USERS’ MANUAL
for

MONT3D - Code Version 2.4

by

Charles N. Zeeb, Patrick J. Burns, and Klemens Branner
Department of Mechanical Engineering
Colorado State University
Fort Collins, CO 80523
(970) 491-7479, 5778, and 7479
E-mail Addresses:
czeeb@lamar.colostate.edu
pburns@colostate.edu
and
klem@lamar.colostate.edu

and
John Dolaghan

Lawrence Livermore National Laboratory
E-mail Address: dolaghan@linl.gov

April, 1999



CHAPTER 1 INTRODUGCTION ....uuttiiiieiiiiiitiite e e e aetiieee e e e e s siteeee e e e s asssbaeaeaessssnssneeaaeessansssseeeeessannnes 1
I I S 7= Tl (o | (01U o PP 1..
1.2 Theoretical FOrMUIATION .......ccoiii i e e e e e e e e e e e eeeneeennnnns
1.3 VIEW FACIOIS ....ciiiiieeiiiiiieeeee ettt ee e e e e e e e e e e s smmmmmmn b
1.4 MONT3D IMPIEMENTALION .....uuiiiiieiiie e e e e e e e e e e e s e e e e eeane 4
1.5 Overview Of the ManUAL ...........oooeiiiiiiiiiiiie e e e e e e e e e e eeeeeaneees S
CHAPTER 2 COMPUTER CODE BACKGROUND .......ccotiiiiiiiiiiiiee e eiiiiieee e siireee e snneeeee s 6
P20 Lo o [PPSO 6
A U | = (o =1 TP 6
2.3 Split Surfaces, Planarity and CONVEXILY .........cccoviiiiiiiiiiiiiiiiiiase e e e e e e 8
2.4 SUIrface CONCAIENALION ....uuueiiiiie et e e e e e 10...........
2.5 Material PrOPEITIES. ... ..ttt et e e e e e e e e e e e e e e e e e s 10......
2.5.1 Material Property CUINVES .....uuuiiiiiie e e eee ettt s e e e e e e e e e e e e e e e e eeaaaeannnnnn e e e as 11
2.5.2 Outgoing Directional DiStribUtioONS .............uiiiiiiiiii e 13
P2 T B =l 01511 (o o ISP 16.........
2.5.4 Cases Where the Reciprocity Relations Do Not Hold..............cccovvvvviiiiiiiiicinnnnn. 17
2.6 SNAAING coovtiii i e a e e e ——— 17.
2.7 Number of Photons, Convergence and ACCUIACY ..........cuurriuiiieeeeaaaeaieeeeiaaiiiinserenneeeeeeees 18
2.8 Aid in Debugging and Visualizing MONT3D GEOMELNES .......cccevvvvvveeeiiiiiiiiiieeeeeeeeeeeen 20
2.9 Restart Capability .........oouuuiiiiii e — 22.....
2.10 Parallel VEISION ......uueeiiiiiiieeie ettt e e e e e e e e e e e e e et e e e e e e e e e e s e 22.....
2.11 Pseudo-Random NUMDEIS .........ooiiiiiiee e 24
2.11.1 Lagged FIDONACC GENEIALOIS. ... ..ciiiiiiiiii e ee et a e e 24
2.11.2 Implementation DETAIIS .........coooiiiiiiiiiii e 25
2.11.3 Effect of Different Random Sequences on ReSUltS............ooovvviiiiiiiiiiiiiiiieeeeee, 26
CHAPTER 3 INPUT DECK ... .ciiiiiiiiiiiiiiiee ettt s et e e e e e et e e e e e s s nnaaaaaaeesssssnnaeaeeeaans AN 2
200 R I 1 =T O o 21
I @0 ] 11 o] IO =10 PP U TP PR R R TRPPPPP 21..
0 R O o [ PSPPSR 27........
.22 CArd 2 ..ottt e e e e e e e e e e e e a e 29.......

Table of Contents



.2, 3 AN 3 ..t a e e e e e e e e 31l......

3.3 Grid DImensions (Shading) .......cccooiiiiiiiie e e e ————- 32

3.4 Default CoNVErgencCe TOIEIANCE .......ouuuiuiiiiiiaaee e ettt e e e e e e e e e e e e e eeeeesesennnnes 33

IR VLo T b= U o] | S 5 | = TS 33......

3.6 SUIMACE DALA......ciiiiiiiieieee ittt e e e e e e e e e eas 33...

3.7 Wavelength Band Data..........ccoooiiiiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e eeeseeeanane 35

3.8 Material TYPE DALA ... .uuueeeeeiiiiiiiieee ettt e e 35.......
IR S 20 R O o [ PSPPSR 35........
S I O 1 (o PP PPPPRRPPR 36........
B.8.3 Card 3 .. i a e e e e e e e e e e e e e e n e 37.......

3.9 Material Property CUINVES INPUL .........oeeiiiiiiiiiie e e ee e e s s e e e e e e e e e e e e eeeeeeesennane 38
G IR TRt R O£ 1 o RSO URPPPUTTPRPRRPRP 38........

G B - {0 F 307N (o TN 1N |t PRSP 38
3.10 Semi-specular Offset Angle Curves INPUL.............oooveiiiiiiiiiiee e 38
G 200 10 0t R 7= o PSS UURPPPUTTPRURRRRP 38.........

3.10.2 CardS 2 10 NPHL ..uueiiiiii it e e e e e e e e e e e e e e e aeaaanae 39
G300 I R U ] o I 1o 1 | S PPOUPRRN 39.....
3.11.1 User X-grid COOMMINAIES. ......uuiiiiieeeeeeeee ettt e e e e e e e e e e e e eea b as 39
3.11.2 User Y-grid COOMTINALES. .......uuuiuiiiiiiiiiiieeeeeeeeee e e ee sttt r e e e e e e e e e e e e e e e e e e aannns 39
3.11.3 User Z-grid COOrdiNAtES ...........cuuuuuuiiiiiiiieieeeeeeeeee e ettt s s s e e e e e e e eeeeeaeeeeesennnnn 40
CHAPTER 4 PROGRAM EXECUTION . ..ottt e e e e e et e e eaa e e eenans 41
4.1 INPUL File “DOX.IN" . i
4.2 Execution Of File “DOX.N" ... 4........ 4
4.3 Screen Output During Execution of File “DOX.IN"........ooiiiiiiiiiii e 45
4.4 Screen Output During Restart Execution of File “DoX.in” ..., a7
4.5 Machine Independence of MONT3D .....ccccooiiiiiiiiiiieeece e 49
CHAPTER 5 IMPLEMENTATION DETAILS ... .ottt 50
5.1 MONT3D SOUICE FilES....uuiiiiiiiiei et e e ettt s s e e e e e e e e e e eeeeeeeesennnnes 50
5.1.1 Files CommOon t0 All VEISIONS .......ueiiiiiiiiiiieeeee ettt e e e e e e e e e e e 50
SR A o 1 011 4 F= T To N 1N = T 51
5.1.3 TIMING INFOMMALION .....ooviiiiiiiieieie e 51
5.1.4 Time and Date INfOrMation ...........couuiiiiiieiiiiiiiciiiiiee e 52



5.1.5 Parallel Implementation..............uueeiiiiiiiiiieee e 52

5.2 CompPiliNg MONT3D ... ..cciiiiiiiieieee et a e e e e e e e e e e e e e e e e e e e s e b aa e e eeeas 53
o020 1 1 GRS PPPP 53.....
A2 \V 1 (od f0 7o ) 1 YAV ] o [0 1A 54
5.2.3 MACINTOSH ...t S 5

5.3 Files Generated and Used BY MONT3D ....ccooooiiiiiiiiiiiieiiiiii e 55

5.4 SPecCifyiNg File NAIMES........uuuiiiiiiiiiiiiiiiii e e 55

5.5 Parameter Statements and Memory AlIOCAtION ..............uuviviiiiiiiiii e 58
5.5.1 Parameters Specifying AITay SIZES .......cccoiiiiiiiiiiiiiiiiiee e 58
5.5.2 Other PArameters .........ooeeiiiiiiiiiiiiisi ettt s e e e e e e e e e e e e e e e e eeeaesennna e e eeeas 59

5.6 Parallel VEISION ......ccooeiiiiii ittt e e e e e e e s seman 6Q....
5.6.1 Running the Parallel VersioN...........ooooiiiic e 60
5.6.2 WOIKEI PrOCESSES ...uiiiiiiieeieieeeieeeeetietee s s s s s e e e e e e e e e et e eeeeaestaaansa s s eeaeaeaeeeeeeeeennennnnnes 61
TG TRC T 11U PERRSPPPPRP 61.....
IR B Y o] = TP PUPPPTPTR 62......
5.6.5 RANAOM NUMDEIS ......ccciiiiiiiieee ettt r e e e e e e e e e e e e e e eeeeeeeesssnnnnns 63

5.7 Unix Batch Execution USING SCHPLS ........ccooiiiiiiiiiiiiiiiiee e e eee e e e e e e e e e 64

e I o (= Tox ] o] o PP 65.

o N[ 66.
APPENDIX A OLD MATERIAL MODEL.....cuiiiiiiiiiiiiiie ettt e e e siiiaea e e e e s snnnnneeeaeeaans 69

AL OVEBIVIBW.....iieie oottt e e e e e e e et e et et e ettt bbb e e e e e e e e e eeeeeeaeeeeeessssssss s 69..

A.2 Outgoing Angles for Diffuse and Specular INteractions..........cccccccveeeeeiiiiiiieiicciiiee, 70

A.3 Material Type 2, Emission According to a User-Supplied Function....................coeooo... 70

A.4 Material Type 1, Beam EMISSION ........uuuiiiiiiiiie e 70

A.5 Material Types 0 Thorough -2, Normal EmISSION ..........cccccuiiiiiiiiiiiiiiiiieeeeeee e 71

A.6 Material Types -3 and -4, PerfeCt MIITOIS .........uiiiiiiiii e 71

A.7 Material Type Data CardS.........ccoiiiiiiiiiiiiiiiiiiiae ettt e e e e e e e e e e eeeeeeeeeennnnes 71
A.8 Material Property CUrVES CardsS .......ccocuuiiiiiiiiiiiiiieie e e e e e 72
A.8.1 Specular TranSMItANCE .......uuueiiiii i e e e e e s 72
A.8.2 Diffuse TranSMILEANCE ........uuuuiiiiei it e e e e e e e e eee e e s 73
A.8.3 Specular REfIECTANCE ........ooviiiiiiiiie e 73
A.8.4 Diffuse REFIECLANCE .......eiveiiiiiieiieiee e 74



APPENDIX B FILE FORMATS ...ttt e et e e as 76

B.1 Restart File (SUffiX .rSt, UNIt 2) .......uuiiiiiiiiiii e 76
o O I 1 o e 76
B.1.2 Photon EMISSION COUNTS .....uiiiiiie e et e e e e e e e e e e e e e e eeeeaeena e e e e e e e eeeaaes 76
B.1.3 Random Number Generator INformation...........cccceeeeeeeeeiiiiiiiiiiiiiiiieeeeeeeeeeee e 77
= 3 I o o Tod 1l [ Y 0] ¢ =1 (o] o I PP 77

B.2 Plot File (SUffiX .plt, UNIt 3) ......uiiiiiiiiiiiiiiiiee e 77.......

2 B R o (== o = PP PUUUUP R PR RRRRRRPROY 47 APPPPPI
B.2.2 CoNntrol INfOrMALION ........ueiiiii e 78
B.2.3 Limiting DImensions for the GEOMEIIY ... 78
B.2.4 Surface INFOrMALION ........uuuiiiiiiiiiiiii e e e e e e e 78
B.2.5 Material INfOrmMatioN ..........uuuueiiiiii e 79
B.2.6 Number of Records in the Binary Exchange Matrix File ..........ccccccccoiiiiiinnnnnn. 80

B.3 Lost Photon File (Suffix .ISt, UNIt 4) ........ueeiiiiiiii s 80
[ R T I [=T= Vo [T o O o PSS UURPPPPPPRPUPPR 80
B.3.2 Photon Ray’s Starting POINT..........cooiiiiiiiiiiiiiiee e 81
B.3.3 Photon Ray’s ENAING POINt..........ccooiiiiiiiiieer e 81

B.4 Exchange Matrix File (Suffix .nij, UNit 8).......ccooeiiiiiiiiiiiiiiiiiiicii e 81
2 I == Vo [ o @ o USRI 81
B.4.2 SUIMACE ATBAS .....eiiiiiiiiiiiie ettt et e e e e e e e e e e e e e e e s s e s s e e bbb b baeeeeeeees 82
B.4.3 SUIrface EMItTANCES ....cooeviiiiiiiiiiii e 82
B.4.4 Photon NUMBEr IMALIIX ......ccviieiiieiiiiiiiiiie e e e e e ettt e s s e e e e e e e e e e eeeeenennennnnns 82

B.5 Trajectory File (SUffix .trc, UNIt Q) .....cooeiieiiiii e 83
o N I [=T= Vo [T o O o RS UURPPPPRRPUPPRN 83
B.5.2 Photon Ray’s Starting POINT..........coooiiiiiiiiiiieee e 84
B.5.3 Photon Ray’s ENAING POINt.........ccoooiiiiiiiiiece e 84

B.6 Leaks File (SUffiX .IKS, UNIt 11) ..ccooeiieeeeiiieeeeeee et e e 84
B.6.1 Leak INfOrMation ........cccoeiiiiiiieiieeiiee e e e et s s e e e e e e e e e e e e e eeeeennennnnns 84

B.7 Block Exchange Matrix File (Suffix .bni, Unit 12) ........cccoooeiiiiiiiicciieee e, 85
B.7.1 Exchange Information for the BIOCK ............coooiiiiiiiiiiiiiiciee e, 85

B.8 Temporary Exchange Matrix File (Suffix .tni, UNit 13) .........cuuviiiiiiiiiiiiiiiiies 85
B.8.1 Photon NUMDBEI IMALIX ...ccviiiiiieieeeieeeeee ettt e e e e e e e e eees 85



B.9 Block File (Suffix .blk, Unit 14)



List of Figures

Figure 1.1: Example Geometry Which Can be Simulated..............cccooeeiiiiiiieiiiiccieee e 1
Figure 2.1: Nodal Coordinate SYSIEM.........uuiiiiiiiiiiiii e e e e e el B
Figure 2.2: Radiating Surface GEOMELIIES.........ccccuiiiiiiiiiiieei e /AU
Figure 2.3: Three-Dimensional Surface DetailS ............uuuviuiiiiiiiiiii e a e 8
Figure 2.4: Planar Quadrilateral Divided into Two Overlapping Triangles ..........ccccceeeiiiiviiiinnnennn. 9
Figure 2.5: Local Material Coordinate SYSIEM.........oooiiiiiiiiiiiiiiieee e 11
Figure 2.6: Material Properties vs. Incident Cone ANGIe ........ccooviviiieeiiiiiiciiee e 12
Figure 2.7: Cross-sectional Views of Reflectance Models...........coooiiiiiiiiiiiiiicveieee e, 14
Figure 2.8: Cross-sectional View of Weighted Diffuse, Normalized PDF'S............cccvvviiieeeennnenn. 14
Figure 2.9: Normalized, Weighted Semi-specular Directional Distributions.............cccceevveeeeeeen... 15
Figure 2.10: 2-D lllustration of the Grid Shading Algorithm............ccccoii i, 17
Figure 2.11: Convergence vs. Number of Photon EMISSIONS ........ccooiiiiiiiiiiiiiiiiiiieeeeeeeee e 19
Figure 2.12: Example of @ ReVersed EAQe.........cooo oot e e e 21
Figure 2.13: Example Master-Worker Archit@CtUre ..........ccooovvviiiiiiieiiiiie e 23
Figure 2.14: Bit Structure of 32 Bit Initial Seed for Parallel ProCeSSes ...........ccccvveiiiiiiiiiiiiinnnn, 26
Figure 4.1: 3-D Geometry Of File “DOX.IN"........uuiiiiiiii e 41
Figure 4.2: Material Property Curve for File “DOX.N".........cooiiiiiiiiiiie e 43
Figure 5.1: Contents of Script File “SUDMIL” ..........ooiiiii e 64
Figure A.1: Conventions for OUtgoiNg ANGIES.....ccoie i e s 70

List of Tables

Table 2.1: Accuracy in EXchange Fractions ... 19
Table 5.1: MONT3D FlES ...cccc ettt s s s s e e e e e e e e e e e e e e eeeeeennnnas 56....

Table 5.2: Command Line File CONIOl .........cooiiiiiiiiiiiieeeeee s 57
Table A.1: Material Property SUMMANY .......cooiiiiiiiiiiiiiiiiiiaee e e e e eeeeareaea e a e e e e e e e eeeeeeeeeees 69

\Y



CHAPTER 1 INTRODUCTION

This manual encompasses the 3-D Monte Carlo radiative exchange factor computer code
“MONT3D.” This chapter gives a quick overview of the code, particularly its latest version, 2.4.
The chapter begins with the background of the code. This is followed by a theoretical formulation
of exchange factors calculated by the code. Next is a brief discussion of view factors. This is fol-
lowed by a short discussion of the MONT3D implementation. The chapter ends with an overview
of the rest of the manual.

1.1 Background

MONT3D was developed in the Department of Mechanical Engineering at Colorado State Uni-
versity (CSU) beginning with the work of Scott Statton in 1983 [Statton, 1983], continuing with
the work of James D. Maltby [Maltby, 1987; Maltby, 1990], Charles N. Zeeb [Zeeb, 1997; Zeeb
and Burns, 1999], and Klemens Branner [Branner, 1999]. The code is used to calculate radiative
exchange factors for enclosures with a nonparticipating medium. The focus is complex geometries
rather than sophisticated physics. A simple geometry which may be simulated is shown in Figure
1.1. The 3-D code is capable of simulating geometries modeled as assemblages of generalized
guadrilaterals (and triangles), which are constrained to be flat, but may otherwise be in any orien-
tation. Curved surfaces must be approximated by a sufficient number of flat surfaces, sometimes
termed “faceting,” to “capture” the curvature. Surfaces may absorb photons, or they may reflect
and/or transmit them specularly, semi-specularly and/or diffusely. All exterior surfaces must be
non-transmissive (it is left to the user to ensure this). All material incident radiative properties may
be explicit functions of the incident photon angle, and be dependent upon energy through the band
wavelength formulation. Donald L. Brown of Lawrence Livermore National Laboratory (LLNL)
and Katherine Bryan of Oak Ridge National Laboratory have exhaustively exercised the 3-D code,

checking it for validity.

3-D Cartesian
System

Z

Figure 1.1: Example Geometry Which Can be Simulated



The code has recently been updated extensively. The core of the code has been recoded, improv-
ing the efficiency of the code by around 44% in test cases [Zeeb, 1997; Zeeb and Burns, 1999].
Also, the 3-D code has been parallelized to run under the PVM [Geist et al., 1994] environment,
with very good success. Furthermore, a new material model, which includes semi-specular com-
ponents of reflectance and transmittance, has been implemented in the 3-D code. In order to use
these enhanced capabilities to the greatest effectiveness, additional detail is required in the input
file, which has been changed from the older format to the one described herein. However, input files
in the “old” format will still work, as the changes are backwards compatible.

The current version of the code can be run on any computer which possesses a fully featured
FORTRAN 77 or Fortran 90 compiler, and has been extensively tested on Sun, Hewlett Packard,
IBM, DEC, SGil, Intel, and Macintosh architectures. A rolddakefilehas been implemented
which allows the code to be compiled on virtually any Unix platform, although in some cases some
nonessential functions will be lost. More detail on compiling the code for Unix, Microsoft Win-
dows, and Macintosh platforms is provided in Chapter 5. Should compilation problems occur, one
of the authors should be contacted.

In order to serve users better, a World Wide Web site for the code exists at
http://www.colostate.edu/~pburns/monte.html. The WWW site will include general information
about the code, contact information for the authors, the current version of the manual and other
documents of interest.

A number of related publications exist wherein the code has been applied to various problems,
including a detailed test of the Separator Development Facility (SDF) [Maltby, 1987], the calcula-
tion of radiative exchange in passive solar enclosures [Maltby et al., 1986], and application to the
Laser Isotope Separation (LIS) process [Burns and Pryor, 1989]. Work has been done to include
the modeling of combustion gases, particularly carbon dioxide and water vapor, in MONT2D
[Zeeb, 1996]. Five other publications of interest are Pryor and Burns, 1986; Burns et al., 1990;
Maltby and Burns, 1991; Burns et al., 1992; and Schweitzer et al., 1993. Also a comprehensive
review article of the MONTE codes is in press [Burns and Pryor, 1999]. Finally, an alternative
approach for diffuse view factors is the FACET code of Shapiro [Shapiro, 1983].

A number of related codes are available in the public domain. These include the postprocessor
SMOOTH [Dolaghan et al., 1992] - which smooths the results and establishes reciprocity; the
graphical postprocessor MPLOT [Nagesh and Burns, 1994], which runs on Sun workstations and
under Microsoft Windows; MONT2D [Maltby et al., 1994] - an older 2-D version of the MONT3D
code which simulates 2-D and axisymmetric geometries; MONT3E [Crockett et al., 1990] - a code
for simulating electron transport in three dimensions in the presence of a spatially nonuniform
magnetic field; SPUT3D [Dolaghan, 1991] - a code for simulating molecular redistribution during
sputtering in three-dimensional enclosures; and MONT3V [Dolaghan, 1996] - a code for simulat-
ing rarefied gas dynamics. Information on these codes may be obtained from the authors of this
manual.

1.2 Theoretical Formulation

MONT3D is formulated in the Monte Carlo style where a large number of photons are emitted
from each surface and “traced” until each is absorbed by another surface. Using the su@sdripts
| to denote the emitting and absorbing surfaces, respectively, and the supetsatgtote the
wavelength band, it can be shown that:



Qi Lj s K oTi Fi A (1.1)

where:

Qi L j =oneway rate of radiative heat transfer emitted from surtaodabsorbed by surface
j in wavelength bank (W).

aik = hemispherical emittance of surfade wavelength bané.

N:} = number of photons emitted in wavelength blafrdm surface and absorbed by sur-
facej.

Nik = total number of photons emitted in wavelength baftdm surfaca.

o = Stefan-Boltzman constari,669x10 8(W e m2. K_4)

Ti = absolute temperature of surfa¢k).

F Ik = fraction of the blackbody energy of surface wavelength band.

A, = area of surface(m?).

The ordinary definitions of the exchange fa&!ﬁr and the exchange frﬁlﬁtion are as follows:

Nk
Ek = ngk = ng (12)
Ik

Ni

The following rules apply to these quantities:
Z EE = eik (1.3)
J
or:

ZF!} =1 (1.4)
[



Equations (1.3) and (1.4) express conservation of energy (photons) since all photons must be
absorbed by a surface. Given that there must be zero net heat flow between isothermal surfaces, the
second law of thermodynamics (entropy principle) follows from Equation (1.1) as:

_ .k
or:
k k.  k_k
The net radiative exchange in wavelength bafrdm surface to surfacg is then:
) k 4
i- = E Ao T —F T4‘j (1.7)
or:
Q-k-—skF Aaa:k4 F K (1.8)
J jjd :

Either of the relations expressed as Equations (1.5) or (1.6) may be used to test the exchange fac-
tors or the exchange fractions for consistency (convergence). Indeed, either of these relations may
be used to manipulate the values in the matrix if either of Equations (1.3) or (1.4) is used as a con-
straint.

1.3 View Factors

The code may be used to compute view factors, valid for diffuse reflectances independent of inci-
dent angle. To do so, all reflectances and transmittances must be set to 0.0, resulting in an emittance
of 1.0 (“black”) for all surfaces. In this limiting case, exchange factors for blackbody surfaces are
equal to view factors.

