

USERS’ MANUAL

for

MONT3D - Code Version 2.4

by

Charles N. Zeeb, Patrick J. Burns, and Klemens Branner
Department of Mechanical Engineering

Colorado State University
Fort Collins, CO 80523

(970) 491-7479, 5778, and 7479
E-mail Addresses:

czeeb@lamar.colostate.edu
pburns@colostate.edu

and
klem@lamar.colostate.edu

and

John Dolaghan
Lawrence Livermore National Laboratory

E-mail Address: dolaghan@llnl.gov

April, 1999

.......1

.

.......

.

.......4

........

.....6

........8

........

...

..... 11

... 13

......

..... 17

.......18

....20

...

...

........24

...... 24

..... 25

..... 26

......2

.

.....

.....
Table of Contents

CHAPTER 1 INTRODUCTION ..

1.1 Background..1

1.2 Theoretical Formulation ..2

1.3 View Factors..4

1.4 MONT3D Implementation ..

1.5 Overview of the Manual ...5

CHAPTER 2 COMPUTER CODE BACKGROUND ...

2.1 Nodes ..6

2.2 Surfaces...6

2.3 Split Surfaces, Planarity and Convexity ...

2.4 Surface Concatenation ..10

2.5 Material Properties...10

2.5.1 Material Property Curves ...

2.5.2 Outgoing Directional Distributions ..

2.5.3 Emission ..16

2.5.4 Cases Where the Reciprocity Relations Do Not Hold......................................

2.6 Shading ...17

2.7 Number of Photons, Convergence and Accuracy..

2.8 Aid in Debugging and Visualizing MONT3D Geometries ..

2.9 Restart Capability ..22

2.10 Parallel Version ...22

2.11 Pseudo-Random Numbers ..

2.11.1 Lagged Fibonacci Generators..

2.11.2 Implementation Details ..

2.11.3 Effect of Different Random Sequences on Results ..

CHAPTER 3 INPUT DECK..7

3.1 Title Card ..27

3.2 Control Cards...27

3.2.1 Card 1 ... 27

3.2.2 Card 2 ... 29
i

.....

.......32

.......33

...

.

.......35

.....

.....

.....

.....

......38

.....

...... 38

......38

......

...... 39

...

..... 39

..... 39

..... 40

....41

.

.....4

....45

.....47

......49

..50

......50

.... 50

..... 51

.... 51

..... 52
3.2.3 Card 3 ... 31

3.3 Grid Dimensions (Shading) ...

3.4 Default Convergence Tolerance ..

3.5 Nodal Point Data..33

3.6 Surface Data...33

3.7 Wavelength Band Data ..

3.8 Material Type Data ..35

3.8.1 Card 1 ... 35

3.8.2 Card 2 ... 36

3.8.3 Card 3 ... 37

3.9 Material Property Curves Input ..

3.9.1 Card 1 ... 38

3.9.2 Cards 2 to NP+1 ..

3.10 Semi-specular Offset Angle Curves Input..

3.10.1 Card 1 .. 38

3.10.2 Cards 2 to NP+1 ..

3.11 User Grid Input ..39

3.11.1 User X-grid Coordinates...

3.11.2 User Y-grid Coordinates...

3.11.3 User Z-grid Coordinates ...

CHAPTER 4 PROGRAM EXECUTION..

4.1 Input File “box.in” ...41

4.2 Execution of File “box.in”...4

4.3 Screen Output During Execution of File “box.in”..

4.4 Screen Output During Restart Execution of File “box.in” ..

4.5 Machine Independence of MONT3D ...

CHAPTER 5 IMPLEMENTATION DETAILS..

5.1 MONT3D Source Files...

5.1.1 Files Common to All Versions ..

5.1.2 Command Line ...

5.1.3 Timing Information ...

5.1.4 Time and Date Information ..
ii

..... 52

.....53

...

.... 54

..... 5

.......55

.......

.......58

...... 58

....... 59

..

..... 60

....... 61

...

....

...... 63

......64

.69

.....70

....70

......70

.....71

.....71

.......71

.......72

...... 72

..... 73

...... 73

..... 74
5.1.5 Parallel Implementation..

5.2 Compiling MONT3D...

5.2.1 Unix .. 53

5.2.2 Microsoft Windows...

5.2.3 Macintosh ...5

5.3 Files Generated and Used by MONT3D ...

5.4 Specifying File Names...55

5.5 Parameter Statements and Memory Allocation ...

5.5.1 Parameters Specifying Array Sizes ...

5.5.2 Other Parameters ..

5.6 Parallel Version ..60

5.6.1 Running the Parallel Version..

5.6.2 Worker Processes ...

5.6.3 Files .. 61

5.6.4 Errors ... 62

5.6.5 Random Numbers..

5.7 Unix Batch Execution Using Scripts ..

5.8 Precision ...65

 REFERENCES ...66

APPENDIX A OLD MATERIAL MODEL...

A.1 Overview..69

A.2 Outgoing Angles for Diffuse and Specular Interactions...

A.3 Material Type 2, Emission According to a User-Supplied Function...........................

A.4 Material Type 1, Beam Emission ..

A.5 Material Types 0 Thorough -2, Normal Emission..

A.6 Material Types -3 and -4, Perfect Mirrors ..

A.7 Material Type Data Cards...

A.8 Material Property Curves Cards ...

A.8.1 Specular Transmittance ..

A.8.2 Diffuse Transmittance ...

A.8.3 Specular Reflectance ..

A.8.4 Diffuse Reflectance ...
iii

....76

.....76

.... 76

...... 76

..... 77

.... 77

....

......

.... 78

... 78

..... 78

.... 79

... 80

.....80

...... 80

..... 81

..... 81

....81

...... 81

...... 82

...... 82

.... 82

....83

...... 83

..... 84

..... 84

.....84

.... 84

...85

.... 85

...85

.... 85
APPENDIX B FILE FORMATS...

B.1 Restart File (Suffix .rst, Unit 2) ..

B.1.1 IPARFLG..

B.1.2 Photon Emission Counts...

B.1.3 Random Number Generator Information...

B.1.4 Block Information...

B.2 Plot File (Suffix .plt, Unit 3) ..77

B.2.1 Header... 77

B.2.2 Control Information ..

B.2.3 Limiting Dimensions for the Geometry...

B.2.4 Surface Information ...

B.2.5 Material Information...

B.2.6 Number of Records in the Binary Exchange Matrix File

B.3 Lost Photon File (Suffix .lst, Unit 4) ..

B.3.1 Header Card ..

B.3.2 Photon Ray’s Starting Point...

B.3.3 Photon Ray’s Ending Point..

B.4 Exchange Matrix File (Suffix .nij, Unit 8)...

B.4.1 Header Card ..

B.4.2 Surface Areas..

B.4.3 Surface Emittances ...

B.4.4 Photon Number Matrix ...

B.5 Trajectory File (Suffix .trc, Unit 9)..

B.5.1 Header Card ..

B.5.2 Photon Ray’s Starting Point...

B.5.3 Photon Ray’s Ending Point..

B.6 Leaks File (Suffix .lks, Unit 11) ...

B.6.1 Leak Information ..

B.7 Block Exchange Matrix File (Suffix .bni, Unit 12) ..

B.7.1 Exchange Information for the Block ..

B.8 Temporary Exchange Matrix File (Suffix .tni, Unit 13) ...

B.8.1 Photon Number Matrix ...
iv

....86
B.9 Block File (Suffix .blk, Unit 14) ..
v

vi

List of Figures

Figure 1.1: Example Geometry Which Can be Simulated...1

Figure 2.1: Nodal Coordinate System..6

Figure 2.2: Radiating Surface Geometries...7

Figure 2.3: Three-Dimensional Surface Details ..8

Figure 2.4: Planar Quadrilateral Divided into Two Overlapping Triangles9

Figure 2.5: Local Material Coordinate System..11

Figure 2.6: Material Properties vs. Incident Cone Angle ..12

Figure 2.7: Cross-sectional Views of Reflectance Models..14

Figure 2.8: Cross-sectional View of Weighted Diffuse, Normalized PDF’s.................................14

Figure 2.9: Normalized, Weighted Semi-specular Directional Distributions................................15

Figure 2.10: 2-D Illustration of the Grid Shading Algorithm..17

Figure 2.11: Convergence vs. Number of Photon Emissions ..19

Figure 2.12: Example of a Reversed Edge...21

Figure 2.13: Example Master-Worker Architecture ..23

Figure 2.14: Bit Structure of 32 Bit Initial Seed for Parallel Processes ..26

Figure 4.1: 3-D Geometry of File “box.in”..41

Figure 4.2: Material Property Curve for File ‘‘box.in’’...43

Figure 5.1: Contents of Script File “submit” ...64

Figure A.1: Conventions for Outgoing Angles..70

List of Tables

Table 2.1: Accuracy in Exchange Fractions .. 19

Table 5.1: MONT3D Files ... 56

Table 5.2: Command Line File Control ... 57

Table A.1: Material Property Summary ... 69

e
.4.

lation
is fol-
rview

e Uni-
ith
eeb
iative
etries

Figure
lized
 orien-
times
flect
t be
 may
e band
L)
 code,
CHAPTER 1 INTRODUCTION

This manual encompasses the 3-D Monte Carlo radiative exchange factor computer cod
“MONT3D.” This chapter gives a quick overview of the code, particularly its latest version, 2
The chapter begins with the background of the code. This is followed by a theoretical formu
of exchange factors calculated by the code. Next is a brief discussion of view factors. This
lowed by a short discussion of the MONT3D implementation. The chapter ends with an ove
of the rest of the manual.

1.1 Background

MONT3D was developed in the Department of Mechanical Engineering at Colorado Stat
versity (CSU) beginning with the work of Scott Statton in 1983 [Statton, 1983], continuing w
the work of James D. Maltby [Maltby, 1987; Maltby, 1990], Charles N. Zeeb [Zeeb, 1997; Z
and Burns, 1999], and Klemens Branner [Branner, 1999]. The code is used to calculate rad
exchange factors for enclosures with a nonparticipating medium. The focus is complex geom
rather than sophisticated physics. A simple geometry which may be simulated is shown in
1.1. The 3-D code is capable of simulating geometries modeled as assemblages of genera
quadrilaterals (and triangles), which are constrained to be flat, but may otherwise be in any
tation. Curved surfaces must be approximated by a sufficient number of flat surfaces, some
termed “faceting,” to “capture” the curvature. Surfaces may absorb photons, or they may re
and/or transmit them specularly, semi-specularly and/or diffusely. All exterior surfaces mus
non-transmissive (it is left to the user to ensure this). All material incident radiative properties
be explicit functions of the incident photon angle, and be dependent upon energy through th
wavelength formulation. Donald L. Brown of Lawrence Livermore National Laboratory (LLN
and Katherine Bryan of Oak Ridge National Laboratory have exhaustively exercised the 3-D
checking it for validity.

Figure 1.1: Example Geometry Which Can be Simulated

3-D Cartesian

Y

Z

X

System
1

, improv-
999].

ent,
 com-
 to use
 input
ut files

tured
ckard,

 some
in-
r, one

on
ther

lems,
lcula-
 to the
clude
D
90;
sive

ve

essor
he
s and

3D
 code
rm
ring
ulat-

f this

itted
ts

The code has recently been updated extensively. The core of the code has been recoded
ing the efficiency of the code by around 44% in test cases [Zeeb, 1997; Zeeb and Burns, 1
Also, the 3-D code has been parallelized to run under the PVM [Geist et al., 1994] environm
with very good success. Furthermore, a new material model, which includes semi-specular
ponents of reflectance and transmittance, has been implemented in the 3-D code. In order
these enhanced capabilities to the greatest effectiveness, additional detail is required in the
file, which has been changed from the older format to the one described herein. However, inp
in the “old” format will still work, as the changes are backwards compatible.

The current version of the code can be run on any computer which possesses a fully fea
FORTRAN 77 or Fortran 90 compiler, and has been extensively tested on Sun, Hewlett Pa
IBM, DEC, SGI, Intel, and Macintosh architectures. A robust Makefile has been implemented
which allows the code to be compiled on virtually any Unix platform, although in some cases
nonessential functions will be lost. More detail on compiling the code for Unix, Microsoft W
dows, and Macintosh platforms is provided in Chapter 5. Should compilation problems occu
of the authors should be contacted.

In order to serve users better, a World Wide Web site for the code exists at
http://www.colostate.edu/~pburns/monte.html. The WWW site will include general informati
about the code, contact information for the authors, the current version of the manual and o
documents of interest.

A number of related publications exist wherein the code has been applied to various prob
including a detailed test of the Separator Development Facility (SDF) [Maltby, 1987], the ca
tion of radiative exchange in passive solar enclosures [Maltby et al., 1986], and application
Laser Isotope Separation (LIS) process [Burns and Pryor, 1989]. Work has been done to in
the modeling of combustion gases, particularly carbon dioxide and water vapor, in MONT2
[Zeeb, 1996]. Five other publications of interest are Pryor and Burns, 1986; Burns et al., 19
Maltby and Burns, 1991; Burns et al., 1992; and Schweitzer et al., 1993. Also a comprehen
review article of the MONTE codes is in press [Burns and Pryor, 1999]. Finally, an alternati
approach for diffuse view factors is the FACET code of Shapiro [Shapiro, 1983].

A number of related codes are available in the public domain. These include the postproc
SMOOTH [Dolaghan et al., 1992] - which smooths the results and establishes reciprocity; t
graphical postprocessor MPLOT [Nagesh and Burns, 1994], which runs on Sun workstation
under Microsoft Windows; MONT2D [Maltby et al., 1994] - an older 2-D version of the MONT
code which simulates 2-D and axisymmetric geometries; MONT3E [Crockett et al., 1990] - a
for simulating electron transport in three dimensions in the presence of a spatially nonunifo
magnetic field; SPUT3D [Dolaghan, 1991] - a code for simulating molecular redistribution du
sputtering in three-dimensional enclosures; and MONT3V [Dolaghan, 1996] - a code for sim
ing rarefied gas dynamics. Information on these codes may be obtained from the authors o
manual.

1.2 Theoretical Formulation

MONT3D is formulated in the Monte Carlo style where a large number of photons are em
from each surface and “traced” until each is absorbed by another surface. Using the subscripi and
j to denote the emitting and absorbing surfaces, respectively, and the superscript k to denote the
wavelength band, it can be shown that:
2

-

llows:
 (1.1)

where:

= one way rate of radiative heat transfer emitted from surface i and absorbed by surface

j in wavelength band k (W).

 = hemispherical emittance of surface i in wavelength band k.

 = number of photons emitted in wavelength band k from surface i and absorbed by sur

face j.

 = total number of photons emitted in wavelength band k from surface i.

 = Stefan-Boltzman constant, .

 = absolute temperature of surface i (K).

 = fraction of the blackbody energy of surface i in wavelength band k.

 = area of surface i (m2).

The ordinary definitions of the exchange factor and the exchange fraction are as fo

 (1.2)

The following rules apply to these quantities:

(1.3)

or:

(1.4)

Q̇i j→
k εi

k
Nij

k

Ni
k

----------------σTi
4

F i
k

Ai=

Q̇i j→
k

εi
k

Nij
k

Ni
k

σ 5.669x10
8–

W m
2–

K
4–••()

Ti

F i
k

Ai

Eij
k

Fij
k

Eij
k εi

k
Fij

k εi
kNij

k

Ni
k

--------= =

Eij
k

j
∑ εi

k
=

Fij
k

j
∑ 1=
3

st be
ces, the

nge fac-
ns may
 a con-

 of inci-
mittance
s are

atrix
NT3D
loped

2] is
change
h

ry to
e geom-
y/mate-
Equations (1.3) and (1.4) express conservation of energy (photons) since all photons mu
absorbed by a surface. Given that there must be zero net heat flow between isothermal surfa
second law of thermodynamics (entropy principle) follows from Equation (1.1) as:

(1.5)

or:

(1.6)

The net radiative exchange in wavelength band k from surface i to surface j is then:

(1.7)

or:

(1.8)

Either of the relations expressed as Equations (1.5) or (1.6) may be used to test the excha
tors or the exchange fractions for consistency (convergence). Indeed, either of these relatio
be used to manipulate the values in the matrix if either of Equations (1.3) or (1.4) is used as
straint.

1.3 View Factors

The code may be used to compute view factors, valid for diffuse reflectances independent
dent angle. To do so, all reflectances and transmittances must be set to 0.0, resulting in an e
of 1.0 (“black”) for all surfaces. In this limiting case, exchange factors for blackbody surface
equal to view factors.

1.4 MONT3D Implementation

MONT3D is typically used as a “preprocessor” for thermal balance studies. As such, the m
of exchange factors output from the program is used as input to a thermal analysis code. MO
is designed to be compatible with the thermal analysis code, TOPAZ3D [Shapiro, 1985], deve
at Lawrence Livermore National Laboratory by Art Shapiro. SMOOTH [Dolaghan et al., 199
a postprocessor designed to take advantage of reciprocity to improve the accuracy of the ex
factors. SMOOTH operates on the output of MONT3D and produces output compatible wit
TOPAZ3D.

Fundamentally, the geometry and the material properties are the only quantities necessa
establish the exchange factors. The exchange factors result from the interaction between th
etry and the material properties in a complex fashion, and are unique to a particular geometr

Eij
k

Ai E ji
k

Aj=

εi
k
Fij

k
Ai ε j

k
F ji

k
Aj=

Q̇ij
k

Eij
k

Aiσ F i
k
Ti

4
F j

k
T j

4
–

 =

Q̇ij
k

εi
k
Fij

k
Aiσ F i

k
Ti

4
F j

k
T j

4
–

 =
4

terial
ny
lack),
rs are
d from
iation
 is not
n inci-

ases of
d gas
cular

esents,
blem
t the
rial property combination. Therefore, it is not possible to extend a set of exchange factors
calculated for a particular geometry/material property combination to another geometry/ma
property combination, even if only the geometry or only the material properties vary. After a
changes the problem must be rerun. However, if view factors are calculated (all properties b
arbitrary diffuse reflectances may be included in the thermal analysis code since view facto
dependent on geometry alone. Note that diffuse exchange with finite reflectances calculate
the present codes may yield different answers than those obtained using the radiosity/irrad
approach, as the assumption in the radiosity approach is uniform radiosity/irradiation, which
a mandatory condition for the present code. Specularity or material property dependence o
dent angle may not be modeled using view factors.

In addition to radiation exchange, this code can also be used to simulated some special c
other transport problems in enclosures. If the Knudsen number is much less than 1, rarefie
dynamics problems can be simulated (a vacuum vessel). Also, some simple cases of mole
sputtering in an enclosure can be simulated.

1.5 Overview of the Manual

In Chapter 2, the general background required to run MONT3D is presented. Chapter 3 pr
in great detail, the format of the input file (data deck) that MONT3D requires. A sample pro
is used to demonstrate how to run MONT3D in Chapter 4. The more technical details abou
MONT3D implementation are covered in Chapter 5.
5

hree
s. Next,
he code
tion
 number
m is
 from
ered.

f the
ace

ber of

m.
 specify-

format.

efined
neral-
he last
 types

 are
CHAPTER 2 COMPUTER CODE BACKGROUND

This chapter presents the background information necessary to run MONT3D. The first t
sections define the geometry of a radiating enclosure in terms of nodes and radiating surface
there is a note on the surface concatenation option. The material interactions supported by t
and how materials are specified by the user is the subject of the fifth section. The sixth sec
explains the available shading algorithms, while the seventh discusses accuracy versus the
of photons emitted. Next, debugging and visualization information generated by the progra
covered. This is followed by information on the restart capability, whereby a run may proceed
a previously calculated state. In the tenth section, the parallel execution of MONT3D is cov
The chapter concludes with a discussion of the pseudo-random number generator.

2.1 Nodes

The description of the geometry of the radiating enclosure begins with the specification o
nodes (also called nodal points) of the enclosure. A node is a point in three-dimensional sp
defined by three coordinates in a Cartesian coordinate system {X, Y, Z}, as depicted in Figure 2.1.
Each node, N, in the enclosure is assigned a node number which must be positive and a mem
the closed, full set N ε {1,NUMNP}, where NUMNP is the total number of nodes for the proble
Once the nodes of the enclosure have been specified, radiating surfaces can be defined by
ing sets of nodal points. See Sections 3.2.1 and 3.5 for additional detail on the node input

2.2 Surfaces

Three-dimensional radiating surfaces consist of planar quadrilaterals or triangles and are d
by specifying four nodal points. If four distinct points are specified, then the surface is a ge
ized quadrilateral, as shown in Figure 2.2(a). If it is desired to use triangular surfaces, then t
two node numbers must be identical as shown in Figure 2.2(b). The outward normal for both
of surfaces is defined consistent with the right-hand rule, i.e. if the fingers of the right hand

Figure 2.1: Nodal Coordinate System

Y

Z

X

Node N - {X,Y,Z}
6

ight
ntion
tons

mal
 speci-
. For
 is able
on the

endent
n Sec-

 at
rs from
ce in the

in
re
ction

sion
ce to
 rec-
ould
rface)
 More
.

curled in the direction of increasing nodal point number , then the thumb of the r
hand indicates the direction of the outward normal. This results in a counterclockwise conve
for nodal point numbering, when “viewing” the radiating side of the surface from above. Pho
are only emitted from the “front” of the surface (i.e. in the direction in which the surface nor
points); the “back” side of the surface is transparent as far as the code is concerned. When
fying the surfaces, they must be convex (for more discussion of convexity, see Section 2.3)
quadrilaterals, the four nodes should be coplanar (to within a small tolerance), but the code
to handle non-planar quadrilaterals; see Section 2.3 for more details. Additional information
surface input format is given in Section 3.6.

Each radiating surface is assigned a material number, and all material properties are indep
of spatial position on a single surface. More detail on the material properties is given below i
tion 2.5.

Referring to Figure 2.3(a), one observes the local (primed) coordinate system with vertexN1,
and axes as shown. Each surface is divided into equally spaced regions, and emission occu
the centroids of these subsurfaces. The user determines how many subsurfaces each surfa
geometry will be divided into by specifying NDIVX and NDIVY, the number of subdivisions
the x’ and y’ directions; see Section 3.2.2 for the input specification of these variables. Figu
2.3(b) depicts this for four subdivisions in the y' direction and three subdivisions in the x' dire
(here, editorial license has been taken as, in general, x' is not aligned with the lines N1 - N4 or N2 -
N3, as it is normal to the y' and z' axes). The dots in Figure 2.3(b) indicate the photon emis
points. The number of photons emitted from each point is scaled by the area of its subsurfa
eliminate bias that would otherwise result in “hot spots.” At least 10 divisions in x' and y' are
ommended for uniform surface emission (default is 5). Additionally, at least 100 photons sh
be emitted from each emission point per loop (specified by the variable NPHTN for each su
to render insignificant round-off problems in scaling photon emissions to subsurface areas.
detail about specifying the number of photons to emit from a surface is given in Section 2.7

Figure 2.2: Radiating Surface Geometries

N1

N4

N2

N3

N1

N2

N3 N4=

(a) 3-D Quadrilateral (b) 3-D Triangle

n n

N1 N4→()
7

(a con-
 handle
h are
tioned
utput,

unno-

ace,
 two

at-
2-3 is
2-3.
gure,
tail
xity test

ine split
nd con-
planar-
ow

to the
2.3 Split Surfaces, Planarity and Convexity

As mentioned above, while surfaces in MONT3D are supposed to be planar and convex
vex surface is usually defined as one with no interior angles greater than 180˚), the code can
non-planar surfaces. It does this by dividing non-planar quadrilaterals into two triangles whic
planar and convex by definition. Since the photons emitted by the original surface are propor
to the two split surfaces and the results for the two split surfaces are combined in the final o
this division is totally transparent to the user. In fact, it is often easy for split surfaces to go
ticed by the user because MONT3D only issues warnings for these surfaces, not errors.

This is unfortunate because while there is little harm in splitting a slightly non-planar surf
extremely non-planar surfaces may be modelled very badly; they may even be modelled as
overlapping triangles. An example for a planar surface is shown in Figure 2.4 where the quadril
eral in the figure is split into the triangles defined by nodes 1-2-3 and 1-3-4. The triangle 1-
not part of the original quadrilateral and the triangle 1-3-4 completely covers the triangle 1-
While MONT3D would automatically reject a concave quadrilateral such as the one in the fi
it may not catch all ill-defined non-planar split surfaces; this will be discussed in greater de
below. This problem has become more severe recently, since, due to user request, the conve
has been relaxed, particularly for non-planar surfaces.

