

Hadoop Project for IDEAL in CS5604

by

Jose Cadena
 Mengsu Chen

 Chengyuan Wen
{jcadena,mschen,wechyu88}@vt.edu

Completed as part of the course
CS5604: Information storage and retrieval

offered by
Dr. Edward Fox

Department of Computer Science
Virginia Tech

Blacksburg, VA
Spring 2015

2

Abstract
The Integrated Digital Event Archive and Library (IDEAL) system addresses the need for
combining the best of digital library and archive technologies in support of stakeholders who are
remembering and/or studying important events. It leverages and extends the capabilities of the
Internet Archive to develop spontaneous event collections that can be permanently archived as
well as searched and accessed. IDEAL connects the processing of tweets and web pages,
combining informal and formal media to support building collections on chosen general or
specific events. Integrated services include topic identification, categorization (building upon
special ontologies being devised), clustering, and visualization of data, information, and context.
The objective for the course is to build a state-of-the-art information retrieval system in support
of the IDEAL project. Students were assigned to eight teams, each of which focused on a
different part of the system to be built. These teams were Solr, Classification, Hadoop, Noise
Reduction, LDA, Clustering, Social Networks, and NER. As the Hadoop team, our focus is on
making the information retrieval system scalable to large datasets by taking advantage of the
distributed computing capabilities of the Apache Hadoop framework. We design and put in place
a general schema for storing and updating data stored in our Hadoop cluster. Throughout the
project, we coordinate with other teams to help them make use of readily available machine
learning software for Hadoop, and we also provide support for using MapReduce. We found that
different teams were able to easily integrate their results in the design we developed and that
uploading these results into a data store for communication with Solr can be done, in the best
cases, in a few seconds. We conclude that Hadoop is an appropriate framework for the IDEAL
project; however, we also recommend exploring the use of the Spark framework.

3

Acknowledgements
We would like to thank the Solr and Noise Reduction teams for their continuous collaboration
throughout the semester. Even though, we worked with all the teams in the class, the Solr and
Noise Reduction teams played a key role on helping us define the schemas for HBase and
Avro. We thank Rich, Ananya, and Nikhil (Solr team) for patiently explaining the basics of Solr
and helping us understand what data should and should not go into the system, and we thank
Prashant and Xiangwen (Noise Reduction team) for giving us the initial idea of using Avro to
standardize the output produced by the different teams and for later bearing with our numerous
changes to the schema and adjusting their noise-reduction process accordingly.

We would like to thank Sunshin Lee, the graduate teaching assistant and cluster administrator,
for his helpful suggestions and technical expertise in matters related to Hadoop. Especially in
the early stages of the course, when we had very little experience with Hadoop, Sunshin
patiently explained the different Hadoop tools to us and pointed us to the appropriate resources.
Thank you for keeping us in the right track.

We would like to thank Dr. Fox for bringing this project to us and for his guidance throughout the
semester. Dr. Fox helped us define tasks and focus areas for our team. Thank you for being the
guide on the side. More generally, we thank Dr. Fox for making the IDEAL project part of the
Information Storage and Retrieval course. By the end of the class, we felt we had a
considerable understanding of the Hadoop framework, both in theory and practice. We doubt we
would have gained a similar understanding in a traditional course format based on lectures and
assignments.

Finally, we thank the sponsors for making the IDEAL project possible. This project was
sponsored by the National Science Foundation NSF grant IIS - 1319578, III: Small: Integrated
Digital Event Archiving and Library (IDEAL).

4

Abstract ... 2	

Acknowledgements ... 3	

1. Project Overview ... 6	

1.1 Project Effort .. 6	

1.2 Challenges ... 6	

1.3 Solutions Developed .. 7	

1.3.1 Data Workflow (Section 7.1.2) .. 7	

1.3.2 Loading Data Into HBase (Section 7.4.2) ... 7	

1.3.3 Collaboration With Other Teams (Section 5.4) ... 7	

1.4 Roadmap ... 8	

2. Literature Review .. 8	

2.1 What is Hadoop? ... 8	

2.2 Hadoop for Information Storage and Retrieval .. 9	

2.3 Getting Started with Hadoop ... 10	

3. Requirements .. 10	

4. Design ... 11	

4.1 Approach ... 11	

4.2 Tools .. 11	

4.3 Methodology .. 11	

4.4 Conceptual Background .. 12	

4.5 Deliverables ... 12	

5. Implementation .. 12	

5.1 Timeline ... 12	

5.2 Milestones and Deliverables .. 14	

5.3 Evaluation .. 14	

5.3.1 Non-Distributed Program .. 14	

5.3.2 MapReduce Program .. 15	

5.3.3 Bulk-Load Method ... 16	

5.4 Collaboration With Other Teams ... 17	

5.4.1 Solr .. 17	

5.4.2 Noise Reduction .. 17	

5.4.3 Classification ... 18	

5.4.4 NER .. 18	

5.4.5 LDA, Clustering, and Social Networks .. 18	

6. User’s Manual ... 18	

6.1 The HBase Shell .. 18	

6.2.1 Running the HBase Shell .. 18	

6.2 Working with Avro Files ... 21	

Writing Avro Files (Java) .. 22	

Writing Avro Files (Python) .. 24	

Reading Avro Files ... 27	

6.3 Loading Avro Data into HBase .. 29	

6.3 Crawling web pages .. 31	

5

6.5.1 Python Script Approach .. 32	

6.5.2 Apache Nutch Approach ... 32	

7. Developer’s Manual .. 36	

7.1 Technical Specifications .. 36	

7.1.1 Hadoop Cluster Specifications .. 36	

7.1.2 Architecture and Data Workflow ... 37	

7.2 Data ... 38	

7.2.1 Data Description ... 38	

7.2.2 HBase Schemas ... 40	

7.2.3 Avro Schemas ... 41	

7.3 Installation ... 42	

7.3.1 Installation of Solr ... 42	

7.3.2 Installation of Hadoop ... 44	

7.3.3 Installation of Apache Nutch ... 44	

7.4 Operation ... 45	

7.4.1 MapReduce Introduction ... 45	

7.4.2 Loading Data Into HBase .. 46	

8. Conclusions and Future Work ... 48	

8.1 Conclusions ... 48	

8.2 Future Work ... 49	

9. Inventory of VTechWorks Files ... 49	

10. References .. 50	

Appendix ... 53	

A. Avro Schemas ... 53	

B. AvroToHBase.java .. 57	

C. WriteHBaseMR.java .. 60	

D. Loading time for webpages ... 64	

F. HFile Generation ... 65	

6

1. Project Overview

1.1 Project Effort
The efforts of our team are focused on designing and implementing a solution for the IDEAL
project that runs on a Hadoop cluster and takes advantage of the distributed computing and
storage capabilities of the cluster to handle large amounts of Twitter and web page data.

In coordination with the other teams and the instructor, we define the data workflow, from data
ingestion and storage in the cluster to indexing into Solr. Every team in the class is going to be
involved in different parts of this workflow. For example, each team will download web pages for
two collections assigned to them, and the various teams in charge of data analysis tasks will
produce results to be used by Solr. Our part in this workflow is loading data produced by the
various teams into HBase (see Section 2), from where the data will later be indexed into Solr.

Our project efforts also include helping other teams to make use of the distributed computing
capabilities of Hadoop, so that the collections that we are working with are processed efficiently.

1.2 Challenges
There are various challenges when it comes to designing a data workflow for our project. First,
the design decisions have to consider how the many moving parts of this project fit together for
our goal of building a state-of-the-art search engine. Second, putting the design together
requires knowing what the different storage options for Hadoop are, understanding details of the
architecture of these different options, and considering how the strengths and weaknesses of
each alternative will affect our project. Third, designing the data workflow involves having
awareness of the existing data processing tools for Hadoop and adjusting the design to make
use of these tools when appropriate.

The point of understanding different options of data storage and file formats is raised once again
in our task of loading data into HBase. Potentially, every team in charge of data analysis will
have a preferred file format to take as input data and will produce output in a unique form. We
have to implement tools and conventions to ensure that the different outputs produced by each
team agree with the HBase schema, while, at the same time, minimizing the overhead of data
processing for the other teams.

As mentioned in the previous section, one of our goals is efficient processing of the data
collections in the Hadoop cluster. There are two main challenges associated with this goal. First,
we do not want the tasks of other teams to be hindered or delayed by optimization concerns. As
much as possible, optimization tasks should be transparent to the rest of the teams. Second,
optimizing performance requires analyzing runtime statistics of the various jobs run on the
cluster so that we can compare the effect of different set-ups. We have to understand how the

7

logging protocols of Hadoop and be able to do basic analysis of the log files of the various tools
used in the project.

1.3 Solutions Developed
In this section, we summarize our contributions. For architectural and implementation details,
we point the reader to Sections 5, 6 and 7.

1.3.1 Data Workflow (Section 7.1.2)
Our solution starts by loading Twitter data into the Hadoop cluster from a relational database
using Sqoop, a tool for bulk loading structured data into Hadoop. Web page data is fetched and
stored in HDFS using Nutch, a web-crawling tool. Once the data is on disk, the Noise Reduction
team will produce a clean version of the data that will 1) be loaded into HBase and 2) used by
other teams for their respective data analysis tasks. Other teams will save their results in a
predefined format (Avro files [18]) that we will later load into HBase. A description of our
predefined format can be found in Section 7.2.3, and instructions on how to manipulate Avro
files can be found in Section 6.2. As new data is added to HBase, it will be indexed into Solr in
real-time using the hbase-indexer tool. When the data is indexed in Solr, it can be queried, and
results will be produced according to a scoring function that incorporates all of the results from
the data analysis phase.

1.3.2 Loading Data Into HBase (Section 7.4.2)
Over the course of the semester, we implemented three programs to load data into HBase. We
first developed a centralized (i.e., not distributed) Java program that simply reads records from
one of the Avro files produced by the teams and writes data to HBase through an HBase API for
Java; we were able to load all the small tweet collections using this program, with each
collection taking less than one minute. However, our implementation did not scale to the big
collections ---we ran into memory limitations--- so we developed a MapReduce program that
reads Avro files from HDFS and uploads records into HBase in a distributed fashion, again,
through an HBase API. Our MapReduce implementation loads each collection in at most 30
minutes. Finally, we developed a solution that makes use of the bulk load tools that come with
the HBase libraries. This solution involves transforming an Avro file into HFile format ---a native
low-level HBase format--- determining an appropriate number of splits for the HBase tables into
regions, and uploading the HFiles into the different regions. For this task, we write a
MapReduce job where the Map function creates the HFiles and the Reduce function uses the
HBase libraries to send the HFiles to the corresponding regions.

1.3.3 Collaboration With Other Teams (Section 5.4)
We interacted with all the other teams in the class. A big portion of these interactions involved
helping the teams work with Avro files. Avro is a serialized format, so it is not immediately
readable to a human. We instructed most teams on how to interpret these Avro files by using
the libraries in the Hadoop cluster. Similarly, we helped the teams to adapt their workflow to
read and write Avro files; through the semester, we went over multiple revisions of the output
format with each team. Another part of part of our collaboration with other teams was sketching
out the schema and workflow for the class and helping them with MapReduce programming for
their respective tasks. Below, we give a brief summary of our interactions with each team.

8

1.4 Roadmap
The rest of this report is organized as follows. In Section 2, we give a literature review covering
the basic concepts of Hadoop and the origins of this infrastructure, the role of Hadoop in
information storage and retrieval, and a brief description of useful tools for Hadoop. We
also point the user to some useful resources to start learning Hadoop. In Section 3, we state
the requirements of our team for this class. In Section 4, we give a high-level overview of our
proposed design, background knowledge, and technical tools used for the project. Then, in
Section 5, we give details about the implementation of our project, including a detailed
timeline of our work each week, an evaluation of our implementation, and details of our
collaboration with the other teams in the class. Section 6 is a user’s manual, which, we
hope, will be valuable to the reader interested in learning how to work with Avro files, interact
with HBase, and use Nutch to crawl web pages. Section 7 is a developer’s manual; here,
the reader can get technical specifications of the Hadoop cluster used in the course. This
section is also of interest to readers who want to know how to install Solr and Nutch, two main
tools that we used as part of the course. It is also in this section where we provide specific
details about our design for Avro, HBase, and the data flow for the IDEAL project. We
close by describing our solutions for loading data into HBase. Finally, in Section 8, we give
some conclusions based on our experiences in the class, and we also pose some directions
for future work.

2. Literature Review
Our literature review is divided into three parts. First, we describe the Hadoop framework and its
main features. Then, we discuss how Hadoop interacts with information storage and retrieval
tools. Finally, we present a non-exhaustive list of references that explains how to set up and
start using Hadoop. After reading this section, the reader should 1) understand, at a high level,
what Hadoop is and its advantages, 2) have a general awareness of the readily available
software packages that can be used with Hadoop, and 3) know where to find resources to start
using Hadoop and MapReduce.

2.1 What is Hadoop?
As described in the Apache Hadoop website [19], Hadoop is “a framework that allows for the
distributed processing of large data sets across clusters of computers using simple
programming models.” Sometimes, we also call it the Hadoop (software) stack or Hadoop
ecosystem. The two core components of the Hadoop ecosystem are the Hadoop Distributed
File System (HDFS) and MapReduce, which were inspired by the Google File System [4] and
Google MapReduce [2], respectively. HDFS provides a scalable, fault-tolerant way to store large
volumes of data on a cluster. Hadoop MapReduce is a paradigm to process data in parallel in a
distributed system.

Hadoop is useful to tackle computational tasks involving big datasets (i.e., on the scale of
hundreds of gigabytes, terabytes, or more). When working with such datasets, there are two
notable challenges. First, storing the data in its totality in one single disk becomes problematic;
fitting the data into memory is even more challenging. Second, even if one can afford expensive

9

hardware to store the data, it would take a prohibitively large amount of time to complete any
kind of useful analysis. Hadoop solves the first problem by providing a distributed file system
(HDFS). This way, a user is able to store big collections of data in a cluster of commodity
software. Hadoop also provides a framework to tackle the second problem (computation on a
big dataset), namely Hadoop MapReduce.

It is important to note that the operations related to distributing the data across nodes, reacting
to errors in hardware, and scheduling details of MapReduce jobs, are transparent to the user.
Hadoop takes care of most of the low-level tasks and provides simple interfaces to interact with
the system. Other Apache projects, such as Hive [20], Pig [21], or Zookeeper [22], further
abstract common programming tasks, making it even easier to analyze big datasets.

2.2 Hadoop for Information Storage and Retrieval
The distributed computing and storage capabilities of Hadoop have been used to make off-the-
shelf information storage and retrieval tools more scalable. For the purposes of this project, we
focus on HBase, Nutch, Solr, and Mahout.