1.4 MONT3D Implementation

MONTS3D is typically used as a “preprocessor” for thermal balance studies. As such, the matrix
of exchange factors output from the program is used as input to a thermal analysis code. MONT3D
is designed to be compatible with the thermal analysis code, TOPAZ3D [Shapiro, 1985], developed
at Lawrence Livermore National Laboratory by Art Shapiro. SMOOTH [Dolaghan et al., 1992] is
a postprocessor designed to take advantage of reciprocity to improve the accuracy of the exchange
factors. SMOOTH operates on the output of MONT3D and produces output compatible with
TOPAZ3D.

Fundamentally, the geometry and the material properties are the only quantities necessary to
establish the exchange factors. The exchange factors result from the interaction between the geom-
etry and the material properties in a complex fashion, and are unique to a particular geometry/mate-



rial property combination. Therefore, it is not possible to extend a set of exchange factors
calculated for a particular geometry/material property combination to another geometry/material
property combination, even if only the geometry or only the material properties vary. After any
changes the problem must be rerun. However, if view factors are calculated (all properties black),
arbitrary diffuse reflectances may be included in the thermal analysis code since view factors are
dependent on geometry alone. Note that diffuse exchange with finite reflectances calculated from
the present codes may yield different answers than those obtained using the radiosity/irradiation
approach, as the assumption in the radiosity approach is uniform radiosity/irradiation, which is not
a mandatory condition for the present code. Specularity or material property dependence on inci-
dent angle may not be modeled using view factors.

In addition to radiation exchange, this code can also be used to simulated some special cases of
other transport problems in enclosures. If the Knudsen number is much less than 1, rarefied gas
dynamics problems can be simulated (a vacuum vessel). Also, some simple cases of molecular
sputtering in an enclosure can be simulated.

1.5 Overview of the Manual

In Chapter 2, the general background required to run MONT3D is presented. Chapter 3 presents,
in great detail, the format of the input file (data deck) that MONT3D requires. A sample problem
is used to demonstrate how to run MONT3D in Chapter 4. The more technical details about the
MONT3D implementation are covered in Chapter 5.



CHAPTER 2 COMPUTER CODE BACKGROUND

This chapter presents the background information necessary to run MONT3D. The first three
sections define the geometry of a radiating enclosure in terms of nodes and radiating surfaces. Next,
there is a note on the surface concatenation option. The material interactions supported by the code
and how materials are specified by the user is the subject of the fifth section. The sixth section
explains the available shading algorithms, while the seventh discusses accuracy versus the number
of photons emitted. Next, debugging and visualization information generated by the program is
covered. This is followed by information on the restart capability, whereby a run may proceed from
a previously calculated state. In the tenth section, the parallel execution of MONT3D is covered.
The chapter concludes with a discussion of the pseudo-random number generator.

2.1 Nodes

The description of the geometry of the radiating enclosure begins with the specification of the
nodes (also called nodal points) of the enclosure. A node is a point in three-dimensional space
defined by three coordinates in a Cartesian coordinate syXteyn£, as depicted in Figure 2.1.

Each nodel), in the enclosure is assigned a node number which must be positive and a member of
the closed, full se\l € {1, NUMNP}, where NUMNP is the total number of nodes for the problem.

Once the nodes of the enclosure have been specified, radiating surfaces can be defined by specify-
ing sets of nodal points. See Sections 3.2.1 and 3.5 for additional detail on the node input format.

AZ
NodeN - {X,Y,2

Y

Figure 2.1: Nodal Coordinate System

2.2 Surfaces

Three-dimensional radiating surfaces consist of planar quadrilaterals or triangles and are defined
by specifying four nodal points. If four distinct points are specified, then the surface is a general-
ized quadrilateral, as shown in Figure 2.2(a). If it is desired to use triangular surfaces, then the last
two node numbers must be identical as shown in Figure 2.2(b). The outward normal for both types
of surfaces is defined consistent with the right-hand rule, i.e. if the fingers of the right hand are



3, 4
n
N2
Nl Nl
(a) 3-D Quadrilateral (b) 3-D Triangle
Figure 2.2: Radiating Surface Geometries
curled in the direction of increasing nodal point nuniber —» N ,) , then the thumb of the right

hand indicates the direction of the outward normal. This results in a counterclockwise convention
for nodal point numbering, when “viewing” the radiating side of the surface from above. Photons
are only emitted from the “front” of the surface (i.e. in the direction in which the surface normal
points); the “back” side of the surface is transparent as far as the code is concerned. When speci-
fying the surfaces, they must be convex (for more discussion of convexity, see Section 2.3). For
guadrilaterals, the four nodes should be coplanar (to within a small tolerance), but the code is able
to handle non-planar quadrilaterals; see Section 2.3 for more details. Additional information on the
surface input format is given in Section 3.6.

Each radiating surface is assigned a material number, and all material properties are independent
of spatial position on a single surface. More detail on the material properties is given below in Sec-
tion 2.5.

Referring to Figure 2.3(a), one observes the local (primed) coordinate system with vgjtex at
and axes as shown. Each surface is divided into equally spaced regions, and emission occurs from
the centroids of these subsurfaces. The user determines how many subsurfaces each surface in the
geometry will be divided into by specifying NDIVX and NDIVY, the number of subdivisions in
the X’ and y’ directions; see Section 3.2.2 for the input specification of these variables. Figure
2.3(b) depicts this for four subdivisions in the y' direction and three subdivisions in the x' direction
(here, editorial license has been taken as, in general, x' is not aligned with thig lidgr N, -
N3, as it is normal to the y' and z' axes). The dots in Figure 2.3(b) indicate the photon emission
points. The number of photons emitted from each point is scaled by the area of its subsurface to
eliminate bias that would otherwise result in “hot spots.” At least 10 divisions in x' and y' are rec-
ommended for uniform surface emission (default is 5). Additionally, at least 100 photons should
be emitted from each emission point per loop (specified by the variable NPHTN for each surface)
to render insignificant round-off problems in scaling photon emissions to subsurface areas. More
detail about specifying the number of photons to emit from a surface is given in Section 2.7.



Y

(a) Global - Local Coordinate Systems (b) Photon Emission Points

Figure 2.3: Three-Dimensional Surface Details

2.3 Split Surfaces, Planarity and Convexity

As mentioned above, while surfaces in MONT3D are supposed to be planar and convex (a con-
vex surface is usually defined as one with no interior angles greater than 180°), the code can handle
non-planar surfaces. It does this by dividing non-planar quadrilaterals into two triangles which are
planar and convex by definition. Since the photons emitted by the original surface are proportioned
to the two split surfaces and the results for the two split surfaces are combined in the final output,
this division is totally transparent to the user. In fact, it is often easy for split surfaces to go unno-
ticed by the user because MONT3D only issues warnings for these surfaces, not errors.

This is unfortunate because while there is little harm in splitting a slightly non-planar surface,
extremely non-planar surfaces may be modelled very badly; they may even be modelled as two
overlapping triangles. An example fopknar surface is shown in Figure 2.4 where the quadrilat-
eral in the figure is split into the triangles defined by nodes 1-2-3 and 1-3-4. The triangle 1-2-3 is
not part of the original quadrilateral and the triangle 1-3-4 completely covers the triangle 1-2-3.
While MONT3D would automatically reject a concave quadrilateral such as the one in the figure,
it may not catch all ill-defined non-planar split surfaces; this will be discussed in greater detail
below. This problem has become more severe recently, since, due to user request, the convexity test
has been relaxed, particularly for non-planar surfaces.

If surfaces are non-coplanar, unpredictable results can occur. The user is advised to examine split
surfaces carefully. Often the wisest course is to redefine the surfaces to make them planar and con-
vex. Most of the potential problems mentioned above are closely related to the concepts of planar-
ity and convexity. For this reason, the planarity and convexity tests done by MONT3D and how
split surfaces relate to them are described below. There are also potential problem related to the
number of photons emitted from each emission point which will also be described below.



Figure 2.4: Planar Quadrilateral Divided into Two Overlapping Triangles

To assess the planarity of a surface, the dot product of the surface normals of the two triangles
defined by the nodes 1-2-3 and 1-3-4 is calculated. If this dot product differs from one by more than
a predefined tolerance (SPLITOL, see Section 3.2.3 for the input specification of this variable), the
surface is divided into two planar triangles. It should be realized that this results in a geometry dif-
ferent from the original one - i.e. a lack of consistency exists in the original versus simulated geom-
etry. Indeed, greater differences in non-planarity result in greater inconsistencies with the original
geometry. If these aberrations are large, unpredictable and unintended results may occur. Indeed,
there is no substitute for a well-defined geometry. On the other hand, it should be realized that if
the value of SPLITOL is too high, non-planar surfaces will not be split and excessive lost photons
and other such problems can occur. When splitting a surface, MONT3D arbitrarily splits the quad-
rilateral along the line from node 1 to node 3. While in certain cases it may be “better” to split the
guadrilateral along the line from node 2 to node 4, there is no known way for MONT3D to deter-
mine which way is better, so the surface always splits along the line from node 1 to node 3.

MONT3D also tests for convexity. A common definition for convexity is that no interior angle
can exceed 180°, but a complete definition is much more complex; see Schorn and Fisher [1994].
By definition, a convex polygon is planar, so the convexity tests are not totally applicable to non-
planar quadrilaterals. This is unfortunate because it is possible to split a concave quadrilateral into
two overlapping triangles, perhaps similar to those shown in Figure 2.4. To try to prevent this,
MONTS3D applies modified convexity tests to non-planar surfaces. These tests probably do not
catch all overlapping triangles, but we know of no foolproof test for non-planar quadrilaterals.

The convexity test in MONT3D has two parts. For the first convexity test, a check is done that
the sum of the lengths of each pair of non-adjacent sides is shorter than the sum of the lengths of
the two surface diagonals. If this is not the case, the surface is rejected whether it has been split or
not and MONT3D exits with an error. For the second convexity test, a check is done of the sum of
the areas of triangles comprising the surface for both the cases of splitting along the lines from node
1 to node 3, and from node 2 to node 4. For a planar surface, if the areas do not match within a
certain tolerance, the quadrilateral is considered concave and MONT3D exits with an error. The
tolerance is given as the percent difference of the areas (PDA) being compared. This tolerance
(pdamay is a parameter which can be set by the user; see Section 5.5.2 for more details. Its default



value is 0.1 (a 0.1% difference between the two areas). Non-planar split surfaces often fail this test,
but when they do, only a warning is issued.

It should be realized that the PDA for a surface is a good measure of the lack of consistency
involved in modelling the surface as two split surfaces or as convex. The larger this value, the
greater the chance that the surface is modelled incorrectly, for example, as overlapping triangles.
Since MONT3D accepts any non-planar set of split surfaces no matter how large their PDA value,
the user must make sure that the split surfaces, particularly those with high PDA values, are prop-
erly defined. The MONT3D output file does include a warning that lists all split surfaces with a
PDA greater thapdamaxand their PDA values. The user should consult this list to determine
which surfaces may require redefinition.

When a planar surface fails the second convexity test, there are three ways to fix the problem.
The only safe way to fix the problem is to redefine the surface so that it is convex. More dangerous
solutions are to lower SPLITOL enough to mark the surface as non-planar or to ipcaase
enough that the surface is marked as convex. Neither solution is recommended.

When a surface is split, it should emit as many photons per loop as it would if it were not split.
To ensure this, while the number of subdivisions in the x and y directions are the same for each
split surface, the number of photons emitted per emission point per loop (NPHTN) is divided
between the two surfaces weighted by the area of each surface. Frequently, this causes at least one
of the split surfaces to emit many fewer than the suggested 100 photons per emission point leading
to round-off errors. There may even be significant round-off error in the division of the photons per
emission point between the two split surfaces. Therefore, for split surfaces, the user should set
NPHTN to values greater than 100. The MONT3D output file lists the area and the number of pho-
tons emitted per emission point for all surfaces including split surfaces. More detail on setting
NPHTN and other such topics is given in Sections 2.7 and 2.2.

2.4 Surface Concatenation

Previous versions of MONT3D permitted surface concatenation. Current versions do not due to
the limitations associated with error checking and restart (it is impossible to recover restart infor-
mation from concatenated information, as some information is lost during the concatenation pro-
cess). If it is desired, concatenation can be @opesterioriby operating on the exchange factor
matrices.

2.5 Material Properties

The current version of MONT3D has a new material model. The new material model extends the
older material model in two respects. First, semi-specular outgoing directional distributions are
included for both transmission and reflection. Secondly, material input has been simplified. The
input formats for the new and old material models are not compatible. MONT3D will read material
property input in either the new or the old input format. The input control variable, NUMMAT -
the number of materials, is used to control the format of the material properties to be input. If neg-
ative, the new format is used; if positive, the old format is used. See Section 3.2.1 for the input spec-
ification of NUMMAT.

The material properties are defined in terms of a local spherical coordinate system. Figure 2.5
defines the cone angk, and the azimuthal angle, with X' andy' in the plane of the surface.

10



A Photon Emission Vector

¢

Figure 2.5: Local Material Coordinate System

Material properties are presented below in terms of material property curves, outgoing direc-
tional distributions, and emission. Information about the input format for the new material model
is given in Sections 3.8-3.10. The old material model is covered in detail in Appendix A.

2.5.1 Material Property Curves

Material properties describe the interaction of a particle with a material. Material properties are
independent of incoming azimuthal angpebut may be dependent upon incoming cone afgle,
The properties are defined as constant (gray) within a particular radiativie Bartdat Kirchoff’s
law applies within each band. Explicitly:

£0) = a*(6)=1-pK(6)-pL(0)-pL ()15 (B) T (0) ' (6) 1)
where:
sk(e) = emittance in wavelength bakat outgoing cone angle,
ak(e) = absorptance in wavelength bdnat incident cone anglé,

pg(e) = diffuse reflectance in wavelength badaat incident cone anglé,
p‘;(e) = specular reflectance in wavelength bkid incident cone anglé,
pzs(e) = semi-specular reflectance in wavelength Haatlincident cone anglé,

TE(G) = diffuse transmittance in wavelength barat incident cone anglé,

11



k . . o
TS(G) = specular transmittance in wavelength blaatlincident cone anglé,

k . . : .
rss(e) = semi-specular transmittance in wavelength Beatdincident cone anglé,

Hereinafter, we drop the explicit dependence upon wavelengthkband carry an implicit
dependence. It should be noted that all properties may be considered in terms of probability, i.e.
Py(0) is the probability that a photon of incident an@hill be diffusely reflectedpg(8) is the
probability that a photon of incident an@l&vill be specularly reflected, etc. Furthermore, the total
reflectance in banklis the sum of the specular, semi-specular and diffuse components, and simi-
larly for the total transmittance. The fundamental difference among the specular, semi-specular and
diffuse components is the shape of the outgoing directional distributions for these components
(covered in Section 2.5.2 below).

Since material properties are both constant in each wavelength band and indepepdbat of
emittance and absorptance for a given wavelength bar@larecequal by virtue of Kirchoff’s law.
The absorptance and emittance here are determined as the complement of the other properties.
Thus, specification of the diffuse, specular and semi-specular reflectances and transmittances as
functions of the incident angle uniquely defines the incident properties within one wavelength band
for a material. In the case of ordinary emission, the directional emittance is determined from the
absorptance. However, other possibilities for emission exist, as described below in Section 2.5.3.

Figure 2.6 depicts the material property curves as functions of the incident con®;amijhen
a wavelength bankl At any particular value of incident cone an@e an incident photon has the

1.0

Pss

Ps

E=a

0.0

A

OO e = e 900
Incident Angle (Degrees) ! '

Figure 2.6: Material Properties vs. Incident Cone Angle

12



following probabilities:py(8;), Ps(8;), Psd8i), Ta(B)), T«(8)), TsdB), and 1p4(6;)—p(8;)—Ps{6))-
14(6;)—14(6;)—154{6;) for diffuse, specular, and semi-specular reflection, diffuse, specular, and semi-
specular transmission, and absorption (or emission), respectively. Curves of material properties
must be input for every wavelength band for each material. In the old model, these curves had to
be input by point value as a function of cone angle. The new material model allows each of these
properties to be input as a single, constant value, or by reference to a curve which must subse-
guently be input by point value as a function of cone angle. In the case of point value input, the
computer code parabolically interpolates between each three successive points entered. In this
case, care must be taken to: (1) include bounding poiBts &P and8 = 9¢° (since no extrapola-

tion is done), and (2) to include enough points, varying smoothly, to result in good interpolation
(i.e., discontinuous jumps must be input as “steep” parabolas with three non-coincident points used
to define the jump). If curves are input by point value, then it is strongly suggested that the plot file
(file suffix .plt) and MPLOT [Nagesh and Burns, 1994] be used to view the curves created, to ascer-
tain that the interpolation is physically reasonable.

2.5.2 Outgoing Directional Distributions

Photon/material interactions of seven types may occur. These outgoing directional distributions
will be discussed briefly below. A more detailed discussion of these distributions is given by Burns
and Pryor [1999]. In the current discussion, for purposes of illustration, these outgoing directional
distributions will be presented graphically for reflection only, and depicted in cross-section. To
establish a basis for the ensuing discussion, the definition of the bidirectional reflectance is recalled
asp"(6;, @, 6,, @), where the double prime indicates that it is dependent upon two directions, inci-

dent @;, @) and outgoingq,, @).

Figure 2.7(a) depicts the traditional model for reflection, consisting of a purely specular compo-
nent and a purely diffuse component. The current model in MONT3D includes three enhancements
to the traditional model. First, the diffuse distribution may be weighted i@)cséllow control
of the shape of the outgoing directional distribution. Second, a semi-specular outgoing distribution
is added. The semi-specular distribution is “spread” in space to represent more realistic materials.
Third, the semi-specular distribution may be modeled using an offset about the specular angle,
AB,(6;), which usually tends toward the grazing from the specular angle. These features have been
observed by Torrance and Sparrow [1966], and are shown conceptually in cross-section in Figure
2.7(b).

Three components of reflectance are modelled: weighted diffuse, specular and semi-specular.
Each is discussed below.

The weighted diffuse component exhibits a symmetric shape of revolution about the surface nor-
mal. The weighting exponenyy, controls how much the distribution tends toward the normal
direction. The probability distribution functions (PDF’s) for energy (not intensity) for the weighted
diffuse distribution are:

PDF(B,) = (ry+1)cos’(8,)sin(8,) 2.2)

PDF(@,) = 1/(2m) (2.3)

13



Weighted
Diffuse
Distribution

/4
(a) “Traditional” Model

A Specular

6p= Specular
9i+A60

VVVe\iglhted, Offset
Semi-specular
Distribution

4

(b) Model in MONT3D

Figure 2.7: Cross-sectional Views of Reflectance Models

1.0

0.5

Isotropic

Lambertian

0.091%

0.0 05 1.0

Figure 2.8: Cross-sectional View of Weighted Diffuse, Normalized PDF’s

The coefficient (§+1) in Equation (2.2) effects normalization of the distribution when integrated
over0 from 0 torv2. The normalized diffuse reflectance distributions are shown in Figure 2.8, with
rq as a parameter. Note thgtr1 represents the standard diffuse (Lambertian) distributiongand r
= 0 represents an isotropic distribution. Valuegy@xceeding 1 bias the distribution toward the

14



normal, termed “over cosine,” while values less than one bias the distribution toward the grazing
angle, termed “under cosine.”

For specular reflection, the photon’s directional component normal to the surface is reversed, and
the component parallel to the surface remains unchanged. No specular offset angle is modelled in
this distribution.

The semi-specular reflectance distribution takes this specular distribution and: (1) adds an offset
cone anglé\B,(6;) to yield the “preferred” outgoing direction, and (2) spreads the distribution in
space, including a weighting coefficient, by revolving the distribution about the “preferred” outgo-
ing direction. The “preferred” outgoing cone angle is determined as the specular angle plus the
semi-specular offset angle:

Bp = 6; +46,(6)) (2.4)

The same type of distributions shown in Figure 2.8 for the diffuse outgoing distributions are used
for the semi-specular outgoing distribution, except: (1) the distribution is scdled olisallow
penetration into the surface i.e., the distribution is forced to zero at the grazing angle, and (2) sym-
metry about the preferred outgoing direction, rather than about the surface normal, is applied. Here,
the weighting coefficientgg controls the tendency of the distribution to go toward the preferred
outgoing direction. Figure 2.9 depicts cross-sectional views of normalized outgoing distributions
about preferred outgoing directions of2thd 78. The distributions shown in Figure 2.9 are

revolved about the preferred outgoing direction, spreading the distribution in cone and azimuthal
angles. It should be noted that gsapproaches infinity, the semi-specular distribution approaches

a specular distribution at the preferred outgoing angle.

Axis of
A 8, = 3¢ Revolution
3 evolto Axis of
rss= 10 res= 10 Revolution

() 8p = 30° (b) Bp = 7C°

Figure 2.9: Normalized, Weighted Semi-specular Directional Distributions
(Shown in Cross-section)

These same three distributions apply to transmission, except that the distributions pass through
the surface instead of being reflected from it. These distributions for transmission allow approxi-
mate modelling of semi-transparent materials, such as glass, and translucent materials, such as
lighting diffusers. Although the material models in MONT3D permit accurate modelling of energy,
no refraction is modelled, introducing an error in direction. However, in many instances the direc-
tional changes induced by refraction are small, and may be neglected with good accuracy.

15



Care should be taken when modelling transmission. All exterior surfaces of a geometry must be
totally non-transmissive. If this is not the case, photons transmitted through the exterior surfaces
will be lost. MONT3D does not check for this and no warning will be issued during the input phase
if this error occurs.

In addition to being reflected or transmitted, the photon may be absorbed. In summary, seven
possibilities for incident photon disposition exist: three components of reflection, three compo-
nents of transmission, and absorption. For each material in each band, the diffuse and semi-specu-
lar weighting coefficientsgrand g for both reflection and transmission must be input.

Furthermore, for semi-specular reflection and transmission, the offset angle as a function of inci-
dent anglé\B,(6;) must also be input. More details on the input format are given in Sections 3.8-
3.10.

2.5.3 Emission

In the new material model, emission type is defined using the variable, IETP. Emission of one of
three types may be specified, depending on the whether IETP is O (the default), 1 or 2, as discussed
below. See Section 3.8.2 for additional details. Emission is specified quite differently in the old
material model. Appendix A, specifying old material model and input format, is provided for ref-
erence. Hereinafter in this section, only the new material model will be presented.

Standard Emission - IETP = 0.This is the type of emission deriving from Kirchoff’s Law. At each

angle, the emittance is equal to the absorptance - determined as the complement of the reflectance
and transmittance. This type of emission adheres to the second law of thermodynamics, and is rec-
ommended for radiative transfer. If this type of emission is used, no additional input for emission

is required.

Beam Emission - IETP = 1This type is intended to model “beam” or collumnated radiation.
Emission of this type is accomplished along the direction specified for this material by EBX, EBY,
and EBZ - the directional components in global coordinates of the emission vector. Here, emission
is unidirectional - all photons emitted from this material type travel in the direction specified by the
global components, only the point of emission changes. Different material types must be defined
for each global direction of emission desired. When specifying a material of this type, care must
be taken to ensure that, as discussed in Section 2.2, the beam emission will be from the “front” of
the surface, not the “back.” In other words, the dot product of the emission direction and the surface
normal must be greater than O for all surfaces that use the material. If this is not the case, the code
exits with an error. Note that all interactions (absorptions, transmissions, reflections) will depend
only on the incident material properties defined for this material.

Function Emission - IETP = 2.Here, emission is accomplished using computer code supplied by
the user; more details are given in Section 3.8.2. Either EBX, EBY, and EBZ, @& dadkp must

be specified (the example in the code supplies a function orly émnission is uniformly distrib-

uted in@). The user is cautioned that emission via this option is accomplished using the accept-
reject method, and many trials may occur for each photon emission if the magnitude of the user-
supplied function is small. Photon/material interactions are determined by the incident material
properties defined for this material.