If surfaces are non-coplanar, unpredictable results can occur. The user is advised to exam
surfaces carefully. Often the wisest course is to redefine the surfaces to make them planar a
vex. Most of the potential problems mentioned above are closely related to the concepts of
ity and convexity. For this reason, the planarity and convexity tests done by MONT3D and h
split surfaces relate to them are described below. There are also potential problem related
number of photons emitted from each emission point which will also be described below.

Figure 2.3: Three-Dimensional Surface Details

X
Z

Y

y'

z' n=

x'

(a) Global - Local Coordinate Systems (b) Photon Emission Points

Local (Primed)

N1

N1 N2

N2

N3

N3

N4

N4
8

ngles
e than
e), the
try dif-
geom-
riginal
Indeed,
that if
otons
 quad-
lit the
eter-
.

gle
[1994].
 non-
ral into
is,
 not
ls.

 that
gths of
 split or
um of
 node

hin a
. The
nce

 default
To assess the planarity of a surface, the dot product of the surface normals of the two tria
defined by the nodes 1-2-3 and 1-3-4 is calculated. If this dot product differs from one by mor
a predefined tolerance (SPLITOL, see Section 3.2.3 for the input specification of this variabl
surface is divided into two planar triangles. It should be realized that this results in a geome
ferent from the original one - i.e. a lack of consistency exists in the original versus simulated
etry. Indeed, greater differences in non-planarity result in greater inconsistencies with the o
geometry. If these aberrations are large, unpredictable and unintended results may occur.
there is no substitute for a well-defined geometry. On the other hand, it should be realized
the value of SPLITOL is too high, non-planar surfaces will not be split and excessive lost ph
and other such problems can occur. When splitting a surface, MONT3D arbitrarily splits the
rilateral along the line from node 1 to node 3. While in certain cases it may be “better” to sp
quadrilateral along the line from node 2 to node 4, there is no known way for MONT3D to d
mine which way is better, so the surface always splits along the line from node 1 to node 3

MONT3D also tests for convexity. A common definition for convexity is that no interior an
can exceed 180˚, but a complete definition is much more complex; see Schorn and Fisher
By definition, a convex polygon is planar, so the convexity tests are not totally applicable to
planar quadrilaterals. This is unfortunate because it is possible to split a concave quadrilate
two overlapping triangles, perhaps similar to those shown in Figure 2.4. To try to prevent th
MONT3D applies modified convexity tests to non-planar surfaces. These tests probably do
catch all overlapping triangles, but we know of no foolproof test for non-planar quadrilatera

The convexity test in MONT3D has two parts. For the first convexity test, a check is done
the sum of the lengths of each pair of non-adjacent sides is shorter than the sum of the len
the two surface diagonals. If this is not the case, the surface is rejected whether it has been
not and MONT3D exits with an error. For the second convexity test, a check is done of the s
the areas of triangles comprising the surface for both the cases of splitting along the lines from
1 to node 3, and from node 2 to node 4. For a planar surface, if the areas do not match wit
certain tolerance, the quadrilateral is considered concave and MONT3D exits with an error
tolerance is given as the percent difference of the areas (PDA) being compared. This tolera
(pdamax) is a parameter which can be set by the user; see Section 5.5.2 for more details. Its

Figure 2.4: Planar Quadrilateral Divided into Two Overlapping Triangles

N1

N2

N3

N4
9

is test,

ncy
he
ngles.
value,
e prop-
h a

blem.
gerous

 split.
each
d
east one
leading
s per
 set
f pho-

ng

due to
 infor-
n pro-
r

ds the
 are
 The
terial
 -

If neg-
t spec-

re 2.5
value is 0.1 (a 0.1% difference between the two areas). Non-planar split surfaces often fail th
but when they do, only a warning is issued.

It should be realized that the PDA for a surface is a good measure of the lack of consiste
involved in modelling the surface as two split surfaces or as convex. The larger this value, t
greater the chance that the surface is modelled incorrectly, for example, as overlapping tria
Since MONT3D accepts any non-planar set of split surfaces no matter how large their PDA
the user must make sure that the split surfaces, particularly those with high PDA values, ar
erly defined. The MONT3D output file does include a warning that lists all split surfaces wit
PDA greater than pdamax and their PDA values. The user should consult this list to determine
which surfaces may require redefinition.

When a planar surface fails the second convexity test, there are three ways to fix the pro
The only safe way to fix the problem is to redefine the surface so that it is convex. More dan
solutions are to lower SPLITOL enough to mark the surface as non-planar or to increase pdamax
enough that the surface is marked as convex. Neither solution is recommended.

When a surface is split, it should emit as many photons per loop as it would if it were not
To ensure this, while the number of subdivisions in the x and y directions are the same for
split surface, the number of photons emitted per emission point per loop (NPHTN) is divide
between the two surfaces weighted by the area of each surface. Frequently, this causes at l
of the split surfaces to emit many fewer than the suggested 100 photons per emission point
to round-off errors. There may even be significant round-off error in the division of the photon
emission point between the two split surfaces. Therefore, for split surfaces, the user should
NPHTN to values greater than 100. The MONT3D output file lists the area and the number o
tons emitted per emission point for all surfaces including split surfaces. More detail on setti
NPHTN and other such topics is given in Sections 2.7 and 2.2.

2.4 Surface Concatenation

Previous versions of MONT3D permitted surface concatenation. Current versions do not
the limitations associated with error checking and restart (it is impossible to recover restart
mation from concatenated information, as some information is lost during the concatenatio
cess). If it is desired, concatenation can be done a posteriori by operating on the exchange facto
matrices.

2.5 Material Properties

The current version of MONT3D has a new material model. The new material model exten
older material model in two respects. First, semi-specular outgoing directional distributions
included for both transmission and reflection. Secondly, material input has been simplified.
input formats for the new and old material models are not compatible. MONT3D will read ma
property input in either the new or the old input format. The input control variable, NUMMAT
the number of materials, is used to control the format of the material properties to be input.
ative, the new format is used; if positive, the old format is used. See Section 3.2.1 for the inpu
ification of NUMMAT.

The material properties are defined in terms of a local spherical coordinate system. Figu
defines the cone angle, θ, and the azimuthal angle, φ, with x' and y' in the plane of the surface.
10

rec-
odel

s are
,
Material properties are presented below in terms of material property curves, outgoing di
tional distributions, and emission. Information about the input format for the new material m
is given in Sections 3.8-3.10. The old material model is covered in detail in Appendix A.

2.5.1 Material Property Curves

Material properties describe the interaction of a particle with a material. Material propertie
independent of incoming azimuthal angle, φ, but may be dependent upon incoming cone angleθ.
The properties are defined as constant (gray) within a particular radiative band k, so that Kirchoff’s
law applies within each band. Explicitly:

(2.1)

where:

 = emittance in wavelength band k at outgoing cone angle, θ

 = absorptance in wavelength band k at incident cone angle, θ

 = diffuse reflectance in wavelength band k at incident cone angle, θ

 = specular reflectance in wavelength band k at incident cone angle, θ

 = semi-specular reflectance in wavelength band k at incident cone angle, θ

 = diffuse transmittance in wavelength band k at incident cone angle, θ

Figure 2.5: Local Material Coordinate System

θ

φ

y'
x'

z' n=
Photon Emission Vector

εk θ() αk θ()=1 ρd
k θ()– ρs

k θ()– ρss
k θ()– τd

k
– θ() τs

k θ() τ– ss
k

– θ()=

εk θ()

αk θ()

ρd
k θ()

ρs
k θ()

ρss
k θ()

τd
k θ()
11

y, i.e.

tal
 simi-
lar and
nts

f

rties.
ces as
 band
 the

 2.5.3.

 = specular transmittance in wavelength band k at incident cone angle, θ

 = semi-specular transmittance in wavelength band k at incident cone angle, θ

Hereinafter, we drop the explicit dependence upon wavelength band k, and carry an implicit
dependence. It should be noted that all properties may be considered in terms of probabilit
ρd(θ) is the probability that a photon of incident angle θ will be diffusely reflected, ρs(θ) is the
probability that a photon of incident angle θ will be specularly reflected, etc. Furthermore, the to
reflectance in band k is the sum of the specular, semi-specular and diffuse components, and
larly for the total transmittance. The fundamental difference among the specular, semi-specu
diffuse components is the shape of the outgoing directional distributions for these compone
(covered in Section 2.5.2 below).

Since material properties are both constant in each wavelength band and independent oφ, the
emittance and absorptance for a given wavelength band and θ are equal by virtue of Kirchoff’s law.
The absorptance and emittance here are determined as the complement of the other prope
Thus, specification of the diffuse, specular and semi-specular reflectances and transmittan
functions of the incident angle uniquely defines the incident properties within one wavelength
for a material. In the case of ordinary emission, the directional emittance is determined from
absorptance. However, other possibilities for emission exist, as described below in Section

Figure 2.6 depicts the material property curves as functions of the incident cone angle, θi within
a wavelength band k. At any particular value of incident cone angle, θi, an incident photon has the

Figure 2.6: Material Properties vs. Incident Cone Angle

τs
k θ()

τss
k θ()

1.0

0.0
θi θ̂i=

Incident Angle (Degrees)

τd

τs

ρs

ρd

ε = α

τss

ρss

0o 90o
12

semi-
rties

had to
 these
bse-
, the
 this

tion
s used
lot file
 ascer-

utions
urns

tional
 To
ecalled
, inci-

mpo-
ments

bution
terials.
gle,
e been
Figure

cular.

ce nor-

ted
following probabilities: ρd(θi), ρs(θi), ρss(θi), τd(θi), τs(θi), τss(θi), and 1-ρd(θi)−ρs(θi)−ρss(θi)-
τd(θi)−τs(θi)−τss(θi) for diffuse, specular, and semi-specular reflection, diffuse, specular, and
specular transmission, and absorption (or emission), respectively. Curves of material prope
must be input for every wavelength band for each material. In the old model, these curves
be input by point value as a function of cone angle. The new material model allows each of
properties to be input as a single, constant value, or by reference to a curve which must su
quently be input by point value as a function of cone angle. In the case of point value input
computer code parabolically interpolates between each three successive points entered. In
case, care must be taken to: (1) include bounding points of θ = 0o and θ = 90o (since no extrapola-
tion is done), and (2) to include enough points, varying smoothly, to result in good interpola
(i.e., discontinuous jumps must be input as “steep” parabolas with three non-coincident point
to define the jump). If curves are input by point value, then it is strongly suggested that the p
(file suffix .plt) and MPLOT [Nagesh and Burns, 1994] be used to view the curves created, to
tain that the interpolation is physically reasonable.

2.5.2 Outgoing Directional Distributions

Photon/material interactions of seven types may occur. These outgoing directional distrib
will be discussed briefly below. A more detailed discussion of these distributions is given by B
and Pryor [1999]. In the current discussion, for purposes of illustration, these outgoing direc
distributions will be presented graphically for reflection only, and depicted in cross-section.
establish a basis for the ensuing discussion, the definition of the bidirectional reflectance is r
as ρ''(θi, φi, θo, φo), where the double prime indicates that it is dependent upon two directions
dent (θi, φi) and outgoing (θo, φo).

Figure 2.7(a) depicts the traditional model for reflection, consisting of a purely specular co
nent and a purely diffuse component. The current model in MONT3D includes three enhance
to the traditional model. First, the diffuse distribution may be weighted in cos(θ) to allow control
of the shape of the outgoing directional distribution. Second, a semi-specular outgoing distri
is added. The semi-specular distribution is “spread” in space to represent more realistic ma
Third, the semi-specular distribution may be modeled using an offset about the specular an
∆θo(θi), which usually tends toward the grazing from the specular angle. These features hav
observed by Torrance and Sparrow [1966], and are shown conceptually in cross-section in
2.7(b).

Three components of reflectance are modelled: weighted diffuse, specular and semi-spe
Each is discussed below.

The weighted diffuse component exhibits a symmetric shape of revolution about the surfa
mal. The weighting exponent, rd, controls how much the distribution tends toward the normal
direction. The probability distribution functions (PDF’s) for energy (not intensity) for the weigh
diffuse distribution are:

(2.2)

PDF(φo) = 1/(2π) (2.3)

PDF θo() rd 1+()cos
rd(θo) θo()sin=
13

ted
with
d r

The coefficient (rd+1) in Equation (2.2) effects normalization of the distribution when integra
over θ from 0 to π/2. The normalized diffuse reflectance distributions are shown in Figure 2.8,
rd as a parameter. Note that rd = 1 represents the standard diffuse (Lambertian) distribution, and
= 0 represents an isotropic distribution. Values of rd exceeding 1 bias the distribution toward the

Figure 2.7: Cross-sectional Views of Reflectance Models

Figure 2.8: Cross-sectional View of Weighted Diffuse, Normalized PDF’s

θo = θiθi

Specular

Diffuse

(a) “Traditional” Model

θp =
θi

Weighted

(b) Model in MONT3D

Distribution
Diffuse

Semi-specular
Distribution

Weighted, Offset

θi+∆θo

Specular

-1.0 -0.5 0.0 0.5 1.00.0

0.5

1.0

rd = 0
1/2

1
2

5

Lambertian

Isotropic
14

azing

d, and
elled in

 offset
 in

utgo-
 the

 used

) sym-
. Here,
ed
tions

uthal
hes

hrough
roxi-
ch as
rgy,
direc-

normal, termed “over cosine,” while values less than one bias the distribution toward the gr
angle, termed “under cosine.”

For specular reflection, the photon’s directional component normal to the surface is reverse
the component parallel to the surface remains unchanged. No specular offset angle is mod
this distribution.

The semi-specular reflectance distribution takes this specular distribution and: (1) adds an
cone angle ∆θo(θi) to yield the “preferred” outgoing direction, and (2) spreads the distribution
space, including a weighting coefficient, by revolving the distribution about the “preferred” o
ing direction. The “preferred” outgoing cone angle is determined as the specular angle plus
semi-specular offset angle:

θp = θi + ∆θo(θi) (2.4)

The same type of distributions shown in Figure 2.8 for the diffuse outgoing distributions are
for the semi-specular outgoing distribution, except: (1) the distribution is scaled in θ to disallow
penetration into the surface i.e., the distribution is forced to zero at the grazing angle, and (2
metry about the preferred outgoing direction, rather than about the surface normal, is applied
the weighting coefficient, rss, controls the tendency of the distribution to go toward the preferr
outgoing direction. Figure 2.9 depicts cross-sectional views of normalized outgoing distribu
about preferred outgoing directions of 30o and 70o. The distributions shown in Figure 2.9 are
revolved about the preferred outgoing direction, spreading the distribution in cone and azim
angles. It should be noted that as rss approaches infinity, the semi-specular distribution approac
a specular distribution at the preferred outgoing angle.

These same three distributions apply to transmission, except that the distributions pass t
the surface instead of being reflected from it. These distributions for transmission allow app
mate modelling of semi-transparent materials, such as glass, and translucent materials, su
lighting diffusers. Although the material models in MONT3D permit accurate modelling of ene
no refraction is modelled, introducing an error in direction. However, in many instances the
tional changes induced by refraction are small, and may be neglected with good accuracy.

Figure 2.9: Normalized, Weighted Semi-specular Directional Distributions
(Shown in Cross-section)

θp = 70o

rss = 10

2 5
1/2

(b) θP = 70o(a) θP = 30o

θp = 30o

1/2

2
5

rss = 10
Axis of
Revolution

Axis of
Revolution
15

ust be
faces
hase

even
po-
i-specu-

f inci-
 3.8-

ne of
scussed
old
 ref-

h
ectance
d is rec-
ssion

EBY,
ission
y the
efined
must
ont” of
urface
e code
pend

d by

ept-
 user-
rial
Care should be taken when modelling transmission. All exterior surfaces of a geometry m
totally non-transmissive. If this is not the case, photons transmitted through the exterior sur
will be lost. MONT3D does not check for this and no warning will be issued during the input p
if this error occurs.

In addition to being reflected or transmitted, the photon may be absorbed. In summary, s
possibilities for incident photon disposition exist: three components of reflection, three com
nents of transmission, and absorption. For each material in each band, the diffuse and sem
lar weighting coefficients, rd and rss, for both reflection and transmission must be input.
Furthermore, for semi-specular reflection and transmission, the offset angle as a function o
dent angle ∆θo(θi) must also be input. More details on the input format are given in Sections
3.10.

2.5.3 Emission

In the new material model, emission type is defined using the variable, IETP. Emission of o
three types may be specified, depending on the whether IETP is 0 (the default), 1 or 2, as di
below. See Section 3.8.2 for additional details. Emission is specified quite differently in the
material model. Appendix A, specifying old material model and input format, is provided for
erence. Hereinafter in this section, only the new material model will be presented.

Standard Emission - IETP = 0. This is the type of emission deriving from Kirchoff’s Law. At eac
angle, the emittance is equal to the absorptance - determined as the complement of the refl
and transmittance. This type of emission adheres to the second law of thermodynamics, an
ommended for radiative transfer. If this type of emission is used, no additional input for emi
is required.

Beam Emission - IETP = 1. This type is intended to model “beam” or collumnated radiation.
Emission of this type is accomplished along the direction specified for this material by EBX,
and EBZ - the directional components in global coordinates of the emission vector. Here, em
is unidirectional - all photons emitted from this material type travel in the direction specified b
global components, only the point of emission changes. Different material types must be d
for each global direction of emission desired. When specifying a material of this type, care
be taken to ensure that, as discussed in Section 2.2, the beam emission will be from the “fr
the surface, not the “back.” In other words, the dot product of the emission direction and the s
normal must be greater than 0 for all surfaces that use the material. If this is not the case, th
exits with an error. Note that all interactions (absorptions, transmissions, reflections) will de
only on the incident material properties defined for this material.

Function Emission - IETP = 2. Here, emission is accomplished using computer code supplie
the user; more details are given in Section 3.8.2. Either EBX, EBY, and EBZ, or both θ and φ must
be specified (the example in the code supplies a function only for θ, emission is uniformly distrib-
uted in φ). The user is cautioned that emission via this option is accomplished using the acc
reject method, and many trials may occur for each photon emission if the magnitude of the
supplied function is small. Photon/material interactions are determined by the incident mate
properties defined for this material.
16

f
l for

 The
atch

e trans-
re not
old
sess if
stiga-
ns

s. The
, and
ge prob-
ading,
ivided
 grid

xist
etry.
2.5.4 Cases Where the Reciprocity Relations Do Not Hold

Care must be taken when using some of the more advanced material property features o
MONT3D. Unless the directional model for emission is consistent with the directional mode
surface properties, the reciprocity relations, Equations (1.5) and (1.6), may no longer hold.
other conservation relations still hold, however. Conditions in which the two models do not m
include: function and beam emission; diffuse reflectance and transmittance with rd not equal to 1
and any case involving semi-specular reflectance or transmittance. When modelling radiativ
fer, it is suggested that the user avoid the above conditions. The reciprocity relations also a
observed when the diffuse reflectance varies as a function of angle. Surprisingly, they DO h
when the specular reflectance varies as a function of angle. No tests have been done to as
reciprocity holds when diffuse or specular transmittance varies by angle. In the future, inve
tions will be done to determine how MONT3D can be modified to observe reciprocity relatio
under the above conditions.

2.6 Shading

If any shading exists in the geometry, a photon’s path may intersect a number of surface
distance from the emission point to the different intersection points must then be computed
the closest point chosen as the true intersection point (the surface first encountered). For lar
lems, this results in significant expense. To reduce execution time for large problems with sh
the grid shading algorithm [Margolies, 1986] has been implemented. Here, the geometry is d
into a series of grid cells, resulting in rectangular parallelepipeds. The photon is traced from
cell to grid cell, and a search is done within each grid cell only over those surfaces which e
either wholly or partly within that cell. The situation is depicted in Figure 2.10 for a 2-D geom

Figure 2.10: 2-D Illustration of the Grid Shading Algorithm

Grid

Photon
Trajectory

Enclosure
17

utine
in trac-
0 sur-

ed by
about

rid
ced
 along

e axis.

and by
 be
lo tech-
d a sta-
on the
 of pho-
0 sur-

are
onver-
lse con-
re wise
s.

 is pro-

ust be

 2%,
 calcu-

ence.

t accu-
In the recent recoding of MONT3D [Zeeb, 1997; Zeeb and Burns, 1999], the grid tracing ro
was further optimized and use of this algorithm has resulted in speed-ups in execution time
ing, compared to no grid, of factors of 18 to factors of 81 for large geometries (1,000 to 5,00
faces). The optimum grid differs from problem to problem, and must be empirically determin
the user. However, a good starting guess for a large geometry (1,000 to 5,000 surfaces) is
15,000 grid cells.

Grid coordinates are defined separately for each axis. Two options exist for defining the g
coordinates along each axis: (1) a uniform grid generated by the program, with equally spa
grids, or (2) a user-defined grid. For option (1), the user need specify only the number of grids
the axis, while for option (2) the user must also specify the grid coordinate locations along th
See Sections 3.3 and 3.11 for additional details.

2.7 Number of Photons, Convergence and Accuracy

The number of photons emitted in each photon loop is specified for each surface in each b
the relation: # of photons = NDIVX x NDIVY x NPHTN. Multiple photon emission loops may
done per surface; more detail is given below and in Sections 2.2, 3.2, and 3.6. As Monte Car
niques are statistical in nature, “enough” photons must be emitted from each surface to yiel
tistically accurate result. This number depends upon the geometry and, to some extent, up
material properties. As a general rule, greater numbers of surfaces require greater numbers
tons. Execution time increases linearly with number of photons. For small problems (about 2
faces), it has been found that on the order of 20,000 photons per surface (not subsurface)
required to achieve exchange factors accurate to within about 5%. It is typical to observe c
gence in a particular exchange factor as shown in Figure 2.11. The user is cautioned that fa
vergence may be indicated when comparing two values on the curve as shown. It is therefo
to check the entire matrix of exchange factors for consistency at several numbers of photon

To estimate the number of photons required to achieve a given level of accuracy, Table 2.1

vided. The table gives, for each exchange fraction , the number of photons, , which m

emitted from a surface to achieve 95% confidence that the exchange fraction is within: 1%,
5%, 10%, and 50% of the exact answer. The numbers of photon emissions per surface are

lated from the formula for confidence intervals, , for the exchange fraction from surface i to

surface j in wavelength band k (), derived by Maltby [Maltby, 1990]:

(2.5)

where z is taken from the standard normal tables [Kreyszig, 1993], and is 1.96 for 95% confid

Equation (2.5) yields the fractional accuracy in (n.b., 100 times this value is the percen

racy).

Fij
k

Ni
k

Cij
k

Fij
k

Cij
k z

1 Fij
k–

Ni
k
Fij

k
---------------=

Fk
ij
18

 preset
 Equa-

 pro-
m and
MONT3D is formulated to attain a specified accuracy for each row i of the exchange factor
matrix. The program is constructed to loop over successive emissions from each surface if a
accuracy tolerance is not met after a full surface emission. To explain this, we first note that
tion (2.5) provides the confidence interval for only element ij of the exchange fraction matrix, when
emitting additional photons actually increases the accuracy of all elements in row i. Equation (2.5)
is modified to account for this with the rationale that exchange fractions affect the accuracy
portional to their size. Thus, we weight each confidence interval by its exchange fraction, su
then average by dividing this amount by the total number of surfaces, NSURF, to yield the ad hoc

row confidence factor for row i, :

Figure 2.11: Convergence vs. Number of Photon Emissions

Table 2.1: Accuracy in Exchange Fractions

Exchange
Fraction

Level of Accuracy

1% 2% 5% 10% 50%

10-3 38,377,584 9,594,396 1,535,103 383,776 15,351

10-2 3,803,184 950,796 152,127 38,032 1,521

10-1 345,744 86,436 13,830 3,457 138

Exchange
Factor

False Convergence

False
Convergence

Final
Value

10
1

10
2 10

3
10

4 10
5

10
6

Number of Photon Emissions

Ci
k

19

-
 spec-
OPS,
cy for

le
ctor
uld also
 set
ts 95%

aces in
the
 “aver-
.1

 in the
r small
xes.

 time,
 to
. This is
nce the
ten-

es are:
cribed
urns,

ate-
o dis-
re
eom-

ure,
 sur-
 insuffi-
(2.6)

If the confidence factor for emissions from surface i in band k is not met after a full surface emis
sion loop, then the program continues to perform full surface emission loops until either the
ified confidence factor is achieved, or a maximum number of loops over the surface, NPLO
have occurred. This feature can be used with the restart option to effect a specified accura
surfaces, traded off against CPU usage.