HBase is a data storage system inspired by Google’s BigTable [1]. HBase extends HDFS by
allowing real-time random IO operations, whereas HDFS assumes that data will only be written
once and always processed in bulk. Data in HBase is organized as a multi-dimensional map. A
table is a map of row ids to column families; each column family in turn is a map from columns
to values1. HBase has the properties of being distributed (over a Hadoop cluster), scalable, and
sparse (i.e., a column only exists in a row if it has a value; there are no NULL columns as in a
relational database). These properties have made HBase the tool of choice for companies like
Facebook, Yahoo, and Twitter.

Solr [15] is an open source search platform developed by Apache. This tool is the core of the
search engine that we develop in this class project. Solr can be configured to ingest and index
data from a Hadoop cluster, allowing us to extend this powerful platform and all its readily-
available tools to collections that do not fit in one single server.

Nutch [14] is a tool for large-scale web crawling. Given a collection of URLs, Nutch recursively
traverses these URLs making it very simple to create large collections of web pages. Nutch
includes tools for basic processing of the crawled data, and it readily supports integration with
Hadoop and Solr. We use Nutch to efficiently fetch web pages from the URLs found in our tweet
collections. However, we do not make use of the web-crawling capabilities of this tool.

Mahout [23] is a machine-learning library. The library contains many standard machine learning
algorithms for classification, topic modelling, and clustering, among others. Furthermore, most
of the algorithms in the library already have MapReduce implementations, so it is possible to run
basic machine learning tasks on big datasets with little programming demand.

1To be accurate, a column maps to a map of timestamps to values. In other words, each column supports
versioning by keeping track of its current and past values.

10

We finish this section by noting that, if there is not a readily-available implementation of a
desired algorithm, a developer can always write the appropriate MapReduce program from
scratch. The book MapReduce: Design Patterns [8] provides a good compilation of different
MapReduce patterns to use for many data manipulation tasks. Also, a developer is not
constrained to using Java as the programming language, since Hadoop has streaming
packages to run code written in other languages. Therefore, a user can take advantage of other
packages or libraries that he/she already knows how to use.

2.3 Getting Started with Hadoop
There are many tutorials on how to set up a Hadoop cluster and run basic programs. The
Apache foundation offers a tutorial to set up a single node cluster [13]. For a more informal,
“Quick Start” style tutorial, we suggest reading reference [12] to the interested reader. In order
to take advantage of Hadoop, a user must learn how to interact with HDFS; the Yahoo!
Developer Network [9] provides a good introduction. Understanding of the MapReduce
paradigm is also a must. As stated above, the book MapReduce: Design Patterns provides a
broad collection of examples and explanations of the basic MapReduce concepts. Readers
specifically interested in text processing will benefit from the book Data-Intensive Text
Processing with MapReduce [5]. Finally, users interested in the low-level details about index
construction in Hadoop can use Chapter 4 of Introduction to Information Storage and Retrieval
[7] as a reference.

3. Requirements
IDEAL is a Big Data project. One primary goal of the project is to make it possible for users to
extract relevant content from collections on the scale of terabytes. There are various challenges
to consider when working with this amount of data. As discussed in Section 2, it is not possible
to store all the data in a single commodity disk, let alone load it into memory for any processing
or data analytics task.

As the Hadoop team, our objective is to make information retrieval scalable in the IDEAL
project. We work with the rest of the teams to help them parallelize their respective tasks as
much as possible. Additionally, we are responsible for designing a general schema to store the
data in the Hadoop cluster. The goal is that teams modify a unified data representation instead
of producing disjoint results across the system. In designing the schema, we collaborate with
the Solr team; we also work with the Solr team on indexing and loading the data from the cluster
into Solr. On the user-support side, we help the teams to use tools in the cluster, such as
Mahout, Nutch, and avro-tools. We also provide assistance on writing MapReduce programs for
tasks that are not readily available in Mahout.

Below, we summarize our tasks for the project:

● Design a schema for the storage of Twitter data and web page data.
○ Decide on whether to use HDFS, HBase, or some other framework.

● Instruct other teams about the schema and propose data formatting standards.

11

● Load data into the cluster.
○ Coordinate with the cluster administrator (Sunshin Lee) for this requirement.

● Load data into HBase.
● Coordinate with the other teams to make sure that they take advantage of the parallel

computing capabilities of Hadoop.
● Provide support to other teams for writing and running MapReduce jobs.

4. Design

4.1 Approach
Our approach is to have a workflow where teams in charge of data analysis read and write data
from/to HDFS. Teams interact with HBase only through a data-loading tool that we provide. The
data in HBase is a structured representation of all our collections containing only the data
required by Solr for query processing. As the data is uploaded and updated in HBase, the
changes are indexed in real time in Solr via the Lily HBase indexer [10].

4.2 Tools
Programming languages: Java and Python
HDFS (Hadoop File System): Distributed file system. Files are stored across a cluster of
computers.
HBase: Non-relational database. HBase is sparse, scalable, and well-integrated in the Hadoop
ecosystem.
Lily HBase Indexer: Tool for indexing HBase rows into Solr.
Sqoop: Tool for transferring data in bulk from a database to HDFS.
Nutch: Web crawler. We will use it to fetch web pages from a collection of URLs.

4.3 Methodology
Loading data into the cluster
The original Twitter data was stored in a relational database at the beginning of the semester.
Sunshin Lee, the cluster administrator, used Sqoop to copy the data to HDFS as AVRO files,
sequence files, and comma-separated values (CSV). After that, Nutch is to crawl web pages
corresponding to the URLs extracted from the HDFS tweets. These webpages are stored in
HDFS as WARC files. Web pages that are in text form (e.g., ending with .htm or .txt) also are
stored in HDFS as HTML and text files. From here, the noise reduction team processes these
files to discard irrelevant content as much as possible. Then, other teams can use the “clean”
files for their respective machine learning tasks.
Communication with Solr
Each team in charge of data analysis reads data from HDFS and writes interim results back to
HDFS. These results are then added to the corresponding tweet / webpage in HBase. The Lily
HBase indexer automatically updates the Solr index.

12

4.4 Conceptual Background
● Fundamentals of HBase and Google Bigtable.
● Architecture of HBase and HDFS.
● MapReduce paradigm.
● Internal working of the HBase Indexer.

4.5 Deliverables
● Data workflow design.
● Avro file conventions.
● Programs for uploading data into HBase.
● Performance metrics and optimization suggestions.

5. Implementation
5.1 Timeline
Week 1: Get Solr running on our laptop. (see Section 7.3)
Week 2: Set up a Hadoop pseudo-cluster to practice Hadoop (Section 7.3)
Week 3: Reorganize the report of the previous week and start learning Mahout.
Weeks 4 and 5:

● Use Python script to download web pages mentioned in tweets.
● Index web pages and tweets into Solr.
● Research different options to store the data in the cluster.

○ Data will be stored in HDFS as HTML, WARC, or CSV fields.
○ We recommend HBase for communicating with Solr.

● Research Apache Nutch to crawl web pages instead of using a Python script. (see
Section 7.2 Data)

Weeks 6 and 7 and 8:
● Created sample HBase tables via the HBase shell and the Java API.
● Researched different options and data formats for loading data into HBase.
● Finalized details of the data workflow with other teams.
● Implemented prototype workflow for indexing data from HBase to Solr.
● Implemented prototype web page fetching using Nutch.
● Learned how to use the Lily indexer to synchronize Solr and HBase.
● Defined details of the HBase schema with the Solr team.

Week 9:
● Talked to Sunshin about using Sqoop and Nutch to load data into HDFS. Sunshin

loaded all the collections, and teams will extract web pages for their own collections.
● Learned how to interact with HBase programmatically in order to load data from HDFS

into HBase.
● Designed Avro schemas for each team.
● Wrote documentation for the schemas and a tutorial on how to create Avro files using

the schemas.
● Wrote a program to sequentially convert tweets in TSV format to Avro.

13

● Wrote a program to sequentially load Avro data into HBase. The program loaded our
small tweet collection in about 1 minute (380,403 tweets in Avro format).

Week 10:
● Wrote a program to extract and expand shorten URLs from big collections.
● Crawled the web pages for our big collection.
● Wrote a MapReduce program to load Avro data into HBase.
● Loaded cleaned (i.e., after noise reduction) tweets into HBase.

Week 11
● Modified Avro schema due to changes in HBase schema.
● Loaded all the small collections into HBase.
● Continued working with other teams in producing Avro files.

○ Noise reducing team: Done with small collection.
○ Classification team: Discussed, waiting their output.
○ NER team: Provided help on modifying their output avro schema, waiting

feedback.
Week 12

● Modified Avro schema for LDA team from conversations with LDA and Solr teams.
● Tested and debugged MapReduce HBase upload program.
● Continued working with other teams in producing Avro files.

○ Noise reducing team: They are working to produce clean web page data.
○ Classification team: Discussed, waiting for their output.
○ NER team: Provided help on modifying their output avro schema, waiting

feedback.
○ LDA team: We agreed on the Avro schema for them. They have output to be

loaded into HBase.
○ Clustering: They will produce files to be loaded into HBase.

Week 13
● Resolved issues of running our MapReduce HBase upload program.
● Loaded big tweet collections into HBase: 85,589,755 rows in total.
● Coordinated with Solr team to indexed data in HBase into Solr, the small tweet collection

has been indexed.
● Continued working with other teams in producing Avro files.

○ Noise reducing team: Loaded cleaned small web page collections.
○ Classification team: Waiting for their output.
○ NER team: Loaded their output for tweets into HBase.
○ LDA team: We agreed on the Avro schema for them. They have output to be

loaded into HBase. Waiting for their output.
○ Clustering: Loaded their output for tweets into HBase.
○ Social Network: We agreed on a format with them. We are waiting for their

output.

Weeks 14 and 15
● Implemented a bulk-loading program to write data into HBase directly (i.e., bypassing

the HBase write path).

14

● Integrated the pangool software library into our infrastructure for the Classification team.
● Continued working with other teams in loading HBase

○ Noise reducing team: Loaded cleaned big web page collections into HBase.
○ Classification team: Helped them with MapReduce programming and loaded

their classification results into HBase.
○ NER team: Loaded their output for web pages into HBase.
○ LDA team: Loaded their output for tweets into HBase.
○ Clustering: loaded their output for web pages into HBase.
○ Social Network: Loaded their output for tweets and web pages into HBase.

5.2 Milestones and Deliverables
● Tools for loading data into HBase.

● We developed a sequential program, a MapReduce program, and a bulk-loading
program.

● HBase schema and synchronization with Solr.
● We developed a schema for HBase and for each team based on the needs of the

project.
● Optimization of other team’s tasks.

● We worked with the NER and Classification team to integrate their tools into our
workflow and avoiding wasted disk space. Other teams used existing tools for
MapReduce, but we did not optimize their jobs.

5.3 Evaluation
We report the performance (in terms of running time) of our three HBase loading programs. We
focus on the tweet collections because they were larger and more challenging to handle.
However, we provide loading times for the web page collections in Appendix D. Also, we just
show the sizes of the collections that we upload and the time taken. A detailed description of the
format of these collections can be found in Section 7.2, and description of the implementation of
each program can be found in Section 7.4 and the Appendix.

5.3.1 Non-Distributed Program
Our first solution was a non-distributed Java program that reads Avro files from the main node
of the cluster and writes data to HBase by invoking the HBase API for Java. The process should
be familiar to anyone who has written programs to communicate with a database (relational or
otherwise) through an API.
We were able to load all the small tweet collections, after being processed by the Noise
Reduction team, using our non-distributed program. Table 1 reports the time to load each
collection into HBase. Each collection took less than one minute to be uploaded, but most of the
big collections could not be loaded with this program due to memory constraints in the main
node.
We could use this program to load the big collections by adding more memory to the main node
or breaking down the input files into smaller pieces ---effectively “distributing” the load by hand.
However, both ideas are just temporary solutions; as the project grows, at some point, we are
not going to be able scale anymore; furthermore, so far, we have not used the distributed

15

computing capabilities of the Hadoop cluster. In the next section, we show a distributed
approach to load the data.

Table 1. Time to load the small tweet collections into HBase using a non-distributed program

5.3.2 MapReduce Program
Our second implementation was a MapReduce program that reads Avro files from HDFS and
writes data to HBase by using the HBase API for Java. This program only has a Map function
(without a Reduce). Each mapper writes exactly one record to the data store. We were able to
load all the big collections to HBase, with the largest collection taking 30 minutes. For
comparison, we also tested loading the small collections with our MapReduce program. We
note that, it is rather unnecessary to use the Mapreduce framework to process data that can be
handled by a non-distributed program in only a few seconds. There is an appreciable cost in
running a distributed program (i.e., communication between nodes, scheduling and supervising
tasks across the cluster, etc.) that is not justified for small files. Table 2. reports the times for
each collection; we also show the time taken by loading all the collections at once (i.e. all big
and small collections in a single MapReduce job). There are two insights from this results that
we want to emphasize. First, as discussed above, we don’t gain anything by processing the
small collections with MapReduce; in fact the log files for these jobs show that most of the small
collections are being processed by a single mapper, which is no different than using a non-
distributed program ---except that we still pay the overhead of managing the MapReduce job.
Second, loading all the data at once is much faster than loading collections one at a time. It is
preferable to wait until we have multiple collections before loading data into HBase.

16

Table 2. Time to load all the tweet collections to HBase using MapReduce

5.3.3 Bulk-Load Method
HBase has a tool that allows a developer to directly upload HFiles, native HBase files, to the
data store, effectively bypassing the normal workflow that is followed when writing to HBase
through the API. We describe these ideas and its pros and cons in more detail in Section 7.4.
For the purposes of this section, we just emphasize that bulk-loading is a much more efficient
way to load large amounts of data into HBase than the API.
In order to use the bulk-loading tool, we first need to convert our Avro files to HFiles, which we
did by using a MapReduce program. Then, we upload these files to HBase using the libraries
included in the Hadoop distribution (see Section 7.3). Table 3 (rightmost column) reports the
time taken to convert each collection to an HFile using our program. We are not including the
time it takes to upload the HFiles to HBase because we consider it negligible. Loading the
HFiles for individual collections takes two or three seconds, and loading the HFile for all the
collections combined takes only six seconds. Even with this added upload time, the
improvement from our MapReduce program is Section 5.3.2 is noticeable. With the bulk load
approach, all the big collections can be loaded in around 7 minutes, whereas it takes well over
one hour to do the same through the API.

17

Table 3. Comparing our three solutions for uploading data to HBase

5.4 Collaboration With Other Teams

5.4.1 Solr
We were in constant collaboration with the Solr team at different stages of the project. In the
initial weeks, we discussed workflows for the project and explored different alternatives to index
the results of each team into Solr. Towards the end of the planning phase, we had to choose
either to read data directly from HDFS or to add HBase to the workflow to make use of the real-
time Lily Indexer tool. In class discussions, we decided to do the latter. After the workflow was
decided, we collaborated with the Solr team for the design of the schema for the HBase tables
and Avro files. We made many of our design decisions based on the information that the Solr
team needed to have indexed into Solr. In the later stages of the semester, when we had most
of the data loaded into HBase, we helped the Solr team with generating test tables (i.e.,
samples of the complete data) that they could use for prototyping and testing.