16



2.5.4 Cases Where the Reciprocity Relations Do Not Hold

Care must be taken when using some of the more advanced material property features of
MONTS3D. Unless the directional model for emission is consistent with the directional model for
surface properties, the reciprocity relations, Equations (1.5) and (1.6), may no longer hold. The
other conservation relations still hold, however. Conditions in which the two models do not match
include: function and beam emission; diffuse reflectance and transmittancg motrequal to 1
and any case involving semi-specular reflectance or transmittance. When modelling radiative trans-
fer, it is suggested that the user avoid the above conditions. The reciprocity relations also are not
observed when the diffuse reflectance varies as a function of angle. Surprisingly, they DO hold
when the specular reflectance varies as a function of angle. No tests have been done to assess if
reciprocity holds when diffuse or specular transmittance varies by angle. In the future, investiga-
tions will be done to determine how MONT3D can be modified to observe reciprocity relations
under the above conditions.

2.6 Shading

If any shading exists in the geometry, a photon’s path may intersect a number of surfaces. The
distance from the emission point to the different intersection points must then be computed, and
the closest point chosen as the true intersection point (the surface first encountered). For large prob-
lems, this results in significant expense. To reduce execution time for large problems with shading,
the grid shading algorithm [Margolies, 1986] has been implemented. Here, the geometry is divided
into a series of grid cells, resulting in rectangular parallelepipeds. The photon is traced from grid
cell to grid cell, and a search is done within each grid cell only over those surfaces which exist
either wholly or partly within that cell. The situation is depicted in Figure 2.10 for a 2-D geometry.

- Enclosure
e iR
{ Photon

N

" Trajectory

~.

V \J Grid
\ &~

Figure 2.10: 2-D lllustration of the Grid Shading Algorithm

17



In the recent recoding of MONT3D [Zeeb, 1997; Zeeb and Burns, 1999], the grid tracing routine
was further optimized and use of this algorithm has resulted in speed-ups in execution time in trac-
ing, compared to no grid, of factors of 18 to factors of 81 for large geometries (1,000 to 5,000 sur-
faces). The optimum grid differs from problem to problem, and must be empirically determined by
the user. However, a good starting guess for a large geometry (1,000 to 5,000 surfaces) is about
15,000 grid cells.

Grid coordinates are defined separately for each axis. Two options exist for defining the grid
coordinates along each axis: (1) a uniform grid generated by the program, with equally spaced
grids, or (2) a user-defined grid. For option (1), the user need specify only the number of grids along
the axis, while for option (2) the user must also specify the grid coordinate locations along the axis.
See Sections 3.3 and 3.11 for additional details.

2.7 Number of Photons, Convergence and Accuracy

The number of photons emitted in each photon loop is specified for each surface in each band by
the relation: # of photons = NDIVX x NDIVY x NPHTN. Multiple photon emission loops may be
done per surface; more detail is given below and in Sections 2.2, 3.2, and 3.6. As Monte Carlo tech-
niques are statistical in nature, “enough” photons must be emitted from each surface to yield a sta-
tistically accurate result. This number depends upon the geometry and, to some extent, upon the
material properties. As a general rule, greater numbers of surfaces require greater numbers of pho-
tons. Execution time increases linearly with number of photons. For small problems (about 20 sur-
faces), it has been found that on the order of 20,000 photons per surface (not subsurface) are
required to achieve exchange factors accurate to within about 5%. It is typical to observe conver-
gence in a particular exchange factor as shown in Figure 2.11. The user is cautioned that false con-
vergence may be indicated when comparing two values on the curve as shown. It is therefore wise
to check the entire matrix of exchange factors for consistency at several numbers of photons.

To estimate the number of photons required to achieve a given level of accuracy, Table 2.1 is pro-

vided. The table gives, for each exchange fradﬁlén , the number of phigtons, , which must be

emitted from a surface to achieve 95% confidence that the exchange fraction is within: 1%, 2%,
5%, 10%, and 50% of the exact answer. The numbers of photon emissions per surface are calcu-

lated from the formula for confidence interve(llﬁl} , for the exchange fraction from suidace

surface in wavelength banki(FiI} ), derived by Maltby [Maltby, 1990]:

(2.5)

wherezis taken from the standard normal tables [Kreyszig, 1993], and is 1.96 for 95% confidence.
Equation (2.5) yields the fractional accurac;Fi‘f]j (n.b., 100 times this value is the percent accu-
racy).

18



B False Convergence
B Final
Value
Exchangq
Factor
[ -
False
Convergence
I I I I I I I I I
1
10 10° 10° 104 10° 10°

Number of Photon Emissions

Figure 2.11: Convergence vs. Number of Photon Emissions

Table 2.1: Accuracy in Exchange Fractions

Exchange Level of Accuracy
Fraction 1% 2% 5% 1099 500
103 | 38,377,584 9,594,396 1,535,103 383,776 15,851
102 | 3,803,184 950,796 152,137 38,082 1,521
10| 345,744 86,436 13,830 3,457 138

MONTS3D is formulated to attain a specified accuracy for each aiithe exchange factor
matrix. The program is constructed to loop over successive emissions from each surface if a preset
accuracy tolerance is not met after a full surface emission. To explain this, we first note that Equa-
tion (2.5) provides the confidence interval for only elemeaitthe exchange fraction matrix, when
emitting additional photons actually increases the accuracy of all elementsi irEgpyation (2.5)
is modified to account for this with the rationale that exchange fractions affect the accuracy pro-
portional to their size. Thus, we weight each confidence interval by its exchange fraction, sum and
then average by dividing this amount by the total number of surfaces, NSURF, to yaadchibe

row confidence factor for row C:( :

19



k _ 1 k_k _ y4
S = NSUREY Cifil = NSUREY.
J J

(2.6)

If the confidence factor for emissions from surfagebandk is not met after a full surface emis-

sion loop, then the program continues to perform full surface emission loops until either the spec-
ified confidence factor is achieved, or a maximum number of loops over the surface, NPLOOPS,
have occurred. This feature can be used with the restart option to effect a specified accuracy for
surfaces, traded off against CPU usage.

The user has quite a bit of control over how many emissions occur for each surface. While
NDIVX, NDIVY, and NLOOPS are the same for all surfaces, NPHTN and the confidence factor
can be specified for each surface; see Sections 3.2, 3.4, and 3.6 for additional detail. It should also
be noted that the value ptised by the code for calculation of the row confidence factor can be set
by a parameter; see Section 5.5.2 for more details. The default value is 1.96 which represents 95%
confidence.

A rough guess of the size of the exchange fractions is the reciprocal of the number of surfaces in
the input file. This yields the “average” exchange fraction size, since the sum of any row of the
exchange fraction matrix is 1. The number of photons required to be emitted to achieve an “aver-
age” level of accuracy may then be estimated from Equation (2.5) or obtained from Table 2.1
through interpolation or extrapolation.

Errors in the temperatures calculated from radiative flux balances are smaller than errors in the
exchange fractions due to the fourth-root dependence of temperature upon radiative flux. For small
errors, one may expect the errors in temperatures to be about one-fourth of the errors in fluxes.
Emitting an equal number of photons from each surface may result in a waste of computer time,
since some surfaces contribute little to the radiative exchange. A better approach would be to
apportion the numbers of emissions to each surface based upon its estimated power output. This is
an approach which requires judgement gained through experience with specific problems, since the
power outputs are generally not knosvpriori. In any case, the above approach provides a “poten-
tiometer” which can be used judiciously to adjust solution accuracy.

2.8 Aid in Debugging and Visualizing MONT3D Geometries

MONT3D generates several files useful in debugging and visualizing geometries. These files are:
the plot file, the leaks file, the lost photon file, and the trajectory file. The various files are described
below. All can be visualized using the stand-alone graphics program MPLOT [Nagesh and Burns,
1994]. The actual formats of each of these files are presented in detail in Appendix B.

The plot file (file suffix .plt) containing all the information in the input file (geometry and mate-
rial properties) is written to disk during the input phase. This file may be used with MPLOT to dis-
play the geometry and the material property curves. This file must be read by MPLOT before
viewing the results from any of the other files listed above; otherwise, MPLOT will have no geom-
etry over which to display the results.

An error in the specification of the geometry often results in a “leak” or hole in the enclosure,
through which photons may be transmitted and “lost.” Leaks may be caused due to disjoint sur-
faces, missing surfaces, incorrect node numbering on a surface, misplaced nodal points, or insuffi-

20



cient precision in specifying coordinates. During the input phase, the geometry is checked for
leaks, and results are written to the output file. Additionally, an ASCII file of potential leaks (file
suffix .Iks), identified by type (severity of leak), is also created. This file may be used with MPLOT
to highlight surfaces and sides of surfaces which have been identified as potential problems or
leaks. The three types of errors identified are:

Error 1- Reversed Edge:This error occurs when two surfaces share the same edge. An example
is given in Figure 2.12. In Figure 2.12(a), the edge between the two surfaces is correct and both
surfaces have normals pointing into the page. In Figure 2.12(b), the edge is reversed and the nor-
mals of the two surfaces point in opposite directions. Recall from Section 2.2 that surfaces are
transparent to photons which hit the back side of the surface. This type of error usually results in
the enclosure losing excessive photons resulting in an error termination.

(a) correct edge (b) reversed edge
(Arrows represent direction of increasing node number)

Figure 2.12: Example of a Reversed Edge

Error 2 - No Match Found: This error occurs when no match is found connecting at least one side
of that surface to the side of another surface. This may or may not be acceptable.

Error 3 - Slip Surface: This error occurs when an edge goes through a node point instead of ter-
minating at it. Although this is sometimes an actual error, it often is not. If the slip surface creates
no “holes” in the geometry, then it should not cause the enclosure to lose photons.

When photons are lost, the endpoints of each photon ray are written to a separate file (file suffix
JIst), which may then be read by the MPLOT program. Then trajectories of the lost photons may be
displayed on the geometry. Because there is no terminus of the ray, a fictitious endpoint is used.

21



An option is also available to write trajectory information to an output file (file suffix .trc), which
may be subsequently read and plotted by the program MPLOT; see Section 3.2.2 for more details.
This feature is useful in obtaining a “feel” for the underlying physical processes, and to ascertain
that the simulation is proceeding as planned. There is a copious amount of information written to
the output file during the exercise of this option, so it is suggested that the number of photons emit-
ted per surface be less than about 100.

Recent versions of MPLOT allow the user to view convergence information on the exchange
matrix values for a specified surface. Unfortunately, MPLOT can not read the new exchange matrix
file format used by latest version of MONT3D and this feature is not available for MONT3D ver-
sions 2.4 and later.

For more information, the reader is urged to consult the MPLOT documentation [Nagesh and
Burns, 1994].

2.9 Restart Capability

The code has been designed to be restarted from a previously computed state. For example, the
code may experience a “crash” during execution (for any of a host of reasons). Alternatively, the
code may run to completion, and subsequent examination of the answers indicates that they are not
sufficiently accurate. In either case, it is desirable to begin a new simulation from the last state
available to take advantage of previous work. This prevents waste of computer resources in recom-
puting information already available. A simulation may be restarted multiple times, until the
desired level of accuracy is attained.

To effect this, the current state of the solution must periodically be written to disk, so that it will
be available for a restart run. How often this is done is controlled by the input variable NEBLOCK.
All information required for restart is written to a restart file (suffix .rst) after emission has been
completed from each “block” of INEBLOCK]| surfaces; see Section 3.2.1 for more information.
Chapter 4 includes an example of a restart run.

2.10 Parallel Version

MONTS3D now supports parallel execution implemented in PVM [Greist, et al., 1994]. The par-
allel version uses a master-worker model. The basic operation of the parallel code is as follows.
The master process reads the input file and checks it for errors. If no errors are found, the master
spins off a user specified number of worker processes (NWPROC; See Section 3.2.2) and passes
to them the input file name and other required information. Next, all the worker processes read the
input file in an abbreviated input phase. Since the input file has already been checked by the master,
many of the checks, such as the time consuming check of the validity of the geometry, can be
skipped during the worker input stage. As soon as a worker completes the input phase, it sends a
“worker ready” message to the master. The master then sends a block of INEBLOCK| surfaces to
the worker. The worker performs the work associated with emissions from these surfaces. Once it
completes these emissions, it writes the results to the disk and sends a message to the master indi-
cating it has completed that block, and the master issues another block of surfaces to the worker, if
any are left. This cycle continues until all emissions have been completed. If a worker encounters
a fatal error, it aborts and the block it is working on is done later by another worker. If all workers
abort due to fatal errors or if a block of surfaces results in fatal errors for two different workers, the

22



entire run is aborted and the program terminates. After all emissions are done, the master combines
the results from the workers into one exchange matrix file and the program terminates.

The parallel version of MONT3D has been tested on a wide variety of platforms. PVM (Parallel
Virtual Machine) was originally designed to combine a number of heterogeneous computers into a
parallel virtual machine using the TCP/IP networking protocol. The master and the workers can be
totally different types of machines and each machine must be accessible via the network. A dia-
gram of this topology is shown in Figure 2.13. Each of the switches in the diagram may be either

Switch

Switch

Figure 2.13: Example Master-Worker Architecture

a switch between subnets or a gateway (router) between different networks. The parallel code has
been shown to work on a homogeneous network of Hewlett Packard workstations and a heteroge-
neous network of three Sun workstations and a Linux workstation. Excellent results running the
code on a tightly couple cluster of eight DEC Alpha CPU’s have also been obtained. The only
requirement for the parallel version of the code is that all CPU’s must use a common file system
such as NFS, as the workers must be able to access the scratch (file suffix .scr) file created by the
master and the master and the workers must be able to access the block exchange matrix (file suffix
.bni) files. More information about the parallel version of the code is given in Section 5.6.

23



2.11 Pseudo-Random Numbers

Random Number Generators (RNG’s) are fundamental components of Monte Carlo analyses,
without which Monte Carlo simulation would be virtually impossible. In the codes described
herein, uniformly distributed pseudo-random (also termed just random) numbers are used to deter-
mine: (1) outgoing directions of particles, and (2) interactions of particles with surfaces. Mathe-
matically, the sequence of random numbers used to effect a Monte Carlo model should possess the
following properties: (1) the sequences of random numbers should be ser@iyelated 2) the
generator should be @dng period 3) the sequence of random numbers shouleshiferm, and
unbiasedand 4) the generator shoulddfécient

In the past, linear, congruential generators (LCG’s) were typically used to produce pseudo-ran-
dom numbers. However, a new class of generators, lagged Fibonacci generators (LFG’s), have
recently emerged. LFG’s have better properties than LCG’s, are more efficient, and are readily
amenable to parallelization. An overview of these types of generators is presented, followed by
some implementation details. Additional material may be found on-line [Burns and Pryor, 1995;
Zeeb and Burns, 1997] and from other sources [Anderson, 1990; Brent, 1992; Burns and Pryor,
1999; Marsaglia, 1985].

2.11.1 Lagged Fibonacci Generators

Lagged Fibonacci pseudo-random number generators are based upon the Fibonacci sequence
[Golomb, 1982]. The Fibonacci sequence is generalized to a family of pseudo-random number
generators of the form:

Xy = (Xq_| + X)) modm | >k>0 2.7)

where mod is the integer remainder function lidtial integer valuesx, ...,X.1, are needed in
order to compute the next element in the sequence. In this expression the “l&gsidireso that
the current valuex,, is determined by the value Xk places ago andplaces ago. In addition, for
most applications of interestiis a power of two. That isp = 2*'. Random real numberR,,, are
generated from the above integer numbers by dividing the intgdsrm, viz.

X
R, = E” yielding0<R <1 (2.8)
This type of pseudo-random number generator has been extensively tested for randomness prop-
erties using Marsaglia’s [1985] DIEHARD tests, and has been given high marks. The only defi-
ciency found is related to what Marsaglia terms the Birthday Spacings test. Preliminary work by
Brent [1992] suggests that LFG’s pass the Birthday Spacingsltésigfeater than 100. It should
be noted that LCG’s did not do nearly as well on the tests. A firm theoretical understanding of the
cycle structure of these generators has been established in a series of two papers by a group at the
Center for Computing Sciences [Pryor et al., 1994; Mascagni et al., 1995].

With proper choice dk, |, and the first values ofX, the periodP, of this generator is equal to
2" 1) x ZM-D). For example, for a small generator with 17, andM = 31, the period?, is huge,
~ 1.4x 16* The only condition on the firbtvalues is that at least one of them must be odd. Still,
for some applications, one should refrain from using more thah & the numbers generated by

24



these generators because for a generator with p€riRd,andR . p/,; differ by at most bits (0 <
i <M) [Brent, 1992]. Examples of four commonly used versions of these generators,kl,M®H(
are:

1) LFG(17,5,31): P ~% (~ 1.4 x 18%; 2 ~1.3x 18

2) LFG(55, 24, 31): P ~8 (~ 3.9 x 16%); 2' ~ 3.6 x 18°

3) LFG(127, 97, 31): P ~187(~ 1.8 x 1d7); 2! ~ 1.7 x 188

4) LFG(607, 273, 31): P 224 (~ 5.7 x 18°Y; 2! ~ 5.3 x 1882

Even using the more restrictive-2 constraint instead of the full period, all but the LFG (17, 5, 31)
have random series much longer than a LCG’s maximum period (aBou22L x 18). The most
severe drawback of an LFG is the fact thabrds of memory are required to be kept current, and
this is not significant in our application.

It is necessary to fill the initial state to start the sequence. For the LFG, an initial btateras
is needed. When implementing the code in parallel, it is important that each worker process have a
sequence or cycle of random numbers that is independent of all the other processes. Initializing
separate cycles is addressed by Mascagni, et al. [1995], where they describe a canonical form for
initializing Fibonacci generators. This canonical form is determined soldlabgk, and is inde-
pendent oM. In general, the canonical form for initializing Fibonacci generators requirég the
word be set to all zero bits, and the least significant bits of all words in the register set to zero, with
the exception of one or two characteristic bits that depehdandk. Each combination of the
remaining [ - 1)(m-1) bits, called equivalence classes (EC’s), specifies a different cycle of random
numbers. No two EC’s share the same cycle. Cuccaro [1996] has extensively tested initializing the
EC'’s bits with a binary shift register generator (i.e. an LFG With 1) and found excellent ran-
domness properties across parallel sequences with this method, even when the initial seeds for each
sequence are very similar. This is the method employed in MONT3D. Additional detail may be
found in Burns and Pryor [1999] and Zeeb and Burns [1997].

2.11.2 Implementation Details

Experience has shown that using LFG (17, 5, 31) can lead to about 0.1% systematic error in some
applications [Zeeb and Burns, 1997; Zeeb and Romero, 1999], probably due to the fact that, as
mentioned above, correlations appear after about 130,8001Prandom numbers are generated.

This error is generally well below the accuracy inherent in Monte Carlo simulations. Furthermore,
these correlations probably have little effect on all but the most simple of problems.

However, to ensure high accuracy runs, we have chosen to implement LFG(127, 97, 31), which
has the smallest value lothat passes all of Marsaglia’s DIEHARD tests, including the Birthday
Spacings test. Correlations do not appear among the random numbers until after about®l.7 x 10
random numbers have been generated, which is more than adequate for any problem in the fore-
seeable future. It is possible to compile the code so that it implements a different length LFG gen-
erator, see Section 5.5.2 for more details.

The RNG is initialized as follows. First, the initial se¥g, which is either given by the user,
generated from the time and date, or set to the default value, is obtained. If the initial seed is gen-
erated from the time and date, then the following formula is used:

25



Xo = isec*2® + imin*219 + ihr214 + iday*2®+imon*2° + mod (iyr, 2) (2.9)

where mod is the integer remainder function and the integer variables on the right-hand side are the
second of the minute (0-59), the minute of the hour (0-59), the hour of the day (0-23), the day of
the month (1-31), the month of the year (1-12), and the year of the century (00-99). More detail on
specifying the initial seed is given in Section 3.2.1.

Next, the initial seed is used in the binary shift register to fill the initial state of the LFG according
to the canonical form as described by Burns and Pryor [1999]. Also, each binary shift register is
stepped through 64 bits before starting to fill the rectangular region in the canonical form, to avoid
starting at a “flat spot” on the cycle. See Pryor et al. [1994] for a discussion of these flat spots.

When executing the code in parallel, the lowest-order bits of the initial 32-bit seed (usually
obtained from Equation (2.9) above) are masked with the worker process number - 1, as shown in
Figure 2.14. In the figure, ten bits, which are enough bits for up to 1,024 worker processes, are
masked. The exact number masked depends on the number of worker processes being used. Note
that when a time generated seed is used, the most significant bits derive from the time, and are the
same for all tasks, but vary from run to run as does the time at the start of the run. Since all RNG’s
are initialized using the binary shift register, this methodology produces parallel, independent
streams of very high quality random numbers on each worker process.

OFO' o
z 5
I
m.S.b Base (Usually Time) - Identical for All Tasks Task No. S0
(22 bits shown) (10 bits shown, <= 1,024 tasks)

Figure 2.14: Bit Structure of 32 Bit Initial Seed for Parallel Processes

2.11.3 Effect of Different Random Sequences on Results

Every different initial seed creates a different sequence of random numbers, so different answers
are obtained. However, if “enough” photons are emitted to achieve convergence, then the answers,
whatever the initial seed, will be within statistical convergence error. It should be noted that it is
not possible to traverse the same sequence of random numbers restarting from a completed run
involving emission from more than one surface. Thus, if a run is done with 20,000 photons emitted
initially from each surface, the answers will be different than if an initial run is done with 10,000
photons per surface followed by a restart with 10,000 additional photons emitted. However, the
comments above pertaining to convergence do apply. If “enough” photons are emitted, then the
answers will converge (within a statistical tolerance) to a final state independent of the order of
emissions.

26



CHAPTER 3 INPUT DECK

The following pages contain the instructions necessary to enable the user to construct the input
file (data deck) required by MONT3D. Input lines, generally referred to as “cards,” are limited to
80 columns in width. Cards with the character “&” in column 1 can be placed anywhere in the data
deck for use as comment cards or as spaces; all such cards are ignored. A sample input file is shown
in Section 4.1.

Some care may be required when entering variables in the input deck. How the code handles
blanks (spaces) in the input file depends on the compiler used. Some compilers may make the code
read blanks as zeroes. When blanks are read as zeroes, blanks to the right side of the variable
become significant. For example, if 6 is entered with one space after it, it may be interpreted as 60.
When blanks are read as zeroes, variables should be entered right-justified. For most compilers,
blanks in the input file are ignored and each variable may be entered anywhere within the columns
specified for it in the description below. If all the columns are empty, the variable is read in as zero.

It should be noted that for maximum compatibility, input files should be right-justified. The exam-
ple input file in Section 4.1 is right-justified.

The “Format” column in the card description below gives the FORTRAN format used to read the
variable. The only information in that column that may be beneficial to the casual user is that the
letter in the format specifies the type of the variable: A for character, E for floating point and | for
integer. It should be noted that floating point numbers may be entered in many formats including:
as integers (1), in decimal format (1. or .010 or 0.001) or in scientific notation (3.07e-3 or 0.307E-
2).

Default values (marked as DEFAULT:) are used if the input file contains zeroes or blanks (read
as zero by FORTRAN). If no default value is given, then zero is the default value.

3.1 Title Card

Cols. Format Entry Note(s)
1-48 6A8 Heading to appear on output

3.2 Control Cards

3.21Card 1
Cols. Format Entry Note(s)

1-5 I5  Number of dimensions (NDIM) 1

6-10 I5  Number of nodal points (NUMNP)

11-15 I5  Number of surfaces (NSURF)
16-20 I5  Number of materials (NUMMAT) 2
21-25 I5  Number of wavelength bands (NBANDS) 3
26-30 I5  Number of photons emitted per band per subsurface (NPHTON) 4

27



31-35 I5  Maximum number of reflections allowed per photon before a warning
is issued (NREFS)
(DEFAULT: NREFS =100)

36-40 I5  Maximum number of warnings before the run is aborted (NWARNS)
(DEFAULT: NWARNS = 50)

41-45 I5 Maximum number of lost photons (NLOST)

46-50 I5  Surface (emitter) increment for writing restart information (NEBLOCK)
NEBLOCK < 0: Restart run from previously stored state or crash
NEBLOCK > 0: New run
Restart information written to disk after every INEBLOCK| surfaces
(DEFAULT: NEBLOCK = 10)

51-60 110 Initial seed for the random number generator (INSEED) 8

INSEED < 0: The internal, constant value for the initial seed is used.
INSEED = 0: The initial seed is obtained from the time
INSEED > 0: The value INSEED is used for the initial seed

Notes:

. NDIM should be equal to 3 for MONT3D. Any other value causes the code to issue a warning
and continue.

