Extending and Continuing the Development of an Integrated
Development Environment for Answer Set Programming

Robert Ibbotson

Bachelor of Science in Computer Science with Honours
The University of Bath
May 2010

This dissertation may be made available for consultation within the Uni-
versity Library and may be photocopied or lent to other libraries for the
purposes of consultation.

Signed:

Extending and Continuing the Development of an
Integrated Development Environment for Answer
Set Programming

Submitted by: Robert Ibbotson

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author. The
Intellectual Property Rights of the products produced as part of the project belong to the
University of Bath (see http://www.bath.ac.uk/ordinances/#intelprop).

This copy of the dissertation has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with its author and that no quotation
from the dissertation and no information derived from it may be published without the
prior written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the requirements
of the degree of Bachelor of Science in the Department of Computer Science. No portion of
the work in this dissertation has been submitted in support of an application for any other
degree or qualification of this or any other university or institution of learning. Except
where specifically acknowledged, it is the work of the author.

Signed:

Abstract

Work has previously been done to support the logic programming paradigm of Answer Set
Programming (ASP) in the form of an Integrated Development Environment (IDE) called
AnsProlog* Programming Environment (APE). APE is a Eclipse plug-in that provides
support through features such as toggle commenting, dependency graphs and the ability
to launch programs such as LPARSE and SMODELS. This dissertation extends upon APE,
investigating further the tools used by the ASP community and the possible support an IDE
can provide. Improvements are made to APE, as well as providing a scalable maintainable
architecture for future developers of APE.

Contents

1

|2 Literature Survey| 4
2.1 TIntroductionl. L 4
2.2 Logic Programming|, 4
[2.2.1 Parts of a Program|. 0 ..)

2.3 Answer Set Programming| oL 6
[2.3.1 AnsProlog® vs Prolog| 8
[2.3.2 AnsProlog™ Usagel 9

A IDES . . . oo 9
2.4.1 Eclipse Plug-in| o 10
A2 APE . . . o o 10
243 OtherIDES 11

R5 ASPToold. o o 11
RET DLV . . .o oot 12
................................ 12
R53_TLPARSEl oo 12
254 Cmodeld. 13
.................................... 13

6 Gringo|. 13

2.9. claspl oL 14
258 ASPViZl o 14
[2.5.9 Debugging|. 14

ii

2.6 Common Language|

2.7 Regression Testing| L

2.8 Usability Evaluation| o oo
2.9 Summary|] L e e

(3

Requirements|

[3.1 Gathering Process|

3.2.1 Experience]

[3.3 Summary| L

4.4 Predicate Completion|

4.5 esting|

451 APE Testsl

Detailed Design and Implementation|

b.1 Approach|

[.4.1 Launch Configuration Tab Group|.

[5.4.2 Launch Configuration Type|

iii

19
20
21
21
21
23
24
26
27

29
29
29
31
33
34
34
35
36

5.5 Gringo and Clasp|. 46
5.5.1 Gringo Editor Problems| 000000 46

b6 Conversionl 48
B6.1 Process 48
5.6.2 Gringo to Lparsel o 49
0.6.3 Lparse to Gringo|o 51

5.7 Auto Predicate Completion| L. 52
D71 Predicate Viewl 53

0.8 Summary] e 55
57
6.1 Test Environmentl. 57
6.1.1 Automatic Tests] oo oo 57
6.1.2 Manual Tests| oo 58
6.2 Tocation|. 58
6.3 Automatic Testing| 60
6.3.1 Project Tests| 60
[6.3.2 External Program Testing 60
[6.3.3 Conversion Between Solversf 62
[6.3.4 Predicate Viewl 63

6.4 Manual Testing| 63
[6.4.1 Preference Dialog|.o 63
[6.4.2 Platform Compatibility & Installationl 64
16.4.3 Predicate View & Predicate Auto Completion|. 65

6.5 Requirements| 67
6.5.1 Framework To Add New Featuresl 67
[6.5.2 Support for Gringo and Clasp|[. 67
[6.5.3 Auto Predicate Completion| 67
6.5.4 Conversionl L 68
16.5.5 Regression Testing Ability|. 68

v

(7.4 Summary|

IBibliography]|

|IA Questionnaire|

IB Questionnaire Results|

|C Requirements Specification|

[D Tnstalling APE|
ID.1 Update Site]

ID.2 Supplied CD or Website| . .

|[E Implementation Screenshots|

[F.1 Running The Tests

.2 New Feature Testl.

|G Predicate Completion Tests|

.1 Dase Filel

69
69
71
71
73

78

79

81

85
85
86

87
87
87

88

91
91
91
92

|G.3.1 File: puzzlel previous.p|. o0 95
[G.4 Variable Predicate Declaration| 95
|G.4.1 File: puzzlel variablelp| 95

|G.5 Expected Results| 97
[G.5.1 New Predicate Declarationl 97
[G.5.2 Previous Predicate Declarationl 98
[G.5.3 Variable Predicate Declarationl 99
[H_Code 101
[HI1 Frameworkl 102
[H.1.1 File: AbstractArgumentConstants.javal 102
[H.1.2 File: AbstractLaunchConfigurationDelegate.javal 103
[H.1.3 File: AbstractLaunchShortcut.javal 106
[H.1.4 File: AbstractMultipleFileArgumentsTab.javal 108
[H.1.5 File: AbstractSingleFileArgumentsTab.javal 109
[H.1.6 File: CommandLineSwitch.javal 113

Iz 00| . . 114
[H.2.1 File: GringoProgramArgumentConstants.java 114
[H.2.2 File: GringoArgumentsTab.javal. 115
[H.2.3 File: GringoLaunchConfigurationDelegate.java] 116
[H.2.4 File: GringoLaunchConfigurationTabGroup.java] 117
[H.2.5 File: GringoLaunchShortcut.java] 118
[H.2.6 File: GringoPreferenceConstants.javal. 118
[H.2.7 File: GringoPreterencePage.javal 119
[H3 Conversionl 120
[H.3.1 File: AbstractProgramConverter.javal. 120
[H.3.2 File: AbstractProgramConverterAction.javal 121
[H.3.3 File: AggregateLparseloGringoConverter.javal. 122
[H.3.4 File: PoolingGringoToLparseConverter.javal 124
[H.3.5 File: Poolingl.parseToGringoConverter.javal 125

vi

[H.3.6 File: RemoveRestrictedNames.javal 127

[H.4 Auto Completion| 128
[H.4.1 File: AtomProposalGenerator.javal 128
[H.4.2 File: [ProposalGenerator.javal 129
[H.4.3 File: LparseContentAssistProcessor.javal 130
[H.4.4 File: NumericConstantProposalGenerator.javal 132
[H.4.5 File: ProposalGenerator.javal 133
[H.4.6 File: SymbolProposalGenerator.javal 135
[H.4.7 File: VariableProposalGenerator.javal. 136
[H.4.8 File: PredicateView.javal. 137
[H.4.9 File: PredicateViewContentProvider.javal] 140
[H.4.10 File: PredicateViewCurrentFilter.javal 141
[H.4.11 File: PredicateViewltem.javal 141
[H.4.12 File: PredicateViewLabelProvider.javal 144
[H.4.13 File: PredicateViewPredictedFilter.javal 144

H.5 ol e 145
[H.5.1 File: AbstractRegressionTest.javal. 145
[H.5.2 File: AbstractTest.javal. o000 146
[H.5.3 File: Common'lests.javal 148

vii

List of Figures

[2.1 A Logic Programming System |GG&5| 5
[2.2 Declarative Problem Solving in ASP [GKK™|| 7
[2.3 System Architecture Of Clasp |[GKSO9f. 15
3.1 Experience With ASP| o 21
[3.2 Editors Currently Used For ASP Development| 22
3.3 ASP Tools Currently Used|. 24
.1 Eclipse Architecture As Seen In [RBO6] 30
5.1 Tab Group Structurel. 42
b.2 Single File Arguments|o Lo 44
5.3 Multiple File Arguments| o oo o 45
b.4 Conversion Options|. o o i e 49
5.5 Predicate Completion Ordermng| 53
5.6 Predicate Completion Proposals|. 54
B.7 Predicate Viewl 59
b.8 Predicate View Options| 55
6.1 Testing Plug-in Structure] oL o 59
[E.1 New AnsProlog™® Project|. 88
[E2 New LPARSE Filelo 89
.3 Installing APE| 90
|G.1 Predicate View Suggestions| 97

|G.2 Auto Completion Suggestions| 98
|G.3 Predicate View Suggestions| 98
|G.4 Auto Completion Suggestions| 99
|G.5 Predicate View Suggestions| 99
|G.6 Auto Completion Suggestions|, 100

X

List of Tables

8.1 Most Desired Features 26
6.1 Project Creation & Deletion Tests| 60
6.2 Program Tests| 61
6.3 Predicate View Tests| oo oo 63
6.4 Preference Tests] 64
6.5 Installation Testsl oo 64
6.6 Predicate Completion Tests| 65
6.7 Predicate View Testsl oo o 66

Acknowledgements

I would like to thank my supervisor Dr. Marina De Vos for her support and guidance
throughout this project. Additionally, thanks must be given to my friends and family who
have supported me throughout.

xi

Chapter 1

Introduction

Answer Set Programming (ASP) is a declarative form of programming, where the program-
mer specifies what needs to happen rather than how it should happen. Given a set of rules
and facts, ASP will attempt to solve these, finding the consistent rules within the program
which are known as the answer sets. The possible answer sets are computed in a two stage
process. Firstly a grounder is run on the program, converting the variables within the pro-
gram into atoms. This is followed by a solver running on the grounded program to compute
the answer sets. Examples of grounder and solver program pairs are LPARSE /SMODELS and
Gringo/clasp.

With the increasing efficiency of answer set solvers and novel application areas
for answer set programming, ASP is becoming a useful programming paradigm
for declarative problem solving and knowledge representation systems. [CDVBPOS]

ASP programs are written in the language of AnsProlog*. “AnsProlog* is a short form for
answer set programming in logic, and the * denotes that we do not place any restrictions
on the rules [Bar03].” Programs can consist of facts with a set of rules from which other
facts can be derived. Programs look syntactically similar to Prolog programs with rules
consisting of both a head and body. However differences are present between the two:
AnsProlog* allows rules to be placed anywhere, AnsProlog* does not have the cut operator
and AnsProlog* programs cannot get stuck in an infinite loop.

Investigation was done in 2006 by Sureshkumar [Sur06] to add support for ASP in the
form of an Integrated Development Environment (IDE). IDEs exist to enable and assist
the programmer in achieving their goal of writing the program in the most efficient manner
possible. Typical features include syntax highlighting, automating repetitive tasks, com-
piling code, debugging, as well as speeding up development by being able to run external
programs from within the IDE. Nourie [Nou05] sums up an IDE as “a set of tools that aids
application development.”

Sureshkumar developed a plug-in for the Eclipse platform called APE, standing for AnsPro-
log* Programming Environment. Support exists within APE to run the external grounder
LPARSE and solver SMODELS. APE also supports commonly found IDE features such as
syntax highlighting, syntax checking to find compile errors as well as being able to gener-
ate a dependency graph of the program being developed. ASP is an emerging field with
tools and programs being continually developed. Since 2006 further tools such as AspViz,
SPOCK as well as Gringo and clasp have been developed. APE does not provide any
support to run these.

This dissertation aims to take the work done by Sureshkumar, extending it to provide an
IDE that is usable with the features most desired by potential users. As ASP is still an
emerging field the project does not aim to add support for every possible external program
found in the domain. Instead this project aims to produce an architecture that will allow
future developers to quickly add programs in the future. Supporting this methodology
further, the project aims to promote a testing strategy such that any future tools added
will not cause existing features found within APE to break.

Previous development of APE has followed a evolutionary approach which Sommerville
[Som06a] describes as “interleaving the activities of specification, development and valida-
tion.” However for this dissertation the approach was changed to use the more traditional
waterfall model software process model. Sommerville describes this as taking the funda-
mental activities of the project and representing them as separate process phases. This
process has been documented in the rest of the dissertation, which follows the structure
below:

Literature Survey The dissertation starts off with a survey of relevant literature. This
section covers previous research in the field of ASP as well as IDE development. APE
is looked at in more depth, as well as logic programming in general.

Requirements This chapter documents the elicitation process of requirement gathering
for the project. Gathering choices are explained, as well as documenting the key
requirements that the APE must implement. The scope of the project is defined
given the time scale.

Design The design decisions made for the project are explained in this chapter. The
system architecture is introduced as well as the decisions made from the requirements.

Detailed Design & Implementation This chapter follows the same approach as the
design chapter. A high level overview of the implementation process is given with key
algorithms explained. Approaches are reflected upon, with decisions made throughout
the project justified.

Testing This chapter explains the testing process and strategies that have been imple-
mented for the project. Automatic and manual tests are performed as well as expla-
nation as to how this will help future developers. Additionally the requirements are
revisited to ensure the project has succeeded in meeting them.

Conclusion This chapter documents any findings from the project as well as providing
a critical evaluation of the dissertation as a whole. The future direction of APE is
considered with possible improvements and suggestions for future developers.

Chapter 2

Literature Survey

2.1 Introduction

An Integrated Development Environment (IDE) currently exists for Answer Set Program-
ming (ASP) called APE. This is limited and needs to be further developed before it is
widely accepted. Before extending upon APE, it is important to fully understand the
subject by reading relevant literature. This will result in effective requirements being gath-
ered. “If these requirements are not satisfied, it may be impossible to make the system
(APE) work satisfactorily” [Som06b]. To begin this literature survey the wider field of logic
programming will be researched before focussing on ASP, then onto APE.

2.2 Logic Programming

“The logic programming paradigm has its roots in automated theorem proving” [Apt03] and
“Robinson’s resolution rule” [Bar03]. “Logic programming differs substantially from other
programming paradigms” [Apt03]. Apt [Apt03] gives a good summary of the differences
as:

e Computing takes place over the domain of all terms defined over a universal alphabet.

e Values are assigned to variables by means of automatically generated substitutions
(general unifiers).

e Control is provided by a single mechanism, automatic backtracking.

Logic programming is both declarative and interactive. “A declarative program is viewed as
a formula and one can reason about its correctness without any reference to the underlying
computational mechanism” [Apt03]. “Benefits of this approach means programs are easier
to create and enable machines to explain their results and actions” [GG85]. “Interactive

programming allows the user to write a single program and interact with it by means of
various queries of interest to which answers are produced” [Apt03]. Visualisation of a logic
program can be seen in Figure [2.1

Baral [Bar03] explains that classical logic was the initial choice to represent declarative
knowledge. Classical logic embodies the monotonic property with conclusions being made,
often with incomplete knowledge. The monotonic property means that once a conclusion
is reached it remains valid even when additional knowledge is known. This is not like
human reasoning, where conclusions can be withdrawn or changed upon receiving more
knowledge. This led to the development of non-monotonic logic to enable true declarative
logic programming to occur. One of the main declarative logic languages used today is
Prolog (Programmation en Logique [CR93]). “Prolog is a logic programming language
in which the programmer states what is to be done rather than how it is to be carried
out” [WCO01]. Wilson and Clark [WCO1] observe that the approach is goal orientated and
dominates the artificial intelligence scene. However as Prolog evolved to be a fully fledged
programming language with efficient implementations, it came at the cost of sacrificing the
declarativeness[Bar03]. That was why AnsProlog™* was developed (see Section page [6]).

User

Queries Answers

Application-independent
inference procedure

Facts Conclusions

Knowledge base

Figure 2.1: A Logic Programming System |GGS85]

2.2.1 Parts of a Program

Syrjénen [Syr] states that there are four parts of a logic program: constants, variables,
atoms and rules.

Constants Constants can be either numerical or symbolic. They are the individual things
that exist in the problem domain universe. Symbolic constants normally begin with
a lower case letter. e.g. foo, bar, 2, 3, a.

Variables Variables usually begin with a capital letter. Unlike other forms of programming
no value is assigned to the variable. The underling engine assigns the correct values
or substitutes the constants in the correct place of the variable. e.g. X, Bar, Foo.

Atoms An atom consists of a predicate symbol followed by a parenthesised list of con-
stants or variable. Atoms are used to express relationships between constants. e.g.
parent (rob,brian). This atom may say that Rob is Brian’s parent. An atom is
boolean, that is to say its value is either true or false.

Rules Rules allow inferences to be made based on the predicate. A rule consists of a head
and body. In formal notation the rule is written as head <« body whilst in program-
ming notation it is written as head :- body. An example of a rule is sibling(X,Y)
:—- parent(Z,X), parent (Z,Y) which tells us that X and Y are siblings if they have
the same parent.

2.3 Answer Set Programming

To fully understand how APE can be used, the field of ASP needs to be fully understood.
“In answer set programming a logic program is used to describe the requirements that
must be fulfilled by the solutions of a certain problem” [Bar03]. “The answer sets of the
program are usually defined through the stable model semantics” [GL88]. These sets then
correspond to the solutions of the problem. ASP programs are written in AnsProlog*.

“AnsProlog* is short form for answer set programming in logic, and the * denotes that
there are no restrictions on any of the rules” [Bar03]. With the increasing efficiency of an-
swer set solvers and novel application areas for answer set programming, “ASP is becoming
a useful programming paradigm for declarative problem-solving and knowledge representa-
tion systems” [CDVBPOS|]. The process of programming in ASP is explained in the Gringo
and clasp user manual |[GKK™|. This describes the process as a four box model as can be

seen in Figure page

Baral [Bar(3] specifies that AnsProlog* programs can be considered to be a collection of
rules of the form:

Lyor...or Ly < Lgy1,..., Ly not Lyyyq,..., not Ly,.

Where each L; is a literal. A positive literal is an atom, whilst a negative literal is an atom
preceded by —. Lpy1,..., Ly are considered true if evidence cannot support the truth of
Lpyi1,..., L,. not stands for negation as failure. With negation as failure, not L; does
not mean L; is false, rather it cannot be proven to be true. This allows the answer set to
be computed in the absence of knowledge rather than with what is known.

The answer sets of a program are defined as the answer sets of the ground program. “A
term is said to be ground if no variables occur in it” [Bar(03]. An atom is considered ground

‘ Problem \ Solution(s)

Representation Interpretation

'

‘ Logic Program

Figure 2.2: Declarative Problem Solving in ASP |[GKK™|

Computation Answer Set(s)

if it only contains grounded terms. The Herbrand Universe HU of a language L is the
set of all ground terms which can be formed with the functions and constants of £. “The
Herbrand Base H B is the set of all ground atoms that can be formed with predicates from
L and terms from HU;” [Bar03].

“For positive answer set programs (programs without negation as failure), the answer set is
computed from the deductive closure” [DVQ9]. The answer set is computed by the following
algorithm:

e Take all rules off which the bodies are true
e Assume the heads to be true

e Continue until a fixed-point is reached

This fixed-point is the unique answer set, 1m(P) of the program.

Example program:

a - c,d.
c:-e.
f =g
d

e.

answer set = {e,d,c,a}

For programs with negation as failure the process is slightly more involved. Given a po-
tential answer set S, the program is converted to AnsProlog™ using the Gelfond-Lifschitz
(GL) transformation. AnsProlog™ is a subset of AnsProlog* where k = 0 and m = n in
the context of the literal formula above (Section page [6]).

De Vos [DV09| defines the Gelfond-Lifschitz transformation as:

Let P be a logic program and M a set of atoms. The GL reduct PM is obtained
by:

e Removing each rule with some negative literal ‘not «’ in the body such
that a e M

e Remove all negative literals from remaining rules

If the answer set S’ of the reduced program is S after reduction, then S’ is an answer set
of the original non-reduced program.

Example program:

a - b.
b:-.

¢ :- not d.
d :- not c.

Trying S={a,b,c,d}
a - b.

b:-.

c—not d.

Answer set S” = {a,b}. S’ # S, therefore not an answer set of the original program.

Trying S={a,b,c}

a - b.
b:-.
¢ - not d.

Answer set S” = {a,b,c}. S’ = S, therefore an answer set of the original program.

The full answer sets for the example program are {a,b,c} and {a,b,d}

2.3.1 AnsProlog* vs Prolog

“AnsProlog* was born as a declarative alternative to Prolog” [Bar03|]. Baral [Bar03] de-
scribes the differences as:

Positioning of rules in AnsProlog* does not matter Prolog processes literals from
left to right and top to bottom. In AnsProlog* the ordering of literals does not
matter, a program is considered a set of AnsProlog* rules.

The cut operator is not present in AnsProlog* The cut operator in Prolog is a goal
that cannot be backtracked past. It is used to stop extra solutions being found or
additional calculations being performed.

Prolog can get stuck in infinite loops Prolog has problems with programs that have
recursion through the negation as failure operator. These problems are not found in
AnsProlog* as answer set semantics are used to characterise negation as failure.

2.3.2 AnsProlog* Usage

“Answer set programming has been applied to several areas of science and technology”
[Lif08]. Lifschitz [Lif08] gives three usages where ASP has already been used:

Automated product configuration ASP has been used for the creation of a web-based
product configurator.

Decision support for the space shuttle An ASP system capable of planning and di-
agnostic tasks has been used for the operation of the space shuttle.

Inferring phylogenetic trees An ASP based method for reconstructing a phylogeny for
a set of taxa has been applied to historical analysis of languages and parasite systems.

The decision to use ASP is due to the advantages that ASP provides. De Vos [DV09] gives
the following advantages of programming in ASP:

e Programs are simple and quick to write
e Portable to different machine architectures

e Specification is equal to the implementation

2.4 1IDEs

“A programming environment is a suite of programming tools designed to simplify pro-
gramming and thereby enhance programmer productivity” [Rei96]. The programming en-
vironment should appear to the programmer as a single tool, “there should be no firewalls
separating the various functions provided by the environment” [DMS&4].

“Eclipse has become the dominant IDE for Java” [Gee05]. Geer [Gee05| states that the
power of Eclipse is due to being inexpensive whilst being a common platform that different
tools can be integrated with. Applying the same principles to APE will hopefully allow it
to become widely accepted by the community. APE will come pre-packaged with a variety
of ASP tools based on user feedback. However like Eclipse it must allow different tools to
be added at a later date. By doing this it will allow it to stay future proof.

As the aim for this project is to build upon APE it is pointless to talk about ways other
than Eclipse that an IDE for ASP could have been developed. Instead we will focus on the
Eclipse plug-in framework, then what APE provides before looking at other IDE’s in the
logic field.

2.4.1 Eclipse Plug-in

The Eclipse platform developer guide [Ecl09] states that the whole Eclipse platform is
structured as a core runtime engine with a set of additional features that are installed
as platform plug-ins. Plug-ins contribute by adding functionality to pre-defined extension
points. The plug-in identifies what extension points should be used. In addition the plug-in
provides a manifest file (MANIFEST.MF) that describes the packaging and prerequisites. It
also provides a plug-in manifest (plugin.xml) that describes the extensions the plug-in is
defining.

APE was first developed in 2006. Since then the Eclipse plug-in API has changed consid-
erably. The first job when extending upon APE will be to find any incompatibilities that
may have been introduced by the newer versions of Eclipse. The Eclipse developer guide
[Ecl09] defines the changes between different Eclipse versions. This will be the first place
to look when identifying an incompatibility bug.

2.4.2 APE

APE was developed in 2006 by Adrian Sureshkumar. Sureshkumar [Sur06] stated that due
to time constraints not all features that he would have liked had been implemented. The
features that were implemented in APE were:

e Syntax highlighting
e Error and warning underlining
e Block commenting

e Launching LPARSE and SMODELS from within a graphical user interface for program
arguments

e Piping SMODELS output to another program

e Multiple file support

e Common Eclipse features such as source control are also applicable to APE
Sureshkumar [Sur06] added that before APE can be widely used other solvers such as DLV

need to be supported. This is so it will appeal to more users and will enable a bigger take-
up of the tool. Sureshkumar [Sur(6] also stated that rigorous testing should be performed

10

before releasing to the community. When first developed due to the small nature of the
project no unit testing had been performed. When extending upon APE it is important
that testing is added as a priority to enable maintainable code. It is also important to note
that since 2006 a lot may have changed in the field of ASP and what was important then
may be different now. Before developing any new functionality it is important to see what
has changed and what is still relevant in the original tool.

2.4.3 Other IDEs

As Sureshkumar [Sur06] commented upon, Komorowski and Omori[KO85] and Francez et
al.[FGPTR5] present what the IDE scene for logic programming languages was like in the
1980’s. Answer Set Programming is currently in a similar state. Doing a GoogleE] search
for Answer Set Programming integrated development environment presents no noticeable
results. At the time of writing the top hit is in fact the knowledge representation and
reasoning at the University of Bath Websiteﬂ where APE is currently documented. In the
three years that have passed since APE was first developed it seems that no noticeable
further work has been done in this area.

Looking at what features exist for Prolog will allow similar logic features to be analysed,
deciding what features should to be added into APE. A Google search for Prolog integrated
development environment presents many results. Tools such as the Prolog Development
Tool (PDT)ﬂ exist as a plug-in to Eclipse. PDTs main features include syntax highlighting,
searching for previous predicates as well as references to the predicate. It has features such
as code completion as well as making development easier with keyboard shortcuts.

Other environments such as Visual PrologE] exist. This provides the ability to group items
into packages giving an extra level of abstraction and a text editor allowing browsing to
declaration and implementation.

From the two Prolog environments documented here it seems that adding support to APE
to support searching for declarations and implementations of constants, variables and atoms
would be a worthwhile feature. In addition code completion would be a useful feature for
the IDE. If the user has already defined a constant, variable or atom then APE should
recognise this and as such be helpful to the user by showing code completion possibilities.

2.5 ASP Tools

Many tools exist within the field of ASP. The ones added to APE will be the most de-
sired from the community decided through means of a questionnaire. Some of the more
commonly used ASP tools are documented here.

"http://www.google. com
*http://krr.cs.bath.ac.uk/index.php/Student_Projects
3http://sewiki.iai.uni-bonn.de/research/pdt/start
Yhttp://www.visual-prolog.com/vip6/default . htm#VDE

11

http://www.google.com
http://krr.cs.bath.ac.uk/index.php/Student_Projects
http://sewiki.iai.uni-bonn.de/research/pdt/start
http://www.visual-prolog.com/vip6/default.htm#VDE

2.5.1 DLV

“DLV is a system for disjunctive data-log with constraints, true negation (& la Gelfond &
Lifschitz) and queries” [EFP]. “The DLV system supports disjunctive logic programming,
where a program may contain disjunction in the head of rules and negation in the body”
[LPET06]. Baral [Bar0O3] explains that the DLV system processes the input program in
several steps. Firstly it converts it to an internal representation, then it converts it to a
program without variables. In the next step possible answer sets are computed with these
answer sets going through post processing according to the front-end.

Currently APE does not support DLV due to time constraints in the initial development.
Sureshkumar [Sur06] mentioned that the project is not open source meaning only binary
builds are available. However this should not pose a problem for integrating DLV into APE
as DLV will be used as it is, rather than developed further.

Java Wrapper

A wrapper exists, as explained by Ricca |[Ric] that wraps around DLV so that DLV programs
can be developed as Java programs. APE will need to support a similar architecture in
order to call DLV from within a Java program. Ricca [Ric| uses a D1vHandler class which
provides the functionality to call DLV. The D1vHandler manages a DLV instance, which is a
native process. This is done by using the Runtime.exec () method and java.lang.Process
class. All DLV input and output operations go to the DlvHandler instance (inside the Java
Virtual Machine) through a system pipe.

2.5.2 SMODELS

“SMODELS is the engine that performs the computation of the answer sets of the input
program” [Bar(3]. A SMODELS program may have none, one or many stable models, known
as the answer sets. The stable models are seen as a rational belief about the program.
SMODELS can be used either as a C++ library that can be called from user programs or as
a stand alone program together with a suitable front end. The main front end known as
a grounder is LPARSE. Other solvers that accept LPARSE input include assat, nomore++
and SMODELS.

2.5.3 LPARSE

“LPARSE programs are written using standard, though extended (such as AnsProlog*) logic
programming notation” [Syr]. “LPARSE adds a layer of syntactic sugar on top of SMODELS”
Syr]. It is the most feature rich of the different parsers and front ends and is the default
to use when writing SMODELS programs. LPARSE provides a grounded input program that
can be used within a solver such as SMODELS. To ensure fast grounding by processing
each rule only once the input must satisfy the property of being strongly range restricted

12

[Bar03]. This means that any variable that appears in the rule must also appear in the
domain literal in the body.

“Other front ends exist in addition to LPARSE” [Syr]:

smodels API A C++ library that allows it to be called within any C++ program.
parse Original parser of SMODELS producing output in 1.x format

primitive parse (pparse) Accepts only ground programs producing output in 2.x format
model checking models (mcsmodels) A deadlock and reachability checker

dlsmodels An older version of mcSMODELS which detects deadlocks

2.5.4 Cmodels

Cmodels is a system that computes answer sets for either “disjunctive logic programs
or logic programs containing choice rules” [Liea]. It uses satisfiability (SAT) solvers to
enumerate models of the program. Like SMODELS the input to the solver is a grounded
logic program achieved by using LPARSE. Cmodels computes the supported model M of a
logic program P. “Computing M is accomplished by forming the completion of P, classifying
it (additional atoms can be introduced) and then invoking a SAT solver” [Lieb].

2.5.5 Sup

SUP is a native Answer Set Programming (ASP) solver that can be seen as a “combination
of computational ideas behind cmodels and SMODELS” [Lieb]. It can be thought of Cmodels
without completion. Sup computes the supported models of P but does not form the
completion of P. “Sup applies Minisatﬂ to P and the non-clausal constraint mechanism of
Minisat is employed for expressing the supportedness restriction” [Lieb].

2.5.6 Gringo

Gringo, is a grounder capable of translating logic programs provided by users into equivalent
propositional logic programs. Gringo is attractive as it “significantly extends the input
language of LPARSE while supporting a compatible output format, recognised by many
state-of-the-art ASP solvers” [GKO™09].

As Gebser et al. [GSTOT7] explain, before Gringo there were only two major grounders
LPARSE and DLV’s grounding component. Gringo combines and extends from both of these
grounders. “A salient design principle of GrinGo is its extensibility that aims at facilitating
the incorporation of additional language constructs” [GST07].

®http://minisat.se/

13

http://minisat.se/

Gebser et al. [GSTQ7] describe the features that Gringo combines:

e The input language features normal logic rule, cardinality constraints and further
LPARSE constructs

e It offers the new class of A-restricted programs that extends LPARSE’S w-restricted
programs,

e Its instantiation procedure uses back-jumping and improves on the technique used in
dlvs grounder

e Its primary output language is textual as with dlvs grounding component

A-restricted means that the variables in the program are bound by the rules of a smaller
program. These features of Gringo allow for more optimised programs to be grounded.
“GrinGo on most instances is faster than LPARSE” [GST07].

2.5.7 clasp

clasp works on logic programs in Gringo’s output format. This numerical format, which
is not supposed to be human readable is output by Gringo and can be piped into clasp
IGKK™]. Tt is the best performing solver as described by Gebser et al. [GKS09] . Gebser
et al. |[GKS09] also explain that clasp was originally designed and optimised for conflict
driven ASP solving centred around the concept of a nogood from the area of constraint
processing.