5.4.2 Noise Reduction
Similar to the Solr team, most of our work with the Noise Reduction (NR) team involved schema
design and data formatting considerations. The NR team is responsible for generating the input
files for most of the other teams; they are the first team in “touching” the data. Therefore, it was
important to agree on a design and workflow with this team as early as possible. Furthermore, it
was important to put special consideration into the schema of the NR team in order to avoid
significant subsequent changes to their output files. The scenario that we wanted to prevent was
having to ask the rest of the teams to redo their analysis of the data just because we forgot to

18

include an important field in the initial output from NR. Fortunately, we did not encounter this
problem.

5.4.3 Classification
The classification team had to use a third-party software library, pangool [3], for completing their
task. We helped the classification team by adapting a Naive Bayes implementation in pangool to
our infrastructure. To summarize, we modified the Naive Bayes MapReduce program to use our
Avro libraries for reading and writing data according to our pre-specified schema. Details of
these changes can be found in Section 7.

5.4.4 NER
Most of our interactions with the NER team were helping them to use Avro files and follow our
schema conventions. We showed this team how to use avro-tools, an Avro utility, to convert
Avro to a readable format, concatenate small Avro files in HDFS to avoid wasted space, and
generate Avro from a given schema. We also helped this team to produce Avro files in a
MapReduce program.

5.4.5 LDA, Clustering, and Social Networks
With the remaining teams, our interactions were mostly to decide details of their respective
schemas and upload their results into HBase. The Clustering and LDA teams used Mahout, so
they did not have to write MapReduce programs for their rspective tasks. It is likely that the
Mahout jobs generated by these teams could be sped up; however, due to time limitations, we
leave this performance tuning for future work. The Social Networks team did not use the
MapReduce because this framework is not a good solution for the kind of analysis they were
required to do (i.e., iterative graph algorithms). Instead, they used the Graphx library [24] for
Spark [16].

6. User’s Manual
This section provides a guide for using the Hadoop cluster for this project. We present
instructions and examples on how to use HBase, Avro files, and Nutch.

For the rest of the section, we assume that the user is working on the Cloudera Virtual Machine
or the Hadoop cluster for this class.

6.1 The HBase Shell
The HBase shell (or just “the shell”) is a command-line utility where a user can execute run
commands to interact with HBase. Through the shell, a user can create or delete tables, update
or remove data in the existing tables, get data stored in HBase, among other common
operations. Users familiar with command-line utilities to interact with SQL databases should find
the HBase shell familiar and easy to use despite the fact that HBase is a NoSQL data store.

6.2.1 Running the HBase Shell
We start the HBase shell by using the command

$	
 hbase	
 shell

19

We should see the output shown in Figure 1.

Figure 1. Starting the HBase shell.

Now that the we are in the HBase shell, we are ready to interact with HBase.

Note: If the commands in the next section do not work as expected, it may be because HBase
is not running in your system. In the virtual machine, you can check whether HBase is running
by pointing your browser to localhost:60010. If HBase is down, you will not be able to connect.
You can start HBase by running the following commands:

/usr/lib/hbase/bin/hbase-­‐daemon.sh	
 start	
 master
/usr/lib/hbase/bin/hbase-­‐daemon.sh	
 start	
 regionserver

We check the browser again to see that HBase is running now.

6.2.2 Common Operations
First, let’s get a list of the existing tables. If this is your first time using HBase in your system,
there should not be any tables yet. We get a list of the tables using the “list” command, which
should return 0 rows as output (see Figure 2).

Figure 2. HBase does not have any tables yet.

Now, we will create our first HBase table. We will create a table for tweets with two column
families: “original” and “analysis”. We will use the “create” command, which has syntax

create	
 ‘table_name’	
 ,	
 [{NAME	
 =>	
 ‘col_family_1’},	
 …	
 ,	
 {NAME	
 =>	
 ‘col_family_n’}]

In this case, we are giving the name of the table and a list of column families. We note that there
are other parameters for the “create” command, so you should check the HBase
documentation. We show the command to create the “tweets” table in Figure 3.

20

Figure 3. Creating a table for tweets.

We can check that the table was created correctly using the “describe” command, which gives
us metadata of a table, as shown in Figure 4.

Figure 4. Details of each column family for the ‘tweets’ table

The output of the “describe” command is the name of the table we are describing, its status
(ENABLED or DISABLED), and metadata about each column family.

Now that we have a table to work with, we can store data in HBase. Let’s add a tweet about
Egypt. We will use the “put” command, which adds data for a specific column of a row. The
syntax for the command is

put	
 ‘table_name’,	
 'row_id',	
 'col_family:column',	
 'value'

The “put” command adds a value for a specific column of a row in a table. If the column does
not exist, a new column is create; otherwise, the column’s value is updated. Similarly, if the row
with ID “row_id” doesn’t exist, the row gets created. Here is a concrete example:

put	
 'tweets',	
 'egypt.0001',	
 'original:text_original',	
 'This	
 is	
 a	
 tweet	
 about	
 #Egypt'

Here, we are putting the value “This is a tweet about #Egypt” in the “text_original” column of the
“original” column family of the “egypt.0001” row.

One big limitation of the “put” command is that it only allows us to add data for one column
at a time. If we want to add data for 10 columns, we have to write 10 different “put” commands.
Furthermore, the “put” command is the only way to add data in the shell. It is impractical to
manually store data in HBase through the shell. Instead, one should add data programmatically
using an HBase API, such as the one for Java.

As an exercise, try putting the value “CNN” in “original:user_screen_name” and “Egypt” in
“original:hashtags” for the same row id. Once that is done, we can retrieve the data using the
“get” command. “get” allows us to fetch data for a specific row id. Figure 5 shows an example of
the output of the “get” command.

21

Figure 5. Using the “get” command to get data about a tweet

Now, we will add one more row to the table:
put	
 'tweets',	
 'egypt.0002',	
 'original:text_original',	
 'This	
 is	
 another	
 tweet	
 #jan25'
put	
 'tweets',	
 'egypt.0002',	
 'original:hashtags',	
 'jan25'

Again, we can retrieve the data for this new row using “get”. If instead, we want to get all the
data in the table, we use the “scan” command, as shown Figure 6.:

Figure 6. Retrieving all the data in an HBase table.

The “scan” command also supports options for scanning only a range of row IDs. Suppose that
we have row IDs of the form “egypt.XXXX” and “malasya.XXXX” for two different collections.
Then, using the “scan” command, we can retrieve the data for one entire collection only.

This is the end of this section. There is much more to the HBase shell, but the examples above
should get you started.

6.2 Working with Avro Files
Every team processing data in HDFS will have an Avro schema. For the purposes of loading
HBase and standardization, we ask teams to output their results of data processing in Avro
format, according to the schemas in the Appendix.

This section shows how to read and write Avro files. Even though Avro is a convenient file
format to work on Hadoop, Avro files are serialized, so they cannot be read and written like
normal text files. However, Apache provides a package to interact with Avro.

For the remaining of the section, we assume that the user is working on the Cloudera
Virtual Machine, and we will use the schema for the Noise Reduction team to illustrate how to
read and write Avro. This schema is the following:

Noise	
 Reduction:
{"namespace":	
 "cs5604.tweet.NoiseReduction",
	
 "type":	
 "record",
	
 "name":	
 "TweetNoiseReduction",
	
 "fields":	
 [
	
 	
 	
 	
 	
 {"name":	
 "doc_id",	
 "type":	
 "string"},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "tweet_id",	
 "type":	
 "string"},

22

	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "text_clean",	
 "type":	
 "string"},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "text_original",	
 "type":	
 "string"},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "created_at",	
 	
 "type":	
 "string"},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "user_screen_name",	
 "type":	
 "string"},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "user_id",	
 "type":	
 "string"},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "source",	
 "type":	
 ["string",	
 "null"]},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "lang",	
 "type":	
 ["string",	
 "null"]},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "favorite_count",	
 "type":	
 ["int",	
 "null"]},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "retweet_count",	
 "type":	
 ["int",	
 "null"]},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "contributors_id",	
 "type":	
 ["string",	
 "null"]},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "coordinates",	
 "type":	
 ["string",	
 "null"]},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "urls",	
 "type":	
 ["string",	
 "null"]},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "hashtags",	
 "type":	
 ["string",	
 "null"]},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "user_mentions_id",	
 "type":	
 ["string",	
 "null"]},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "in_reply_to_user_id",	
 "type":	
 ["string",	
 "null"]},
	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "in_reply_to_status_id",	
 "type":	
 ["string",	
 "null"]},

	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "text_clean2",	
 "type":	
 ["null",	
 "string"],	
 "default":	
 null},	

	
 	
 	
 	
 	
 {"doc":	
 "original",	
 "name":	
 "collection",	
 "type":	
 ["null",	
 "string"],	
 "default":	
 null}	

	
]
}

Writing Avro Files (Java)
The schema above was compiled into a Java class using a standard Avro tool. We will use this
Java class to write Avro. The examples in this section write Avro files sequentially. We are
currently working on the MapReduce version, but the code below can be used for prototyping.

package cs5604.hadoop;

import java.io.File;
import java.io.IOException;
import org.apache.avro.file.DataFileWriter;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.specific.SpecificDatumWriter;
// The import below is the class compiled from the schema. These classes will be distributed to each team
import cs5604.tweet.NoiseReduction.TweetNoiseReduction;

public class CreateDummyTweets {

 /**
 * @param args
 * @throws IOException
 */
 public static void main(String[] args) throws IOException {
 // object representing a tweet from the noise reduction team
 TweetNoiseReduction tweet = new TweetNoiseReduction();

 DatumWriter<TweetNoiseReduction> tweetDatumWriter = new
SpecificDatumWriter<TweetNoiseReduction>(TweetNoiseReduction.class);
 DataFileWriter<TweetNoiseReduction> dataFileWriter = new

23

DataFileWriter<TweetNoiseReduction>(tweetDatumWriter);
 dataFileWriter.create(tweet.getSchema(), new File("tweets.avro")); // data will be saved to this file

 // notice that there are getter methods corresponding to the fields in the schema
 // write first tweet
 tweet.setDocId("egypt.1");
 tweet.setTweetId("123k25lse");
 tweet.setUserId("123");
 tweet.setUserScreenName("CNN");
 tweet.setCreatedAt("2014-12-01 13:00:12");
 tweet.setTextOriginal("This is the original tweet #freedom #egypt http://twi.tter.com");
 tweet.setTextClean("This is the original tweet");
 tweet.setHashtags("egypt|freedom");
 tweet.setUrls("http://twi.tter.com");
 tweet.setLang("English");
 dataFileWriter.append(tweet);
 // write second tweet
 tweet = new TweetNoiseReduction();
 tweet.setDocId("egypt.2");
 tweet.setTweetId("123k25lse");
 tweet.setUserId("235");
 tweet.setUserScreenName("MSNBC");
 tweet.setCreatedAt("2014-12-01 13:00:12");
 tweet.setTextOriginal("This is another tweet");
 tweet.setTextClean("This is another tweet");
 tweet.setLang("English");
 dataFileWriter.append(tweet);
 // write third tweet
 tweet = new TweetNoiseReduction();
 tweet.setDocId("egypt.3");
 tweet.setTweetId("12413edsf2");
 tweet.setUserId("421");
 tweet.setUserScreenName("paul");
 tweet.setCreatedAt("2014-12-01 13:00:12");
 tweet.setTextOriginal("RT @CNN: \"This is the original tweet #freedom #egypt http://twi.tter.com\"");
 tweet.setTextClean("This is the original tweet");
 tweet.setHashtags("egypt|freedom");
 tweet.setUrls("http://twi.tter.com");
 tweet.setRetweetCount(1);
 tweet.setInReplyToUserId("123k25lse");
 tweet.setLang("English");
 dataFileWriter.append(tweet);

 dataFileWriter.close();
 }
}

Let’s walk through this code example. First, we import the Avro libraries (from /usr/lib/avro) and
the TweetNoiseReduction class corresponding to the Avro schema:

import java.io.File;
import java.io.IOException;
import org.apache.avro.file.DataFileWriter;

24

import org.apache.avro.io.DatumWriter;
import org.apache.avro.specific.SpecificDatumWriter;
// The import below is the class compiled from the schema. These classes will be distributed to each team
import cs5604.tweet.NoiseReduction.TweetNoiseReduction;

Then, we instantiate a TweetNoiseReduction object that we will use to write the data to the Avro
file. In order to write data, we instantiate a DatumWriter and a DataFileWriter for the
TweetNoiseReduction class. We also specify the name of the output file (“tweets.avro”):

 // object representing a tweet from the noise reduction team
 TweetNoiseReduction tweet = new TweetNoiseReduction();

 DatumWriter<TweetNoiseReduction> tweetDatumWriter = new
SpecificDatumWriter<TweetNoiseReduction>(TweetNoiseReduction.class);
 DataFileWriter<TweetNoiseReduction> dataFileWriter = new
DataFileWriter<TweetNoiseReduction>(tweetDatumWriter);
 dataFileWriter.create(tweet.getSchema(), new File("tweets.avro")); // data will be saved to this file
Now, we fill in the data for the first tweet:
// write first tweet
 tweet.setDocId("egypt.1");
 tweet.setTweetId("123k25lse");
 tweet.setUserId("123");
 tweet.setUserScreenName("CNN");
 tweet.setCreatedAt("2014-12-01 13:00:12");
 tweet.setTextOriginal("This is the original tweet #freedom #egypt http://twi.tter.com");
 tweet.setTextClean("This is the original tweet");
 tweet.setHashtags("egypt|freedom");
 tweet.setUrls("http://twi.tter.com");
 tweet.setLang("English");

We notice that not all fields are mandatory. For the Noise Reduction team, in particular, the only
data that they need to provide are the fields that do not have a “null” indicator in the schema.

After filling in the data, we write the tweet to file:

dataFileWriter.append(tweet);

We repeat for the other two tweets. At the end, we have to close the file to save our changes:

dataFileWriter.close();

Writing Avro Files (Python)
We can also read and write Avro using Python. In this case, however, we will not use pre-
compiled classes, so it is the responsibility of the developer to keep the data consistent with the
schema. This subsection assumes that the user is comfortable with python and can write non-
trivial data-processing scripts.

First, open the Python shell and check that you have the Avro library installed (Figure 7).

25

Figure 7. Trying to import Avro in Python. We see an error because the Avro libraries are not installed yet.