. I NUMMAT is negative, the new material model is used. Otherwise, the old material model is
used. See Sections 2.5 and 3.8-3.10 and Appendix A for more details.

. Radiative properties are defined in wavelength bands, and are constant within a given wave-
length band.

. The number of photons emitted per surface in each band is equal to NPHTN * NDIVX *
NDIVY, where NPHTN is the number of photons emitted from each emission point. NPHTON
is the default value of NPHTN for all surfaces, which may be overridden for any particular sur-
face(s) during the surface input. See Sections 2.2, 2.7, 3.2.2, and 3.6 for more detail.

. The maximum number of reflections allowed before a run is aborted is NREFS * NWARNS.
For the parallel version of the code, each worker process aborts when it reaches this number. If
a worker process aborts due to this error, the other processes continue to work and the aborting
process’s block is done by another worker later in the run. See Sections 2.10 and 5.6 for more
detail.

. Occasionally, due to precision problems, a photon is “lost” (i.e., no receiving surface is found
for a given photon). NLOST specifies the number of such occurrences before the run is aborted.
For the parallel version of the code, each worker process aborts when it loses this number of
photons. As in Note 5 above, the other worker processes continue and the aborted block is fin-
ished by another worker.

28



7. Each MONT3D run involves emitting from NBANDS*NSURF emitters or surfaces. After
emission and tracing from every INEBLOCK| emitters, the exchange matrix and the restart files
are written to disk. Thus, it is possible to restart only from every INEBLOCK| states. Selecting
a small value of INEBLOCK| will ensure that restart information is written frequently to the out-
put file. Still, if NEBLOCK is set too low, the file writing overhead may become significant. If
NEBLOCK is negative, the previous state is read from the restart and exchange matrix files.
Restart may be of two types: (1) where the previous state is incomplete (i.e., the previous run
was interrupted), or (2) the previous state is not converged. More detail is given in Section 2.9
and Chapter 4. NEBLOCK in versions of MONT3D prior to version 2.4 was known as NINCR.

8. For more details on the initial seed and the RNG in general, see Sections 2.11, 5.5.2, and 5.6.5.

3.2.2Card 2
Cols. Format Entry Note(s)
1-5 I5 Type of geometry (IGEOM) 1
6-10 511  Output print control code toggles, IPRINT(]): 2
6 11 IPRINT(1) = 1 - exchange fractions are written to output file 3
7 11 IPRINT(2) = 1 - lost photons are written to console and output file 4
8 11 IPRINT(3) - currently unused, reserved for future use
9 11 IPRINT(4) = 1 - complete material property information is 5
written to output file
10 11 IPRINT(5) = 1 - surfaces wholly or partially in each grid cell
are written to output file
11-15 I5  Number of concats (NUMCAT) 6
16-20 I5  Data check code (IDATA):
IDATA = 0: Normal execution
IDATA = 1: Data check only, execution stops after input phase
21-25 I5  Number of X' emission points per surface (NDIVX) 7
(DEFAULT: NDIVX =5)
26-30 I5  Number of y' emission points per subsurface (NDIVY) 7
(DEFAULT: NDIVY =5)
31-35 I5  Shading in geometry (NSHADE): 8

NSHADE = 0: Shading, distance algorithm
NSHADE < 0: Shading, grid shading algorithm

36-40 I5  Trajectory control code (ITRACES): 9
ITRACES > 0: Trajectory information written to disk filér¢ extension)

29



ITRACES = 0: Trajectory information not written to disk file

41-45 I5  Number of worker processes (NWPROC) 10
46-50 I5  Maximum number of photon convergence loops (NPLOOPS) 11,12
(DEFAULT: NPLOOPS = 1)
51-55 511 Parallel option code (IPAROPT(])) as follows: 13
51 11 IPAROPT(1) - worker spawning options 14

IPAROPT(1) = 0, workers can spawn on any CPU

IPAROPT(1) = 1, workers can not spawn on master CPU

IPAROPT(1) = 2, xterms with debug sessions are created for each worker
IPAROPT(1) = 3, IPAROPT(1) = 1 and 2 combined

Other array elements are reserved for future use

56-60 I5  Number of material property curves (NMACV) 15
61-65 I5  Number of semi-specular offset angle curves (NDTCV) 15
Notes:

1. This option is not available in this version. This space is being retained in the input file for back-
ward compatibility in format. Any value entered will be ignored.

2. If IPRNT(l) = 1, the specified information is written. Otherwise, if IPRNT(I) = O, the informa-
tion is not written.

3. IfIPRNT(1) = 1, then exchange fractions are printed in the output file. If IPRNT(1) = 0O, they
are written only to the exchange matrix file.

4. Lost photon information is always written to the lost photon file (file suffix .Ist) where it can be
viewed using the MPLOT program (see Section 2.8 for more detail). If IPRNT(2) = 1, informa-
tion about the lost photons is also written to the console and the output file.

5. When IPRNT(4) is equal to 1, all material information, the material property curves; the semi-
specular preferred angle curves; and the thetar arrays, are printed to the output file in the form
in which they are stored internally. Angles are always displayed in degrees, even if they are
stored internally as radians. Material property curves are stored so that each property includes
the cumulative sum of all properties below it. The order in which the properties are stored is
(=€), Pa» Ps Pss Tar T, @Ndtgg The cumulative sum of all the material propertigs(t for the
old material model) is equal to 1 at all angles. It should also be noted that while the user enters
offset angles)\@,(6;) for the semi-specular reflectance and transmittance, the code stores these
as the preferred outgoing andlg,= 6; + ABy(6;). The thetar arrays are used to determine the
outgoing cone angle of emission from a uniformly distributed random number between 0 and
100. For a detailed discussion of the emission algorithm, see Burns and Pryor [1989].

6. This option is not available in this version. This space is being retained in the input file for back-
ward compatibility in format. If present, NUMCAT must be 0 or MONT3D will terminate with
an error.

30



7. The number of photons emitted per loop for each surface in each band is
NPHTN*NDIVX*NDIVY. See Sections 2.2, 2.7, 3.2.1, and 3.6 for more detalil.

8. Currently, only the grid shading algorithm is used in this code. If NSHADE is set to zero or
greater, a single grid cell is used, which is equivalent to the distance algorithm for shading.
More details are given in Sections 2.6, 3.3, and 3.11.

9. The program outputs trajectory information to tinefile if this option is set. This file is used
to “view” the trajectories using the MPLOT program [Nagesh and Burns, 1994], useful in estab-
lishing physical intuition. If chosen, a copious amount of information is printed; the user is
therefore cautioned to select this option only for very few photon emissions per surface. See
Section 2.8 for more detail.

10. This option is used only by the parallel version of the code; it is ignored in the single processor
version of the code. If NWPROC is less than 1 for the parallel code, a single processor run is
done. More detail about the parallel code is given in Sections 2.10 and 5.6.

11.NPLOOPS is the maximum number of full surface photon convergence loops done per surface.
In each full surface emission, NPHTN photons are emitted from each subsurface; see Sections
2.2 and 2.7 and the description of NDIVX and NDIVY above. If convergence to the specified
tolerance for the surface (see Sections 2.7, 3.4, and 3.6) is not attained within NPLOOPS full
surface emissions, then a warning is printed to the screen, and execution continues with the next
surface.

12.1f 0 is entered for NPLOOPS, an extremely large default convergence tolerance is established
(= 1 x 139, thereby ensuring that convergence occurs after one full surface emission loop. Sur-
faces that have their convergence tolerance set to this large value will not emit any photons in
any restart runs since they are converged.

13.The IPAROPT array is used only in the parallel version of the code. Currently only IPA-
ROPT(1) is used; the other array elements are reserved for future enhancements of the code.

14.1IPARAOPT(1) controls how workers are spawned. If the value entered for this option is less
than O or greater than 3, MONT3D will terminate with an error. For more details, see Section
5.6.

15.NMACV and NDTCYV are only used by the new material model (NUMMAT < 0). They specify
how many material property and specular offset angle (del theta) curves are to be read. See Sec-
tions 2.5, 3.2.1, and 3.8-3.10 for more details.

3.2.3Card 3
Cols. Format Entry Note(s)
1-10 E10.0 Scale for X (XSCALE) 1

(DEFAULT: XSCALE = 1.0)

11-20  E10.0 Shift for X (XSHIFT) 1

21-30 E10.0 Scale forY (YSCALE) 1
(DEFAULT: YSCALE = 1.0)

31-40 E10.0 Shift forY (YSHIFT) 1

31



41-50 E10.0 Scale for Z (ZSCALE) 1
(DEFAULT: ZSCALE = 1.0)

51-60 E10.0 Shift for Z (ZSHIFT) 1

61-70 E10.0 Increment of cone angle in degrees for integration (DELT) 2
(DEFAULT: DELT = 0.01 degrees)

71-80 E10.0 Tolerance for splitting non-planar surfaces (SPLITOL) 3,4

(DEFAULT: SPLITOL = 0.0001 degree)

Notes:

1. These factors can be used when one needs to scale from one unit to another (i.e. meters to cen-
timeters) or when one wishes to shift the coordinate system. Since there is no inherent length
scale, scaling all axes equally has no effect; nor does shifting of any axis(es).

The results of scaling and shifting are:
X =X* XSCALE + XSHIFT,
Y =Y *YSCALE + YSHIFT, and
Z=272%*ZSCALE + ZSHIFT

2. DELT =A6: the increment used in numerically integrating the cumulative distribution function
for emission versus cone angle, used to determine the cone angle distribution of emitted pho-
tons. The range is: 1IE-Z DELT < 0.1. If a value outside this range is entered for DELT,
then DELT is set to the default value of 0.01. It should be noted that very small values of DELT
result in the consumption of excessive computer time. For a detailed discussion of the emission
algorithm, see Burns and Pryor [1989].

3. The range of acceptable SPLITOL values is: 1IE=ZPLITOL <0.01. If a positive value out-
side this range is entered for SPLITOL, SPLITOL is set to the default value of 0.0001. For more
information about SPLITOL and split surfaces, see Section 2.3.

4. Itis possible to force the code to split all quadrilateral surfaces into triangles. To turn this feature
on, enter a negative value of SPLITOL such that -&.8PLITOL < 0.

3.3 Grid Dimensions (Shading)
Condition(s): NSHADE < 0 (entered in Section 3.2.2), otherwise, omit card

Cols. Format Entry Note(s)
1-5 I5  Number of grid cells in the X-direction (NGX) 1
6-10 I5  Number of grid cells in the Y-direction (NGY)
11-15 I5  Number of grid cells in the Z-direction (NGZ) 1

32



Notes:

1. Cell divisions along each axis are uniform unless a negative number is entered for the NG vari-
able. In that case, the user must enter the grid coordinates for that axis as specified in Section
3.11. It should be noted that in versions of MONT3D prior to version 2.4, all axes must be user
defined if NGX is negative; otherwise all axes are uniformly divided. Input files designed for
versions of MONT3D prior to 2.4 may not be forwards compatible here.

3.4 Default Convergence Tolerance
Condition(s): NPLOOPS > 0 (entered in Section 3.2.2), otherwise, omit card

Cols. Format Entry Note(s)
1-10 E10.0 Default convergence tolerance for photon emissions (ERRDEF) 1

Notes:

1. This is the default tolerance for convergence of the surface exchange fractions; see Section 2.7
for more detail. This may be overridden for (a) particular surface(s) during surface input; see
Section 3.6. If 0 is entered for ERRDEF, then any surface using the default tolerance will com-
plete the full NPLOOPS surface emission loops. If NPLOOPS is equal to 0, ERRDEF is set to
1 x 10% see Section 3.2.2 for details.

3.5 Nodal Point Data

Cols. Format Entry Note(s)
1-5 I5  Node point number (N) 1
6-10 I5 Increment in number of points to be generated (INC) 2

11-30 E20.0 X-coordinate: X(N).
31-50 E20.0 Y-coordinate: Y(N).
51-70 E20.0 Z-coordinate: Z(N).

Notes:

1. Node points can be input in any order. All nodes from 1 to NUMNP (entered in Section 3.2.1)
inclusive must be input or generated as described in the next note. More detail on nodes is given
in Section 2.1.

2. Nodal points are generated in increments of INC filoeprevious node input to the current
node The coordinates are obtained by linearly interpolating all coordinates between the ones
input on the previous card and the present ones. Care must be taken such that there are an integer
number of generated nodes between the present node number and the one input on the previous
card. It should be noted that, if the program generates nodes, they should not be input elsewhere.

3.6 Surface Data

Cols. Format Entry Notes
1-5 I5  Surface number (N) 1

33



6-10 I5 Node N: NODES (1,N) 2
11-15 I5  Node M: NODES (2,N)

16-20 I5  Node N: NODES (3,N)

21-25 I5 Node I: NODES (4,N)

26-30 5X  Skip

31-35 I5  Number of surfaces to be generated after current surface: NMISS 3

36-40 I5  Increment of generation: INC 3

41-45 5X  Skip

46-50 I5  Surface material number: MATNUM(N)

51-60 10X  Skip

61-65 I5  Number of photons (NPHTN)

66-70 I5  Photon increment (INCP) 5

71-80 E10.0 Convergence tolerance for surface: ERRMAX(N) 6
(DEFAULT for surface: ERRMAX(N) = ERRDEF) 7

Notes:

1. Surfaces can be input in any order. All surfaces from 1 to NSURF (entered in Section 3.2.1)
inclusive must be input or generated as described in the notes below.

2. The outward normal must be such that the right-hand rule as explained in Section 2.2 applies.
Unpredictable and erroneous errors may result if this convention is not adhered to for all sur-
faces.

3. NMISS additional surfaces are generated by successively incrementing surface numbers by 1
and all 4 node numbers by INC.

4. NPHTN different from 0 overrides NPHTON (entered in Section 3.2.1), the number of photons
per subsurface division. If NPHTN is negative, no photons will be emitted from the surface. For
more details, see Sections 2.2 and 2.7.

5. Similarto INC in the node input above. For each missing surface, i, (i= 1 to NMISS) generated,
i*INCP additional photons emissions are added to NPHTN.

6. ERRMAX(N) is used as explained in Section 2.7. Loops over full surface emissions are done
until either the specified number of loops, NPLOOPS (entered in Section 3.2.2), have occurred,
or convergence to within tolerance, @efined in Equation (2.6), is achieved, whichever comes
first.

7. 1f no value of ERRMAX(N) is input or a value less than or equal to O is read, then this defaults
to the global value, ERRDEF, input as described in Section 3.4.

34



3.7 Wavelength Band Data

CARDS 1 to (NBANDS-1)/8

Condition(s): NBANDS > 1 (entered in Section 3.2.1), otherwise, omit card(s)
Cols. Format Entry Note(s)
1-80 8E10.0 Wavelength breakpoint N (micrometers) 1

Notes:

1. The first (1) and last (NBANDS + 1) wave breakpoints are assumed to be @0 and 1001 x 10
in micrometers and should not be input. The remaining breakpoints between 0 and 1 x 10
should be input in order from 2 to NBANDS. No more than eight breakpoints should be input
per card (10 columns per value). More than one card may be required.

3.8 Material Type Data

Material type data cards are input by band for each material in order. For example, if three mate-
rials are used in two bands, then all material type data are read in for material 1, band 1; then mate-
rial 1, band 2; then material 2, band 1; etc. MN and IB are used as checks to ensure that the values
are entered in the right order. If the information is not entered in the correct order, the program
detects an error and terminates. All material type data cards must be input before any material prop-
erty curves are input. Sections 3.8-3.10 describe the new material model, which is used if NUM-
MAT (entered in Section 3.2.1) is less than 0. Otherwise, the old material model is used, with input
as described in Appendix A. More detail on the material model is given in Section 2.5. A sample
input file using the new material model is given in Section 4.1.

3.8.1Card 1
Condition(s): Repeat for every material
Cols. Format Item Note(s)
1-5 I5  Material number (MN) 1

6-37 A20 Material name

Note:
1. The material number must be between 1 and INUMMAT]|, inclusive.

35



3.8.2Card 2

Condition(s): Repeat the pair of cards 2 and 3 for every band for each material;
unless IB = 0, in which case the information is only entered once. See Note

1 below.
Cols. Format Item Note(s)
1-5 I5  Band number (IB) 1
6-10 I5  Emission type (IETP) 2,3, 4

IETP = 0 - “standard” emission accordinge(®)

IETP =1 - “beam” emission

IETP = 2 - “function” emission 5
11-20 E10.0 Global X-component of beam emission vector (EBX) 6,7
21-30 E10.0 Global Y-component of beam emission vector (EBY) 6,7
31-40 E10.0 Global Z-component of beam emission vector (EBZ) 6,7
41-50 E10.0 Cosine power for weighted diffuse reflectance (RRHOD) 8
(DEFAULT: 1.)
51-60 E10.0 Cosine power for semi-specular reflectance (RRHOSS) 8
(DEFAULT: 1))
61-70 E10.0 Cosine power for weighted diffuse transmittance (RTAUD) 8
(DEFAULT: 1.)
71-80 E10.0 Cosine power for semi-specular transmittance (RTAUSS) 8

(DEFAULT: 1.)

Notes:

1. IfIBis O for the first band of the material, then it is assumed that all material properties for that
material are the same for all bands. No cards are read for the other bands.

2. IETP must be between 0 and 2, inclusive. More detail is given in Sections 2.5.3 and 2.5.4.

3. If a material has 0 emittance for all value®,athen no photons are emitted from surfaces of
that type unless IETP =1 or 2.

4. As explained in Section 2.5.4, if IETP equals 1 or 2, the reciprocity relations, Equations (1.5)
and (1.6), may no longer hold.

5. IfIETP =2, emission is accomplished using computer code supplied by the user (fizmction
in subroutinggetangin the filem32s.}.

6. For regular emission (IETP = 0), these values are ignored. They are read in if IETP = 1 (beam
emission) or if IETP = 2 (the function for function emission may require them). Values are nor-
malized internally, to yield a magnitude of 1. If all components entered are equal to 0 and IETP
does not equal 0, the program exits with an error.

36



When using beam emission (IETP = 1), care must be taken to ensure that all emission is from
the “front” of the surface; i.e. the dot product of the emission vector and the surface normal for
each surface that uses this material must be greater than 0. If this is not the case, the code will
exit with an error. No check is made when the beam emission variables are used for function
emission (IETP = 2).

These are the coefficientgand £, described in Section 2.5.2. If one of these variables equals

0, then it will be set to 1 (standard diffuse distribution). If any of these variables is less than O,
then it is set to O (isotropic distribution). Note that, as discussed in Section 2 pdbasmot

equal 1 (standard diffuse distribution) or semi-specular properties are used, the reciprocity rela-
tions, Equations (1.5) and (1.6), may no longer hold.

3.8.3Card 3
Condition(s): Repeat the pair of cards 2 and 3 for every band input for every
material
Cols. Format Item Note(s)
1-10 E10.0 Diffuse reflectance (RHOD) 1,2
11-20 E10.0 Specular reflectance (RHOS) 1,2
21-30 E10.0 Semi-specular reflectance (RHOSS) 1,2
31-40 E10.0 Diffuse transmittance (TAUD) 1,2
41-50 E10.0 Specular transmittance (TAUS) 1,2
51-60 E10.0 Semi-specular transmittance (TAUSS) 1,2

61-70 E10.0 Semi-specular offset angle for reflectance (DTHRSS)
71-80 E10.0 Semi-specular offset angle for transmittance (DTHTSS)

1.

Notes:

If a positive, definite value (0 or greater) is input, then this is taken as the constant value for this
material property, for all values 6f If a negative value is input, it is taken as the negative of

the curve index for this property and the rounded absolute value must be between 1 and
NMACYV (entered in Section 3.2.2), inclusive. For example, if the values for this property are
included in curve 3, a value that rounds to -3 (preferably -3.0) must be input. Material property
curves are read after all material information has been read; see Section 3.9 below. Positive val-
ues must be between 0. and 1., inclusive. For more detail, see Section 2.5.1.

As explained in Section 2.5.4, if semi-specular properties are used, the reciprocity relations,
Equations (1.5) and (1.6), may no longer hold. The reciprocity relations also do not hold if the
diffuse reflectance varies as a function of angle. They DO hold if the specular reflectance varies
as a function of angle. No tests have been done to see if reciprocity relations hold when the
specular or diffuse transmittance vary as a function of angle.

The user enters the offset angle which ig¥6;) quantity defined in Equation (2.4). Values
are in degrees. The code stores the results interndlly H9. is entered8,(6;) is 0. Other
positive values can not be entered becafigéd;) must be betwee®,-and 90 §; for all angles,

37



6;. If a negative value is input, it is taken as the negative of the curve index for this offset angle
curve and the rounded absolute value must be between 1 and NDTCV (entered in Section
3.2.2), inclusive. For example, if the values for this property are included in curve 3, a value that
rounds to -3 (preferably -3.0) must be input. Offset angle (del theta) curves are read after all
material property curves have been read; see Section 3.10 below.

3.9 Material Property Curves Input
Condition(s): NMACV > 0 (entered in Section 3.2.2), otherwise, omit card(s)

Material property curves must be entered in order from 1 to NMACV using the format given
below.

3.9.1Card 1
Cols Format Item Note(s)
1-5 I5  Material property curve number (NCMA)
6-10 I5  Number of points to be read in for the curve (NP) 1

Notes:

1. At least three points must be input. Points must be input at angles of 0 and 90 degrees, plus at
least one other intermediate angle.

3.9.2 Cards 2 to NP+1

Cols. Format Item Note(s)
1-10 E10.0 Angle for curve value in degrees (ANGLE) 1,2
11-20 E10.0 Material property curve value (VALUE) 1,3
Notes:

1. Values must be given for 0 and 90 degrees.
2. ANGLE values must be between 0. and 90., inclusive.

3. VALUE must be between 0. and 1., inclusive.

3.10 Semi-specular Offset Angle Curves Input

Condition(s): NDTCV > 0 (entered in Section 3.2.2), otherwise, omit card(s)

Semi-specular offset angle curves must be entered in order from 1 to NDTCV using the format
given below.

3.10.1 Card 1
Cols Format Item Note(s)
1-5 I5  Semi-specular offset angle curve number (NCDT)
6-10 I5  Number of points to be read in for the curve (NP) 1

38



Notes:

1. At least three points must be input. Points must be input at angles of 0 and 90 degrees, plus at
least one other intermediate angle.

3.10.2 Cards 2 to NP+1

Cols. Format Item Note(s)
1-10 E10.0 Angle for curve value in degrees (ANGLE) 1,2
11-20 E10.0 Semi-specular offset angle value in degrees (VALUE) 1,3
Notes:

1. Values must be given for 0 and 90 degrees.

2. ANGLE values must be between 0. and 90., inclusive.

3. VALUE must be between -ANGLE anfl((- ANGLE), so that the preferred outgoing angle is
between 0 and 90 degrees, inclusive.

3.11 User Grid Input

It should be noted that depending on the values of NGX, NGY, and NGZ entered, forwards com-
patibility may not exist for input files create for versions of MONT3D earlier than 2.4. For addi-
tional explanation of the variables NSHADE, and NGX, NGY and NGZ, see Sections 3.2.2 and
3.3, respectively.