The system architecture of clasp can be seen in Figure page

2.5.8 ASPViz

ASPV1z is a Java program that “constructs two-dimensional images from the answer sets
of a given program” [CDVBPOS|]. As explained by Cliffe et al. [CDVBPOS| the tool takes
two ASP programs, P, and P,. The former represents the given problem and the latter
elaborates on the conclusions drawn by P, concluding the necessary literals to render a
graphic. To use this within APE would mean allowing the user to supply both parts of the
program so that ASPV1z can draw its output.

2.5.9 Debugging

Debugging is a major feature of an IDE and would be especially useful within APE. “Cur-
rent ASP systems are still mostly experimental tools and their support for debugging is
limited” [Syr06]. “Debugging answer set programs is a task of supporting a programmer
in investigating why a program does not behave as expected, rather than a series of static
tests that can be performed” [BDO05].

14

~ Preprocessing
Ground Logic Normal Program
Program Parser Rules Builder
(Lparse Format) I
]
(Static) Data
|Propositiona| Variablesl

| Atoms |<—>| Bodies |

!
/Solver A

Propagation
Decision Assignment Local Unfounded
Heuristics (Atoms/Bodies) EropagatioHSet Checkj
'y A

Conflict Recorded
Resolution Nogoods

Figure 2.3: System Architecture Of Clasp [GKS09]

APE currently checks user input syntactically. This ensures that the syntax the user is
entering is correct for the formal language. For semantic errors (where the program is
syntactically correct) APE does not support any tools that allow the user so see why the
behaviour is different.

Syrjanen [Syr06] says that semantic errors can be categorised into two types:

1. Typographical errors such as a misspelling of a variable or predicate

2. Logical errors where a rule behaves different than the intention

Currently in APE the most practical approach is to remove rules from the program until
the resulting program has an answer set and then examining the removed rules to see what
caused the error. “It is a non exact process, as it is subject to the potential differences
between what the programmer wrote, what the programmer meant to write and what the
programmer actually meant” [BDO5].

A debugging tool SPOCK@ explained by Brain et al. [BGPT07| exists for debugging ASP
programs. The input of SPOCK is a logic program in the core language of DLV or SMOD-
ELS, read from the system standard input and/or from (multiple) files. The output varies
according to the selected functionalities, determined by a set of options. The most impor-

Shttp://www.kr.tuwien.ac.at/research/systems/debug/index.html

15

http://www.kr.tuwien.ac.at/research/systems/debug/index.html

tant syntax extension of the input programs is the labelling of rules, allowing debugging
mechanisms to explicitly refer to certain rules

2.6 Common Language

As discussed above a variety of different tools exist to allow users to ground and solve ASP
programs. Some users may prefer to use dlv, others LPARSE with SMODELS and others
Gringo with clasp. In some situations it may be desirable for users to convert between one
or the other.

Gringo is built on top of LPARSE meaning programs written for LPARSE should work fine
with Gringo. As LPARSE is more level restricted, programs tend to be more verbose than
the ones for Gringo. “It is not suggested writing programs in the input language of Gringo
for compatibility with LPARSE” [GKK™].

The key differences between LPARSE and Gringo are:

e Gringo supports min and max aggregates

e Variables within compound terms are supported e.g. p(£f(x)) LPARSE would treat
it as f(x)

e LPARSE supports primed atoms such as p’

e Symbolic names are built into LPARSE such as plus. This is not the case for Gringo
to not conflict with user defined names.

The user may want to convert between different solvers. As a first step APE should be able
to highlight what is incompatible. This should be done by changing the tool type in APE
and the syntax highlighting should be able to identify what would cause problems. Future
steps could be to automatically convert between different solvers if any incompatibility
issues occur.

If the user wanted to convert between different programs then APE should show what is
common between the two and what will cause incompatibility for the first step. Future
steps for APE would be to develop a common language and to convert to that in order for
it to work between different solvers.

2.7 Regression Testing

Regression testing as explained by Wahl [Wah99] is a testing process that is used to de-
termine if a modified program still meets its specifications or if new errors have been
introduced. As the field of ASP is changing with new tools, debuggers, solvers etc. being
developed then these will need to be added into APE. Having a good regression testing

16

framework will make the developers job straightforward as it will be easier to maintain.
Additionally it will allow APE to be tested for compatibility issues when new versions of
Eclipse are released.

Two forms of regression testing need to occur within APE. Firstly end to end input and
output must be consistent between different versions. For example when running tools
within APE such as LPARSE and SMODELS, when given the same input, the output should
be identical for the previous and current version of the code. Secondly the user interface
should be tested after any change. This is significantly harder to test but it will ensure
that developers have more confidence when making changes in future releases.

Commercial tools exist such as Window Tester!| that enable automated regression and
coverage tests to occur. However in the case of APE it is more appropriate to use open
source tools such as SWTBO@ SWTBot provides an API that allows rigorous functional
testing. SWTBot allows tests that interact with the applications user interface. Using a

tool such as this would allow regression tests to be produced, testing the user interaction
of APE.

2.8 Usability Evaluation

For APE to be deemed a success we must ensure that is accepted by the ASP community.
For it to be accepted the factors behind what motivates people to use particular software
must be researched. Seeley [See03] states that a good tool should promote novice learning
and yet also be extremely efficient for experts. In order to ensure that the APE is being
used correctly, evaluation of users using the system must be performed.

“Interface evaluation is the process of assessing the usability of an interface and checking
that it meets user requirements” [Som06¢c]. The following attributes can be used to assess
usability:

e Learnability

e Speed of operation

e Robustness

e Recoverability

e Adaptability

Observation of these attributes can be achieved through questionnaires, observations of
users, video snapshots as well as embedding into the software, usage collection tools. Som-
merville also mentions that it is good to give the users of the system a ‘gripe’ command.

"http://www.windowtester.com/
8http://www.eclipse.org/swtbot/

17

http://www.windowtester.com/
http://www.eclipse.org/swtbot/

This allows users to pass messages to the designer about what they feel could be improved
about the system.

2.9 Summary

The information outlined above has identified the field of logic programming and where the
paradigm of ASP factors. Key texts and papers have been identified that can be looked
at further for clarification or further points as the project progresses. Brief descriptions
of different tools that are used in the ASP community are provided. Tools such as clasp,
ASPViz and SPOCK have been made since APE was first developed. These have been
researched and document how they fit into the APE model. Other logic IDE’s such as
Visual Prolog have been evaluated to see the features that they provide in order to see if
relevant features can be added to APE.

The plug-in architecture for Eclipse is described showing how easily it is to add new features
to APE. Also outlined is how the tool can be developed more easily in the future. Given
the timescale and scope of this project not all tools will be added into APE. For future
development work a regression framework would be useful. The different regressions that
may occur are documented as well as how these can be tested and what tools exist in order
to develop a good testing framework.

Finally documented is the different techniques needed to evaluate the interface design. For
acceptance by the community a good user interface is a must. If the tool is good to use then
people are likely to stick by the tool, otherwise they will carry on using existing methods.
By now understanding the paradigm of ASP as well as the methodologies currently in use,
a tool can be developed (APE) that will provide a methodology to support these.

18

Chapter 3

Requirements

In order to provide a successful system, requirements must be identified early on in the
project. Sommerville [Som06a] describes requirements elicitation as “the process of deriv-
ing the system requirements through observation of existing systems.” Requirements are a
vital part of the project with Goguen and Linde |[GL93| describing projects failing because
of inadequate requirements. The functional requirements define the behaviour that APE
should provide. These include new features to be implemented, as well as improvements to
existing features in APE. Constraints of the system, also known as non-functional require-
ments are thought about and documented. This chapter does not aim to give a full set
of requirements for APE. The field of ASP is ever changing and it would be impossible to
document every possible feature that may be useful in APE. Instead key requirements are
documented concluding with the requirements implemented given the time scale limitations
of the project.

Goguen and Linde [GL93] say a basic question for requirements gathering is finding out
what users really need. The users in this project can also be considered as the stakeholders.
As described by Preece [PRS02] these are the people that have an interest in the project.
For this dissertation the stakeholders are ASP programmers as well as other members who
have an interest in ASP programming. These are the people that will benefit most from
successful completion of the project.

Requirements have been gathered from these stakeholders as well as from a developers point
of view. In order to think of future developers, introspection as described by Goguen and
Linde [GL93] has been used. Introspection is described as being useful but has the problem
of being inaccurate if performed by someone in a different field. Given the requirements are
thought of by a programmer to help future programmers, then the problems documented
by Goguen and Linde |[GL93| are not so much a concern. For this dissertation it was
deemed a suitable method considering the developer requirements are a subset of the main
requirements of the project. In addition time constraints of the project meant other ways
of investigating requirements in this field could not be performed in suitable detail.

19

3.1 Gathering Process

Many approaches were considered for the requirements elicitation process. Goguen and
Linde [GL93] discuss the various approaches that were available. Examples include ques-
tionnaires, face to face interviews, telephone interviews, focus groups and observation ses-
sions. Ruane |[Rua04] explains the main choice is choosing whether questions are to be
asked via a questionnaire or as an interview.

A questionnaire is an extremely efficient data collection tool with Goguen and Linde [GL93]
describing questionnaires as being useful when the population is large enough with a clear
issue. Criticisms as explained by Ruane [Rua04] are that words can be put in the mouth
of respondents with no meaningful information gathered. In addition no probing questions
can be asked as respondents are not inclined to invest time to reply. As Ruane [Rua04]
explains, an interview is much more personal. An interviewer can build a rapport with the
respondent, being able to listen and interact to build knowledge of the subject.

For this dissertation a questionnaire was deemed suitable. A questionnaire allowed people
from all around the world to participate without putting a burden on their time. Face to
face interviews would have been a great monetary expense involving travelling and meeting
people. In addition like telephone interviews, it would have impeded upon people’s time.
Therefore it was deemed suitable to allows users the choice of whether to complete the
questionnaire. Questionnaires can suffer from low response rates, Ruane [Rua04] gives an
example of less than 30%. However it was deemed enough responses would be received due
to the large population as well as the advantages APE would provide.

The questionnaire as suggested by Ruane [Rua04], was designed to“stand on its own.”
Benefits of this approach are the elimination of time and space barriers. Suchman and
Jordan [SJ90] describe that most useful information in requirements gathering is obtained
when both interviewers and respondents negotiate the meaning of questions and answers.
Unfortunately the questionnaire hinders this process. However in the case of this project,
when feedback was received it was acted upon. For example, following feedback the first
question was changed from ‘What do you currently use to develop ASP programs?’ to
‘Which text editor do you currently use to develop ASP programs?’ to ensure greater
clarity for respondents.

The questionnaire distributed to the stakeholders can be found in Appendix [A] page
Likewise the results received can be seen in Appendix [B| page

One area that was not explored was observation sessions to see how users use the current
ASP tools available to them. Again the same problems as face to face interviews would be
encountered. Therefore it may have been suitable to limit these sessions to only observe
people within the university. This would have relied on people giving up their time to allow
observation of them. However due to the suitability of the questionnaire results and time
constraints this avenue was not explored.

20

3.2 Discussion of Results

The questionnaire was distributed to forty six people. Seventeen responses were returned,
giving a response rate of 37%. This low response rate may be explained by people being
unwilling to complete the questionnaire or people on the mailing list now being inactive in
the ASP scene. The feedback from the responses received was extremely positive. Although
it was a low response rate the justification to carry on with the development of APE was
found from the comments received. Such comments received included ‘great initiative’ and
‘this sounds like an excellent idea, could definitely help make developing ASP programs
easier.’

3.2.1 Experience

In order to better understand the experience

of users, they were asked how many years they

had been using ASP for. Most people had Number
development experience ranging from 1 to 10 4 %
years. A couple of people questioned had ex-

perience of 15 years and 20 years. However 3 O
the majority were considerably less. This sug-
gests that the people questioned have enough 2
experience in ASP to give valuable sugges-
1 O oO—0—0 O

tions about the direction that APE devel-
opment should head. The respondents ex-

perience is widely spread meaning that the 0 5 10 15 20
Years

answers will be coming from different per-
spectives. The danger of answers from more
experienced users is that they could have Figure 3.1: Experience With ASP
workarounds in place and do not feel the need

to change. Likewise with inexperienced users

the danger is that people do not know the domain well enough to give useful feedback.
However for this project there is a mixture giving a variety of views enabling requirements
to be gathered from both experienced and inexperienced ASP users.

3.2.2 Current Editor

The main fundamental part of ASP development is the writing of the ASP program. For
a better understanding of currently used tools, a question was asked to find out which
text editor the respondents preferred to use. The question was designed to see whether
any particular editor is the preference and if so what features does it have that could be
incorporated into APE.

From the answers received it can be seen that the most popular choices are Emacs and

21

5.00

3.75

2.50

1.25

Text editor

Emacs Eclipse Iclingo Text edit (mac) Context Textwrangler Nedit Notepad++

Figure 3.2: Editors Currently Used For ASP Development

22

gedit

Vi(m). Some people answered with the response text editor before the question was
changed, as explained in Section [3.1], page Some people specified that they use Eclipse,
not as part of an IDE just as a text editor. The responses show that the market is there
for APE to penetrate as no one questioned mentioned using an existing IDE. To ensure
that people move across to using APE it will need to be publicised as well as being user
friendly. User interface design is discussed in the literature survey (Section page .
Ensuring that these principles are met will ensure that the migration across to APE will
be as seamless as possible.

3.2.3 APE

The next question asked users outright if they had heard of APE. Of the responses received
only 45% had heard of APE, with no one actively using it. The reasons given for this were:

e APE is not compatible with the latest version of Eclipse
e Not enough features are provided

e It is hard to use

Firstly, 55% had not heard of APE leading to the conclusion that the work must not have
been widely publicised following the work done by Sureshkumar. However following the
responses received this is perhaps a good thing as one response was that APE does not
work correctly with Eclipse. This may just be a single user issue or it may be part of a
wider problem. If the latter it is a good job that not many people have used it as their view
of the product would be skewed, with users having negative connotations towards APE.

Following other responses APE will need to support the features that users want. As it
stands APE is a bare bones IDE and will not be suitable for all users. However by the
end of the project it will have been extended making it suitable for more users. If these
features are not provided then quite simply users will not use the IDE.

Testing

One of the issues raised with the current version of APE is that it is incompatible with the
latest version of Eclipse. Features that should work do not. Therefore a requirement to do
regression testing was added. As discussed in the literature survey (see Section page
SWTBot can provide a easy to use interface for this. By having regression tests in place
it will enable errors to be picked up when new versions of Eclipse are released. Additionally
it will allow future developers to implement new features, ensuring that previous working
features have not been broken because of their changes.

23

12

DLV DLT DLV-complex Lparse Smodels Gringo Clasp Sup Platypus Claspar ASPViz Asperix Crmodels Ezcsp Clingo Cmodels bingo

Figure 3.3: ASP Tools Currently Used

3.2.4 ASP Tools

As discussed in the literature survey many ASP tools exist that are not currently present
in APE. However, too many tools exist to add all of them into APE given the scope of
the project. A question was asked asking users what tools they actively use in their ASP
development. By gauging their responses it enabled the common tools to be identified and
integrated into APE, rather than spending time adding tools that would not be used by
any users.

The results were not that surprising with the main better known tools having the market
share of use. The most popular tools of the users questioned were:

1. Gringo
2. clasp

3. LPARSE
4. SMODELS
5. DLV

6. ASPViz

LPARSE and SMODELS are already present in APE so no further work needs to be done for
them. Gringo and clasp are the most popular grounder and solver combination meaning
that support will definitely need to be added. The specifics of these tools can be found
discussed in Section [2.5] page DLV is another tool that could be added however

24

depending upon time constraints may not. 17% of the respondents used ASPViz so like
DLV it will added into APE if time constraints will allow.

In addition to the popular tools listed above, it was shown that users make use of other
tools that had not been considered in the literature survey. Responses showed that users
make use of the following programs:

DLV-Complex E] extends DLV by means of functions. It is a powerful system supporting
functions, sets, lists as well as libraries.

ASPeRIX E] Grounding is performed on the fly meaning no pre-grounding processing is
performed. Only ASPeRIX is needed for both grounding and solving.

EZCSP [ﬂ is an inference engine that allows computing extended answer sets of ASP
programs.

Platypus E] is an extensible distributed platform for answer set programming.
Claspar EI is a parallelised version of clasp.

Clingo °combines both Gringo and clasp. Takes the input as the input language of Gringo
and outputs in the output language of clasp.

Bingo E] is still under development. It is an experimental bottom-up grounder based on
semi-naive evaluation.

Although it would be nice if APE supported every tool listed above it would be infeasible
given the timescales of the project. It was decided that support should definitely be added
for the most popular, Gringo and clasp. For the other tools it was decided to not add
support for them at this time within APE. This was to allow implementation to focus more
on specific IDE features as discussed in Section page

Framework

Gringo and clasp are the main tools that will be added into APE following user feedback.
However in future, integration of other tools should be made as seamless as possible. To
allow for this a framework will be developed at the same time as integrating Gringo and
clasp. By ensuring a suitable framework is in place it will enable future developers of APE
to rapidly add in new programs without having to worry about low level implementation
details. The framework will handle the difficult coding for the developer.

"http://www.mat.unical.it/d1lv-complex
%http://www.info.univ-angers.fr/pub/claire/asperix/
3http://krlab.cs.ttu.edu/~marcy/ezcsp/index.html
“http://www.cs.uni-potsdam.de/platypus/
http://potassco.sourceforge.net/
Shttp://potassco.sourceforge.net/labs.html

25

http://www.mat.unical.it/dlv-complex
http://www.info.univ-angers.fr/pub/claire/asperix/
http://krlab.cs.ttu.edu/~marcy/ezcsp/index.html
http://www.cs.uni-potsdam.de/platypus/
http://potassco.sourceforge.net/
http://potassco.sourceforge.net/labs.html

Feature Count
Predicate completion 9
Conversion between solvers 10
Debugging
Integration of dlv

Visualisation

Integration of Gringo/clasp

N O | N

Replacement of a rule by its grounding

Table 3.1: Most Desired Features

3.2.5 Features

Although the most popular tools in use by the ASP community have been identified this
does not necessarily correspond to the features that possible users may want to see in the
IDE. An effective part of requirements gathering is ensuring that the system matches the
needs of the user. In order to do this users were asked to pick their three most desired
features for an IDE for ASP. The results can be seen in Table B.1l

From the results it is clear that the most desired features are being able to convert between
different solvers as well as having predicate completion. After this the features most desired
are debugging as well as visualisation of the program being developed. Both debugging
and visualisation would be implemented through the means of external tools, specifically
SPOCK and ASPViz. Both of these are explained in the literature survey in Section
page As a framework is being developed to enable ease of future implementation it
was decided to not add SPOCK or ASPViz initially. Instead they could be added if time
suffices. After that the most desired feature is integrating Gringo and clasp into APE. This
is understandable given that they are the most widely used tools as seen in Section

page [24]

Conversion Between Solvers

As stated above the most desired feature from respondents is the ability to convert between
different solvers. The answer did not mean a true solver but rather a grounder and solver
pair. Such examples of grounders are LPARSE and Gringo. Although Gringo extends the
language of LPARSE differences between the two are apparent. Examples of which are

discussed in Section page

As LPARSE and Gringo are the most common tools in use then it made sense that the
type of conversion supported should be between the two grounders. A program written
in the syntax of LPARSE should be able to be converted to Gringo and ran through clasp
returning the same answer set as if the original had been ran through sSMODELS. Likewise
the opposite should occur with a Gringo syntactically correct program being converted to

26

a LPARSE accepted program giving the same computed answer sets through both solvers,
clasp and SMODELS.

A huge advantage to the user is the time that this conversion could save. If it cannot be
done automatically the user has to manually perform the cumbersome job of rewriting the
program this time in the syntax that will be recognised. Having this done automatically
by a few clicks or a keyboard shortcut speeds up the user’s development process.

Predicate Completion

Providing predicate completion would reduce the time taken to input the program. For ease
of understanding the program, predicates often follow a naming convention. By having a
descriptive predicate name it saves the programmer having to explain what it does through
other means such as commenting. Having predicate completion would save the programmer
having to type the full name each time. By only typing the first letter and seeing a list
of proposals, input time can be reduced. In addition it can reduce the number of errors
caused by mistyping predicate names later on.

A predicate view could also be provided to the programmer to allow them to see an outline
of the program and all possible actions they can take from previous predicates defined. The
view would allow the developer to see all the previously declared predicates as well as the
constants, variables and rules in the program. The view could provide an additional way
of auto completion for the user. The user could double click on some text in the view in
order to insert the text into the editor document at the cursors position.

Other Features

Space was left on the questionnaire to allow users to highlight new features that may not
have been covered by other aspects of the questionnaire. The only response received was
for the integration of bingo/caspd to be added to APE. As this was just the one response
it was decided that it was not worth investigating bingo or caspd as other features were
more of a priority.

3.3 Summary

The requirements gathering has helped to give a fuller insight into what potential users of
APE wish to see from the IDE. Non-functional requirements have been identified such as
which tools APE should support. In addition improvements and features have been sug-
gested and explored in more detail. Requirements have been considered from a developers
point of view, planning for the future. Examples include having a framework so future
developers can add in additional tools easily. In addition maintainability is also considered
by constructing a suite of regression tests that can be run for future releases of APE.

27

A full requirements specification can be found in Appendix [C| page However as doc-
umented above only specific features will be considered for further development of APE.
This is because of the time constraints faced when completing an undergraduate disserta-
tion. The requirements to be considered, thus the scope of the project given the time scale
can be summarised as follows:

e Support for Gringo and clasp

e Auto predicate completion

Conversion between LPARSE and Gringo

Conversion between Gringo and LPARSE

Framework to add new features

e Regression testing ability

User friendly

28

Chapter 4

Design

Following the requirements process the next step was the design stage. The design stage
allows the requirements to be thought about in more detail, assessing the best way to
implement these. This chapter documents the rationale behind these decisions and the
choices made prior to implementing the system.

4.1 Architecture

APE as it currently stands is implemented as an Eclipse plug-in. The reasoning behind
this decision is documented in [Sur06]. In this document Sureshkumar justifies and gives
examples of many of the advantages of choosing Eclipse. Some given are:

e Basic functionality already provided by Eclipse
e Multi-platform support as Eclipse is written in Java

e Proven history of successful plug-ins built on Eclipse architecture

As much previous work had been done by Sureshkumar changing the architecture was
not even considered. By changing the architecture it would have meant time was spent
repeating and re-implementing the work done by Sureshkumar albeit using different tools.
Given the timescale, no new features would have been added providing no benefit to the
overall goal of developing a suitable IDE for users of ASP.

4.1.1 Eclipse Plug-ins
In order to understand how APE fits together the plug-in architecture of Eclipse must

be understood. Rivieres and Beaton [RB06] describe the Eclipse platform in great detail.
Apart from a small kernel called the platform runtime, all of Eclipse’s functionality is found

29

/Eclipse Platform ™

/“Workbench ™ New Tool

(JFace ™

" SWT
New Tool
A /
Team
Workspace
New Tool

Platform Runtime

¢
N

Figure 4.1: Eclipse Architecture As Seen In [RBO6]

located inside plug-ins. The structure can be seen in Figure Multiple plug-ins interact
with Eclipse’s core seven plug-ins. The platform runtime then brings them altogether to
be the application known as Eclipse.

A typical Eclipse plug-in consists of:

e Java code in a Java ARchive (JAR)
e Read-only files
e Resources such as images

e A manifest

The manifest is the way a plug-in declares how it interconnects to other plug-ins. This
is managed through extension points and extensions. Plug-ins can implement behaviour
by extending from an extension point. For example by extending the extension point
org.eclipse.ui.preferencePages each plug-in can contribute its own preferences. A
manifest is represented by two files MANIFEST .MF which describes the runtime dependencies

30

of the plug-in. The other is plugin.xml which lists the extensions and extension points
that the plug-in implements.

Upon startup this all combines together to provide a usable application. The platform
runtime discovers all plug-ins and builds an in memory plug-in registry after reading all
the plug-in’s manifests. Each plug-in is lazy, in that it is only activated when it is needed
in order to reduce the memory footprint of Eclipse.

All of this development is made easy through the use of the Plug-in Development Environ-
ment (PDE)[I which itself is an Eclipse plug-in to aid the development of Eclipse plug-ins.

4.1.2 APE

As discussed by Rivieres and Beaton [RB06] complex tools are usually split across multiple
plug-ins. Sureshkumar followed this guidance splitting APE into seven plug-ins. As sug-
gested by Clayberg and Rubel in [CRO8] they have been broken down into User Interface
(UI) and core plug-ins. The UI plug-ins are for the user interface whereas the core plug-ins
are designed to operate in a headless environment (one without a UI).

As discussed by Sureshkumar in [Sur06], APE consists of:

e uk.ac.bath.cs.asp.ide - Logging
e uk.ac.bath.cs.asp.ide.ui - ASP perspective and syntax colouring

e uk.ac.bath.cs.asp.ide.dependencygraphs - Dependency graph model and depen-
dency graph user interface

e uk.ac.bath.cs.asp.ide.lparse - LPARSE preferences, LPARSE parser, document model
and LPARSE launcher

e uk.ac.bath.cs.asp.ide.lparse.ui - LPARSE editor, LPARSE preference page and LPARSE
launch configuration user interface

e uk.ac.bath.cs.asp.ide.smodels - SMODELS preferences and SMODELS launcher

e uk.ac.bath.cs.asp.ide.smodels.ui - SMODELS preference page and SMODELS launch
configuration user interface

A problem with this approach is that if APE continues to grow then it will become un-
manageable. If every new feature is going to have a core and Ul plug-in then the number
of plug-ins increases very quickly. Another problem is that boundaries are blurred across
plug-ins. Taking the LPARSE plug-ins as an example, a couple of problems can be seen
upon first observation. In order to access the preferences in the UI plug-in part, the name

"http://www.eclipse.org/pde/

31

http://www.eclipse.org/pde/

of the LPARSE plug-in is hard coded. This means that it is very fragile if any refactoring
occurs such as renaming a package or plug-in name then APE will break.

Secondly a problem can be seen from a developers point of view. LPARSE is an external
program meaning that arguments need to be passed to it. These arguments need to be
found for the user in the launch configuration interface. In addition they need to be found
in the launcher found in the LPARSE plug-in. As a result these arguments are repeated in
both the interface and the launcher. This is not maintainable and if LPARSE changes then
changes have to be made in two locations.

As part of the new framework to be developed (see Section page this will be resolved,
however it will not be suitable to have separate core and Ul components. Therefore the
original APE plug-ins will be refactored leaving four from the original seven. The resulting
plug-ins will be a combination, resulting in:

e uk.ac.bath.cs.asp.ide

e uk.ac.bath.cs.asp.ide.dependencygraphs
e uk.ac.bath.cs.asp.ide.lparse

e uk.ac.bath.cs.asp.ide.smodels

This refactoring provides a clearer structure as well as enabling the launcher and interface
to share the same components.

Of course this dissertation is aiming to provide new and usable features for the potential
users. Therefore to keep the same pattern three new plug-ins will be added to the feature
of APE. These will be:

e uk.ac.bath.cs.asp.ide.gringo
e uk.ac.bath.cs.asp.ide.clasp

e uk.ac.bath.cs.asp.ide.testing

Installation

All the plug-ins documented above combine together to create a feature. A feature provides
the branding of the plug-ins; bringing together a group of related plug-ins that install and
get updated together. Of course this is the whole project known as AnsProlog* Program-
ming Environment (APE). The feature project already exists and can be found under the
name uk.ac.bath.cs.asp.ide.feature. At the moment this feature is installed by dragging
and dropping the JARs into the plug-in directory located inside the Eclipse install folder.
This is not user friendly and is something that will be changed in order to ensure APE is
as easy to install as possible.

32

A new update site project called uk.ac.bath.cs.asp.ide.updatesite will be created wrap-
ping around the feature to allow users to install the plug-in by connecting to a website that
will install or update APE. In addition the feature will be able to periodically keep checking
upon the website to inform the user when an update is available. This will alert users to
new features that may be available in the future. This is a much easier method than having
to download, then drag and drop files each time a user wishes to install a new update.

4.2 Developer Framework

A new framework is going to be developed that will allow future tools to be integrated into
APE much more easily. In order to do this existing tools were analysed to understand how
they were implemented. This allowed identification of shared components that could be
reused.

APE currently consists of two external tools, LPARSE and SMODELS. Both tools within
APE enable the launching of an external tool. This is exactly what will need to be done
when Gringo and clasp are added into APE. However future tools may be added so it made
sense to develop a framework to allow future features to be added quickly as well as being
maintainable.

The implementations of LPARSE and SMODELS were analysed to find the similarities that
exist between the tools. The main things found were:

e Each program has program arguments (e.g. lparse —help)
e A launch configuration delegate
e Launch configuration interface

e Launch shortcut

The framework was designed so that these similarities were supported by it. Choices needed
to be made such as how are the clients (e.g. Gringo, LPARSE) going to instantiate it? How
are clients going to be able to share information? Are interfaces going to be helpful? Is
there code to re-use?

It was decided that the easiest method would be to allow clients to subclass key classes
in the framework in order to instantiate. Each client can be ran as a module keeping it
away from depending upon others. Modularity plays a key part in safe software allowing
for better testing, as well as developers understanding the structure better. Having these
classes abstract means only clients will be able to implement them. A choice then had to
be made about whether to provide clients with interfaces within the framework or whether
to restrict them to an abstract class.

Bloch [Blo0g| states that interfaces should be preferred to abstract classes. “Interfaces
enable safe, powerful functionality enhancements [Blo0§].” Abstract classes however leave

33

the programmer with no alternative other than inheritance, leading to more fragile and less
powerful classes. However Bloch does state that it is “far easier to evolve an abstract class
than an interface .” As the framework is new and likely to evolve it was decided that for
this project abstract classes would be favoured, with any methods that the client needing
to implement being declared abstract in the abstract class. Additionally interfaces can be
added later as the framework develops if there is a justifiable reason for the client needing
them.

4.3 Conversion

The most desired feature from the requirements gathering was the ability for users to auto-
matically switch between different solvers. Given the scope of the project the requirements
narrowed it down to converting from Gringo to LPARSE and vice versa. As discussed in
Section [2.6] page differences exist between the input languages between Gringo and
LPARSE.

To solve this problem there are two possible solutions that stand out. The first possible
option is to parse the LPARSE program into the internal model representation within APE.
This then enables easy checking of the program to spot any incompatibilities between the
model and what is acceptable Gringo syntax. However, a problem occurs with this method
when converting back the other way from Gringo to LPARSE. No functionality exists to
convert to internal Gringo representation. This of course poses a problem as this model
cannot then be analysed to spot incompatible LPARSE syntax.

The alternative method is to use regular expressions to scan the file and to spot the in-
compatibilities. Action can then be taken to convert from Gringo to LPARSE. This is the
approach that will be taken in order to ensure consistency between both methods added
to APE.

4.4 Predicate Completion

A new feature to be implemented, learnt through the requirements process is that users
would like automatic predicate completion. This is a common feature found in many IDEs
and makes the programmer’s life a lot easier. The most appropriate choice to implement
this would be to have it as a keyboard shortcut. To keep it consistent with the Eclipse
Java content assist processor, the control key and space bar should be pressed to pop up a
small dialog box inline, showing all the possible suggestions to the user.