The error in Figure 7 indicates that I don’t have Avro in my system. We can install the library
using the pip utility. Since, I don’t have root access in the Hadoop cluster, I have to install Avro
for my local user, and the procedure is shown in Figure 8:

Figure 8. Installing the Avro libraries for Python.

Let’s try again:

Figure 9. Successfully importing the Avro library.

As shown in Figure 9, there is no problem this time.

Now, we can write a script to convert a TSV file to Avro. We will use the script below to convert
our small tweet collection to an Avro file.

import avro.schema
from avro.datafile import DataFileWriter
from avro.io import DatumWriter

def main():
 # load schema from file
 schema = avro.schema.parse(open(“noise-reduction.avsc").read())
 # instantiate writer
 writer = DataFileWriter(open("z4t.avro", "w"), DatumWriter(), schema)

 doc_id = 0 # the id of the tweet
 with open("data/z4t.csv") as f:
 # skip header
 f.readline()

26

 # iterate the TSV file
 for line in f:
 line = line.decode('utf-8').strip()
 doc_id += 1
 tokens = line.split("\t")

 text_original = tokens[0]
 user_screen_name = tokens[1]
 tweet_id = tokens[2]
 created_at = tokens[3]

 # hashtags are words that start with a “#”
 hashtags = [word for word in text_original.split() if word.startswith("#")]
 # URLs are words that start with “http”
 urls = [word for word in text_original.split() if word.startswith("http")]
 # make a json object for the tweet. The keys have to map to fields in the Avro schema
 json_tweet = {"doc_id": "egypt" + str(doc_id), "text_original": text_original,
 "created_at": created_at, "tweet_id": tweet_id, "user_screen_name": user_screen_name,
 "hashtags": "|".join(hashtags), "urls": "|".join(urls)}
 # write to file
 writer.append(json_tweet)

 writer.close()
 print "%s records written to avro" % doc_id

if __name__ =="__main__":
 main()

Let’s walk through the code. First, we load the Noise Reduction schema and instantiate a
DataFileWriter to save the Avro data in “z4t.avro”.

load schema from file
 schema = avro.schema.parse(open(“noise-reduction.avsc").read())
 # instantiate writer
 writer = DataFileWriter(open("z4t.avro", "w"), DatumWriter(), schema)

Then, we open our small collection fle, “z4t.csv”. In this tab-separated file, the first row is the
text of the tweet, the second row has the user screen name, the third row has the tweet id, and
the fourth row has the creation time of the tweet.

We iterate through each line splitting the text by tab and extracting the corresponding data:

 for line in f:
 line = line.decode('utf-8').strip()
 doc_id += 1
 tokens = line.split("\t")

 text_original = tokens[0]
 user_screen_name = tokens[1]
 tweet_id = tokens[2]

27

 created_at = tokens[3]

We can extract hashtags and URLs, by checking which words start with “#” and “http”,
respectively (Note: this is not a perfect filter):
 # hashtags are words that start with a “#”
 hashtags = [word for word in text_original.split() if word.startswith("#")]
 # URLs are words that start with “http”
 urls = [word for word in text_original.split() if word.startswith("http")]

Once we have all the data, we put it in a JSON object, and we write to the file. Notice that we
store lists as “|”-separated strings.

 json_tweet = {"doc_id": "egypt" + str(doc_id), "text_original": text_original,
 "created_at": created_at, "tweet_id": tweet_id, "user_screen_name": user_screen_name,
 "hashtags": "|".join(hashtags), "urls": "|".join(urls)}
 # write to file
 writer.append(json_tweet)

Finally, we close the output file once we are done iterating the input file:

writer.close()

Reading Avro Files
Reading Avro files programmatically in Java and Python is similar to writing files. We plan to
include detailed code examples in a future edition, but, for now, we will show how to convert
Avro data to Json using the “avro-tools” utility. Json is human-readable and easy to process by
most programming languages.
By typing “avro-tools” in the terminal, we get the output shown in Figure 10:

28

Figure 10. The options available in avro-tools.

For now, the options that we are interested in are “tojson” and “fromjson” , which allows us to
write Avro files to json format and vice versa.

As an example, we will convert the Avro file that we generated above in Java to JSON. We run
the following command

avro-­‐tools	
 tojson	
 tweets.avro	
 >	
 tweets.json

This command creates a file containing three tweets:
{"doc_id":"egypt.1","tweet_id":"123k25lse","text_clean":"This	
 is	
 the	
 original	

tweet","text_original":"This	
 is	
 the	
 original	
 tweet	
 #freedom	
 #egypt	

http://twi.tter.com","created_at":"2014-­‐12-­‐01	

13:00:12","user_screen_name":"CNN","user_id":"123","source":null,"lang":{"string":"English"},"
favorite_count":null,"retweet_count":null,"contributors_id":null,"coordinates":null,"urls":{"s
tring":"http://twi.tter.com"},"hashtags":{"string":"egypt|freedom"},"user_mentions_id":null,"i
n_reply_to_user_id":null,"in_reply_to_status_id":null}
{"doc_id":"egypt.2","tweet_id":"123k25lse","text_clean":"This	
 is	
 another	

tweet","text_original":"This	
 is	
 another	
 tweet","created_at":"2014-­‐12-­‐01	

13:00:12","user_screen_name":"MSNBC","user_id":"235","source":null,"lang":{"string":"English"}
,"favorite_count":null,"retweet_count":null,"contributors_id":null,"coordinates":null,"urls":{
"string":"http://twi.tter.com"},"hashtags":{"string":"egypt|freedom"},"user_mentions_id":null,
"in_reply_to_user_id":null,"in_reply_to_status_id":null}

29

{"doc_id":"egypt.3","tweet_id":"12413edsf2","text_clean":"This	
 is	
 the	
 original	

tweet","text_original":"RT	
 @CNN:	
 \"This	
 is	
 the	
 original	
 tweet	
 #freedom	
 #egypt	

http://twi.tter.com\"","created_at":"2014-­‐12-­‐01	

13:00:12","user_screen_name":"paul","user_id":"421","source":null,"lang":{"string":"English"},
"favorite_count":null,"retweet_count":{"int":1},"contributors_id":null,"coordinates":null,"url
s":{"string":"http://twi.tter.com"},"hashtags":{"string":"egypt|freedom"},"user_mentions_id":n
ull,"in_reply_to_user_id":{"string":"123k25lse"},"in_reply_to_status_id":null}

6.3 Loading Avro Data into HBase
We have written a command-line program to load Avro data into HBase. Teams can use this
utility to easily import their data. The current version loads the data sequentially; we could load
our small collection into HBase in about one minute using this program. However, we don’t
expect it to scale to the big collections, so we are working on a MapReduce implementation.

The program takes two arguments: 1) an Avro file generated from any of the schemas provided
to the teams and 2) either the word “tweets” or “webpages” indicating what kind of data to write.

As an example, we will load the avro file created in the “Writing Avro Files (Python)” section.
The example assumes HBase is currently running and that there is a table called ‘tweets’ with
column families “original” and “analysis“ (see Section 6.2). Run the command:

java	
 -­‐jar	
 hbase-­‐loader.jar	
 z4t.avro	
 tweets

After about one minute, the program should report the number of rows inserted to HBase. You
can see that the data has been loaded using the HBase shell (Figure 11).

Figure 11. ‘tweets’ table after importing a sample collection.

We have also developed a MapReduce version of this program. The MapReduce JAR takes
three arguments: 1) an Avro file generated from any of the schemas provided to the teams, 2)
an output directory name in HDFS, and 3) the name of an HBase table with column families
“original” and “analysis” where the data from 1) will be stored. For example, we will load the
z4t.avro file that we created above. First, we store the file in HDFS:
hadoop	
 fs	
 -­‐mkdir	
 data_for_upload
hadoop	
 fs	
 -­‐copyFromLocal	
 z4t.avro	
 data_for_upload
hadoop	
 fs	
 -­‐ls	
 data_for_upload

After running these commands, we should see the file stored in HDFS, as shown in Figure 12:

30

Figure 12. Loading a file from the main Hadoop node into HDFS.

Then, we start the MapReduce job as follows:

hadoop	
 jar	
 mr-­‐hbase-­‐loader.jar	
 data_for_upload	
 output	
 tweets

We can see the progress of the MapReduce job either in Hue or in the Resource Manager node
of the cluster. For the cluster used in the class, the Resource Manager is at
http://128.173.49.66:8088/cluster . Figure 13 is a screenshot of the Resource Manager view:

Figure 13. Our MapReduce job is being processed.

This shows that our job (first row) is queued to start. As the job progresses, we can see the
status in the terminal, as shown in Figure 14:

31

Figure 14. Progress of a MapReduce job.

 As a technical note, this job does not have a Reduce task. All the data is uploaded in the Map
task.

6.3 Crawling web pages

In this project, we initially only have tweet data. We obtain web page data by crawling the URLs
mentioned in tweets. Generally, to crawl web pages, one can simply use a URL library, such as,
urllib in Python. However, in this project, we have terabytes of tweets, so we want to crawl data
in parallel and store the crawled data in a distributed manner. After obtaining the web page
dataset, we still have to parse and process the data. It is hard to achieve these goals with a
simple Python script. Luckily, there is an open source program called Apache Nutch [14] that
provides all the features we are seeking.

Below, we will briefly introduce how to crawl web pages using a Python script. Then, we will
introduce Apache Nutch, including its architecture and how to install, and a quick start guide.
Finally, we will demonstrate using Nutch to crawl the web pages mentioned in billions of tweets.

32

6.5.1 Python Script Approach

There is a Python script provided by the TAs of the class. We ran the script on our small tweet
collection. Our tweets collection is about the Egyptian revolution, and it has 380,404 tweets.
Extracting the URLs from these tweets and downloading the corresponding web pages takes
about 1 minute on a 2012 Mac Air. The screenshot in Figure 15 shows the output of the script
and the list of text files generated.

Figure 15. Crawling web page data using Python.

Although the running time of the script is very short for our collection, it was reported by some
teams that the script would take about half an hour to run for some collections. This is a huge
performance problem if we are going to process several TBs of tweets.

6.5.2 Apache Nutch Approach

There are many web crawlers out there. The reason we choose Nutch is that it fits the purpose
of large-scale crawling (ultimately, we want to fetch terabytes of web pages). Furthermore,
Nutch nicely integrates with our Hadoop cluster.

Nutch takes a plain text file as input. The file is just a list of URLs serving as the starting point of
the crawling loop. Crawling is an iterative process:

URL→web page→new URL→web page→ …

33

Figure 16. Nutch Architecture

Now, we want to document our experience of installing Nutch 1.9 and crawling web page a
Hadoop cluster.

Quick Start Guide
We can use the crawl script at “bin/crawl” to start crawling.

- save all the urls to a plain text file seed.txt user a folder (eg. urls)
- load the that folder into HDFS: hdfs	
 dfs	
 -­‐copyFromLocal	
 urls	
 urls
- use the crawl script to start crawling

bin/crawl	
 urls	
 SitesFromTweets	
 <solr_url>	
 1
- where urls is the path to the directory containing URL list
- SitesFromTweets is the directory to store the crawled web pages, will created

automatically if not exist.
- <solr_url> is the Solr instance to index the crawled web pages. Because in this

project, we don’t want the web pages to be indexed directly by Solr, we disable
these function by commenting out the related code in bin/crawl script. Therefore,
one can provide any string at this place.

- number 1 is the number of round Nutch will perform crawling. Because we only
crawl the web pages in the URL list, this number should be set to 1.

34

Extracting URLs From a Big Tweet Collection
All the big collections are currently stored as Avro files, so the Python script used to extract
URLs from CSV files needs to be modified to work with Avro. Python can directly read Avro
files, but for simplicity, we use avro-tool to convert an Avro file to JSON; then, Python will read
tweets from a JSON file.

To expand the shorten URLs, we use the urllib of Python as follows:

resp	
 =	
 urllib.urlopen(shourt_url)
long_url	
 =	
 resp.url

Expanding short URLs turns out to be the bottleneck of the entire web page crawling process
because the operation of expanding URLs requires us to visit the web pages through an Internet
connection, and we have little control over how long the communication takes. What we can do
is to run the Python script in parallel to fire multiple connections, but, in a cluster setting, we
access the internet through only one IP address. Multiple connections may be rejected by the
URL expanding server.

Given the above, our current script uses only one connection. The script expands one URL in
slightly less than one second. In other words, our script expands 36,000 URLs in 9.5 hours in
our testing on the head node of the cluster hadoop.dlib.vt.edu. In our big collection, there are
11,747,983 tweets mentioning 9,093,437 shortened URLs; 4,510,250 of them are unique. To
expand all these 4,510,250 URLs using the current serial implementation would take 49 days.
Therefore, we can only expanded some of them, the most frequently mentioned URLs.

Below, are the instructions to run the script:

- Run hdfs	
 dfs	
 -­‐copyToLocal	
 /class/CS5604S15/dataset/#egypt_B_AVRO	

~/dataset

- Run avro-­‐tools	
 to	
 json	
 ~/dataset/#egypt_B_AVRO/part-­‐m-­‐0000.avro	
 >	

egypt_B.json

- Run python	
 extractURLs.py	
 egypt_B.json	
 10
-­‐ where 10 means extract only the URLs that appear at least 10 times	

Here is the extractURLs.py script:

import	
 sys
import	
 re
import	
 urllib
from	
 collections	
 import	
 defaultdict

#	
 run	
 this	
 script	
 like:
#	
 python	
 extractURLs.py	
 egypt_tweets.json	
 3
#	
 where	
 egypt_tweets.json	
 can	
 be	
 extracted	
 from	
 egypt_tweets.avro	
 by	
 "avro-­‐tool	
 tojson"
#	
 where	
 3	
 means	
 only	
 extract	
 those	
 URLs	
 that	
 appear	
 at	
 least	
 3	
 times
#	
 You	
 can	
 try	
 this	
 script	
 on	
 a	
 very	
 large	
 json	
 file
#	
 Use	
 Ctrl	
 +	
 c	
 to	
 stop	
 this	
 script,	
 the	
 already	
 expanded	
 URLs	
 will	
 still	
 be	
 saved.