3.11.1 User X-grid Coordinates
Condition(s): NSHADE < 0 and NGX < 0, otherwise, omit card(s)
Cols. Format Entry Note(s)

1-80 8E10.0 X-grid coordinates XG(N) 1

Notes:
1. For N =1 to NGX+1. No more than eight values should be input per card (10 columns per
value). More than one card may be required.
3.11.2 User Y-grid Coordinates
Condition(s): NSHADE < 0 and NGY < 0, otherwise, omit card(s)
Cols. Format Entry Note(s)
1-80 8E10.0 Y-grid coordinates YG(N) 1

Notes:

1. For N =1to NGY+1. No more than eight values should be input per card (10 columns per
value). More than one card may be required.

39



3.11.3 User Z-grid Coordinates
Condition(s): NSHADE < 0 and NGZ < 0, otherwise, omit card(s)
Cols. Format Entry Note(s)
1-80 8E10.0 Z-grid coordinates ZG(N) 1

Notes:

1. For N =1to NGZ+1. No more than eight values should be input per card (10 columns per
value). More than one card may be required.

40



CHAPTER 4 PROGRAM EXECUTION

This chapter illustrates how MONT3D is executed in a Unix environment. The first section
details the sample input files used in the examples below. The second section explains the com-
mands and results obtained from a normal execution and a restart execution of the code for this
input file. The next two sections show the screen output for the normal and restart executions
described in the previous section. The final section addresses the machine independence of
MONTS3D results and its implications during restart runs.

4.1 Input File “box.in”

Figure 4.1 shows a 3-D geometry for analysis by MONT3D. Comparison of the picture with the
input file “box.in” shown below illustrates the right-hand rule for 3-D surfaces. The inner surfaces
are modeled by two different types of materials which are mixed specular and diffuse reflecting and
whose properties vary with incident angle. This file demonstrates the “new” material model. The
first material, which is used for the sides of the box, has the diffuse reflectance entered as a constant
value (0.2), while the specular reflectance is entered as the curve shown in Figure 4.2. The second
material, which is used for the top and bottom of the box, uses the same curve for its diffuse reflec-
tance and has a constant value for the specular reflectance (0.1). Due to the simplicity of the geom-
etry and the small number of surfaces it contains, grid shading is not used. It should be noted that
even moderately complex geometries will benefit from grid shading, see Section 2.6 for more
details. A complete description of the input format is given in Chapter 3.

Figure 4.1: 3-D Geometry of File “box.in”

The input file is listed below and is also available at the MONT3D WWW site mentioned in Sec-
tion 1.1. It should be noted that comment cards are used throughout the input file to identify the
input variables and where they should be entered. As shown in Chapter 3, each variable is restricted

41



to being entered in a certain range of non-overlapping columns on a certain card. The last letter of
each variable name on the comment cards marks the last column that can be used to input that vari-
able (except for IGEOM). If the code reads blanks as zeroes (see the beginning of Chapter 3 for
more detail), then all variables should be right-justified and should line up as shown in the file
below. For maximum compatibility, all input files should be right-justified.

& TITLE (48 CHARACTERS MAX)
3-DBOX TEST PROBLEM
&NDIM NSURF NBANDS NREFS NLOST  INSEED
& NUMNP NUMMAT NPHTON NWARNS NEBLOCK
3862 110100100102 0
&IGEOM NUMCAT NDIVX NSHADE NWPROC IPAROPT NDTCV
& IPRNT IDATA NDIVY ITRACES NPLOOPS NMACV
110000 0 0 10 10 1 0 0 1000000 1 O
& XSCALE XSHIFT YSCALE YSHIFT ZSCALE ZSHIFT DELT SPLITOL
10 00 10 00 10 00 001 00001
&GRID NUMBERS (READ IF NSHADE < 0)
&NGX NGY NGZ

&555
& ERRDEF (fNPLOOPS<>0)
20e3
&NODES
& NINC X Y z
10 00 00 00
20 200 00 00
30 200 300 00
40 00 300 00
50 00 00 100
6 0 200 00 100
70 200 300 100
8 0 00 300 100
&ELEMENTS
& N'NL N2 N3 N4 NMISSINC MN  NPHTINCP ERRMAX
11234 00 2 00 000
25876 00 2 00 000
31562 00 1 00 000
43784 00 1 00 000
51485 00 1 00 000
62673 00 1 00 000

& WAVELENGTH BAND BREAKPOINTS (READ IF NBANDS > 1)

& BPL BP2 BP3 BP4 BP5 BP6 BP7 BPS

& 50

&MATERIALS (NEW MODEL, NUMMAT <0)

&MN  MATNAVE

1 Sample Material 1

& BIETP EBX EBY EBZ RRHOD RRHOSS RTAUD RTAUSS
00 0 0 O 0 0 0 o

& RHOD RHOS RHOSS TAUD TAUS TAUSS DTHRSS DTHTSS
02 . 0 0 0 0 0 o

&MN  MATNAVE

42



2 Sample Material 2
& BIETP EBX EBY EBZ RRHOD RRHOSS RTAUD RTAUSS
00 O O O O 0 o0 o
& RHOD RHOS RHOSS TAUD TAUS TAUSS DTHRSS DTHTSS
1 01 0 O O O 0 O
S&MATERIAL PROPERTY CURVES (NUMMAT <0, NMACV >0)
&NCP NP
16
& ANGLE VALUE
00 040
300 038
500 035
700 020
800 020
900 080
& SEMI-SPECULAR DEL THETA CURVES (IFNDTCV >0)
& USER DEFINED GRID (READ IFNGX <0)
& User X grid (Read fNGX <0)
& XGl1 XG2 XG3 XG4 XG5 XGb6 XG7 XG8
& 001 001 1 5 9 1001
&UserY grd (Read fNGY <0)
& YGLI YG2 YG3 Y& YG5 YG6 YG7 YG8
& 001 001 1 3 9 2001
& UserZ griid (Read ifNGZ <0)
& ZGl1 ZG2 ZG3 ZGA ZG5 ZG6 ZG7 ZG8
& 001 001 1 101 7 3001

0 15

0O ., 45 60
Incident Angle (degrees)

Figure 4.2: Material Property Curve for File “box.in”

43

75

90



4.2 Execution of File “box.in”

The following details the execution of the 3-D code using the file “box.in.” The output shown
below in Section 4.3 is output to the screen. The Unix prompt is “czeeb(n)%”, where “n” is the
command number. All input from the user is shown bold and italicized.

The executable file herensont3d(note that Unix is case sensitive), and is invoked by typing its
name - shown at the first prompt - “czeeb(1)%.” All subsequent output up to the “czeeb(2)%”
prompt is from the program MONT3D. The user types in only the prefix of the input file, which
MUST have the extension “in.” In this case, the file is “box.in,” and the user enters “box.” If the
program cannot find the input file, an error diagnostic is printed and the program exits. Additional
detail on the files used by MONT3D can be found in Chapter 5.

The program proceeds with reading of the input file. The run’s title is printed (here, “3-D BOX
TEST PROBLEM”), along with the version number (here, “2.4f1"), the date of last modification
(here, “04-15-99"), and the language of the source code (always “f77”). Next, the control portion
of the input is read. This establishes the numbers of nodes, surfaces (sometimes referred to as ele-
ments or surface elements), wavelength bands, materials, grids, etc. which are to be read by suc-
ceeding subroutines. Then, the input subroutines are executed one-by-one. As each subroutine is
entered, the name of the subroutine is printed to the output file. This assists in debugging input files.
For example, if the program “crashes” after the message “in nodin3” is printed, there is almost cer-
tainly a problem with the nodal input (or possibly, the cards are out of order). Another item that
should be noted is the “Memory Allocation and Usage” section listed between the subroutines “gri-
din” and “order.” By setting the memory allocation parameters to the “used” values, it is possible
to run the code using the smallest memory allocation possible. More details on changing the code’s
parameters are given in Section 5.5. Finally, the successful completion of the entire input phase is
indicated by the message, “input phase complete.”

The solution phase occurs next. After the specified number of full surface emission loops for
each surface are completed, a message is printed indicating whether the exchange fractions have
converged (see Section 2.7). In addition, the wavelength band, surface number, total number of
emitted photons (summed over all full surface emissions), and the calculated error are printed.
Here, none of the surfaces converge to the stringent error tolerance of 0.002, but all come close.

Next, after all the surfaces emissions have been completed, the code creates the exchange matrix
file (file suffix.nij) as shown by the two statements that both start with “Now writing...” This phase
is usually fast unless there is a large number of surfaces. Next, overall program statistics are
printed, including the error statistics; various timings for the run (in seconds of CPU time); total
number of photons emitted (and traced to absorption); and the performance metrics, number of
photons per CPU second for both the entire run and just for the solution phase. The timing infor-
mation is divided into three phases. The input and solution phases are self-explanatory. The clean-
up phase is the time the program spends after the solution phase creating the exchange matrix file.

Finally, upon completion of the run, the Unix prompt is issued. To find out more about the run at
this point, the output filbox.outis available. Furthermore, the plot filex.pltcan be used with the
MPLOT program [Nagesh and Burns, 1994] to view the geometry and material properties, etc. For
other more complicated geometries which have “holes” and other such problems, the lost photon
file (file suffix.lst), the leaks file (file suffidks), and the optional trace file (file suffixc) may

44



also be used with MPLOT to further analyze the geometry. For more details, see Sections 2.8 and
5.3 and the MPLOT documentation.

Section 4.4 contains the screen output generated by a restart run of box.in. The only modification
to file box.inwas to change NEBLOCK from 2 for the initial run to -2 for the restart run. It is pos-
sible to change a number of other variables before beginning a restart run. Basically, any variable
that does not change the description of the geometry or material properties, such as NPHTON, can
be changed for a restart run. It should be noted that when doing the restart run, the exchange factor
file, box.nij,and the restart fild&ox.rst must be present. If the run restarted from a crash, the block
file (box.blY and any block nij files (file suffidoni) must also be present. The restart run in Section
4.4 also demonstrates MONT3D’s command line interface. The “-f” (family option) specifies the
name to be used for all files not specifically named by any other command option. More details
about the command line interface are given in Section 5.4. Convergence was achieved in the restart
run.

4.3 Screen Output During Execution of File “box.in”

czeeb()% mont3d
Enter prefix for disk fles- 20 characters or less

input fle MUST have extension .in
box
3-DBOXTEST PROBLEM V. 24f104-1599f77

in nodin3
insurfin3
inwavin
in matinnew
reading material property cunves
in curveset
in cumndis
infileset
in gridin

Memory Allocation and Usage

Category Alocated  Used

1. Nodes (inod) 15000words ~ 8words ( 0%)

2. Surfaces (isrf) 5000words 6 words ( 0%)

3. Materials (imat) 30words  2words ( 7%)

4. Wavelength bands (ibnd) S5words 1 words (20%)
5. Restart surface block size (jblk) 200words  2words ( 1%)
6. Restart blocks (itblk) 1000words ~ 3words ( 0%0)

7. Index digits for flename (imag) 4words  1words (25%)
8. Grid divisions per axis (incg) 60words  1words ( 29%)

45



9. Surfaces including spilit surfaces (isifs) 7000words 6 words ( 0%)
10. Surface segmentsingrid cells (seg)  100000words 6 words ( 0%)

in order
in graf
in bplane2d

input phase complete

band surf. iter. npht  emor  tol.

notconverged- 1 1 10 100000 0.2173E-02 0.2000E-02
notconverged- 1 2 10 100000 0.2175E-02 0.2000E-02
restart file written

notconverged- 1 3 10 100000 0.2125E-02 0.2000E-02
notconverged- 1 4 10 100000 0.2123E-02 0.2000E-02
restart file written

notconverged- 1 5 10 100000 0.2136E-02 0.2000E-02
notconverged- 1 6 10 100000 0.2136E-02 0.2000E-02
restart file written

Now writing exchange numbers from each block nij file (i)
to atemporary binary file (:ni)

Now writing the exchange numbers from the temporary
binary file (i) to the .nij file

nomal termination

Convergence information forband 1
Ooutofthe 6 completed surfaces did not emit
and Ooutofthe 6emiting surfaces converged.
for the emitting surfaces:
Average error = 0.2145E-02
Minimum error =0.2123E-02 onsurface 4
Maximum error =0.2175E-02 onsurface 2

46



solution time log

time for input phase = 0.15902E+00 secs
time for solution phase = 0.10073E+02 secs
time for cleaning up = 0.13693E-01 secs
total run time = 0.10245E+02 secs

total number of photonsemitted = 0.60000E+06
total number of photons lost = 0

photons per second (solutionphase) = 59567.793
photons persecond (fotalrun) = 58563584

all results are given in CPU time
czeeb(2%

4.4 Screen Output During Restart Execution of File “box.in”

czeeb(% mont3d -f box
3DBOXTEST PROBLEM V. 2411 041599177

in nodin3
insurfin3
inwavin
in matinnew
reading material property cunves
in curveset
in cumndiis
infileset
in gridin

Memory Allocation and Usage

Category Allocated  Used

1. Nodes (inod) 15000words ~ 8words ( 0%0)

2. Surfaces (isrf) 5000words 6 words ( 0%)

3. Materials (imat) Owords  2words ( 7%)

4. Wavelength bands (ond) S5words 1 words (20%)
5. Restart surface block size (jblk) 200words  2words ( 1%)
6. Restart blocks (itblk) 1000words  3words ( 0%)

7. Index digits for flename (imag) 4words 1 words (25%)
8. Grid divisions per axis (incg) 60words  1words ( 29%0)

9. Surfaces including spilit surfaces (isifs) 7000words 6 words ( 0%)
10. Surface segmentsingrid cells (seg)  100000words 6 words ( 0%)

inorder

47



in graf
in bplane2d

input phase complete

band surf. iter. npht  emor  tol.
120000 0.1984E-02 0.2000E-02
120000 0.1984E-02 0.2000E-02

[N
N
N N

120000 0.1940E-02 0.2000E-02
120000 0.1938E-02 0.2000E-02

1
(e
AW
NN

converged- 1 5 2 120000 0.1949E-02 0.2000E-02
1 6 2 120000 0.1949E-02 0.2000E-02

Now writing exchange numbers from each block nij file (i)
to atemporary binary file (ni)

Now writing the exchange numbers from the temporary
binary file (ni) to the .nij file

nomal termination

Convergence information for band 1
Ooutofthe 6 completed surfaces did not emit
and 6outofthe 6emiting surfaces converged.
for the emitting surfaces:
Average error =0.1957E-02
Minimum error=0.1938E-02 onsurface 4
Maximum error =0.1984E-02 onsurface 1

solution time log

time for input phase = 0.16846E+00 secs

48



time for solution phase = 0.20285E+01 secs
time for cleaning up = 0.11734E-01 secs
total runtime = 0.22087E+01 secs

total number of photonsemitted = 0.12000E+06
total number of photons lost = 0

photons per second (solutionphase) = 59155912
photons persecond (fotalrun) = 54329.8%4

allresults are givenin CPU time
czeeb(3)%

4.5 Machine Independence of MONT3D

Much effort has been put into making MONT3D platform independent. Of all the files used by
MONT3D, only one is binary (the temporary binary exchange matrix file), and it only exists during
the input phase at the beginning of the run and clean-up phase at the end of a run. Since all results
are stored as ASCII files, runs started on one machine can be restarted on a different machine, pro-
vided the files are available on the other machine (usually accomplished via ftp). This is true even
if the run is restarting from a crash. Furthermore, the code can switch between single processor and
parallel execution, or even change the number of worker processes being used in a parallel run,
even if restarting from a crash.

49



CHAPTER 5 IMPLEMENTATION DETAILS

This chapter covers how MONT3D is implemented. The first two sections describe the
MONTS3D source code and explain how to compile it on various platforms. The next two sections
cover the files generated and used by MONT3D, and the command line used to name several of
these files. The fifth section discusses the use of parameter statements in the code, including how
they affect memory allocation. The sixth section discusses the parallel version of the code. Unix
batch execution by scripts is the subject of the seventh section. The last section briefly discuss pre-
cision in MONT3D.

If any problems with the code are encountered, one of the authors should be contacted.

5.1 MONT3D Source Files

In this section, the various files included in the MONT3D source code are described. Much work
has been done recently to increase the portability of MONT3D. Furthermore, the ability to compile
a parallel version of the code implemented in PVM [Geist et al., 1994] has been added. Both of
these features have been implemented through the use of “stubs.” Stubs are multiple files which
contain the same subroutine and function names, each with or without certain options. Features can
be turned on and off by compiling the code using selected stubs.

All nonportable parts of the MONT3D code (the command line, the timing, and the time and date
functions) have been separated into stubs. If an architecture does not support a feature, it can be
compiled with a stub that omits the feature. Alternatively, it is possible to create a stub that imple-
ments that feature specifically for that platform.

The only potentially nonportable aspects of MONT3D are the bitwise operators used in the ran-
dom number generator. The bitwise operator functions used are those defined in the Fortran 90
standard. While these bitwise operations functions are not part of the ANSI FORTRAN 77 stan-
dard, these subroutines have been supported on every platform tested so far, and appear to be
included in all current FORTRAN 77 compilers as extensions.

The parallel portion of the code is also implemented as a stub. The only difference between the
parallel and single processor versions of the code is which stub is used.

In the subsections below, various files are described, starting with the files common to all ver-
sions. Next, the stubs to support the nonportable features: command line, timing, and date and time,
are covered. Finally, the parallel stubs are discussed. Further detail is also be given in the next sec-
tion which covers compiling MONT3D for various platforms.

5.1.1 Files Common to All Versions
Every compilation of MONT3D requires the following files:

m30s.f:the main program, routines called by subroutines in multiple source code files, and other
miscellaneous routines.

m311s.f:the main input routine and all the subroutines required to input nodes, surfaces, and wave-
length bands.

m312s.f:the input routines for entering material properties and material property curves.

50



m313s.f:the input routines for entering and setting up the grid and post-processing of the input
data.

m32s.f: the solve routines.

mont3d.par: parameters that control the sizes of arrays and other quantities (see Section 5.5
below).

mont3d.com: all common variables not specific to the parallel version of the code.

5.1.2 Command Line

The command line allows the user individually to specify file names for most of the files gener-
ated by MONT3D. If the command line is disabled, all command line input is ignored and the user
must specify the base file name by entering it when prompted during program execution. Addi-
tional detail is given in Section 5.4.

Three stubs are available for the command line:

m3comline.f: activates the command line. Requires the nonstandard subroatgeasndgetarg
to be supported by the compiler. Tested on Sun, SGI, DEC Alpha, Hewlett Packard, IBM RS /6000,
and Macintosh (Absoft FORTRAN) platforms.

m3nocom.f: deactivates the command line for platforms, such as the NAG f90 compiler under
Linux, which do not support the subroutinagyc andgetarg

m3pccom.f: activates the command line when compiling the code under Microsoft Windows
(Microsoft FORTRAN).

5.1.3 Timing Information

As shown in Chapter 4, MONT3D prints some timing information at the end of each run. There
are two types of timing information that can be collected. For single processor runs, the timing
information desired is usually the CPU time. The CPU time includes both the user time, which is
the time the program itself uses in execution, and the system time, which is the time the system
uses for activities such as 1/0 and swapping the program in and out of memory. The CPU time does
not include the time the processor spends on other programs or processes. For parallel runs, the
most useful timing information is clock time, which is the actual time recorded from the clock. The
clock time includes the time spent on other processes besides MONT3D.

If timing is disabled, then MONT3D reports no timing information. On Unix systems, the clock,
user, and system times for the run can be obtained using théirdacommand; perform man
ontimefor more information.

All these stubs work to some degree with the Microsoft Windows (Microsoft FORTRAN) ver-
sion of the code. The suggest stub for compiling the Windows version of the ot@f@@iming.f
For more details on Windows timing, see Section 5.2.2.

Four stubs are available for timing:

m3ctiming.f: allows the code to collect timing information about the run in clock time. Requires
that the nonstandard subrouttireebe supported. Mainly used for the parallel version of the code.
Tested on Sun, DEC Alpha, IBM RS/6000, and Windows (Microsoft FORTRAN) platforms.

51



m3etiming.f: allows the code to collect timing information about the run in CPU time. Requires
that the nonstandard subroutgtemebe supported. Mainly used for the single processor version
of the code. Tested on Sun, SGI, DEC Alpha, Hewlett Packard, and Macintosh (Absoft FORTRAN)
platforms. More detail on the use of this stub under Microsoft Windows (Microsoft FORTRAN) is
given in Section 5.2.2.

m3f90timing.f: allows the code to collect clock time using the Fortran 90 subroutine. It is used by
the parallel and single processor versions of the code on computers such as the IBM RS/6000
which do not support the subroutiegme It is also the preferred timing stub to use for Microsoft
Windows (Microsoft FORTRAN).

m3notiming.f: deactivates timing for platforms which do not support any of the timing routines
listed above.

5.1.4 Time and Date Information

Time and date information is rather important because it is used to create time-generated seeds
for the random number generator; see Sections 2.11 and 3.2.1 for additional detail. If time and date
information are disabled, then the time-generated seed is an internal constant. To obtain different
random number sequences, the user must supply different initial seeds in the input file.

Three stubs are available for time and date information:

m3fOdate.f: allows the code to access the time and date of the run. Requires that the Fortran 90
subroutinedate_and_timée supported by the compiler. Tested on the IBM RS/6000 and
Microsoft Windows (Microsoft FORTRAN) platforms.

m3fdate.f: allows the code to access the time and date of the run. Requires that the nonstandard
subroutinddatebe supported by the compiler. Tested on Sun, SGI, DEC Alpha, Hewlett Packard,
and Macintosh (Absoft FORTRAN) platforms.

m3nodate.f: deactivates time and date information for platforms which do not support any date
subroutine. The date and time are set to the default value: 16:53:49 on March 12, 1970.
5.1.5 Parallel Implementation

Two stubs that control parallel implementation of MONT3D are available:

m3nopara.f:implements the single processor version of the code. This has compiled on every plat-
form on which it has been tested.

m3pvm.f: implements a PVM version of MONT3D. The fit8pvm.incontains the PVM specific
parameters and common variables and is required. The user’s environment variables PVYM_ROOT
and PVM_ARCH must be defined for this file to compile successfully. The PVM version has been
compiled on Sun, Hewlett Packard, IBM RS /6000, DEC Alpha and Linux (NAG f90 compiler)
platforms.

More information about compiling is given in the below. Also, more information on running the
parallel code is given in Section 5.6 below.

52



5.2 Compiling MONT3D

5.2.1 Unix

For Unix, a Makefile that has been tested on several platforms is available to compile the code.
Different instances of the program can be created by typing “taedef’ in the directory that con-
tains the source code files and the Makefile, wteagetis a keyword that determines which ver-
sion of MONT3D is created. Currently, there are nine optiontafget:

m3d: creates the single processor version of MONT3D with all optional features (command line,
timing, and time and date) enabled usmgcomline ,fm3etiming.fandm3fdate.fThe timing

results generated are CPU time. This has been compiled on Sun, SGI, DEC Alpha and Hewlett
Packard architectures.

m3dibm: creates the single processor version of MONT3D and activates the command line and
the Fortran 90 versions of the clock timing and time and date functions using thetilmsline.f
m3f90timing.fandm3f90date.fThe timing results generated are clock time. This version compiles
on the IBM RS/6000 platform.

m3df90: creates the single processor version of MONT3D and activates the Fortran 90 versions of
the clock timing and time and date functions but not the command line. It uses tm3fitezom.,f
m3f90timing.fandm3f90date.fThe timing results generated are clock time. This version can be
compiled on any full featured Fortran 90 compiler.

m3dansi: creates the single processor version of MONT3D with all optional features listed above
turned off. The files used am@8nocom,im3notiming.fandm3nodate.fWe believe it to be mostly

ANSI compliant except for bitwise operations required for the random number generator as men-
tioned above.

m3dpvm: creates the parallel PVM implementation of MONT3D with all features activated using
m3comline fm3ctiming.f andma3fdate.fThe timing results generated are clock time. It has been
compiled on Sun, DEC Alpha, and Hewlett Packard workstations.

m3dpvmibm: creates the parallel PVM implementation of MONT3D and activates the command
line and the Fortran 90 versions of the clock timing and time and date functions using the files
m3comline fm3f90timing.fandm3f90date.fThe timing results generated are clock time. This
version compiles on the IBM RS/6000 platform.

m3dpvmfo0: creates the parallel PVM implementation of MONT3D activates the Fortran 90 ver-
sions of the clock timing and time and date functions but not the command line. It uses using the
filesm3nocom,im3f90timing.fandm3f90date.fThe timing results generated are clock time. This
version can be compiled on any full featured Fortran 90 compiler.

m3dpvmansi: creates the parallel PVM implementation of MONT3D with all optional features
deactivated. It uses the files3nocom,fm3notiming.fandm3nodate.f

clean: deletes all the object files in the current directory. This option should be used whenever the
user wants to start the compilation over from scratch. If code does not seem to compile correctly,
then the user should try using the clean target and then recompiling the code.

