide a clear and conspicuous link to Customer's
website terms of use (e.g. privacy policy) which includes a link to IBM's and
Client's data collection and use practices, (2) notify that cookies and clear gifs/web
beacons are being placed on the visitor's computer by IBM on the Client's behalf
along with an explanation of the purpose of such technology, and (3) to the extent
required by law, obtain consent from website visitors prior to the placement of
cookies and clear gifs/web beacons placed by Client or IBM on Client's behalf on
website visitor's devices

For more information about the use of various technologies, including cookies, for
these purposes, See IBM's Online Privacy Statement at: http://www.ibm.com/
privacy/details/us/en section entitled "Cookies, Web Beacons and Other
Technologies."

Notices 101

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

102 IBM Tealeaf CX Mobile iOS Logging Framework: IBM Tealeaf CX Mobile iOS Logging Framework Guide

����

Printed in USA

	Contents
	IBM Tealeaf CX Mobile iOS Logging Framework
	Chapter 1. Introduction
	Introduction
	Framework version
	Features
	Automatic logging
	Customized data analysis
	Kill switch
	Privacy and security

	How it works
	Data capture
	Data storage and communication
	Performance optimization

	Related documentation
	Terminology
	Next steps

	Chapter 2. Tealeaf iOS Logging Framework Installation and Implementation
	Client framework versions supported in this documentation
	Integrate the IBM Tealeaf Mobile SDK with your iOS application
	Log screen layout for iOS mobile app session replay

	Install Tealeaf in an Xcode project
	Adding the required frameworks to your Xcode project
	Adding Tealeaf files to your Xcode project
	Enabling the Tealeaf framework
	Setting the Objective-C linker flag
	Adding Tealeaf Headers to the pch file
	Modify your application to use Tealaf classes
	Using the TLFApplication class
	Modifying the custom UIApplication class

	Configure Tealeaf
	Configuring Tealeaf for your application
	Configure gesture capture
	Gesture events captured
	Configuring Gesture capture for your application
	Modifying the delegate for your Gesture Recognizer to work with Tealeaf capture

	Log Exceptions
	Logging exceptions

	Configure DOM Capture
	Configuring DOM Capture and Replay for Native iOS applications that cannot use PCA

	Integrate Tealeaf and Worklight
	Creating and configuring the high-level Worklight project

	Quick start for server configuration
	Data privacy
	Target page for traffic capture
	Traffic volume management
	Implementing screenViews
	Traffic capture configuration on the CX Passive Capture Application
	Verifying CX Passive Capture Application capture type configuration
	Configuring CX Passive Capture Application for screen capture from CX Mobile iOS Logging Framework
	Enabling decompression of compressed POSTs

	Options for monitoring captures and processing
	Sessionization for iOS applications
	Runtime configuration

	IBM Tealeaf events for CX Mobile iOS Logging Framework
	JSON message type schemas and examples
	Message header properties
	Message header properties schema
	Message header properties schema
	Client state (Type 1) messages
	Client State (Type 1) message schema
	Client State (Type 1) message example

	ScreenView (Type 2) messages
	ScreenView (Type 2) message schema
	ScreenView (Type 2) message example

	Connections (Type 3) messages
	Connections (Type 3) messages schema
	Connections example

	Control (Type 4) messages
	Control (Type 4) message schema
	Control (Type 4) message example

	Custom Event (Type 5) messages
	Custom Event (Type 5) message schema
	Custom Event (Type 5) message example

	Exception (Type 6) messages
	Exception (Type 6) message schema
	Exception (Type 6) message example

	Performance (Type 7) messages
	Performance (Type 7) message schema
	Performance (Type 7) message example

	Web Storage (Type 8) messages
	Web Storage (Type 8) message schema
	Web Storage (Type 8) message example

	Overstat Hover Event (Type 9) messages
	Overstat Hover Event (Type 9) message schema
	Overstat Hover Event (Type 9) message example

	Layout (Type 10) messages
	Layout (Type 10) message schema
	Layout (Type 10) message example

	Gesture (Type 11) messages
	Gesture (Type 11) message schema
	Gesture (Type 11) message example

	DOM Capture (Type 12) messages
	DOM Capture (Type 12) message schema
	DOM Capture (Type 12) message example

	Examples

	Upgrading the CX Mobile iOS Logging Framework

	Chapter 3. Xamarin MonoTouch iOS applications
	Package contents
	Integrating the IBM Tealeaf MonoTouch Logging Framework with your application
	Code changes

	How to resolve method swizzling conflicts in TLFMonotouch

	Chapter 4. Guidelines for tuning CX Mobile iOS Logging Framework
	Session identifiers
	Data collection
	Privacy protection
	Performance optimization

	Chapter 5. Reference
	Required framework and library files
	Logged elements
	Application data
	Environmental data
	Captured at initialization
	Captured during execution

	User actions and events
	Table views
	Text fields
	Secure text fields
	Text views
	Secure text views
	Alert views
	View controllers
	Synchronous server connections
	Asynchronous server connections
	Unhandled exception
	Error
	Network connectivity
	Crash
	Button touch events

	Configurable items
	Dynamic configuration items
	sharedApplication API
	Configure PostMessageUrl
	Configure KillSwitchUrl
	Enable or disable IBM Tealeaf
	Screen capture at run time

	Logging templates
	Logging level legend

	Custom instrumentation
	General
	Error events
	Exception events
	GPS location events
	Kill Switch events
	Telephony events
	Custom events
	Disabling auto-instrumentation to include advanced custom instrumentation
	Manual instrumentation
	Base instrumentation
	Custom instrumentation APIs

	Methods for managing the framework
	Session management
	Performance optimization
	Delegate callbacks

	Chapter 6. Sample code
	Server-side KillSwitch sampling function
	Sampling function for ASPX
	killswitch.aspx
	web.config configuration file for ASPX

	Sampling function for JSP
	killswitch.jsp
	web.config configuration file for JSP

	Sampling function for PHP
	killswitch.php
	web.config configuration file for PHP

	Troubleshooting tools
	Console messages
	Types of console messages

	Tools for debugging
	Runtime information
	frameworkVersion
	isTLFEnabled

	Crashes

	Chapter 7. IBM Tealeaf documentation and help
	Notices
	Trademarks
	Privacy Policy Considerations