The user has quite a bit of control over how many emissions occur for each surface. Whi
NDIVX, NDIVY, and NLOOPS are the same for all surfaces, NPHTN and the confidence fa
can be specified for each surface; see Sections 3.2, 3.4, and 3.6 for additional detail. It sho
be noted that the value of z used by the code for calculation of the row confidence factor can be
by a parameter; see Section 5.5.2 for more details. The default value is 1.96 which represen
confidence.

A rough guess of the size of the exchange fractions is the reciprocal of the number of surf
the input file. This yields the “average” exchange fraction size, since the sum of any row of
exchange fraction matrix is 1. The number of photons required to be emitted to achieve an
age” level of accuracy may then be estimated from Equation (2.5) or obtained from Table 2
through interpolation or extrapolation.

Errors in the temperatures calculated from radiative flux balances are smaller than errors
exchange fractions due to the fourth-root dependence of temperature upon radiative flux. Fo
errors, one may expect the errors in temperatures to be about one-fourth of the errors in flu
Emitting an equal number of photons from each surface may result in a waste of computer
since some surfaces contribute little to the radiative exchange. A better approach would be
apportion the numbers of emissions to each surface based upon its estimated power output
an approach which requires judgement gained through experience with specific problems, si
power outputs are generally not known a priori. In any case, the above approach provides a “po
tiometer” which can be used judiciously to adjust solution accuracy.

2.8 Aid in Debugging and Visualizing MONT3D Geometries

MONT3D generates several files useful in debugging and visualizing geometries. These fil
the plot file, the leaks file, the lost photon file, and the trajectory file. The various files are des
below. All can be visualized using the stand-alone graphics program MPLOT [Nagesh and B
1994]. The actual formats of each of these files are presented in detail in Appendix B.

The plot file (file suffix .plt) containing all the information in the input file (geometry and m
rial properties) is written to disk during the input phase. This file may be used with MPLOT t
play the geometry and the material property curves. This file must be read by MPLOT befo
viewing the results from any of the other files listed above; otherwise, MPLOT will have no g
etry over which to display the results.

An error in the specification of the geometry often results in a “leak” or hole in the enclos
through which photons may be transmitted and “lost.” Leaks may be caused due to disjoint
faces, missing surfaces, incorrect node numbering on a surface, misplaced nodal points, or

Ci
k 1

NSURF
-------------------- Cij

k
Fij

k

j
∑ z

NSURF

Fij
k

1 Fij
k–()

Ni
k

j

∑= =
20

for
(file
LOT
s or

mple
 both
he nor-
 are
ults in

 side

f ter-
eates

 suffix
ay be

used.
cient precision in specifying coordinates. During the input phase, the geometry is checked
leaks, and results are written to the output file. Additionally, an ASCII file of potential leaks
suffix .lks), identified by type (severity of leak), is also created. This file may be used with MP
to highlight surfaces and sides of surfaces which have been identified as potential problem
leaks. The three types of errors identified are:

Error 1- Reversed Edge: This error occurs when two surfaces share the same edge. An exa
is given in Figure 2.12. In Figure 2.12(a), the edge between the two surfaces is correct and
surfaces have normals pointing into the page. In Figure 2.12(b), the edge is reversed and t
mals of the two surfaces point in opposite directions. Recall from Section 2.2 that surfaces
transparent to photons which hit the back side of the surface. This type of error usually res
the enclosure losing excessive photons resulting in an error termination.

Error 2 - No Match Found: This error occurs when no match is found connecting at least one
of that surface to the side of another surface. This may or may not be acceptable.

Error 3 - Slip Surface: This error occurs when an edge goes through a node point instead o
minating at it. Although this is sometimes an actual error, it often is not. If the slip surface cr
no “holes” in the geometry, then it should not cause the enclosure to lose photons.

When photons are lost, the endpoints of each photon ray are written to a separate file (file
.lst), which may then be read by the MPLOT program. Then trajectories of the lost photons m
displayed on the geometry. Because there is no terminus of the ray, a fictitious endpoint is

Figure 2.12: Example of a Reversed Edge

(a) correct edge (b) reversed edge

(Arrows represent direction of increasing node number)
21

ich
details.
ertain
ten to
s emit-

nge
matrix
 ver-

 and

ple, the
y, the
 are not
tate
 recom-

t will
CK.

een
n.

 par-
lows.
master
passes
ad the
 master,
 be
ends a
ces to
nce it

ster indi-
orker, if
unters
rkers
s, the
An option is also available to write trajectory information to an output file (file suffix .trc), wh
may be subsequently read and plotted by the program MPLOT; see Section 3.2.2 for more
This feature is useful in obtaining a “feel” for the underlying physical processes, and to asc
that the simulation is proceeding as planned. There is a copious amount of information writ
the output file during the exercise of this option, so it is suggested that the number of photon
ted per surface be less than about 100.

Recent versions of MPLOT allow the user to view convergence information on the excha
matrix values for a specified surface. Unfortunately, MPLOT can not read the new exchange
file format used by latest version of MONT3D and this feature is not available for MONT3D
sions 2.4 and later.

For more information, the reader is urged to consult the MPLOT documentation [Nagesh
Burns, 1994].

2.9 Restart Capability

The code has been designed to be restarted from a previously computed state. For exam
code may experience a “crash” during execution (for any of a host of reasons). Alternativel
code may run to completion, and subsequent examination of the answers indicates that they
sufficiently accurate. In either case, it is desirable to begin a new simulation from the last s
available to take advantage of previous work. This prevents waste of computer resources in
puting information already available. A simulation may be restarted multiple times, until the
desired level of accuracy is attained.

To effect this, the current state of the solution must periodically be written to disk, so that i
be available for a restart run. How often this is done is controlled by the input variable NEBLO
All information required for restart is written to a restart file (suffix .rst) after emission has b
completed from each “block” of |NEBLOCK| surfaces; see Section 3.2.1 for more informatio
Chapter 4 includes an example of a restart run.

2.10 Parallel Version

MONT3D now supports parallel execution implemented in PVM [Greist, et al., 1994]. The
allel version uses a master-worker model. The basic operation of the parallel code is as fol
The master process reads the input file and checks it for errors. If no errors are found, the
spins off a user specified number of worker processes (NWPROC; See Section 3.2.2) and
to them the input file name and other required information. Next, all the worker processes re
input file in an abbreviated input phase. Since the input file has already been checked by the
many of the checks, such as the time consuming check of the validity of the geometry, can
skipped during the worker input stage. As soon as a worker completes the input phase, it s
“worker ready” message to the master. The master then sends a block of |NEBLOCK| surfa
the worker. The worker performs the work associated with emissions from these surfaces. O
completes these emissions, it writes the results to the disk and sends a message to the ma
cating it has completed that block, and the master issues another block of surfaces to the w
any are left. This cycle continues until all emissions have been completed. If a worker enco
a fatal error, it aborts and the block it is working on is done later by another worker. If all wo
abort due to fatal errors or if a block of surfaces results in fatal errors for two different worker
22

mbines

rallel
 into a
an be
 dia-
either

de has
teroge-
 the

nly
stem
 by the
le suffix
entire run is aborted and the program terminates. After all emissions are done, the master co
the results from the workers into one exchange matrix file and the program terminates.

The parallel version of MONT3D has been tested on a wide variety of platforms. PVM (Pa
Virtual Machine) was originally designed to combine a number of heterogeneous computers
parallel virtual machine using the TCP/IP networking protocol. The master and the workers c
totally different types of machines and each machine must be accessible via the network. A
gram of this topology is shown in Figure 2.13. Each of the switches in the diagram may be

a switch between subnets or a gateway (router) between different networks. The parallel co
been shown to work on a homogeneous network of Hewlett Packard workstations and a he
neous network of three Sun workstations and a Linux workstation. Excellent results running
code on a tightly couple cluster of eight DEC Alpha CPU’s have also been obtained. The o
requirement for the parallel version of the code is that all CPU’s must use a common file sy
such as NFS, as the workers must be able to access the scratch (file suffix .scr) file created
master and the master and the workers must be able to access the block exchange matrix (fi
.bni) files. More information about the parallel version of the code is given in Section 5.6.

Figure 2.13: Example Master-Worker Architecture

CPU

(Master)

CPU

(Worker)

Switch

Switch

Switch

CPU

(Worker)

CPU

(Worker)

CPU

(Worker)

CPU

(Worker)

CPU

(Worker)
23

yses,

o deter-
the-
ess the

o-ran-
ave

dily
d by
995;
ryor,

uence
ber

ss prop-
efi-

rk by

of the
up at the

till,
y
2.11 Pseudo-Random Numbers

Random Number Generators (RNG’s) are fundamental components of Monte Carlo anal
without which Monte Carlo simulation would be virtually impossible. In the codes described
herein, uniformly distributed pseudo-random (also termed just random) numbers are used t
mine: (1) outgoing directions of particles, and (2) interactions of particles with surfaces. Ma
matically, the sequence of random numbers used to effect a Monte Carlo model should poss
following properties: (1) the sequences of random numbers should be serially uncorrelated, 2) the
generator should be of long period, 3) the sequence of random numbers should be uniform, and
unbiased, and 4) the generator should be efficient.

In the past, linear, congruential generators (LCG’s) were typically used to produce pseud
dom numbers. However, a new class of generators, lagged Fibonacci generators (LFG’s), h
recently emerged. LFG’s have better properties than LCG’s, are more efficient, and are rea
amenable to parallelization. An overview of these types of generators is presented, followe
some implementation details. Additional material may be found on-line [Burns and Pryor, 1
Zeeb and Burns, 1997] and from other sources [Anderson, 1990; Brent, 1992; Burns and P
1999; Marsaglia, 1985].

2.11.1 Lagged Fibonacci Generators

Lagged Fibonacci pseudo-random number generators are based upon the Fibonacci seq
[Golomb, 1982]. The Fibonacci sequence is generalized to a family of pseudo-random num
generators of the form:

(2.7)

where mod is the integer remainder function and l initial integer values, X0, ..., Xl-1, are needed in
order to compute the next element in the sequence. In this expression the “lags” are k and l , so that
the current value, Xn, is determined by the value of X k places ago and l places ago. In addition, for
most applications of interest, m is a power of two. That is, m = 2M. Random real numbers, R n, are
generated from the above integer numbers by dividing the integer Xn by m, viz.

 yielding (2.8)

This type of pseudo-random number generator has been extensively tested for randomne
erties using Marsaglia’s [1985] DIEHARD tests, and has been given high marks. The only d
ciency found is related to what Marsaglia terms the Birthday Spacings test. Preliminary wo
Brent [1992] suggests that LFG’s pass the Birthday Spacings test if l is greater than 100. It should
be noted that LCG’s did not do nearly as well on the tests. A firm theoretical understanding
cycle structure of these generators has been established in a series of two papers by a gro
Center for Computing Sciences [Pryor et al., 1994; Mascagni et al., 1995].

With proper choice of k, l , and the first l values of X, the period, P, of this generator is equal to
(2 l- 1) x 2(M-1). For example, for a small generator with l = 17, and M = 31, the period, P, is huge,
~ 1.4x 1014. The only condition on the first l values is that at least one of them must be odd. S
for some applications, one should refrain from using more than 2l - 1 of the numbers generated b

Xn Xn l– Xn k–+() mod m= l k 0> >

R n

Xn

m
------= 0 R n 1<≤
24

1)

nd

 have a
lizing
orm for

o, with

dom
ing the

 for each
 be

n some
t, as
d.

ore,

 which
y
 x 10
e fore-
G gen-

is gen-
these generators because for a generator with period, P, R n and R n+P/2i differ by at most i bits (0 <
i < M) [Brent, 1992]. Examples of four commonly used versions of these generators (LFG(l ,k ,M))
are:

1) LFG(17, 5, 31): P ~ 247 (~ 1.4 x 1014); 2l ~ 1.3 x 105

2) LFG(55, 24, 31): P ~ 285 (~ 3.9 x 1025); 2l ~ 3.6 x 1016

3) LFG(127, 97, 31): P ~ 2157 (~ 1.8 x 1047); 2l ~ 1.7 x 1038

4) LFG(607, 273, 31): P ~ 2224 (~ 5.7 x 10191); 2l ~ 5.3 x 10182

Even using the more restrictive 2l -1 constraint instead of the full period, all but the LFG (17, 5, 3
have random series much longer than a LCG’s maximum period (about 231 ~ 2.1 x 109). The most
severe drawback of an LFG is the fact that l words of memory are required to be kept current, a
this is not significant in our application.

It is necessary to fill the initial state to start the sequence. For the LFG, an initial state of l words
is needed. When implementing the code in parallel, it is important that each worker process
sequence or cycle of random numbers that is independent of all the other processes. Initia
separate cycles is addressed by Mascagni, et al. [1995], where they describe a canonical f
initializing Fibonacci generators. This canonical form is determined solely by l and k, and is inde-
pendent of M. In general, the canonical form for initializing Fibonacci generators requires thelth
word be set to all zero bits, and the least significant bits of all words in the register set to zer
the exception of one or two characteristic bits that depend on l and k. Each combination of the
remaining (l - 1)(m -1) bits, called equivalence classes (EC’s), specifies a different cycle of ran
numbers. No two EC’s share the same cycle. Cuccaro [1996] has extensively tested initializ
EC’s bits with a binary shift register generator (i.e. an LFG with M = 1) and found excellent ran-
domness properties across parallel sequences with this method, even when the initial seeds
sequence are very similar. This is the method employed in MONT3D. Additional detail may
found in Burns and Pryor [1999] and Zeeb and Burns [1997].

2.11.2 Implementation Details

Experience has shown that using LFG (17, 5, 31) can lead to about 0.1% systematic error i
applications [Zeeb and Burns, 1997; Zeeb and Romero, 1999], probably due to the fact tha
mentioned above, correlations appear after about 130,000 (217 - 1) random numbers are generate
This error is generally well below the accuracy inherent in Monte Carlo simulations. Furtherm
these correlations probably have little effect on all but the most simple of problems.

However, to ensure high accuracy runs, we have chosen to implement LFG(127, 97, 31),
has the smallest value of l that passes all of Marsaglia’s DIEHARD tests, including the Birthda
Spacings test. Correlations do not appear among the random numbers until after about 1.738

random numbers have been generated, which is more than adequate for any problem in th
seeable future. It is possible to compile the code so that it implements a different length LF
erator, see Section 5.5.2 for more details.

The RNG is initialized as follows. First, the initial seed, X0, which is either given by the user,
generated from the time and date, or set to the default value, is obtained. If the initial seed
erated from the time and date, then the following formula is used:
25

 are the
ay of
tail on

rding
ter is
 avoid
ots.

ly
own in

, are
ed. Note
 are the
RNG’s
nt

nswers
swers,
 it is
d run

mitted
,000
, the
 the
r of
X0 = isec*225 + imin*219 + ihr*214 + iday*29+imon*25 + mod (iyr, 25) (2.9)

where mod is the integer remainder function and the integer variables on the right-hand side
second of the minute (0-59), the minute of the hour (0-59), the hour of the day (0-23), the d
the month (1-31), the month of the year (1-12), and the year of the century (00-99). More de
specifying the initial seed is given in Section 3.2.1.

Next, the initial seed is used in the binary shift register to fill the initial state of the LFG acco
to the canonical form as described by Burns and Pryor [1999]. Also, each binary shift regis
stepped through 64 bits before starting to fill the rectangular region in the canonical form, to
starting at a “flat spot” on the cycle. See Pryor et al. [1994] for a discussion of these flat sp

When executing the code in parallel, the lowest-order bits of the initial 32-bit seed (usual
obtained from Equation (2.9) above) are masked with the worker process number - 1, as sh
Figure 2.14. In the figure, ten bits, which are enough bits for up to 1,024 worker processes
masked. The exact number masked depends on the number of worker processes being us
that when a time generated seed is used, the most significant bits derive from the time, and
same for all tasks, but vary from run to run as does the time at the start of the run. Since all
are initialized using the binary shift register, this methodology produces parallel, independe
streams of very high quality random numbers on each worker process.

2.11.3 Effect of Different Random Sequences on Results

Every different initial seed creates a different sequence of random numbers, so different a
are obtained. However, if “enough” photons are emitted to achieve convergence, then the an
whatever the initial seed, will be within statistical convergence error. It should be noted that
not possible to traverse the same sequence of random numbers restarting from a complete
involving emission from more than one surface. Thus, if a run is done with 20,000 photons e
initially from each surface, the answers will be different than if an initial run is done with 10
photons per surface followed by a restart with 10,000 additional photons emitted. However
comments above pertaining to convergence do apply. If “enough” photons are emitted, then
answers will converge (within a statistical tolerance) to a final state independent of the orde
emissions.

Figure 2.14: Bit Structure of 32 Bit Initial Seed for Parallel Processes

l.s.bm.s.b

bi
t 0

bi
t 3

1

Base (Usually Time) - Identical for All Tasks Task No.
(10 bits shown, <= 1,024 tasks)(22 bits shown)
26

e input
d to
 data

is shown

dles
he code
able
 as 60.
pilers,
lumns
 zero.
xam-

d the
at the
 I for
uding:
307E-

 (read

3

4

CHAPTER 3 INPUT DECK

The following pages contain the instructions necessary to enable the user to construct th
file (data deck) required by MONT3D. Input lines, generally referred to as “cards,” are limite
80 columns in width. Cards with the character “&” in column 1 can be placed anywhere in the
deck for use as comment cards or as spaces; all such cards are ignored. A sample input file
in Section 4.1.

Some care may be required when entering variables in the input deck. How the code han
blanks (spaces) in the input file depends on the compiler used. Some compilers may make t
read blanks as zeroes. When blanks are read as zeroes, blanks to the right side of the vari
become significant. For example, if 6 is entered with one space after it, it may be interpreted
When blanks are read as zeroes, variables should be entered right-justified. For most com
blanks in the input file are ignored and each variable may be entered anywhere within the co
specified for it in the description below. If all the columns are empty, the variable is read in as
It should be noted that for maximum compatibility, input files should be right-justified. The e
ple input file in Section 4.1 is right-justified.

The “Format” column in the card description below gives the FORTRAN format used to rea
variable. The only information in that column that may be beneficial to the casual user is th
letter in the format specifies the type of the variable: A for character, E for floating point and
integer. It should be noted that floating point numbers may be entered in many formats incl
as integers (1), in decimal format (1. or .010 or 0.001) or in scientific notation (3.07e-3 or 0.
2).

Default values (marked as DEFAULT:) are used if the input file contains zeroes or blanks
as zero by FORTRAN). If no default value is given, then zero is the default value.

3.1 Title Card

Cols. Format Entry Note(s)

1-48 6A8 Heading to appear on output

3.2 Control Cards

3.2.1 Card 1

Cols. Format Entry Note(s)

1-5 I5 Number of dimensions (NDIM) 1

6-10 I5 Number of nodal points (NUMNP)

11-15 I5 Number of surfaces (NSURF)

16-20 I5 Number of materials (NUMMAT) 2

21-25 I5 Number of wavelength bands (NBANDS)

26-30 I5 Number of photons emitted per band per subsurface (NPHTON)
27

5

6

7

8

rning

el is

ave-

ON

r sur-

NS.
ber. If

borting
r more

ound
borted.
er of

k is fin-
31-35 I5 Maximum number of reflections allowed per photon before a warning

is issued (NREFS) 5

(DEFAULT: NREFS = 100)

36-40 I5 Maximum number of warnings before the run is aborted (NWARNS)

(DEFAULT: NWARNS = 50)

41-45 I5 Maximum number of lost photons (NLOST)

46-50 I5 Surface (emitter) increment for writing restart information (NEBLOCK)

NEBLOCK < 0: Restart run from previously stored state or crash

NEBLOCK > 0: New run

Restart information written to disk after every |NEBLOCK| surfaces

(DEFAULT: NEBLOCK = 10)

51-60 I10 Initial seed for the random number generator (INSEED)

INSEED < 0: The internal, constant value for the initial seed is used.

INSEED = 0: The initial seed is obtained from the time

INSEED > 0: The value INSEED is used for the initial seed

Notes:

1. NDIM should be equal to 3 for MONT3D. Any other value causes the code to issue a wa
and continue.

2. If NUMMAT is negative, the new material model is used. Otherwise, the old material mod
used. See Sections 2.5 and 3.8-3.10 and Appendix A for more details.

3. Radiative properties are defined in wavelength bands, and are constant within a given w
length band.

4. The number of photons emitted per surface in each band is equal to NPHTN * NDIVX *
NDIVY, where NPHTN is the number of photons emitted from each emission point. NPHT
is the default value of NPHTN for all surfaces, which may be overridden for any particula
face(s) during the surface input. See Sections 2.2, 2.7, 3.2.2, and 3.6 for more detail.

5. The maximum number of reflections allowed before a run is aborted is NREFS * NWAR
For the parallel version of the code, each worker process aborts when it reaches this num
a worker process aborts due to this error, the other processes continue to work and the a
process’s block is done by another worker later in the run. See Sections 2.10 and 5.6 fo
detail.

6. Occasionally, due to precision problems, a photon is “lost” (i.e., no receiving surface is f
for a given photon). NLOST specifies the number of such occurrences before the run is a
For the parallel version of the code, each worker process aborts when it loses this numb
photons. As in Note 5 above, the other worker processes continue and the aborted bloc
ished by another worker.
28

rt files
cting
 out-
t. If
les.
s run
n 2.9
CR.

d 5.6.5.

2

3

4

5

7

7

7. Each MONT3D run involves emitting from NBANDS*NSURF emitters or surfaces. After
emission and tracing from every |NEBLOCK| emitters, the exchange matrix and the resta
are written to disk. Thus, it is possible to restart only from every |NEBLOCK| states. Sele
a small value of |NEBLOCK| will ensure that restart information is written frequently to the
put file. Still, if NEBLOCK is set too low, the file writing overhead may become significan
NEBLOCK is negative, the previous state is read from the restart and exchange matrix fi
Restart may be of two types: (1) where the previous state is incomplete (i.e., the previou
was interrupted), or (2) the previous state is not converged. More detail is given in Sectio
and Chapter 4. NEBLOCK in versions of MONT3D prior to version 2.4 was known as NIN

8. For more details on the initial seed and the RNG in general, see Sections 2.11, 5.5.2, an

3.2.2 Card 2

Cols. Format Entry Note(s)

1-5 I5 Type of geometry (IGEOM) 1

6-10 5I1 Output print control code toggles, IPRINT(I):

6 I1 IPRINT(1) = 1 - exchange fractions are written to output file

7 I1 IPRINT(2) = 1 - lost photons are written to console and output file

8 I1 IPRINT(3) - currently unused, reserved for future use

9 I1 IPRINT(4) = 1 - complete material property information is

written to output file

10 I1 IPRINT(5) = 1 - surfaces wholly or partially in each grid cell

are written to output file

11-15 I5 Number of concats (NUMCAT) 6

16-20 I5 Data check code (IDATA):

IDATA = 0: Normal execution

IDATA = 1: Data check only, execution stops after input phase

21-25 I5 Number of x' emission points per surface (NDIVX)

(DEFAULT: NDIVX = 5)

26-30 I5 Number of y' emission points per subsurface (NDIVY)

(DEFAULT: NDIVY = 5)

31-35 I5 Shading in geometry (NSHADE): 8

NSHADE ≥ 0: Shading, distance algorithm

NSHADE < 0: Shading, grid shading algorithm

36-40 I5 Trajectory control code (ITRACES): 9

ITRACES > 0: Trajectory information written to disk file (.trc extension)
29

10

, 12

3

4

orker

5

15

 back-

a-

hey

n be
rma-

semi-
e form
 are
cludes
d is

 enters
 these
he
 and

 back-
ith
ITRACES = 0: Trajectory information not written to disk file

41-45 I5 Number of worker processes (NWPROC)

46-50 I5 Maximum number of photon convergence loops (NPLOOPS) 11

(DEFAULT: NPLOOPS = 1)

51-55 5I1 Parallel option code (IPAROPT(I)) as follows: 1

51 I1 IPAROPT(1) - worker spawning options 1

IPAROPT(1) = 0, workers can spawn on any CPU

IPAROPT(1) = 1, workers can not spawn on master CPU

IPAROPT(1) = 2, xterms with debug sessions are created for each w

IPAROPT(1) = 3, IPAROPT(1) = 1 and 2 combined

Other array elements are reserved for future use

56-60 I5 Number of material property curves (NMACV) 1

61-65 I5 Number of semi-specular offset angle curves (NDTCV)

Notes:

1. This option is not available in this version. This space is being retained in the input file for
ward compatibility in format. Any value entered will be ignored.