35

tweetFile	
 =	
 sys.argv[1]
archiveID	
 =	
 tweetFile.split(".")[0]
min_repeat	
 =	
 int(sys.argv[2])

####	
 load	
 tweets	
 from	
 file
f	
 =	
 open(tweetFile,"r")
f.close()
tweets	
 =	
 []
with	
 open(tweetFile,"r")	
 as	
 f:
	
 	
 	
 	
 for	
 line	
 in	
 f.readlines():
	
 	
 	
 	
 	
 	
 	
 	
 t	
 =	
 re.findall(r'"text":\{"string":"(.+)"\},"to_user_id"',line)[0]
	
 	
 	
 	
 	
 	
 	
 	
 tweets.append(t)

n_tweets	
 =	
 len(tweets)
print	
 "#	
 of	
 tweets	
 read	
 from	
 %s:	
 %d"	
 %	
 (tweetFile,	
 len(tweets))

####	
 Extract	
 URLs	
 from	
 Tweets
urls_dct	
 =	
 defaultdict(int)
n_urls	
 =	
 0
for	
 tweet	
 in	
 tweets:
	
 	
 	
 	
 regExp	
 =	
 "(?P<url>https?://[a-­‐zA-­‐Z0-­‐9\./-­‐]+)"
	
 	
 	
 	
 url_li	
 =	
 re.findall(regExp,	
 tweet)
	
 	
 	
 	
 while	
 (len(url_li)	
 >	
 0):
	
 	
 	
 	
 	
 	
 	
 	
 url	
 =	
 url_li.pop()
	
 	
 	
 	
 	
 	
 	
 	
 n_urls	
 +=	
 1
	
 	
 	
 	
 	
 	
 	
 	
 urls_dct[url]	
 +=	
 1

print	
 "#	
 of	
 short	
 URLs	
 in	
 tweets:",	
 n_urls
print	
 "#	
 of	
 Unique	
 short	
 URLs	
 in	
 tweets:",	
 len(urls_dct.keys())

####	
 filter	
 out	
 the	
 more	
 frequent	
 URLs
uniq_urls_high_freq	
 =	
 []
for	
 url	
 in	
 urls_dct:
	
 	
 	
 	
 if	
 urls_dct[url]	
 >=	
 min_repeat:
	
 	
 	
 	
 	
 	
 	
 	
 uniq_urls_high_freq.append(url)
print	
 '#	
 of	
 unique	
 URLs	
 repeat	
 at	
 least	
 %d	
 times:	
 %d'	
 %	
 (min_repeat,	

len(uniq_urls_high_freq))
	
 	
 	
 	
 	
 	
 	
 	
 	
 	

####	
 expand	
 shorten	
 URLs	
 and	
 save	
 to	
 file
urls_fname	
 =	
 "%s_urls.txt"	
 %	
 archiveID
with	
 open(urls_fname,"w")	
 as	
 f_urls:
	
 	
 	
 	
 expanded_urls_lst	
 =	
 []
	
 	
 	
 	
 n_uniq_urls_high_freq	
 =	
 len(uniq_urls_high_freq)
	
 	
 	
 	
 i_url	
 =	
 0
	
 	
 	
 	
 for	
 url	
 in	
 uniq_urls_high_freq:
	
 	
 	
 	
 	
 	
 	
 	
 print	
 "%d/%d"	
 %	
 (i_url,n_uniq_urls_high_freq),
	
 	
 	
 	
 	
 	
 	
 	
 i_url	
 +=	
 1	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 print	
 "expanding",url,
	
 	
 	
 	
 	
 	
 	
 	
 if	
 'http://t.co/'	
 or	
 'https://t.co/'	
 in	
 url:
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 try:

36

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 resp	
 =	
 urllib.urlopen(url)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 except	
 KeyboardInterrupt:
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 ""
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 "-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐"
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 "%d	
 short	
 URLs	
 in	
 %d	
 tweets:"	
 %	
 (n_urls,	
 n_tweets)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 "%d	
 unique	
 short	
 URLs"	
 %	
 (len(urls_dct.keys()))
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 '%d	
 unique	
 URLs	
 repeat	
 at	
 least	
 %d	
 times'	
 %	

(len(uniq_urls_high_freq),min_repeat)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 "URLs	
 save	
 to:",urls_fname	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exit()
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 except:
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 "	
 FAILED!"
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 continue
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 ""
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 url	
 ==	
 resp.url:
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 continue
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 url	
 =	
 resp.url
	
 	
 	
 	
 	
 	
 	
 	
 expanded_urls_lst.append(url)
	
 	
 	
 	
 	
 	
 	
 	
 f_urls.write("%s\n"	
 %	
 url)

print	
 "-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐"
print	
 "%d	
 short	
 URLs	
 in	
 %d	
 tweets:"	
 %	
 (n_urls,	
 n_tweets)
print	
 "%d	
 unique	
 short	
 URLs"	
 %	
 (len(urls_dct.keys()))
print	
 '%d	
 unique	
 URLs	
 repeat	
 at	
 least	
 %d	
 times'	
 %	
 (len(uniq_urls_high_freq),min_repeat)
print	
 "URLs	
 save	
 to:",urls_fname	
 	
 	
 	

7. Developer’s Manual
7.1 Technical Specifications

7.1.1 Hadoop Cluster Specifications
In this course, we use two different Hadoop systems for development and production.

Development is done in a virtual machine provided by Cloudera. This virtual machine runs a
Red Hat operating system and simulates a single-node Hadoop cluster installation. The virtual
machine comes installed with all the tools that we need in the production cluster, except for
Nutch, for which we describe the installation in Section 7.2.
The production cluster has the CDH 5.3.1 Cloudera version of Hadoop installed. The cluster
has the following specifications:

● Number of nodes
○ 19 Hadoop nodes
○ 1 Manager node
○ 2 Tweet DB nodes
○ 1 HDFS backup node

37

● CPU
○ Intel i5 Haswell Quad core 3.3 Ghz Xeon

● RAM
○ 660 GB in total
○ 32 GB in each of the 19 Hadoop nodes
○ 4 GB in the manager node
○ 16 GB in the tweet DB nodes
○ 16 GB in the HDFS backup node

● Storage
○ 60 TB across Hadoop, manager, and tweet DB nodes
○ 11.3 TB for backup

7.1.2 Architecture and Data Workflow
In coordination with the other teams, we designed the data workflow depicted in Figure 17. The
main stages of this workflow are the following:

1. HDFS Data Loading
a. Twitter data is loaded from a relational database into the Hadoop cluster using

Sqoop, a tool for bulk loading structured data into HDFS.
b. Web page data is fetched using Nutch, a web-crawler, and stored into HDFS as

plain text, HTML, and WARC files.
2. Noise Reduction

a. Tweets and web pages are processed by the Noise Reduction team. The noise-
reduced data is stored in HDFS as plain text, HTML, and in Avro format.

3. Data Analysis
a. The data analysis teams take the noise-reduced data as input for their respective

tasks. Every team will produce (in addition to their other outputs), a file in Avro
format to be loaded into HDFS.

b. As necessary, every team will also produce data to be shared with other teams.
For example, the Clustering team can produce a file to be used by the Social
Networks team.

4. HBase Data Loading
a. The data produced at the end of Steps 2 and 3 will be loaded into HBase by the

creator of the data using a MapReduce program written by our team. The noise-
reduced data will be loaded first, and the rest of the teams will subsequently load
data in the form of updates or additions to the existing noise-reduced data in
Solr.

5. Indexing into Solr
a. Data in HDFS will be indexed into Solr using the hbase-indexer tool.

38

Figure 17. Data workflow for our course project.

7.2 Data

7.2.1 Data Description

Tweets
The initial tweet data loaded into the cluster is in three formats: Avro, CSV, and Sequence Files.
However, in this class, we mostly used the Avro version, so we just show an example of this
format (after converting to JSON) below.

{
	
 	
 	
 "archivesource":{
	
 	
 	
 	
 	
 	
 "string":"twitter-­‐search"
	
 	
 	
 },
	
 	
 	
 "text":{
	
 	
 	
 	
 	
 	
 "string":"RT	
 @WilliamMScherer:	
 Colorado	
 Rockies	
 winter	
 storm.	
 Central	
 Mtns:	
 4\"-­‐8\"	

>10,000'kft.	
 1\"-­‐3\"	
 snow:9000'-­‐10000'kft.	
 Pikes	
 Peak:8\"-­‐14\"+.	
 #COwx	
 â€¦"
	
 	
 	
 },
	
 	
 	
 "to_user_id":{
	
 	
 	
 	
 	
 	
 "string":""
	
 	
 	
 },

39

	
 	
 	
 "from_user":{
	
 	
 	
 	
 	
 	
 "string":"gjeni_u"
	
 	
 	
 },
	
 	
 	
 "id":{
	
 	
 	
 	
 	
 	
 "string":"520330344818819073"
	
 	
 	
 },
	
 	
 	
 "from_user_id":{
	
 	
 	
 	
 	
 	
 "string":"1027114068"
	
 	
 	
 },
	
 	
 	
 "iso_language_code":{
	
 	
 	
 	
 	
 	
 "string":"en"
	
 	
 	
 },
	
 	
 	
 "source":{
	
 	
 	
 	
 	
 	
 "string":"<a	
 href=\"http://twitter.com\"	
 rel=\"nofollow\">Twitter	
 Web	
 Client"
	
 	
 	
 },
	
 	
 	
 "profile_image_url":{
	
 	
 	
 	
 	
 	
 "string":"http://abs.twimg.com/images/themes/theme10/bg.gif"
	
 	
 	
 },
	
 	
 	
 "geo_type":{
	
 	
 	
 	
 	
 	
 "string":""
	
 	
 	
 },
	
 	
 	
 "geo_coordinates_0":{
	
 	
 	
 	
 	
 	
 "double":0.0
	
 	
 	
 },
	
 	
 	
 "geo_coordinates_1":{
	
 	
 	
 	
 	
 	
 "double":0.0
	
 	
 	
 },
	
 	
 	
 "created_at":{
	
 	
 	
 	
 	
 	
 "string":"Thu	
 Oct	
 09	
 21:49:56	
 +0000	
 2014"
	
 	
 	
 },
	
 	
 	
 "time":{
	
 	
 	
 	
 	
 	
 "int":1412891396
	
 	
 	
 }
}

Web pages
Web pages crawled from Nutch come in a serialized format. We do not show this format here,
but, below, we describe what data is extracted from these pages in our Avro schemas.

Sizes of the collections
Table 4 reports the sizes (in megabytes) of the tweet and web page collections. The “S” and “B”
suffixes indicate that a collection is small or big, respectively. The black cells in the table
correspond to data that we did not have at time of writing.

40

Table 4. Sizes of the collections used in this course.

7.2.2 HBase Schemas
The HBase schema for both tweets and web pages was designed in collaboration with the Solr
team. We decided to have two separate column families (i.e., column groups) for the content
and metadata of a document and for the analysis data produced by each team. Below, we show
the schema for tweets; the schema for web pages can be found in Appendix E.

Column Family Column Qualifier
==

original
 collection

 text_original
 text_clean
 text_clean2
 created_at
 source
 user_screen_name
 user_id
 lang
 retweet_count
 favorite_count
 contributors_id
 coordinates
 urls
 hashtags

41

 user_mentions_id
 in_reply_to_user_id
 in_reply_to_status_id

analysis ner_people
 ner_locations
 ner_dates
 ner_organizations
 cluster_id
 cluster_label
 class
 social_importance
 lda_vectors
 lda_topics

An important consideration when designing an HBase table is to decide on an appropriate
convention for the row ID (i.e., unique identifier) of an HBase row. Data in HBase is stored in
lexicographical order; one can take advantage of this fact to design the row ID in such a way
that common operations become efficient. For example, at the time of design and
implementation of our project, we considered that it would be of interest for a user to get data for
a particular collection. With that in mind, we decided to use the collection name as a prefix for
each document. The format of the row ID is [collection_Name]--[UID], where collection_name
is the collection that the document belongs to and UID is a unique identifier for the document.
An example of a row ID for a tweet is “Jan.25_S--100003”, indicating that the tweet is part of the
Jan.25_S collection. This format for the row ID is more useful than just using a unique identifier,
such as the tweet ID. However, a disadvantage of this naming convention is that bulk-loading
can be inefficient and cause load balancing problems because it is not immediately obvious how
to split an HBase table into balanced regions with such specific prefixes.

7.2.3 Avro Schemas

Every team processing data in HDFS has an Avro schema. For the purposes of loading HBase
and standardization, we asked teams to output their results of data processing in Avro format
according to our proposed schemas.
The schemas simply reflect the HBase schema. The only required field for each Avro object is
“doc_id”, since we need to know the id of the document to be updated in HBase (the Noise
Reduction team has some additional required fields). Null fields or empty strings will not be
uploaded to HBase.
As said above, every team has a separate schema. This separation has two purposes: 1)
avoiding accidental overwrites between teams and 2) being able to make changes to the
schema of one team without affecting the rest of the class.
The detailed schemas for each team can be found in Appendix A.

42

Field Definitions
Most fields in the schema are text strings, except for a few integer fields in the Twitter schema.
Fields that can be interpretable as lists (i.e., hashtags, list of clusters, list of topics, list of NER
locations) are written as pipe-separated strings in Avro. For example, the list of hashtags
(“#Egypt”, “#Jan25”, “#revolution”) should be written as “Egypt | Jan25 | revolution”.

Compiling the Avro Schemas
We show how to compile the Twitter schemas. The process for web pages is the same. First,
we put all the schemas from the Appendix in the same directory shown in Figure. 18:

Figure 18. Directory containing a set of Avro schemas to be compiled

Then, we run the avro-tools utility:

avro-­‐tools	
 compile	
 schema	
 tweets	
 ./

This command generates the Java classes corresponding to the schema in the current
directory, and we obtain the directory structure shown in Figure. 19:

Figure 19. Directory structure of the Java classes generated from an Avro schema

Instructions on how to use the generated classes for reading and writing Avro can be found in
the User’s manual.

7.3 Installation

7.3.1 Installation of Solr
Solr can run on any platform as long as Java is installed. As of Solr 4.10.3, it requires Java 1.7

or greater. To check the version of Java, run Java -version in terminal.

Get Solr running (on Mac OS X)

1. Download Solr 4.10.3 from http://lucene.apache.org/solr/
1. Extract the downloaded file. You will get a folder named solr-4.10.3 containing bin, docs,

and example folders

2. Run bin/solr start -e cloud -noprompt to start

43

3. There are two collections created automatically, collection1 and gettingstarted. We will
only use collection1 here.

4. Indexing Data: Install SimplePostTool. Set $CLASSPATH environment variable: export

CLASSPATH=dist/solr-core-4.10.3.jar

5. Indexing a directory of “rich” files. Run java

-Dauto -Drecursive org.apache.solr.util.SimplePostTool docs/

6. Indexing Solr XML: java org.apache.solr.util.SimplePostTool exampledocs/*.xml

7. Indexing JSON: java -Dauto org.apache.solr.util.SimplePostTool

example/exampledocs/books.json

8. Indexing CSV (Comma/Column Separated Values): java -Dauto

org.apache.solr.util.SimplePostTool example/exampledocs/books.csv

Loading data into Solr

Run java -Dauto -Drecursive org.apache.solr.util.SimplePostTool ~/5604/data/

where ~/5604/data/ is the location of the sample collection in my computer.

Now look at the administration page of Solr at http://localhost:8983/solr/#/collection1

Figure 20. Administration page of Solr

44

In Figure. 20 you can see all the 47 files have been indexed.
 By using the Query tab, you can search all the indexed documents. The results will be shown
in JSON format.