Upon pressing the shortcut the possible predicates are displayed for the user to choose
from. The possibilities could be facts, constants, variables or predicate names. The choices
for the user to choose from are two pronged. The first choices are based on the letters typed
and then the possible choices from previous declarations. Secondly the choices are based
on what the user has typed as being the full predicate name. The choices then presented

34

to the user are the possible constants or variables.

Additionally it was decided that a predicate view should be implemented into APE. This
was designed to be implemented as an Eclipse standard view window. A view window is a
panel in Eclipse that can be docked on any side toolbar. Alternatively it can be minimised
or even expanded. By implementing it like this it allows the user control over the view,
deciding how and when they want to see it.

4.5 Testing

Testing is a fundamental process to any software development project. Testing is the
process to ensure that the system works as expected with the requirements of the sys-
tem implemented correctly. Different approaches are taken in a project depending on the
methodology of the project. People such as Proulx [ProQ9] prefer an agile approach with
test driven design favoured, reasoning that higher quality code is produced. However as
this dissertation is following a waterfall style development process then such agile methods
are not applicable. Instead a higher level view of the testing process is considered before
deciding on the most appropriate tests.

Three different views of a system can be considered when tests are performed:

Black box The system is treated as an external entity (black box) where no internal
representation of the system is known.

White box The tests have access to the internal data representations and assumptions
made in the system.

Grey box A hybrid of the other two approaches. The internal representation is known
but the tests are performed at a black box level.

Testing is not a short cycle and many different levels of testing exist in order to fully
understand the system. Some of the main stages in the cycle are:

Unit Testing

Unit testing is the first stage of testing. Szeder [Sze09] says the benefit is that it allows
developers to detect bugs early on in the development process. All individual components
are tested leading onto integration testing. One such unit testing framework that exists for
Java is JUnit. As described by Wick et al. in [WSWO05|, JUnit has a number of fundamental
concepts. Each test case is a Java class that consists of one or more test methods. Each
method tests some particular aspect of the Java class being tested. Multiple test cases can
be structured so that they are part of a test suite.

35

Problems are faced when unit testing is performed. User interfaces are not easily testable
as well as mistakes made in the construction of the actual tests. A common pitfall faced is
when tests are too simple meaning complex paths throughout the system are not tested.

Integration Testing

Following on from unit testing it is common for integration testing to be performed. As
all the individual components of the system have been tested they then need to be tested
so that the interaction between components is correct. The interfaces that make up the
communication between components have to be tested to ensure that the design is met.

Regression Testing

Another stage of the test cycle is regression testing. These tests are usually ran after
integration tests. The tests aim to find errors in the system after changes have been made
to the previous version of the system. Rothermel et al. [REMT04] gives a definition as
“Regression testing is an expensive testing process used to revalidate software as it evolves”.

4.5.1 APE Tests

Potential users of the system have already been put off from using APE due to incompat-
ibilities encountered with APE (see Section page . Having tests in place would
have identified this. Due to the limited time it would not be suitable to devise tests for all
three test cycles above. Instead a hybrid approach of unit testing and regression testing
was adopted.

Implementing any testing strategy comes with an associated development cost. For a large
project this cost can be thought of as a temporary short term cost especially when the
application will evolve. The time cost spent will be recuperated in the long term when the
system is large and tests will pick up many errors. For a smaller development project the
cost is much harder to recover. The project may not evolve with the time spent devising
tests not being recovered in the long term. This was a consideration for this project. Given
the limited timescale in place then the time spent devising tests may be better adding new
features. Likewise not having enough test coverage may mean that the APE is full of bugs
frustrating users. Therefore the project aimed to strike a balance between good tests and
the time spent developing them.

As mentioned above the right mix of testing had to be implemented. The unit tests devised
were carefully designed so that they were not too simple and covered enough of the code
base to be useful. The unit tests have been designed so that they are decouple from
one another. No test depends upon another. Unfortunately tools such as JUnit are not
designed to test user interfaces. However an open source tool SWTBot built on JUnit
is available to use. The testing is performed at the grey box level where the internal

36

data representations are known but performed from the perspective of a potential user of
the system. SWTBot provides this functionality automating the user interface testing by
clicking through simulating a user.

Regression testing will be performed by comparing the expected output of the program and
the actual output. For each tool in APE the expected output will be stored. SWTBot can
then be used so that they are used with the same input files. The output from each tool
can then be stored with a check occurring with the expected and output lines read line by
line for equality.

As the system grows and tests are added the time taken for the whole test suite to run
will increase. In future it may be more suitable for only a subset of tests to run. When
one aspect of the system is changed then the tests for that area will be ran. However
a full test run of all tests will be ran regularly as well. To be able to do this the tests
have to be designed so that they can be ran independently from one another. Therefore
an architecture will be implemented to perform common tasks that all tests may have to
share.

37

Chapter 5

Detailed Design and
Implementation

The previous chapter identified ways in which the system should be designed in order for
the requirements as outlined in Section [3| to be successfully implemented. This chapter
documents how these have been implemented, as well as the further design choices faced
along the way.

5.1 Approach

APE is licensed under the General Public LicenseE] (GPL). This type of licence explicitly
declares that users can freely run, copy, change, develop and improve the software. Mod-
ifying and improving APE will not infringe upon this licence. APE will continue to be
licensed under the GPL to allow future developers the same freedom.

The version of APE produced by Sureshkumar was hosted on the Knowledge Representation
and Reasoning (KRR) websiteﬂ at the university. As with all software projects the first stage
was to add the existing code into a version control system, making use of the advantages
that this provides.

Ruparelia describes in [Rupl0] that one main advantage of version control is that it en-
ables developers to keep historical versions of source code and project files that are under
development, with the ability to retrieve past versions. A variety of choices exist with two
of the most common being concurrent versions system (CVS) and subversion (SVN). As
Ruparelia explains, distributed version control systems such as GIT are becoming increas-
ingly popular in the open source community. SVN revolves around one repository with
each client connecting to that one repository. GIT on the other hand is a repository with
each client having its own repository, each with a user. It is decentralised meaning people

"http://www.gnu.org/licenses/gpl.html
’http://krr.cs.bath.ac.uk/index.php/Main_Page

38

http://www.gnu.org/licenses/gpl.html
http://krr.cs.bath.ac.uk/index.php/Main_Page

can track their own edits locally without having to push things to an external server.

As APE in future may have multiple users contributing it was decided that GIT would be
the best form of version control. By hosting it on Githulﬂ it allows people to clone and
work on their repository before merging the changes back in. Github has the advantage of
allowing SVN access to the GIT repositoryﬂ This made it an easy choice as people have
the choice of using SVN or GIT for developing APE.

5.2 Improvements

As documented before (see Section page 23| and Section m page users initially
trying APE had experienced difficulties getting it to function with the latest version of
Eclipse. Trying the existing code as supplied by Sureshkumar revealed the problems. When
trying to launch LPARSE or SMODELS through a launch shortcut in APE, nothing would
appear to happen. A launch shortcut allows the user to run the program by right clicking in
the editor or right clicking on a file and launching it. Sureshkumar had only implemented
the latter method, no code was in place to allow launching within the editor. Further,
no error message informed users that it had not been implemented and no exception was
thrown, leading users wondering what was wrong. This problem was fixed by changing
LPARSE and SMODELS to use the new framework launch shortcut as discussed in Section
543 page [46]

Other problems encountered were problems when the program location of LPARSE and/or
SMODELS were not set. The program is launched as an external process so the file path to
that program has to be specified. This is set within the preferences inside APE. If it is not
set then APE cannot launch the program. However again, no error message is given if the
program path has not been set and the program is launched leading to APE hanging.

When inspecting the code it was clear why no error message was given. Taking the case of
LPARSE, the code had been split into two projects, uk.ac.bath.cs.asp.ide.lparse and
uk.ac.bath.cs.asp.ide.lparse.ui corresponding to the core and user interface com-
ponents of LPARSE. Informing the user that the program path has not been set is only
applicable when the program is launched. However the launch delegate which launches the
program is located within the core plug-in, meaning there is no access to the user interface
components. As a result no error message can be presented to the user, at least not in a
nice graphical manner.

To solve this the changes to the structure as documented in Section [4.1.2] page were
made. As uk.ac.bath.cs.asp.ide.lparse will have the correct user interface dependen-
cies a message box is now presented to the user whenever the program path has not been
set.

Other improvements made to APE were to create a specific project and file creation wizard

*https://github.com/
“Repository can be found at |git@github.com:robibbotson/APE.git

39

https://github.com/
git@github.com:robibbotson/APE.git

for AnsProlog* projects. Previously a general project and text file had to be created for
any development within APE. This was confusing to users as time was spent looking for
the APE wizard which did not exist. Therefore, one of the first things implemented for this
dissertation was to implement the wizard as can be seen in Appendices page and
page The new file wizard automatically appends a ‘.Ip’ extension to the filename
if one has not been specified by the user. By having these wizards it ensures greater clarity
for users of APE.

5.3 Installation

In order to facilitate easy installation for users, an update site was created. This allows the
user to connect to a Website[ﬂ within Eclipse to install the plug-in. An example showing
the installation wizard can be seen in Appendix page

Previously, installation required the user to do the majority of the work. The user was
responsible for placing the correct Java ARchives (JARs) into Eclipse’s plug-in folder. This
method is tiresome and can lead to errors if done incorrectly. With the new method the
chances of incorrect installation of APE are reduced. Future updates are easily installed.
Once installed Eclipse periodically checks the update sites of installed plug-ins to see if a
new version is available. If one is the user is informed, enabling them to install the updated
version.

The update site stores a site.xml file which tells Eclipse about the feature being installed.
The update site also has a features and plugins which stores the JAR files. These are
copied across to the user’s computer during the installation.

5.4 Framework

This dissertation did not set out to add every possible ASP tool into APE. Instead it aimed
to differentiate from Sureshkumar’s work by providing an architecture for future developers
to add tools and programs quickly.

To do this the common aspects from the programs currently implemented within APE were
analysed. As each plug-in implements extension points, the common extension points used
in the implementation of LPARSE and SMODELS were inspected.

It was found both plug-ins implemented the following:

org.eclipse.ui.preferencePages The preference page allows the user to specify any spe-
cific preferences for the program. One preference that is necessary in all programs is
the program location path, enabling the external tool to be launched within APE.

SWebsite can currently be found at http://ape.robibbotson.co.uk/updates

40

http://ape.robibbotson.co.uk/updates

org.eclipse.debug.core.launchConfigurationTypes When a program launches it has
a launch configuration type. This has to be unique as it acts as an id for that programs
launch. In addition a delegate is specified that performs the launch for the specific
launch type.

org.eclipse.debug.ui.launchConfigurationTabGroups For a program to be launched
the configuration has to be specified by the user. This extension point allows the
program configuration to be specified within the Run Configurations... dialog,
found within Eclipse.

org.eclipse.debug.ui.launchConfigurationTypelmages For the launch configuration
type an image can be associated. This is shown in the Run Configurations...
dialog as well as when the program is launched through a shortcut.

org.eclipse.debug.ui.launchShortcuts A launch shortcut allows the program to be
launched within the editor by right clicking. Alternatively the file can be right clicked
in the navigator pane and launched.

The above extensions are what a typical external program project implements within APE.
It was decided to leave the preference page and image out of the framework due to being
extremely simple to implement. Instead the other three extensions were concentrated on
to produce a framework that allows for simple implementation.

5.4.1 Launch Configuration Tab Group
Background

The external program is typically ran in APE through the Run Configurations... inter-
face. In this dialog the user picks the external program that they wish to run. The user
is then presented with a range of tabs which can be clicked through, building the launch
configuration. All the options picked on the tabs make up the launch configuration. The
process of building the launch configuration from the tabs can be seen in Figure The
launch plug-in tab group implements the Eclipse extension point. In the tab group in-
stances of all the tabs are constructed. The tab group is the holder for all of them defining
the name that the user sees in the Run Configurations... dialog. When the user clicks
‘Run’ then this launch configuration is passed to the delegate which builds up a command
line before launching the program in a separate process.

Common tabs present that are found in all APE external programs are the input and
common tabs. The input tab allows the user to pick the files that the program will run
on. The common tab meanwhile allows the user to specify common Eclipse options. For
example standard output can be redirected, as well as choosing whether the launch should
be a foreground or background process. The program can also implement its own tabs if
necessary. A program may allow users to specify its arguments on a tab. For example
Gringo has the argument ‘—ifixed’ allowing the user to fix the number of incremental steps

41

org.eclipse.debug.ui.launchConfigurationTabGroups

Plug-in Tab Group

l

Input Files Plug-in Specific Common
Tab Tab(s) Tab

Figure 5.1: Tab Group Structure

to a number. On the tab page a checkbox will allow the user to choose that option before
specifying a number for the number of incremental steps.

Implementation

The scenario set out above is common with every external program having program argu-
ments that the user can specify. Each argument can be thought as having two components.
Firstly there is the actual option that the program understands followed by the human
readable description, describing what the option does.

In the case of APE the arguments of a program are used in two places: the delegate and
the tab which allows the user to specify the arguments. Previously in the cases of LPARSE
and SMODELS a list of arguments were hardcoded in both the delegate and tab. If any
were added or changed in future then it would have had to be done in two places; not very
maintainable code.

The framework set out to solve this problem. It was decided to allow the user to specify
a list of program arguments in one file. From this the tab group and delegate would be
produced. If any were added or changed in future then updating the one list would be
reflected in both the tab interface and delegate.

For each program argument the user may choose to enable the option. This is represented
in the user interface tab as a checkbox. Specifically in the code it is a Button with type of
SWT.Check. However dependencies occur with arguments, for example if the user enables
a option they may need to enter a number or type some text to be more specific. The
framework handles this possibility allowing dependencies to be added and still automatically
generated for the user interface.

To understand the whole process the algorithm first needs to be defined:

1. Use reflection to obtain all public fields in the argument list class

42

2. For each field retrieve the annotation checking it is of type CommandLineSwitch
3. Get the type of the field which should be of type Button

4. Generate the control from the type with the label being the description and option
obtained from the annotation

5. Check the annotation to see if the additional flag is true
6. If true obtain the additional fields stored in AbstractArgumentConstants

7. For the additional field generate the appropriate control based on the type, placing
it next to the control created in step 4.

From the algorithm it can be seen that two new concepts have been introduced into the
framework, the annotation CommandLineSwitch (see Appendix page [113) and the
abstract class AbstractArgumentConstants (see Appendix [H.1.1] page |102]).

The annotation is used on all the fields declared in the argument list class. Each field is
annotated with the annotation so the option, description and additional flag is known when
the fields are obtained through reflection.

Reflection being the ability to modify or examine programs running in the Java virtual
machine. As the user interface is being generated at runtime this method has to be used.
Bloch [Blo08] explains the problems of using reflection; compile time checking is eliminated
as well as the code for it being clumsy and verbose. The Java tutorial page [Sunl0] explains
a further disadvantage is the increase in performance overhead. Bloch [Blo0§| explains
that ‘you can obtain many of the benefits of reflection while incurring few of its costs by
using it only in a very limited form.” Creating instances of the class via reflection and then
accessing them normally using their interface or superclass is the method explained. This is
exactly what occurs in the framework. The interface is the annotation CommandLineSwitch
which provides access to the objects. From that compile time checking can occur as the
annotation is the object being referred to. Due to this it was decided that reflection was
an appropriate form to use for the project, especially considering the disadvantages are
reduced by following the advice set out by Bloch.

The type of the field is used to know what control the interface should generate. Typically
it will be a Button creating a checkbox for each option. However the type is more critical in
the additional dependent fields. As the user may be needed to enter a number or text the
type could be Spinner or Text. However the additional dependent fields are not declared
public. Instead they are private members. However a mapping takes place linking the public
field with its additional members. This is managed by the AbstractArgumentConstants
class. By the argument list file extending this class a mapping is provided allowing mapping
of fields. The additional flag on the annotation tells the interface when generating the code
to look in the map to generate the additional controls.

43

Listing 5.1: Example Gringo Argument Annotation

@CommandLineSwitch (option = "—ifixed”, description = ”Fix number of
incremental steps to <num>”, additional = true)
public static final Button ATTR_.GRINGO_FIX NUMBER = null;

@SuppressWarnings (” unused”)
private static final Spinner ATTR.GRINGOFIX NUMBERNUM = null;

A full example can be seen in Appendix page [114, However a short code snippet
showing the key fundamentals is shown below:

The result of the generation for the whole of the Gringo arguments can be seen in Figure
0.2l

[4 Input Files |)= Gringo Arguments .] Common

("] Replace constant <c> by value <v> [--const]

() Print plain text format [--text]

[_) Print Lparse format [--Iparse]
(") Print ASPils format in normal form <num> [-aspils) 0
() Enable lightweight mode for ground input [--ground]

(") Shift disjunctions into the body [--shift]

] Turn on binder splitting [--bindersplit=yes]

[Fix number of incremental steps to <num> [--ifixed] g

) Process base program only [--ibase]
() Print syntax information [--syntax]
() Print internal representations of rules during grounding [--debug]

(] Print extended statistics [--stats]

Figure 5.2: Single File Arguments

The generation code can be be found in AbstractSingleFileArgumentsTab (see Appendix
|H.1.5 page[L09)). This is the class that performs the algorithm set out above producing the
result seen in Figure from a list of fields with annotations. For programs with many
arguments the above method was not suitable. Although it will generate all arguments
fine it would produce a huge list that would require a lot of scrolling for the user. It
was deemed that this was not a viable option to the user so an additional abstract class
AbstractMultipleFileArgumentsTab (see Appendix page was created. This
extends from the AbstractSingleFileArgumentsTab class but allows the user to specify
multiple argument input files. Each files arguments are generated into collapsable panels,
one for each file input meaning that it is much more user friendly to the user. An example
of this in action can be seen in Figure [5.3

44

@ Input Files [()= Gringo Arguments [(9= Clasp Arguments - Output | =] Common |

("] Print extended statistics [--stats)

(7] Do not print models [--quiet)
(7] Write output in ASP Competition'09 format [--asp09]

[_] Set time limit to <n> seconds [--time-limit=<n>] |

Figure 5.3: Multiple File Arguments

Summary

A launch configuration tab is the main way a user will launch a program. A framework has
been developed allowing users to specify a list of program arguments with each one anno-
tated with the annotation CommandLineSwitch. Dependencies between arguments which
require more information from the user are managed by AbstractArgumentContstants as
the argument list class extends from it.

The launch configuration consists of a tab group managing multiple tabs. Two of
the tabs will always nearly be the input and common tabs. However for the external
program argument tab the tab can extend from AbstractSingleFileArgumentsTab or
AbstractMultipleFileArgumentsTab. The user can then specify the argument list file
with the whole user interface being generated at runtime. It saves having to write hun-
dreds of lines of code managing the layout of controls as the framework generates it all at
runtime for the user. As a result very little code has to be written to generate the argument
tab. An example is the GringoArgumentsTab (see Appendix [[H.2.2] page [115)).

5.4.2 Launch Configuration Type

Each launch configuration has an associated launch delegate that facilitates the program
running. When the users runs the program the launch configuration is passed to the del-
egate which constructs the correct command line from the launch configuration as defined
in the launch configuration tab.

For the delegate to be built correctly it must be aware of the elements in the launch
configuration and what they correspond to. To share information between the tab and
the delegate a new abstract class AbstractLaunchConfigurationDelegate (see Appendix
[H.1.2 page[103)) is provided. The developer can extend from this passing in the argument
list file. When the launch configuration is passed from the tab, the delegate knows all about
the arguments, obtaining the list of possibilities through reflection again. Dependencies are

45

figured out with the command line having the correct information following the additional
flag on the annotation.

The framework allows a much cleaner extendable interface with the argument list be-
ing reused. By using the AbstractLaunchConfigurationDelegate in combination with
AbstractArgumentConstants and CommandLineSwitch the programmer can significantly
cut down the amount of code needed to implement the tool into APE.

5.4.3 Launch Shortcuts

A launch shortcut allows users to launch the program quicker than going through the Run
Configurations... dialog. When a shortcut is clicked a default launch configuration is
created or re-used if it already exists. Two methods of launching are possible:

1. Right clicking in the editor and launching from the context menu

2. Finding the file you wish to launch in the navigator, right clicking and launching from
there

Ultimately both methods follow the same code path but the information at the start is
gathered slightly differently, such as how to know which file it needs to be launched for.

Between tools the process is exactly the same with every program launching in the same
manner, that is passing it to its delegate. The framework allows developers to extend
AbstractLaunchShortcut (see Appendix[H.1.3] page|[106)). It means that a launch shortcut
for each program can be implemented with one line in the constructor of the class. This
line calling the super class with the configuration type id. An example in action can be

seen in GringoLaunchShortcut (see Appendix page [118)).

5.5 Gringo and Clasp

A requirement of the project was the addition of the grounder Gringo and solver
clasp. Both of these tools were added into APE making use of the framework above.
FEach program had a new plug-in project created uk.ac.bath.cs.asp.ide.gringo and
uk.ac.bath.cs.asp.ide.clasp.

5.5.1 Gringo Editor Problems

A main feature of any IDE is syntax checking as programs are typed. Any errors that
are found are highlighted or underlined indicating to the user where the error lies. This
process is called syntax analysis. This is carried out by parsing the program. The input
file is broken up into a stream of tokens (lexical analysis) with the parser trying to match
these tokens against the program specification known as the grammar of the program.

46

In order to provide syntax checking and error highlighting within the IDE this process has
to occur whilst the user is typing their program. In an Eclipse editor this process is managed
by a reconciler. A reconciler is a background process that updates the underlying model of
the program. It can be activated after every key stroke, when the user stops typing or when
the user saves the file depending upon the performance implications. When developing a
LPARSE file the reconciler is working in the background updating the underlying model,
enabling errors to be indicated to the user whilst they are typing.

The LPARSE parser is written for the tool Yet another compiler-compiler (Yacc). ‘Yacc
provides a general tool for describing the input to a computer program’ [Joh]. Yacc is a
parser that calls the lexical analyser to compare against the rules (the grammar). LPARSE
uses the lexical analyser tool, Lex to provide the input token stream. As LPARSE is licensed
under the GPL, Sureshkumar was able to extract the grammar from the source code of
LPARSE.

Both Yacc and Lex output their programs in C code. However programs exist to perform
the same functionality but output in Java code instead. Sureshkumar made use of the tool
JFlexﬁ to do this. This allowed an equivalent Java parser to be produced that is now used
within APE. A Java object model is built up as the user types their program allowing
syntax error checking to be performed.

For this project it was hoped that a similar approach could be adopted to provide the same
functionality, however this time for the grounder Gringo. However the parser for Gringo is
not written in Yacc or Lex. Instead it is a C++ program that uses the r2c parselﬂ This made
the same approach used for LPARSE unsuitable. One approach to solve it would be to learn
the Java Native Interface (JNI) so that the Java Virtual Machine (JVM) could interact
with the Gringo code. ‘JNI allows Java applications to call native methods’ [Blo08]. Bloch
states that the JNI approach has serious disadvantages as shown below:

e JNI is platform specific
e Native languages are not safe, exposed to memory corruption

e Decreases performance as there is a fixed cost of going into and out of native code

Require ‘glue’ code, that is difficult to read and tedious to write

One small bug can corrupt the entire application

Due to these problems outlined it was deemed that using the JNI would not be an appropri-
ate approach for the project. Further it was decided that the time spent converting the r2c
grammar into a compatible yacc one would be better spent implementing other features of
the project. Instead it was decided that it would be suitable for Gringo to make use of the
LPARSE editor as Gringo is just an extension on the LPARSE language. Although there are

Shttp://jflex.de/
"http://www.rforge.net/r2c/

47

http://jflex.de/
http://www.rforge.net/r2c/

incompatibilities, conversion between the two can take place (see Section page . In
addition an option was added into the Source menu so that the user could disable syntax
checking if they knew the program was correct. Although not an ideal solution it was the
one considered viable given the time constraints and the time that would be taken learning
C++ (r2c) or JNIL

5.6 Conversion

One of the main features requested was for conversion between different solvers. Two
input languages are now present in APE. It made sense to give users the option to convert
between them especially given the syntax highlighting problem outlined above. Differences
between the languages have been taken from the Gringo user manual |GKK™] as discussed

in Section [2.6] page [16]

The differences are not a definitive list as stated in the Gringo manual [GKK™|. However
they are the ones well known about, meaning that it should be suitable for this project to
convert the more common cases. As future work is done on APE further conversions could
be added, as the differences between the languages become better known.

The user can choose for the conversion to occur in two ways whilst viewing the document
in the editor:

Source Menu Both conversion methods are available in the Source menu as can be seen
in Figure 5.4 This is in the same menu as being able to toggle comments for the
editor. It was decided to locate the conversion method options in the same menu to
ensure consistency for the user. Any options they can perform in the editor can be
performed from the Source menu.

Keyboard Shortcut Alternatively keyboard shortcuts can be used to convert the pro-
gram. The specific shortcuts can be seen by the user to the right of the options
in the Source menu as seen in Figure The shortcut to convert from Gringo
to LPARSE is Control/Command + Shift + S. Originally the shortcut was designed
to be Control/Command + Shift + L to stand for converting to LPARSE. However
it was found that it was already defined in Eclipse. Therefore Control/Command +
Shift + S to stand for converting to SMODELS the solver associated with LPARSE.
Likewise a shortcut exists to convert from LPARSE to Gringo. This shortcut is
Control/Command + Shift + G with the same principle being applied, of converting
to a Gringo program.

5.6.1 Process

An abstract class AbstractProgramConverter (see Appendix[H.3.1, page [120]) was created
in order to provide the core functionality when converting between the programs. This class

48

@ Eclipse File Edit T Navigate Search

(NN | Toggle Comment 3/ |
=] B v .0 Lparse->Gringo (3G
- S %0 Q- || Cringo->Lparse {+3S

& Navigator 23 ‘ WE S '—"[w

V== Test %t

Figure 5.4: Conversion Options

provides methods so that each line in the editor’s document can be identified. Additionally
methods exist so that text can be replaced as well as providing a way to get a regular
expression matcher for a given String. The conversions implemented work in all cases
implemented by using regular expressions to check for matches that need converting. The
process is a cycle with the regular expression being matched, the replacement being added
and so on until no more matches can take place. Performing the conversion one by one
means that any convoluted matches can be found with the replacement being inserted into
the correct place. Performing all conversions at once would not work. When a conversion
takes place the location in the document for the converted to be reinserted is known.
However if other conversions took place then the place in the document would change.
However the converter does not know this and so would insert it into the wrong location.

5.6.2 Gringo to Lparse

Two converters have been implemented to convert from Gringo to LPARSE. These are
RemoveRestrictedNames and PoolingGringoToLparseConverter. Both of these extend
AbstractProgramConverter using regular expression matching to find lines that need con-
verting within the editor.

Remove Restricted Names

Symbolic names such as and, plus and eq are not valid LPARSE syntax. The converter has
a list of restricted names that are not valid in LPARSE. This list is iterated through with
each item being checked to see any are present within the document. This is done using
the regular expression "\\s name [\\(.]" where name is the restricted name from the
list.

The regular expression specified checks for the restricted name and checks that it is not a
substring of some other word by checking for whitespace before and after it. Upon finding
a match a underscore is appended to the start of the word. The matching process then
continues to find anymore matches of the name in the editor. When no more matches can
be found the next item in the restricted name list is checked until the end of the list is
reached and no more matches have been found.

49

Pooling Converter

Having a pooled term such as p(X,Y ; X,Z) expands to p(X,Y,Z), p(X,X,Z) in Gringo.
However for LPARSE the same term would stand for p(X,Y), p(X,Z). As this conversion
is going from Gringo to LPARSE the conversion finds the pooled terms within the editor
document and expands them into the format of p(X,Y,Z), p(X,X,Z). Expanding the terms
like this would mean the same output would be given whether running through the solver
clasp or SMODELS.

To identify pooled terms the regular expression below is used.
[a-zA-Z]+\\((C) *[A-Z]+(C) *([,;1C I*[A-Z]+(D*)+\\)
This checks for the following:

1. At least one letter, followed by an opening bracket

2. Possible spaces, followed by a variable (capital letter), followed by possible spaces
3. Comma or semi-colon followed by possible spaces

4. Another variable, followed by spaces

5. Item 3 and 4 has to occur at least once

6. Closing bracket

The converter locates a match in the document using the regular expression. Each expanded
term is then inserted into the document with the whole original line it was on in order
to keep the context. For example p(X,Y; X,Z) :- male(X), female(Y;Z) is initially
expanded to:

p(X,Z,Y) :- male(X), female(Y;Z).
pX,Z,X) :- male(X), female(Y;Z).

However, as this contains multiple pooled terms the process carries on until there are no
more matches. After all matches have been found and expanded the following is left by the
converter:

p(X,Z,Y) :- male(X), female(Y).
p(X,Z,Y) :- male(X), female(Z).
p(X,Z,X) :- male(X), female(Y).
p(X,Z,X) :- male(X), female(Z).

50

5.6.3 Lparse to Gringo

Two converters have also been implemented for the conversion of LPARSE to Gringo.
These are AggregateLparseToGringoConverter and PoolinglparseToGringoConverter.
Again both extend from AbstractProgramConverter using regular expression matching to
find lines that need converting within the editor.

Aggregate

LPARSE treats 2p(c) ,p(c) as 2[p(c)=1, p(c)=1] whereas Gringo treats it as 2p(c). The
same process as pooling occurs with expansion occurring so both solvers understand it.

The regular expression used to find matches is specified below.
\\d+ {1 C O \\w+C) RNNO\w+H\N\D) CO*(, C R\ \w+C)R\ \w+\\)) *[}]
This checks for the following:

1. A digit followed by { followed by optional space

2. A word followed by optional space followed by an opening bracket
3. A word followed by a closing bracket and optional space

4. Optionally, a comma followed by the same as steps 2 + 3

5. It finishes with }

Pooling Converter
As explained earlier (see Section m page LPARSE expands a term such as p(X,Y ;
X,Z) to p(X,Y),p(X,Z). Gringo on the other hand treats it as p(X,Y,Z2), p(X,X,Z). As

this conversion is going from LPARSE to Gringo the converter expands the term as LPARSE
would. The regular expression used to identify matches is:

la-zA-Z]+\(C) *[A-Z]+()*(, C D*[A-Z]+(C D #)* (5 C) [A-Z]+() *(, C I *[A-Z]+() *)*)+\)
This checks for the following:

1. At least one letter followed by an opening bracket
2. Possible spaces followed by a variable (capital letter) followed by possible spaces

3. Possible comma followed by possible spaces followed by variable followed with spaces

51

4. Semi colon followed by spaces followed by variable followed by spaces
5. Same as step 3

6. Closing bracket

Using the same example as before (see Section m page the line p(X,Y; X,Z2) :-
male(X), female(Y;Z) would be expanded to the following using this converter:

p(X,Y) :- male(X), female(Y).
pX,Y) :- male(X), female(Z).
p(X,Z) :- male(X), female(Y).
p(X,Z) :- male(X), female(Z).

5.7 Auto Predicate Completion

A feature requested by users was the ability to have suggestions presented to them whilst
typing their program. Using a content assister would allow for quicker development. The
Eclipse plug-in developer guide [Ecl09] describes the implementation of content assist as
“allowing context sensitive completion upon the user request.” Popup windows show the
user the possible choices to complete a phrase with the user then able to select a choice for
insertion into the document. Contextual popups provide the user with proposals relevant
to the current document cursor position.