2. If IPRNT(I) = 1, the specified information is written. Otherwise, if IPRNT(I) = 0, the inform
tion is not written.

3. If IPRNT(1) = 1, then exchange fractions are printed in the output file. If IPRNT(1) = 0, t
are written only to the exchange matrix file.

4. Lost photon information is always written to the lost photon file (file suffix .lst) where it ca
viewed using the MPLOT program (see Section 2.8 for more detail). If IPRNT(2) = 1, info
tion about the lost photons is also written to the console and the output file.

5. When IPRNT(4) is equal to 1, all material information, the material property curves; the
specular preferred angle curves; and the thetar arrays, are printed to the output file in th
in which they are stored internally. Angles are always displayed in degrees, even if they
stored internally as radians. Material property curves are stored so that each property in
the cumulative sum of all properties below it. The order in which the properties are storeα
(=ε), ρd, ρs, ρss, τd, τs, and τss. The cumulative sum of all the material properties, τss (τs for the
old material model) is equal to 1 at all angles. It should also be noted that while the user
offset angles, ∆θo(θi) for the semi-specular reflectance and transmittance, the code stores
as the preferred outgoing angle, θp = θi + ∆θo(θi). The thetar arrays are used to determine t
outgoing cone angle of emission from a uniformly distributed random number between 0
100. For a detailed discussion of the emission algorithm, see Burns and Pryor [1989].

6. This option is not available in this version. This space is being retained in the input file for
ward compatibility in format. If present, NUMCAT must be 0 or MONT3D will terminate w
an error.
30

 or
ng.

stab-
is
 See

essor
run is

urface.
ections
ified
S full
he next

lished
. Sur-

ons in

 code.

less
ction

cify
ee Sec-
7. The number of photons emitted per loop for each surface in each band is
NPHTN*NDIVX*NDIVY. See Sections 2.2, 2.7, 3.2.1, and 3.6 for more detail.

8. Currently, only the grid shading algorithm is used in this code. If NSHADE is set to zero
greater, a single grid cell is used, which is equivalent to the distance algorithm for shadi
More details are given in Sections 2.6, 3.3, and 3.11.

9. The program outputs trajectory information to the .trc file if this option is set. This file is used
to “view” the trajectories using the MPLOT program [Nagesh and Burns, 1994], useful in e
lishing physical intuition. If chosen, a copious amount of information is printed; the user
therefore cautioned to select this option only for very few photon emissions per surface.
Section 2.8 for more detail.

10.This option is used only by the parallel version of the code; it is ignored in the single proc
version of the code. If NWPROC is less than 1 for the parallel code, a single processor
done. More detail about the parallel code is given in Sections 2.10 and 5.6.

11.NPLOOPS is the maximum number of full surface photon convergence loops done per s
In each full surface emission, NPHTN photons are emitted from each subsurface; see S
2.2 and 2.7 and the description of NDIVX and NDIVY above. If convergence to the spec
tolerance for the surface (see Sections 2.7, 3.4, and 3.6) is not attained within NPLOOP
surface emissions, then a warning is printed to the screen, and execution continues with t
surface.

12. If 0 is entered for NPLOOPS, an extremely large default convergence tolerance is estab
(= 1 x 1010), thereby ensuring that convergence occurs after one full surface emission loop
faces that have their convergence tolerance set to this large value will not emit any phot
any restart runs since they are converged.

13.The IPAROPT array is used only in the parallel version of the code. Currently only IPA-
ROPT(1) is used; the other array elements are reserved for future enhancements of the

14. IPARAOPT(1) controls how workers are spawned. If the value entered for this option is
than 0 or greater than 3, MONT3D will terminate with an error. For more details, see Se
5.6.

15.NMACV and NDTCV are only used by the new material model (NUMMAT < 0). They spe
how many material property and specular offset angle (del theta) curves are to be read. S
tions 2.5, 3.2.1, and 3.8-3.10 for more details.

3.2.3 Card 3

Cols. Format Entry Note(s)

1-10 E10.0 Scale for X (XSCALE) 1

(DEFAULT: XSCALE = 1.0)

11-20 E10.0 Shift for X (XSHIFT) 1

21-30 E10.0 Scale for Y (YSCALE) 1

(DEFAULT: YSCALE = 1.0)

31-40 E10.0 Shift for Y (YSHIFT) 1
31

2

3, 4

s to cen-
length

tion
d pho-
,
ELT
ission

 more

ature

d

1

41-50 E10.0 Scale for Z (ZSCALE) 1

(DEFAULT: ZSCALE = 1.0)

51-60 E10.0 Shift for Z (ZSHIFT) 1

61-70 E10.0 Increment of cone angle in degrees for integration (DELT)

(DEFAULT: DELT = 0.01 degrees)

71-80 E10.0 Tolerance for splitting non-planar surfaces (SPLITOL)

(DEFAULT: SPLITOL = 0.0001 degree)

Notes:

1. These factors can be used when one needs to scale from one unit to another (i.e. meter
timeters) or when one wishes to shift the coordinate system. Since there is no inherent
scale, scaling all axes equally has no effect; nor does shifting of any axis(es).

The results of scaling and shifting are:

X = X * XSCALE + XSHIFT,

Y = Y * YSCALE + YSHIFT, and

Z = Z * ZSCALE + ZSHIFT

2. DELT = ∆θ: the increment used in numerically integrating the cumulative distribution func
for emission versus cone angle, used to determine the cone angle distribution of emitte
tons. The range is: 1E-7 ≤ DELT ≤ 0.1. If a value outside this range is entered for DELT
then DELT is set to the default value of 0.01. It should be noted that very small values of D
result in the consumption of excessive computer time. For a detailed discussion of the em
algorithm, see Burns and Pryor [1989].

3. The range of acceptable SPLITOL values is: 1E-20 ≤ SPLITOL ≤ 0.01. If a positive value out-
side this range is entered for SPLITOL, SPLITOL is set to the default value of 0.0001. For
information about SPLITOL and split surfaces, see Section 2.3.

4. It is possible to force the code to split all quadrilateral surfaces into triangles. To turn this fe
on, enter a negative value of SPLITOL such that -0.01 ≤ SPLITOL < 0.

3.3 Grid Dimensions (Shading)

Condition(s): NSHADE < 0 (entered in Section 3.2.2), otherwise, omit car

Cols. Format Entry Note(s)

1-5 I5 Number of grid cells in the X-direction (NGX) 1

6-10 I5 Number of grid cells in the Y-direction (NGY) 1

11-15 I5 Number of grid cells in the Z-direction (NGZ)
32

G vari-
ection
 user
 for

rd

1

tion 2.7
; see
l com-
set to

2

.2.1)
s given

 ones
n integer
previous
ewhere.
 Notes:

1. Cell divisions along each axis are uniform unless a negative number is entered for the N
able. In that case, the user must enter the grid coordinates for that axis as specified in S
3.11. It should be noted that in versions of MONT3D prior to version 2.4, all axes must be
defined if NGX is negative; otherwise all axes are uniformly divided. Input files designed
versions of MONT3D prior to 2.4 may not be forwards compatible here.

3.4 Default Convergence Tolerance

Condition(s): NPLOOPS > 0 (entered in Section 3.2.2), otherwise, omit ca

Cols. Format Entry Note(s)

1-10 E10.0 Default convergence tolerance for photon emissions (ERRDEF)

Notes:

1. This is the default tolerance for convergence of the surface exchange fractions; see Sec
for more detail. This may be overridden for (a) particular surface(s) during surface input
Section 3.6. If 0 is entered for ERRDEF, then any surface using the default tolerance wil
plete the full NPLOOPS surface emission loops. If NPLOOPS is equal to 0, ERRDEF is
1 x 1010; see Section 3.2.2 for details.

3.5 Nodal Point Data

Cols. Format Entry Note(s)

1-5 I5 Node point number (N) 1

6-10 I5 Increment in number of points to be generated (INC)

11-30 E20.0 X-coordinate: X(N).

31-50 E20.0 Y-coordinate: Y(N).

51-70 E20.0 Z-coordinate: Z(N).

Notes:

1. Node points can be input in any order. All nodes from 1 to NUMNP (entered in Section 3
inclusive must be input or generated as described in the next note. More detail on nodes i
in Section 2.1.

2. Nodal points are generated in increments of INC from the previous node input to the current
node. The coordinates are obtained by linearly interpolating all coordinates between the
input on the previous card and the present ones. Care must be taken such that there are a
number of generated nodes between the present node number and the one input on the
card. It should be noted that, if the program generates nodes, they should not be input els

3.6 Surface Data

Cols. Format Entry Notes

1-5 I5 Surface number (N) 1
33

3

6

2.1)

pplies.
l sur-

rs by 1

tons
. For

rated,

 done
urred,
es

faults
6-10 I5 Node N1: NODES (1,N) 2

11-15 I5 Node N2: NODES (2,N)

16-20 I5 Node N3: NODES (3,N)

21-25 I5 Node N4: NODES (4,N)

26-30 5X Skip

31-35 I5 Number of surfaces to be generated after current surface: NMISS

36-40 I5 Increment of generation: INC 3

41-45 5X Skip

46-50 I5 Surface material number: MATNUM(N)

51-60 10X Skip

61-65 I5 Number of photons (NPHTN) 4

66-70 I5 Photon increment (INCP) 5

71-80 E10.0 Convergence tolerance for surface: ERRMAX(N)

(DEFAULT for surface: ERRMAX(N) = ERRDEF) 7

Notes:

1. Surfaces can be input in any order. All surfaces from 1 to NSURF (entered in Section 3.
inclusive must be input or generated as described in the notes below.

2. The outward normal must be such that the right-hand rule as explained in Section 2.2 a
Unpredictable and erroneous errors may result if this convention is not adhered to for al
faces.

3. NMISS additional surfaces are generated by successively incrementing surface numbe
and all 4 node numbers by INC.

4. NPHTN different from 0 overrides NPHTON (entered in Section 3.2.1), the number of pho
per subsurface division. If NPHTN is negative, no photons will be emitted from the surface
more details, see Sections 2.2 and 2.7.

5. Similar to INC in the node input above. For each missing surface, i, (i = 1 to NMISS) gene
i*INCP additional photons emissions are added to NPHTN.

6. ERRMAX(N) is used as explained in Section 2.7. Loops over full surface emissions are
until either the specified number of loops, NPLOOPS (entered in Section 3.2.2), have occ
or convergence to within tolerance, Ci, defined in Equation (2.6), is achieved, whichever com
first.

7. If no value of ERRMAX(N) is input or a value less than or equal to 0 is read, then this de
to the global value, ERRDEF, input as described in Section 3.4.
34

(s)

1

 10
0

input

 mate-
n mate-
 values

ram
al prop-
UM-
 input
mple
3.7 Wavelength Band Data

CARDS 1 to (NBANDS-1)/8

Condition(s): NBANDS > 1 (entered in Section 3.2.1), otherwise, omit card

Cols. Format Entry Note(s)

1-80 8E10.0 Wavelength breakpoint N (micrometers)

Notes:

1. The first (1) and last (NBANDS + 1) wave breakpoints are assumed to be 0.0 and (1 x10)
in micrometers and should not be input. The remaining breakpoints between 0 and 1 x 110
should be input in order from 2 to NBANDS. No more than eight breakpoints should be
per card (10 columns per value). More than one card may be required.

3.8 Material Type Data

Material type data cards are input by band for each material in order. For example, if three
rials are used in two bands, then all material type data are read in for material 1, band 1; the
rial 1, band 2; then material 2, band 1; etc. MN and IB are used as checks to ensure that the
are entered in the right order. If the information is not entered in the correct order, the prog
detects an error and terminates. All material type data cards must be input before any materi
erty curves are input. Sections 3.8-3.10 describe the new material model, which is used if N
MAT (entered in Section 3.2.1) is less than 0. Otherwise, the old material model is used, with
as described in Appendix A. More detail on the material model is given in Section 2.5. A sa
input file using the new material model is given in Section 4.1.

3.8.1 Card 1

Condition(s): Repeat for every material

Cols. Format Item Note(s)

1-5 I5 Material number (MN) 1

6-37 A20 Material name

Note:

1. The material number must be between 1 and |NUMMAT|, inclusive.

∞

35

erial;
Note

, 7

, 7

6, 7

8

8

8

8

r that

.4.

f

 (1.5)

n

(beam
 nor-
 IETP
3.8.2 Card 2

Condition(s): Repeat the pair of cards 2 and 3 for every band for each mat
unless IB = 0, in which case the information is only entered once. See
1 below.

Cols. Format Item Note(s)

1-5 I5 Band number (IB) 1

6-10 I5 Emission type (IETP) 2, 3, 4

IETP = 0 - “standard” emission according to ε(θ)

IETP = 1 - “beam” emission

IETP = 2 - “function” emission 5

11-20 E10.0 Global X-component of beam emission vector (EBX) 6

21-30 E10.0 Global Y-component of beam emission vector (EBY) 6

31-40 E10.0 Global Z-component of beam emission vector (EBZ)

41-50 E10.0 Cosine power for weighted diffuse reflectance (RRHOD)

(DEFAULT: 1.)

51-60 E10.0 Cosine power for semi-specular reflectance (RRHOSS)

(DEFAULT: 1.)

61-70 E10.0 Cosine power for weighted diffuse transmittance (RTAUD)

(DEFAULT: 1.)

71-80 E10.0 Cosine power for semi-specular transmittance (RTAUSS)

(DEFAULT: 1.)

Notes:

1. If IB is 0 for the first band of the material, then it is assumed that all material properties fo
material are the same for all bands. No cards are read for the other bands.

2. IETP must be between 0 and 2, inclusive. More detail is given in Sections 2.5.3 and 2.5

3. If a material has 0 emittance for all values of θ, then no photons are emitted from surfaces o
that type unless IETP = 1 or 2.

4. As explained in Section 2.5.4, if IETP equals 1 or 2, the reciprocity relations, Equations
and (1.6), may no longer hold.

5. If IETP = 2, emission is accomplished using computer code supplied by the user (functiofcn
in subroutine getang in the file m32s.f).

6. For regular emission (IETP = 0), these values are ignored. They are read in if IETP = 1
emission) or if IETP = 2 (the function for function emission may require them). Values are
malized internally, to yield a magnitude of 1. If all components entered are equal to 0 and
does not equal 0, the program exits with an error.
36

is from
al for

ode will
ction

als
an 0,

ty rela-

ry

2

, 2

, 2

2

 2

, 2

3

3

or this
of

 are
perty
tive val-

ions,
 if the
 varies
 the

s
7. When using beam emission (IETP = 1), care must be taken to ensure that all emission
the “front” of the surface; i.e. the dot product of the emission vector and the surface norm
each surface that uses this material must be greater than 0. If this is not the case, the c
exit with an error. No check is made when the beam emission variables are used for fun
emission (IETP = 2).

8. These are the coefficients, rd and rss, described in Section 2.5.2. If one of these variables equ
0, then it will be set to 1 (standard diffuse distribution). If any of these variables is less th
then it is set to 0 (isotropic distribution). Note that, as discussed in Section 2.5.4, if rd does not
equal 1 (standard diffuse distribution) or semi-specular properties are used, the reciproci
tions, Equations (1.5) and (1.6), may no longer hold.

3.8.3 Card 3

Condition(s): Repeat the pair of cards 2 and 3 for every band input for eve
material

Cols. Format Item Note(s)

1-10 E10.0 Diffuse reflectance (RHOD) 1,

11-20 E10.0 Specular reflectance (RHOS) 1

21-30 E10.0 Semi-specular reflectance (RHOSS) 1

31-40 E10.0 Diffuse transmittance (TAUD) 1,

41-50 E10.0 Specular transmittance (TAUS) 1,

51-60 E10.0 Semi-specular transmittance (TAUSS) 1

61-70 E10.0 Semi-specular offset angle for reflectance (DTHRSS)

71-80 E10.0 Semi-specular offset angle for transmittance (DTHTSS)

Notes:

1. If a positive, definite value (0 or greater) is input, then this is taken as the constant value f
material property, for all values of θ. If a negative value is input, it is taken as the negative
the curve index for this property and the rounded absolute value must be between 1 and
NMACV (entered in Section 3.2.2), inclusive. For example, if the values for this property
included in curve 3, a value that rounds to -3 (preferably -3.0) must be input. Material pro
curves are read after all material information has been read; see Section 3.9 below. Posi
ues must be between 0. and 1., inclusive. For more detail, see Section 2.5.1.

2. As explained in Section 2.5.4, if semi-specular properties are used, the reciprocity relat
Equations (1.5) and (1.6), may no longer hold. The reciprocity relations also do not hold
diffuse reflectance varies as a function of angle. They DO hold if the specular reflectance
as a function of angle. No tests have been done to see if reciprocity relations hold when
specular or diffuse transmittance vary as a function of angle.

3. The user enters the offset angle which is the ∆θo(θi) quantity defined in Equation (2.4). Value
are in degrees. The code stores the results internally as θp. If 0. is entered, ∆θo(θi) is 0. Other
positive values can not be entered because ∆θo(θi) must be between -θi and 90 - θi for all angles,
37

angle
ion
e that
r all

s)

en

1

 plus at

, 2

3

s)

ormat

1

θi. If a negative value is input, it is taken as the negative of the curve index for this offset
curve and the rounded absolute value must be between 1 and NDTCV (entered in Sect
3.2.2), inclusive. For example, if the values for this property are included in curve 3, a valu
rounds to -3 (preferably -3.0) must be input. Offset angle (del theta) curves are read afte
material property curves have been read; see Section 3.10 below.

3.9 Material Property Curves Input

Condition(s): NMACV > 0 (entered in Section 3.2.2), otherwise, omit card(

Material property curves must be entered in order from 1 to NMACV using the format giv
below.

3.9.1 Card 1

Cols Format Item Note(s)

1-5 I5 Material property curve number (NCMA)

6-10 I5 Number of points to be read in for the curve (NP)

Notes:

1. At least three points must be input. Points must be input at angles of 0 and 90 degrees,
least one other intermediate angle.

3.9.2 Cards 2 to NP+1

Cols. Format Item Note(s)

1-10 E10.0 Angle for curve value in degrees (ANGLE) 1

11-20 E10.0 Material property curve value (VALUE) 1,

Notes:

1. Values must be given for 0 and 90 degrees.

2. ANGLE values must be between 0. and 90., inclusive.

3. VALUE must be between 0. and 1., inclusive.

3.10 Semi-specular Offset Angle Curves Input

Condition(s): NDTCV > 0 (entered in Section 3.2.2), otherwise, omit card(

Semi-specular offset angle curves must be entered in order from 1 to NDTCV using the f
given below.

3.10.1 Card 1

Cols Format Item Note(s)

1-5 I5 Semi-specular offset angle curve number (NCDT)

6-10 I5 Number of points to be read in for the curve (NP)
38

 plus at

, 2

1, 3

is

 com-
di-

 and

er

er
Notes:

1. At least three points must be input. Points must be input at angles of 0 and 90 degrees,
least one other intermediate angle.

3.10.2 Cards 2 to NP+1

Cols. Format Item Note(s)

1-10 E10.0 Angle for curve value in degrees (ANGLE) 1

11-20 E10.0 Semi-specular offset angle value in degrees (VALUE)

Notes:

1. Values must be given for 0 and 90 degrees.

2. ANGLE values must be between 0. and 90., inclusive.

3. VALUE must be between -ANGLE and (90 - ANGLE), so that the preferred outgoing angle
between 0 and 90 degrees, inclusive.

3.11 User Grid Input

It should be noted that depending on the values of NGX, NGY, and NGZ entered, forwards
patibility may not exist for input files create for versions of MONT3D earlier than 2.4. For ad
tional explanation of the variables NSHADE, and NGX, NGY and NGZ, see Sections 3.2.2
3.3, respectively.

3.11.1 User X-grid Coordinates

Condition(s): NSHADE < 0 and NGX < 0, otherwise, omit card(s)

Cols. Format Entry Note(s)

1-80 8E10.0 X-grid coordinates XG(N) 1

Notes:

1. For N = 1 to NGX+1. No more than eight values should be input per card (10 columns p
value). More than one card may be required.

3.11.2 User Y-grid Coordinates

Condition(s): NSHADE < 0 and NGY < 0, otherwise, omit card(s)

Cols. Format Entry Note(s)

1-80 8E10.0 Y-grid coordinates YG(N) 1

Notes:

1. For N = 1 to NGY+1. No more than eight values should be input per card (10 columns p
value). More than one card may be required.
39

er
3.11.3 User Z-grid Coordinates

Condition(s): NSHADE < 0 and NGZ < 0, otherwise, omit card(s)

Cols. Format Entry Note(s)

1-80 8E10.0 Z-grid coordinates ZG(N) 1

Notes:

1. For N = 1 to NGZ+1. No more than eight values should be input per card (10 columns p
value). More than one card may be required.
40

 com-
r this
ns
of

h the
aces
g and

. The
onstant

 second
 reflec-
 geom-

ed that
re

 Sec-
y the
stricted
CHAPTER 4 PROGRAM EXECUTION

This chapter illustrates how MONT3D is executed in a Unix environment. The first section
details the sample input files used in the examples below. The second section explains the
mands and results obtained from a normal execution and a restart execution of the code fo
input file. The next two sections show the screen output for the normal and restart executio
described in the previous section. The final section addresses the machine independence
MONT3D results and its implications during restart runs.

4.1 Input File “box.in”

Figure 4.1 shows a 3-D geometry for analysis by MONT3D. Comparison of the picture wit
input file “box.in” shown below illustrates the right-hand rule for 3-D surfaces. The inner surf
are modeled by two different types of materials which are mixed specular and diffuse reflectin
whose properties vary with incident angle. This file demonstrates the “new” material model
first material, which is used for the sides of the box, has the diffuse reflectance entered as a c
value (0.2), while the specular reflectance is entered as the curve shown in Figure 4.2. The
material, which is used for the top and bottom of the box, uses the same curve for its diffuse
tance and has a constant value for the specular reflectance (0.1). Due to the simplicity of the
etry and the small number of surfaces it contains, grid shading is not used. It should be not
even moderately complex geometries will benefit from grid shading, see Section 2.6 for mo
details. A complete description of the input format is given in Chapter 3.

The input file is listed below and is also available at the MONT3D WWW site mentioned in
tion 1.1. It should be noted that comment cards are used throughout the input file to identif
input variables and where they should be entered. As shown in Chapter 3, each variable is re

Figure 4.1: 3-D Geometry of File “box.in”

1

1

2

2 3

3 4

4
5

5

6 6 7

8

Z

Y

X

41

etter of
that vari-
 3 for

file
to being entered in a certain range of non-overlapping columns on a certain card. The last l
each variable name on the comment cards marks the last column that can be used to input
able (except for IGEOM). If the code reads blanks as zeroes (see the beginning of Chapter
more detail), then all variables should be right-justified and should line up as shown in the
below. For maximum compatibility, all input files should be right-justified.