7.3.2 Installation of Hadoop
Use the virtual machine version of Hadoop from
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html

After you enter the cluster, run source	
 /etc/my.sh. This will set up all the environment
variables. To run a simple example, execute the following commands:

cd	
 $HADOOP_PREFIX	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 #	
 which	
 is	
 /usr/local/hadoop
bin/hadoop	
 jar	
 share/hadoop/mapreduce/hadoop-­‐mapreduce-­‐examples-­‐2.6.0.jar	
 grep	
 input	

output	
 ‘dfs[a-­‐z.]+’

Run an example of HDFS:
We follow the tutorial from [11]:

1. Download example input data
2. Restart the Hadoop cluster:

$/usr/local/hadoop/bin/start-­‐all.sh
3. Copy local example data to HDFS:

/bin/hadoop	
 dfs	
 -­‐copyFromLocal	
 /Download_datapath/	
 /HDFS	
 directory	
 store	
 input	

data/

Run the MapReduce job

$bin/hadoop	
 jar	
 hadoop*examples*.jar	
 command	
 /HDFS	
 directory	
 store	
 input	
 data/	

/HDFS	
 Directory	
 store	
 output/

Retrieve the job results from HDFS

1. Read it directly:

$bin/hadoop	
 dfs	
 -­‐cat	
 /HDFS	
 Directory	
 store	
 output/part-­‐r-­‐00000

 2. Or copy it from HDFS directory to local directory:

$mkdir	
 /local	
 directory/	

$bin/hadoop	
 dfs	
 -­‐getmerge	
 /HDFS	
 Directory	
 store	
 output/	
 	
 /local	
 directory/

7.3.3 Installation of Apache Nutch
Since we want to use Hadoop cluster, the binary distribution of Nutch doesn’t work in this case.
The distribution works well in “local mode”, i.e., not using Hadoop, but from what we could
determine, there is not an “apache-nutch-1.9.job” file in the binary distribution, which is required

45

to be deployed to all the data nodes in the cluster. For this reason, we build Nutch from the
source code.
To start crawling web pages, we must declare a crawler in the Nutch configuration file,
“conf/nutch-site.xml”. We add the following lines:

<property>
 <name>http.agent.name</name>
 <value>MyCrawler</value>
</property>

7.4 Operation

7.4.1 MapReduce Introduction

MapReduce is a programming model for processing large data sets with a parallel,
distributed algorithm on a cluster[6].

The name MapReduce comes from functional programming:

- Map is the name of a higher-order function that applies a given function to each
element of a list. Example:

val numbers = List(1,2,3,4,5)

numbers.map(x => x * x) == List(1,4,9,16,25).

- Reduce is the name of a higher-order function that analyze a recursive data structure
and recombines, through use of a given combining operation, the results of recursively
processing its constituent parts, building up a return value. Example

val numbers = List(1,2,3,4,5)

numbers.reduce(_ + _) == 15.

MapReduce takes an input, splits it into smaller parts, executes the code of the mapper
on every part, shuffles and sorts all the results, then gives them to one or more reducers
that merge all the results into one.
The canonical first example of a MapReduce program is counting words in a big
collection of documents. An implementation of this example can be found in the Apache
Hadoop website [17] and is illustrated in Figure 21. The Mapper task maps each word in
a line to the number 1 and sends this pair to the Shuffler and Sorter. Once the keys are
sorted, the Reducer task simply aggregates the number of times a unique key appears
to obtain the final word count.

46

Figure 21. Example of a simple MapReduce program for counting words. Each mapper emits a <word, 1> key-value

pair. The shufflers sort these pairs lexicographically by key and send them to the reducers, which simply add the
counts for each word to obtain a final count.

7.4.2 Loading Data Into HBase

Non-Distributed Program
We wrote a program to load Avro data into HBase sequentially: hbase-loader.jar. This program
can load a small tweet collection (around 500 MBs of data) into HBase in under two minutes.
The code can be found in Appendix B. The code was compiled into a runnable jar file called
hbase-loader.jar. Instructions on how to run the jar file can be found in the User’s manual.

MapReduce Program
hbase-loader.jar does not scale to the big collections, which are between one and two orders of
magnitude larger in size than the small collections. Trying to load a big collection from the main
node with hbase-loader.jar throws the Java OutOfMemory exception, even when changing the
default settings of the Java Virtual Machine to use all the available memory in the node. We
developed a MapReduce version of the program to load the big collections: mr-hbase-loader.jar.
This program is a Map-only task that reads Avro files from HDFS and writes the deserialized
data to HBase. The code can be found in the Appendix.

We note that the developer should set cluster-specific configuration in the main function of the
MapReduce program. For example, in the Hadoop cluster used in this class, Zookeeper was
configured to run in nodes 1, 2, and 3. The default HBase configuration expects Zookeeper to
be running in each node. We can adjust configuration settings in the config object of the
MapReduce program (See Appendix C) for an example.

Bulk-Loading Program
When using HBase programmatically, as in the two implementations above, the data to be
loaded traverses the entire write-path depicted in Figure 22. First, data for a row is received by
the Region Server, which is a program that determines the region in the cluster that the row

47

belongs to; we note that data in HBase is stored in lexicographical order by key, so a region
contains keys in this order, and, when amount of rows in the regions becomes too large, the
Region Server splits it into two. After the row gets to a region, it then goes to a local MemStore,
where the data is kept in memory temporarily until a certain number of operations have been
submitted to the region. At that time, the row data is written to an HFile for long-term storage.
It is possible to bypass the HBase workflow by writing HFiles and directly writing those files to
the appropriate region in HBase, as described in [26]. The three main parts of the process are

1. Pre-splitting the HBase table, so that each region has a roughly balanced number of
rows.

2. Writing the HFiles using a MapReduce program (our program is in Appendix F).
3. Using the HBase libraries to load the HFiles.

Disadvantages of bulk-loading
One main challenge in the bulk-loading process is pre-splitting the destination table into an
appropriate number of regions. When we create the HFiles to be uploaded into HBase (step 2
above), the number of reducers in the MapReduce job is equal to the number of regions we
create in step 1. In fact there is a one-to-one mapping between reducers and regions in that
each reducer is in charge of processing all the data that is going to ultimately reside in the
corresponding region. If the HBase table is pre-split in such a way that most of the input data
goes to one single region (i.e., the load is unbalanced), then one of the reducers in the
MapReduce job will be heavily loaded, and we will essentially be creating the HFiles
sequentially, losing the distributed computing advantage.
We have explained why a good initial split of an HBase table is important, but not how to get
good splits. Before splitting the destination table, it is necessary to have a good understanding
of the distribution of the row IDs in our data. Sometimes, the data is naturally well-distributed.
For example, suppose that the row IDs of our dataset are 8-digit numbers uniformly distributed
in the range [00000000, 99999999]. Then, it is sufficient to pre-split the HBase table into 10
regions with the split points being the natural numbers from 0 to 9. If, on the other hand, our row
IDs are words in the English dictionary, pre-splitting the table into 26 regions, one for each letter
of the alphabet, would not give us a balanced load, since some starting letters are more
common than others (i.e., there are more words starting with “T” than words starting with “X”).
Therefore, pre-splitting requires us to do a preliminary analysis of the data to estimate the row
ID distribution.
An HBase schema designer who foresees using bulk-loading should incorporate “uniformity” as
one aspect to consider when deciding on a row ID. For example, in our schema for the IDEAL
project, we are using the collection name as a prefix for the row ID of a document –for instance,
“egypt_B--00012”. Retrieving data for a particular collection can be done efficiently with this ID
format –that was one of our goals in the design. However, it is going to be very hard to keep the
load balanced across regions with these row IDs, unless we know in advance the names of
most of the collections that we are interested in. If we knew that Solr is going to be the only
“user” of HBase and that we are not interested on optimizing any specific user queries, we could
change the ID to something better distributed yet meaningless to a person. A key that balances
the opposing goals of being well-distributed yet informative is left as an open question.

48

Another disadvantage of bulk-loading specific to our project is that, by skipping the HBase write-
path, we are also avoiding the table replication mechanism. Briefly, table replication is a process
by which the data of an HBase table in one cluster is copied to another cluster. The real-time
Lily Indexer that we are using to load data from HBase into Solr critically depends on table
replication. Therefore, if we use bulk-loading, we are limiting to only loading Solr in batches of
data and not in real time.

Figure 22. Depiction of the HBase write-path. Data to be inserted into an HBase table is first received by a Region
Server that is in charge of sending the data to its appropriate Region in the cluster (based on row ID). The Region

server handles a local memory space and decides when to write data to disk in the form of HFiles.

8. Conclusions and Future Work
8.1 Conclusions
Our proposed solution makes it easy to integrate the results from different teams working
independently. We found that we could combine results from all the teams in HBase
incrementally very quickly. Our ultimate goal, of course, is loading data into Solr efficiently and
indexing new results as we get them. We could not scale the indexing process to the big
collections by the end of the course, but we believe that it is simply a matter of giving the Solr
installation more computing resources.
Regarding our use of Avro for standardization of the data, we conclude that it was a good
design decision to use this format. Avro is well-supported by the Hadoop infrastructure (i.e.,
easy to handle in HDFS and via MapReduce) and supports versioning, which is a very important
property for a young project like IDEAL. Having a schema for each team was valuable during
the initial stages of the class where we still had to settle details about the output of each team
and the data needed in Solr, and we believe that this property will also be valuable at all points
of the project as new ways to analyze the collections are proposed.
As a general, Hadoop is an appropriate framework for a project like IDEAL. Most teams were
able to do their analysis in a matter of minutes using existing tools for Hadoop, and the few

49

teams that had to write their own MapReduce programs did not have any major difficulties –an
exception being the Social Networks team, who had to use a different framework.

8.2 Future Work
We name just a few open challenges. First, we wrote programs for most of the data handling
tasks, such as pre-processing data and uploading to HBase. Writing specialized programs has a
development cost that could be avoided using existing off-the-shelf tools. For example, we could
use the Apache Pig [21] platform to move data in Avro format from HDFS to HBase. Apache Pig
also abstracts many common data analysis tasks, such as summarization. Teams can make
use of this tool instead of writing their own programs. Second, even though Hadoop was a good
fit in the class project, we recommend researching Spark. Spark is an engine for large-scale
data processing. The engine can run either in standalone mode or in a distributed system like
Hadoop. According to the Spark website, this framework can run in as little as 8 GBs of memory
per node (in a distributed setting), and scale to “hundreds of gigabytes.” Thus, the Hadoop
cluster that we used has more than enough resources for accommodating Spark. When
possible, Spark works with data in memory, thus avoiding costly disk I/O operations. In practice,
Spark has been shown to be faster than MapReduce. Recently, Spark won that Daytona
Graysort Contest, being the fastest open-source engine to sort 1 petabyte (1000 terabytes) of
data [25]. Furthermore, the engine is unarguably a superior choice when it comes to running
iterative algorithms ---which have to be scheduled as a sequence of jobs in MapReduce. For our
use case, running iterative algorithms efficiently is very important, since many machine-learning
tasks, such as K-means clustering and PageRank, are iterative in nature. Another place for
improvement is performance tuning in the Hadoop cluster. Analyzing the log files produced by
the many MapReduce jobs run through the semester would give us insights on how to make the
jobs run faster. For this course, speed was generally not a problem, so we leave performance
tuning for future work. Finally, as mentioned in Section 7.4.2, if we want to use a bulk-loading
approach for loading data into HBase, it will be necessary to formulate a row ID format that
gives a better load balancing than the current format.

9. Inventory of VTechWorks Files
1. Final report: HadoopFinalReport.pdf
2. Final report for editing: HadoopFinalReport.docx
3. Final presentation: HadoopPresentation.pdf
4. Final presentation for editing: HadoopPresentation.pptx
5. Code: hadoop_team_code.tar.gz

a. Avro schema for tweets and webpages
b. Our three programs for HBase loading

50

10. References

[1] Chang, Fay, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. "Bigtable: A distributed storage
system for structured data." ACM Transactions on Computer Systems (TOCS) 26, no. 2 (2008):
4.

[2] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large
clusters." Communications of the ACM 51, no. 1 (2008): 107-113.

[3] Ferrera, Pedro, Ivan de Prado, Eric Palacios, Jose Luis Fernandez-Marquez, and Giovanna
Di Marzo Serugendo. "Tuple MapReduce: Beyond Classic MapReduce." In ICDM, pp. 260-269.
2012.

[4] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." In
ACM SIGOPS operating systems review, vol. 37, no. 5, pp. 29-43. ACM, 2003.

[5] Lin, Jimmy, and Chris Dyer. "Data-intensive text processing with MapReduce." Synthesis
Lectures on Human Language Technologies 3, no. 1. “Morgan & Claypool Publishers”, (2010):
1-177.

[6] Iacono, Andrea. “MapReduce by examples.” Accessed March 22, 2015,
http://www.slideshare.net/andreaiacono/mapreduce-34478449.

[7] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. Introduction to
information retrieval. Vol. 1. “Cambridge: Cambridge University Press”, 2008.

[8] Miner, Donald, and Adam Shook. MapReduce Design Patterns: Building Effective Algorithms
and Analytics for Hadoop and Other Systems. " O'Reilly Media, Inc.", 2012.

[9] Yahoo! Developer Network. ”Module 2: The Hadoop File System”, Accessed February 12,
2015, https://developer.yahoo.com/hadoop/tutorial/module2.html

[10] Reid, Gabriel “Lily Indexer by NGDATA.” NGDATA, Accessed May 5, 2015,
http://ngdata.github.io/hbase-indexer/

[11] Noll, Michael. “Running Hadoop on Ubuntu Linux (Single-Node Cluster).” Accessed
February 12, 2015, http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-
single-node-cluster/

[12] Rathbone, Matthew. “A Beginners Guide to Hadoop”, Accessed February 12, 2015,
http://blog.matthewrathbone.com/2013/04/17/what-is-hadoop.html

51

[13] Apache Hadoop 2.6.0 - Hadoop MapReduce Next Generation 2.6.0 - Setting up a Single
Node Cluster. “The Apache Software Foundation”, Accessed February 5, 2015,
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html.