For this project it was decided that contextual popups would be implemented to provide
the user with relevant choices to the position in the document. To do this a content assist
processor LpasreContentAssistProcessor was added to the LPARSE editor. Suggestions
are presented to LPARSE and Gringo programs as both make use of the LPARSE editor. To
keep it consistent with other development tools within Eclipse the keyboard shortcut (Ctrl
+ space) was assigned to activate the content assistant. Whenever the user wishes for
proposals the user can press the shortcut to be presented with suggested options. Keeping
the same shortcut allows developers with experience in other tools to be able to apply them
within APE.

As discussed in Section [2.2.1] page b, ASP programs can consist of different components:
atoms, variables, constants and rules. Fach of these have a specific content generator
responsible for generating the ICompletionProposal that makes up what the user sees.

Contextual proposing is used meaning proposals are based on the last word typed by the
user. Only proposals starting with the last word typed are presented to the user. If the user
has not typed any word then all proposals are shown to the user. Two forms of proposal
can be presented:

The last word typed is based on previous predicate names Proposals presented should
be previous predicate names with possible constant and variable options.

52

The last word typed is the new predicate name Proposals presented should be the
last word typed with possible constant and variable options.

An example of this can be seen in Figure [5.5] Previous predicates are suggested first in the
suggestions as it is the most likely reason for users using predicate completion.

[graph.lp [+ *bird.Ip 23

bird(tux). penguin(tux).
bird(tweety). chicken(tweety).

A bi
bird
bird(tweety).
bird(tux).
bi
bi(tweety).
bi(tux).

Figure 5.5: Predicate Completion Ordering

As mentioned above suggestions do not just consist of predicate names. Instead possible
constant declarations or variable rules are suggested as well. This can visually be seen in
Figure |5.6(a)l Proposals are suggested in the following order:

Predicate name The first proposal is the the predicate name

Numeric constants Numeric proposals consist of the predicate name followed by a num-
ber in brackets (e.g age (Rob, 2))

Symbolic constants Symbolic proposals consist of the predicate name followed by a word
in brackets (e.g. bird(tweety) in Figure|5.6(a)))

Variable proposal Variable proposals consist of two forms. Variables can be defined in
the head or body of a rule. If in the head of the rule then the suggestion should
include ‘:-” whilst the body should end with a possible ‘.”. Examples of both types of
proposals can be seen in Figure [5.6(a){ and [5.6(b)|

5.7.1 Predicate View
To further aid predicate completion for the user it was decided to implement a predicate

view that represents the current document in the editor. A view is a collapsable component
in the Eclipse workbench that presents information to the user.

53

[graph.lp [} *bird.lp 83 [AsperixTest.Ip [:A *bird.lp 53

bird(tux). penguin(tux). bird(tux). penguin(tux).
bird(tweety). chicken(tweety). bird(tweety). chicken(tweety).
mammal(X) :- human(X). ® cat() :- b
@ hyl bird

human bird(X).

human(tweety). b

human(tux). b(X).

human(X)

human(X) :-

hu

hu(tweety).

hu(tux).

hu(X)

hu(X) :-

(a) Variable Head Completion (b) Variable Body Completion

Figure 5.6: Predicate Completion Proposals

The view implemented, followed the model, view, controller (MVC) design pattern. The
model represents the state of the data being presented to the user. The view presents this
model to the user graphically with the controller providing the interaction between the two.
For the predicate view the model was an array of PredicateViewItem objects with the
view being a standard SWT TreeViewer control. The controlling actions are performed in
the PredicateView class (see Appendix [H.4.8| page [137)).

Like the content assist processor the view presents suggestions based on the last word typed
by the user. It shows all the previously defined predicates as well as suggestions from the
last word typed. The suggestions presented use the same IProposalGenerator generators
to give suggestions. If the user wishes to add a suggestion to the editor then they can double
click on an item in the tree which will insert it into the document at the last location.

An example of the view can be seen in Figure This corresponds to the same file shown
in Figure The comparison between the two is clear.

Again the view shows both forms of predicate proposal as explained in Section [5.7] page
However various options and filters are presented to the user to allow more fine grain
control compared to the content assist. The options presently available can be seen in

Figure [5.8|

Do not suggest from previous predicates As the name suggests any previous predi-
cates are not shown in the view. Only suggestions from what the user has last typed
are.

Do not show from current Only suggestions from previous predicates are suggested.
No suggestions are presented based on the word last typed by the user.

Auto-expand Like the name suggests, auto expansion of the tree can be controlled. By

54

P Predicates 23

¥ chicken
chicken(tweety).
chicken(tux).

¥ bird
bird(tweety).
bird(tux).

¥ penguin
penguin(tweety).
penguin(tux).

bird(tweety).
bird(tux).
b(tweety).
b(tux).

Figure 5.7: Predicate View

£ (2) AnsProlog*

J| I predicates $3 ¥ =0
o . . -
m | vchicker Do not suggest from previous predicates
chic Do not show from current

= chic
vbird | Auto-expand
bird(tweetv).

Figure 5.8: Predicate View Options

default it is turned on. However the user can turn it off and any future items added
to the tree will not be expanded. Instead just the predicate name will be visible with
the option to expand to see all possible suggestions for that predicate.

5.8 Summary

This chapter has documented the features and improvements made to APE throughout
the course of the dissertation. Improvements have been made with a new file and project
wizard being created to be more helpful to users. Additional improvements have been made
with the existing tools inside APE being fixed so they can be launched through a shortcut.
Further, error reporting has been improved with refactoring taking place to ensure that the
right classes can access the user interface components.

New features have been added with conversion between program languages now available.
This will save the user having to find the incompatibilities themselves and spend time
rewriting their program. Predicate completion is now available to enable faster develop-
ment on programs for users. This can be activated through the new view or through the

55

traditional Eclipse content assister. Additionally a new framework has been developed,
which new programs being implemented into APE can subclass. The framework minimises
the amount of coding needed by the developer to add the program into APE. This has been
taken advantage of with the programs Gringo and clasp added making use of this.

Further, the project has added a automated testing strategy to minimise the chance of
errors occurring as APE is developed in the future. This is fully documented in the next
chapter.

56

Chapter 6

Testing

Part of any software project is the testing stage. Clayberg and Rubel [CROS8] state that
tests are necessary to ensure that a product continues to function correctly over multiple
releases. Sureshkumar’s testing was limited to manually testing the system which Clayberg
and Rubel [CRO8] say is acceptable as long as it is just one release. However as APE is
being extended as well as being developed in the future with many possible releases, then
the advice given by Clayberg and Rubel in [CROS8] of having automated and manual tests
being in place to prevent regressions was headed. Indeed it was decided that a robust
testing policy should be in place, requiring a suite of tests to be run before a check-in
is approved into the repository in the future. This chapter outlines the tests in place to
identify errors that may be present within APE. If errors were found whilst testing they
were debugged and fixed, ensuring that the test passes.

In the case of this project it was decided to have two strands of testing:
System testing Automated and manual tests of the system comprising of unit and re-

gression tests following the advice set out by Clayberg and Rubel.

Requirements Test that the requirements as set out in section have been implemented
correctly.

6.1 Test Environment

6.1.1 Automatic Tests

As discussed previously in Section page[16]and Section [4.5.1] page [36|automatic testing
will be handled by SWTBot. SWTBot provides APIs that hide the complexity involved
with SWT and Eclipse. SWTBot tests run in the Ul thread simulating the actions of
users. Tests for SWTBot have the same annotation features as JUnit4ll Tests to be ran

"http://www. junit.org/

57

http://www.junit.org/

are annotated with the annotation @Test. Static setup and tear down can be performed
with the annotations @BeforeClass and @AfterClass. For specific tests, setup and tear
down can be done with the annotations @Before and @After.

Tests have no guaranteed order of execution resulting in tests being independent of one
another. If tests depended upon one another it would cause a catalog of issues when the
execution order changes. A benefit of this approach is that each test can be isolated when
failing, being reran when fixed.

6.1.2 Manual Tests

Whilst developing features for APE the plug-in development environment (PDE) allowed
individual aspects of APE to be tested. A new instance of Eclipse can be launched along
with the plug-in under development, simulating the configuration of a normal Eclipse in-
stallation. This configuration includes the Java Runtime Environment as well as the set
of other plug-ins available to the installation. In addition the Eclipse instance launched
through the PDE can be started in debug mode, allowing defects to be easily located.

6.2 Location

A decision had to be made about where the tests within APE were to be stored. A couple
of options were available:

Existing projects One option was to store the tests under each project in APE. For
example tests for LPARSE would live in uk.ac.bath.cs.asp.ide.lparse

New project Another option was to create a separate plug-in project called
uk.ac.bath.cs.asp.ide.testing to hold tests for all the projects within APE.

It was decided the second option was the best course of action. By having all tests within
one package it allows future developers to quickly locate them, as well as being able to
run all tests in one click. This made more sense, the alternative would have been running
through the tests in each project individually.

The structure of the new project can be seen in Figure [6.1

SWTBot tests refer to the Java classes comprising of the tests for APE. However as can
be seen the project also holds other key information. The MANIFEST.MF file is needed for
the plug-in to interact correctly. Two folders, results and tests are also present. This
is where the regression input and expected result files are stored, as explained in Section

[6.3.2] page [61]

58

uk.ac.bath.cs.asp.ide.testing

AN

SWTBot Tests META_INF results tests
]
MANIFEST.MF actual expected programs conversion
——] S — S
programs (e.g.
Iparse, smodels, conversion programs conversion
gringo, clasp)
S — S — S —

Figure 6.1: Testing Plug-in Structure

59

6.3 Automatic Testing

Automatic testing is performed by SWTBot. It runs from a users perspective opening a
new version of Eclipse running through all the tests. A demonstration of the tests being

run for APE can be seen in Appendix page

6.3.1 Project Tests

Table shows the tests devised to ensure that project creation and deletion works cor-
rectly. A key part of developing ASP programs is being able to store all development files
within a project.

Test Case Expected Result

Project creation A new AnsProlog* project is created with the specified name using
the New menu option.

Project deletion The project is selected in the file navigator and the option to delete
is clicked. The project is deleted successfully.

Table 6.1: Project Creation & Deletion Tests

6.3.2 External Program Testing

The main functionality of APE comes from the external programs that are able to be
launched within APE. The four programs present in APE at the end of this dissertation
project are:

LPARSE

SMODELS
e Gringo

e clasp
All of these programs share the same the functionality:

1. File creation and deletion for the program.

2. Can create and delete a launch configuration.
3. Can close the launch configuration.

4. Can run a launch configuration.

5. Can access all the tabs in the launch configuration dialog.

60

6. Can input dummy data into the launch configuration.

The test cases performed by SWTBot can be seen in Table

Test Case Expected Result

File creation A new file is created through the New file menu wizard.
The file is successfully created without a problem.

File deletion The file created is highlighted in the file navigator

view. The option to delete the file is clicked with the
file being successfully removed from the system.

Program launch configuration The Run Configurations... menu option is chosen.
The specific program is selected in the list with the
launch configuration options opening successfully.

Launch configuration closed The same as 3, with the option to close the launch
configuration clicked. The dialog box closes without
erTor.

Launch configuration runs The same as 3, with the option to run the launch con-

figuration clicked. The program runs without error.

Launch configuration tab check The same as 3. Each tab in the launch configuration
is clicked, no errors occur when checking each one.

Launch configuration data check The same as 6. When each tab is opened, each check-
box is checked and unchecked with numbers and text
being entered in the relevant controls.

Table 6.2: Program Tests

Although the tests in Table test the program functions correctly within APE, it does
not test that the output produced is correct. To do this regression tests were added for
each program ensuring the output produced is consistent across APE versions.

Regression Tests

Regression tests currently exist for each program implemented within APE. These are
LPARSE, SMODELS, Gringo and clasp. Each program has an associated set of test input
files. These are stored under the tests directory (see Section page in a subfolder,
specific to each program.

The expected results that the programs should output are stored in the expected folder
under the results directory within the testing project. The program output when ran
through APE can then be compared to the expected result to ensure it is correct. When
the program is ran, the output from the program is redirected from standard output to a
file. The file it is written to is stored under the results folder in a directory called actual.

The tests are ran automatically with SWTBot providing the functionality to do this. The
tests are ran just like a user would run them with all the user interface steps being per-

61

formed.

The following algorithm takes place when running the tests:

1. For each test file in the test directory
2. Create a new AnsProlog* project
3. Create a new AnsProlog* input file
4. Open the editor for this file
5. Read the test into a buffer and copy into the editor
6. Save the editor
7. Open the Run Configurations... dialog
8. Create a new launch configuration setting up all necessary options for the program
9. Redirect output to the actual directory
10. Launch the program

11. Repeat the process for the other tests in the test directory

Test output for each test will be stored in the actual directory. The next stage performed
is comparison between this output and the expected output in the expected directory.
Files to be compared have the same name in both directories. Each file is read into a buffer
line by line. Each line between the two files is compared. If they are identical the next line
is read, if not than the output is not equal and therefore an error is identified. When all
lines have been read without error for all tests it shows that the program is running within
APE as expected.

6.3.3 Conversion Between Solvers

A feature added to APE was the ability to convert between the languages of LPARSE and
Gringo. Again automatic tests using SWTBot were devised to ensure conversion can be
tested. The same process as the regression tests above was used. Files to be converted
are stored in a conversion folder under the test directory within the testing project.
The expected output of these files when ran through the conversion process is stored in a
conversion folder under the expected results folder.

The following algorithm then takes place:

1. For each conversion test in the test directory

2. Create a new AnsProlog* project

62

3. Create a new AnsProlog* input file

4. Open the editor for this file

5. Read the test into a buffer and set the text in the editor to be this
6. Select the conversion method from the Source menu

7. Write the text in the editor to a file stored in the actual directory.

Following the tests the expected and actual output is compared to ensure that it is correct.
If any differences are found then this will fail the test allowing the developer running the
tests to look into the problem in more depth. Future tests can be added with the developer
adding extra files in the test directory as well as the expected output in the expected
directory.

6.3.4 Predicate View

The majority of the predicate tests have been performed manually due to time constraints
limiting the amount of time to write tests. However a simple SWTBot test to check the
view is present and opens in APE as can be seen in Table

Test Case Expected Result
Predicate view The predicate view is selected. It opens and is visible.

Table 6.3: Predicate View Tests

6.4 Manual Testing

For this project it was not possible to use SWTBot to test every aspect of APE. This was
down to limitations of SWTBot as well as time constraints limiting the time available to
spend writing tests. Instead manual testing was used to complement the testing process.

6.4.1 Preference Dialog

Each external program that can be run within APE has its own preference page. On this
page, the external program location is set so the program can be launched. However the
preference dialog opening sequence is different on different operating systems. For Windows
it is opened by clicking Window->Preferences whilst on Mac OS X it is opened by clicking
Eclipse->Preferences. A decision was made to not spend time writing versions of tests
for specific operating systems. Instead the preferences were tested manually with the test
cases seen in Table [6.4l

63

Test Case Expected Result

Program location set The program is selected in the preference page.
A location path is stored for the program with-
out error.

Program location saved The preference dialog is reopened. The path
stored is the same one as saved from the test
above.

Program run with path A launch configuration is made and ran with the
path being set in the preferences. The program
runs without error.

Program run without path A launch configuration is made and ran without
the path being set in the preferences. A mes-
sage dialog should inform the user that the pro-
gram cannot run as no program location path
has been set.

Syntax highlighting Changes made to the syntax highlighting are re-
flected in the visible editor.

Table 6.4: Preference Tests

6.4.2 Platform Compatibility & Installation

Part of the reason for developing APE as an Eclipse plug-in originally was so it could be run
on any platform due to running on Java. Although it should be cross-platform compatible,
tests were still carried out ensuring no incompatibilities within APE were encountered.

Test Case Expected Result
Installation Installing from the update site causes no prob-
lems with all features of APE present

Uninstallation APE is removed from the system correctly with
no trace left

Table 6.5: Installation Tests

APE was installed through the update site onto the following operating systems:

e Windows XP

e Windows 7

e Mac OS X (10.6)

e Linux (Ubuntu 9.10)

Following the installation on each operating system the corresponding external programs
were installed on the host system. After that the automatic test suite was ran as well as the

64

manual tests documented in this section. With no problems being encountered it provided
assurance that APE is platform independent.

6.4.3 Predicate View & Predicate Auto Completion

A feature not automatically tested is predicate completion. No automatic tests were con-
structed due to time constraints within the project. However manual tests were still per-
formed in order to make sure the feature worked as expected. When developing an ASP
program two possible ways are presented to the user: through the editor and through the
predicate view. Both forms were tested as seen in Table and Table 6.7

In order to test both of these features a common set up occurred. A new AnsProlog*
project was created with a new LPARSE file being created. Testing then occurred with the
input files found in Appendix [G] page

Test Case Expected Result

Ctrl4-space pressed when cursor is The suggestions presented to the user

positioned at end of Appendix should be a combination of all the pre-
viously defined predicates in the file. In
addition suggestions should be made from
the predicate has just typed.

Ctrl4-space pressed when cursor is Suggestions suggested to the user should

positioned at end of Appendix be all the relevant previous predicates de-
fined in the file. No duplication should
occur with suggestions from the predicate
just typed by the user.

Ctrl4-space pressed when cursor is Suggestions presented to the user should

positioned at end of Appendix show the possibilities with the variable de-
fined previously in the list.

Table 6.6: Predicate Completion Tests

The expected results of these tests can visually be seen in Appendix page [97]

65

Test Case

Expected Result

Predicate view, cursor at end of list-

ings [G.2} [G.3]| and [G.4] filters off

All suggestions should be presented to
the user. The suggestions should be ex-
panded so the predicate name is the node
of the tree with all the possibilities being
children. The possibilities should include
options from previous as well as predi-
cates just typed. The suggestions should
have all the previous defined constants
and variables as possibilities.

Predicate view, cursor at end of list-

ings [G.2) [G.3] and [G.4] no auto-

expansion filter on

The results should be the same as the first
test. However the children in the tree view
should not be visible. Instead it should
just be the name of predicates.

Predicate view, cursor at end of list-

ings[G.2} [G.3]and [G.4], current pred-

icate filter on

The suggestions should be the same as
above. However no previously defined
predicates should be suggested. Instead
suggestions should be made for the predi-
cate the user has just typed. The sugges-
tions should suggest constants and vari-
ables.

Predicate view, cursor at end of

listings [G.2], [G.3] and [G.4] previous

predicate filter on

Same as above apart from only previous
predicate suggestions should be visible.

Double clicking

Double clicking on any item in the true
should insert the predicate into the editor
at the cursor position.

Table 6.7: Predicate View Tests

66

6.5 Requirements

Gupta and Bhatia [GB10] describe the requirements testing process as “ensuring that the
design and code fully meet those requirements.” The process is aimed at prevention rather
than detection of defects. Gupta and Bhatia carry on to say that requirements are not
often tested as they are ambiguous or incomplete. However in the case of this project it is
felt that the requirements checking would be beneficial. In the following section the main
requirements as seen in Section [3| are discussed describing how they have been checked for
completeness with the tests in place.

6.5.1 Framework To Add New Features

One of the main features added into APE is the ability to quickly define an external program
to be launched within APE. The new framework allows users to extend from a variety of
abstract classes to implement the tool. If anything specific needs to be implemented then
subclassing will allow it to be done.

A key benefit provided by the framework is the speed at which future tools will be able to be
added into APE. In order to validate this claim then a test was performed seeing how long
it takes for a new tool to be added into APE. The test run can be seen in Appendix
page The external program added into APE was ASPeRIX, a program that performs
the grounding and solving in one step. As the results show in Appendix the whole
process of adding the tool took under twenty minutes. The test added in the new tool,
allowing the program’s location to be specified in the preference as well as being able to
run from the Run Configurations... dialog. No shortcut or image was added however
this is simple and would only take a few minutes for a good developer. The test showed
how no complicated code was needed, with the framework handling all the GUI interaction
and the process of launching the program. Of course this test is slightly unfair as it was
performed by someone with knowledge of APE, however for a new developer the learning
curve should not be too steep and should not cause a big rise in time taken.

6.5.2 Support for Gringo and Clasp
Both Gringo and Clasp have been implemented making use of the framework described
above. The user now has the choice of developing their program for LPARSE/SMODELS

or Gringo/clasp. Unit and regression tests are in place to ensure that the programs will
continue to work in future versions of APE.

6.5.3 Auto Predicate Completion

Predicate completion has been implemented meaning that this requirement has been met.
The user has the choice of using the inbuilt Eclipse content assister or using the new

67

predicate view which gives an outline of all the predicates defined in the program. Manual
testing has been performed to ensure that these features work correctly. The tests and
results can be seen in Appendix [G] page

6.5.4 Conversion

Conversion between the languages of LPARSE and Gringo has been added into APE. The
process works both ways with tests in place to ensure regressions do not occur. This ability
will allow the user to make use of convert into either language if they need to use a different
solver.

6.5.5 Regression Testing Ability

This chapter has documented the various tests that have been performed following the
development of APE. Unit tests as well as regression testing has been performed. This is
automatedthrough the tool SWTBot. A whole test run showing the speed that SWTBot
runs at can be seen in Appendix page If features were not able to be tested
through SWTBot then they were tested manually.

Regression tests compare the output from previous versions of APE (expected output) to
the output of the developer’s build of APE. If all tests pass it means the output is correct,
in the sense it is the same between versions of APE.

6.5.6 User Friendly

In order to achieve acceptance then APE has been designed to be as usable as possible.
Most of the GUI design is handled by the Eclipse framework, however other features have
been thought of that enable the user experience to be as pleasant as possible. Examples
are the new file and project wizard for AnsProlog* files and projects.

Additionally installation and updating of APE has been made easier for users. Users can
now install from an update site which will tell the user when updates are available to be
installed. This saves the user having to manually install by dragging JARs into specific
folders on their computer. Further, usability has been improved by refactoring the projects.
All have access to user interface components which means meaningful error messages can
be presented to the user. An example of this is when a program location has not been set.

68

Chapter 7

Conclusions

The aim of the dissertation was to extend upon the work done by Sureshkumar. Research
has been performed asking potential users for the features they desire. Additionally the
project has aimed to make future development for APE easier. This chapter documents
what has been achieved during the course of the dissertation, the significance of the work
performed as well as any future improvements to the project identified.

7.1 Project Summary

The scope of the project was identified early on in the project. Given the limited time and
resources available, the requirements elicitation process was limited to the distribution of
an online questionnaire to potential users. This was used to collate the thoughts of the ASP
community. With more resources available other requirements gathering processes could
have been considered. For example having face to face consultations or demonstration
systems would have provided a greater understanding of how APE could be used.

The response rate from the questionnaire was 37%. Although low, seventeen responses
were received giving indication that enough people were interested to make the project
worthwhile. These responses enabled a set of requirements to be drawn up as seen in
Appendix [C] Improvements that could be made to the previous version of APE were iden-
tified. Responses indicated that APE did not work due to new versions of Eclipse causing
incompatibilities. Further, users who had heard of APE did not use it, as APE did not
provide the features they needed.

APE is implemented as a set of plug-in projects for the Eclipse platform. This methodology
allows APE to interact with other Eclipse plug-ins to use features such as source control and
build script support. In addition as Eclipse is a Java program, the Java Virtual Machine
(JVM) provides multi-platform support meaning APE can be run on any operating system
where the JVM can be ran. The dissertation did not consider changing this implementation
method as otherwise the project would have been repeating Sureshkumar’s work albeit in

69

a different way. Instead the dissertation extended upon the previous work and provided
more functionality into APE:

e New framework to facilitate easy adding of external programs into APE

— Automatic program argument generation tab
— Simple delegate generation for program arguments

— Simple shortcut for launching the program

Launching Gringo and clasp using the new framework

Automatic unit and regression testing framework

New AnsProlog* file wizard

Conversion between the language of LPARSE and Gringo

Automatic predicate completion

— Content assist within the LPARSE editor

— Predicate view showing the program outline and predicated predicates

Easy installation and updating with the new update site

One thing noted from the requirements gathering phase was the wide range of ASP pro-
grams and tools in use by a variety of users. Given the time constraints of the project it was
infeasible to even consider implementing every program that may be useful to a potential
user of APE. Instead it was decided to implement a framework so that future developers
can quickly add a new program if there is enough demand. As the result in Appendix
page [92] shows, a new program can be added and launched within APE in less than twenty
minutes.

The previous version of APE suffered from not having a good test strategy when changes
were made. Manual tests were ran to check the main features functioned correctly. Prob-
lems occurred when Eclipse was updated, with no specific tests in place the problem could
not be quickly identified. Therefore a testing strategy was devised to perform automatic
and manual testing, making use of SWTBot to provide this functionality. A common
framework was devised so that future tests can extend and reuse common components.

The installation of APE has been made easier with potential users now able to install
using the update manager located within Eclipse. This allows the user to specify a website
that holds the plug-in. The installation is then performed automatically with the user not
having to do anything other than specify the update site. Previously the user had to drag
the JAR files into the correct directory in order for APE to be usable within Eclipse. The
new process simplifies this greatly making it much more user friendly.

70

7.2 Limitations

Given the nature of the project not every feature implemented went smoothly. Conversion
between solvers does not convert every incompatibility found between the languages of
LPARSE and Gringo. The conversion methods are taken from the Gringo and clasp user
manual [GKK™]. The manual [GKK™| itself says that not all possible incompatibilities
between Gringo and LPARSE are known. APE does not give a guarantee that conversion
will work in every possible case due to these unknown cases. However the more common
conversions between pooled terms, aggregates and restricted variable names are converted
successfully within APE.

Currently Gringo programs use the LPARSE editor. A underlying LPARSE model of the
program being written is used, rather than a Gringo model. Problems with this could
be incorrect syntax highlighting. Another issue could be syntax errors being identified at
incorrect locations. Program errors could be shown when they shouldn’t be, alternatively
errors may not be shown when they should. Although the option is provided to the user to
disable error checking, it does defeat the objective of the IDE. Alternatively the user can
convert the syntax but problems exist with that as well, as discussed above.

This problem is caused by no suitable parser being implemented inside of APE for Gringo.
Although the grammar is known for Gringo it would have meant converting the program
from C++ into a Java compatible parser. This would have been a time consuming process.
This was not considered an option given the very small chance of the problem occurring.
If the user knows the program is correct then the syntax checking can be turned off.

7.3 Further Work

Further work could firstly be to look at the limitations outlined above. As more incompat-
ibilities between LPARSE and Gringo are discovered then these could be added into APE.
Additionally if any new grounder with a different input language is added to APE then
this should be added as a new conversion method. One such example would be if DLV was
added to APE then conversion between that and LPARSE could be performed. Once it is in
LPARSE then it could be converted into Gringo compatible syntax. The idea is that there
is one language that is the ‘base’ that can then be converted into any language.

Work could then be done writing a compatible Java parser for Gringo. At the moment any
Gringo programs are using the LPARSE editor meaning that the program is being built into
a LPARSE representation. Although the languages are similar differences do occur meaning
that syntax errors could be missed or wrongly identified by using the wrong editor. This
can be solved by writing a Java parser to allow parsing of Gringo programs whilst the user
is typing.

Furthermore, work could be done improving the syntax error messaging presented to users.
When a syntax error is detected within the editor the problem area is underlined in red.

71

When hovering over the area with their mouse the user is presented with a message inform-
ing them of the problem. Currently every error message says ‘syntax error’ which although
indicating a problem at the location does not provide anything meaningful for the user.
Error messages such as ‘unknown constant or missing rule head’ could be used to help the
user identify problems quicker.

In this project two new external programs Gringo and clasp have been added. These
programs make use of the new framework that has been implemented to facilitate easy
integration of programs into APE. However the existing tools LPARSE and SMODELS were
not fully migrated over to make use of the new framework. Aspects were such as being able
to launch each program through the launch shortcut. However the delegate and program
argument user interface code was not. Therefore further work could look at migrating this
over to use the same methodology as Gringo and clasp. By doing this it would allow more
maintainable code with each program using the same code path. With each program using
the same implementation it would enable future developers to understand the code base
which can only mean better designed code.

Further, the framework can be used to add any new ASP programs in the future. A key part
of the IDE is the benefit of running external programs within it. The framework facilitates
this implementation. Any new program can easily be added, to be run within APE. However
the programs to be added should be driven from user feedback. Adding every possible tool
could make the interface clunky and unusable. Instead the most desired programs should
be added into APE. This feedback could be gathered from interview sessions, discussions
and even more questionnaires. However interviews and observation sessions could be the
most useful as they allow the most interaction between the interviewer and interviewee.

Testing has also been added into APE. Automatic testing is performed by the tool SWTBot.
This runs as if it is the user clicking through all the options like the user would, in order to
perform the test. These tests perform both unit and regression tests. This helps to identify
individual components as well as checking between versions of APE. However, given the
time constraints in the project not all features found within APE could have tests written
for them. Instead manual tests complemented the automatic ones. Work could be done to
ensure that the automatic tests are written for all features to give good test code coverage.

Work can also be done to change the way that SWTBot is ran. Currently tests are ran
within Eclipse. However SWTBot has the feature so that it can be run from the command
line, also known as headless mode. The tests could be ran like that rather than having to
have a version of Eclipse open. Additionally this means that the tests could be scheduled.
For example a server could be set up so that each night it pulls down the latest source code
from the GIT repository. When that has completed the tests then run on the latest version.
An email is then sent to interested parties to inform them of the result. This means that
any bad code checked into the repository would be identified and fixed as soon as possible.

Future work could also look at the expansion of the framework to be more general purpose,
perhaps a separate project. Currently it is embedded within APE, with it providing a
mechanism for user interface code to be generated. The user specifies a list of arguments

72

that are automatically turned into user interface code at runtime through reflection. The
framework handles the layout and positioning of these elements reducing the need for the
developer to think about them. This could prove beneficial in other applications as it
would reduce the time the developer has to spend developing an interface. The viability
of this approach could be researched to see if the advantages could be justified in other
applications other than APE.

7.4 Summary

This dissertation has succeeded in setting out what it aimed to do. APE has been extended
providing an IDE that has the features most desired by the users. A viable IDE is now
available for users to choose to develop their ASP programs within. Without APE, users
would still have to use multiple programs to perform their development. Considerations
have taken place to consider the usability through the use of an update site as well as
providing error messages when preferences have been set incorrectly. Additionally if desired,
external programs can quickly be added to APE. APE is now at the stage where it is
ready to be used by the ASP community. Feedback gathered from these users will drive
development in the future.

73

Bibliography

[Apt03]

[Bar03]

[BDOS]

[BGP+07]

[Blo0g]
[CDVBPO0S]

[CR93]

[CROS]

[DMS84]

Krzystof Apt. The logic programming paradigm and prolog. In John Mitchell,
editor, Concepts in Programming Languages, pages 475-508, Cambridge, UK,
2003. Cambridge University Press.

Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, Cambridge, UK, 2003.

Martin Brain and Marina De Vos. Debugging logic programs under the answer
set semantics. In Marina De Vos and Alessandro Provetti, editors, Answer
Set Programming: Advances in Theory and Implementation, pages 142 — 152.
Research Press International, 2005.