& TITLE (48 CHARACTERS MAX)
3-D BOX TEST PROBLEM
&NDIM NSURF NBANDS NREFS NLOST INSEED
& NUMNP NUMMAT NPHTON NWARNS NEBLOCK
 3 8 6 -2 1 100 100 100 10 -2 0
&IGEOM NUMCAT NDIVX NSHADE NWPROC IPAROPT NDTCV
& IPRNT IDATA NDIVY ITRACES NPLOOPS NMACV
 110000 0 0 10 10 1 0 0 1000000 1 0
& XSCALE XSHIFT YSCALE YSHIFT ZSCALE ZSHIFT DELT SPLITOL
 1.0 0.0 1.0 0.0 1.0 0.0 0.01 0.0001
& GRID NUMBERS (READ IF NSHADE < 0)
& NGX NGY NGZ
& 5 5 5
& ERRDEF (if NPLOOPS<>0)
 2.0e-3
& NODES
& N INC X Y Z
 1 0 0.0 0.0 0.0
 2 0 20.0 0.0 0.0
 3 0 20.0 30.0 0.0
 4 0 0.0 30.0 0.0
 5 0 0.0 0.0 10.0
 6 0 20.0 0.0 10.0
 7 0 20.0 30.0 10.0
 8 0 0.0 30.0 10.0
& ELEMENTS
& N N1 N2 N3 N4 NMISS INC MN NPHT INCP ERRMAX
 1 1 2 3 4 0 0 2 0 0 0.00
 2 5 8 7 6 0 0 2 0 0 0.00
 3 1 5 6 2 0 0 1 0 0 0.00
 4 3 7 8 4 0 0 1 0 0 0.00
 5 1 4 8 5 0 0 1 0 0 0.00
 6 2 6 7 3 0 0 1 0 0 0.00
& WAVELENGTH BAND BREAKPOINTS (READ IF NBANDS > 1)
& BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
& 5.0
& MATERIALS (NEW MODEL, NUMMAT < 0)
& MN MATNAME
 1 Sample Material 1
& IB IETP EBX EBY EBZ RRHOD RRHOSS RTAUD RTAUSS
 0 0 0. 0. 0. 0. 0. 0. 0.
& RHOD RHOS RHOSS TAUD TAUS TAUSS DTHRSS DTHTSS
 0.2 -1. 0. 0. 0. 0. 0. 0.
& MN MATNAME
42

 2 Sample Material 2
& IB IETP EBX EBY EBZ RRHOD RRHOSS RTAUD RTAUSS
 0 0 0. 0. 0. 0. 0. 0. 0.
& RHOD RHOS RHOSS TAUD TAUS TAUSS DTHRSS DTHTSS
 -1 0.1 0. 0. 0. 0. 0. 0.
&MATERIAL PROPERTY CURVES (NUMMAT < 0, NMACV > 0)
& NCP NP
 1 6
& ANGLE VALUE
 0.0 0.40
 30.0 0.38
 50.0 0.35
 70.0 0.20
 80.0 0.20
 90.0 0.80
& SEMI-SPECULAR DEL THETA CURVES (IF NDTCV > 0)
& USER DEFINED GRID (READ IF NGX < 0)
& User X grid (Read if NGX < 0)
& XG1 XG2 XG3 XG4 XG5 XG6 XG7 XG8
& -0.01 0.01 1 5 9. 10.01
& User Y grid (Read if NGY < 0)
& YG1 YG2 YG3 YG4 YG5 YG6 YG7 YG8
& -0.01 0.01 1 3 9 20.01
& User Z grid (Read if NGZ < 0)
& ZG1 ZG2 ZG3 ZG4 ZG5 ZG6 ZG7 ZG8
& -0.01 0.01 1 1.01 7 30.01

Figure 4.2: Material Property Curve for File ‘‘box.in’’

Incident Angle (degrees)
0 90

0

1

15 30 45 60 75
43

wn
the

 its
”

ich
the
tional

OX
ion
rtion
o as ele-
by suc-
utine is
ut files.
st cer-
that
s “gri-
sible
 code’s
hase is

 for
s have
er of
ted.
close.

e matrix
ase
re
otal
er of
 infor-
e clean-
atrix file.

un at

tc. For
hoton
4.2 Execution of File “box.in”

The following details the execution of the 3-D code using the file “box.in.” The output sho
below in Section 4.3 is output to the screen. The Unix prompt is “czeeb(n)%”, where “n” is
command number. All input from the user is shown bold and italicized.

The executable file here is mont3d (note that Unix is case sensitive), and is invoked by typing
name - shown at the first prompt - “czeeb(1)%.” All subsequent output up to the “czeeb(2)%
prompt is from the program MONT3D. The user types in only the prefix of the input file, wh
MUST have the extension “in.” In this case, the file is “box.in,” and the user enters “box.” If
program cannot find the input file, an error diagnostic is printed and the program exits. Addi
detail on the files used by MONT3D can be found in Chapter 5.

The program proceeds with reading of the input file. The run’s title is printed (here, “3-D B
TEST PROBLEM”), along with the version number (here, “2.4f1”), the date of last modificat
(here, “04-15-99”), and the language of the source code (always “f77”). Next, the control po
of the input is read. This establishes the numbers of nodes, surfaces (sometimes referred t
ments or surface elements), wavelength bands, materials, grids, etc. which are to be read
ceeding subroutines. Then, the input subroutines are executed one-by-one. As each subro
entered, the name of the subroutine is printed to the output file. This assists in debugging inp
For example, if the program “crashes” after the message “in nodin3” is printed, there is almo
tainly a problem with the nodal input (or possibly, the cards are out of order). Another item
should be noted is the “Memory Allocation and Usage” section listed between the subroutine
din” and “order.” By setting the memory allocation parameters to the “used” values, it is pos
to run the code using the smallest memory allocation possible. More details on changing the
parameters are given in Section 5.5. Finally, the successful completion of the entire input p
indicated by the message, “input phase complete.”

The solution phase occurs next. After the specified number of full surface emission loops
each surface are completed, a message is printed indicating whether the exchange fraction
converged (see Section 2.7). In addition, the wavelength band, surface number, total numb
emitted photons (summed over all full surface emissions), and the calculated error are prin
Here, none of the surfaces converge to the stringent error tolerance of 0.002, but all come

Next, after all the surfaces emissions have been completed, the code creates the exchang
file (file suffix .nij) as shown by the two statements that both start with “Now writing...” This ph
is usually fast unless there is a large number of surfaces. Next, overall program statistics a
printed, including the error statistics; various timings for the run (in seconds of CPU time); t
number of photons emitted (and traced to absorption); and the performance metrics, numb
photons per CPU second for both the entire run and just for the solution phase. The timing
mation is divided into three phases. The input and solution phases are self-explanatory. Th
up phase is the time the program spends after the solution phase creating the exchange m

Finally, upon completion of the run, the Unix prompt is issued. To find out more about the r
this point, the output file box.out is available. Furthermore, the plot file box.plt can be used with the
MPLOT program [Nagesh and Burns, 1994] to view the geometry and material properties, e
other more complicated geometries which have “holes” and other such problems, the lost p
file (file suffix .lst), the leaks file (file suffix .lks), and the optional trace file (file suffix .trc) may
44

.8 and

cation
os-

ariable
N, can
e factor
ock
ion
 the
tails
 restart
also be used with MPLOT to further analyze the geometry. For more details, see Sections 2
5.3 and the MPLOT documentation.

Section 4.4 contains the screen output generated by a restart run of box.in. The only modifi
to file box.in was to change NEBLOCK from 2 for the initial run to -2 for the restart run. It is p
sible to change a number of other variables before beginning a restart run. Basically, any v
that does not change the description of the geometry or material properties, such as NPHTO
be changed for a restart run. It should be noted that when doing the restart run, the exchang
file, box.nij, and the restart file, box.rst, must be present. If the run restarted from a crash, the bl
file (box.blk) and any block nij files (file suffix .bni) must also be present. The restart run in Sect
4.4 also demonstrates MONT3D’s command line interface. The “-f” (family option) specifies
name to be used for all files not specifically named by any other command option. More de
about the command line interface are given in Section 5.4. Convergence was achieved in the
run.

4.3 Screen Output During Execution of File “box.in”

czeeb(1)% mont3d
 ****** mont3d ******
 Enter prefix for disk files - 20 characters or less

 input file MUST have extension .in
box
 3-D BOX TEST PROBLEM v. 2.4f1 04-15-99 f77

 in nodin3
 in surfin3
 in wavin
 in matinnew
 reading material property curves
 in curveset
 in cumdis
 in fileset
 in gridin

 M e m o r y A l l o c a t i o n a n d U s a g e

Category Allocated Used

 1. Nodes (inod) 15000 words 8 words (0%)
 2. Surfaces (isrf) 5000 words 6 words (0%)
 3. Materials (imat) 30 words 2 words (7%)
 4. Wavelength bands (ibnd) 5 words 1 words (20%)
 5. Restart surface block size (iblk) 200 words 2 words (1%)
 6. Restart blocks (itblk) 1000 words 3 words (0%)
 7. Index digits for filename (iimag) 4 words 1 words (25%)
 8. Grid divisions per axis (incg) 60 words 1 words (2%)
45

 9. Surfaces including split surfaces (isrfs) 7000 words 6 words (0%)
10. Surface segments in grid cells (iseg) 100000 words 6 words (0%)

 in order
 in graf
 in bplane2d

 i n p u t p h a s e c o m p l e t e

 band surf. iter. npht. error tol.
 not converged - 1 1 10 100000 0.2173E-02 0.2000E-02
 not converged - 1 2 10 100000 0.2175E-02 0.2000E-02
 restart file written
 not converged - 1 3 10 100000 0.2125E-02 0.2000E-02
 not converged - 1 4 10 100000 0.2123E-02 0.2000E-02
 restart file written
 not converged - 1 5 10 100000 0.2136E-02 0.2000E-02
 not converged - 1 6 10 100000 0.2136E-02 0.2000E-02
 restart file written

Now writing exchange numbers from each block nij file (.bni)
to a temporary binary file (.tni)

Now writing the exchange numbers from the temporary
binary file (.tni) to the .nij file

 normal termination

 Convergence information for band 1
 0 out of the 6 completed surfaces did not emit
 and 0 out of the 6 emitting surfaces converged.
for the emitting surfaces:
 Average error = 0.2145E-02
 Minimum error = 0.2123E-02 on surface 4
 Maximum error = 0.2175E-02 on surface 2
46

 s o l u t i o n t i m e l o g

 time for input phase = 0.15902E+00 secs
 time for solution phase = 0.10073E+02 secs
 time for cleaning up = 0.13693E-01 secs
 total run time = 0.10245E+02 secs
 total number of photons emitted = 0.60000E+06
 total number of photons lost = 0
 photons per second (solution phase) = 59567.793
 photons per second (total run) = 58563.584

 all results are given in CPU time
czeeb(2)%

4.4 Screen Output During Restart Execution of File “box.in”

czeeb(2)% mont3d -f box
 3-D BOX TEST PROBLEM v. 2.4f1 04-15-99 f77

 in nodin3
 in surfin3
 in wavin
 in matinnew
 reading material property curves
 in curveset
 in cumdis
 in fileset
 in gridin

 M e m o r y A l l o c a t i o n a n d U s a g e

Category Allocated Used

 1. Nodes (inod) 15000 words 8 words (0%)
 2. Surfaces (isrf) 5000 words 6 words (0%)
 3. Materials (imat) 30 words 2 words (7%)
 4. Wavelength bands (ibnd) 5 words 1 words (20%)
 5. Restart surface block size (iblk) 200 words 2 words (1%)
 6. Restart blocks (itblk) 1000 words 3 words (0%)
 7. Index digits for filename (iimag) 4 words 1 words (25%)
 8. Grid divisions per axis (incg) 60 words 1 words (2%)
 9. Surfaces including split surfaces (isrfs) 7000 words 6 words (0%)
10. Surface segments in grid cells (iseg) 100000 words 6 words (0%)

 in order
47

 in graf
 in bplane2d

 i n p u t p h a s e c o m p l e t e

 band surf. iter. npht. error tol.
 converged - 1 1 2 120000 0.1984E-02 0.2000E-02
 converged - 1 2 2 120000 0.1984E-02 0.2000E-02
 restart file written
 converged - 1 3 2 120000 0.1940E-02 0.2000E-02
 converged - 1 4 2 120000 0.1938E-02 0.2000E-02
 restart file written
 converged - 1 5 2 120000 0.1949E-02 0.2000E-02
 converged - 1 6 2 120000 0.1949E-02 0.2000E-02
 restart file written

Now writing exchange numbers from each block nij file (.bni)
to a temporary binary file (.tni)

Now writing the exchange numbers from the temporary
binary file (.tni) to the .nij file

 normal termination

 Convergence information for band 1
 0 out of the 6 completed surfaces did not emit
 and 6 out of the 6 emitting surfaces converged.
 for the emitting surfaces:
 Average error = 0.1957E-02
 Minimum error = 0.1938E-02 on surface 4
 Maximum error = 0.1984E-02 on surface 1

 s o l u t i o n t i m e l o g

 time for input phase = 0.16846E+00 secs
48

d by
ring

l results
ine, pro-
 even

sor and
l run,
 time for solution phase = 0.20285E+01 secs
 time for cleaning up = 0.11734E-01 secs
 total run time = 0.22087E+01 secs
 total number of photons emitted = 0.12000E+06
 total number of photons lost = 0
 photons per second (solution phase) = 59155.912
 photons per second (total run) = 54329.894

 all results are given in CPU time
czeeb(3)%

4.5 Machine Independence of MONT3D

Much effort has been put into making MONT3D platform independent. Of all the files use
MONT3D, only one is binary (the temporary binary exchange matrix file), and it only exists du
the input phase at the beginning of the run and clean-up phase at the end of a run. Since al
are stored as ASCII files, runs started on one machine can be restarted on a different mach
vided the files are available on the other machine (usually accomplished via ftp). This is true
if the run is restarting from a crash. Furthermore, the code can switch between single proces
parallel execution, or even change the number of worker processes being used in a paralle
even if restarting from a crash.
49

tions
ral of

ing how
 Unix
uss pre-

 work
mpile
th of
which
res can

 date
can be
imple-

e ran-
n 90
tan-
o be

en the

l ver-
d time,
ext sec-

 other

 wave-
CHAPTER 5 IMPLEMENTATION DETAILS

This chapter covers how MONT3D is implemented. The first two sections describe the
MONT3D source code and explain how to compile it on various platforms. The next two sec
cover the files generated and used by MONT3D, and the command line used to name seve
these files. The fifth section discusses the use of parameter statements in the code, includ
they affect memory allocation. The sixth section discusses the parallel version of the code.
batch execution by scripts is the subject of the seventh section. The last section briefly disc
cision in MONT3D.

If any problems with the code are encountered, one of the authors should be contacted.

5.1 MONT3D Source Files

In this section, the various files included in the MONT3D source code are described. Much
has been done recently to increase the portability of MONT3D. Furthermore, the ability to co
a parallel version of the code implemented in PVM [Geist et al., 1994] has been added. Bo
these features have been implemented through the use of “stubs.” Stubs are multiple files
contain the same subroutine and function names, each with or without certain options. Featu
be turned on and off by compiling the code using selected stubs.

All nonportable parts of the MONT3D code (the command line, the timing, and the time and
functions) have been separated into stubs. If an architecture does not support a feature, it
compiled with a stub that omits the feature. Alternatively, it is possible to create a stub that
ments that feature specifically for that platform.

The only potentially nonportable aspects of MONT3D are the bitwise operators used in th
dom number generator. The bitwise operator functions used are those defined in the Fortra
standard. While these bitwise operations functions are not part of the ANSI FORTRAN 77 s
dard, these subroutines have been supported on every platform tested so far, and appear t
included in all current FORTRAN 77 compilers as extensions.

The parallel portion of the code is also implemented as a stub. The only difference betwe
parallel and single processor versions of the code is which stub is used.

In the subsections below, various files are described, starting with the files common to al
sions. Next, the stubs to support the nonportable features: command line, timing, and date an
are covered. Finally, the parallel stubs are discussed. Further detail is also be given in the n
tion which covers compiling MONT3D for various platforms.

5.1.1 Files Common to All Versions

Every compilation of MONT3D requires the following files:

m30s.f: the main program, routines called by subroutines in multiple source code files, and
miscellaneous routines.

m311s.f: the main input routine and all the subroutines required to input nodes, surfaces, and
length bands.

m312s.f: the input routines for entering material properties and material property curves.
50

put

.5

ener-
 user
ddi-

/6000,

er

here
ing
ich is
stem
e does
s, the

. The

ock,

er-

ires
de.
m313s.f: the input routines for entering and setting up the grid and post-processing of the in
data.

m32s.f: the solve routines.

mont3d.par: parameters that control the sizes of arrays and other quantities (see Section 5
below).

mont3d.com: all common variables not specific to the parallel version of the code.

5.1.2 Command Line

The command line allows the user individually to specify file names for most of the files g
ated by MONT3D. If the command line is disabled, all command line input is ignored and the
must specify the base file name by entering it when prompted during program execution. A
tional detail is given in Section 5.4.

Three stubs are available for the command line:

m3comline.f: activates the command line. Requires the nonstandard subroutines iargc and getarg
to be supported by the compiler. Tested on Sun, SGI, DEC Alpha, Hewlett Packard, IBM RS
and Macintosh (Absoft FORTRAN) platforms.

m3nocom.f: deactivates the command line for platforms, such as the NAG f90 compiler und
Linux, which do not support the subroutines iargc and getarg.

m3pccom.f: activates the command line when compiling the code under Microsoft Windows
(Microsoft FORTRAN).

5.1.3 Timing Information

As shown in Chapter 4, MONT3D prints some timing information at the end of each run. T
are two types of timing information that can be collected. For single processor runs, the tim
information desired is usually the CPU time. The CPU time includes both the user time, wh
the time the program itself uses in execution, and the system time, which is the time the sy
uses for activities such as I/O and swapping the program in and out of memory. The CPU tim
not include the time the processor spends on other programs or processes. For parallel run
most useful timing information is clock time, which is the actual time recorded from the clock
clock time includes the time spent on other processes besides MONT3D.

If timing is disabled, then MONT3D reports no timing information. On Unix systems, the cl
user, and system times for the run can be obtained using the Unix time command; perform a man
on time for more information.

All these stubs work to some degree with the Microsoft Windows (Microsoft FORTRAN) v
sion of the code. The suggest stub for compiling the Windows version of the code is m3f90timing.f.
For more details on Windows timing, see Section 5.2.2.

Four stubs are available for timing:

m3ctiming.f: allows the code to collect timing information about the run in clock time. Requ
that the nonstandard subroutine time be supported. Mainly used for the parallel version of the co
Tested on Sun, DEC Alpha, IBM RS/6000, and Windows (Microsoft FORTRAN) platforms.
51

res
ion
RAN)
) is

d by
000
ft

es

 seeds
d date

ifferent

n 90

ndard
kard,

ate

y plat-

ROOT
 been
r)

 the
m3etiming.f: allows the code to collect timing information about the run in CPU time. Requi
that the nonstandard subroutine etime be supported. Mainly used for the single processor vers
of the code. Tested on Sun, SGI, DEC Alpha, Hewlett Packard, and Macintosh (Absoft FORT
platforms. More detail on the use of this stub under Microsoft Windows (Microsoft FORTRAN
given in Section 5.2.2.

m3f90timing.f: allows the code to collect clock time using the Fortran 90 subroutine. It is use
the parallel and single processor versions of the code on computers such as the IBM RS/6
which do not support the subroutine etime. It is also the preferred timing stub to use for Microso
Windows (Microsoft FORTRAN).

m3notiming.f: deactivates timing for platforms which do not support any of the timing routin
listed above.

5.1.4 Time and Date Information

Time and date information is rather important because it is used to create time-generated
for the random number generator; see Sections 2.11 and 3.2.1 for additional detail. If time an
information are disabled, then the time-generated seed is an internal constant. To obtain d
random number sequences, the user must supply different initial seeds in the input file.

Three stubs are available for time and date information:

m3f0date.f: allows the code to access the time and date of the run. Requires that the Fortra
subroutine date_and_time be supported by the compiler. Tested on the IBM RS/6000 and
Microsoft Windows (Microsoft FORTRAN) platforms.

m3fdate.f: allows the code to access the time and date of the run. Requires that the nonsta
subroutine fdate be supported by the compiler. Tested on Sun, SGI, DEC Alpha, Hewlett Pac
and Macintosh (Absoft FORTRAN) platforms.

m3nodate.f: deactivates time and date information for platforms which do not support any d
subroutine. The date and time are set to the default value: 16:53:49 on March 12, 1970.

5.1.5 Parallel Implementation

Two stubs that control parallel implementation of MONT3D are available:

m3nopara.f: implements the single processor version of the code. This has compiled on ever
form on which it has been tested.

m3pvm.f: implements a PVM version of MONT3D. The file m3pvm.inc contains the PVM specific
parameters and common variables and is required. The user’s environment variables PVM_
and PVM_ARCH must be defined for this file to compile successfully. The PVM version has
compiled on Sun, Hewlett Packard, IBM RS /6000, DEC Alpha and Linux (NAG f90 compile
platforms.

More information about compiling is given in the below. Also, more information on running
parallel code is given in Section 5.6 below.
52

 code.

r-

 line,

wlett

 and

iles

ons of

 be

bove

 men-

sing
en

and
les

 ver-
g the
is

s

er the
rectly,

in the
file
5.2 Compiling MONT3D

5.2.1 Unix

For Unix, a Makefile that has been tested on several platforms is available to compile the
Different instances of the program can be created by typing “make target” in the directory that con-
tains the source code files and the Makefile, where target is a keyword that determines which ve
sion of MONT3D is created. Currently, there are nine options for target:

m3d: creates the single processor version of MONT3D with all optional features (command
timing, and time and date) enabled using m3comline.f, m3etiming.f, and m3fdate.f. The timing
results generated are CPU time. This has been compiled on Sun, SGI, DEC Alpha and He
Packard architectures.

m3dibm: creates the single processor version of MONT3D and activates the command line
the Fortran 90 versions of the clock timing and time and date functions using the files m3comline.f,
m3f90timing.f, and m3f90date.f. The timing results generated are clock time. This version comp
on the IBM RS/6000 platform.

m3df90: creates the single processor version of MONT3D and activates the Fortran 90 versi
the clock timing and time and date functions but not the command line. It uses the files m3nocom.f,
m3f90timing.f, and m3f90date.f. The timing results generated are clock time. This version can
compiled on any full featured Fortran 90 compiler.

m3dansi: creates the single processor version of MONT3D with all optional features listed a
turned off. The files used are m3nocom.f, m3notiming.f, and m3nodate.f. We believe it to be mostly
ANSI compliant except for bitwise operations required for the random number generator as
tioned above.

m3dpvm: creates the parallel PVM implementation of MONT3D with all features activated u
m3comline.f, m3ctiming.f, and m3fdate.f.The timing results generated are clock time. It has be
compiled on Sun, DEC Alpha, and Hewlett Packard workstations.

m3dpvmibm: creates the parallel PVM implementation of MONT3D and activates the comm
line and the Fortran 90 versions of the clock timing and time and date functions using the fi
m3comline.f, m3f90timing.f, and m3f90date.f. The timing results generated are clock time. This
version compiles on the IBM RS/6000 platform.

m3dpvmf90: creates the parallel PVM implementation of MONT3D activates the Fortran 90
sions of the clock timing and time and date functions but not the command line. It uses usin
files m3nocom.f, m3f90timing.f, and m3f90date.f. The timing results generated are clock time. Th
version can be compiled on any full featured Fortran 90 compiler.

m3dpvmansi: creates the parallel PVM implementation of MONT3D with all optional feature
deactivated. It uses the files m3nocom.f, m3notiming.f, and m3nodate.f.

clean: deletes all the object files in the current directory. This option should be used whenev
user wants to start the compilation over from scratch. If code does not seem to compile cor
then the user should try using the clean target and then recompiling the code.

The name of the MONT3D executable generated by the Makefile is specified by macros
Makefile. The name of the single processor version of the code is determined by the Make
53

t

OOT

ferent
 the exe-
en-

 used
ctions

ough.
le lists
ard

plat-
set to

s are
trol
ters,

he code
r

irec-

braries
lett
s for
PVM

 to be

rsta-

ted so
macro M3DSERNAME which has a default value of mont3d. The name of the PVM version is se
by the macro M3DPARANAME which has a default value of m3dpvm. For the worker processes
to spawn correctly, the name of the PVM version of executable must match the parameter
m3dparaname which is declared in the file mont3d.par. The default value for m3dparaname is
m3dpvm. More detail is given in Sections 5.5.2, 5.6.1, and 5.6.4.

When compiling the parallel versions of the code, the user’s environment variables PVM_R
and PVM_ARCH must be defined for this compilation to succeed.

When compiling the PVM version of the code on various heterogeneous architectures, dif
executables can be used on different machines as long as they are the parallel versions of
cutables. For example in the inhomogeneous network of the Suns and Linux workstation m
tioned earlier, the m3dpvm target was compiled on the Suns, while the m3dpvmansi target was
compiled under Linux. Currently, the command line, timing, and time and date functions are
only by the master in the parallel code. Therefore, the command line and time and date fun
are supported if the master process’s executable supports them.