The name of the MONT3D executable generated by the Makefile is specified by macros in the
Makefile. The name of the single processor version of the code is determined by the Makefile

53



macro M3DSERNAME which has a default valueraint3d The name of the PVM version is set
by the macro M3DPARANAME which has a default valuen®dpvm For the worker processes
to spawn correctly, the name of the PVM version of executable must match the parameter
m3dparanamevhich is declared in the filmont3d.parThe default value fan3dparanamés
m3dpvm More detail is given in Sections 5.5.2, 5.6.1, and 5.6.4.

When compiling the parallel versions of the code, the user’s environment variables PVM_ROOT
and PVM_ARCH must be defined for this compilation to succeed.

When compiling the PVM version of the code on various heterogeneous architectures, different
executables can be used on different machines as long as they are the parallel versions of the exe-
cutables. For example in the inhomogeneous network of the Suns and Linux workstation men-
tioned earlier, then3dpvntarget was compiled on the Suns, whilertt@pvmansiarget was
compiled under Linux. Currently, the command line, timing, and time and date functions are used
only by the master in the parallel code. Therefore, the command line and time and date functions
are supported if the master process’s executable supports them.

To compile MONT3D on various architectures, specifying the correct target may not be enough.
There are three macro definitions in the Makefile that may have to be set as well. The Makefile lists
default values for these macros for Sun, SGI, IBM RS /6000, DEC Alpha, and Hewlett Packard
platforms and for the NAG f90 compiler under Linux. These macros are:

FC: specifies the FORTRAN compiler. This is usually set to “f77.” For the Hewlett Packard plat-
form, this must be set to “fort77.” Of course, if a Fortran 90 compiler is used, this should be set to
“f90.”

FFLAGS: specifies the FORTRAN compiler flags. Some platforms require special flags. Flags are
specified in the Makefile to allow the user to compile the code on several platforms and control
optimization. If a person is knowledgeable about optimization options for his specific computers,
he may want to change the default settings for these flags. FFLAGS can be used to compile the code
with almost any options desired - check the compiler's documentation for specifics. Popular
choices are optimizing (-O optiomebugging-g option),array bounds checkin@C option), and

profiling (-p or -pg option).

LPVMFLAGS: specifies the libraries for the PVM code which are used during linking. The direc-
tory to search for the PVM libraries and the librapgm3andfpvm3must always be specified.

Some platforms may require other libraries. For example, the Sun version also requires the libraries
nslandsocketAppropriate values of LPVMFLAGS are listed in the Makefile for the Sun, Hewlett
Packard, IBM RS/6000 and DEC platforms, and for the NAG f90 compiler under Linux. Values for
other platforms can be found by compiling the sample programs that are included with the PVM
distribution.

The authors have worked hard to make MONT3D as portable as possible. They would like to be
informed about troubles/successes when compiling the code on other platforms.
5.2.2 Microsoft Windows

The code has been compiled under Microsoft Windows using Microsoft FORTRAN Powersta-
tion.The files which are needed to compile the code under Windows20e:fm311s.fm312s.f
m313s.fm32s.f m3nopara.fm3pccom,im3f90timing.fm3f90date,fmont3d.parand
mont3d.comThese files have compiled successfully on every Windows machine we have tested so

54



far. However, it is possible to use other timing stubs. The code is essentially the same if either
m3f90timing.for m3ctiming.fis used. Both stubs cause timing results to be given in clock time.
While m3etiming.Lompiles in all test cases, sometimes the timing function does not work and zero
seconds is reported for all the timings in the timing summary. In our limited testirgintetunc-

tion works when the code is compiled and run under Windows NT, but not under Windows 95 or
98. It is highly likely thaetimereports clock timing instead of CPU timing on most Windows
machines, so there is probably no advantage to using etime instead of one of the clock time func-
tions.

5.2.3 Macintosh

The Macintosh version has been compiled on a 233 MHz 604e PowerPC chip using the Absoft
f77 (and f90) compilers. A full-featured version of the code can be obtained by compiling the fol-
lowing files:m30s.f m311s.fm312s.fm313s.fm32s.f m3nopara.fm3comline fm3etime.f
m3fdate.fmont3d.parandmont3d.comThe compilation also requires the Abaafixlib.ofile
which is usually in thé&bsoftLibrariesfolder in theLibraries folder in theMPWfolder. The code
must be compiled with thield to uppercaseption (-N109). Thgeneral optimizatiorf-O) and
604 PowerPC specific optimizatiofi®92, if applicable) options both improve performance. Best
performance is obtained compiling the code asIBRWV Toolso it can run in th&1PW Shellpro-
gram. Performance is further increased by using a minimum of extensions and control panels.

Many timings have been done of the 233 MHz 604e PowerPC Macintosh and performance has
been found to be very good. This particular Macintosh is almost 5 times faster than a 36 MHz Sun
Sparc-10 workstation.

5.3 Files Generated and Used by MONT3D

This section briefly describes the files used by MONT3D. For specificity, a préfixsaised.
Table 5.1 gives the files used (either pre-existing or generated during execution) by MONT3D.
Files listed as temporary are deleted by the end of a successful run; most are deleted at the end of
the run.

Almost all the files listed in Table 5.1 are ASCII files, and may be read and printed with no dif-
ficulty. Files for unit 13 are binary files, and are only read by MONT3D itself. The Unix oulity
(octal dump) may be used to examine binary files (perfammaraon od for instructions). The
description of the input file format is given in Chapter 3 and most of the other files are described
in Appendix B.

5.4 Specifying File Names

MONT3D must have the names specified for all of the files shown in Table 5.1. This section
explains the naming conventions and methods of specifying these file names.

There are two methods of specifying the file names; default and command line. If no name(s) are
specified on the command line (or the command line is disabled, see Section 5.1.2), the code will
guery the user via the console for a base file némeThis base name is used as the prefix for all
files in the run. The command line method of specifying the file names allows the user more flex-
ibility in defining file names. Most file names can be specified independently according to the con-
ventions in Table 5.2.

55



Table 5.1: MONTS3D Files

Unit

Name

Function

fn.scr

Temporary input file with comment cards “stripped away.” File is gq
ated by code. This is the file actually read during the input phase.

ner-

fn.rst

Restart file required for restarting from a crash or a completed run,

fn.plt

Plot file, to be used with the program MPLOT [Nagesh and Burns,
1994]. Contains geometrical and material property information.

fn.Ist

Contains lost photon trajectories, if any. This file can be viewed by
MPLOT [Nagesh and Burns, 1994]. For the parallel version, a sepa
file, fnxx.Ist, is generated for each worker process xx.

rate

stdin

Standard input (keyboard).

stdout

Standard output (screen).

fn.in

Input file with comment cards, in the format described in Chapter 3.
file is used to generate the file of unit 1.

This

fn.nij

Exchange matrix file which contains the results used by the thermg
analysis code TOPAZ3D [Shapiro, 1985]. See Section 1.4 for more
details.

fn.trc

Trajectory file (written if ITRACES 0, see Section 3.2.2). To be use
with MPLOT [Nagesh and Burns, 1994], to plot particle trajectories.
the parallel version, a separate trace file, fnxx.trc, is generated for ¢
worker process xx.

d
For
rach

10

fn.out

ASCII output file. Contains echo of all input and other information :
determined by IPRNT (see Section 3.2.2). The parallel version alsd
erates for each process xx a temporary output file, fnxx.out, that is
deleted at the end of a completed run. If the run exits abnormally, t
files may be used for debugging.

1S
gen-

nese

11

fn.lks

Leaks file. To be used with MPLOT [Nagesh and Burns, 1994] to iq
tify potential leaks.

en-

12

fnxx.bni

Temporary ASCII file which contains the exchange matrix for tie x
block of surfaces. The full exchange matrix (.nij) file only exists at tl
beginning and end of a run. During the run, the block exchange m3g
files are used instead.

K
ne
trix

13

fn.tni

Temporary binary exchange matrix file used to convert back and fg
between the exchange matrix (.nij) file and the block exchange mat
(.bni) files.

rth
rix

14

fn.blk

Temporary ASCII file containing block information required for rests

Art-

ing from a crash.

56



Table 5.2: Command Line File Control

File name to be specified Preceded on command line| by
Restart file name -, -R, r=, or R=

Plot file name -p, -P, p=, or P=

Lost photon trajectory file name -m, -M, m=, or M=

Input file name -, -1, i=, or I=

Absorption exchange matrix file name -e, -E, e=, or E=

Trajectory file name -t, -T, t=, or T=
Output file name -0, -O, 0=, or O=
Leaks file name -l, -L, I=, or L=
Family file name -f, -F, f=, or F=

Several conventions bear emphasizing. If even one file name is specified on the command line,
the code will not query the user for a base file name. fapéon is used, any file not explicitly
specified will assume the naming convention indicated in Table 5.1. Those file names explicitly
specified will override this default. If ti@ption is not used, then, as a minimum, the names of the
input file, output file and exchange matrix file must be specified independently on the command
line with the other files deriving their base name from the input file name. The maximum length of
the base name is set by the paramdten, The default value is 20 characters. Indices are always
appended to the end of the base name. The number of digits used for the indices are controlled by
the parametefimag. More details on these parameters is given in Section 5.5.

To help clarify the command line conventions, the following examples and explanations are
offered.

Example 1:%mont3d -i alakazam -Okaboom e= ardvark M=toasted

MONTS3D will expect the input file nameadakazanto exist. MONT3D will create the following
files; the lost photon trajectory file nameasted (toasted01, toasted02up.to the number of
worker processes if this is the parallel version), the absorption exchange matrix fileandwaekl
the output file nameklaboom(additional temporary files nam&dboom01, kaboom02, up to
the number of worker processes for the parallel version). All other files wilalsezanfor their
base name.

Example 2:%mont3d -f calendar

MONTS3D will expect the input filealender.into exist. MONT3D will create all files using the
base namealendar

Example 3:%mont3d -f box -e mi5run

MONTS3D will expect the input fildox.into exist. The exchange matrix files will use the base
namemi5run All the other files will use the base nabux

57



5.5 Parameter Statements and Memory Allocation

MONTS3D uses static common blocks for storage, making the code more robust and easier to
edit. Unfortunately, this also requires that the sizes of arrays be pre-specified. The sizes of various
arrays are pre-specified with parameter statements. Several other features of the code are also spec-
ified by parameter statements.

All parameters in MONT3D are stored in one fitegnt3d.parTo change a parameter, the value
need be changed only in the fieont3d.parand all files must be recompiled. MONT3D has many
parameters; any parameters not listed in this section should not be altered.

5.5.1 Parameters Specifying Array Sizes

These parameters establish the maximum sizes of various arrays, such as number of surfaces,
number of wavelength bands, number of materials, etc. If the numbers are set too low, MONT3D
will issue an error message informing the user that insufficient storage space is available, and ter-
minate. It should be noted that the larger the arrays, the more memory the program uses. If the
arrays become too large, the program may exceed available physical memory and the execution
speed will severely degrade because virtual memory is used (where the program is swapped to and
from disk).

The array-sizing parameters used in MONT3D and their default values are:

iblk (maximum value for INEBLOCK|, the number of surfaces in a restart block): 200
ibnd (maximum value for NBANDS, the number of wavelength bands): 5
iimag (maximum number of index digits for file names; see Section 5.5.2): 4
imat (maximum value for NUMMAT, the number of materials): 30
incg (maximum number of grid divisions along any axis; see Section 3.3): 60
inod (maximum value for NUMNP, the number of nodes): 15,000
iseg (maximum number of surfaces [segments] in all grid cells): 100,000
isrf (maximum value for NSURF, the number of surfaces): 5,000
isrfs (maximum number of surfaces including split surfaces): 7,000
itblk (maximum number of restart blocks in a run): 1,000
iwproc (maximum value for NWPROC, the number of worker processes): 64

Most of the parameters listed above are rather straightforward. The value of several input vari-
ables, most of which are defined in Sections 3.2 and 3.3, must be compatible with the memory lim-
its set by the values of the above parameters.

Results in MONT3D are stored in memory for a block of INEBLOCK| surfaces before being
written to disk; see Sections 2.9 and 3.2.1. INEBLOCK]| can not be largdlthan

When the grid shading option is used in MONT3D (see Section 2.6), the program stores in one
long array a list of all surfaces which are completely or partially in each grid cell. The length of this
array cannot be larger thaseg

58



As explained in Section 2.3, if the nodes of a quadrilateral surface are not coplanar, MONT3D
may have to split the surface into two planar triangles. Every time a surface is split, storage is
required for an additional “split” surface. While the maximum number of surfaces that can be spec-
ified isisrf, the maximum number of surfaces including split surfaces is specifisddy

For a geometry with NBANDS*NSURF emitters, NEMIT, there are NEMIT/|INEBLOCK|
restart blocks in a run (round the result up). This number can not be largéblihan

It is a fairly simple process for the user to compile MONT3D for each geometry so that it uses
the smallest amount of memory possible. If memory on a machine is limited, this may allow the
code to run without having to use virtual memory. The way this is done is as follows. The user
should first run a data check only (IDATA = 1, see Section 3.2.2), which will only go through the
input phase of the code. As shown in Chapter 4, during the input phase, a “Memory Allocation and
Usage” section is printed. All parameters listed in that section should be set to the value in the
“used” column of that section and the code should be recompiled. The newly compiled code will
use the minimum memory required for the given geometry.

5.5.2 Other Parameters
The other parameters used in MONT3D and their default values are:

iflen (maximum length of a file’s base name): 20
ilarg (maximum length of a command line argument): 30
iseeddef (default seed for RNG; see Section 3.2.1): 19,895,660

Iflen, Iflag, Ifl, Ifs (parameters for RNG, see below)

m3dparaname (name of the code’s parallel version; see Sections 5.2.1 and 5.6): m3dpvm
pdamax (maximum allowed value for percent area difference; see Section 2.3): 0.1
zee g value from normal tables, default = 95% confidence): 1.96

There are a few parameters controlling file name length and input that should be exjfieymed.
is the maximum possible length for the base name (file name without indices or suffix) for a file.
ilarg is the maximum length of a single argument on a command line or the base name entered
interactively. If the base file name obtained this way is longeritleanthe base name is clipped
to iflen. Havingilarg larger thanflen may prevent possible array bounds errors on some systems.
iimagis another file parameter that needs explanation. In creating the block exchange matrix (.bni)
files, MONT3D must append the block number to the file’'s base name. Furthermore, several files
generated in the parallel version of the code need the worker process number appended to the base
nameiimag specifies the maximum number of digits which can be appended to the base name. For
example, for 50 processéisnag should be 2; while for 100 blockgnag should be 3.

The length of the lagged Fibonnaci generator can be changed if desired. As shown by Pryor et
al. [1994], it takes four constants to describe a LFG fully. Besatedk mentioned in Section 2.11,
two constants, L and S, are needed to specify the format of the canonical seed. The code defines
these four constants in the fiteont3d.parasiflen (for LF length) |flag, Ifl, andlfs. Several sets of
(I, k, L, S) are given by Pryor et al. [1994]. Popular values are (55, 24, 1, 11), (127, 97, 1, 21) and

59



(607,273, 1, 105) [Pryor, 1997]. To change the LFG, the user need change only these constants and
recompile the code.

zeeis the constart defined in Section 2.7. For 95% confidence in the rexilisl.96 (the
default value). Other values oés a function of D, the percent confidence, are given in the normal
distribution tables (see Kreyszig [1993]).

5.6 Parallel Version

5.6.1 Running the Parallel Version

Much information about setting up PVM and running PVM programs is given by Geist et al.
[1994]. The discussion below gives several tips on how to run the PVM version of MONT3D but
for more complete information, see Geist. For an overview of the master-worker model used by
MONT3D, see Section 2.10. It should be noted that several shell environment variables including
the path, $PVM_ROOT, and $PVM_ARCH must be set correctly for the PVM code to run.

There are two ways to create the PVM virtual machine. The first way is to type the command
pvmand then use tredldcommand at the promptm>. A second way is to create a hostfile. If the
hostfile is given as an argument to fivencommand, then a PVM virtual machine will be created
using the commands and options in the hostfile. A hostfile allows the user to specify a virtual
machine much more easily than manually using the PVM comardohd hostfile also has other
benefits, as will be shown below. More detail about hostfiles is given by Geist [1994].

The parallel virtual machine is created on the machine on which the master process will run.
After the parallel virtual machine is created, the user just executes MONT3D executable (usually
calledm3dpvm on the master machine. Just like the single processor version, the parallel version
can be run interactively or using the command line as explained in Section 5.4. Once the input file
is checked for errors, the master then spawns NWPROC (see Section 3.2.2) worker processes on
the virtual machine. The PVM daemon on the master selects the CPU’s on which to spawn the pro-
cesses; more on this below.

To run the parallel version of MONT3D successfully, it is important that certain directories be
correctly specified. The path for the executable file must be known. For the master, the path for the
executable must be in the user’s path or must be explicitly given on the command line. The path for
executables for each of the worker processes is set to SHOME/pvm3/bin/$PVM_ARCH by default.
$HOME is the user’'s home directory and $PVM_ARCH is an environment variable describing the
platform being used. One way to change the directories for executables for each CPU in the virtual
machine is to use the “ep=" option (executable path) in the PVM hostfile.

The working directory, where the code will execute and look for files, must also be specified. For
the code to run properly, all processes must use the same directory so they can share disk files. For
the master, the working directory is the directory in which the program is run. For the worker pro-
cesses, the default value is $HOME. The working directory for each CPU in the virtual machine
can be changed using the “wd=" option in the PVM hostfile. If SHOME is different for the user’s
accounts on different machines, the user must change the working directory for the machines so
that all use the same directory.

When each worker spawns, it attempts to run a specifically named executable, It is very impor-
tant that the executable be named properly, or the executable will not be found and the process will

60



exit in error. The default name for the executabia3glpvimbut it can be changed by changing the
parametem3dparanameand recompiling the code. More detail is given in Sections 5.2.1, 5.5.2,
and 5.6.4.

When debugging the code, it is helpful to have separate debugging sessions for each worker pro-
cess. If IPAROPT(1) (see Section 3.2.2) is set to 2 or 3, theteanwith adbxsession (on some
systems, it may be some other debugger) is created for each worker process. For this to work, the
DISPLAY variable must be set properly for each worker process. To accomplish this, the DISPLAY
environment variable on the master must be set correctly and the variable PYM_EXPORT on the
master must be set to include the DISPLAY environment variable.

When running the parallel version of the code, it should be remembered that even when restart-
ing from a crash, it is possible to switch to different machines, change the number of worker pro-
cesses or even switch between the parallel and single processor versions of the code. More detail
is given in Section 4.5.

5.6.2 Worker Processes

It should be noted that in the parallel environment, the master and workers are just Unix pro-
cesses. While it is possible to have multiple worker processes on one CPU, it is generally not rec-
ommended. On a Unix workstation, only one process is using the CPU at a time. When more than
one process is executed on a CPU, CPU cycles are wasted in the overhead of switching between
processes. For the master-worker model used in MONT3D, one worker process on a CPU is always
more efficient than two worker processes on the same CPU. There is only one time when a user
might want two processes on the same CPU. Since the master process does so little work during
the solution phase, the minimum overall wall clock time may be obtained by placing a worker pro-
cess on the CPU that has the master process. Research into the benefits of having a worker on the
master CPU is currently being done. The benefit is probably greater as the total number of CPU’s
used on a problem decreases.

PVM does not allow much control over which processes run on which CPU. To determine the
CPU on which to spawn a process, PVM usually uses a list of the CPU’s in the order that they were
added to the virtual machine. The master CPU is at the end of the list. Multiple processes are put
on one CPU only if NWPROC, the number of worker processes specified by the user, is greater
than the number of CPU's in the virtual machine. Since having more than one worker process on a
CPU is inefficient, NWPROC should always be less than or equal to the number of CPU’s in the
virtual machine. If NWPROC is equal to the number of CPU’s, then a worker process will spawn
on the master CPU. If the user wants to insure that a worker does not spawn on the master CPU,
he should set the input variable IPAROPT(1) to 1 (use IPAROPT(1) = 3 if debugging); see Section
3.2.2 for more detail.

It is possible to do batch jobs as described in Section 5.7 with the parallel version of the code. It
should be noted that if more than one run is done in succession using the same virtual machine, it
will rotate through the list of CPU’s and sooner or later a worker process will spawn on the master
CPU. If the user wishes to prevent this, IPAROPT(1) should be set to 1.

5.6.3 Files

The file structure for the parallel version of the code requires a bit of explanation. Most of the
files listed Table 5.1 are generated and used by the master process. This includes the restart (.rst)

61



file, the plot (.plt) file, the exchange matrix (.nij) file, the leaks (.Iks) file, the temporary binary
exchange matrix (.tni) file, and the block (.blk) file. The scratch (.scr) file is generated by the mas-
ter, but used by both the master and worker processes. The input (.in) file is, of course, supplied by
the user. The block exchange matrix (.bni) files are generated and used by both the master and the
workers.

A lost photon (.Ist) file and a trace (.trc) file are generated by each worker. Each file has the
worker process’s ID appended to the base name. The ID number is a number between 1 and
NWPROC that is supplied to the worker by the master. For example, if the base name of the run is
fn, the third worker process will create the files with names such as fn03.Ist and fn03.trc. The num-
ber of digits in the index is controlled by the paramigteag; see Section 5.5.2. Each of these files
can be viewed individually using MPLOT [Nagesh and Burns, 1994].

A single output (.out) file is generated by the master process, but temporary output files indexed
by worker ID (i.e. fn03.out) are also generated by each worker process. These temporary output
files are deleted at the end of a successful run. Their main purpose is to provide information useful
for tracking down problems if the run terminates due to errors.

5.6.4 Errors

While most errors from the master are very similar to that of the single processor version of the
code, PVM errors and some worker errors need some additional explanation. Spawning errors have
special error messages and may occur when the processes are trying to spawn. The other types of
worker errors described below have a generic error message which indicates the basic error type,
which worker had the error on which block, and other information. If a worker encounters any
error, it terminates. As stated in Section 2.10, the first time a block of surfaces fails, the block is
sent to another worker. The second time the block fails, the entire run is aborted. As described
above, if the run terminates from errors, output files for each process are generated. These can be
used to get further information about the errors.

Spawning errors: Errors in spawning often means that one or more machines or the communica-
tion between them are down. The error can either occur on the master, which is called a system
error, or it can occur on one or more workers when they fail to start their copy of MONT3D. If a
system error occurs or all the workers fail to start MONT3D, the run exits with an error. If some of
the workers fail to start the program, a serious warning is issued but the run continues with the
remaining workers. To help identify the spawning problem(s), the code prints out the PVM error
code(s) for either the system error or for each failing worker. Each error code is a number that rep-
resents a PVM error condition. Which code specifies which condition is given in tipifilid.h

which can usually be found in the directory $PVM_ROOT/include. More detail of these spawning
errors can be found in the PVM documentation about the fungtimrfispawn

A particularly common spawning error is when all the workers fail to start their copy of
MONT3D. This usually occurs due to one of three causes. First, the MONT3D executable may not
be in the directory PVM searches for executables; see Section 5.6.1 for more detail. Second, the
worker process may not be able to start the MONT3D executable because the executable is named
incorrectly. When each worker spawns, it attempts to run the executable with the name specified
by the parametan3dparanameTherefore, for the parallel code to run, the executable must be
named as specified loy3dparanamearameter which has a default valuenddpvm For more

62



detail, see Sections 5.2.1, 5.5.2, and 5.6.1. Third, the executable can be compiled for a platform
other than the one on which the worker process is spawned.