Martin Brain, Martin Gebser, Jorg Piihrer, Torsten Schaub, Hans Tompits,
and Stefan Woltran. Debugging ASP Programs by Means of ASP. In Chitta
Baral, Gerhard Brewka, and John Schlipf, editors, Proceedings of the 9th In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’07), Tempe, AZ, USA, volume 4483 of Lecture Notes in Artificial
Intelligence, pages 31-43. Springer, 2007.

Joshua Bloch. Effective Java (2nd Edition). Prentice Hall, 2008.

Owen Cliffe, Marina De Vos, Martin Brain, and Julian Padget. Aspviz: Declar-
ative visualisation and animation using answer set programming. In ICLP ’08:
Proceedings of the 24th International Conference on Logic Programming, pages
724-728, Berlin, Heidelberg, 2008. Springer-Verlag.

Alain Colmerauer and Philippe Roussel. The birth of prolog. In HOPL-II:
The second ACM SIGPLAN conference on History of programming languages,
pages 37-52, New York, NY, USA, 1993. ACM Press.

Eric Clayberg and Dan Rubel. Eclipse Plug-ins (3rd Edition). Addison-Wesley
Professional, 2008.

Norman M. Delisle, David E. Menicosy, and Mayer D. Schwartz. Viewing
a programming environment as a single tool. In SDE 1: Proceedings of the
first ACM SIGSOFT/SIGPLAN software engineering symposium on Practical

74

[DV09)]

[Ecl09]

[FGP+85]

[FP]

[GB10]

[Gee05]

[GG85]

[GKK*]

[GKO*09]

[GKS09]

[GLSS]

software development environments, pages 49-56, New York, NY, USA, 1984.
ACM Press.

Marina De Vos. Answer set programming lecture slides, December 2009. Avail-
able from http://www.cs.bath.ac.uk/~jap/CM30174/Slides/asp.pdf.

Eclipse. Platform plug-in developer guide, 2009. Available from http://help.
eclipse.org/help32/index. jspl

Nissim Francez, Shalom Goldenberg, Ron Y. Pinter, Michael Tiomkin, and
Shalom Tsur. An environment for logic programming. In Proceedings of the
ACM SIGPLAN 85 symposium on Language issues in programming environ-
ments, pages 179-190, New York, NY, USA, 1985. ACM Press.

W. Faber and G. Pfeifer. DLV homepage. http://www.dbai.tuwien.ac.at/
proj/dlv/.

Amit Gupta and Rajesh Bhatia. Testing functional requirements using b
model specifications. SIGSOFT Softw. Eng. Notes, 35(2):1-7, 2010.

David Geer. Eclipse becomes the dominant java ide. Computer, 38(7):16-18,
2005.

Michael R. Genesereth and Matthew L. Ginsberg. Logic programming. Com-
munications of the ACM, 28(9):933-941, 1985.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Sven Thiele. A users guide to gringo, clasp, clingo,
and iclingo. http://sourceforge.net/projects/potassco/files/User_
s%20Guide’20%28gringo_clasp_%2B%29/2008-11-09/guide.pdf/download
Accessed on 09/12/20009.

Martin Gebser, Roland Kaminski, Max Ostrowski, Torsten Schaub, and Sven
Thiele. On the input language of asp grounder gringo. In LPNMR ’09:
Proceedings of the 10th International Conference on Logic Programming and
Nonmonotonic Reasoning, pages 502-508, Berlin, Heidelberg, 2009. Springer-
Verlag.

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. The conflict-driven
answer set solver clasp. In LPNMR °09: Proceedings of the 10th International
Conference on Logic Programming and Nonmonotonic Reasoning, pages 509—
514, Berlin, Heidelberg, 2009. Springer-Verlag.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth Bowen, editors, Proceed-
ings of the Fifth International Conference on Logic Programming, pages 1070
1080, Cambridge, Massachusetts, 1988. The MIT Press.

75

http://www.cs.bath.ac.uk/~jap/CM30174/Slides/asp.pdf
http://help.eclipse.org/help32/index.jsp
http://help.eclipse.org/help32/index.jsp
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://sourceforge.net/projects/potassco/files/User_s%20Guide%20%28gringo_clasp_%2B%29/2008-11-09/guide.pdf/download
http://sourceforge.net/projects/potassco/files/User_s%20Guide%20%28gringo_clasp_%2B%29/2008-11-09/guide.pdf/download

[GLY3]

[GSTO7]

[Joh]

[KO85|

[Lieal

[Lieb]
[Lif08]

[LPF*06]

[Nou05]

[Pro09)

[PRS02]

[RBOG]

[Rei96]

[REMT04]

Joseph Goguen and Charlotte Linde. Techniques for requirements elicitation.
In Requirements Engineering, pages 152-164. IEEE, 1993.

Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo : A new grounder
for answer set programming. In LPNMR, pages 266-271, 2007.

Stephen C. Johnson. Yacc - yet another compiler-compiler. Available from
http://dinosaur.compilertools.net/yacc/index.html.

Henryk Jan Komorowski and Shigeo Omori. A model and an implementation
of a logic programming environment. In Proceedings of the ACM SIGPLAN 85
symposium on Language issues in programming environments, pages 191-198,

New York, NY, USA, 1985. ACM Press.

Yulia Lierler. CMODELS homepage. http://www.cs.utexas.edu/~tag/
cmodels/|

Yulia Lierler. sUp homepage. http://www.cs.utexas.edu/users/tag/sup/.

Vladimir Lifschitz. What is answer set programming? In AAAI’08: Proceed-
ings of the 23rd national conference on Artificial intelligence, pages 1594—1597.
AAAI Press, 2008.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,
Simona Perri, and Francesco Scarcello. The dlv system for knowledge repre-
sentation and reasoning. ACM Trans. Comput. Logic, 7(3):499-562, 2006.

Dana Nourie. Getting started with an integrated development environment
(ide), 2005. http://java.sun.com/developer/technicalArticles/tools/
intro.html.

Viera K. Proulx. Test-driven design for introductory oo programming. In
SIGCSE 09: Proceedings of the 40th ACM technical symposium on Computer
science education, pages 138-142, New York, NY, USA, 2009. ACM.

Jenny Preece, Yvonne Rogers, and Helen Sharp. Interaction Design. John
Wiley & Sons, Inc., New York, NY, USA, 2002.

Jim des Rivieres and Wayne Beaton. Eclipse platform technical
overview, 2006. Available from http://www.eclipse.org/articles/
Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html.

Steven P. Reiss. Software tools and environments. ACM Computing Surveys,
28(1):281-284, 1996.

Gregg Rothermel, Sebastian Elbaum, Alexey G. Malishevsky, Praveen
Kallakuri, and Xuemei Qiu. On test suite composition and cost-effective re-
gression testing. ACM Trans. Softw. Eng. Methodol., 13(3):277-331, 2004.

76

http://dinosaur.compilertools.net/yacc/index.html
http://www.cs.utexas.edu/~tag/cmodels/
http://www.cs.utexas.edu/~tag/cmodels/
http://www.cs.utexas.edu/users/tag/sup/
http://java.sun.com/developer/technicalArticles/tools/intro.html
http://java.sun.com/developer/technicalArticles/tools/intro.html
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html

[Ric]

[Rua04]

[Rup10]

[See03]

[SJ90]

[Som06a]

[SomO6b]

[Som06¢]

[Sun10]

[Sur06]

[Sze09]

[Wah99]

[WCO01]

Francesco Ricca. A java wrapper for dlv. Available from http://www.mat.
unical.it/wrapper/papers/asp03.pdf.

Janet M. Ruane. FEssentials of Research Methods: A Guide to Social Science
Research. Wiley-Blackwell, 2004.

Nayan B. Ruparelia. The history of version control. SIGSOFT Softw. Eng.
Notes, 35(1):5-9, 2010.

Donn M. Seeley. Coding smart: People vs. tools. Queue, 1(6):33-40, 2003.

Lucy Suchman and Brigitte Jordan. Interactional troubles in face-to-face sur-
vey interviews. Journal of the American Statistical Association, 85(409):232—
241, 1990.

Ian Sommerville. Software Engineering: (Update) (8th Edition). Addison
Wesley, 2006.

Ian Sommerville. Software Engineering: (Update) (8th Edition), page 126.
Addison Wesley, 2006.

Ian Sommerville. Software Engineering: (Update) (8th Edition), chapter 16,
pages 383-385. Addison Wesley, 2006.

Sun. The java tutorials, 2010. Available from http://java.sun.com/docs/
books/tutorial/reflect/index.html.

A. Sureshkumar. Ansprolog* programming environment (ape): Investigating
software tools for answer set programming through the implementation of
an integrated development environment. B.Sc. Dissertation, Department of
Computer Science, University of Bath, June 2006.

Tommi Syrjanen. Lparse 1.0 User’s Manual. Available from http://wuw.
tcs.hut.fi/Software/smodels/lparse.ps.

Tommi Syrjanen. Debugging inconsistent answer set programs. In Jiirgen
Dix and Anthony Hunter, editors, Proceedings of the 11th Workshop on Non-
monotonic Reasoning (NMR), number Ifl-06-04 in Ifl Technical Report Series,
2006. Available from http://cig.in.tu-clausthal.de/NMRO6/.

Gébor Szeder. Unit testing for multi-threaded java programs. In PADTAD
’09: Proceedings of the 7th Workshop on Parallel and Distributed Systems,
pages 1-8, New York, NY, USA, 2009. ACM.

Nancy J. Wahl. An overview of regression testing. SIGSOFT Softw. Eng.
Notes, 24(1):69-73, 1999.

Leslie B. Wilson and Robert G. Clark. Prolog. In Comparative Programming
Languages, pages 343-344, Harlow, England, 2001. Addison-Wesley Publishers
Ltd.

7

http://www.mat.unical.it/wrapper/papers/asp03.pdf
http://www.mat.unical.it/wrapper/papers/asp03.pdf
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://www.tcs.hut.fi/Software/smodels/lparse.ps
http://www.tcs.hut.fi/Software/smodels/lparse.ps
http://cig.in.tu-clausthal.de/NMR06/

[WSWO05] Michael Wick, Daniel Stevenson, and Paul Wagner. Using testing and junit

across the curriculum. In SIGCSE ’05: Proceedings of the 36th SIGCSE tech-

nical symposium on Computer science education, pages 236-240, New York,
NY, USA, 2005. ACM.

All links in this dissertation were accessible on the 5th May 2010.

78

Appendix A

Questionnaire

As found on http://www.robibbotson.co.uk/questionnaire.php

1) Which editor do you currently use to develop ASP programs?
2) How many years have you been developing ASP programs?

3) Which ASP tools do you currently use?

o dlv

o dlt

e Iparse/smodels
e Iparse/cmodels
e Iparse/sup

e gringo/clasp

e ASPViz

e SPOCK

e Other

4) Are you aware of APE?

e Yes

e No

79

http://www.robibbotson.co.uk/questionnaire.php

(Only if Yes to 4)
5) Do you use APE?

e Yes

e No

(Only if No to 5)
6) What is your reason for not using APE?

e Do not understand how to use it
e Does not support tools I use (please specify the missing tools in the ’other’ box below)
e Missing features (please specify the missing features in the 'other’ box below)

e Other

(To all)

7) Which of the following features would you like in an IDE for ASP (please choose a
maximum of three)

e Visualisation of program

e Automatic completion of predicates

e Integration of dlv

e Integration of gringo/clasp

e Conversion between different solvers

e Replacement of a rule by its grounding

e Debugging (please specify the debugging features you would like in the ’other’ box
below)

e Other

8) Any further comments about an IDE for ASP?

80

Appendix B

Questionnaire Results

Which editor do you currently use to develop ASP programs?

Editor Name Count
Text Editor
Emacs

w

Eclipse

1Clingo

Text Edit
Context
TextWrangler
Nedit
Notepad++
gedit

vi

N[== =] =] N = = o ot

How many years have you been developing ASP programs?

Years Developing Count

1 3
2 1
3 2
4 2
9 4
6 1
8 1
10 1
15 1
17 1

81

Which ASP tools do you currently use?

Other:

e dlv-complex
® asperix

® ezcsp

e platypus

e claspar

e bingo

e clingo

Are you aware of APE?

Do you use APE?

Tool Count
dlv 8
dlt 2
Iparse/smodels 11
Iparse/cmodels 1
Iparse/sup 1
gringo/clasp 12
ASPViz 3
SPOCK 1
Other 7

Yes 6

No 11

Yes 0

No 6

What is your reason for not using APE?

Other:

e Have never tried it

e Does not offer enough features

82

Reason Count
Do not understand how to use it 0
Does not support tools I use (please specify the missing tools in the 0
‘other’ box below)

Missing features (please specify the missing features in the ‘other’ box 1
below)

Other 4

e Does not work with eclipse

e Habitual emacs user

Which of the following features would you like in an IDE for ASP?

Feature Count
Visualisation of program 7
Automatic completion of predicates 9
Integration of dlv 2
Integration of gringo/clasp 5
Conversion between different solvers 10
Replacement of a rule by its grounding 2
Debugging (please specify the debugging features you would like in the 7
‘other’ box below)

Other 1

Other:

e Integration of bingo/caspd

Any further comments about an IDE for ASP?

e Converting to DLV syntax would be very good!

e Editing facilities in an “eclipse” style

e | guess visualization of programs refers to an intuitive visualization of answer sets so

that an immediate feeling of what comes out is available.

e I have seen a feature in many procedural IDES that I like. Clicking a (-) next to the
function name hides the body of the function(only shows the name), clicking the (+)
shows the entire function. For ASP, (-) only shows the head of a rule. (+) shows the

entire rule.

83

At least in my case, the use of an IDE would depend on whether it supports new
/ experimental / non-mainstream solvers. I am especially thinking of whether au-
tomatic completion, color highlighting or syntax checking might break in a bad way
(crashes or the IDE refusing to save or run the program) if one writes programs in
some extended syntax, that the IDE does not know about. If all that happens is
minor issues, e.g. the color highlighting does not look good, or syntax checking needs
to be disabled, then I would be ok with it.

This sounds like an excellent idea, could definitely help make developing ASP pro-
grams easier.

Syntax highlighting, highlights unrestricted (first-order) variables

Support for modularization (sections, files), size estimate for ground program (atoms,
clauses), recognizing of obviously wrong clauses (no ground atoms, ...)

To support Answer Set Programming, you need to understand both the paradigm
and the methodology / methodologies used. Once you understand the methodology
you can support it.

Automatic syntax checking (depending on target system), hints on possible problems
(configurable), aspviz is a nice idea but somewhat difficult to use, visualization should
be simplified

84

Appendix C

Requirements Specification

This chapter documents the requirements for the project. Further discussion can be found

in Section [3] page

C.1 Functional

1. The system should provide a easy way to create an AnsProlog* project
2. The system should provide a easy way for creating a new AnsProlog* file
3. The system should provide a source file editor

(a) The system should provide an editor for the grounders LPARSE and Gringo.
(b) The editor should provide syntax highlighting

(c) Tt should identify keywords, comments, variables, functions, atoms, negated
atoms, end of line operator and the ‘“:-’ characters signifying a rule.

4. The editor should provide syntax checking

(a) The editor should underline syntax errors

(b) The editor should explain the error
5. The editor should indent source code
6. The editor should provide block commenting
7. The system should be able to convert between different programs

(a) The system should convert from the language of LPARSE to Gringo

(b) The system should convert from the language of Gringo to LPARSE

85

10.

11.
12.
13.
14.

15.

. The system should provide a way for auto completion

(a) The system should provide auto-completion of predicates from within the editor
by using the standard Eclipse shortcut of Contol+space

(b) The system should provide a new view showing all the predicates in the program
giving an outline

. The system should provide helpful error notifications when the program location has

not been set
The system should provide a framework

(a) The framework should allow automatic generation of a user interface to configure
solver arguments

(b) The framework should allow automatic generation of the delegate that runs the
solver

(¢) The framework should allow automatic generation of launch shortcuts that the
solver can use

The system should be to filter the input to a solver
The system should filter output

The system should be able to save the program output
The system should provide debugging tools

The system provide version control tools

C.2 Non-functional

. The system should have a framework in place to allow easy integration of existing

ASP tools

(a) The system should integrate the tools Gringo/clasp into APE

. The system should run on multiple platforms
. The system should run on the platform that the existing tools run on

. The system should have tests in place to identify errors

(a) The tests should identify errors when a new version of Eclipse is released

(b) The tests should identify any errors that may occur when new features are added
to APE

86

Appendix D

Installing APE

There are a variety of ways that the version of APE completed for this project can be
downloaded and installed onto your system. As it is written in Java it is cross platform
meaning that there are no specific operating system instructions.

D.1 Update Site

In Eclipse navigate to the Help menu bar then select Install New Software. A dialog
box as seen in [E.3]on page [90] will be presented. Enter the update site into the Work with:
text box. The update site is http://ape.robibbotson.co.uk/updates. The AnsProlog*
Programming Environment can then be selected and installed onto the system following
the prompts.

When Eclipse has restarted the AnsProlog* perspective can be activated by going to the
Window menu bar. Then Open Perspective selecting AnsProlog. APE is then ready to
be used.

D.2 Supplied CD or Website

Alternatively APE can be installed from the code supplied on the CD folder update-site
or from the website http://ape.robibbotson.co.uk/update-site. Copy or download
this to your computer storing in a local folder. This folder now contains all the same code
found on the remote update site documented above. In Eclipse the Install New Software
wizard can be directed to point to a local update site. Point it to the local folder and install
it like above.

Alternatively the src folder found on the supplied CD or website can be compiled to build
the correct JARs. These can then be copied across to the Eclipse plug-in directory. However
this method of installation is not favoured and one of the above methods should be used.

87

http://ape.robibbotson.co.uk/update-site

Appendix E

Implementation Screenshots

In order to not break up the flow of the main dissertation body this chapter contains the
screenshots referred to in chapter

New Project

Select a wizard

Wizards:

type filter text

¥ (= General
1% Project
V¥ (= AnsProlog*
{7)New Project
P =C/IC++
b =CVs
» (= Drools
P (= Guvnor
P = Java
P (= Plug-in Development
I

(= Examples

N - .
|\?/x < Back C

Next > - Cancel Finish

Figure E.1: New AnsProlog* Project

88

000 New

Select a wizard

2

Wizards:

(type filter text

o)

¥ (= General
[“File
("% Folder
% Project
[Untitled Text File
¥ (= AnsProlog*
[Lparse File
@ New Project
P E=C/C++
»(=CVS
» (= Drools
» (= Guvnor
¥ (= Java
(@’ Annotation

Pt

«»(

@ (<Back) (Next>) (_ Cancel

) C

Finish

<

A

Figure E.2: New LPARSE File

89

Available Software
Check the items that you wish to install.

Work with: |http://ape.r bibb co.uk/upd. /

= (Add...

)

Find more software by working with the 'Available Software Sites' preferences.

(type filter text \
'Name Version |
8 ‘% AnsProlog* Programming Environment 2.0.1

Details

E Show only the latest versions of available software
) Group items by category
g Contact all update sites during install to find required software

g Hide items that are already installed
What is already installed?

®

(<Back) (Next>

 (cancel

) C

Finish

)

Figure E.3: Installing APE

90

4

Appendix F

Testing

A new plug-in project uk.ac.bath.cs.asp.ide.testing has been created containing all
the test code. In order to run the tests please download the source code, either from the
src folder on the supplied cd, from the website http://ape.robibbotson.co.uk or from
the GIT repository found at git@github.com:robibbotson/APE.git

The testing project has a dependency on the Eclipse plug-in SWTBot found at http:
//www.eclipse.org/swtbot/. This can be installed into Eclipse using the update
manager and update site http://download.eclipse.org/technology/swtbot/galileo/
dev-build/update-site/.

F.1 Running The Tests

When the source code has been inserted into the Eclipse workspace the tests can be
run using SWTBot. The automatic tests are all contained within the plug-in project
uk.ac.bath.cs.asp.ide.testing. To run first go to Run Configurations... and then
select a new SWTBot launch configuration. Select the testing package and click Run. A
new version of Eclipse will pop up to run all the tests.

F.1.1 Screencast
Actions speak louder than words so a screencast has been provided showing the tests in

action. This video of this can be found on the website http://ape.robibbotson.co.uk/
screencasts| or in the folder screencasts on the supplied CD.

91

http://ape.robibbotson.co.uk
git@github.com:robibbotson/APE.git
http://www.eclipse.org/swtbot/
http://www.eclipse.org/swtbot/
http://download.eclipse.org/technology/swtbot/galileo/dev-build/update-site/
http://download.eclipse.org/technology/swtbot/galileo/dev-build/update-site/
http://ape.robibbotson.co.uk/screencasts
http://ape.robibbotson.co.uk/screencasts

F.2 New Feature Test

One of the main features added in the project was a framework with the ability to quickly
add a new external program into APE. This was put to the test with the program ASPeRIX
being added into APE. ASPeRIX is a grounder and solver combined into one. A screencast
showing the ease of the process has been produced. Again this can be found on the
website http://ape.robibbotson.co.uk/screencasts or in the folder screencasts on
the supplied CD.

92

http://ape.robibbotson.co.uk/screencasts

Appendix G

Predicate Completion Tests

G.1 Base File

This is the file that all other tests will be based from. It sets up the program ready to be
extended later on.

G.1.1 File: puzzlel_base.lp

% puzzlel.lp — Knights and Knaves
% author: Tommi Syrj nen
%

% Raymond Smullyan presents the following puzzle in his book ‘Forever
% Undecided .

% The Island of Knights and Knaves has two types of inhabitants:
% knights, who always tell the truth, and knaves, who always lie.

% One day, three inhabitants (A, B, and C) of the island met a foreign
% tourist and gave the following information about themselves:

% 1. A said that B and C are both knights.
% 2. B said that A is a knave and C is a knight.

% What types are A, B, and C?
% There are three persons in this puzzle
person(a; b; c¢).

% Each person is either knight or knave, but not both.
1 { knight(P), knave(P) } 1 :— person(P).

% Rest of the rules model the hints.
%% Hint 1:

% If A tells the truth, both B and C are knights
2 { knight(b), knight(c) } 2 :— knight(a).

93

% If A lies, it is not possible that they are both knights
:— knave(a), knight(b), knight(c).

%% Hint 2:

% If B tells the truth, A is a knave and C is a knight
2 { knave(a), knight(c) } 2 :— knight(b).

% If B lies, it is not possible that A is knave and C is knight
:— knave(b), knave(a), knight(c).

G.2 New Predicate Declaration

G.2.1 File: puzzlel new.lp

puzzlel .lp — Knights and Knaves
author: Tommi Syrj nen

Raymond Smullyan presents the following puzzle in his book ‘Forever
Undecided ’.

The Island of Knights and Knaves has two types of inhabitants:
knights , who always tell the truth, and knaves, who always lie.

One day, three inhabitants (A, B, and C) of the island met a foreign
tourist and gave the following information about themselves:

1. A satd that B and C are both knights.
2. B said that A is a knave and C is a knight.

What types are A, B, and C?

N XN NN RN KR KRR K X

% There are three persons in this puzzle
person(a; b; c¢).

% Each person is either knight or knave, but mnot both.
1 { knight(P), knave(P) } 1 :— person(P).

% Rest of the rules model the hints.
%% Hint 1:

% If A tells the truth, both B and C are knights
2 { knight(b), knight(c) } 2 :— knight(a).

% If A lies, it is not possible that they are both knights
:— knave(a), knight(b), knight(c).

%% Hint 2:

% If B tells the truth, A is a knave and C is a knight
2 { knave(a), knight(c) } 2 :— knight(b).

% If B lies, it is not possible that A is knave and C is knight
:— knave(b), knave(a), knight(c).

kni

94

G.3 Previous Predicate Declaration

G.3.1 File: puzzlel previous.lp

% puzzlel.lp — Knights and Knaves
% author: Tommi Syrj nen

Raymond Smullyan presents the following puzzle in his book ‘Forever
Undecided ’.

The Island of Knights and Knaves has two types of inhabitants:
knights , who always tell the truth, and knaves, who always lie.

One day, three inhabitants (A, B, and C) of the island met a foreign
tourist and gave the following information about themselves:

1. A satd that B and C are both knights.
2. B said that A is a knave and C is a knight.

What types are A, B, and C?

SRS IS IS SIS R N SN

% There are three persons in this puzzle
person(a; b; c¢).

% Each person is either knight or knave, but not both.
1 { knight(P), knave(P) } 1 :— person(P).

% Rest of the rules model the hints.
%% Hint 1:

% If A tells the truth, both B and C are knights
2 { knight(b), knight(c) } 2 :— knight(a).

% If A lies, it is not possible that they are both knights
:— knave(a), knight(b), knight(c).

%% Hint 2:

% If B tells the truth, A is a knave and C is a knight
2 { knave(a), knight(c) } 2 :— knight(b).

% If B lies, it is not possible that A is knave and C is knight
:— knave(b), knave(a), knight(c).
knight

G.4 Variable Predicate Declaration

G.4.1 File: puzzlel _variable.lp

% puzzlel.lp —— Knights and Knaves
% author: Tommi Syrj mnen
%

% Raymond Smullyan presents the following puzzle in his book ‘Forever
% Undecided .

95

% The Island of Knights and Knaves has two types of inhabitants:
% knights , who always tell the truth, and knaves, who always lie.

% One day, three inhabitants (A, B, and C) of the island met a foreign
% tourist and gave the following information about themselves:

% 1. A said that B and C are both knights.
% 2. B said that A is a knave and C is a knight.

% What types are A, B, and C?
% There are three persons in this puzzle
person(a; b; c¢).

% Each person is either knight or knave, but mnot both.
1 { knight(P), knave(P) } 1 :— person(P).

% Rest of the rules model the hints.
%% Hint 1:

% If A tells the truth, both B and C are knights
2 { knight(b), knight(c) } 2 :— knight(a).

% If A lies, it is not possible that they are both knights
:— knave(a), knight(b), knight(c).

%% Hint 2:

% If B tells the truth, A is a knave and C is a knight
2 { knave(a), knight(c) } 2 :— knight(b).

% If B lies, it is not possible that A is knave and C is knight
:— knave(b), knave(a), knight(c).

knight (X) :— p

96

G.5 Expected Results

G.5.1 New Predicate Declaration

Predicate View

|/ Predicates 52

Vperson
person(b).
person(c).
person(a).
person(P)
person(P) :-

Vknave
knave(b).
knave(c).
knave(a).
knave(P)
knave(P) :-

Vknight
knight(b).
knight(c).
knight(a).
knight(P)
knight(P) :-

Vkni
knight(b).
knight(c).
knight(a).
kni(b).
kni(c).
kni(a).
knight(P)
knight(P) :-
kni(P)
kni(P) :-

m| O

Figure G.1: Predicate View Suggestions

97

Auto Completion

2 { knight(b), knight(c) } 2
knight

% Iknight(b).
: knight(c).
knight(a).

%% knight(P)
knight(P) :-

% Lkni

2 {kni(b).
kni(c).

% Ikni(a).
2 kni(P)
kni(P) :~

:- knight(a).

/.

lare bc

is a

knave

() kni—

Figure G.2: Auto Completion Suggestions

G.5.2 Previous Predicate Declaration

Predicate View

|1 Predicates 23

Vperson
person(b).
person(c).
person(a).
person(P)
person(P) :-

Vknave
knave(b).
knave(c).
knave(a).
knave(P)
knave(P) :-

Vknight
knight(b).
knight(c).
knight(a).
knight(b).
knight(c).
knight(a).
knight(P)
knight(P) :-
knight(P)
knight(P) :-

|y oLy

Figure G.3: Predicate View Suggestions

98

Auto Completion

A% NNt L3

% If A tells the truth, both B and C are knights
2 { knight(b), knight(c) } 2 :- knight(a).
knight
% If Aknight(b). | both knig}t
:- kknight(c).
knight(a).
%% Hinknight(P)
knight(P) :-
% If B | a knight
2 { kn

% If B ve and C i
:- K

V

Figure G.4: Auto Completion Suggestions

G.5.3 Variable Predicate Declaration

Predicate View

u
)

|| I Predicates 52

Vperson
person(P).
person(X).

Vknave
knave(P).
knave(X).

Vknight
knight(P).
knight(X).

Vp
person(P).
person(X).
p(P).
p(X).

Figure G.5: Predicate View Suggestions

99

Auto Completion

% If A tells the truth, both B and C are knights
2 { knight(b), knight(c) } 2 :- knight(a).
person
% If A lies, 1iperson(P). ights
:- knave(a), person(X).

p
%% Hint 2: p(P).
p(X).
% If B tells ¢ t
2 { knave(a),

% If B lies, 1 is kni
:- knave(b),

/,
@ knight(X) :- p| T

Figure G.6: Auto Completion Suggestions

100

Appendix H

Code

Due to the large size, it was not suitable to include all source code from APE in this chapter.
Instead key aspects are included that highlight the points made in the dissertation. The
full source code is available on the supplied CD in the folder src. Alternatively the code
can be accessed from the GIT repository found at|git@github.com:robibbotson/APE.git
or from the website at http://ape.robibbotson.co.uk/src.

101

git@github.com:robibbotson/APE.git
http://ape.robibbotson.co.uk/src

¢01

H.1 Framework

The following classes make up the framework that has been
produced. Programs making use of the framework extend
from these classes.

H.1.1 File: AbstractArgumentConstants.java

/o sk ks sk ok sk sk ok ok ok K ok ok

x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

x This program is free software; you can redistribute it
and/or modify it under the

x terms of the GNU General Public License as published
by the Free Software

* Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

x PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if mnot, write to the Free Software Foundation
, Inc., 51 Franklin Street,

x Fifth Floor, Boston, MA 02110—1301, USA.

**************/

package uk.ac.bath.cs.asp.ide.launch;

import java.lang.reflect.Field;
import java.util.HashMap;
import java.util.Map;

import sun.reflect.Reflection;
import uk.ac.bath.cs.asp.ide.ASPPlugin;

VAT

*

Abstract class to allow clients extending it to have
an easy mechanism to add

* program arguments. The client should wuse it in

*
*

*/

conjunction with the @CommandLineSwitch

annotation to have a list of program arguments. This
class allows the

additional arguments to be added, the ones that depend
upon others. For

example a radio button when selected may then need a
text box for the user to

enter the specifics. This class is to manage these
dependencies.