To compile MONT3D on various architectures, specifying the correct target may not be en
There are three macro definitions in the Makefile that may have to be set as well. The Makefi
default values for these macros for Sun, SGI, IBM RS /6000, DEC Alpha, and Hewlett Pack
platforms and for the NAG f90 compiler under Linux. These macros are:

FC: specifies the FORTRAN compiler. This is usually set to “f77.” For the Hewlett Packard
form, this must be set to “fort77.” Of course, if a Fortran 90 compiler is used, this should be
“f90.”

FFLAGS: specifies the FORTRAN compiler flags. Some platforms require special flags. Flag
specified in the Makefile to allow the user to compile the code on several platforms and con
optimization. If a person is knowledgeable about optimization options for his specific compu
he may want to change the default settings for these flags. FFLAGS can be used to compile t
with almost any options desired - check the compiler’s documentation for specifics. Popula
choices are optimizing (-O option), debugging (-g option), array bounds checking (-C option), and
profiling (-p or -pg option).

LPVMFLAGS: specifies the libraries for the PVM code which are used during linking. The d
tory to search for the PVM libraries and the libraries pvm3 and fpvm3 must always be specified.
Some platforms may require other libraries. For example, the Sun version also requires the li
nsl and socket. Appropriate values of LPVMFLAGS are listed in the Makefile for the Sun, Hew
Packard, IBM RS/6000 and DEC platforms, and for the NAG f90 compiler under Linux. Value
other platforms can be found by compiling the sample programs that are included with the
distribution.

The authors have worked hard to make MONT3D as portable as possible. They would like
informed about troubles/successes when compiling the code on other platforms.

5.2.2 Microsoft Windows

The code has been compiled under Microsoft Windows using Microsoft FORTRAN Powe
tion.The files which are needed to compile the code under Windows are: m30s.f, m311s.f, m312s.f,
m313s.f, m32s.f, m3nopara.f, m3pccom.f, m3f90timing.f, m3f90date.f, mont3d.par, and
mont3d.com. These files have compiled successfully on every Windows machine we have tes
54

her
e.
 zero

95 or

e func-

Absoft
e fol-

st

els.

ce has
z Sun

3D.
e end of

o dif-

ribed

ion

(s) are
de will
all
e flex-
e con-
far. However, it is possible to use other timing stubs. The code is essentially the same if eit
m3f90timing.f or m3ctiming.f is used. Both stubs cause timing results to be given in clock tim
While m3etiming.f compiles in all test cases, sometimes the timing function does not work and
seconds is reported for all the timings in the timing summary. In our limited testing, the etime func-
tion works when the code is compiled and run under Windows NT, but not under Windows
98. It is highly likely that etime reports clock timing instead of CPU timing on most Windows
machines, so there is probably no advantage to using etime instead of one of the clock tim
tions.

5.2.3 Macintosh

The Macintosh version has been compiled on a 233 MHz 604e PowerPC chip using the
f77 (and f90) compilers. A full-featured version of the code can be obtained by compiling th
lowing files: m30s.f, m311s.f, m312s.f, m313s.f, m32s.f, m3nopara.f, m3comline.f, m3etime.f,
m3fdate.f, mont3d.par, and mont3d.com. The compilation also requires the Absoft unixlib.o file
which is usually in the AbsoftLibraries folder in the Libraries folder in the MPW folder. The code
must be compiled with the fold to uppercase option (-N109). The general optimization (-O) and
604 PowerPC specific optimizations (-Q92, if applicable) options both improve performance. Be
performance is obtained compiling the code as an MPW Tool so it can run in the MPW Shell pro-
gram. Performance is further increased by using a minimum of extensions and control pan

Many timings have been done of the 233 MHz 604e PowerPC Macintosh and performan
been found to be very good. This particular Macintosh is almost 5 times faster than a 36 MH
Sparc-10 workstation.

5.3 Files Generated and Used by MONT3D

This section briefly describes the files used by MONT3D. For specificity, a prefix of fn is used.
Table 5.1 gives the files used (either pre-existing or generated during execution) by MONT
Files listed as temporary are deleted by the end of a successful run; most are deleted at th
the run.

Almost all the files listed in Table 5.1 are ASCII files, and may be read and printed with n
ficulty. Files for unit 13 are binary files, and are only read by MONT3D itself. The Unix utilityod
(octal dump) may be used to examine binary files (perform a man on od for instructions). The
description of the input file format is given in Chapter 3 and most of the other files are desc
in Appendix B.

5.4 Specifying File Names

MONT3D must have the names specified for all of the files shown in Table 5.1. This sect
explains the naming conventions and methods of specifying these file names.

There are two methods of specifying the file names; default and command line. If no name
specified on the command line (or the command line is disabled, see Section 5.1.2), the co
query the user via the console for a base file name (fn). This base name is used as the prefix for
files in the run. The command line method of specifying the file names allows the user mor
ibility in defining file names. Most file names can be specified independently according to th
ventions in Table 5.2.
55

-

s

n-

Table 5.1: MONT3D Files

Unit Name Function

1 fn.scr Temporary input file with comment cards “stripped away.” File is gener
ated by code. This is the file actually read during the input phase.

2 fn.rst Restart file required for restarting from a crash or a completed run.

3 fn.plt Plot file, to be used with the program MPLOT [Nagesh and Burns,
1994]. Contains geometrical and material property information.

4 fn.lst Contains lost photon trajectories, if any. This file can be viewed by
MPLOT [Nagesh and Burns, 1994]. For the parallel version, a separate
file, fnxx.lst, is generated for each worker process xx.

5 stdin Standard input (keyboard).

6 stdout Standard output (screen).

7 fn.in Input file with comment cards, in the format described in Chapter 3. Thi
file is used to generate the file of unit 1.

8 fn.nij Exchange matrix file which contains the results used by the thermal
analysis code TOPAZ3D [Shapiro, 1985]. See Section 1.4 for more
details.

9 fn.trc Trajectory file (written if ITRACES ≠ 0, see Section 3.2.2). To be used
with MPLOT [Nagesh and Burns, 1994], to plot particle trajectories. For
the parallel version, a separate trace file, fnxx.trc, is generated for each
worker process xx.

10 fn.out ASCII output file. Contains echo of all input and other information as
determined by IPRNT (see Section 3.2.2). The parallel version also ge
erates for each process xx a temporary output file, fnxx.out, that is
deleted at the end of a completed run. If the run exits abnormally, these
files may be used for debugging.

11 fn.lks Leaks file. To be used with MPLOT [Nagesh and Burns, 1994] to iden-
tify potential leaks.

12 fnxx.bni Temporary ASCII file which contains the exchange matrix for the xxth
block of surfaces. The full exchange matrix (.nij) file only exists at the
beginning and end of a run. During the run, the block exchange matrix
files are used instead.

13 fn.tni Temporary binary exchange matrix file used to convert back and forth
between the exchange matrix (.nij) file and the block exchange matrix
(.bni) files.

14 fn.blk Temporary ASCII file containing block information required for restart-
ing from a crash.
56

d line,

citly
 the

and
th of
ys

olled by

re

Several conventions bear emphasizing. If even one file name is specified on the comman
the code will not query the user for a base file name. If the f option is used, any file not explicitly
specified will assume the naming convention indicated in Table 5.1. Those file names expli
specified will override this default. If the f option is not used, then, as a minimum, the names of
input file, output file and exchange matrix file must be specified independently on the comm
line with the other files deriving their base name from the input file name. The maximum leng
the base name is set by the parameter, iflen. The default value is 20 characters. Indices are alwa
appended to the end of the base name. The number of digits used for the indices are contr
the parameter, iimag. More details on these parameters is given in Section 5.5.

To help clarify the command line conventions, the following examples and explanations a
offered.

Example 1: %mont3d -i alakazam -Okaboom e= ardvark M=toasted

MONT3D will expect the input file named alakazam to exist. MONT3D will create the following
files; the lost photon trajectory file named toasted (toasted01, toasted02, ... up to the number of
worker processes if this is the parallel version), the absorption exchange matrix file named ardvark,
the output file named kaboom (additional temporary files named kaboom01, kaboom02, ... up to
the number of worker processes for the parallel version). All other files will use alakazam for their
base name.

Example 2: %mont3d -f calendar

MONT3D will expect the input file calender.in to exist. MONT3D will create all files using the
base name calendar.

Example 3: %mont3d -f box -e mi5run

MONT3D will expect the input file box.in to exist. The exchange matrix files will use the base
name mi5run. All the other files will use the base name box.

Table 5.2: Command Line File Control

File name to be specified Preceded on command line by

Restart file name -r, -R, r=, or R=

Plot file name -p, -P, p=, or P=

Lost photon trajectory file name -m, -M, m=, or M=

Input file name -i, -I, i=, or I=

Absorption exchange matrix file name -e, -E, e=, or E=

Trajectory file name -t, -T, t=, or T=

Output file name -o, -O, o=, or O=

Leaks file name -l, -L, l=, or L=

Family file name -f, -F, f=, or F=
57

er to
various
lso spec-

e
ny

rfaces,
NT3D
nd ter-
f the
cution
d to and

200

5

4

0

60

00

000

00

000

0

64

t vari-
ry lim-

ng

in one
f this
5.5 Parameter Statements and Memory Allocation

MONT3D uses static common blocks for storage, making the code more robust and easi
edit. Unfortunately, this also requires that the sizes of arrays be pre-specified. The sizes of
arrays are pre-specified with parameter statements. Several other features of the code are a
ified by parameter statements.

All parameters in MONT3D are stored in one file, mont3d.par. To change a parameter, the valu
need be changed only in the file, mont3d.par, and all files must be recompiled. MONT3D has ma
parameters; any parameters not listed in this section should not be altered.

5.5.1 Parameters Specifying Array Sizes

These parameters establish the maximum sizes of various arrays, such as number of su
number of wavelength bands, number of materials, etc. If the numbers are set too low, MO
will issue an error message informing the user that insufficient storage space is available, a
minate. It should be noted that the larger the arrays, the more memory the program uses. I
arrays become too large, the program may exceed available physical memory and the exe
speed will severely degrade because virtual memory is used (where the program is swappe
from disk).

The array-sizing parameters used in MONT3D and their default values are:

iblk (maximum value for |NEBLOCK|, the number of surfaces in a restart block):

ibnd (maximum value for NBANDS, the number of wavelength bands):

iimag (maximum number of index digits for file names; see Section 5.5.2):

imat (maximum value for NUMMAT, the number of materials): 3

incg (maximum number of grid divisions along any axis; see Section 3.3):

inod (maximum value for NUMNP, the number of nodes): 15,0

iseg (maximum number of surfaces [segments] in all grid cells): 100,

isrf (maximum value for NSURF, the number of surfaces): 5,0

isrfs (maximum number of surfaces including split surfaces): 7,

itblk (maximum number of restart blocks in a run): 1,00

iwproc (maximum value for NWPROC, the number of worker processes):

Most of the parameters listed above are rather straightforward. The value of several inpu
ables, most of which are defined in Sections 3.2 and 3.3, must be compatible with the memo
its set by the values of the above parameters.

Results in MONT3D are stored in memory for a block of |NEBLOCK| surfaces before bei
written to disk; see Sections 2.9 and 3.2.1. |NEBLOCK| can not be larger than iblk.

When the grid shading option is used in MONT3D (see Section 2.6), the program stores
long array a list of all surfaces which are completely or partially in each grid cell. The length o
array cannot be larger than iseg.
58

T3D
 is
 spec-

uses
 the

ser
 the
n and
the
e will

0

30

,660

3dpvm

0.1

.96

d.
 file.
ered

ms.
 (.bni)

al files
the base
e. For

yor et

efines

) and
As explained in Section 2.3, if the nodes of a quadrilateral surface are not coplanar, MON
may have to split the surface into two planar triangles. Every time a surface is split, storage
required for an additional “split” surface. While the maximum number of surfaces that can be
ified is isrf, the maximum number of surfaces including split surfaces is specified by isrfs.

For a geometry with NBANDS*NSURF emitters, NEMIT, there are NEMIT/|NEBLOCK|
restart blocks in a run (round the result up). This number can not be larger than itblk.

It is a fairly simple process for the user to compile MONT3D for each geometry so that it
the smallest amount of memory possible. If memory on a machine is limited, this may allow
code to run without having to use virtual memory. The way this is done is as follows. The u
should first run a data check only (IDATA = 1, see Section 3.2.2), which will only go through
input phase of the code. As shown in Chapter 4, during the input phase, a “Memory Allocatio
Usage” section is printed. All parameters listed in that section should be set to the value in
“used” column of that section and the code should be recompiled. The newly compiled cod
use the minimum memory required for the given geometry.

5.5.2 Other Parameters

The other parameters used in MONT3D and their default values are:

iflen (maximum length of a file’s base name): 2

ilarg (maximum length of a command line argument):

iseeddef (default seed for RNG; see Section 3.2.1): 19,895

lflen, lflag, lfl, lfs (parameters for RNG, see below)

m3dparaname (name of the code’s parallel version; see Sections 5.2.1 and 5.6): m

pdamax (maximum allowed value for percent area difference; see Section 2.3):

zee (z value from normal tables, default = 95% confidence): 1

There are a few parameters controlling file name length and input that should be explaine iflen
is the maximum possible length for the base name (file name without indices or suffix) for a
ilarg is the maximum length of a single argument on a command line or the base name ent
interactively. If the base file name obtained this way is longer than iflen, the base name is clipped
to iflen. Having ilarg larger than iflen may prevent possible array bounds errors on some syste
iimag is another file parameter that needs explanation. In creating the block exchange matrix
files, MONT3D must append the block number to the file’s base name. Furthermore, sever
generated in the parallel version of the code need the worker process number appended to
name. iimag specifies the maximum number of digits which can be appended to the base nam
example, for 50 processes, iimag should be 2; while for 100 blocks, iimag should be 3.

The length of the lagged Fibonnaci generator can be changed if desired. As shown by Pr
al. [1994], it takes four constants to describe a LFG fully. Besides l and k mentioned in Section 2.11,
two constants, L and S, are needed to specify the format of the canonical seed. The code d
these four constants in the file mont3d.par as lflen (for LF length), lflag, lfl, and lfs. Several sets of
(l, k, L, S) are given by Pryor et al. [1994]. Popular values are (55, 24, 1, 11), (127, 97, 1, 21
59

nts and

mal

al.
 but

d by
luding

and
e
d

al

run.
sually
rsion

put file
ses on
he pro-

 be
 for the
ath for
fault.
g the
 virtual

d. For
les. For
r pro-
hine
er’s
es so

impor-
ess will
(607, 273, 1, 105) [Pryor, 1997]. To change the LFG, the user need change only these consta
recompile the code.

zee is the constant z defined in Section 2.7. For 95% confidence in the results, z is 1.96 (the
default value). Other values of z as a function of D, the percent confidence, are given in the nor
distribution tables (see Kreyszig [1993]).

5.6 Parallel Version

5.6.1 Running the Parallel Version

Much information about setting up PVM and running PVM programs is given by Geist et
[1994]. The discussion below gives several tips on how to run the PVM version of MONT3D
for more complete information, see Geist. For an overview of the master-worker model use
MONT3D, see Section 2.10. It should be noted that several shell environment variables inc
the path, $PVM_ROOT, and $PVM_ARCH must be set correctly for the PVM code to run.

There are two ways to create the PVM virtual machine. The first way is to type the comm
pvm and then use the add command at the prompt pvm>. A second way is to create a hostfile. If th
hostfile is given as an argument to the pvm command, then a PVM virtual machine will be create
using the commands and options in the hostfile. A hostfile allows the user to specify a virtu
machine much more easily than manually using the PVM command add. A hostfile also has other
benefits, as will be shown below. More detail about hostfiles is given by Geist [1994].

The parallel virtual machine is created on the machine on which the master process will
After the parallel virtual machine is created, the user just executes MONT3D executable (u
called m3dpvm) on the master machine. Just like the single processor version, the parallel ve
can be run interactively or using the command line as explained in Section 5.4. Once the in
is checked for errors, the master then spawns NWPROC (see Section 3.2.2) worker proces
the virtual machine. The PVM daemon on the master selects the CPU’s on which to spawn t
cesses; more on this below.

To run the parallel version of MONT3D successfully, it is important that certain directories
correctly specified. The path for the executable file must be known. For the master, the path
executable must be in the user’s path or must be explicitly given on the command line. The p
executables for each of the worker processes is set to $HOME/pvm3/bin/$PVM_ARCH by de
$HOME is the user’s home directory and $PVM_ARCH is an environment variable describin
platform being used. One way to change the directories for executables for each CPU in the
machine is to use the “ep=” option (executable path) in the PVM hostfile.

The working directory, where the code will execute and look for files, must also be specifie
the code to run properly, all processes must use the same directory so they can share disk fi
the master, the working directory is the directory in which the program is run. For the worke
cesses, the default value is $HOME. The working directory for each CPU in the virtual mac
can be changed using the “wd=” option in the PVM hostfile. If $HOME is different for the us
accounts on different machines, the user must change the working directory for the machin
that all use the same directory.

When each worker spawns, it attempts to run a specifically named executable, It is very
tant that the executable be named properly, or the executable will not be found and the proc
60

e
.2,

ker pro-

ork, the

LAY
on the

restart-
r pro-
e detail

pro-
ot rec-

re than
tween

 always
 user
during
r pro-
r on the

CPU’s

 the
y were
re put

eater
s on a

n the
awn

r CPU,
ection

ode. It
hine, it
aster

f the
art (.rst)
exit in error. The default name for the executable is m3dpvm but it can be changed by changing th
parameter m3dparaname and recompiling the code. More detail is given in Sections 5.2.1, 5.5
and 5.6.4.

When debugging the code, it is helpful to have separate debugging sessions for each wor
cess. If IPAROPT(1) (see Section 3.2.2) is set to 2 or 3, then an xterm with a dbx session (on some
systems, it may be some other debugger) is created for each worker process. For this to w
DISPLAY variable must be set properly for each worker process. To accomplish this, the DISP
environment variable on the master must be set correctly and the variable PVM_EXPORT
master must be set to include the DISPLAY environment variable.

When running the parallel version of the code, it should be remembered that even when
ing from a crash, it is possible to switch to different machines, change the number of worke
cesses or even switch between the parallel and single processor versions of the code. Mor
is given in Section 4.5.

5.6.2 Worker Processes

It should be noted that in the parallel environment, the master and workers are just Unix
cesses. While it is possible to have multiple worker processes on one CPU, it is generally n
ommended. On a Unix workstation, only one process is using the CPU at a time. When mo
one process is executed on a CPU, CPU cycles are wasted in the overhead of switching be
processes. For the master-worker model used in MONT3D, one worker process on a CPU is
more efficient than two worker processes on the same CPU. There is only one time when a
might want two processes on the same CPU. Since the master process does so little work
the solution phase, the minimum overall wall clock time may be obtained by placing a worke
cess on the CPU that has the master process. Research into the benefits of having a worke
master CPU is currently being done. The benefit is probably greater as the total number of
used on a problem decreases.

PVM does not allow much control over which processes run on which CPU. To determine
CPU on which to spawn a process, PVM usually uses a list of the CPU’s in the order that the
added to the virtual machine. The master CPU is at the end of the list. Multiple processes a
on one CPU only if NWPROC, the number of worker processes specified by the user, is gr
than the number of CPU’s in the virtual machine. Since having more than one worker proces
CPU is inefficient, NWPROC should always be less than or equal to the number of CPU’s i
virtual machine. If NWPROC is equal to the number of CPU’s, then a worker process will sp
on the master CPU. If the user wants to insure that a worker does not spawn on the maste
he should set the input variable IPAROPT(1) to 1 (use IPAROPT(1) = 3 if debugging); see S
3.2.2 for more detail.

It is possible to do batch jobs as described in Section 5.7 with the parallel version of the c
should be noted that if more than one run is done in succession using the same virtual mac
will rotate through the list of CPU’s and sooner or later a worker process will spawn on the m
CPU. If the user wishes to prevent this, IPAROPT(1) should be set to 1.

5.6.3 Files

The file structure for the parallel version of the code requires a bit of explanation. Most o
files listed Table 5.1 are generated and used by the master process. This includes the rest
61

y
 mas-
lied by

 and the

he
nd
 run is

e num-
s

dexed
utput
 useful

of the
rs have
 types of
r type,

ny
ck is
bed
 can be

nica-
stem
 If a
e of

 the
error
at rep-

ning

ay not
d, the
 named
cified
e
file, the plot (.plt) file, the exchange matrix (.nij) file, the leaks (.lks) file, the temporary binar
exchange matrix (.tni) file, and the block (.blk) file. The scratch (.scr) file is generated by the
ter, but used by both the master and worker processes. The input (.in) file is, of course, supp
the user. The block exchange matrix (.bni) files are generated and used by both the master
workers.

A lost photon (.lst) file and a trace (.trc) file are generated by each worker. Each file has t
worker process’s ID appended to the base name. The ID number is a number between 1 a
NWPROC that is supplied to the worker by the master. For example, if the base name of the
fn, the third worker process will create the files with names such as fn03.lst and fn03.trc. Th
ber of digits in the index is controlled by the parameter iimag; see Section 5.5.2. Each of these file
can be viewed individually using MPLOT [Nagesh and Burns, 1994].

A single output (.out) file is generated by the master process, but temporary output files in
by worker ID (i.e. fn03.out) are also generated by each worker process. These temporary o
files are deleted at the end of a successful run. Their main purpose is to provide information
for tracking down problems if the run terminates due to errors.

5.6.4 Errors

While most errors from the master are very similar to that of the single processor version
code, PVM errors and some worker errors need some additional explanation. Spawning erro
special error messages and may occur when the processes are trying to spawn. The other
worker errors described below have a generic error message which indicates the basic erro
which worker had the error on which block, and other information. If a worker encounters a
error, it terminates. As stated in Section 2.10, the first time a block of surfaces fails, the blo
sent to another worker. The second time the block fails, the entire run is aborted. As descri
above, if the run terminates from errors, output files for each process are generated. These
used to get further information about the errors.

Spawning errors: Errors in spawning often means that one or more machines or the commu
tion between them are down. The error can either occur on the master, which is called a sy
error, or it can occur on one or more workers when they fail to start their copy of MONT3D.
system error occurs or all the workers fail to start MONT3D, the run exits with an error. If som
the workers fail to start the program, a serious warning is issued but the run continues with
remaining workers. To help identify the spawning problem(s), the code prints out the PVM
code(s) for either the system error or for each failing worker. Each error code is a number th
resents a PVM error condition. Which code specifies which condition is given in the file fpvm3.h
which can usually be found in the directory $PVM_ROOT/include. More detail of these spaw
errors can be found in the PVM documentation about the function pvmfspawn.

A particularly common spawning error is when all the workers fail to start their copy of
MONT3D. This usually occurs due to one of three causes. First, the MONT3D executable m
be in the directory PVM searches for executables; see Section 5.6.1 for more detail. Secon
worker process may not be able to start the MONT3D executable because the executable is
incorrectly. When each worker spawns, it attempts to run the executable with the name spe
by the parameter m3dparaname. Therefore, for the parallel code to run, the executable must b
named as specified by m3dparaname parameter which has a default value of m3dpvm. For more
62

tform

urred

 at
those
 master
hich
 5.5.

thin
 there

th

ess
s not
d to
k down
es the
PVM

ivalent
ix
essage
 data
 the

nerated
 initial
essor
lly new
nchro-
is used
dom

 streams
erated
n good
detail, see Sections 5.2.1, 5.5.2, and 5.6.1. Third, the executable can be compiled for a pla
other than the one on which the worker process is spawned.

General error: General errors are a catch-all category. If the block number is 0, the error occ
during the input phase for the worker. Check the process’s output file for more details.

Not Enough Memory Allocated on Worker: When working on a heterogeneous architecture,
least some of the workers will use a different version of the executable than the master. In
cases, it is possible for a worker executable not to have enough memory allocated even if the
executable does. If this error occurs, check the worker process’s output file to determine w
parameters defining memory allocation need to be increased. For more detail, see Section

Emission Point Not in Grid: This error occurs when an emission point from a surface is not wi
the grid. To our knowledge, this error has never occurred for any geometry. If it does occur,
may be serious problems in the geometry specification.