General error: General errors are a catch-all category. If the block number is 0, the error occurred
during the input phase for the worker. Check the process’s output file for more details.

Not Enough Memory Allocated on Worker: When working on a heterogeneous architecture, at
least some of the workers will use a different version of the executable than the master. In those
cases, itis possible for a worker executable not to have enough memory allocated even if the master
executable does. If this error occurs, check the worker process’s output file to determine which
parameters defining memory allocation need to be increased. For more detail, see Section 5.5.

Emission Point Not in Grid: This error occurs when an emission point from a surface is not within
the grid. To our knowledge, this error has never occurred for any geometry. If it does occur, there
may be serious problems in the geometry specification.

Maximum Number of Photons Lost per Worker ProcessThis error occurs when more then
NLOST (input format described in Section 3.2.1) photons are lost per worker process.

Maximum Number of Reflection Warnings per ProcessThis error occurs for a process when
there are more then NWARNS warnings of a photon reflecting more than NREFS times (both
described in Section 3.2.1).

PVM Error: A PVM error occurs when a PVM function exits with an error. If no worker process

is mentioned, then the error occurred on the master. To our knowledge, this type of error has not
yet occurred. Quite a bit of information is printed for this type of error, but it is mainly intended to
be given to the code’s authors so they can determine the problem. For any one trying to track down
the problems themselves, the error message includes the following information. First, it gives the
PVM function that caused the error. Second, the item marked “error code” specifies which PVM
error condition occurred. The error code numbers are descrilffgehirhas discussed above in
spawning errors. The “mestag” item gives the message tag ID. Each mestag number is equivalent
to a message tag parameter defined in thenlgvm.incThe PVM version of the code passes six
different types of messages. The message tag parameters are used to identify these six message
types for both the master and the workers. If the error occurred while packing or unpacking data
for communication, the last number marked “item” indicates for which item, from the first to the
last data item, the error occurred.

5.6.5 Random Numbers

As discussed in Section 2.11.2, each worker process is supplied with an unique seed generated
by the master process, which the worker then masks with the process number to obtain the initial
seed for that processor for the run. While the random number state is saved for single processor
restart runs, this is not the case for the parallel version. Instead, the workers receive a totally new
seed from the master for each restart run. The reason for this is that the runs are done asynchro-
nously under PVM. Since exact reproduction is impossible, a different set of random seeds is used
for each parallel restart run, and CPU time and disk space are saved by not saving the random
states.

When parallel restart runs are done, care must be taken to ensure that the random number streams
are uncorrelated with those of the previous run. Since MONT3D uses canonical seeds generated
by a binary shift register, if the initial seeds used by the processes differ by even one bit, then good

63



statistical behavior between the sequences is assured. If the default seed (INSEED < 0; see Section
3.2.1) is used for two consecutive continuing runs, then the same initial seeds will be used for each
run and the same set of random number sequences will be used in both runs which may cause prob-
lems. Similarly, if the user specifies a specific random number seed for INSEED (INSEED > 0), a
different seed must be entered for each run.

On the other hand, a different time-generated seed is produced for nominally every second in a
32 year period. Therefore, if time generated seeds (INSEED = 0) are used, independent streams of
random numbers are virtually assured. It should be noted that time generated seeds vary only with
time if the code supports the time and date functions (see Section 5.1.4). If time and date functions
are not supported, the user must enter different values of INSEED for each restart run. It should be
noted that the time-generated seed is generated on the master process only. If the master’s version
of MONT3D supports time and date functions, then time generated seeds will work properly.

5.7 Unix Batch Execution Using Scripts

This section describes the use of a Unix shell script to submit multiple MONT3D runs to be exe-
cuted sequentially. This has the advantage of running only one job at a time, thereby avoiding the
overhead involved with swapping jobs in memory in and out of the CPU (our tests have shown that
the overhead under Unix in so doing is prohibitively large). The shell script in Figure 5.1 is an
example which runs MONT3D three times for three separate problems (inptdfje®, and
tc3). In this example line one executesnt3dand redirects standard output to therilel. The
second line causes the script to pause until line one has finished. When the first run has completed
the process continues with line three, etc.

mont3d -f tc1 > runl
wait
mont3d -f tc2 > run2
wait
mont3d -f tc3 > run3

Figure 5.1: Contents of Script File “submit”

The script file can be created with any ASCII editor and given any valid Unix name (here the file
is namedsubmi). The files referred to in the script (hécé, runl etc.) can also have any valid
Unix name. The fileg1, tc2, andtc3 must be the MONT3D input files (all must have the .in exten-
sion) to be used for the run.

Once the script is created it must have execute permission before it can be run. This is accom-
plished for the filssubmitwith the Unix commandhmod

%hmod 744 submit

64



where % is the Unix prompt.

The script can be run in the background by typing the script name followed by “&.” If commands
are run in the C shell, then to raabmitin the background and redirect all its output to standard
output and standard error to the fdapmit.outtype:

Osubmit >& submit.out &

where the “>&” redirects both standard output and standard error to the file submit.out. Alternately,
it can be submitted using the Unix commsuadior batch The syntax of any of these Unix com-
mands can be obtained by referring to the Una(ual) pages.

5.8 Precision

MONTS3D is coded to compile and run using 64-bit floating point precision. For MONT3D, it is
desirable to use 64-bit precision, as the specification of coplanar surfaces is particularly susceptible
to precision errors. Also, 3-D photon tracing generally requires 64 bits to perform intersection cal-
culations with the requisite accuracy.

65



REFERENCES

Anderson, S. L., 1990. “Random Number Generators on Vector Supercomputers and Other
Advanced Architectures3IAM Review, 34)p. 221-251.

Branner, K., 1999An Enhanced Material Model for Radiative Heat Transfer via Monte Carlo
M.S. Thesis, Department of Mechanical Engineering, Colorado State University, Fort Collins,
CO 80523. (In progress).

Brent, R. P., 1992. “Uniform Random Number Generators for Supercompiterseédings Fifth
Australian Supercomputing Conferen8&8SC Organizing Committee, 1992, pp. 95-104.
(Unpublished).

Burns, P. J., and Pryor, D. V., 1989. “Vector and Parallel Monte Carlo Radiative Heat Transfer,”
Numerical Heat Transfer, Part B: Fundamentdls, pp. 20-42.

Burns, P. J., Maltby, J. D., and Christon, M. A., 1990. “Large-Scale Surface to Surface Transport
for Photons and Electrons via Monte Carlégmputing Systems in Engineerinvgl. 1 No. 1,
pp. 75-99.

Burns, P. J., Loehrke, R. I., Dolaghan, J. S., and Maltby, J. D., 1992. “Photon Tracing in AXisym-
metric EnclosuresDevelopments in Radiative Heat Transfer, HTD-Vol., 28 93-100,
ASME, New York.

Burns, P. J., and Pryor, D. V., 1995. “Random Numbers,” Available as a WWW document, URL =
http://csepl.phy.ornl.gov/CSEP/RN/RN.html.

Burns, P. J., and Pryor, D. V., 1999. “Surface Radiative Transport at Large Scale via Monte Carlo,”
\ol. 9 of Annual Review of Heat Transf@egell House, New York, NY. (in press).

Cuccaro, S. A., 1996. Personal communication, Center for Computer Sciences, 17100 Science
Drive, Bowie, MD 20715.

Crockett, D. V., Maltby, J. D., and Burns, P. J., 1990. “User’s Manual for MONT3E - A Three-
Dimensional Electron-Tracing Code with Non-Uniform Magnetic Field, Release 5.0,” Depart-
ment of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523.

Dolaghan, J. S., 199A.Monte Carlo Simulation of Molecular Redistribution in an Enclosure due
to SputteringM.S. Thesis, Department of Mechanical Engineering, Colorado State University,
Fort Collins, CO 80523.

Dolaghan, J. S., Loehrke, R. I., and Burns, P. J., 1992. “User’'s Manual for SMOOTH,” Department
of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523.

Dolaghan, J. S., 1998. Monte Carlo Simulation in Rarefied Gas Dynamics with Application to
Physical Vapor DepositigrPh.D. Dissertation, Department of Mechanical Engineering, Colo-
rado State University, Fort Collins, CO 80523.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Mancheck, R., and Sunderam, VRS £ar-
allel Virtual Machine - A User’s Guide and Tutorial for Networked Parallel Compubtid
Press, Cambridge, MA. Also available as a WWW document, URL = http://www.netlib.org/
pvm3/book/pvm-book.html.

Golomb, S. W., 1982Shift Register SequerscRevised Ed.), Aegean Park Press.

66



Kreyszig, E., 1993Advanced Engineering Mathematics, 7th,Héhn Wiley & Sons, New York.

Maltby, J. D., Burns, P. J., and Winn, C. B., 1986. “Monte Carlo Simulation of Radiative Heat
Transport in Passive Solar BuildingBjoceedings of the 1986 American Solar Energy Society
ConferenceBoulder, Colorado (June 9-11, 1986).

Maltby, J. D., 1987Three-Dimensional Simulation of Radiative Heat Transfer by the Monte Carlo
Method M.S. Thesis, Department of Mechanical Engineering, Colorado State University, Fort
Collins, CO 80523.

Maltby, J. D., 1990Analysis of Electron Heat Transfer via Monte Carlo SimulatRimD. Disser-
tation, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO
80523.

Maltby, J. D., and Burns, P. J., 1991. “Performance, Accuracy and Convergence in a Three-Dimen-
sional Monte Carlo Radiative Heat Transfer Simulatidluinerical Heat Transfer, Part B; Fun-
damentals\ol. 16, pp. 191-209.

Maltby, J. D., Zeeb, C. N., Dolaghan, J., and Burns, P. J., 1994. “User’'s Manual for MONT2D -
Version 2.6 and MONTS3D - Version 2.3,” Department of Mechanical Engineering, Colorado
State University, Fort Collins, CO.

Margolies, D., 1986. Personal communication, LLNL.

Marsaglia, G., 1985. “A Current View of Random Number GeneratG@fputing Science and
Statistics: Proceedings of the XVIth Symposium on the Intetfa8alard (ed.) Elsevier Sci-
ence Publishers, B. V. (North Holland) pp. 3-10.

Mascagni, M., Cuccaro, S., Pryor, D., and Robinson, M., 1995. “A Fast, High Quality, and Repro-
ducible Parallel Lagged-Fibonacci Pseudorandom Number Genedatarial of Computa-
tional PhysicsVol. 119, pp. 211-219.

Nagesh, S., and Burns, P. J., 1994. “User’s Manual for the Program MPLOT - Version 3.3,” Depart-
ment of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523.

Pryor, D. V., and Burns, P. J., July 21-25 1986. “A Parallel Monte Carlo Model for Radiative Heat
Transfer,” presented at the 1986 SIAM Meeting, Boston, MA.

Pryor, D. V., Cuccaro, S. A., Mascagni, M., and Robinson, M. L., 1994. “Implementation of a Por-
table and Reproducible Parallel Pseudorandom Number Genegatpefcomputing ‘94 Pro-
ceedings|EEE Computer Society Press, Los Alamitos, CA, pp. 311-319.

Pryor, D. V., 1997. Personal communication, Center for Computer Sciences, 17100 Science Drive,
Bowie, MD 20715.

Schorn, P., and Fisher, F., 1994. “Testing the Convexity of a Polyga@ralphic Gems IMHeck-
bert, P. S., editor, AP Professional, San Diego, CA, pp. 7-15.

Schweitzer, R., McHugh, J., Burns, P. J., and Zeeb, C. N., 1993. “Daylighting Design via Monte
Carlo with a Corresponding Scientific Visualization,” Supercomputing ‘93 Proceedings, IEEE
Computer Society Press, Los Alamitos, CA pp. 250-259

Shapiro, A. B., 1983. “FACET - A Radiation View Factor Computer Code for Axisymmetric, Two-
Dimensional Planer, and Three-Dimensional Geometries with Shading,” Lawrence Livermore
National Laboratory, UCID-19887.

67



Shapiro, A. B., 1985. “TOPAZ3D - A Three-Dimensional Finite Element Heat Transfer Code,”
Lawrence Livermore National Laboratory, UCID-20484.

Statton, E. S., 198B10ONTE - A Two-Dimensional Monte Carlo Radiative Heat Transfer Code
M.S. Thesis, Department of Mechanical Engineering, Colorado State University, Fort Collins,
CO 80523.

Torrance, K., and Sparrow, E. M., 1966. “Off-specular Peaks in the Directional Distribution of
Reflected Thermal Radiation]’ Heat TransfeVol. 88, pp. 223-230.

Zeeb, C. N., 1996Iwo-dimensional Heat Transfer in Combustion Gases Via Monte Q4
Thesis at Colorado State University, Department of Mechanical Engineering, Fort Collins, CO
80523.

Zeeb, C. N., 1997. “Application of Ray Tracing Techniques to Radiative Heat Transfer Via Monte
Carlo” Available as a WWW document., URL =http://www.colostate.edu/~pburns/monte/docu-
ments.html.

Zeeb, C. N., and Burns, P. J., 1997. “Random Number Generator Recommendation,” Report pre-
pared for Sandia National Laboratories, Albuquerque, NM. Available as a WWW document.,
URL =http://www.colostate.edu/~pburns/monte/documents.html.

Zeeb, C. N., and Burns, P. J., 1999. “Performance Enhancements of Monte Carlo Particle Tracing
Algorithms for Large, Arbitrary Geometries” To be presented at the 1999 ASME National Heat
Transfer Conference, Albuquerque, NM, August 15-17, 1999.

Zeeb, C. N., and Romero, V. J., 1999. “LAYMC: A Monte Carlo Code for Modeling Photon Trans-
port in Layered Participating Media — Theory and User Manual version 2A”, to be published as
a Sandia National Laboratories report (unlimited distribution), (Expected 1999).

68



APPENDIX A OLD MATERIAL MODEL

This appendix covers the old material model. The first section of this appendix gives an overview
of the old material model. This is followed by a section on the specification of outgoing angles for
diffuse and specular reflection and transmission. The next four sections describe the seven material
types supported by the old material model. The last two sections cover the input card format for
entering in the material type data and the material property curves using the old material model.

A.1 Overview

The old material model is only used if NUMMAT, the number of material, (input specification
in Section 3.2.1) is greater than 0. If NUMMAT is less than 0, the new material model, which is
described in Sections 2.5 and 3.8-3.10, is used. More detail about the input specifications for the
old model are given below in Sections A.7 and A.8.

The old material model has material types defined for each band. Seven different material types
are available to provide flexibility to the material model. These material types allow different com-
binations of photon/material interactions to be defined. Table A.1 summarizes the material types
and indicates which material property curves must be entered. Note that while the old material
model supports specular and (weighted) diffuse refleghigandpy) and transmissiort{ andty),
semi-specular interactions are only supported by the new material model.

Table A.1: Material Property Summary

Type | Emission Interactions Input Curves

2 | Function | 14(8)+py(6)+py(6) + a(8) = 1 3:146), p<(6), Pa(8)

1 | Beam | 14B)+py6)+py(8)+a(6) = 1 3:146), P<(6). Pa(6)

0 [® 14(0)+py(0)+py(B)+a(8) = 1 3:146), p(6), Py(®)
1| 14(6)+ps(6)+py(8)+a(8) = 1 3:14(6), ps(8). Py(®)

2 | T4(8)+14(6)+ps(0)+Pu(8)+a(8) = 1 | 4: 148), T¢(6), Ps(6), Po(6)
-3 None Perfect specular reflection None

-4 None Perfect diffuse reflection None

In addition to photon/material interactions, the material type also determines the type, if any, of
emission that will take place. Just as in the new material model, three possible emission modes are
modeled emission according to user input function, beam emission, and normal emission. More
detail is given below. It is possible to specify materials for which the reciprocity relations do not
hold; more detail is given in Section 2.5.4.

It should be noted that unless the material type is -3 or -4, the curves listed in Table A.1 must be
entered by point value as a function of angle. The format is given in Section A.8. The computer
code parabolically interpolates between each three successive points entered, just as it does with
curves entered in by point value for the new model. Section 2.5.1 gives several tips about entering
curves by point value.

69



A.2 Outgoing Angles for Diffuse and Specular Interactions

Figure A.1 shows the conventions tbandgfor diffuse and specular interactions. The cone
angle,0, is always defined from the surface normal, and the azimuthal gngleositive coun-
terclockwise (when viewed from above) from the surface x'-axis. The x'-axis is defined perpendic-
ular to the ray joining nodes 1 and 2 (y'-axis) and the surface no(aisdxis) according to a right-
hand rule, as shown in Figure A.1. Care should be taken to number the nodes of a surface correctly
to achieve the desired emission direction. This coordinate system is used by both the new and old
material models.

Figure A.1: Conventions for Outgoing Angles

A.3 Material Type 2, Emission According to a User-Supplied Function

For material type 2, emission occurs according to a user-supplied function. This is exactly the
same as setting IETP in the new material model to 2. Photon/material interactions are determined
by the three input curves listed in Table A.1 above.

A.4 Material Type 1, Beam Emission

An option (material type 1) is available in the code to simulate beam radiation, with all primary
photon emissions from a specified material occurring in a fixed direction. To use this option, fixed
values ofp, andB, for a material must be entered by the user, in a format described below. It should
be noted that this is very different than the beam emission defined by the new material model. The
new material model defines the beam direction by an emission vector in GLOBAL coordinates. The
¢, andB, defined in the old material model are relative to the LOCAL coordinate system for the
surface. For the old material model, the emission direction for the beam depends on the orientation
of the surface.

Just as with the new material model, all interactions (absorptions, transmissions, reflections) will
depend only on the material property curves defined for that material. Again, the user should be
cautious when specifying the beam radiation option, since the reciprocity relations, Equations (1.5)
and (1.6) may no longer be valid. The other conservation relations still hold.

70



A.5 Material Types 0 Thorough -2, Normal Emission

For material type 0 through -2, emission is a functio®,p6o all of the photon/material inter-
actions are determined by the input curves. For material O, three curves are regél aisdet to
zero. Material type -1 also requires three input curvesty() set to zero. For material type -2,
all four curves are input.

A.6 Material Types -3 and -4, Perfect Mirrors

Material types -3 and -4 are perfect mirrors (perfect reflectors). Material type -3 is completely
specular, and material type -4 is completely diffuse. For surfaces of this material type, no emission
occurs, and “zero” exchange numbers are written into the exchange matrix file.

A.7 Material Type Data Cards

If the old material property model is used, the material type data cards should be entered right
after the wavelength band data, which is where the new material model property curve information
is currently entered. See Chapter 3 for more details.

Material type data cards are input by band for each material in order. For example, if three mate-
rials are used in two bands, then all material type data are read in for material 1, band 1; then mate-
rial 1, band 2; then material 2, band 1; etc. MN and IB are used as checks to ensure that the values
being entered are in the right order. If the information is not entered in the correct order, the pro-
gram detects an error and terminates. All cards must be input before any material property curves
are input (these cards control which material property curves are read).

Cols. Format Entry Note(s)
1-5 I5  Material type: MTYPE(N,IB): domain - [-4,2] 1,2,3
4,5
6,7
6-15 E10.0 Outgoing cone andgfor beam radiation: THSET(MN,IB) 1
16-25 E10.0 Outgoing surface azimuth angjdor beam radiation: PHISET(MN,IB) 1
26-35 E10.0 R dependence of diffuse reflectance: RDIFFR(MN,IB) 5,6
(DEFAULT: RDIFFRD =1) 8
36-45 E10.0 R dependence of diffuse transmittance: RDIFFT(MN,IB) 5,6
(DEFAULT: RDIFFT =1)
46-50 15 Material number (MN) 5,6
51-55 15 Wavelength band number (IB) 56
Notes:

1. THSET and PHISET are ignored unless MTYPE =1, or MTYPE = 2 and the user supplied func-
tion requires them.

71



N

. If MTYPE(N) = 2, then emission occurs according to the user supplied fufationsubrou-
tine getangin the filem32s.f

3. If a material has 0 emittance for all value®,athen no photons are emitted from surfaces of
that type unless MTYPE =1 or 2.

4. Material property curves are required for all material types except -3 and -4.

5. If the values of MN and IB are O (or blank) for the first band of a material then RDIFFR and
RDIFFT are set to 1 (standard diffuse re-emission) and the material type data values are used
for all bands in that material and no other material type data cards are read in for that material.
This has been done for compatibility with earlier versions which do not support r dependence
or multiple material types.

6. If MN is not O but IB is for the first band of the material then it is assumed that the material type
data are constant for this material for all bands and no other material type data cards are read in
for this material. The material property curves must still be entered for each band.

7. Asdiscussed in Section 2.5.4, if MTYPE =1 or 2, the reciprocity relations, Equations (1.5) and
(1.6), may no longer hold.

8. If either RDIFFR or RDIFFT = 0, then it will be set to 1 (standard diffuse distribution.) If either
RDIFFR or RDIFFT are < 0, then it will be set to 0 (isotropic distribution.) Note that, as dis-
cussed in Section 2.5.4, if either of these variables do not equal 1 (standard diffuse distribution)
the reciprocity relations, Equations (1.5) and (1.6), may no longer hold.

A.8 Material Property Curves Cards

The material property curves should be entered right after the material property cards described
above. These cards do have a different format than the curve cards used by the new material model
and should be used instead of them.

Material property curves are input by band for each material, except for materials of type -3 and
-4, where no curves are input. Curves must be input in order. For example, if three materials are
used in two bands, then all material type data are read in for material 1, band 1; then material 1,
band 2; then material 2, band 1; etc. MN and IB are used as checks to ensure that the values being
entered are in the right order. If the information is not entered in the correct order, the program
detects an error and terminates.

As discussed in Section 2.5.4, if any curve except the specular reflectance varies as a function of
angle, the reciprocity relationships may not hold.
A.8.1 Specular Transmittance
Condition(s): MTYPE = 2, 1, 0, or -2 (omit otherwise)

CARD 1
Cols. Format Entry Note(s)
1-16 2A8 Name of curve (e.g., specular trans): (CN1, CN2)
17-21 I5  Material number (MN) 1
22-26 I5  Wavelength band number (IB) 1

72



27-31 I5  Curve number (NJ) 1,2

32-36 I5  Number of points to be input for this material (NP) 3
CARDS 2 to NP+1
Cols. Format Entry Note(s)
1-10 E10.0 Cone angled- 3

11-20 E10.0 Specular transmittanpg®)

Notes:

1. These values are used to check that the data are input properly by material number, band num-
ber, and curve number.

2. A curve number of 1 must be input for specular transmittance.

3. NP number of cards must be input for the curve.

A.8.2 Diffuse Transmittance
Condition(s): MTYPE = -1 or -2 (omit otherwise)

CARD 1
Cols. Format Entry Note(s)
1-16 2A8 Name of curve (e.g., diffuse trans): (CN1, CN2)
17-21 I5  Material number (MN) 1
22-26 I5  Wavelength band number (IB) 1
27-31 I5  Curve number (NJ) 1,2
32-36 I5  Number of points to be input for this material (NP) 3
CARDS 2 to NP+1
Cols. Format Entry Note
1-10 E10.0 Cone angles- 3

11-20 E10.0 Diffuse transmittance;(6)

Notes:

1. These values are used to check that the data are input properly by material number, band num-
ber, and curve number.

2. Fordiffuse transmittance, curve number = 1 for MTYPE = -1 and curve number = 2 for MTYPE
=-2.

3. NP number of cards must be input for the curve.

A.8.3 Specular Reflectance
Condition(s): MTYPE# -3 or -4 (omit otherwise)

73



CARD 1

Cols. Format Entry Note(s)
1-16 2A8 Name of curve (e.g., specular reflectance): (CN1, CN2)

17-21 I5  Material number (MN) 1

22-26 I5  Wavelength band number (IB)

27-31 I5  Curve number (NJ) 1,2

32-36 I5  Number of points to be input for this material (NP) 3

CARDS 2 TO NP+1

Cols. Format Entry Note

1-10 E10.0 Cone angles- 3

11-20 E10.0 Specular reflectanpg()

Notes:

1. These values are used to check that the data are input properly by material number, band num-
ber, and curve number.

2. For specular reflectance, curve number = 2 for MTYPE = 2 to -1 and curve number = 3 for
MTYPE = -2.

3. NP number of cards must be input for the curve.

A.8.4 Diffuse Reflectance
Condition(s): MTYPE# -3 or -4 (omit otherwise)

CARD 1
Cols. Format Entry Note(s)
1-16 2A8 Name of curve (e.g. diffuse reflectance): (CN1, CN2)
17-21 15 Material number (MN) 1
22-26 I5  Wavelength band number (IB)
27-31 I5  Curve number (NJ) 1,2
32-36 I5  Number of points to be input for this material (NP) 3
CARDS 2 TO NP+1
Cols. Format Entry Note
1-10 E10.0 Cone angles 3

11-20 E10.0 Diffuse reflectancgy(6)

74



Notes:

. These values are used to check that the data are input properly by material number, band num-
ber, and curve number.