[14] "Apache Nutch." The Apache Software Foundation, Accessed March 28, 2015,
http://nutch.apache.org

[15] “Apache Solr” The Apache Software Foundation, Accessed February 12, 2015,
http://lucene.apache.org/solr/

[16] "Apache Spark." The Apache Software Foundation, Accessed April 12, 2015,
https://spark.apache.org

[17] “MapReduce Tutorial.” The Apache Software Foundation, Accessed February 12, 2015,
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/MapReduceTutorial.html

[18] “Welcome to Apache Avro.” The Apache Software Foundation, Accessed May 5, 2015,
https://avro.apache.org/

[19] “Welcome to Apache Hadoop.” The Apache Software Foundation, Accessed February 12,
2015, http://hadoop.apache.org

[20] “Welcome to Apache Hive.” The Apache Software Foundation, Accessed February 12,
2015, http://hive.apache.org

[21] “Welcome to Apache Pig.” The Apache Software Foundation, Accessed February 12, 2015,
http://pig.apache.org

[22] “Welcome to Apache ZooKeeper.” The Apache Software Foundation, Accessed February
12, 2015. http://zookeeper.apache.org

[23] “What is Mahout?” The Apache Software Foundation, Accessed February 12, 2015,
http://mahout.apache.org

[24] Xin, Reynold S., Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. "Graphx: A
resilient distributed graph system on spark." In First International Workshop on Graph Data
Management Experiences and Systems, p. 2. ACM, 2013.

[25] Xin, Reynold. “Spark the fastest open source engine for sorting a petabyte.” Databricks,
Accessed April 12, 2015, http://databricks.com/blog/2014/10/10/spark-petabyte-sort.html

52

[26] Cryans, Jean-Daniel. “How-to: Use HBase Bulk Loading, and Why.” Cloudera, Accessed
May 5, 2015, http://blog.cloudera.com/blog/2013/09/how-to-use-hbase-bulk-loading-and-why/

53

Appendix
A. Avro Schemas
In this section, we list the Avro schemas that we designed for use by the different teams (except
for Solr and Hadoop). See Section 7.2.3 for more information about the design decisions.

Tweets
Noise Reduction:
{"namespace": "cs5604.tweet.NoiseReduction",
 "type": "record",
 "name": "TweetNoiseReduction",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "original", "name": "tweet_id", "type": "string"},
 {"doc": "original", "name": "text_clean", "type": "string"},
 {"doc": "original", "name": "text_original", "type": "string"},
 {"doc": "original", "name": "created_at", "type": "string"},
 {"doc": "original", "name": "user_screen_name", "type": "string"},
 {"doc": "original", "name": "user_id", "type": "string"},
 {"doc": "original", "name": "source", "type": ["string", "null"]},
 {"doc": "original", "name": "lang", "type": ["string", "null"]},
 {"doc": "original", "name": "favorite_count", "type": ["int", "null"]},
 {"doc": "original", "name": "retweet_count", "type": ["int", "null"]},
 {"doc": "original", "name": "contributors_id", "type": ["string", "null"]},
 {"doc": "original", "name": "coordinates", "type": ["string", "null"]},
 {"doc": "original", "name": "urls", "type": ["string", "null"]},
 {"doc": "original", "name": "hashtags", "type": ["string", "null"]},
 {"doc": "original", "name": "user_mentions_id", "type": ["string", "null"]},
 {"doc": "original", "name": "in_reply_to_user_id", "type": ["string", "null"]},
 {"doc": "original", "name": "in_reply_to_status_id", "type": ["string", "null"]},
 {"doc": "original", "name": "text_clean2", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "collection", "type": ["null", "string"], "default": null}

]
}

Clustering:
{"namespace": "cs5604.tweet.clustering",
 "type": "record",
 "name": "TweetClustering",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "analysis", "name": "cluster_label", "type": ["string", "null"]},

54

 {"doc": "analysis", "name": "cluster_id", "type": ["string", "null"]}
]
}

NER:
{"namespace": "cs5604.tweet.NER",
 "type": "record",
 "name": "TweetNER",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "analysis", "name": "ner_people", "type": ["string", "null"]},
 {"doc": "analysis", "name": "ner_locations", "type": ["string", "null"]},
 {"doc": "analysis", "name": "ner_dates", "type": ["string", "null"]},
 {"doc": "analysis", "name": "ner_organizations", "type": ["string", "null"]}
]
}

Social Network:
{"namespace": "cs5604.tweet.social",
 "type": "record",
 "name": "TweetSocial",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "analysis", "name": "social_importance", "type": ["double", “null”], “default”: 0},
]
}

Classification:
{"namespace": "cs5604.tweet.classification",
 "type": "record",
 "name": "TweetClassification",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "analysis", "name": "class", "type": ["string", “null”]},
]
}

LDA
{"namespace": "cs5604.tweet.LDA",
 "type": "record",
 "name": "TweetLDA",
 "fields": [
 {"name": "doc_id", "type": "string"},

55

 {"doc": "analysis", "name": "lda_topics", "type": ["string", “null”]},
 {"doc": "analysis", "name": "lda_vectors", "type": ["string", “null”]}
]
}

Web pages
Noise Reduction
{"namespace": "cs5604.webpage.NoiseReduction",
 "type": "record",
 "name": "WebpageNoiseReduction",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "original", "name": "text_clean", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "text_original", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "created_at", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "accessed_at", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "author", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "subtitle", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "section", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "lang", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "coordinates", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "urls", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "content_type", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "text_clean2", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "collection", "type": ["null", "string"], "default": null} ,
 {"doc": "original", "name": "url", "type": ["null", "string"], "default": null},
 {"doc": "original", "name": "appears_in_tweet_ids", "type": ["null", "string"], "default": null}
]
}

Clustering
{"namespace": "cs5604.webpage.clustering",
 "type": "record",
 "name": "WebpageClustering",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "analysis", "name": "cluster_label", "type": ["string", "null"]},
 {"doc": "analysis", "name": "cluster_id", "type": ["string", "null"]}
]
}

NER
{"namespace": "cs5604.webpage.NER",

56

 "type": "record",
 "name": "WebpageNER",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "analysis", "name": "ner_locations", "type": ["string", "null"]},
 {"doc": "analysis", "name": "ner_people", "type": ["string", "null"]},
 {"doc": "analysis", "name": "ner_dates", "type": ["string", "null"]},
 {"doc": "analysis", "name": "ner_organizations", "type": ["string", "null"]}
]
}

Social Network:
{"namespace": "cs5604.webpage.social",
 "type": "record",
 "name": "WebpageSocial",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "analysis", "name": "social_importance", "type": ["double", “null”], “default”: 0},
]
}

Classification:
{"namespace": "cs5604.webpage.classification",
 "type": "record",
 "name": "WebpageClassification",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "analysis", "name": "class", "type": ["string", “null”]},
]
}

LDA
{"namespace": "cs5604.webpage.LDA",
 "type": "record",
 "name": "WebpageLDA",
 "fields": [
 {"name": "doc_id", "type": "string"},
 {"doc": "analysis", "name": "lda_topics", "type": ["string", “null”]},
 {"doc": "analysis", "name": "lda_vectors", "type": ["string", “null”]},
]
}

57

B. AvroToHBase.java
In this section, we show the centralized program that we use to load data into HBase (See
Section 7.4.2). Our program takes as input an Avro file. The main routine is a while loop that
reads each record in the input file and stores it in an array. When all the records have been
read, the data is put into HBase with a single call to the API.

package cs5604.hadoop;

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import org.apache.avro.Schema;
import org.apache.avro.file.DataFileReader;
import org.apache.avro.io.DatumReader;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.conf.Configuration;
import cs5604.tweet.Tweet;
import cs5604.webpage.Webpage;

public class AvroToHBase {

 public static enum DataType {
 tweets,
 webpages
 };

 /**
 * @param args
 * @throws IOException
 */
 public static void main(String[] args) throws IOException {
 // check command line arguments
 if (args.length != 2) {
 System.out.println("Number of arguments should be 2. " + args.length + " arguments
found.");
 System.out.println("usage: java -jar hbase-loader.jar AVRO_FILE {tweets, webpages}");
 System.out.println("example: java -jar hbase-loader.jar tweet_clusters.avro tweets");
 System.out.println("example: java -jar hbase-loader.jar webpage_importance.avro
webpages");
 System.exit(1);
 }
 String dataFile = args[0];
 DataType dt = null;

 try {
 dt = DataType.valueOf(args[1]);
 } catch (IllegalArgumentException exception) {
 System.out.println("Data type must be either \"tweets\" or \"webpages\". \"" + args[1] + "\"
was found.");

58

 System.exit(1);
 }
 String tableName = args[1];

 // connect to HBase
 Configuration config = HBaseConfiguration.create();
 HTable table = new HTable(config, tableName);
 ArrayList<Put> puts = new ArrayList<Put>();

 switch(dt) {
 case tweets:
 DatumReader<Tweet> datumReader = new
SpecificDatumReader<Tweet>(Tweet.class);
 DataFileReader<Tweet> dataFileReader = new DataFileReader<Tweet>(new File(dataFile),
datumReader);
 Tweet record = null;

 while (dataFileReader.hasNext()) {
 // Reuse user object by passing it to next(). This saves us from
 // allocating and garbage collecting many objects for files with
 // many items.
 record = dataFileReader.next(record);
 //System.out.println(record);

 Put p = new Put(Bytes.toBytes(record.getDocId().toString()));

 for (Schema.Field field : record.getSchema().getFields()) {
 // skip row id
 if (field.name().equals("doc_id")) {
 continue;
 }
 String columnFamily = field.doc();
 String columnQualifier = field.name();
 assert(columnFamily.length() > 0);

 Object value = record.get(columnQualifier);

 if (value != null && ! (value.toString().isEmpty())) {
 //System.out.println("Value is " + value);
 p.add(Bytes.toBytes(columnFamily), Bytes.toBytes(columnQualifier),
Bytes.toBytes(value.toString()));
 }
 }
 if (!p.isEmpty()) {
 // add to buffer
 puts.add(p);
 } else {
 System.out.println("WARN: All fields are null for row with id " + record.getDocId()
+
 ". Nothing to add.");
 }
 }
 dataFileReader.close();

59

 break;
 case webpages:
 DatumReader<Webpage> daReader = new
SpecificDatumReader<Webpage>(Webpage.class);
 DataFileReader<Webpage> daFileReader = new DataFileReader<Webpage>(new
File(dataFile), daReader);
 Webpage rec = null;

 while (daFileReader.hasNext()) {
 // Reuse user object by passing it to next(). This saves us from
 // allocating and garbage collecting many objects for files with
 // many items.
 rec = daFileReader.next(rec);
 //System.out.println(record);

 Put p = new Put(Bytes.toBytes(rec.get("doc_id").toString()));

 for (Schema.Field field : rec.getSchema().getFields()) {
 //System.out.println("Field is " + field.name());
 //System.out.println("Family is " + field.doc());
 // skip row id
 if (field.name().equals("doc_id")) {
 continue;
 }
 String columnFamily = field.doc();
 String columnQualifier = field.name();
 assert(columnFamily.length() > 0);

 Object value = rec.get(columnQualifier);

 if (value != null) {
 //System.out.println("Value is " + value);
 p.add(Bytes.toBytes(columnFamily), Bytes.toBytes(columnQualifier),
Bytes.toBytes(value.toString()));
 }
 }
 // add to buffer
 puts.add(p);
 }
 daFileReader.close();
 break;
 default:
 System.out.println("Reached unexpected switch statement case. Quitting.");
 System.exit(1);
 }

 // write to HBase
 table.put(puts);
 table.flushCommits();
 table.close();

 System.out.println("" + puts.size() + " rows were written to the " + tableName + " table");

60

 }
}

C. WriteHBaseMR.java
Here, we present a MapReduce program to insert data into HBase through the HBase API. The
program takes as input an Avro file (from HDFS) and writes records to HBase in the Mapper
task. A lot of the code below is for setting up the job and validating the user input; the most
interesting parts are the TweetMapper and WebpageMapper methods, which process tweets
and web pages, respectively.

package	
 cs5604.hadoop;	

	

import	
 java.io.IOException;	

import	
 org.apache.hadoop.hbase.HBaseConfiguration;	

import	
 org.apache.hadoop.hbase.client.Put;	

import	
 org.apache.hadoop.hbase.io.ImmutableBytesWritable;	

import	
 org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;	

import	
 org.apache.hadoop.hbase.util.Bytes;	

import	
 org.apache.avro.Schema;	

import	
 org.apache.avro.mapred.AvroKey;	

import	
 org.apache.avro.mapreduce.AvroJob;	

import	
 org.apache.avro.mapreduce.AvroKeyInputFormat;	

import	
 org.apache.hadoop.conf.Configuration;	

import	
 org.apache.hadoop.conf.Configured;	

import	
 org.apache.hadoop.fs.Path;	

import	
 org.apache.hadoop.io.NullWritable;	

import	
 org.apache.hadoop.mapreduce.Job;	

import	
 org.apache.hadoop.mapreduce.Mapper;	

import	
 org.apache.hadoop.mapreduce.lib.input.FileInputFormat;	

import	
 org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;	

import	
 org.apache.hadoop.util.GenericOptionsParser;	

import	
 org.apache.hadoop.util.Tool;	

import	
 org.apache.hadoop.util.ToolRunner;	

	

import	
 cs5604.tweet.Tweet;	

import	
 cs5604.webpage.Webpage;	

	

public	
 class	
 WriteHBaseMR	
 extends	
 Configured	
 implements	
 Tool{	

	
 public	
 static	
 String	
 tableName;	

	
 //	
 allowed	
 HBase	
 table	
 names	

	
 public	
 static	
 enum	
 TableName	
 {	

	
 	
 tweets,	

	
 	
 webpages,	

	
 	
 test_tweets,	

	
 	
 test_webpages	

	
 };	

	
 	

	
 public	
 static	
 class	
 TweetMapper	
 extends	
 	

	
 	
 Mapper<AvroKey<Tweet>,	
 NullWritable,	
 ImmutableBytesWritable,	
 Put>	
 {	

61

	
 	
 protected	
 void	
 map(AvroKey<Tweet>	
 key,	
 NullWritable	
 value,	
 Context	
 context)	
 	

	
 	
 	
 	
 throws	
 IOException,	
 InterruptedException	
 {	

	
 	
 	
 Tweet	
 t	
 =	
 key.datum();	

	
 	
 	
 ImmutableBytesWritable	
 s	
 =	
 new	

ImmutableBytesWritable(Bytes.toBytes(t.getDocId().toString()));	

	
 	
 	
 	

	
 	
 	
 Put	
 p	
 =	
 datumToPut(t);	

	
 	
 	
 if	
 (!p.isEmpty())	
 {	

	
 	
 	
 	
 context.write(s,	
 datumToPut(t));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 else	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 System.out.println("WARN:	
 All	
 fields	
 are	
 null	
 for	
 row	
 with	
 id	
 "	
 +	

t.getDocId()	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ".	
 Nothing	
 to	
 add.");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 }	

	
 	
 	

	
 	
 private	
 static	
 Put	
 datumToPut(Tweet	
 t)	
 throws	
 IOException	
 {	
 	
 	

	
 	