@Qauthor Rob Ibbotson

public abstract class AbstractArgumentConstants

{

private Map<String, Field> additionalArguments;

public AbstractArgumentConstants ()

{

additionalArguments = new HashMap<String , Field
>0
}

public Map<String , Field> getAdditionalArguments()

{
}

public void addAdditionalArguments(String key, String
value)

return additionalArguments;

additionalArguments.put(getField (key) .getName() ,
getField (value));

}

protected Field getField(String fieldName)

{
Field field = null;

try

{

€01

field = Reflection.getCallerClass(3).
getDeclaredField (fieldName) ;

catch (SecurityException e)
ASPPlugin. getLogger () .logException(e);
catch (NoSuchFieldException e)

ASPPlugin. getLogger () .logException(e);
}

return field;

H.1.2 File: AbstractLaunchConfigurationDele-
gate.java

/o ok ks sk ok sk sk ok ok ok K ok ok

x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

x This program is free software; you can redistribute it
and/or modify it under the

x terms of the GNU General Public License as published
by the Free Software

* Foundation; either wversion 2 of the License,
your option) any later wversion.

or (at

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

x PARTICULAR PURPOSE. See the GNU General Public

License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if mnot, write to the Free Software Foundation
, Inc., 51 Franklin Street,

x Fifth Floor, Boston, MA 02110—1301, USA.

stk ok ok ok ok ok ok ok kK ok /)

package uk.ac.bath.cs.asp.ide.launch;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.lang.reflect.Field;
import java.util.LinkedList;
import java.util.List;

import org.eclipse.core.runtime.CoreException;

import org.eclipse.core.runtime.IProgressMonitor;

import org.eclipse.debug.core.ILaunch;

import org.eclipse.debug.core.ILaunchConfiguration;

import org.eclipse.debug.core.model.
ILaunchConfigurationDelegate;

import org.eclipse.debug.core.model. RuntimeProcess;

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.Button;

import org.eclipse.swt.widgets. Display;

import org.eclipse.swt.widgets.MessageBox;

import org.eclipse.swt.widgets. Spinner;

import org.eclipse.swt.widgets.Text;

import uk.ac.bath.cs.asp.ide.ASPPlugin;

Vix:

* An abstract class for allowing clients implementing it
an easy way to launch

* a program. To be wused in conjunction with
@CommandLineSwitch to allow it to

* get all the program arguments to launch it.

*

* @author Rob Ibbotson

«/

public abstract class AbstractLaunchConfigurationDelegate
implements ILaunchConfigurationDelegate

{

@Override
public void launch(ILaunchConfiguration configuration
, String mode, ILaunch launch, IProgressMonitor
monitor)
throws CoreException

70T

final ProcessBuilder processBuilder = launch(
configuration);

if (processBuilder != null)
Process process = null;
try

{

process = processBuilder.start () ;
catch (IOException e)

ASPPlugin. getLogger () .logException (e);
}
new RuntimeProcess(launch, process, mode,
null);

}

public ProcessBuilder launch(ILaunchConfiguration
configuration)
{

ProcessBuilder builder = null;

List<String> commandLine = new LinkedList<String
>0

String programLocation = getProgramLocation () ;

if (programLocation != null)

commandLine.add (programLocation) ;

commandLine. addAll (getProgramArguments (
configuration));

builder = new ProcessBuilder (commandLine) ;

}

return builder;

}

public abstract String getProgramLocation ();

public abstract List<String> getProgramArguments (
ILaunchConfiguration configuration);

protected List<String> getFieldValue (
ILaunchConfiguration configuration , Field field ,
AbstractArgumentConstants constants)

List<String> arguments = new LinkedList<String >()
if (field.getType() = Button.class)

arguments.addAll (getButtonValues (
configuration , field , constants));

if (field.getType() = Text.class)

arguments . addAll (getTextValues(configuration ,
field , constants));

if (field.getType() == Spinner.class)

arguments.addAll (getSpinnerValues (
configuration, field , constants));

}

return arguments;

}

private List<String> getButtonValues(
ILaunchConfiguration configuration , Field field ,
AbstractArgumentConstants constants)

List<String> arguments = new LinkedList<String >()

b
boolean attribute = false;
try

attribute = configuration.getAttribute(field.
getName (), false);

catch (CoreException e)
ASPPlugin. getLogger () .logException(e);

if (attribute)
{
CommandLineSwitch annotation = field.
getAnnotation (CommandLineSwitch. class);
arguments .add (annotation.option ());
if (annotation.additional())

Field additionalField = constants.
getAdditionalArguments () .get (field .

SOt

getName ()) ;

arguments.addAll(getFieldValue (
configuration , additionalField ,
constants));

}
}
return arguments;

}

protected List<String> getTextValues(
ILaunchConfiguration configuration , Field field ,
AbstractArgumentConstants constants)

List<String> arguments = new LinkedList<String >()

String attribute = null;
try

{
attribute = configuration.getAttribute (field .
getName (), 77);
catch (CoreException e)
ASPPlugin. getLogger () .logException (e);

if (attribute != null && !attribute.equals(””))

{
}

return arguments;

arguments.add (attribute);

}

protected List<String> getSpinnerValues(
ILaunchConfiguration configuration , Field field ,
AbstractArgumentConstants constants)

List<String> arguments = new LinkedList<String >()

int attribute = —999;
try

{

attribute = configuration.getAttribute (field .
getName (), —999);

catch (CoreException e)

ASPPlugin. getLogger () .logException(e);

}

if (attribute != —999)

{
}

return arguments;

arguments.add (Integer.toString (attribute));

}
ez

x Helper method to pipe output from one process to
another.

@param ouput

The process to read the ouptut from
@param input

The process to write the input to

* X ¥ X ¥

*/

protected void pipe(Process output, Process input)

{

BufferedReader reader = new BufferedReader (new
InputStreamReader (output.getInputStream ()));
BufferedWriter writer = new BufferedWriter (new

OutputStreamWriter (input.getOutputStream ()));
String line = 77
try
{
while ((line = reader.readLine()) != null)
{
writer . write(line);
writer .newLine () ;

writer . flush () ;
reader . close () ;
writer.close ()

catch (IOException e)
ASPPlugin. getLogger () .logException(e);

}

@SuppressWarnings (” unchecked”)

90T

protected List<String> getInputFiles (
ILaunchConfiguration configuration)
{

List<String> files = null;
try
{
files = configuration.getAttribute(
LaunchConstants . ATTRINPUT_FILES, new
LinkedList<String >());

catch (CoreException e)
ASPPlugin. getLogger () .logException(e);

return files;

}

protected void programNotSetErrorMessage(final String
program)

// Have to do on ui thread
final Display display = Display.getDefault () ;
display .syncExec (new Runnable ()

{

public void run()
{
MessageBox box = new MessageBox (display .
getActiveShell (), SWI.OK) ;
box.setText (” Problem”) ;
box.setMessage (”The program location for
” 4 program
+ ” has not been set. Please set
in the preferences dialog.”);
box.open () ;

H.1.3 File: AbstractLaunchShortcut.java

/o ks sk ok sk sk ok ok ok K ok ok
x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

* This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

* Foundation; either version 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

* WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

*+ PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

EEEEEE PP E Y4

package uk.ac.bath.cs.asp.ide.launch;

import java.io.File;

import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;

import org.eclipse.core.resources.IFile;

import org.eclipse.core.resources.IResource;

import org.eclipse.core.runtime.CoreException;

import org.eclipse.debug.core.DebugPlugin;

import org.eclipse.debug.core.ILaunchConfiguration;

import org.eclipse.debug.core.ILaunchConfigurationType;

import org.eclipse.debug.core.
ILaunchConfigurationWorkingCopy ;

import org.eclipse.debug.core.ILaunchManager;

import org.eclipse.debug.ui.lLaunchShortcut;

import org.eclipse.jface.viewers.ISelection;

import org.eclipse.jface.viewers.IStructuredSelection;

import org.eclipse.ui.lEditorInput;

import org.eclipse.ui.lEditorPart;

import uk.ac.bath.cs.asp.ide.ASPPlugin;

201

ez

x Abstract class to allow clients implementing an easy

way to launch a program.

x To be used with {@link

AbstractLaunchConfigurationDelegate} to launch the

* program. This shortcut allows launching from the

editor or naviagtor view.

x @author Rob Ibbotson

public class AbstractLaunchShortcut implements

{

ILaunchShortcut

protected final ILaunchManager manager =
DebugPlugin. getDefault () . getLaunchManager () ;
protected ILaunchConfigurationType type = null;

public AbstractLaunchShortcut(String type)
{
this.type = manager.getLaunchConfigurationType (
type);
}

@Override
public void launch(ISelection selection, String mode)

{

if (selection instanceof IStructuredSelection)

final List<String> inputFiles =
getInputFilesFromSelection ((
IStructuredSelection) selection);
launch (inputFiles);

}

@Override
public void launch(IEditorPart editor, String mode)

{

IEditorInput editorInput = editor.getEditorInput
OF

IResource adapter = (IResource) editorInput.
getAdapter (IResource. class);

String workspaceLocation = adapter.getWorkspace ()
.getRoot () .getLocation ().toOSString () ;

String fileName = adapter.getFullPath().
toOSString () ;

String fullPath = workspaceLocation + fileName;

launch (Arrays. asList (fullPath));

}

private void launch(List<String> inputFiles)

{

if (inputFiles.size() > 0)

ILaunchConfigurationWorkingCopy workingCopy =
getWorkingCopy (manager, type, inputFiles

))

workingCopy = (workingCopy == null) ?
makeNewWorkingCopy (inputFiles , type)
workingCopy ;

try

{

workingCopy . launch (ILaunchManager .
RUNMODE, null);

catch (CoreException e)

ASPPlugin. getLogger () .logException(e);

}

private List<String> getInputFilesFromSelection (
IStructuredSelection selection)
{

final List<String> inputFiles = new LinkedList<

String >();
for (Object o selection .toArray())
if (o instanceof IFile)

final IFile file = (IFile) o;
final String filePath = file.getLocation
() .toFile().toString();
inputFiles.add(filePath);
}
}

return inputFiles;

30T

@SuppressWarnings (” unchecked”)
private ILaunchConfigurationWorkingCopy
getWorkingCopy (ILaunchManager manager ,
ILaunchConfigurationType type,
Object inputFiles)

ILaunchConfigurationWorkingCopy workingCopy =
null;
try

for (ILaunchConfiguration config
getLaunchConfigurations (type))
{

manager .

List<String> configlnputFiles = config.
getAttribute (LaunchConstants.
ATTRINPUT_FILES,

new LinkedList<String >());
if (inputFiles.equals(configInputFiles))

workingCopy = config.getWorkingCopy ()

break;

}
}
catch (CoreException e)

ASPPlugin. getLogger () .logException(e);
}

return workingCopy ;

}

private ILaunchConfigurationWorkingCopy
makeNewWorkingCopy (List <String> inputFiles ,
ILaunchConfigurationType type)

File file = new File(inputFiles.get(0).toString()

ILaunchConfigurationWorkingCopy workingCopy =
null;
try
{
workingCopy = type.newlnstance(null, file.
getName ()) ;

H.1.4 File: AbstractMultipleFileArgumentsTab.java

workingCopy . setAttribute (LaunchConstants.
ATTRINPUT_FILES, inputFiles);
workingCopy . doSave () ;

catch (CoreException e)
ASPPlugin. getLogger () .logException(e);

}

return workingCopy ;

/ot kK ok ok ok ok ok ok ok ok ok

*

*

APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform
Copyright (C) 2010 Rob Ibbotson

This program is free software; you can redistribute it
and/or modify it under the

terms of the GNU General Public License as published
by the Free Software

Foundation; either wversion 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will
be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General
Public License along with this

program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

Fifth Floor, Boston, MA 02110—1301, USA.

ok ok KKK KK KKKk ok /)
package uk.ac.bath.cs.asp.ide.launch;

import java.util.LinkedHashMap;
import java.util.Map;

60T

import org.eclipse.debug.core.ILaunchConfiguration;

import org.eclipse.debug.core.
ILaunchConfigurationWorkingCopy ;

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.ExpandBar;

import org.eclipse.swt.widgets.Expandltem;

Vex:

* Gui abstract control to show the program argumnets
specified

*

x @author Rob Ibbotson

*/

public abstract class AbstractMultipleFileArgumentsTab
extends AbstractSingleFileArgumentsTab

{

protected Map<String , AbstractArgumentConstants>
fileList = new LinkedHashMap<String ,
AbstractArgumentConstants > () ;

private int
expandltemNumber = 0;

QOverride
public abstract String getName() ;

@Override
public abstract void setDefaults (
ILaunchConfigurationWorkingCopy configuration);

@QOverride
public void createControl(Composite parent)
{
ExpandBar bar = new ExpandBar(parent, SWT.
VSCROLL) ;

for (String name

{

fileList .keySet())

super.setArgumentConstantFile (fileList . get (
name)) ;

Composite composite = super.
createCompostiteControl (bar);

createNextExpandItem (bar, composite, name);

setControl (bar);

}

@Override

public void initializeFrom (ILaunchConfiguration
configuration)
{

for (String name

{

fileList .keySet())

super.setArgumentConstantFile (fileList . get (
name)) ;
super. initializeFrom (configuration);

}

private Expandltem createNextExpandItem (ExpandBar bar
, Composite composite, String text)
{

ExpandItem item = new ExpandItem (bar, SWT.NONE,
expandItemNumber) ;

item.setText (text);

item.setHeight (composite.computeSize (SWI.DEFAULT,
SWT.DEFAULT) .y) ;

item.setControl (composite) ;

if (expandItemNumber =— 0)

item .setExpanded (true) ;

}
expandltemNumber++;
return item;

H.1.5 File: AbstractSingleFileArgumentsTab.java

/**************

x* APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform
x Copyright (C) 2010 Rob Ibbotson

* This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

01T

* Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

x PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

x Fifth Floor, Boston, MA 02110—1301, USA.

stk ok ok ok ok ok ok ok ok ok ok ok /)

package uk.ac.bath.cs.asp.ide.launch;

import java.lang.reflect.Field;
import java.util.HashMap;
import java.util.Map;

import org.eclipse.core.runtime.CoreException;

import org.eclipse.debug.core.ILaunchConfiguration;

import org.eclipse.debug.core.
ILaunchConfigurationWorkingCopy ;

import org.eclipse.debug. ui.
AbstractLaunchConfigurationTab;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.ModifyEvent;

import org.eclipse.swt.events. ModifyListener;

import org.eclipse.swt.events.SelectionAdapter;

import org.eclipse.swt.events. SelectionEvent ;

import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;

import org.eclipse.swt.widgets.Button;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Control;

import org.eclipse.swt.widgets.Spinner;

import org.eclipse.swt.widgets. Text;

import uk.ac.bath.cs.asp.ide.ASPPlugin;

VExS

x* Abstract gui control to represent all the program
arguments defined as
x constants with the {@link CommandLineSwitch}
annotation .
*
* @author Rob Ibbotson
*/
public abstract class AbstractSingleFileArgumentsTab
extends AbstractLaunchConfigurationTab
{

private AbstractArgumentConstants
argumentConstantFile = null;
protected Map<String , Control> controlMapping
= new HashMap<String , Control>();
private ModifyListener modifyListener
= new ModifyListener ()

@Override
public abstract String getName();

@Override
public
void
modifyText

(
ModifyEvent

updateLaunchCo:

0

)

TTT

Q@QOverride
public abstract void setDefaults (

ILaunchConfigurationWorkingCopy configuration);

@Override
public void createControl(Composite parent)

{
}

setControl (createCompostiteControl (parent));

protected Composite createCompostiteControl (Composite

{

}

parent)

Composite composite = new Composite(parent, SWT.
NONE) ;

composite.setLayout (new GridLayout (2, false));

for (Field field : argumentConstantFile.getClass
() .getFields ())

createField (composite, field);

}

return composite;

private Control createField (Composite composite,

{

Field field)

Control control = null;

Control additional = null;

CommandLineSwitch annotation = field.
getAnnotation (CommandLineSwitch. class) ;

if (annotation != null && annotation.additional ()

)

Field additionalField = argumentConstantFile.
getAdditionalArguments (). get (field .
getName ()) ;

additional = createField (composite,
additionalField);

}

if (field.getType() = Button.class)

{

control = createButton (composite, annotation,
additional);

if (field.getType() == Spinner.class)
control = createSpinner (composite);
if (field.getType() = Text.class)

control = createText (composite);

}
if (additional = null)

control.setLayoutData(new GridData (SWT.
BEGINNING, SWT.BEGINNING, false, false,

2, 1));
else

control .moveAbove(additional);

control.setLayoutData(new GridData (SWT.
BEGINNING, SWT.BEGINNING, false, false,
1, 1));

GridData additionalGrid = new GridData (SWT.
BEGINNING, SWT.BEGINNING, true, false, 1,
1);

additionalGrid . minimumWidth = 100;

additional .setLayoutData(additionalGrid);

controlMapping.put(field .getName(), control);
return control;

private Control createButton (Composite composite,

CommandLineSwitch annotation, final Control
additional)

final Button button = new Button(composite, SWT.

CHECK) ;
button.setText (annotation.description() + 7 [” +
annotation.option () + 7]”);

button.addSelectionListener (new SelectionAdapter

0

¢ll

@Override
public void widgetSelected (SelectionEvent e)

{

if (additional != null)

additional.setEnabled (button.
getSelection ());

updateLaunchConfigurationDialog () ;

b
return button;

}

private Control createSpinner (Composite composite)
{
Spinner spinner = new Spinner (composite, SWT.
BORDER) ;
spinner.addModifyListener (modifyListener) ;
return spinner;

}

private Control createText(Composite composite)

{

Text text = new Text(composite, SWI.BORDER) ;
text.addModifyListener (modifyListener);
return text;

}

@Override

public void initializeFrom (ILaunchConfiguration
configuration)

{

for (Field field : argumentConstantFile.getClass
() .getFields ())
{

Button button = (Button) initializeField (
configuration , field);

// Now see if we have additional and do them

CommandLineSwitch annotation = field.
getAnnotation (CommandLineSwitch. class) ;

if (annotation.additional())

Field additionalField =
argumentConstantFile.
getAdditionalArguments () . get (field .
getName ()) ;

Control additionalControl =
initializeField (configuration ,
additionalField);

additionalControl.setEnabled (button.
getSelection ());

}

private Control initializeField (ILaunchConfiguration
configuration , Field field)

Control control = controlMapping.get(field.
getName ()) ;
try

{

if (control instanceof Button)

Button button = (Button) control;
button.setSelection (configuration.
getAttribute(field .getName (), false))

)

}

if (control instanceof Spinner)

{
Spinner spinner = (Spinner) control;
spinner.setSelection (configuration .
getAttribute (field .getName(), 0));

if (control instanceof Text)

Text text = (Text) control;
text.setText (configuration.getAttribute (
field .getName (), 77));

}
}

catch (CoreException e)

ASPPlugin. getLogger () .logException (e);

}

return control;

€11

}

@Override
public void performApply (
ILaunchConfigurationWorkingCopy configuration)

for (String attributeName

0)
{

Control control = controlMapping. get (
attributeName) ;
if (control instanceof Button)

controlMapping . keySet

Button button = (Button) control;
configuration.setAttribute (attributeName ,
button. getSelection ());
if (control instanceof Spinner)
Spinner spinner = (Spinner) control;
configuration.setAttribute (attributeName,
spinner. getSelection ());
if (control instanceof Text)
Text text = (Text) control;

configuration.setAttribute (attributeName ,
text.getText ());

}

protected void setArgumentConstantFile(
AbstractArgumentConstants constantFile)
{

}

argumentConstantFile = constantFile;

H.1.6 File: CommandLineSwitch.java

/o ks sk ok sk sk ok ok ok K ok ok
x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

* This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

* Foundation; either version 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

* WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

*+ PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

sk ok sk ok ok ok sk ok ok ok Kok ok sk /

package uk.ac.bath.cs.asp.ide.launch;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

VAT
x* Allows a mnice way of representing the program argument
The option is what

* the program sees. The description is for the gui and
what the wuser sees.

* Additional defines whether any further fields depend
upon this one.

*

* @author Rob Ibbotson

«/

@Retention (RetentionPolicy .RUNTIME)

@Target ({ ElementType.FIELD })

public @interface CommandLineSwitch

{

",

String option () default

VIl

String description () default 77 ;

boolean additional () default false;

H.2 Gringo

This section shows some of the classes that comprise of the
Gringo integration inside of APE. These classes show how the
framework is used. Clasp, although not included inside this
chapter follows a similar methodology.

H.2.1 File:
stants.java

GringoProgramArgumentCon-

/% Kok ok ok ok ok ok oK oK oK oK oK

x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

*

x This program is free software;
and/or modify it under the

x terms of the GNU General Public License as published
by the Free Software

* Foundation; either wversion 2 of the License,
your option) any later wversion.

you can redistribute it

or (at

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

x PARTICULAR PURPOSE. See the GNU General Public

License for more details.

* You should have received a copy of the GNU General
Public License along with this

x program; if mot, write to the Free Software Foundation
, Inc., 51 Franklin Street,

x Fifth Floor, Boston, MA 02110—1301, USA.

EEEEEE PP E Y4
package uk.ac.bath.cs.asp.ide.gringo.launch.constants;
import
import
import

org.eclipse.
org.eclipse.
org.eclipse.

swt.widgets.Button;
swt.widgets.Spinner;
swt.widgets . Text;

import uk.ac.bath.cs.asp.ide.launch.
AbstractArgumentConstants;
import uk.ac.bath.cs.asp.ide.launch.CommandLineSwitch;

Vit

* Class that lists all the
gringo program accepts.

* The description is what the user sees with the option
being what is actually

* passed to gringo. Dependencies are added in the
constructor

of the arguments that the

*

* @author Rob Ibbotson

*/

public class GringoProgramArgumentConstants extends
AbstractArgumentConstants

{
@CommandLineSwitch (option = ”"——const”, description =
”Replace constant <c> by value <v>", additional
true)

public static final Button
ATTR.GRINGO_REPLACE_.CONST

@CommandLineSwitch (option = "—text”,
Print plain text format”)

public static final Button
ATTR_.GRINGO_PLAIN_.TEXT FORMAT

@CommandLineSwitch (option = "—Iparse”,
?Print Lparse format”)

public static final Button

= null;
description =

= null;
description

”

ATTR.GRINGO_LPARSE FORMAT = null;
@CommandLineSwitch (option = ”—aspils”, description =
?Print ASPils format in normal form <num>"

additional = true)
public static final Button ATTR_-GRINGO_ASPILS
= null;
@CommandLineSwitch (option = "——ground”, description

”?Enable lightweight mode for ground input”)

G1T

public static final Button ATTR_GRINGO_LIGHT_-GROUND
= null;
@CommandLineSwitch (option = 7—shift” |
?Shift disjunctions into the body”)
public static final Button

ATTR_-GRINGO_SHIFT_DISJUNCTIONS = null;

description =

@CommandLineSwitch (option = "——bindersplit=yes”
description = "Turn on binder splitting”)

public static final Button ATTR_GRINGO_BINDER_SPLIT

= null;

@CommandLineSwitch(option = "—ifixed”, description =
?Fix number of incremental steps to <num>"
additional = true)

public static final Button ATTR_.GRINGO_FIX NUMBER

= null;

@CommandLineSwitch (option = "—ibase”, description =

”Process base program only”)
public static final Button ATTR_GRINGO_BASE_ONLY
= null;
@CommandLineSwitch (option = "—syntax”, description =
”Print syntax information”)

public static final Button ATTR.GRINGOSYNTAX
= null;
@CommandLineSwitch (option = "——debug”, description =

”Print internal representations of rules during
grounding”)

public static final Button ATTR_GRINGO_DEBUG
= null;
@CommandLineSwitch (option = "——stats”, description =

”Print extended statistics”)
public static final Button ATTR-GRINGO_STATS
= null;

// Additional info mneeded for fields
@SuppressWarnings (” unused”)
private static final Text
ATTR_GRINGO_REPLACE_CONST_TEXT = null;
@SuppressWarnings (” unused”)
private static final Spinner ATTR.GRINGO_ASPILS_NUM
= null;
@SuppressWarnings (” unused”)
private static final Spinner
ATTR_GRINGO_FIX NUMBER.NUM = null;

public GringoProgramArgumentConstants ()

{

super () ;

super . addAdditionalArguments (”
ATTR_.GRINGO_REPLACE_.CONST” , ”
ATTR-GRINGO_REPLACE_CONST_TEXT”) ;

super . addAdditionalArguments (" ATTR-.GRINGO_ASPILS”
, "ATTR_GRINGO_ASPILS NUM”) ;

super . addAdditionalArguments (”
ATTR_.GRINGO_FIX NUMBER” , ”
ATTR_-GRINGO_FIX_ NUMBER NUM”) ;

H.2.2 File: GringoArgumentsTab.java

/* >k 3k >k >k >k >k sk sk ok ok ok ok ok

*

*

APE: AmnsPrologx Programming Environment plug—in for
the Eclipse platform
Copyright (C) 2010 Rob Ibbotson

This program is free software; you can redistribute it
and/or modify it under the

terms of the GNU General Public License as published
by the Free Software

Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

This program is distributed in the hope that it will
be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General
Public License along with this

program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

Fifth Floor, Boston, MA 02110—1301, USA.

sk ok sk ok ok ok sk ok ok ok kok ok sk /
package uk.ac.bath.cs.asp.ide.gringo.launch;

91T

import org.eclipse.debug.core.
ILaunchConfigurationWorkingCopy ;

import org.eclipse.debug.ui.DebugUITools;

import org.eclipse.debug.ui.IDebugUIConstants;

import org.eclipse.swt.graphics.Image;

import org.eclipse.swt.widgets.Composite;

import uk.ac.bath.cs.asp.ide.gringo.launch.constants.
GringoProgramArgumentConstants;

import uk.ac.bath.cs.asp.ide.launch.
AbstractSingleFileArgumentsTab;

VxS

* The arguments tab for gringo in the run configuration

*
* @author Rob Ibbotson
*/
public class GringoArgumentsTab extends
AbstractSingleFileArgumentsTab
{

private Image image;

@OQOverride
public void createControl (Composite parent)

{

super.setArgumentConstantFile (new
GringoProgramArgumentConstants ()) ;
super . createControl (parent);

}

@Override
public String getName ()

{

}

@OQOverride

public void setDefaults (
ILaunchConfigurationWorkingCopy configuration)

{

}

@Override
public Image getImage ()

{

return ”Gringo Arguments”;

if (image = null)

image = DebugUITools. getImage (
IDebugUIConstants .IMG_VIEW_VARIABLES) ;

}

return image;

H.2.3 File:
gate.java

GringoLaunchConfigurationDele-

/% sk ok ok ok ok ok ok ok ok ok ok ok o

* APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

* This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

x Foundation; either version 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

* WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

st ok ok sk ok ok sk ok ok ok Kk ok ok /

package uk.ac.bath.cs.asp.ide.gringo.launch;

import java.lang.reflect.Field;
import java.util.LinkedList;
import java.util.List;

L1T

import org.eclipse.core.runtime. preferences.
IEclipsePreferences;
import org.eclipse.core.runtime.preferences.InstanceScope

import org.eclipse.debug.core.ILaunchConfiguration;

import uk.ac.bath.cs.asp.ide.gringo.GringoPlugin;

import uk.ac.bath.cs.asp.ide.gringo.launch.constants.
GringoProgramArgumentConstants;

import uk.ac.bath.cs.asp.ide.gringo.preferences.
GringoPreferenceConstants;

import uk.ac.bath.cs.asp.ide.launch.
AbstractLaunchConfigurationDelegate;

ez

* The delegate that runs gringo. Gets all the arguments
and what the user chose

* from the run configuration then builds the command
line before rumning in a

* separale process.

*

* @author Rob Ibbotson

*/

public class GringoLaunchConfigurationDelegate extends
AbstractLaunchConfigurationDelegate

{

@Override

public List<String> getProgramArguments (
ILaunchConfiguration configuration)

{

List<String> arguments = new LinkedList<String >()

// add the input files
arguments.addAll (getInputFiles (configuration));

GringoProgramArgumentConstants gringoConstants =
new GringoProgramArgumentConstants () ;

for (Field field
getFields ())
{

gringoConstants . getClass () .

arguments.addAll (getFieldValue (configuration ,
field , gringoConstants));

}

return arguments;

}

@Override
public String getProgramLocation ()
{
IEclipsePreferences node = new InstanceScope().
getNode (GringoPlugin . PLUGIN.ID) ;
final String program = node.get (
GringoPreferenceConstants . GRINGO.PROGRAM PATH
, null);
if (program = null)

super . programNotSetErrorMessage (” gringo”) ;

}

return program,;

H.2.4 File: GringoLaunchConfigurationTab-
Group.java

/% o o o o o o o o o o o

* APE: AnsProlog+x Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

* This program 1is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

x Foundation; either wversion 2 of the License, or (at
your option) any later version.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

31T

x Fifth Floor, Boston, MA 02110—1301, USA.
**************/
package uk.ac.bath.cs.asp.ide.gringo.launch;

import org.eclipse.debug. ui.
AbstractLaunchConfigurationTabGroup;

import org.eclipse.debug. ui.CommonTab;

import org.eclipse.debug.ui.ILaunchConfigurationDialog;

import org.eclipse.debug.ui.ILaunchConfigurationTab;

import uk.ac.bath.cs.asp.ide.launch.
InputFilesConfigurationTab;

VexS

x The tabs in the gringo rTun configuration

*

* @author Rob Ibbotson

*/

public class GringoLaunchConfigurationTabGroup extends
AbstractLaunchConfigurationTabGroup

{

@OQOverride

public void createTabs(ILaunchConfigurationDialog
dialog , String mode)

{

ILaunchConfigurationTab [] tabs = new
ILaunchConfigurationTab [] { new
InputFilesConfigurationTab (),

new GringoArgumentsTab (), new CommonTab ()

}7
setTabs (tabs);

H.2.5 File: GringoLaunchShortcut.java

/% KKK KK KK K K K K K

x APE: AmnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

*

x This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

x Foundation; either version 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

* WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

x program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

sk ok ok sk ok ok sk ok ok ok ok ok ok ok /

package uk.ac.bath.cs.asp.ide.gringo.launch;

import uk.ac.bath.cs.asp.ide.launch.
AbstractLaunchShortcut ;

Vax:

* Launch shortcut for gringo so it can be launched from
the editor by right

* clicking

*

* @author Rob Ibbotson

*/

public class GringoLaunchShortcut extends
AbstractLaunchShortcut

public GringoLaunchShortcut ()

{

super (”uk.ac.bath.cs.asp.ide.gringo.launch.
GringoLaunchConfigurationType”) ;

H.2.6 File: GringoPreferenceConstants.java

61T

/% ok ok ok ok ok oK oK oK oK oK oK

x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

*

x This program is free software; you can redistribute it
and/or modify it under the

x terms of the GNU General Public License as published
by the Free Software

* Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

x PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

x program; if mot, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

stk ok ok ok ok ok ok ok ok ok ok o/

package uk.ac.bath.cs.asp.ide.gringo.preferences;

VT

x Constant for the plug—in preferences. Stored in the
preference store wunder

* this id.

*

* @author Rob Ibbotson

*/

public class GringoPreferenceConstants

{

public static final String GRINGOPROGRAMPATH = ”
gringoProgramPathPreference” ;

H.2.7 File: GringoPreferencePage.java

/% s ok ok ok ok ok ok ok ok ok ok ok o

* APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

* This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

x Foundation; either version 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

* WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

H KRR KRR KRR K K/

package uk.ac.bath.cs.asp.ide.gringo.preferences;

import org.eclipse.jface.preference.
FieldEditorPreferencePage;

import org.eclipse.jface.preference.FileFieldEditor;

import org.eclipse.ui.IWorkbench;

import org.eclipse.ui.IWorkbenchPreferencePage;

import uk.ac.bath.cs.asp.ide.gringo.GringoPlugin;

Vix:

* Gringo preference page for the program location

*

* @author Rob Ibbotson

*/

public class GringoPreferencePage extends
FieldEditorPreferencePage implements
IWorkbenchPreferencePage

0cl

public GringoPreferencePage ()

{
super (GRID) ;
setPreferenceStore (GringoPlugin. getDefault ().
getPreferenceStore ());
}

public void createFieldEditors ()

addField (new FileFieldEditor (
GringoPreferenceConstants . GRINGO_PROGRAM PATH
”Program Location”,
getFieldEditorParent ()));

)

}

public void init (IWorkbench workbench)

{
}

H.3 Conversion

This section shows some of the classes responsible for the con-
version between the programs. It provides the functionality
to convert from LPARSE to Gringo and Gringo to LPARSE.