Maximum Number of Photons Lost per Worker Process: This error occurs when more then
NLOST (input format described in Section 3.2.1) photons are lost per worker process.

Maximum Number of Reflection Warnings per Process: This error occurs for a process when
there are more then NWARNS warnings of a photon reflecting more than NREFS times (bo
described in Section 3.2.1).

PVM Error: A PVM error occurs when a PVM function exits with an error. If no worker proc
is mentioned, then the error occurred on the master. To our knowledge, this type of error ha
yet occurred. Quite a bit of information is printed for this type of error, but it is mainly intende
be given to the code’s authors so they can determine the problem. For any one trying to trac
the problems themselves, the error message includes the following information. First, it giv
PVM function that caused the error. Second, the item marked “error code” specifies which
error condition occurred. The error code numbers are described in fpvm.h as discussed above in
spawning errors. The “mestag” item gives the message tag ID. Each mestag number is equ
to a message tag parameter defined in the file m3pvm.inc. The PVM version of the code passes s
different types of messages. The message tag parameters are used to identify these six m
types for both the master and the workers. If the error occurred while packing or unpacking
for communication, the last number marked “item” indicates for which item, from the first to
last data item, the error occurred.

5.6.5 Random Numbers

As discussed in Section 2.11.2, each worker process is supplied with an unique seed ge
by the master process, which the worker then masks with the process number to obtain the
seed for that processor for the run. While the random number state is saved for single proc
restart runs, this is not the case for the parallel version. Instead, the workers receive a tota
seed from the master for each restart run. The reason for this is that the runs are done asy
nously under PVM. Since exact reproduction is impossible, a different set of random seeds
for each parallel restart run, and CPU time and disk space are saved by not saving the ran
states.

When parallel restart runs are done, care must be taken to ensure that the random number
are uncorrelated with those of the previous run. Since MONT3D uses canonical seeds gen
by a binary shift register, if the initial seeds used by the processes differ by even one bit, the
63

 Section
r each
se prob-
 0), a

nd in a
eams of
ly with

nctions
uld be
 version
y.

e exe-
ing the
n that
n

pleted

e file

n-

ccom-
statistical behavior between the sequences is assured. If the default seed (INSEED < 0; see
3.2.1) is used for two consecutive continuing runs, then the same initial seeds will be used fo
run and the same set of random number sequences will be used in both runs which may cau
lems. Similarly, if the user specifies a specific random number seed for INSEED (INSEED >
different seed must be entered for each run.

On the other hand, a different time-generated seed is produced for nominally every seco
32 year period. Therefore, if time generated seeds (INSEED = 0) are used, independent str
random numbers are virtually assured. It should be noted that time generated seeds vary on
time if the code supports the time and date functions (see Section 5.1.4). If time and date fu
are not supported, the user must enter different values of INSEED for each restart run. It sho
noted that the time-generated seed is generated on the master process only. If the master’s
of MONT3D supports time and date functions, then time generated seeds will work properl

5.7 Unix Batch Execution Using Scripts

This section describes the use of a Unix shell script to submit multiple MONT3D runs to b
cuted sequentially. This has the advantage of running only one job at a time, thereby avoid
overhead involved with swapping jobs in memory in and out of the CPU (our tests have show
the overhead under Unix in so doing is prohibitively large). The shell script in Figure 5.1 is a
example which runs MONT3D three times for three separate problems (input files tc1, tc2, and
tc3). In this example line one executes mont3d and redirects standard output to the file run1. The
second line causes the script to pause until line one has finished. When the first run has com
the process continues with line three, etc.

The script file can be created with any ASCII editor and given any valid Unix name (here th
is named submit). The files referred to in the script (here tc1, run1, etc.) can also have any valid
Unix name. The files tc1, tc2, and tc3 must be the MONT3D input files (all must have the .in exte
sion) to be used for the run.

Once the script is created it must have execute permission before it can be run. This is a
plished for the file submit with the Unix command chmod:

%chmod 744 submit

Figure 5.1: Contents of Script File “submit”

mont3d -f tc1 > run1

wait

mont3d -f tc2 > run2

wait

mont3d -f tc3 > run3
64

ands
rd

ately,

it is
eptible
n cal-
where % is the Unix prompt.

The script can be run in the background by typing the script name followed by “&.” If comm
are run in the C shell, then to run submit in the background and redirect all its output to standa
output and standard error to the file, submit.out, type:

%submit >& submit.out &

where the “>&” redirects both standard output and standard error to the file submit.out. Altern
it can be submitted using the Unix commands at or batch. The syntax of any of these Unix com-
mands can be obtained by referring to the Unix man(ual) pages.

5.8 Precision

MONT3D is coded to compile and run using 64-bit floating point precision. For MONT3D,
desirable to use 64-bit precision, as the specification of coplanar surfaces is particularly susc
to precision errors. Also, 3-D photon tracing generally requires 64 bits to perform intersectio
culations with the requisite accuracy.
65

r

lins,

fer,”

sport

isym-

RL =

arlo,”

nce

-
art-

ue
sity,

tment

o
lo-

/

REFERENCES

Anderson, S. L., 1990. “Random Number Generators on Vector Supercomputers and Othe
Advanced Architectures,” SIAM Review, 32, pp. 221-251.

Branner, K., 1999. An Enhanced Material Model for Radiative Heat Transfer via Monte Carlo,
M.S. Thesis, Department of Mechanical Engineering, Colorado State University, Fort Col
CO 80523. (In progress).

Brent, R. P., 1992. “Uniform Random Number Generators for Supercomputers, “Proceedings Fifth
Australian Supercomputing Conference, SASC Organizing Committee, 1992, pp. 95-104.
(Unpublished).

Burns, P. J., and Pryor, D. V., 1989. “Vector and Parallel Monte Carlo Radiative Heat Trans
Numerical Heat Transfer, Part B: Fundamentals, 16, pp. 20-42.

Burns, P. J., Maltby, J. D., and Christon, M. A., 1990. “Large-Scale Surface to Surface Tran
for Photons and Electrons via Monte Carlo,” Computing Systems in Engineering, Vol. 1 No. 1,
pp. 75-99.

Burns, P. J., Loehrke, R. I., Dolaghan, J. S., and Maltby, J. D., 1992. “Photon Tracing in Ax
metric Enclosures,” Developments in Radiative Heat Transfer, HTD-Vol. 203, pp. 93-100,
ASME, New York.

Burns, P. J., and Pryor, D. V., 1995. “Random Numbers,” Available as a WWW document, U
http://csep1.phy.ornl.gov/CSEP/RN/RN.html.

Burns, P. J., and Pryor, D. V., 1999. “Surface Radiative Transport at Large Scale via Monte C
Vol. 9 of Annual Review of Heat Transfer, Begell House, New York, NY. (in press).

Cuccaro, S. A., 1996. Personal communication, Center for Computer Sciences, 17100 Scie
Drive, Bowie, MD 20715.

Crockett, D. V., Maltby, J. D., and Burns, P. J., 1990. “User’s Manual for MONT3E - A Three
Dimensional Electron-Tracing Code with Non-Uniform Magnetic Field, Release 5.0,” Dep
ment of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523.

Dolaghan, J. S., 1991. A Monte Carlo Simulation of Molecular Redistribution in an Enclosure d
to Sputtering, M.S. Thesis, Department of Mechanical Engineering, Colorado State Univer
Fort Collins, CO 80523.

Dolaghan, J. S., Loehrke, R. I., and Burns, P. J., 1992. “User’s Manual for SMOOTH,” Depar
of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523.

Dolaghan, J. S., 1996. A Monte Carlo Simulation in Rarefied Gas Dynamics with Application t
Physical Vapor Deposition, Ph.D. Dissertation, Department of Mechanical Engineering, Co
rado State University, Fort Collins, CO 80523.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Mancheck, R., and Sunderam, V., 1994. PVM: Par-
allel Virtual Machine - A User’s Guide and Tutorial for Networked Parallel Computing, MIT
Press, Cambridge, MA. Also available as a WWW document, URL = http://www.netlib.org
pvm3/book/pvm-book.html.

Golomb, S. W., 1982. Shift Register Sequences (Revised Ed.), Aegean Park Press.
66

t
ety

arlo
Fort

O

Dimen-

D -
o

epro-

epart-

Heat

 Por-

 Drive,

onte
EE

wo-
ore
Kreyszig, E., 1993. Advanced Engineering Mathematics, 7th Ed., John Wiley & Sons, New York.

Maltby, J. D., Burns, P. J., and Winn, C. B., 1986. “Monte Carlo Simulation of Radiative Hea
Transport in Passive Solar Buildings,” Proceedings of the 1986 American Solar Energy Soci
Conference, Boulder, Colorado (June 9-11, 1986).

Maltby, J. D., 1987. Three-Dimensional Simulation of Radiative Heat Transfer by the Monte C
Method, M.S. Thesis, Department of Mechanical Engineering, Colorado State University,
Collins, CO 80523.

Maltby, J. D., 1990. Analysis of Electron Heat Transfer via Monte Carlo Simulation, Ph.D. Disser-
tation, Department of Mechanical Engineering, Colorado State University, Fort Collins, C
80523.

Maltby, J. D., and Burns, P. J., 1991. “Performance, Accuracy and Convergence in a Three-
sional Monte Carlo Radiative Heat Transfer Simulation,” Numerical Heat Transfer, Part B; Fun-
damentals, Vol. 16, pp. 191-209.

Maltby, J. D., Zeeb, C. N., Dolaghan, J., and Burns, P. J., 1994. “User’s Manual for MONT2
Version 2.6 and MONT3D - Version 2.3,” Department of Mechanical Engineering, Colorad
State University, Fort Collins, CO.

Margolies, D., 1986. Personal communication, LLNL.

Marsaglia, G., 1985. “A Current View of Random Number Generators”, Computing Science and
Statistics: Proceedings of the XVIth Symposium on the Interface, L. Billard (ed.) Elsevier Sci-
ence Publishers, B. V. (North Holland) pp. 3-10.

Mascagni, M., Cuccaro, S., Pryor, D., and Robinson, M., 1995. “A Fast, High Quality, and R
ducible Parallel Lagged-Fibonacci Pseudorandom Number Generator,” Journal of Computa-
tional Physics, Vol. 119, pp. 211-219.

Nagesh, S., and Burns, P. J., 1994. “User’s Manual for the Program MPLOT - Version 3.3,” D
ment of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523.

Pryor, D. V., and Burns, P. J., July 21-25 1986. “A Parallel Monte Carlo Model for Radiative
Transfer,” presented at the 1986 SIAM Meeting, Boston, MA.

Pryor, D. V., Cuccaro, S. A., Mascagni, M., and Robinson, M. L., 1994. “Implementation of a
table and Reproducible Parallel Pseudorandom Number Generator,” Supercomputing ‘94 Pro-
ceedings, IEEE Computer Society Press, Los Alamitos, CA, pp. 311-319.

Pryor, D. V., 1997. Personal communication, Center for Computer Sciences, 17100 Science
Bowie, MD 20715.

Schorn, P., and Fisher, F., 1994. “Testing the Convexity of a Polygon,” In Graphic Gems IV, Heck-
bert, P. S., editor, AP Professional, San Diego, CA, pp. 7-15.

Schweitzer, R., McHugh, J., Burns, P. J., and Zeeb, C. N., 1993. “Daylighting Design via M
Carlo with a Corresponding Scientific Visualization,” Supercomputing ‘93 Proceedings, IE
Computer Society Press, Los Alamitos, CA pp. 250-259

Shapiro, A. B., 1983. “FACET - A Radiation View Factor Computer Code for Axisymmetric, T
Dimensional Planer, and Three-Dimensional Geometries with Shading,” Lawrence Liverm
National Laboratory, UCID-19887.
67

,”

e
lins,

of

, CO

onte
ocu-

rt pre-
nt.,

racing
Heat

ans-
ed as
Shapiro, A. B., 1985. “TOPAZ3D - A Three-Dimensional Finite Element Heat Transfer Code
Lawrence Livermore National Laboratory, UCID-20484.

Statton, E. S., 1983. MONTE - A Two-Dimensional Monte Carlo Radiative Heat Transfer Cod,
M.S. Thesis, Department of Mechanical Engineering, Colorado State University, Fort Col
CO 80523.

Torrance, K., and Sparrow, E. M., 1966. “Off-specular Peaks in the Directional Distribution
Reflected Thermal Radiation,” J. Heat Transfer, Vol. 88, pp. 223-230.

Zeeb, C. N., 1996. Two-dimensional Heat Transfer in Combustion Gases Via Monte Carlo, M.S.
Thesis at Colorado State University, Department of Mechanical Engineering, Fort Collins
80523.

Zeeb, C. N., 1997. “Application of Ray Tracing Techniques to Radiative Heat Transfer Via M
Carlo” Available as a WWW document., URL =http://www.colostate.edu/~pburns/monte/d
ments.html.

Zeeb, C. N., and Burns, P. J., 1997. “Random Number Generator Recommendation,” Repo
pared for Sandia National Laboratories, Albuquerque, NM. Available as a WWW docume
URL =http://www.colostate.edu/~pburns/monte/documents.html.

Zeeb, C. N., and Burns, P. J., 1999. “Performance Enhancements of Monte Carlo Particle T
Algorithms for Large, Arbitrary Geometries” To be presented at the 1999 ASME National
Transfer Conference, Albuquerque, NM, August 15-17, 1999.

Zeeb, C. N., and Romero, V. J., 1999. “LAYMC: A Monte Carlo Code for Modeling Photon Tr
port in Layered Participating Media — Theory and User Manual version 2A”, to be publish
a Sandia National Laboratories report (unlimited distribution), (Expected 1999).
68

rview
s for
aterial
t for
odel.

ion
h is
or the

l types
 com-
types
rial

ny, of
des are
More
 not

ust be
uter
es with
ntering
APPENDIX A OLD MATERIAL MODEL

This appendix covers the old material model. The first section of this appendix gives an ove
of the old material model. This is followed by a section on the specification of outgoing angle
diffuse and specular reflection and transmission. The next four sections describe the seven m
types supported by the old material model. The last two sections cover the input card forma
entering in the material type data and the material property curves using the old material m

A.1 Overview

The old material model is only used if NUMMAT, the number of material, (input specificat
in Section 3.2.1) is greater than 0. If NUMMAT is less than 0, the new material model, whic
described in Sections 2.5 and 3.8-3.10, is used. More detail about the input specifications f
old model are given below in Sections A.7 and A.8.

The old material model has material types defined for each band. Seven different materia
are available to provide flexibility to the material model. These material types allow different
binations of photon/material interactions to be defined. Table A.1 summarizes the material
and indicates which material property curves must be entered. Note that while the old mate
model supports specular and (weighted) diffuse reflection (ρs and ρd) and transmission (τs and τd),
semi-specular interactions are only supported by the new material model.

In addition to photon/material interactions, the material type also determines the type, if a
emission that will take place. Just as in the new material model, three possible emission mo
modeled emission according to user input function, beam emission, and normal emission.
detail is given below. It is possible to specify materials for which the reciprocity relations do
hold; more detail is given in Section 2.5.4.

It should be noted that unless the material type is -3 or -4, the curves listed in Table A.1 m
entered by point value as a function of angle. The format is given in Section A.8. The comp
code parabolically interpolates between each three successive points entered, just as it do
curves entered in by point value for the new model. Section 2.5.1 gives several tips about e
curves by point value.

Table A.1: Material Property Summary

Type Emission Interactions Input Curves

2 Function τs(θ)+ρs(θ)+ρd(θ) + α(θ) = 1 3: τs(θ), ρs(θ), ρd(θ)

1 Beam τs(θ)+ρs(θ)+ρd(θ)+α(θ) = 1 3: τs(θ), ρs(θ), ρd(θ)

0 ε(θ) τs(θ)+ρs(θ)+ρd(θ)+α(θ) = 1 3: τs(θ), ρs(θ), ρd(θ)

-1 “ τd(θ)+ρs(θ)+ρd(θ)+α(θ) = 1 3: τd(θ), ρs(θ), ρd(θ)

-2 “ τs(θ)+τd(θ)+ρs(θ)+ρd(θ)+α(θ) = 1 4: τs(θ), τd(θ), ρs(θ), ρd(θ)

-3 None Perfect specular reflection None

-4 None Perfect diffuse reflection None
69

endic-

orrectly
and old

y the
rmined

ary
 fixed
hould
el. The
s. The
 the
ntation

s) will
ld be
s (1.5)
A.2 Outgoing Angles for Diffuse and Specular Interactions

Figure A.1 shows the conventions for θ and φ for diffuse and specular interactions. The cone
angle, θ, is always defined from the surface normal, and the azimuthal angle, φ, is positive coun-
terclockwise (when viewed from above) from the surface x'-axis. The x'-axis is defined perp
ular to the ray joining nodes 1 and 2 (y'-axis) and the surface normal n (z'-axis) according to a right-
hand rule, as shown in Figure A.1. Care should be taken to number the nodes of a surface c
to achieve the desired emission direction. This coordinate system is used by both the new
material models.

A.3 Material Type 2, Emission According to a User-Supplied Function

For material type 2, emission occurs according to a user-supplied function. This is exactl
same as setting IETP in the new material model to 2. Photon/material interactions are dete
by the three input curves listed in Table A.1 above.

A.4 Material Type 1, Beam Emission

An option (material type 1) is available in the code to simulate beam radiation, with all prim
photon emissions from a specified material occurring in a fixed direction. To use this option,
values of φo and θo for a material must be entered by the user, in a format described below. It s
be noted that this is very different than the beam emission defined by the new material mod
new material model defines the beam direction by an emission vector in GLOBAL coordinate
φo and θo defined in the old material model are relative to the LOCAL coordinate system for
surface. For the old material model, the emission direction for the beam depends on the orie
of the surface.

Just as with the new material model, all interactions (absorptions, transmissions, reflection
depend only on the material property curves defined for that material. Again, the user shou
cautious when specifying the beam radiation option, since the reciprocity relations, Equation
and (1.6) may no longer be valid. The other conservation relations still hold.

Figure A.1: Conventions for Outgoing Angles

N1 N2

N3
N4

φo

θo

x'

y'

z’ = n
70

,

tely
ission

 right
ation

 mate-
n mate-
 values
 pro-

 curves

5, 6

5, 6

 6

 func-
A.5 Material Types 0 Thorough -2, Normal Emission

For material type 0 through -2, emission is a function of θo, so all of the photon/material inter-
actions are determined by the input curves. For material 0, three curves are read and τd(θi) is set to
zero. Material type -1 also requires three input curves with τs(θi) set to zero. For material type -2
all four curves are input.

A.6 Material Types -3 and -4, Perfect Mirrors

Material types -3 and -4 are perfect mirrors (perfect reflectors). Material type -3 is comple
specular, and material type -4 is completely diffuse. For surfaces of this material type, no em
occurs, and “zero” exchange numbers are written into the exchange matrix file.

A.7 Material Type Data Cards

If the old material property model is used, the material type data cards should be entered
after the wavelength band data, which is where the new material model property curve inform
is currently entered. See Chapter 3 for more details.

Material type data cards are input by band for each material in order. For example, if three
rials are used in two bands, then all material type data are read in for material 1, band 1; the
rial 1, band 2; then material 2, band 1; etc. MN and IB are used as checks to ensure that the
being entered are in the right order. If the information is not entered in the correct order, the
gram detects an error and terminates. All cards must be input before any material property
are input (these cards control which material property curves are read).

Cols. Format Entry Note(s)

1-5 I5 Material type: MTYPE(N,IB): domain - [-4,2] 1, 2, 3

4, 5

6, 7

6-15 E10.0 Outgoing cone angle θo for beam radiation: THSET(MN,IB) 1

16-25 E10.0 Outgoing surface azimuth angle φο for beam radiation: PHISET(MN,IB) 1

26-35 E10.0 R dependence of diffuse reflectance: RDIFFR(MN,IB)

(DEFAULT: RDIFFRD = 1) 8

36-45 E10.0 R dependence of diffuse transmittance: RDIFFT(MN,IB)

(DEFAULT: RDIFFT = 1) 8

46-50 I5 Material number (MN) 5, 6

51-55 I5 Wavelength band number (IB) 5,

Notes:

1. THSET and PHISET are ignored unless MTYPE =1, or MTYPE = 2 and the user supplied
tion requires them.
71

f

nd
e used
terial.
ence

l type
 read in

) and

ther
is-
ution)

cribed
l model

3 and
ls are
rial 1,
s being

ram

ction of

1

2. If MTYPE(N) = 2, then emission occurs according to the user supplied function fcn in subrou-
tine getang in the file m32s.f.

3. If a material has 0 emittance for all values of θ, then no photons are emitted from surfaces o
that type unless MTYPE = 1 or 2.

4. Material property curves are required for all material types except -3 and -4.

5. If the values of MN and IB are 0 (or blank) for the first band of a material then RDIFFR a
RDIFFT are set to 1 (standard diffuse re-emission) and the material type data values ar
for all bands in that material and no other material type data cards are read in for that ma
This has been done for compatibility with earlier versions which do not support r depend
or multiple material types.

6. If MN is not 0 but IB is for the first band of the material then it is assumed that the materia
data are constant for this material for all bands and no other material type data cards are
for this material. The material property curves must still be entered for each band.

7. As discussed in Section 2.5.4, if MTYPE = 1 or 2, the reciprocity relations, Equations (1.5
(1.6), may no longer hold.

8. If either RDIFFR or RDIFFT = 0, then it will be set to 1 (standard diffuse distribution.) If ei
RDIFFR or RDIFFT are < 0, then it will be set to 0 (isotropic distribution.) Note that, as d
cussed in Section 2.5.4, if either of these variables do not equal 1 (standard diffuse distrib
the reciprocity relations, Equations (1.5) and (1.6), may no longer hold.

A.8 Material Property Curves Cards

The material property curves should be entered right after the material property cards des
above. These cards do have a different format than the curve cards used by the new materia
and should be used instead of them.

Material property curves are input by band for each material, except for materials of type -
-4, where no curves are input. Curves must be input in order. For example, if three materia
used in two bands, then all material type data are read in for material 1, band 1; then mate
band 2; then material 2, band 1; etc. MN and IB are used as checks to ensure that the value
entered are in the right order. If the information is not entered in the correct order, the prog
detects an error and terminates.

As discussed in Section 2.5.4, if any curve except the specular reflectance varies as a fun
angle, the reciprocity relationships may not hold.

A.8.1 Specular Transmittance

Condition(s): MTYPE = 2, 1, 0, or -2 (omit otherwise)

CARD 1

Cols. Format Entry Note(s)

1-16 2A8 Name of curve (e.g., specular trans): (CN1, CN2)

17-21 I5 Material number (MN) 1

22-26 I5 Wavelength band number (IB)
72

3

nd num-

1

3

nd num-

YPE
27-31 I5 Curve number (NJ) 1, 2

32-36 I5 Number of points to be input for this material (NP)

CARDS 2 to NP+1

Cols. Format Entry Note(s)

1-10 E10.0 Cone angle - θ 3

11-20 E10.0 Specular transmittance: ρs(θ)

Notes:

1. These values are used to check that the data are input properly by material number, ba
ber, and curve number.

2. A curve number of 1 must be input for specular transmittance.

3. NP number of cards must be input for the curve.

A.8.2 Diffuse Transmittance

Condition(s): MTYPE = -1 or -2 (omit otherwise)

CARD 1

Cols. Format Entry Note(s)

1-16 2A8 Name of curve (e.g., diffuse trans): (CN1, CN2)

17-21 I5 Material number (MN) 1

22-26 I5 Wavelength band number (IB)

27-31 I5 Curve number (NJ) 1, 2

32-36 I5 Number of points to be input for this material (NP)

CARDS 2 to NP+1

Cols. Format Entry Note

1-10 E10.0 Cone angle - θ 3

11-20 E10.0 Diffuse transmittance: τd(θ)

Notes:

1. These values are used to check that the data are input properly by material number, ba
ber, and curve number.

2. For diffuse transmittance, curve number = 1 for MTYPE = -1 and curve number = 2 for MT
= -2.

3. NP number of cards must be input for the curve.

A.8.3 Specular Reflectance

Condition(s): MTYPE ≠ -3 or -4 (omit otherwise)
73

1

3

nd num-

for

1

3

CARD 1

Cols. Format Entry Note(s)

1-16 2A8 Name of curve (e.g., specular reflectance): (CN1, CN2)

17-21 I5 Material number (MN) 1

22-26 I5 Wavelength band number (IB)

27-31 I5 Curve number (NJ) 1, 2

32-36 I5 Number of points to be input for this material (NP)

CARDS 2 TO NP+1

Cols. Format Entry Note

1-10 E10.0 Cone angle - θ 3

11-20 E10.0 Specular reflectance: ρs(θ)

Notes:

1. These values are used to check that the data are input properly by material number, ba
ber, and curve number.

2. For specular reflectance, curve number = 2 for MTYPE = 2 to -1 and curve number = 3
MTYPE = -2.

3. NP number of cards must be input for the curve.

A.8.4 Diffuse Reflectance

Condition(s): MTYPE ≠ -3 or -4 (omit otherwise)

CARD 1

Cols. Format Entry Note(s)

1-16 2A8 Name of curve (e.g. diffuse reflectance): (CN1, CN2)

17-21 I5 Material number (MN) 1

22-26 I5 Wavelength band number (IB)

27-31 I5 Curve number (NJ) 1, 2

32-36 I5 Number of points to be input for this material (NP)

CARDS 2 TO NP+1

Cols. Format Entry Note

1-10 E10.0 Cone angle - θ 3

11-20 E10.0 Diffuse reflectance: ρd(θ)
74

nd num-

r
Notes:

1. These values are used to check that the data are input properly by material number, ba
ber, and curve number.

2. For diffuse reflectance, curve number = 3 for MTYPE = 2 to -1 and curve number = 4 fo
MTYPE = -2.

3. NP number of cards must be input for the curve.
75

gives
ection
rams
eral

iven
an the

lock
 can

1

APPENDIX B FILE FORMATS

As discussed in Section 5.3, MONT3D generates a large number of files. This appendix
the format of most of these files. The files are presented in order of their unit numbers, see S
5.3 for more detail. This appendix should only be of interest to those who plan to write prog
that work with the files created by MONT3D. The input file format, which is of much more gen
interest, is described in Chapter 3.