 	
 Put	
 p	
 =	
 new	
 Put(Bytes.toBytes(t.getDocId().toString()));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (Schema.Field	
 field	
 :	
 t.getSchema().getFields())	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 skip	
 row	
 id	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (field.name().equals("doc_id"))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 continue;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 columnFamily	
 =	
 field.doc();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 columnQualifier	
 =	
 field.name();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 assert(columnFamily.length()	
 >	
 0);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Object	
 field_value	
 =	
 t.get(columnQualifier);	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (field_value	
 !=	
 null	
 &&	
 !	
 (field_value.toString().isEmpty()))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p.add(Bytes.toBytes(columnFamily),	

Bytes.toBytes(columnQualifier),	
 Bytes.toBytes(field_value.toString()));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 p;	

	
 	
 	
 	
 	
 }	

	
 	

	
 }	

	

	
 	

	
 public	
 static	
 class	
 WebpageMapper	
 extends	
 	

	
 	
 Mapper<AvroKey<Webpage>,	
 NullWritable,	
 ImmutableBytesWritable,	
 Put>	
 {	

	
 	
 protected	
 void	
 map(AvroKey<Webpage>	
 key,	
 NullWritable	
 value,	
 Context	
 context)	
 	

	
 	
 	
 	
 throws	
 IOException,	
 InterruptedException	
 {	

	
 	
 	
 Webpage	
 w	
 =	
 key.datum();	

	
 	
 	
 ImmutableBytesWritable	
 s	
 =	
 new	

ImmutableBytesWritable(Bytes.toBytes(w.getDocId().toString()));	

	
 	
 	
 	

	
 	
 	
 Put	
 p	
 =	
 datumToPut(w);	

	
 	
 	
 if	
 (!p.isEmpty())	
 {	

	
 	
 	
 	
 context.write(s,	
 datumToPut(w));	

	
 	

62

	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 else	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 System.out.println("WARN:	
 All	
 fields	
 are	
 null	
 for	
 row	
 with	
 id	
 "	
 +	

w.getDocId()	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ".	
 Nothing	
 to	
 add.");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	

	
 	
 	
 	

	
 	
 }	

	
 	
 	

	
 	
 private	
 static	
 Put	
 datumToPut(Webpage	
 w)	
 throws	
 IOException	
 {	

	
 	
 	
 Put	
 p	
 =	
 new	
 Put(Bytes.toBytes(w.getDocId().toString()));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (Schema.Field	
 field	
 :	
 w.getSchema().getFields())	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 skip	
 row	
 id	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (field.name().equals("doc_id"))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 continue;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 columnFamily	
 =	
 field.doc();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 columnQualifier	
 =	
 field.name();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 assert(columnFamily.length()	
 >	
 0);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Object	
 field_value	
 =	
 w.get(columnQualifier);	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (field_value	
 !=	
 null	
 &&	
 !	
 (field_value.toString().isEmpty()))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p.add(Bytes.toBytes(columnFamily),	

Bytes.toBytes(columnQualifier),	
 Bytes.toBytes(field_value.toString()));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 	
 	
 return	
 p;	

	
 	
 	
 	
 	
 }	

	
 }	

	
 	

	
 @Override	

	
 public	
 int	
 run(String[]	
 rawArgs)	
 throws	
 Exception	
 {	

	
 	
 if	
 (rawArgs.length	
 !=	
 3)	
 {	

	
 	
 	
 System.err.printf("Usage:	
 %s	
 [generic	
 options]	
 <input>	
 <output>	

<tableName>\n",	

	
 	
 	
 	
 	
 getClass().getName());	

	
 	
 	
 ToolRunner.printGenericCommandUsage(System.err);	

	
 	
 	
 return	
 -­‐1;	

	
 	
 }	

	
 	
 	

	
 	
 TableName	
 tn	
 =	
 null;	

	
 	
 String[]	
 args	
 =	
 new	
 GenericOptionsParser(rawArgs).getRemainingArgs();	

	
 	
 try	
 {	

	
 	
 	
 tn	
 =	
 TableName.valueOf(args[2]);	

	
 	
 }	
 catch	
 (IllegalArgumentException	
 exception)	
 {	

	
 	
 	
 System.out.println("Data	
 type	
 must	
 be	
 either	
 \"tweets\"	
 or	
 \"webpages\".	

\""	
 +	
 args[2]	
 +	
 "\"	
 was	
 found.");	

	
 	
 	
 return	
 -­‐1;	

	
 	
 }	

	
 	
 tableName	
 =	
 args[2];	

	
 	
 	

63

	
 	
 Configuration	
 config	
 =	
 HBaseConfiguration.create();	

	
 	
 config.set("mapreduce.task.timeout",	
 "300000");

	
 	
 	
 	
 	
 	
 	
 //	
 cluster-­‐specific	
 configuration.	
 In	
 the	
 production	
 cluster
	
 	
 	
 	
 	
 	
 	
 //	
 zookeeper	
 only	
 runs	
 on	
 nodes	
 1,	
 2,	
 and	
 3	

	
 	
 config.set("hbase.zookeeper.quorum",	

"node1.dlrl:2181,node2.dlrl:2181,node3.dlrl:2181");

	
 	
 	
 	
 	
 	
 	
 	
 //	
 set	
 the	
 job	
 name	
 to	
 be	
 “hbase-­‐load”	
 and	
 the	
 name	
 of	
 input	
 file	

	
 	
 Job	
 job	
 =	
 Job.getInstance(config,	
 "hbase-­‐load	
 -­‐	
 "	
 +	
 args[0]);	

	
 	
 	

	
 	
 job.setJarByClass(WriteHBaseMR.class);	

	
 	

	
 	
 Path	
 inPath	
 =	
 new	
 Path(args[0]);	

	
 	
 Path	
 outPath	
 =	
 new	
 Path(args[1]);	

	

	
 	
 FileInputFormat.setInputPaths(job,	
 inPath);	

	
 	
 FileOutputFormat.setOutputPath(job,	
 outPath);	

	
 	
 outPath.getFileSystem(super.getConf()).delete(outPath,	
 true);	

	

	
 	
 job.setInputFormatClass(AvroKeyInputFormat.class);	

	
 	

	
 	
 	
 	
 	
 	
 	
 //	
 call	
 appropriate	
 mapper	
 for	
 tweets	
 or	
 webpages	

	
 	
 switch(tn)	
 {	

	
 	
 	
 case	
 test_tweets:	

	
 	
 	
 case	
 tweets:	

	
 	
 	
 	
 job.setMapperClass(TweetMapper.class);	

	
 	
 	
 	
 AvroJob.setInputKeySchema(job,	
 Tweet.getClassSchema());	

	
 	
 	
 	
 break;	

	
 	
 	
 case	
 test_webpages:	

	
 	
 	
 case	
 webpages:	

	
 	
 	
 	
 job.setMapperClass(WebpageMapper.class);	

	
 	
 	
 	
 AvroJob.setInputKeySchema(job,	
 Webpage.getClassSchema());	

	
 	
 	
 	
 break;	

	
 	
 	
 default:	
 	

	
 	
 	
 	
 System.out.println("Reached	
 unexpected	
 switch	
 statement	
 case.	

Quitting.");	

	
 	
 	
 	
 	
 	
 	
 return	
 -­‐1;	

	
 	
 }	

	
 	
 	

	
 	
 TableMapReduceUtil.addDependencyJars(job);	

	
 	
 TableMapReduceUtil.initTableReducerJob(tableName,	
 null,	
 job);	

	
 	

	
 	
 	
 	
 	
 	
 	
 //	
 Map	
 only	
 job.	
 Set	
 number	
 of	
 reducers	
 to	
 0	

	
 	
 job.setNumReduceTasks(0);	

	

	
 	
 return	
 (job.waitForCompletion(true)	
 ?	
 0	
 :	
 1);	

	
 }	

	

	
 public	
 static	
 void	
 main(String[]	
 args)	
 throws	
 Exception	
 {	

	
 	
 int	
 result	
 =	
 ToolRunner.run(new	
 WriteHBaseMR(),	
 args);	

	
 	
 System.exit(result);	

	
 }	

}

64

D. Loading time for webpages
At the time of writing, we only had access to cleaned web page data for six small collections
(LDA was missing) and three big collections (Clustering, Noise Reduction, and Solr teams).
Table D.1 reports the time taken to upload the data using our MapReduce program.

Table D.1 Time taken to load the web page collections into HBase using MapReduce and the

HBase API

E. HBase Schema for webpages
Below is the HBase schema for web pages. The “analysis” column family is identical to the
column family for tweets with the same name. The “document” family is meant to store data
specific to a web page, such as the content or the domain.
Table: webpages [rowkey: uuid]

Column Family Column Qualifier
==
document title
 collection
 domain
 text_original
 text_clean1
 text_clean2
 author
 subtitle
 created_at
 section
 urls
 twitter_link
 facebook_link
 google_plus_link
 pinterest
 coordinates

analysis ner_people
 ner_locations
 ner_dates
 ner_organizations
 cluster_id
 cluster_label
 class
 social_importance
 lda_vectors

65

 lda_topics

F. HFile Generation
Here, we show our MapReduce program to generate HFiles for the bulk-loading process (See
Section 7.4.2). The mappers (for tweet and web pages) convert the input file (Avro) to a
sequence of “Put” HBase operations. A reducer that comes with the HBase distribution handles
these “Put” objects, but that part is opaque to the programmer. The programmer simply calls the
right reducer using this statement: HFileOutputFormat.configureIncrementalLoad(job, htable);

package cs5604.hadoop;

import java.io.IOException;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.avro.Schema;
import org.apache.avro.mapred.AvroKey;
import org.apache.avro.mapreduce.AvroJob;
import org.apache.avro.mapreduce.AvroKeyInputFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import cs5604.tweet.Tweet;
import cs5604.webpage.Webpage;

public class HBaseBulkload extends Configured implements Tool{
 public static String tableName;

 public static enum TableName {
 tweets,

66

 webpages,
 test_tweets,
 test_webpages,
 bulk_tweets,
 bulk_webpages
 };

 public static class TweetMapper extends
 Mapper<AvroKey<Tweet>, NullWritable, ImmutableBytesWritable, Put> {
 protected void map(AvroKey<Tweet> key, NullWritable value, Context context)
 throws IOException, InterruptedException {
 Tweet t = key.datum();
 ImmutableBytesWritable s = new
ImmutableBytesWritable(Bytes.toBytes(t.getDocId().toString()));

 Put p = datumToPut(t);
 if (!p.isEmpty()) {
 context.write(s, datumToPut(t));
 } else {
 System.out.println("WARN: All fields are null for row with id " + t.getDocId() +
 ". Nothing to add.");
 }
 }

 private static Put datumToPut(Tweet t) throws IOException {
 Put p = new Put(Bytes.toBytes(t.getDocId().toString()));
 for (Schema.Field field : t.getSchema().getFields()) {
 // skip row id
 if (field.name().equals("doc_id")) {
 continue;
 }
 String columnFamily = field.doc();
 String columnQualifier = field.name();
 assert(columnFamily.length() > 0);

 Object field_value = t.get(columnQualifier);

 if (field_value != null && ! (field_value.toString().isEmpty())) {

 p.add(Bytes.toBytes(columnFamily), Bytes.toBytes(columnQualifier),
Bytes.toBytes(field_value.toString()));
 }
 }
 return p;

67

 }

 }

 public static class WebpageMapper extends
 Mapper<AvroKey<Webpage>, NullWritable, ImmutableBytesWritable, Put> {
 protected void map(AvroKey<Webpage> key, NullWritable value, Context
context)
 throws IOException, InterruptedException {
 Webpage w = key.datum();
 ImmutableBytesWritable s = new
ImmutableBytesWritable(Bytes.toBytes(w.getDocId().toString()));

 Put p = datumToPut(w);
 if (!p.isEmpty()) {
 context.write(s, datumToPut(w));

 } else {
 System.out.println("WARN: All fields are null for row with id " + w.getDocId() +
 ". Nothing to add.");
 }

 }

 private static Put datumToPut(Webpage w) throws IOException {
 Put p = new Put(Bytes.toBytes(w.getDocId().toString()));
 for (Schema.Field field : w.getSchema().getFields()) {
 // skip row id
 if (field.name().equals("doc_id")) {
 continue;
 }
 String columnFamily = field.doc();
 String columnQualifier = field.name();
 assert(columnFamily.length() > 0);

 Object field_value = w.get(columnQualifier);

 if (field_value != null && ! (field_value.toString().isEmpty())) {

 p.add(Bytes.toBytes(columnFamily), Bytes.toBytes(columnQualifier),
Bytes.toBytes(field_value.toString()));
 }

68

 }
 return p;
 }
 }

 @Override
 public int run(String[] rawArgs) throws Exception {
 if (rawArgs.length != 3) {
 System.err.printf("Usage: %s [generic options] <input> <output>
<tableName>\n",
 getClass().getName());
 ToolRunner.printGenericCommandUsage(System.err);
 return -1;
 }

 TableName tn = null;
 String[] args = new GenericOptionsParser(rawArgs).getRemainingArgs();
 try {
 tn = TableName.valueOf(args[2]);
 } catch (IllegalArgumentException exception) {
 System.out.println("Data type must be either \"tweets\" or \"webpages\".
\"" + args[2] + "\" was found.");
 return -1;
 }
 tableName = args[2];

 Configuration config = HBaseConfiguration.create();
 config.set("mapreduce.task.timeout", "300000");
 config.set("hbase.zookeeper.quorum",
"node1.dlrl:2181,node2.dlrl:2181,node3.dlrl:2181");
 Job job = Job.getInstance(config, "hbase-bulk-load - " + args[0]);

 job.setJarByClass(HBaseBulkload.class);

 Path inPath = new Path(args[0]);
 Path outPath = new Path(args[1]);

 FileInputFormat.setInputPaths(job, inPath);
 FileOutputFormat.setOutputPath(job, outPath);
 outPath.getFileSystem(super.getConf()).delete(outPath, true);

 job.setInputFormatClass(AvroKeyInputFormat.class);
 job.setMapOutputKeyClass(ImmutableBytesWritable.class);
 job.setMapOutputValueClass(Put.class);

69

 switch(tn) {
 case test_tweets:
 case tweets:
 case bulk_tweets:
 job.setMapperClass(TweetMapper.class);
 AvroJob.setInputKeySchema(job, Tweet.getClassSchema());
 break;
 case test_webpages:
 case webpages:
 case bulk_webpages:
 job.setMapperClass(WebpageMapper.class);
 AvroJob.setInputKeySchema(job, Webpage.getClassSchema());
 break;
 default:
 System.out.println("Reached unexpected switch statement case.
Quitting.");
 return -1;
 }

 TableMapReduceUtil.addDependencyJars(job);
 HTable htable = new HTable(config, tableName);
 HFileOutputFormat.configureIncrementalLoad(job, htable);
 //TableMapReduceUtil.initTableReducerJob(tableName, null, job);

 return (job.waitForCompletion(true) ? 0 : 1);
 }

 public static void main(String[] args) throws Exception {
 int result = ToolRunner.run(new HBaseBulkload(), args);
 System.exit(result);
 }
}