H.3.1 File: AbstractProgramConverter.java

/o ks sk ok sk sk ok ok ok ok ok ok

x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

*

* This program is free software; you can redistribute it
and/or modify it under the

x terms of the GNU General Public License as published
by the Free Software

* Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

* WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

x program; if not, write to the Free Software Foundation

, Inc., 51 Franklin Street,
* Fifth Floor, Boston, MA 02110—1301, USA.
KKK R K K/
package uk.ac.bath.cs.asp.ide.lparse.conversion;

import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.eclipse.jface.text.BadLocationException;
import org.eclipse.jface.text.IDocument;
import org.eclipse.ui.texteditor.ITextEditor;

import uk.ac.bath.cs.asp.ide.ASPPlugin;

VaAx:
* Provides many functions for the converters that
extends this

*
* @author Rob Ibbotson
*/
public abstract class AbstractProgramConverter
{

public abstract void convert(ITextEditor editor);

protected Matcher getMatcher(String regex, String

toBeSearched)

{
Pattern pattern = Pattern.compile(regex);
return pattern.matcher(toBeSearched);

}

protected String getDocumentString(int offset , int
end, IDocument document)
{

1¢1

” 9

String string = ;
try

{
}

catch (BadLocationException e)

string = document.get (offset , end);

ASPPlugin. getLogger () .logException(e);

}

return string;

}

protected void replaceInDocument (int offset , int
length , String replacement , IDocument document)
{

try

{

document.replace (offset , length, replacement)

})

catch (BadLocationException e)
ASPPlugin. getLogger () .logException(e);
}

protected int getLineStart (IDocument document, int
offset) throws BadLocationException
{

while (offset >= 0 & & document.getChar (offset) !=
7\n1)
offset ——;

// Don’t want to return \n want the one before

nor return —1 want 0
return offset + 1;

}

protected int getLineEnd (IDocument document, int
offset) throws BadLocationException

while (offset < document.getLength () && document.
getChar (offset) != ’\n’)
{

H.3.2 File:

offset++;

return offset ;

}

protected void replaceWithFull (List<String>
replacements, IDocument document, int startPos,
int endPos)

StringBuffer buffer = new StringBuffer ();
int startOfLine = startPos;

int endOfLine = endPos;

String previous = 77

String suffix = 7",

try

startOfLine = getLineStart (document, startPos
)

endOfLine = getLineEnd (document, endPos);

previous = document.get (startOfLine, startPos
— startOfLine);

suffix = document.get (endPos, endOfLine —
endPos) ;

catch (BadLocationException e)

ASPPlugin. getLogger () .logException(e);

}

for (String replace : replacements)

{

String newString = previous + replace +
suffix + System.getProperty (”line.
separator”);

buffer.append(newString) ;

replaceInDocument (startOfLine , endOfLine —
startOfLine , buffer.toString (), document);

AbstractProgramConverterA c-
tion.java

¢al

/% ok ok ok ok ok oK oK oK oK oK oK

x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

x This program is free software; you can redistribute
and/or modify it under the

x terms of the GNU General Public License as published
by the Free Software

* Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

x PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if mnot,
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

stk ok ok ok ok ok ok ok ok ok ok o/

package uk.ac.bath.cs.asp.ide.lparse.conversion;

import org.eclipse.jface.action.Action;
import org.eclipse.ui.texteditor.ITextEditor;

ez

x Abstract class to share common functions

*

* @author Rob Ibbotson

*/

public abstract class AbstractProgramConverterAction
extends Action

{

protected ITextEditor
private AbstractProgramConverter []

editor;
converters;

public AbstractProgramConverterAction (String name,
AbstractProgramConverter [] converters)
{

super (name) ;

write to the Free Software Foundation

H.3.3 File:

setEnabled (false);
this.converters = converters;

}

public void setEditor (ITextEditor editor)

{

this.editor = editor;
setEnabled (editor != null);

}

@Override
public void run()

{
super.run () ;
for (AbstractProgramConverter conv

{
}

converters)

conv.convert (editor);

AggregateLparseToGringoCon-
verter.java

/o kR ok ok ok ok ok ok Kk ok

*

APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform
Copyright (C) 2010 Rob Ibbotson

This program is free software; you can redistribute it
and/or modify it under the

terms of the GNU General Public License as published
by the Free Software

Foundation; either wversion 2 of the License, or (at
your option) any later wversion.
This program is distributed in the hope that it will

be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public
License for more details.

€cl

* You should have received a copy of the GNU General
Public License along with this

x program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

x Fifth Floor, Boston, MA 02110—1301, USA.

sk ok ok ok sk ok sk ok ok ok kK ok o/

package uk.ac.bath.cs.asp.ide.lparse.conversion;

import java.util.regex.Matcher;

import org.eclipse.jface.text.IDocument;
import org.eclipse.ui.texteditor.ITextEditor;

VEx:

x This is wused to conwvert from Iparse to gringo.
Aggregation is done

x differently as described in the gringo manual. This
class expands it out so

* that it can be understood by both.

*

* @author Rob Ibbotson

*/

public class AggregateLparseToGringoConverter extends
AbstractProgramConverter

{

private static final String startRegex = "\\d+[{]”

private static final String atom =7()x\\w
+C) \NNOAWH\N) 75

private static final String optionalAtoms = " (,” +
atom + 7)x”;

private static final String endRegex ="7[}";

@Override

public void convert(ITextEditor editor)
{
IDocument document = editor.getDocumentProvider ()
.getDocument (editor . getEditorInput ());
Matcher matcher = getMatcher (getFullRegex (),
getDocumentString (0, document.getLength (),
document)) ;
while (matcher. find ())

String replacement = buildReplacement (matcher
-group ()) ;

replaceInDocument (matcher.start (), matcher.
group () .length (), replacement, document);

matcher = getMatcher(getFullRegex (),
getDocumentString (0, document.getLength ()
, document)) ;

}

private String buildReplacement(String group)

{
StringBuffer newString = new StringBuffer ();
Matcher matcher = getMatcher(startRegex , group);
String found = getStringFromMatcher (matcher) ;
newString . append (found . substring (0, found.length

O - 1)

newString . append (7 [”);

matcher = getMatcher (” [{].+[}]”, group);
found = getStringFromMatcher (matcher);
matcher = getMatcher (atom, found);

boolean notFirst = false;
while (matcher. find ())
{

if (notFirst)

{

newString .append (”,”);

newString . append (matcher.group());
newString . append (”=1");
notFirst = true;

}

newString .append(”]”);

return newString.toString () ;

}

private String getStringFromMatcher (Matcher matcher)

{

matcher. find () ;
return matcher. group();

}

private String getFullRegex ()

{

Vel

H.3.4 File:

”»

return startRegex + atom + ”()*” + optionalAtoms

+ endRegex;

PoolingGringoToLparseCon-
verter.java

/% KKK K KK K K K K K K
x APE: AnsPrologx Programming Environment plug—in for

*

*

the Eclipse platform
Copyright (C) 2010 Rob Ibbotson

This program 1is free software;
and/or modify it under the

terms of the GNU General Public License as published
by the Free Software

Foundation; either wversion 2 of the License,
your option) any later wversion.

you can redistribute it

or (at

This program +is distributed in the hope that it will
be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public

License for more details.

You should have received a copy of the GNU General
Public License along with this

program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110—1301, USA.

ook ok ok ok ok koK Kk ok /)
package uk.ac.bath.cs.asp.ide.lparse.conversion;

import
import
import

import
import

VAT

java.util.ArrayList;
java.util. List;
java.util.regex.Matcher;

org.eclipse.jface.text.IDocument;
org.eclipse.ui.texteditor.ITextEditor;

*

*

*
*
*

*/

Used to convert from gringo to Iparse. There is a
difference in pooling

between the two. p(X,Y;Z) in gringo
whereas in lparse it 1is

p(X,Y) p(Z). This ezxpands out the rules so that they
can then be understand

by both grounders in the same manner.
converts from p(X,Y;Z)

to the form p(X,Y) p(X,Z).

its p(X,Z) p(X,Y)

This converter

@author Rob Ibbotson

public class PoolingGringoToLparseConverter extends

{

AbstractProgramConverter

private static final String startRegex = " [a—zA
—Z]+\\ (75

private static finmal String variable =7 [A7Z
1475

private static final String variableSpaced =7)*”
+ variable + 7 ()x7;

private static final String combinedVariable =

" ([,;]” + variableSpaced + 7)+7;
String endRegex = "\\)";

variableSpaced +
private static final

@Override
public void convert(ITextEditor editor)
{
IDocument document = editor.getDocumentProvider ()
.getDocument (editor.getEditorInput ());
Matcher matcher = getMatcher (fullRegex (),
getDocumentString (0, document.getLength (),
document)) ;
while (matcher. find ())
{
List<String> replacement =
matcher. group ());
if (replacement.size () > 0)

buildReplacement (

replaceWithFull (replacement , document,
matcher.start (), matcher.end());

matcher = getMatcher (fullRegex (),
getDocumentString (0, document.
getLength (), document));

gcl

}

private String fullRegex ()

{
}

private List<String> buildReplacement (String group)

{

return startRegex 4+ combinedVariable + endRegex;

List<String> newStrings = new ArrayList<String >()

String start = getStart (group);

// Going to bruce forsyth it
List<String> constants = new ArrayList<String >();

// Find the constant first

constants.addAll(getRegex (”\\(”, ”,”, group));
constants.addAll(getRegex(”,”, ”,”, group));
constants.addAll(getRegex(”,”, ”\\)”, group));
constants.addAll(getRegex (”\\(”, ”\\)”, group));
List<String> arguments = new ArrayList<String >();
arguments . addAll (getRegex (" \\(”, ”7;”, group));
arguments.addAll (getRegex (”,”, ”;”, group));
arguments.addAll (getRegex(”;”, 7,7, group));
arguments.addAll (getRegex (”;”, ”7;”, group));
arguments.addAll (getRegex(”;”, "\\)”, group));

// Now have every constant but with a different
arg each time

String constantString =

for (String constant

29,
)

constants)

{
constantString 4= constant + 7 ”;
}
for (String arg arguments)
{
String argString = constantString;
argString += arg + 7)”;
newStrings.add(start + argString);
}

H.3.5 File:

return newStrings;

}

private String getStart(String group)

{
Matcher matcher = getMatcher(startRegex , group);
matcher. find () ;
return matcher.group();

}

private List<String> getRegex(String previous, String
end, String group)
{

List<String> found = new ArrayList<String >();
String regex = previous 4+ variableSpaced + end;
Matcher matcher = getMatcher(regex, group);
int start = 0;
while (matcher.find (start))
{

String matched = matcher. group();

matched = matched.substring (1, matched.length

0 = 1);
found .add (matched) ;
start = matcher.end() — 1;

}

return found;

PoolingLparseToGringoCon-
verter.java

/**************

*

APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform
Copyright (C) 2010 Rob Ibbotson

This program is free software; you can redistribute it
and/or modify it under the

terms of the GNU General Public License as published
by the Free Software

Foundation; either version 2 of the License, or (at
your option) any later wversion.

9¢l

* This program 1is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

x PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

x Fifth Floor, Boston, MA 02110—1301, USA.

stk ok ko ok ok koK ok ok /)

package uk.ac.bath.cs.asp.ide.lparse.conversion;

import java.util.ArrayList;
import java.util.List;
import java.util.regex.Matcher;

import org.eclipse.jface.text.IDocument;

import org.eclipse.ui.texteditor.ITextEditor;

VAT

* Used to convert from Iparse to gringo. There is a

difference in pooling

x between the two. p(X,Y;Z) in gringo is p(X,Z) p(X,Y)
whereas in Iparse it 1is

x* p(X,Y) p(Z). This expands out the rules so that they
can then be understand

* by both grounders in the same manner. This converter
converts from p(X,Y;Z)

* to the form p(X,Y) p(Z).

*

* @author Rob Ibbotson

*/

public class PoolingLparseToGringoConverter extends
AbstractProgramConverter

{

private static final String startRegex = 7 [a—zA
=Z]-\\ ("5

private static final String variable =7 [A-Z
1+75

private static final String variableSpaced ="7()x”

+ variable 4+ 7 ()*”;

private static final String combinedVariable =
variableSpaced + ”(,” 4+ variableSpaced + 7)x”;

private static final String semiColon =
combinedVariable + ” (;” + combinedVariable + ”)4”

private static final String endRegex ="\\)";

@Override
public void convert(ITextEditor editor)
{
IDocument document = editor.getDocumentProvider ()
.getDocument (editor . getEditorInput ());
Matcher matcher = getMatcher (fullRegex (),
getDocumentString (0, document.getLength (),
document)) ;
while (matcher. find ())
{
List<String> replacement = buildReplacement (
matcher . group ());
replaceWithFull (replacement , document,
matcher.start (), matcher.end());
matcher = getMatcher (fullRegex (),
getDocumentString (0, document.getLength ()
, document)) ;

}

private String fullRegex ()

{
}

private List<String> buildReplacement (String group)

{

return startRegex + semiColon + endRegex;

List<String> newStrings = new ArrayList<String >()

String start = getStart(group);
Matcher matcher = getMatcher (combinedVariable + 7

”

;7 , group);

String found =
while (matcher. find ())

99,
i

found = matcher.group () ;

L¢1

found = found.substring (0, found.length() —
1) .trim () ;
newStrings.add(start 4+ found + 7)”);
}

// For the final case different reg exzpression
matcher = getMatcher(”;” + combinedVariable + ”

\\)”, group);
matcher. find () ;

found = matcher. group();
found = found.substring (1, found.length() — 1).
trim () ;

newStrings.add(start + found + ”7)”);
return newStrings;

}

private String getStart(String group)

{

Matcher matcher = getMatcher(startRegex , group);
matcher. find () ;

return matcher. group();

H.3.6 File: RemoveRestrictedNames.java

/o ok ok ok o ok ok ok ok ok Kk ok

x* APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

* Copyright (C) 2010 Rob Ibbotson

x This program is free software; you can redistribute it
and/or modify it under the

x terms of the GNU General Public License as published
by the Free Software

* Foundation; either wversion 2 of the License,
your option) any later wversion.

or (at

x This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

x PARTICULAR PURPOSE. See the GNU General Public

License for more details.

*

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

« Fifth Floor, Boston, MA 02110—1301,

stk ok ok ok ok ok ok ok ok Kk ok ok /

package uk.ac.bath.cs.asp.ide.lparse.conversion;

USA.

import java.util.regex.Matcher;

import org.eclipse.jface.text.IDocument;
import org.eclipse.ui.texteditor.ITextEditor;

Vax:

* Used when converting from gringo to
does mnot accept the

* restricted names below so this
_ at the beginning of

% each occurremce of the restricted mames.

*

* @author Rob Ibbotson

“/

public class RemoveRestrictedNames extends
AbstractProgramConverter

{

Iparse. Lparse

class simply appends a

private String[] restrictedNames = new String[] { ”
abS77 , ” and77 s ” assign” , ” bnot” s 77diV” , ” eq” , ” ge” ,
77gt777 77167,7
” lt” s ” minus” , ’7mod77 R ” neq77 R 770r77 s 77p1us77 s ”
times”, "xor” };
@Override

public void convert(ITextEditor editor)

IDocument document = editor.getDocumentProvider ()
.getDocument (editor . getEditorInput ());
for (String regex restrictedNames)
{
String fullRegex = ”\\s” + regex + ”[\\(.]”;
Matcher matcher = getMatcher (fullRegex ,
getDocumentString (0, document.getLength ()
, document)) ;
while (matcher. find ())

{

3¢l

String matched = matcher.group(); *
Matcher innerMatcher = getMatcher (regex,
matched) ; *

innerMatcher. find () ;

This program is free software; you can redistribute
and/or modify it under the

terms of the GNU General Public License as published
by the Free Software

x Foundation; either version 2 of the License, or (at

String newString = ”_” + innerMatcher. your option) any later wversion.
group () ; *

String before = matched.substring (0, * This program is distributed in the hope that it will
innerMatcher.start ()); be useful, but WITHOUT ANY

String after = matched.substring (* WARRANTY; without even the implied warranty of
innerMatcher.end (), matched.length()) MERCHANTABILITY or FITNESS FOR A
; * PARTICULAR PURPOSE. See the GNU General Public

String whole = before 4+ newString + after License for more details.
; *

replaceInDocument (matcher.start (), * You should have received a copy of the GNU General
matched . length (), whole, document); Public License along with this

// As document is changing update the x program; if not, write to the Free Software Foundation
matcher , Inc., 51 Franklin Street,

matcher = getMatcher (fullRegex , * Fifth Floor, Boston, MA 02110—1301, USA.
getDocumentString (0, document. sk ok ok sk ok ok sk ok ok ok ok ok ok ok /
getLength (), document)); package uk.ac.bath.cs.asp.ide.lparse.internal.editor.

} actions;
}
} import java.util.ArrayList;
} import java.util.List;

import org.eclipse.jface.text.contentassist.

H.4 Auto Completion

The following section documents the code in place to pro-
vide the content assistant in the editor as well as through the
‘Predicate View’.

Vit
*
*

*

H.4.1 File: AtomProposalGenerator.java Wy

CompletionProposal;

import org.eclipse.jface.text.contentassist.

ICompletionProposal;

import uk.ac.bath.cs.asp.ide.lparse.core.ast.

LparseSourceFile;

Generates the proposals for the given atom

@author Rob Ibbotson

public class AtomProposalGenerator extends

/% KKK KK K KK K K K K

x APE: AmnsPrologx Programming Environment plug—in for {
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

*

ProposalGenerator

@Override

6G1

public List<ICompletionProposal>
generatePredictedProposals (LparseSourceFile file ,
String prefix, int offset ,
boolean hasBodySeperator)

List<ICompletionProposal> proposals = new
ArrayList<ICompletionProposal >();

proposals.addAll (makeProposals (super.
getPrefixNamedAtoms (prefix , file), prefix,
offset));

return proposals;

}

@OQOverride
public List<ICompletionProposal>
generateCurrentProposals (LparseSourceFile file ,
String prefix , int offset ,
boolean hasBodySeperator)

List<ICompletionProposal> proposals = new
ArrayList<ICompletionProposal >();

// Add itself

if (!prefix.equals(””))

proposals.add (new CompletionProposal(prefix ,
offset — prefix.length (), prefix.length ()
, prefix.length ()
+ offset));
}

return proposals;

}

private List<ICompletionProposal> makeProposals(
String [] symbols, String prefix, int offset)

final List<ICompletionProposal> proposals = new
ArrayList<ICompletionProposal >();
for (String symbol symbols)

// Don’t add the prefiz as will be added by
current proposals
if (!symbol.equals(prefix))

final ICompletionProposal proposal = new
CompletionProposal (symbol, offset —

H.4.2

prefix.length (), prefix
.length (), prefix.length() +
offset);
proposals.add(proposal);

}
}

return proposals;

File: IProposalGenerator.java

/**************

*

*

APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform
Copyright (C) 2010 Rob Ibbotson

This program is free software; you can redistribute it
and/or modify it under the

terms of the GNU General Public License as published
by the Free Software

Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

This program is distributed in the hope that it will
be wuseful, but WITHOUT ANY

WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General
Public License along with this

program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

Fifth Floor, Boston, MA 02110—1301, USA.

ok ok kKKK KRRk ok /)
package uk.ac.bath.cs.asp.ide.lparse.internal.editor.

actions;

import java.util.List;

import org.eclipse.jface.text.contentassist.

ICompletionProposal;

0€T

import uk.ac.bath.cs.asp.ide.lparse.core. ast.
LparseSourceFile;

VL

* What proposal generators implements. The predicted are
from previously typed

* predicates. The current are based on what the wuser has

just typed.
*
* @author Rob Ibbotson
*/

public interface IProposalGenerator

public List<ICompletionProposal>
generatePredictedProposals (LparseSourceFile file ,
String prefix, int offset ,
boolean hasBodySeperator);

public List<ICompletionProposal>
generateCurrentProposals (LparseSourceFile file ,
String prefix, int offset ,
boolean hasBodySeperator);

H.4.3 File: LparseContentAssistProcessor.java

/K KKK KKK KKK KK K K

x* APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

* Copyright (C) 2010 Rob Ibbotson

x This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

x Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

x This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

sk ok ok sk ok ok sk ok ok ok Kk ok ok /

package uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions;

import java.util.ArrayList;
import java.util.List;

import org.eclipse.jface.text.BadLocationException;

import org.eclipse.jface.text.IDocument;

import org.eclipse.jface.text.ITextViewer;

import org.eclipse.jface.text.contentassist.
ICompletionProposal;

import org.eclipse.jface.text.contentassist.
IContentAssistProcessor;

import org.eclipse.jface.text.contentassist.
IContextInformation ;

import org.eclipse.jface.text.contentassist.
IContextInformationValidator;

import uk.ac.bath.cs.asp.ide.ASPPlugin;
import uk.ac.bath.cs.asp.ide.lparse.core.ast.LparseParser

,
import uk.ac.bath.cs.asp.ide.lparse.core.ast.
LparseSourceFile;

Vix:

* Provides the implementation for the auto completion
proposals for lIparse

* source files. The main setup for this is provided in
the

* LparseSourceViewerConfiguration file.

*

* @author Rob Ibbotson

«/

public final class LparseContentAssistProcessor
implements IContentAssistProcessor

{

1€T1

private static List<IProposalGenerator> generators =
new ArrayList<IProposalGenerator >();

static

{
generators.add (new AtomProposalGenerator());
generators .add (new

NumericConstantProposalGenerator ());

generators.add (new SymbolProposalGenerator ());
generators.add (new VariableProposalGenerator ());

}

public LparseContentAssistProcessor ()

{
}

public ICompletionProposal [] computeProposals(
IDocument document, int offset , List<
IProposalGenerator> generators)

final List<ICompletionProposal> proposals = new
ArrayList<ICompletionProposal >();
final LparseSourceFile sourceFile = new

LparseParser (). parse (document) ;
final String prefix = lastWord (document, offset);
final boolean hasBodySeperator =
lineContainsBodySeperator (document, offset);
for (IProposalGenerator generator : generators)
{
proposals.addAll(generator.
generatePredictedProposals(sourceFile ,
prefix , offset , hasBodySeperator));

for (IProposalGenerator generator : generators)

{

proposals.addAll(generator.
generateCurrentProposals (sourceFile ,
prefix , offset , hasBodySeperator));

}

return proposals.toArray (new ICompletionProposal|
proposals.size ()]);

}
@Override

public ICompletionProposal []
computeCompletionProposals (ITextViewer viewer,
int offset)

return computeProposals(viewer.getDocument (),
offset , generators);

}

public static String lastWord(final IDocument
document, final int offset)
{

try

{

for (int n = offset — 1; n >= 0; n——)

final char ¢ = document.getChar(n);
if (!Character.isJavaldentifierPart(c))

{

return document.get(n + 1, offset — n
- 1)

}

catch (BadLocationException e)

// Bad location return 77
ASPPlugin. getLogger () .logException(e);

}

return 77 ;

}

public static boolean lineContainsBodySeperator (final
IDocument document, int offset)
{

try

{

for (int n = offset — 2; n > 0; n——)

{

final char ¢ = document.getChar(n);
final char cl = document.getChar(n + 1);
if (¢ = "1 & ¢l = ')

{

return true;

cel

return false;

}
}

catch (BadLocationException e)
ASPPlugin. getLogger () .logException(e);

return false;

}

@Override

public IContextInformation []
computeContextInformation (ITextViewer viewer, int
offset)

{

}

@Override

public char []
getCompletionProposalAutoActivationCharacters ()

{

}

@QOverride

public char []
getContextInformationAutoActivationCharacters ()

{

}

@Qverride

public IContextInformationValidator
getContextInformationValidator ()

{

}

@OQOverride
public String getErrorMessage ()

{

return null;

return null;

return null;

return null;

return null;

H.4.4 File:
tor.java

NumericConstantProposalGenera-

/ot kK ok ok ok ok ok ok ok ok ok

* APE: AnsProlog+x Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

* This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

x Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

**************/

package uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions;

import java.util.ArrayList;
import java.util.List;

import org.eclipse.jface.text.contentassist.
ICompletionProposal;

import uk.ac.bath.cs.asp.ide.lparse.core.ast.
LparseSourceFile;

€el

Vexs

* Generates content assist proposals from numeric
constants .

*

* @author Rob Ibbotson

*/

public class NumericConstantProposalGenerator extends
ProposalGenerator

@Override
public List<ICompletionProposal>
generatePredictedProposals(LparseSourceFile file ,
String prefix, int offset ,
boolean hasBodySeperator)

if (!hasBodySeperator)

return super.
generateConstantPredictedProposals (super.
getPrefixNamedAtoms (prefix , file), file
.getNumericConstantTable () . getSymbols
(), prefix, offset);

}

return new ArrayList<ICompletionProposal >();

}

@Override
public List<ICompletionProposal>
generateCurrentProposals (LparseSourceFile file ,
String prefix, int offset ,
boolean hasBodySeperator)

if (!hasBodySeperator)

return super. generateConstantCurrentProposals
(super.getPrefixNamedAtoms (prefix , file),
file
.getNumericConstantTable () . getSymbols
(), prefix, offset);

}

return new ArrayList<ICompletionProposal >();

H.4.5 File: ProposalGenerator.java

/**************

* APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

* This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

* Foundation; either version 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

* WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

sk ok ok ok ok ok sk ok ok ok Kok ok ok /

package uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions;

import java.util.ArrayList;
import java.util.List;

import org.eclipse.jface.text.contentassist.
CompletionProposal;

import org.eclipse.jface.text.contentassist.
ICompletionProposal;

import uk.ac.bath.cs.asp.ide.lparse.core.ast.
LparseSourceFile;

Vit

* Proposal generator class. Provides some common helpful
methods for the

* content assist generators

VET

*
* @author Rob Ibbotson
*/
public abstract class ProposalGenerator implements
IProposalGenerator
{

protected String|[] getPrefixNamedAtoms(String prefix,
LparseSourceFile file)

final List<String> common = new ArrayList<String
>();

for (String symbol
getSymbols ())

file .getAtomTable() .

if (symbol.startsWith(prefix))

common . add (symbol) ;

}
}
return common.toArray (new String [common. size ()]);

}

protected List<ICompletionProposal>
generateConstantPredictedProposals (String []
prefixNamedAtoms, String[] symbols,
String prefix, int offset)

List <ICompletionProposal> proposals = new
ArrayList<ICompletionProposal >();

for (String common

{

prefixNamedAtoms)
if (!common.equals(prefix))

proposals.addAll (makeFullBodyProposal (
symbols, prefix , common, offset));

}

return proposals;

}

protected List<ICompletionProposal>
generateConstantCurrentProposals (String []
prefixNamedAtoms, String[] symbols,

String prefix, int offset)

List<ICompletionProposal> proposals = new
ArrayList<ICompletionProposal >();

if (!prefix.equals(””))

proposals.addAll (makeFullBodyProposal (symbols
, prefix, prefix, offset));

}

return proposals;

}

protected List<ICompletionProposal>
makeFullHeadProposal (String [] symbols, String
prefix , String replacement,
int offset)

return makeFullProposal (symbols, prefix,
replacement , offset, ”7)”);

}

protected List<ICompletionProposal>
makeFullBodyProposal (String [] symbols, String
prefix , String replacement,
int offset)

return makeFullProposal (symbols, prefix,
replacement , offset, 7).”);

}

protected List<ICompletionProposal> makeFullProposal(
String [] symbols, String prefix, String
replacement ,
int offset , String suffix)

final List<ICompletionProposal> proposals = new
ArrayList<ICompletionProposal >();
for (String symbol symbols)
{
String fullReplacement = replacement + ” (7 +
symbol + suffix;
int replacementOffset = offset — prefix.
length () ;
int replacementLength = prefix.length();

qel

int cursor = replacementOffset +
replacementLength ;

proposals.add(new CompletionProposal(
fullReplacement , replacementOffset ,
replacementLength , cursor));

}

return proposals;

H.4.6 File: SymbolProposalGenerator.java

/% ok ok ok ok ok oK oK oK oK oK oK

x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

*

x This program is free software; you can redistribute it
and/or modify it under the

x terms of the GNU General Public License as published
by the Free Software

* Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

x PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

x program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

x Fifth Floor, Boston, MA 02110—1301, USA.

stk ok ok ok ok ok ok ok ok ok ok ok ok /

package uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions;

import java.util.ArrayList;
import java.util.List;

import org.eclipse.jface.text.contentassist.
ICompletionProposal;

import uk.ac.bath.cs.asp.ide.lparse.core. ast.
LparseSourceFile;

Vix:

* Proposals based on symbols

*

* @author Rob Ibbotson

*/

public class SymbolProposalGenerator extends
ProposalGenerator

@Override
public List<ICompletionProposal>
generatePredictedProposals(LparseSourceFile file ,
String prefix, int offset ,
boolean hasBodySeperator)

if (!hasBodySeperator)
{
return super.
generateConstantPredictedProposals (super.
getPrefixNamedAtoms (prefix , file), file
.getSymbolicConstantTable () .
getSymbols (), prefix, offset);

}

return new ArrayList<ICompletionProposal>();

}

@Override
public List<ICompletionProposal>
generateCurrentProposals (LparseSourceFile file ,
String prefix, int offset ,
boolean hasBodySeperator)

if (!hasBodySeperator)

return super.generateConstantCurrentProposals
(super. getPrefixNamedAtoms (prefix , file),
file
.getSymbolicConstantTable () .
getSymbols (), prefix, offset);

9¢T

return new ArrayList<ICompletionProposal >();

H.4.7 File: VariableProposalGenerator.java

/% ok ok ok ok ok ok oK ok ok oK oK

x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

*

x This program is free software; you can redistribute it
and/or modify it under the

x terms of the GNU General Public License as published
by the Free Software

* Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

x PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

x program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

x Fifth Floor, Boston, MA 02110—1301, USA.

sk ok ok ok sk ok sk ok ok ok ok ok ok ok /

package uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions;

import java.util.ArrayList;
import java.util. List;

import org.eclipse.jface.text.contentassist.
ICompletionProposal;

import uk.ac.bath.cs.asp.ide.lparse.core.ast.
LparseSourceFile;

VAT

* Proposals based on wvariables

* @author Rob Ibbotson

public class VariableProposalGenerator extends

{

ProposalGenerator

@Override
public List<ICompletionProposal>
generatePredictedProposals (LparseSourceFile file ,
String prefix, int offset ,
boolean hasBodySeperator)

List<ICompletionProposal> proposals = new
ArrayList<ICompletionProposal >();

String [] symbols = file.getVariableTable ().
getSymbols () ;

for (String common : super.getPrefixNamedAtoms (
prefix , file))
{

if (!common.equals(prefix))
if (!hasBodySeperator)

proposals.addAll (makeFullHeadProposal
(symbols, prefix, common, offset)

proposals.addAll (makeFullProposal(
symbols, prefix , common, offset ,
") 7))
}

else

{

proposals.addAll (makeFullBodyProposal
(symbols, prefix, common, offset)

)

}

return proposals;

}

@Override

LET

public List<ICompletionProposal>
generateCurrentProposals (LparseSourceFile file ,
String prefix, int offset ,
boolean hasBodySeperator)

List<ICompletionProposal> proposals = new
ArrayList<ICompletionProposal >();

String [] symbols = file.getVariableTable().
getSymbols () ;

if (!prefix.equals(””))

if (!hasBodySeperator)

proposals.addAll (makeFullHeadProposal (

symbols, prefix, prefix, offset));
proposals.addAll (makeFullProposal (symbols
, prefix, prefix, offset, ”) :=7));

}

else
{
proposals.addAll (makeFullBodyProposal (
symbols, prefix, prefix, offset));
}
}

return proposals;

H.4.8 File: PredicateView.java

/o ks sk ok ok sk ok ok ok ok ok ok

x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

x This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

x Foundation; either wversion 2 of the License,
your option) any later wversion.

or (at

* This program is distributed in the hope that it will

be useful, but WITHOUT ANY

* WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not,
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301,

st ok ok ok ok ok sk ok ok ok kK ok ok /

package uk.ac.bath.cs.asp.ide.lparse.views;

USA.

import org.
import org.
import org.
import org.
import org.

action . Action;

action .IMenuManager ;

text .BadLocationException;
text .IDocument;
text.ITextSelection;

eclipse.jface.
eclipse . jface.
eclipse . jface.
eclipse . jface.
eclipse . jface.

import org.eclipse.jface.viewers.DoubleClickEvent;
import org.eclipse.jface.viewers.IDoubleClickListener;
import org.eclipse.jface.viewers.ISelection;

import org.eclipse.jface.viewers.IStructuredSelection;
import org.eclipse.jface.viewers.TreeViewer;

import org.eclipse.jface.viewers.ViewerFilter;

import org.eclipse.swt.SWT;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.ui.PlatformUI;

import org.eclipse.ui.part.ViewPart;

import uk.ac.bath.cs.asp.ide.ASPPlugin;

import uk.ac.bath.cs.asp.ide.lparse.core.ast.
LparseSourceFile;

import uk.ac.bath.cs.asp.ide.lparse.internal.editor.
LparseEditor;

import uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions.LparseContentAssistProcessor;

VAx:

* A wview showing the outline of predicates. These
predicates can be double
* clicked to be inserted into the editor. It is an

alternative to content
* assist with the possibilites all
a tree. The class makes

being represented

write to the Free Software Foundation

in

R¢T

*
*
*

use of the ContentAssistProcessors in order to get all
the proposals easily

Filtering is applied to allow the user to choose
whether to show predicates

from (a) previously typed e.g. a different line or (b)
from what they have

just typed.