Files are ASCII unless otherwise specified. The ASCII FORTRAN format specifications g
below are for a single record. Each record starts on a new line and if the record is larger th
specification, the format repeats as needed starting on a new line each time.

B.1 Restart File (Suffix .rst, Unit 2)

The restart file contains the information MONT3D requires to restart from a completed or
crashed run. If the program is restarting from a crash, additional information stored in the b
(.blk) file described below is also required. All the code for the reading and writing of this file
be found in the subroutine rstfile in the file m30s.f.

B.1.1 IPARFLG

1 Record of Length 1

FORTRAN Format Specification: 7(i10, 1x)

Format Entry Note(s)

Integer Parallel run flag (IPARFLG) 1

Notes:

1. IPARFLG is 0 for a single processor run, 1 for a parallel run.

B.1.2 Photon Emission Counts

1 Record of Length NSURF*NBANDS

FORTRAN Format Specification: 7(i10, 1x)

Format Entry Note(s)

Integer Number of photons emitted from each surface in each band

Notes:

1. The photon counts are written in order from 1 to NSURF, for each band 1 to NBAND.
76

ion
has

 plot
found

 which
harac-
B.1.3 Random Number Generator Information

Only Written/Read if IPARFLG = 0

1 Record of Length lflen + 2

FORTRAN Format Specification: 7(i10, 1x)

Format Entry Note(s)

Integer The ISEED array of seeds which is of length lflen 1

Integer First tap value 1

Integer Second tap value 1

Notes:

1. The code uses a lagged Fibonnaci RNG of length lflen. The parameter lflen is usually 127 but
can be changed, see Sections 2.11 and 5.5.2 for more details.

B.1.4 Block Information

1 Record of Length NBLOCKS

FORTRAN Format Specification: 7(i10, 1x)

Format Entry Note(s)

Integer NBKFIN array 1

Notes:

1. The NBKFIN array is NBLOCKS long where NBLOCKS is the number of surface emiss
blocks for the run, see Sections 2.9 and 3.2.1 for more details. NBKFIN is 1 if the block
been successfully completed; otherwise, it is 0.

B.2 Plot File (Suffix .plt, Unit 3)

The plot file contains the basic information MPLOT [Nagesh and Burns, 1994] requires to
the geometry, see Section 2.8 for more details. All the code for the writing of this file can be
in the subroutine graf in the file m313s.f.

B.2.1 Header

1 Record of Length 72

FORTRAN Format Specification: (10a8)

Format Entry Note(s)

Character File header 1

Notes:

1. This is a character string of 72 characters. The first 48 characters are the title for the run
is entered on the first line of the input file; see Section 3.1 for more details. The last 24 c
77

the date
he
t in

1

them,

ch lo

ted in
ters are three 8 character variables, which are, in order, the version number of the code,
when the code was last modified, and the language of the source code (always “f77”). T
header is the first line printed to the screen during a MONT3D run; see the screen outpu
Chapter 4 for an example. It is also used as a page header in the output file.

B.2.2 Control Information

1 Record of Length 3

FORTRAN Format Specification: 16i5

Format Entry Note(s)

Integer Number of surfaces including split surfaces (NSPTR)

Integer Number of materials (NUMMAT)

Integer Number of wavelength bands (NBANDS)

Notes:

1. While split surfaces are transparent to the user, the plot file contains information about
not the original unsplit surfaces.

B.2.3 Limiting Dimensions for the Geometry

1 Record of Length 6

FORTRAN Format Specification: 6(1x,f12.7)

Format Entry Note(s)

Real Minimum X value (XLO) 1

Real Maximum X value (XHI) 1

Real Minimum Y value (YLO) 1

Real Maximum Y value (YHI) 1

Real Minimum Z value (ZLO) 1

Real Maximum Z value (ZHI) 1

Notes:

1. Each of the hi values is slightly larger than the maximum value for the geometry and ea
value is slightly less than the minimum value for the geometry.

B.2.4 Surface Information

The following records are repeated for each of the NSPTR surfaces. The surfaces are lis
order of surface number.
78

de is

d for
lar

M-
NDS
Material Information

1 Record of Length 2

FORTRAN Format Specification: 16i5

Format Entry Note(s)

Integer Surface number

Integer Surface’s material number

Node Information

4 Records of Length 3

FORTRAN Format Specification: 6(1x,f12.7)

Format Entry Note(s)

Real X value of node i 1

Real Y value of node i 1

Real Z value of node i 1

Notes:

1. The X, Y, and Z coordinates are listed for each of the four nodes of the surface. One no
listed per line.

B.2.5 Material Information

The following records are repeated 4*NUMMAT*NBANDS times. The records are repeate
the four cumulative property types from the old material model in the following order: specu
transmittance (τs), diffuse transmittance (τd) + τs, specular reflectance (ρs) + τd + τs, and diffuse
reflectance (ρd) + ρs + τd + τs. This series of material property records is repeated from 1 to NU
MAT times in each band in order of material number which in turn is repeated from 1 to NBA
for each band in order of band number.

Curve Name

1 Record of Length 16

FORTRAN Format Specification: a16

Format Entry Note(s)

Character Curve name

Curve Values

1 Record of Length 91

FORTRAN Format Specification: f10.7

Format Entry Note(s)

Real Curve values 1
79

 infor-

d is

t pho-
ection

der of

2

3, 4

 points.
Notes:

1. Curve values are listed in order from 0 to 90 degrees.

B.2.6 Number of Records in the Binary Exchange Matrix File

1 Record of Length 1

FORTRAN Format Specification: i10

Format Entry Note(s)

Integer Number of records in file 1

Notes:

1. This value was used by MPLOT [Nagesh and Burns, 1994] to read the exchange matrix
mation from older versions of MONT3D which used familied binary files. Due to the new
exchange matrix file format used by MONT3D, this value no longer has any meaning an
always set to 1.

B.3 Lost Photon File (Suffix .lst, Unit 4)

The lost photon file contains the trajectory (photon ray end point) information for each los
ton and can be used with MPLOT [Nagesh and Burns, 1994] to display the trajectories, see S
2.8 for more details. All the code for the writing of this file can be found in the subroutine grdint
in the file m32s.f.

The following series of records are repeat for each lost photon. Records are written in or
lost photon number.

B.3.1 Header Card

1 Record of Length 5

FORTRAN Format Specification: 5(3x, i7)

Format Entry Note(s)

Integer Lost photon number (LOST)

Integer Event number (IEVENT) 1

Integer Number of points to be plotted along the particle’s trajectory (NPNTS)

Integer Subdivision number (ND) 3, 4

Integer Number of surface where last emitted/reflected or transmitted (LERT)

Notes:

1. IEVENT is always set to 1.

2. NPNTS is always 2, and indicates that the trajectory just includes the starting and ending
80

ritten
riables

ether
 surface
m
eal-
rface

equire

992],
 obey
s
3. In the MPLOT description of this file [Nagesh and Burns, 1994], the last two numbers w
to this record are supposed to be an integer, MAT, and a real, E0. Neither of these two va
apply to MONT3D so they are replaced by ND and LERT.

4. LERT is the surface number of the last surface with which the photon was in contact, wh
that was as an emission, a reflection or a transmission. As described in Section 2.2, each
is divided into NDIVX x NDIVY subdivisions. ND gives the number of the subsection fro
which the lost photon was emitted. It ranges from 0 to NDIVX x NDIVY - 1. It should be r
ized that if a photon is reflected or transmitted before it is lost, LERT is generally not the su
that emitted the photon.

B.3.2 Photon Ray’s Starting Point

1 Record of Length 3

FORTRAN Format Specification: 3(2x, e10.4)

Format Entry Note(s)

Real X coordinate of photon ray’s starting point

Real Y coordinate of photon ray’s starting point

Real Z coordinate of photon ray’s starting point

B.3.3 Photon Ray’s Ending Point

1 Record of Length 3

FORTRAN Format Specification: 3(2x, e10.4)

Format Entry Note(s)

Real X coordinate of photon ray’s ending point

Real Y coordinate of photon ray’s ending point

Real Z coordinate of photon ray’s ending point

B.4 Exchange Matrix File (Suffix .nij, Unit 8)

As discussed in Section 1.4, thermal balance codes such as TOPAZ3D [Shapiro, 1985] r
the exchange matrix information generated by MONT3D as input. To be compatible with
TOPAZ3D, this file may need to be processed with the program SMOOTH [Dolaghan et al., 1
which smooths the full matrix of exchange numbers into an upper triangle of numbers which
reciprocity. All the code for the reading and writing of this file can be found in the subroutinenij-
file and nijheader in the file m30s.f.

B.4.1 Header Card

1 Record of Length 5

FORTRAN Format Specification: 7(i10, 1x)

Format Entry Note(s)

Integer Geometry code (NDIM) 1
81

iew fac-

D. A
Integer Number of surfaces (NSURF)

Integer Factor code (IFACT) 2

Integer Number of wavelength bands (NBANDS)

Integer Number of materials (NUMMAT)

Notes:

1. NDIM is 3.

2. IFACT is set to 2, and indicates that the file contains exchange numbers as opposed to v
tors.

B.4.2 Surface Areas

1 Record of Length NSURF

FORTRAN Format Specification: 6(e12.5, 1x)

Format Entry Note(s)

Real Surface areas from 1 to NSURF

B.4.3 Surface Emittances

NBAND Records Each of Length NSURF

FORTRAN Format Specification: 6(e12.5, 1x)

Format Entry Note(s)

Real Hemispherical surface emittances, , from 1 to NSURF for

band k 1, 2

Notes:

1. The surface emittances are averaged over the hemisphere (i.e. θ).

2. The surface emittances are written in order from 1 to NSURF, for each band 1 to NBAN
new record (line) is started for each band.

B.4.4 Photon Number Matrix

NBAND Sets of NSURF Records Each of Length NSURF

FORTRAN Format Specification: 7(i10, 1x)

Format Entry Note(s)

Integer Numbers of absorbed photons emitted by surface i absorbed

by all surfaces j for band k 1, 2

εi
k

82

all
 record
 band
s

992]
bers of

n and
2.8 for

n chro-

3

4

4

 when

ected

 points.

itten
riables
Notes:

1. Each record contains the number of photons absorbed by each surface j ranging from 1 to
NSURF for each surface i in the band k. It should be noted that the file contains results for
surfaces, even those that do not emit (which therefore have all zeroes for results). A new
(line) is started for each surface. The records for all surfaces in order from 1 to NSURF in
k specify an exchange matrix for band k. The exchange matrices for the 1 to NBANDS band
are written in order to the file.

2. This file contains the full exchange matrices. The program SMOOTH [Dolaghan et al., 1
may be used to process these files into an upper triangle (including the diagonal) of num
photons which have been smoothed to obey reciprocity.

B.5 Trajectory File (Suffix .trc, Unit 9)

The trajectory file contains the trajectory (photon ray end point) information for each photo
can be used with MPLOT [Nagesh and Burns, 1994] to display the trajectories, see Section
more details. All the code for the writing of this file can be found in the subroutine surfloop in the
file m32s.f.

The following series of records are repeat for each photon trajectory. Records are written i
nological order.

B.5.1 Header Card

1 Record of Length 5

FORTRAN Format Specification: 5(1x,i5)

Format Entry Note(s)

Integer Photon number (IHIST) 1

Integer Event number (IEVENT) 2

Integer Number of points to be plotted along the particle’s trajectory (NPNTS)

Integer Material number of emitting surface

Integer Wavelength band number in which the photon is being traced

Notes:

1. IHIST starts at 1 and is incremented 1 for each new photon emitted. It is not incremented
a photon is lost and re-emitted.

2. IEVENT is set to 1 when a photon is emitted and is incremented by 1 every time it is refl
or transmitted. IEVENT is reset to 1 when a photon is lost and re-emitted.

3. NPNTS is always 2, and indicates that the trajectory includes just the starting and ending

4. In the MPLOT description of this file [Nagesh and Burns, 1994], the last two number wr
to this record are supposed to be an integer, MAT, and a real, E0. Neither of these two va
apply to MONT3D so they are replaced by the values listed above.
83

gesh
de for

3

ip sur-
infor-

quired
ed by
e may
B.5.2 Photon Ray’s Starting Point

1 Record of Length 3

FORTRAN Format Specification: 3(2x, e10.4)

Format Entry Note(s)

Real X coordinate of photon ray’s starting point

Real Y coordinate of photon ray’s starting point

Real Z coordinate of photon ray’s starting point

B.5.3 Photon Ray’s Ending Point

1 Record of Length 3

FORTRAN Format Specification: 3(2x, e10.4)

Format Entry Note(s)

Real X coordinate of photon ray’s ending point

Real Y coordinate of photon ray’s ending point

Real Z coordinate of photon ray’s ending point

B.6 Leaks File (Suffix .lks, Unit 11)

The leaks file contains information about potential leaks. It can be used with MPLOT [Na
and Burns, 1994] to display these potential leaks, see Section 2.8 for more details. All the co
the writing of this file can be found in the subroutine order in the file m313s.f.

The following record is repeated as needed for each potential leak.

B.6.1 Leak Information

1 Record of Length 3

FORTRAN Format Specification: (1x, i2, 1x, i5, 1x, i2)

Format Entry Note(s)

Integer Type of leak (ITYPEL) 1, 2

Integer Number of the surface associated with the leak

Integer Number of the side associated with the leak

Notes:

1. ITYPEL is 1 for a reversed edge, 2 for no match found with any other surface, 3 for a sl
face. If ITYPEL is equal to 4 then the line is a continuation card that contains additional
mation about the last leak.

2. The number of records required for each type of error varies. While only one record is re
for ITYPEL equal 2, two are required for ITYPEL equal 1 since the reversed edge is shar
two surfaces. For ITYPEL equal 3, up to 15 records may be required since a slip surfac
84

 sur-

. There
ted on
nge

et,
e num-
s 2.9
nd in

e
, even
tarted

erting
s. This
file is
byte
touch many surfaces. The limit of 15 is a hardcoded limit in MONT3D itself. When more
faces than this are involved with the slip surface, they are not written to the leaks file.

3. Side n is between nodes n and n + 1 for the surface. Side 4 is between nodes 4 and 1.

B.7 Block Exchange Matrix File (Suffix .bni, Unit 12)

The block exchange matrix files are used to hold the exchange factor results during a run
is one of these indexed files for each block of surfaces for which results have been calcula
this or any previous run. The block exchange matrix files are combined into a regular excha
matrix file at the end of a MONT3D run. Since load balancing has not been implemented y
blocks are determined as follows. A list is kept of all surfaces ordered by band and by surfac
ber within band. This list is broken sequentially into blocks of size |NEBLOCK|; see Section
and 3.2.1 for more information. All the code for the reading and writing of this file can be fou
the subroutine nijfile in the file m30s.f.

B.7.1 Exchange Information for the Block

|NEBLOCK| Records of Length NSURF

FORTRAN Format Specification: 7(i10, 1x)

Format Entry Note(s)

Integer Numbers of absorbed photons emitted by surface i absorbed

 by all surfaces j for band k 1

Notes:

1. Each record contains the number of photons absorbed by each surface j ranging from 1 to
NSURF for the surface i in the band k. The i and k values for a block are determined using th
formula mentioned above. It should be noted that the file contains results for all surfaces
those that do not emit (which therefore have all zeroes for results). A new record (line) is s
for each emitting surface.

B.8 Temporary Exchange Matrix File (Suffix .tni, Unit 13)

The temporary exchange matrix file is used to hold the exchange matrix results when conv
back and forth between the regular exchange matrix file and the block exchange matrix file
file only exists for a short time during the input and clean up stages of a MONT3D run. This
binary direct access file with record length 4*NSURF (since all results written to disk are 4
integers). All the code for the reading and writing of this file can be found in the subroutine nijfile
in the file m30s.f.

B.8.1 Photon Number Matrix

NBAND Sets of NSURF Records Each of Length NSURF

Format Entry Note(s)

Integer Numbers of absorbed photons emitted by surface i absorbed
85

all
 record
 band
s

hed
sful

riting

ted yet.
ins
e of
ne of
by all surfaces j for band k 1

Notes:

1. Each record contains the number of photons absorbed by each surface j ranging from 1 to
NSURF for each surface i in the band k. It should be noted that the file contains results for
surfaces, even those that do not emit (which therefore have all zeroes for results). A new
(line) is started for each surface. The records for all surfaces in order from 1 to NSURF in
k specify an exchange matrix for band k. The exchange matrices for the 1 to NBANDS band
are written in order to the file.

B.9 Block File (Suffix .blk, Unit 14)

The block file contains the additional information MONT3D requires to restart from a cras
run. The file is generated at the start of a MONT3D run and deleted at the end of a succes
MONT3D run. To restart from a crashed run, the block file must be present as it is now how
MONT3D realizes that a restart from a crash is occurring. All the code for the reading and w
of this file can be found in the subroutine blkfile in the file m313s.f. The block file was mainly cre-
ated to keep track of the surfaces in blocks for load balancing which has not been implemen
Without load balancing, there is not much need for the information in this file. This file conta
several variables used internally by MONT3D for restart. It has little or no usefulness outsid
MONT3D and requires quite a bit of explanation. If the user needs to know about this file, o
the authors should be contacted.
86

	Table of Contents
	List of Figures
	List of Tables
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.2 Theoretical Formulation
	1.3 View Factors
	1.4 MONT3D Implementation
	1.5 Overview of the Manual

	CHAPTER 2 COMPUTER CODE BACKGROUND
	2.1 Nodes
	2.2 Surfaces
	2.3 Split Surfaces, Planarity and Convexity
	2.4 Surface Concatenation
	2.5 Material Properties
	2.5.1 Material Property Curves
	2.5.2 Outgoing Directional Distributions
	2.5.3 Emission
	2.5.4 Cases Where the Reciprocity Relations Do Not Hold

	2.6 Shading
	2.7 Number of Photons, Convergence and Accuracy
	2.8 Aid in Debugging and Visualizing MONT3D Geometries
	2.9 Restart Capability
	2.10 Parallel Version
	2.11 Pseudo-Random Numbers
	2.11.1 Lagged Fibonacci Generators
	2.11.2 Implementation Details
	2.11.3 Effect of Different Random Sequences on Results

	CHAPTER 3 INPUT DECK
	3.1 Title Card
	3.2 Control Cards
	3.2.1 Card 1
	3.2.2 Card 2
	3.2.3 Card 3

	3.3 Grid Dimensions (Shading)
	3.4 Default Convergence Tolerance
	3.5 Nodal Point Data
	3.6 Surface Data
	3.7 Wavelength Band Data
	3.8 Material Type Data
	3.8.1 Card 1
	3.8.2 Card 2
	3.8.3 Card 3

	3.9 Material Property Curves Input
	3.9.1 Card 1
	3.9.2 Cards 2 to NP+1

	3.10 Semi-specular Offset Angle Curves Input
	3.10.1 Card 1
	3.10.2 Cards 2 to NP+1

	3.11 User Grid Input
	3.11.1 User X-grid Coordinates
	3.11.2 User Y-grid Coordinates
	3.11.3 User Z-grid Coordinates

	CHAPTER 4 PROGRAM EXECUTION
	4.1 Input File “box.in”
	4.2 Execution of File “box.in”
	4.3 Screen Output During Execution of File “box.in”
	4.4 Screen Output During Restart Execution of File “box.in”
	4.5 Machine Independence of MONT3D

	CHAPTER 5 IMPLEMENTATION DETAILS
	5.1 MONT3D Source Files
	5.1.1 Files Common to All Versions
	5.1.2 Command Line
	5.1.3 Timing Information
	5.1.4 Time and Date Information
	5.1.5 Parallel Implementation

	5.2 Compiling MONT3D
	5.2.1 Unix
	5.2.2 Microsoft Windows
	5.2.3 Macintosh

	5.3 Files Generated and Used by MONT3D
	5.4 Specifying File Names
	5.5 Parameter Statements and Memory Allocation
	5.5.1 Parameters Specifying Array Sizes
	5.5.2 Other Parameters

	5.6 Parallel Version
	5.6.1 Running the Parallel Version
	5.6.2 Worker Processes
	5.6.3 Files
	5.6.4 Errors
	5.6.5 Random Numbers

	5.7 Unix Batch Execution Using Scripts
	5.8 Precision

	REFERENCES
	APPENDIX A OLD MATERIAL MODEL
	A.1 Overview
	A.2 Outgoing Angles for Diffuse and Specular Interactions
	A.3 Material Type 2, Emission According to a User-Supplied Function
	A.4 Material Type 1, Beam Emission
	A.5 Material Types 0 Thorough -2, Normal Emission
	A.6 Material Types -3 and -4, Perfect Mirrors
	A.7 Material Type Data Cards
	A.8 Material Property Curves Cards
	A.8.1 Specular Transmittance
	A.8.2 Diffuse Transmittance
	A.8.3 Specular Reflectance
	A.8.4 Diffuse Reflectance

	APPENDIX B FILE FORMATS
	B.1 Restart File (Suffix .rst, Unit 2)
	B.1.1 IPARFLG
	B.1.2 Photon Emission Counts
	B.1.3 Random Number Generator Information
	B.1.4 Block Information

	B.2 Plot File (Suffix .plt, Unit 3)
	B.2.1 Header
	B.2.2 Control Information
	B.2.3 Limiting Dimensions for the Geometry
	B.2.4 Surface Information
	B.2.5 Material Information
	B.2.6 Number of Records in the Binary Exchange Matrix File

	B.3 Lost Photon File (Suffix .lst, Unit 4)
	B.3.1 Header Card
	B.3.2 Photon Ray’s Starting Point
	B.3.3 Photon Ray’s Ending Point

	B.4 Exchange Matrix File (Suffix .nij, Unit 8)
	B.4.1 Header Card
	B.4.2 Surface Areas
	B.4.3 Surface Emittances
	B.4.4 Photon Number Matrix

	B.5 Trajectory File (Suffix .trc, Unit 9)
	B.5.1 Header Card
	B.5.2 Photon Ray’s Starting Point
	B.5.3 Photon Ray’s Ending Point

	B.6 Leaks File (Suffix .lks, Unit 11)
	B.6.1 Leak Information

	B.7 Block Exchange Matrix File (Suffix .bni, Unit 12)
	B.7.1 Exchange Information for the Block

	B.8 Temporary Exchange Matrix File (Suffix .tni, Unit 13)
	B.8.1 Photon Number Matrix

	B.9 Block File (Suffix .blk, Unit 14)