. For diffuse reflectance, curve number = 3 for MTYPE = 2 to -1 and curve number = 4 for
MTYPE = -2.

. NP number of cards must be input for the curve.

75



APPENDIX B FILE FORMATS

As discussed in Section 5.3, MONT3D generates a large number of files. This appendix gives
the format of most of these files. The files are presented in order of their unit numbers, see Section
5.3 for more detail. This appendix should only be of interest to those who plan to write programs
that work with the files created by MONT3D. The input file format, which is of much more general
interest, is described in Chapter 3.

Files are ASCII unless otherwise specified. The ASCIl FORTRAN format specifications given
below are for a single record. Each record starts on a new line and if the record is larger than the
specification, the format repeats as needed starting on a new line each time.

B.1 Restart File (Suffix .rst, Unit 2)

The restart file contains the information MONT3D requires to restart from a completed or
crashed run. If the program is restarting from a crash, additional information stored in the block
(-blk) file described below is also required. All the code for the reading and writing of this file can
be found in the subroutinstfile in the filem30s.f

B.1.1 IPARFLG

1 Record of Length 1

FORTRAN Format Specification: 7(i10, 1x)
Format Entry Note(s)
Integer Parallel run flag (IPARFLG) 1

Notes:
1. IPARFLG is O for a single processor run, 1 for a parallel run.

B.1.2 Photon Emission Counts
1 Record of Length NSURF*NBANDS
FORTRAN Format Specification: 7(i10, 1x)
Format Entry Note(s)

Integer Number of photons emitted from each surface in each band 1

Notes:
1. The photon counts are written in order from 1 to NSURF, for each band 1 to NBAND.

76



B.1.3 Random Number Generator Information
Only Written/Read if IPARFLG =0
1 Record of Lengthlflen + 2
FORTRAN Format Specification: 7(i10, 1x)

Format Entry Note(s)

Integer The ISEED array of seeds which is of leriiigim 1

Integer First tap value 1

Integer Second tap value 1
Notes:

1. The code uses a lagged Fibonnaci RNG of lelfigih The parametdfienis usually 127 but
can be changed, see Sections 2.11 and 5.5.2 for more details.
B.1.4 Block Information
1 Record of Length NBLOCKS
FORTRAN Format Specification: 7(i10, 1x)
Format Entry Note(s)
Integer NBKFIN array 1

Notes:

1. The NBKFIN array is NBLOCKS long where NBLOCKS is the number of surface emission
blocks for the run, see Sections 2.9 and 3.2.1 for more details. NBKFIN is 1 if the block has
been successfully completed; otherwise, it is 0.

B.2 Plot File (Suffix .plt, Unit 3)

The plot file contains the basic information MPLOT [Nagesh and Burns, 1994] requires to plot
the geometry, see Section 2.8 for more details. All the code for the writing of this file can be found
in the subroutingrafin the filem313s.f

B.2.1 Header

1 Record of Length 72

FORTRAN Format Specification: (10a8)
Format Entry Note(s)
Character File header 1

Notes:

1. Thisis a character string of 72 characters. The first 48 characters are the title for the run which
is entered on the first line of the input file; see Section 3.1 for more details. The last 24 charac-

77



ters are three 8 character variables, which are, in order, the version number of the code, the date
when the code was last modified, and the language of the source code (always “f77”). The
header is the first line printed to the screen during a MONT3D run; see the screen output in
Chapter 4 for an example. It is also used as a page header in the output file.

B.2.2 Control Information
1 Record of Length 3
FORTRAN Format Specification: 16i5

Format Entry Note(s)
Integer Number of surfaces including split surfaces (NSPTR) 1
Integer Number of materials (NUMMAT)
Integer Number of wavelength bands (NBANDS)

Notes:

1. While split surfaces are transparent to the user, the plot file contains information about them,
not the original unsplit surfaces.
B.2.3 Limiting Dimensions for the Geometry
1 Record of Length 6
FORTRAN Format Specification: 6(1x,f12.7)

Format Entry Note(s)
Real Minimum X value (XLO) 1
Real Maximum X value (XHI) 1
Real Minimum Y value (YLO) 1
Real Maximum Y value (YHI) 1
Real Minimum Z value (ZLO) 1
Real Maximum Z value (ZHI) 1

Notes:

1. Each of the hi values is slightly larger than the maximum value for the geometry and each lo
value is slightly less than the minimum value for the geometry.

B.2.4 Surface Information

The following records are repeated for each of the NSPTR surfaces. The surfaces are listed in
order of surface number.

78



Material Information
1 Record of Length 2
FORTRAN Format Specification: 16i5

Format Entry Note(s)
Integer Surface number
Integer Surface’s material number

Node Information
4 Records of Length 3
FORTRAN Format Specification: 6(1x,f12.7)

Format Entry Note(s)
Real X value of node i
Real Y value of node i 1
Real Z value of node i 1
Notes:

1. The X, Y, and Z coordinates are listed for each of the four nodes of the surface. One node is
listed per line.

B.2.5 Material Information

The following records are repeated 4*NUMMAT*NBANDS times. The records are repeated for
the four cumulative property types from the old material model in the following order: specular
transmittancetg), diffuse transmittancea ) + 1, specular reflectanced + 14 + 15, and diffuse
reflectancegy) + ps + 14 + T This series of material property records is repeated from 1 to NUM-
MAT times in each band in order of material number which in turn is repeated from 1 to NBANDS
for each band in order of band number.

Curve Name

1 Record of Length 16

FORTRAN Format Specification: al6
Format Entry Note(s)
Character Curve name

Curve Values
1 Record of Length 91
FORTRAN Format Specification: f10.7
Format Entry Note(s)
Real Curve values 1

79



Notes:

1. Curve values are listed in order from 0 to 90 degrees.

B.2.6 Number of Records in the Binary Exchange Matrix File

1 Record of Length 1

FORTRAN Format Specification: i10
Format Entry Note(s)
Integer Number of records in file 1

Notes:

1. This value was used by MPLOT [Nagesh and Burns, 1994] to read the exchange matrix infor-
mation from older versions of MONT3D which used familied binary files. Due to the new
exchange matrix file format used by MONT3D, this value no longer has any meaning and is
always set to 1.

B.3 Lost Photon File (Suffix .Ist, Unit 4)

The lost photon file contains the trajectory (photon ray end point) information for each lost pho-
ton and can be used with MPLOT [Nagesh and Burns, 1994] to display the trajectories, see Section
2.8 for more details. All the code for the writing of this file can be found in the subrgudineé
in the filem32s.f

The following series of records are repeat for each lost photon. Records are written in order of
lost photon number.
B.3.1 Header Card
1 Record of Length 5
FORTRAN Format Specification: 5(3x, i7)

Format Entry Note(s)

Integer Lost photon number (LOST)

Integer Event number (IEVENT) 1

Integer Number of points to be plotted along the patrticle’s trajectory (NPNTS) 2

Integer Subdivision number (ND) 3,4

Integer Number of surface where last emitted/reflected or transmitted (LERT) 3,4
Notes:

1. IEVENT is always set to 1.
2. NPNTS is always 2, and indicates that the trajectory just includes the starting and ending points.

80



3. Inthe MPLOT description of this file [Nagesh and Burns, 1994], the last two numbers written
to this record are supposed to be an integer, MAT, and a real, EO. Neither of these two variables
apply to MONT3D so they are replaced by ND and LERT.

4. LERT is the surface number of the last surface with which the photon was in contact, whether
that was as an emission, a reflection or a transmission. As described in Section 2.2, each surface
is divided into NDIVX x NDIVY subdivisions. ND gives the number of the subsection from
which the lost photon was emitted. It ranges from 0 to NDIVX x NDIVY - 1. It should be real-
ized that if a photon is reflected or transmitted before it is lost, LERT is generally not the surface
that emitted the photon.

B.3.2 Photon Ray’s Starting Point
1 Record of Length 3
FORTRAN Format Specification: 3(2x, €10.4)

Format Entry Note(s)
Real X coordinate of photon ray’s starting point
Real Y coordinate of photon ray’s starting point
Real Z coordinate of photon ray’s starting point

B.3.3 Photon Ray’s Ending Point
1 Record of Length 3
FORTRAN Format Specification: 3(2x, e10.4)

Format Entry Note(s)
Real X coordinate of photon ray’s ending point
Real Y coordinate of photon ray’s ending point
Real Z coordinate of photon ray’s ending point

B.4 Exchange Matrix File (Suffix .nij, Unit 8)

As discussed in Section 1.4, thermal balance codes such as TOPAZ3D [Shapiro, 1985] require
the exchange matrix information generated by MONT3D as input. To be compatible with
TOPAZ3D, this file may need to be processed with the program SMOOTH [Dolaghan et al., 1992],
which smooths the full matrix of exchange numbers into an upper triangle of numbers which obey
reciprocity. All the code for the reading and writing of this file can be found in the subraujines
file andnijheaderin the filem30s.f
B.4.1 Header Card

1 Record of Length 5
FORTRAN Format Specification: 7(i10, 1x)
Format Entry Note(s)

Integer Geometry code (NDIM) 1

81



Integer Number of surfaces (NSURF)

Integer Factor code (IFACT) 2
Integer Number of wavelength bands (NBANDS)
Integer Number of materials (NUMMAT)
Notes:
1. NDIMis 3.

2. IFACT is set to 2, and indicates that the file contains exchange numbers as opposed to view fac-
tors.
B.4.2 Surface Areas
1 Record of Length NSURF
FORTRAN Format Specification: 6(e12.5, 1x)
Format Entry Note(s)
Real Surface areas from 1 to NSURF

B.4.3 Surface Emittances
NBAND Records Each of Length NSURF
FORTRAN Format Specification: 6(e12.5, 1x)
Format Entry Note(s)
Real Hemispherical surface emittancglé, , from 1 to NSURF for
bandk 1,2

Notes:
1. The surface emittances are averaged over the hemisphedi (i.e.
2. The surface emittances are written in order from 1 to NSURF, for each band 1 to NBAND. A
new record (line) is started for each band.
B.4.4 Photon Number Matrix
NBAND Sets of NSURF Records Each of Length NSURF
FORTRAN Format Specification: 7(i10, 1x)

Format Entry Note(s)
Integer Numbers of absorbed photons emitted by surfaesorbed
by all surface$ for bandk 1,2

82



Notes:

1. Each record contains the number of photons absorbed by each prafagag from 1 to
NSURF for each surfagen the band. It should be noted that the file contains results for all
surfaces, even those that do not emit (which therefore have all zeroes for results). A new record
(line) is started for each surface. The records for all surfaces in order from 1 to NSURF in band
k specify an exchange matrix for bakdrhe exchange matrices for the 1 to NBANDS bands
are written in order to the file.

2. This file contains the full exchange matrices. The program SMOOTH [Dolaghan et al., 1992]
may be used to process these files into an upper triangle (including the diagonal) of numbers of
photons which have been smoothed to obey reciprocity.

B.5 Trajectory File (Suffix .trc, Unit 9)

The trajectory file contains the trajectory (photon ray end point) information for each photon and
can be used with MPLOT [Nagesh and Burns, 1994] to display the trajectories, see Section 2.8 for
more details. All the code for the writing of this file can be found in the subrauftrfleopin the
file m32s.f

The following series of records are repeat for each photon trajectory. Records are written in chro-
nological order.
B.5.1 Header Card
1 Record of Length 5
FORTRAN Format Specification: 5(1x,i5)

Format Entry Note(s)

Integer Photon number (IHIST) 1

Integer Event number (IEVENT)

Integer Number of points to be plotted along the patrticle’s trajectory (NPNTS) 3

Integer Material number of emitting surface 4

Integer Wavelength band number in which the photon is being traced 4
Notes:

1. IHIST starts at 1 and is incremented 1 for each new photon emitted. It is not incremented when
a photon is lost and re-emitted.

2. IEVENT is set to 1 when a photon is emitted and is incremented by 1 every time it is reflected
or transmitted. IEVENT is reset to 1 when a photon is lost and re-emitted.

3. NPNTS is always 2, and indicates that the trajectory includes just the starting and ending points.

4. In the MPLOT description of this file [Nagesh and Burns, 1994], the last two number written
to this record are supposed to be an integer, MAT, and a real, EO. Neither of these two variables
apply to MONT3D so they are replaced by the values listed above.

83



B.5.2 Photon Ray’s Starting Point
1 Record of Length 3
FORTRAN Format Specification: 3(2x, €10.4)

Format Entry Note(s)
Real X coordinate of photon ray’s starting point
Real Y coordinate of photon ray’s starting point
Real Z coordinate of photon ray’s starting point

B.5.3 Photon Ray’s Ending Point
1 Record of Length 3
FORTRAN Format Specification: 3(2x, e10.4)

Format Entry Note(s)
Real X coordinate of photon ray’s ending point
Real Y coordinate of photon ray’s ending point
Real Z coordinate of photon ray’s ending point

B.6 Leaks File (Suffix .lks, Unit 11)

The leaks file contains information about potential leaks. It can be used with MPLOT [Nagesh
and Burns, 1994] to display these potential leaks, see Section 2.8 for more details. All the code for
the writing of this file can be found in the subroutiméer in the flem313s.f

The following record is repeated as needed for each potential leak.

B.6.1 Leak Information
1 Record of Length 3
FORTRAN Format Specification: (1x, i2, 1x, 15, 1x, i2)

Format Entry Note(s)

Integer Type of leak (ITYPEL) 1,2

Integer Number of the surface associated with the leak

Integer Number of the side associated with the leak 3
Notes:

1. ITYPEL is 1 for a reversed edge, 2 for no match found with any other surface, 3 for a slip sur-
face. If ITYPEL is equal to 4 then the line is a continuation card that contains additional infor-
mation about the last leak.

2. The number of records required for each type of error varies. While only one record is required
for ITYPEL equal 2, two are required for ITYPEL equal 1 since the reversed edge is shared by
two surfaces. For ITYPEL equal 3, up to 15 records may be required since a slip surface may

84



touch many surfaces. The limit of 15 is a hardcoded limit in MONT3D itself. When more sur-
faces than this are involved with the slip surface, they are not written to the leaks file.

3. Side n is between nodes n and n + 1 for the surface. Side 4 is between nodes 4 and 1.

B.7 Block Exchange Matrix File (Suffix .bni, Unit 12)

The block exchange matrix files are used to hold the exchange factor results during a run. There
is one of these indexed files for each block of surfaces for which results have been calculated on
this or any previous run. The block exchange matrix files are combined into a regular exchange
matrix file at the end of a MONT3D run. Since load balancing has not been implemented yet,
blocks are determined as follows. A list is kept of all surfaces ordered by band and by surface num-
ber within band. This list is broken sequentially into blocks of size INEBLOCK|; see Sections 2.9
and 3.2.1 for more information. All the code for the reading and writing of this file can be found in
the subroutinaijfile in the filem30s.f

B.7.1 Exchange Information for the Block

INEBLOCK| Records of Length NSURF
FORTRAN Format Specification: 7(i10, 1x)

Format Entry Note(s)
Integer Numbers of absorbed photons emitted by surfaosorbed
by all surfacesg for bandk 1
Notes:

1. Each record contains the number of photons absorbed by each prafagag from 1 to
NSURF for the surfacein the band. Thei andk values for a block are determined using the
formula mentioned above. It should be noted that the file contains results for all surfaces, even
those that do not emit (which therefore have all zeroes for results). A new record (line) is started
for each emitting surface.

B.8 Temporary Exchange Matrix File (Suffix .tni, Unit 13)

The temporary exchange matrix file is used to hold the exchange matrix results when converting
back and forth between the regular exchange matrix file and the block exchange matrix files. This
file only exists for a short time during the input and clean up stages of a MONT3D run. This file is
binary direct access file with record length 4*NSURF (since all results written to disk are 4 byte
integers). All the code for the reading and writing of this file can be found in the subrujitiee
in the filem30s.f
B.8.1 Photon Number Matrix

NBAND Sets of NSURF Records Each of Length NSURF
Format Entry Note(s)

Integer Numbers of absorbed photons emitted by surfacsorbed

85



by all surfaces for bandk 1

Notes:

1. Each record contains the number of photons absorbed by each prafagag from 1 to
NSURF for each surfagen the band. It should be noted that the file contains results for all
surfaces, even those that do not emit (which therefore have all zeroes for results). A new record
(line) is started for each surface. The records for all surfaces in order from 1 to NSURF in band
k specify an exchange matrix for bakdrhe exchange matrices for the 1 to NBANDS bands
are written in order to the file.

B.9 Block File (Suffix .blk, Unit 14)

The block file contains the additional information MONT3D requires to restart from a crashed
run. The file is generated at the start of a MONT3D run and deleted at the end of a successful
MONTS3D run. To restart from a crashed run, the block file must be present as it is now how
MONT3D realizes that a restart from a crash is occurring. All the code for the reading and writing
of this file can be found in the subroutiolkfile in the filem313s.fThe block file was mainly cre-
ated to keep track of the surfaces in blocks for load balancing which has not been implemented yet.
Without load balancing, there is not much need for the information in this file. This file contains
several variables used internally by MONT3D for restart. It has little or no usefulness outside of
MONT3D and requires quite a bit of explanation. If the user needs to know about this file, one of
the authors should be contacted.

86



	Table of Contents
	List of Figures
	List of Tables
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.2 Theoretical Formulation
	1.3 View Factors
	1.4 MONT3D Implementation
	1.5 Overview of the Manual

	CHAPTER 2 COMPUTER CODE BACKGROUND
	2.1 Nodes
	2.2 Surfaces
	2.3 Split Surfaces, Planarity and Convexity
	2.4 Surface Concatenation
	2.5 Material Properties
	2.5.1 Material Property Curves
	2.5.2 Outgoing Directional Distributions
	2.5.3 Emission
	2.5.4 Cases Where the Reciprocity Relations Do Not Hold

	2.6 Shading
	2.7 Number of Photons, Convergence and Accuracy
	2.8 Aid in Debugging and Visualizing MONT3D Geometries
	2.9 Restart Capability
	2.10 Parallel Version
	2.11 Pseudo-Random Numbers
	2.11.1 Lagged Fibonacci Generators
	2.11.2 Implementation Details
	2.11.3 Effect of Different Random Sequences on Results


	CHAPTER 3 INPUT DECK
	3.1 Title Card
	3.2 Control Cards
	3.2.1 Card 1
	3.2.2 Card 2
	3.2.3 Card 3

	3.3 Grid Dimensions (Shading)
	3.4 Default Convergence Tolerance
	3.5 Nodal Point Data
	3.6 Surface Data
	3.7 Wavelength Band Data
	3.8 Material Type Data
	3.8.1 Card 1
	3.8.2 Card 2
	3.8.3 Card 3

	3.9 Material Property Curves Input
	3.9.1 Card 1
	3.9.2 Cards 2 to NP+1

	3.10 Semi-specular Offset Angle Curves Input
	3.10.1 Card 1
	3.10.2 Cards 2 to NP+1

	3.11 User Grid Input
	3.11.1 User X-grid Coordinates
	3.11.2 User Y-grid Coordinates
	3.11.3 User Z-grid Coordinates


	CHAPTER 4 PROGRAM EXECUTION
	4.1 Input File “box.in”
	4.2 Execution of File “box.in”
	4.3 Screen Output During Execution of File “box.in”
	4.4 Screen Output During Restart Execution of File “box.in”
	4.5 Machine Independence of MONT3D

	CHAPTER 5 IMPLEMENTATION DETAILS
	5.1 MONT3D Source Files
	5.1.1 Files Common to All Versions
	5.1.2 Command Line
	5.1.3 Timing Information
	5.1.4 Time and Date Information
	5.1.5 Parallel Implementation

	5.2 Compiling MONT3D
	5.2.1 Unix
	5.2.2 Microsoft Windows
	5.2.3 Macintosh

	5.3 Files Generated and Used by MONT3D
	5.4 Specifying File Names
	5.5 Parameter Statements and Memory Allocation
	5.5.1 Parameters Specifying Array Sizes
	5.5.2 Other Parameters

	5.6 Parallel Version
	5.6.1 Running the Parallel Version
	5.6.2 Worker Processes
	5.6.3 Files
	5.6.4 Errors
	5.6.5 Random Numbers

	5.7 Unix Batch Execution Using Scripts
	5.8 Precision

	REFERENCES
	APPENDIX A OLD MATERIAL MODEL
	A.1 Overview
	A.2 Outgoing Angles for Diffuse and Specular Interactions
	A.3 Material Type 2, Emission According to a User-Supplied Function
	A.4 Material Type 1, Beam Emission
	A.5 Material Types 0 Thorough -2, Normal Emission
	A.6 Material Types -3 and -4, Perfect Mirrors
	A.7 Material Type Data Cards
	A.8 Material Property Curves Cards
	A.8.1 Specular Transmittance
	A.8.2 Diffuse Transmittance
	A.8.3 Specular Reflectance
	A.8.4 Diffuse Reflectance


	APPENDIX B FILE FORMATS
	B.1 Restart File (Suffix .rst, Unit 2)
	B.1.1 IPARFLG
	B.1.2 Photon Emission Counts
	B.1.3 Random Number Generator Information
	B.1.4 Block Information

	B.2 Plot File (Suffix .plt, Unit 3)
	B.2.1 Header
	B.2.2 Control Information
	B.2.3 Limiting Dimensions for the Geometry
	B.2.4 Surface Information
	B.2.5 Material Information
	B.2.6 Number of Records in the Binary Exchange Matrix File

	B.3 Lost Photon File (Suffix .lst, Unit 4)
	B.3.1 Header Card
	B.3.2 Photon Ray’s Starting Point
	B.3.3 Photon Ray’s Ending Point

	B.4 Exchange Matrix File (Suffix .nij, Unit 8)
	B.4.1 Header Card
	B.4.2 Surface Areas
	B.4.3 Surface Emittances
	B.4.4 Photon Number Matrix

	B.5 Trajectory File (Suffix .trc, Unit 9)
	B.5.1 Header Card
	B.5.2 Photon Ray’s Starting Point
	B.5.3 Photon Ray’s Ending Point

	B.6 Leaks File (Suffix .lks, Unit 11)
	B.6.1 Leak Information

	B.7 Block Exchange Matrix File (Suffix .bni, Unit 12)
	B.7.1 Exchange Information for the Block

	B.8 Temporary Exchange Matrix File (Suffix .tni, Unit 13)
	B.8.1 Photon Number Matrix

	B.9 Block File (Suffix .blk, Unit 14)