@author Rob Ibbotson

*/

public class PredicateView extends ViewPart

{

public static final String PREDICATE_VIEWID = ”uk.ac
.bath.cs.asp.ide.lparse.views.PredicateView”;

private TreeViewer
private Action

viewer null;

doubleClickAction = null;

private Action
private Action

currentFilterAction;

predictedFilterAction;

private Action autoExpandAction

private ViewerFilter currentFilter = new
PredicateViewCurrentFilter () ;

private ViewerFilter predictedFilter
PredicateViewPredictedFilter () ;

new

public PredicateView ()

{
}

public void createPartControl(Composite parent)
{
viewer = new TreeViewer (parent, SWI.SINGLE | SWT.
V_SCROLL | SWT.HSCROLL) ;
viewer.setContentProvider (new
PredicateViewContentProvider ());
viewer.setLabelProvider (new
PredicateViewLabelProvider ()) ;
viewer .expandAll () ;
makeActions () ;
createMenu () ;
hookDoubleClickAction () ;

}

private void createMenu ()

IMenuManager rootMenuManager = getViewSite () .
getActionBars () . getMenuManager () ;
rootMenuManager.add (currentFilterAction);
rootMenuManager.add (predictedFilterAction);
rootMenuManager . add (autoExpandAction) ;

}

private void makeActions ()

{
makeDoubleClickAction () ;

makeFilterActions () ;
makeAutoExpandAction () ;

}

private void makeAutoExpandAction ()

{

autoExpandAction = new Action (” Auto—expand”)

{
b
autoExpandAction.setChecked (true);

}

private void makeFilterActions ()

{

currentFilterAction = new Action(”Do not suggest
from previous predicates”)

public void run ()

{

}
s

currentFilterAction .setChecked (false);

updateFilter (currentFilterAction);

predictedFilterAction = new Action(”Do not show
from current”)
{

public void run ()

{
}
}

predictedFilterAction.setChecked (false);

updateFilter (predictedFilterAction);

6€T

private void updateFilter (Action action)

{
if (action = currentFilterAction)
{
adjustFilterState (action.isChecked (),
currentFilter);
}
if (action = predictedFilterAction)
{
adjustFilterState (action.isChecked (),
predictedFilter);
}
}

private void adjustFilterState (boolean checked,
ViewerFilter filter)

if (checked)

viewer.addFilter (filter);
}
else

{
}

viewer . removeFilter (filter);

}

private void makeDoubleClickAction ()

{

doubleClickAction = new Action ()

{

public void run()
{
ISelection selection = viewer.
getSelection ();
Object obj = ((IStructuredSelection)
selection).getFirstElement () ;
try
{
String lastWord =
LparseContentAssistProcessor.
lastWord (getDocumentInEditor () ,
getOffSetInEditor ());

getDocumentInEditor () . replace(
getOffSetInEditor () — lastWord.
length (), lastWord.length (),
obj.toString());

}

catch (BadLocationException e)

ASPPlugin. getLogger () .logException (e)

i

}
}
b
}
private void hookDoubleClickAction ()
{

viewer.addDoubleClickListener (new
IDoubleClickListener ()
{

public void doubleClick (DoubleClickEvent
event)

doubleClickAction.run();

1)
}

public void setFocus()

{
}

public void modelUpdated (LparseSourceFile model)

{

viewer.getControl () .setFocus();

Object [] expandedElements = viewer.
getExpandedElements () ;

// Get the last word typed

String lastWord = LparseContentAssistProcessor.
lastWord (getDocumentInEditor () ,
getOffSetInEditor ());

boolean hasSeperator =
LparseContentAssistProcessor.

lineContainsBodySeperator (getDocumentInEditor

getOffSetInEditor ());

ovl

viewer .setInput (PredicateViewItem . getInput (model,
lastWord , getOffSetInEditor (), hasSeperator)

)

if (autoExpandAction.isChecked())

{
}

else

{
}

viewer . expandAll () ;

viewer .setExpandedElements (expandedElements) ;

}

private int getOffSetInEditor ()
{

LparseEditor activeEditor = (LparseEditor)
PlatformUI.getWorkbench () .
getActiveWorkbenchWindow () . getPages () [0]

.getActiveEditor () ;

ITextSelection textSelection = (ITextSelection)
activeEditor. getSelectionProvider ().
getSelection () ;

return textSelection.getOffset ();

}

private IDocument getDocumentInEditor ()
{

LparseEditor activeEditor = (LparseEditor)
PlatformUI. getWorkbench () .
getActiveWorkbenchWindow () . getPages () [0]

.getActiveEditor () ;

return activeEditor.getDocumentProvider ().

getDocument (activeEditor . getEditorInput ());

H.4.9 File: PredicateViewContentProvider.java

/o ok ok ok ok ok ok ok kK ok k

x APE: AnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

* This program is free software; you can redistribute it
and/or modify it under the

x terms of the GNU General Public License as published
by the Free Software

* Foundation; either version 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

* WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

* program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

sk sk ok ok ok ok ok ok ok ok ok ok ok ok /

package uk.ac.bath.cs.asp.ide.lparse.views;

import org.eclipse.jface.viewers.ArrayContentProvider;
import org.eclipse.jface.viewers.ITreeContentProvider;

Vix:

* The content provider for the predicate view. Fasy
parsing to a predicate view

* item .

*

* @author Rob Ibbotson

*/

public class PredicateViewContentProvider extends
ArrayContentProvider implements ITreeContentProvider

{

@Override
public Object [] getChildren (Object parentElement)

{

return ((PredicateViewItem) parentElement).
getChildren () ;

}

@Override

Ii4!

public Object getParent(Object element)

{

}

@Override
public boolean hasChildren (Object element)

{
}

return ((PredicateViewItem) element).getParent();

return getChildren (element).length > 0;

H.4.10 File: PredicateViewCurrentFilter.java

/o ko KKK oKk
x APE: AnsPrologx Programming Environment plug—in for

*
*
*

*

*

the Eclipse platform

Copyright (C) 2010 Rob Ibbotson

This program is free software; you can redistribute it
and/or modify it under the

terms of the GNU General Public License as published
by the Free Software

Foundation; either wversion 2 of the License,
your option) any later wversion.

or (at

This program is distributed in the hope that it will
be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public

License for more details.

You should have received a copy of the GNU General
Public License along with this

program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110—1301, USA.

KKK KKK KKK Kok ok %/
package uk.ac.bath.cs.asp.ide.lparse.views;

import org.eclipse.jface.viewers. Viewer;
import org.eclipse.jface.viewers. ViewerFilter;

Vir:
x* A filter for the predicate view.
based on what the user

* last typed.

*

* @author Rob Ibbotson

*/

public class PredicateViewCurrentFilter extends
ViewerFilter

{

@Override
public boolean select (Viewer viewer ,
parentElement , Object element)

Object

return !((PredicateViewlItem) element).
isPredictedProposal () ;

H.4.11 File: PredicateViewltem.java

/ot kR ok ok ok ok ok ok ok ok ok

* APE: AnsProlog+x Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

* This program is free software;
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

you can redistribute

* Foundation; either wversion 2 of the License, or (at
your option) any later wversion.

*

* This program is distributed in the hope that it will

be useful, but WITHOUT ANY

x WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

Only show suggestions

vl

x program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

x Fifth Floor, Boston, MA 02110—1301, USA.

sk ok ok ok sk ok ok ok ok ok ok ok ok ok /

package uk.ac.bath.cs.asp.ide.lparse.views;

import java.util.ArrayList;
import java.util. List;

import org.eclipse.jface.text.contentassist.
CompletionProposal;

import org.eclipse.jface.text.contentassist.
ICompletionProposal;

import uk.ac.bath.cs.asp.ide.lparse.core.ast.
LparseSourceFile;

import uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions . AtomProposalGenerator;

import uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions.IProposalGenerator;

import uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions.NumericConstantProposalGenerator;

import uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions.SymbolProposalGenerator ;

import uk.ac.bath.cs.asp.ide.lparse.internal.editor.
actions. VariableProposalGenerator;

VT
x Generates the proposals and stores in a model of {
@link PredicateViewltem}
*
* @author Rob Ibbotson
*/
public class PredicateViewltem
{
private static List<IProposalGenerator>
nodeGenerators = new ArrayList<IProposalGenerator
>0);
private static List<IProposalGenerator>
leafGenerators = new ArrayList<IProposalGenerator

>();

static

nodeGenerators.add (new AtomProposalGenerator());

leafGenerators .add (new
NumericConstantProposalGenerator ());

leafGenerators.add (new SymbolProposalGenerator ())

leafGenerators.add(new VariableProposalGenerator

0)s

private String name;
private boolean

predictedProposal;
private List<PredicateViewltem> children;
private PredicateViewltem parent ;

public PredicateViewItem (String name, List<
PredicateViewltem> children , PredicateViewltem
parent , boolean predicted)

this .name = name;

this.children = children;
this.parent = parent;
this.predictedProposal = predicted;

}

public String getName()

{
}

public PredicateViewItem [| getChildren ()

{

return name;

return children.toArray (new PredicateViewItem |
children.size ()]);
}

public PredicateViewltem getParent ()

{
}

public boolean isPredictedProposal ()

{
}

return parent;

return predictedProposal;

€Vl

@Override
public String toString ()

{

return getName() ;

}

@Override
public boolean equals (Object obj)

{
if (this = obj)

{

return true;

if (!(obj instanceof PredicateViewItem))

{
}

PredicateViewItem pvi = (PredicateViewItem) obj;

return false;

if (pvi.getName().equals(this.getName()))

return true;

}

return false;

}

@Override
public int hashCode ()

{
}

public static PredicateViewItem [] getInput (
LparseSourceFile file, String prefix, int offset ,
boolean hasBodySeperator)

return this.getName () .hashCode();

List<PredicateViewItem> nodes = getHeadNodes(file
, prefix, offset, hasBodySeperator);
for (PredicateViewItem node : nodes)

{

for (IProposalGenerator gen : leafGenerators)

{

for (ICompletionProposal proposal : gen.
generatePredictedProposals (file , 77,
offset , hasBodySeperator))

CompletionProposal completionProp = (
CompletionProposal) proposal;

if (completionProp.getDisplayString ()
.startsWith (node.name))

{

node. children .add (new
PredicateViewItem (
completionProp.
getDisplayString (),
new ArrayList<
PredicateViewItem >(),
node, true));

for (ICompletionProposal proposal : gen
.generateCurrentProposals (file ,
prefix , offset ,
hasBodySeperator))

CompletionProposal completionProp = (
CompletionProposal) proposal;

if (completionProp.getDisplayString ()
.startsWith (node.name))

{

node. children . add (new
PredicateViewItem (
completionProp .
getDisplayString (),
new ArrayList<
PredicateViewItem >(),
node, false));

}
}
return nodes.toArray (new PredicateViewltem [nodes.

size ()]);

44!

private static List<PredicateViewItem> getHeadNodes(
LparseSourceFile file , String prefix, int offset ,
boolean hasBodySeperator)

List<PredicateViewItem> nodes = new ArrayList<
PredicateViewItem >();
for (IProposalGenerator gen nodeGenerators)
for (ICompletionProposal proposal : gen.
generatePredictedProposals (file , 77,

offset , hasBodySeperator))

CompletionProposal completionProp = (
CompletionProposal) proposal;
nodes.add (new PredicateViewItem (
completionProp. getDisplayString (),
new ArrayList<PredicateViewItem >(),
null ; true));

for (ICompletionProposal proposal : gen.
generateCurrentProposals (file , prefix,
offset , hasBodySeperator))

CompletionProposal completionProp = (
CompletionProposal) proposal;

nodes.add (new PredicateViewlItem (
completionProp.getDisplayString (),
new ArrayList<PredicateViewItem >(),

null , false));
}
}

return nodes;

H.4.12 File: PredicateViewLabelProvider.java

/% KKK KKK KK K K K K

x APE: AmnsPrologx Programming Environment plug—in for
the Eclipse platform

x Copyright (C) 2010 Rob Ibbotson

*

x This program is free software; you can redistribute it
and/or modify it under the

* terms of the GNU General Public License as published
by the Free Software

* Foundation; either version 2 of the License, or (at
your option) any later wversion.

* This program is distributed in the hope that it will
be useful, but WITHOUT ANY

* WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A

* PARTICULAR PURPOSE. See the GNU General Public
License for more details.

* You should have received a copy of the GNU General
Public License along with this

x program; if not, write to the Free Software Foundation
, Inc., 51 Franklin Street,

* Fifth Floor, Boston, MA 02110—1301, USA.

sk ok ok sk ok ok sk ok ok ok ok ok ok ok /

package uk.ac.bath.cs.asp.ide.lparse.views;

import org.eclipse.jface.viewers.LabelProvider;

Vix:
* Label provider for predicate view
*

* @author Rob Ibbotson
*/

public class PredicateViewLabelProvider extends
LabelProvider
{

}

H.4.13 File: PredicateViewPredictedFilter.java

package uk.ac.bath.cs.asp.ide.lparse.views;

import org.eclipse.jface.viewers. Viewer;
import org.eclipse.jface.viewers. ViewerFilter;

VAT
x* A filter for the predicate wview. Only show suggestions
based on previous.

14!

*
* @author Rob Ibbotson
*/

public class PredicateViewPredictedFilter extends
ViewerFilter
{

@OQOverride
public boolean select (Viewer viewer, Object
parentElement , Object element)

return ((PredicateViewItem) element).
isPredictedProposal () ;

H.5 Testing

The code below shows the testing classes that most of the
tests extend from. These are the abstract classes that provide
most of the functionality.

H.5.1 File: AbstractRegressionTest.java

package uk.ac.bath.cs.asp.ide.testing.base;

import java.io.BufferedReader;
import java.io.File;

import java.io.FileReader;
import java.io.IOException;

import org.eclipse.swtbot.eclipse.finder.widgets.
SWTBotEclipseEditor;
import org.junit.Assert;

public abstract class AbstractRegressionTest extends
CommonTests
{

protected String testDirectory null;
protected String resultsDirectory = null;

protected String expectedDirectory = null;

public AbstractRegressionTest (String program)

{

super (program) ;

testDirectory = ”.” + File.separator + "tests” +
File.separator 4+ program 4+ File.separator;
resultsDirectory = ”.” + File.separator + 7

results” 4+ File.separator + ”actual” 4+ File.
separator -+ program
+ File.separator;
expectedDirectory = ”?.” + File.separator + ”
results” + File.separator + ”"expected” + File
.separator 4 program
+ File.separator;

}

protected void runTests() throws IOException
{
super. createNewProject () ;
super . createNewFile () ;
super. createNewConfiguration () ;
String [|] files = new File (testDirectory).list ();
setUpConfiguration () ;
for (String file : files)
{
copylnputFile (file);
setSaveFile(file);
// Sleep so it has time to write the file
BOT. sleep (2000) ;
}
super. deleteConfiguration () ;
super. deleteFile () ;
super.deleteProject () ;

}

protected void checkResults() throws IOException

{

String [] results = new File(resultsDirectory).
list ();

String [] expected = new File (expectedDirectory).
list () ;

Assert.assertArrayEquals (expected, results);
// Now go through and check the actual content is
equal

gl

for

{

}

private

{

(String res results)

BufferedReader resultReader = new
BufferedReader (new FileReader (new File (
resultsDirectory + res)));

BufferedReader expectedReader = new
BufferedReader (new FileReader (new File (
expectedDirectory + res)));

String resultLine = 77

String expectedLine =

[IRCEN
)

while (resultLine != null && expectedLine !=
null)

{
resultLine = resultReader.readLine();
expectedLine = expectedReader.readLine();
Assert.assertEquals (” File: ” + res + 7.

Expected: ” 4+ expectedLine + 7. Got:
” + resultLine ,
expectedLine , resultLine);

resultReader. close () ;
expectedReader. close () ;

void setUpConfiguration ()

super. getRunConfiguration () ;

BOT.
BOT.
BOT.
BOT.
BOT.
BOT.

BOT.
BOT.
BOT.
BOT.

}

cTabltem (”Input Files”).activate();
button (”Add Resource...”).click();
shell (" Resource Selection”).activate ();
text (0).setText (testFileName);

table (0).getTableltem (0).select () ;
button ("OK”) . click () ;

cTabltem (”Common”) . activate () ;
checkBox (” File:”).click ();
button (” Apply”) . click () ;
button (” Close”) . click () ;

protected void copylInputFile(String file) throws
IOException

{

File testFile = new File(testDirectory + file);

BufferedReader reader = new BufferedReader (new

FileReader (testFile));

String currentLine = 77

SWTBotEclipseEditor textEditor = BOT. activeEditor

() .toTextEditor () ;
StringBuffer buffer = new StringBuffer () ;
while ((currentLine = reader.readLine())

buffer.append(currentLine);
buffer.append(System.getProperty (”line.
separator”));

reader . close () ;
textEditor .setText (buffer.toString ());
textEditor.save();

}
private void setSaveFile(String file) throws
IOException
{
String saveFileLocation = resultsDirectory + file
+ 7 .result”;
File result = new File(saveFileLocation);
super . getRunConfiguration () ;
BOT. cTabItem (”Common”) . activate () ;
BOT. text (3) .setText (result.getCanonicalPath());
BOT. checkBox (” Launch in background”). click ();
BOT. button (” Apply”) . click () ;
BOT. button ("Run”) . click () ;
BOT. viewByTitle (” Console”) .show () ;
}

H.5.2 File: AbstractTest.java

package uk.ac.bath.cs.asp.ide.testing.base;

import org.eclipse.swtbot.eclipse.finder . SWTWorkbenchBot ;

import org.eclipse.swtbot.eclipse.finder.widgets.

SWTBotView ;
import org.eclipse.swtbot.swt.finder. utils.
SWTBotPreferences;

import org.junit.AfterClass;
import org.junit.BeforeClass;

| —

Lyl

import uk.ac.bath.cs.asp.ide.clasp.preferences.
ClaspPreferenceConstants;

import uk.ac.bath.cs.asp.ide.gringo.preferences.
GringoPreferenceConstants;

import uk.ac.bath.cs.asp.ide.lparse.LparsePlugin;

import uk.ac.bath.cs.asp.ide.lparse.
LparsePreferenceConstants;

import uk.ac.bath.cs.asp.ide.smodels. SmodelsPlugin;

import uk.ac.bath.cs.asp.ide.smodels.
SmodelsPreferenceConstants;

VxS
x A wvery simple abstract test
tests to extend from this.

class that enables APE

* Fach test extending it should have the annotation
@Test
*
* @author Rob Ibbotson
*/
public abstract class AbstractTest
{
protected static SWTWorkbenchBot BOT;
private static final String LPARSE_LOCATION
/usr/local/bin/lparse”;
private static final String SMODELS_LOCATION
/usr/local /bin/smodels”;
private static final String GRINGO_LOCATION
/usr/local/bin/gringo”;
private static final String CLASP_LOCATION

/usr/local/bin/clasp”;

protected String testProjectName;

protected String testFileName;
protected String testConfigName
protected String program ;
@BeforeClass

public static void setUp ()

{

SWTBotPreferences .PLAYBACK DELAY = 5;
BOT = new SWTWorkbenchBot () ;
for (SWTBotView view : BOT.views())

{

if (view.getTitle().equals(”Welcome”))

{

}
}
BOT. perspectiveByLabel (” AnsProlog«+”) . activate () ;
setUpPreferences () ;

view . close () ;

}

@SuppressWarnings (” deprecation”)
private static void setUpPreferences()
{

LparsePlugin. getDefault (). getPluginPreferences ().
setValue (LparsePreferenceConstants .
LPARSE_PROGRAM_LOCATION,

LPARSE LOCATION) ;
SmodelsPlugin. getDefault (). getPluginPreferences ()
.setValue (SmodelsPreferenceConstants.
SMODELS PROGRAM LOCATION,
SMODELS_ LOCATION) ;
uk.ac.bath.cs.asp.ide.gringo.GringoPlugin.
getDefault () .getPreferenceStore () .setValue(
GringoPreferenceConstants.
GRINGOPROGRAM PATH, GRINGO_LOCATION)

uk.ac.bath.cs.asp.ide.clasp.ClaspPlugin.
getDefault (). getPreferenceStore ().setValue(
ClaspPreferenceConstants.
CLASP_PROGRAM_PATH, CLASP_LOCATION) ;

}

@AfterClass

public static void afterClass ()

{
BOT. sleep (1000) ;

}

public AbstractTest(String program)

{
this.program = program;
testProjectName = ”Test_Project”;
testFileName = ” Test_File_.” + program + ”.lp”
testConfigName = ”Test_Configuration_.” + program;

} BOT.menu(” File”) .menu(”New”) .menu(” Other...”).

click ();
. . BOT. shell ("New”) . activate () ;
H.5.3 File: CommonTests._]ava BOT. tree () .getTreeltem (” AnsProlog#”) .expand () .

getNode (” Lparse File”).select ();
BOT. button (” Next >”).click ();
BOT. tree () .getTreeltem (testProjectName) . select () ;

import org.eclipse.swtbot.eclipse.finder.widgets. BOT. text WithLabel (” File name:”).setText (

package uk.ac.bath.cs.asp.ide.testing.base;

id!

SWTBotView ;

public class CommonTests extends AbstractTest

{

public CommonTests(String program)

{
}

protected void createNewProject ()

{

super (program) ;

BOT.menu(” File”) .menu(”New”) .menu(” Other...”).
click ();

BOT. shell ("New”) . activate () ;

BOT. tree () .select (” AnsPrologx”) .expandNode (”
AnsProlog*”) .select ("New Project”);

BOT. button (" Next >”).click ();

BOT. textWithLabel (” Project name:”).setText (
testProjectName) ;

BOT. button (” Finish”) . click () ;

}

protected void deleteProject ()
{
SWTBotView view = BOT.viewByTitle(” Navigator”);
view .show () ;
view.bot () .tree().getTreeltem (testProjectName).
select () ;
BOT.menu(” Edit”) .menu(” Delete”). click () ;
BOT. shell (” Delete Resources”).activate();
BOT. checkBox (” Delete project contents on disk (
cannot be undone)”).select ();
BOT. button ("OK”) . click () ;

}

protected void createNewFile ()

{

testFileName) ;
BOT. button (" Finish”) . click () ;
}

protected void deleteFile ()

{
SWTBotView view = BOT.viewByTitle(” Navigator”);
view .show () ;
view.bot () .tree().getTreeltem (testProjectName).

expand () . getNode (testFileName) .select () ;

BOT.menu(” Edit”) .menu(” Delete”) . click () ;
BOT. button ("OK”) . click () ;

}

protected void canCreateAndDeleteFile ()

{
createNewProject () ;
createNewFile () ;
deleteFile ();
deleteProject ();
}
protected void getRunConfiguration ()
{
BOT.menu(”Run”) .menu(”Run Configurations...”).
click ();

BOT. tree () . getTreeltem (program) . getNode (
testConfigName) .select () ;

}

protected void createNewConfiguration ()
{
BOT.menu(”Run”) .menu(”Run Configurations...”).
click ();
BOT. shell ("Run Configurations”).activate () ;
BOT. tree () .getTreeltem (program).select () ;

671

BOT. toolbarButtonWithTooltip (”New launch
configuration”).click () ;

BOT. text (1) .setText (testConfigName) ;

BOT. button (" Apply”) . click () ;

BOT. activeShell (). close();

}
protected void deleteConfiguration ()
{
BOT.menu(”Run”) .menu(”Run Configurations...”).
click ();
BOT. shell ("Run Configurations”).activate () ;
BOT. tree () . getTreeltem (program) .expand () . getNode (
testConfigName) .select () .contextMenu(” Delete”
).click ();
BOT. button (”Yes”) . click () ;
BOT. activeShell ().close();
}

protected void canCreateAndDeleteConfiguration ()

{

createNewConfiguration () ;
deleteConfiguration () ;

}
protected void closeConfiguration ()
{
createNewConfiguration () ;
getRunConfiguration () ;
BOT. button (” Close”) . click () ;
deleteConfiguration () ;
}

// protected void runConfiguration ()

/7 A

// createNewConfiguration ();
// getRunConfiguration () ;

// BOT.button ("Run”). click ();
// deleteConfiguration ();

// 0}

protected void accessCommonTabs(String ...

{

}

createNewConfiguration () ;
getRunConfiguration () ;

strings)

BOT. cTabltem (”Input Files”).activate();

BOT. cTabltem (”Common”) . activate () ;

for (String str : strings)

BOT. cTabltem (str).activate () ;

}
BOT. activeShell ().close();

deleteConfiguration () ;

protected void testCheckBoxTabs(String tab, int

{

number)

createNewConfiguration () ;
getRunConfiguration () ;

BOT. cTabltem (tab).activate () ;

for (int i = 0; i < number;

BOT. checkBox (i) .click () ;
BOT. checkBox (i) . click () ;
}
BOT. activeShell ().close ();
deleteConfiguration () ;

)

i++)

	Introduction
	Literature Survey
	Introduction
	Logic Programming
	Parts of a Program

	Answer Set Programming
	AnsProlog* vs Prolog
	AnsProlog* Usage

	IDEs
	Eclipse Plug-in
	APE
	Other IDEs

	ASP Tools
	DLV
	SMODELS
	LPARSE
	Cmodels
	Sup
	Gringo
	clasp
	ASPViz
	Debugging

	Common Language
	Regression Testing
	Usability Evaluation
	Summary

	Requirements
	Gathering Process
	Discussion of Results
	Experience
	Current Editor
	APE
	ASP Tools
	Features

	Summary

	Design
	Architecture
	Eclipse Plug-ins
	APE

	Developer Framework
	Conversion
	Predicate Completion
	Testing
	APE Tests

	Detailed Design and Implementation
	Approach
	Improvements
	Installation
	Framework
	Launch Configuration Tab Group
	Launch Configuration Type
	Launch Shortcuts

	Gringo and Clasp
	Gringo Editor Problems

	Conversion
	Process
	Gringo to Lparse
	Lparse to Gringo

	Auto Predicate Completion
	Predicate View

	Summary

	Testing
	Test Environment
	Automatic Tests
	Manual Tests

	Location
	Automatic Testing
	Project Tests
	External Program Testing
	Conversion Between Solvers
	Predicate View

	Manual Testing
	Preference Dialog
	Platform Compatibility & Installation
	Predicate View & Predicate Auto Completion

	Requirements
	Framework To Add New Features
	Support for Gringo and Clasp
	Auto Predicate Completion
	Conversion
	Regression Testing Ability
	User Friendly

	Conclusions
	Project Summary
	Limitations
	Further Work
	Summary

	Bibliography
	Questionnaire
	Questionnaire Results
	Requirements Specification
	Functional
	Non-functional

	Installing APE
	Update Site
	Supplied CD or Website

	Implementation Screenshots
	Testing
	Running The Tests
	Screencast

	New Feature Test

	Predicate Completion Tests
	Base File
	File: puzzle1_base.lp

	New Predicate Declaration
	File: puzzle1_new.lp

	Previous Predicate Declaration
	File: puzzle1_previous.lp

	Variable Predicate Declaration
	File: puzzle1_variable.lp

	Expected Results
	New Predicate Declaration
	Previous Predicate Declaration
	Variable Predicate Declaration

	Code
	Framework
	File: AbstractArgumentConstants.java
	File: AbstractLaunchConfigurationDelegate.java
	File: AbstractLaunchShortcut.java
	File: AbstractMultipleFileArgumentsTab.java
	File: AbstractSingleFileArgumentsTab.java
	File: CommandLineSwitch.java

	Gringo
	File: GringoProgramArgumentConstants.java
	File: GringoArgumentsTab.java
	File: GringoLaunchConfigurationDelegate.java
	File: GringoLaunchConfigurationTabGroup.java
	File: GringoLaunchShortcut.java
	File: GringoPreferenceConstants.java
	File: GringoPreferencePage.java

	Conversion
	File: AbstractProgramConverter.java
	File: AbstractProgramConverterAction.java
	File: AggregateLparseToGringoConverter.java
	File: PoolingGringoToLparseConverter.java
	File: PoolingLparseToGringoConverter.java
	File: RemoveRestrictedNames.java

	Auto Completion
	File: AtomProposalGenerator.java
	File: IProposalGenerator.java
	File: LparseContentAssistProcessor.java
	File: NumericConstantProposalGenerator.java
	File: ProposalGenerator.java
	File: SymbolProposalGenerator.java
	File: VariableProposalGenerator.java
	File: PredicateView.java
	File: PredicateViewContentProvider.java
	File: PredicateViewCurrentFilter.java
	File: PredicateViewItem.java
	File: PredicateViewLabelProvider.java
	File: PredicateViewPredictedFilter.java

	Testing
	File: AbstractRegressionTest.java
	File: AbstractTest.java
	File: CommonTests.java

