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Abstract          
The Integrated Digital Event Archive and Library (IDEAL) system addresses the need for 
combining the best of digital library and archive technologies in support of stakeholders who are 
remembering and/or studying important events. It leverages and extends the capabilities of the 
Internet Archive to develop spontaneous event collections that can be permanently archived as 
well as searched and accessed. IDEAL connects the processing of tweets and web pages, 
combining informal and formal media to support building collections on chosen general or 
specific events. Integrated services include topic identification, categorization (building upon 
special ontologies being devised), clustering, and visualization of data, information, and context. 
The objective for the course is to build a state-of-the-art information retrieval system in support 
of the IDEAL project. Students were assigned to eight teams, each of which focused on a 
different part of the system to be built. These teams were Solr, Classification, Hadoop, Noise 
Reduction, LDA, Clustering, Social Networks, and NER. As the Hadoop team, our focus is on 
making the information retrieval system scalable to large datasets by taking advantage of the 
distributed computing capabilities of the Apache Hadoop framework. We design and put in place 
a general schema for storing and updating data stored in our Hadoop cluster. Throughout the 
project, we coordinate with other teams to help them make use of readily available machine 
learning software for Hadoop, and we also provide support for using MapReduce. We found that 
different teams were able to easily integrate their results in the design we developed and that 
uploading these results into a data store for communication with Solr can be done, in the best 
cases, in a few seconds. We conclude that Hadoop is an appropriate framework for the IDEAL 
project; however, we also recommend exploring the use of the Spark framework. 
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1. Project Overview 

1.1 Project Effort 
The efforts of our team are focused on designing and implementing a solution for the IDEAL 
project that runs on a Hadoop cluster and takes advantage of the distributed computing and 
storage capabilities of the cluster to handle large amounts of Twitter and web page data.  
 
In coordination with the other teams and the instructor, we define the data workflow, from data 
ingestion and storage in the cluster to indexing into Solr. Every team in the class is going to be 
involved in different parts of this workflow. For example, each team will download web pages for 
two collections assigned to them, and the various teams in charge of data analysis tasks will 
produce results to be used by Solr. Our part in this workflow is loading data produced by the 
various teams into HBase (see Section 2), from where the data will later be indexed into Solr. 
 
Our project efforts also include helping other teams to make use of the distributed computing 
capabilities of Hadoop, so that the collections that we are working with are processed efficiently.  

1.2 Challenges 
There are various challenges when it comes to designing a data workflow for our project. First, 
the design decisions have to consider how the many moving parts of this project fit together for 
our goal of building a state-of-the-art search engine. Second, putting the design together 
requires knowing what the different storage options for Hadoop are, understanding details of the 
architecture of these different options, and considering how the strengths and weaknesses of 
each alternative will affect our project. Third, designing the data workflow involves having 
awareness of the existing data processing tools for Hadoop and adjusting the design to make 
use of these tools when appropriate. 
 
The point of understanding different options of data storage and file formats is raised once again 
in our task of loading data into HBase. Potentially, every team in charge of data analysis will 
have a preferred file format to take as input data and will produce output in a unique form. We 
have to implement tools and conventions to ensure that the different outputs produced by each 
team agree with the HBase schema, while, at the same time, minimizing the overhead of data 
processing for the other teams.  
 
As mentioned in the previous section, one of our goals is efficient processing of the data 
collections in the Hadoop cluster. There are two main challenges associated with this goal. First, 
we do not want the tasks of other teams to be hindered or delayed by optimization concerns. As 
much as possible, optimization tasks should be transparent to the rest of the teams. Second, 
optimizing performance requires analyzing runtime statistics of the various jobs run on the 
cluster so that we can compare the effect of different set-ups. We have to understand how the 
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logging protocols of Hadoop and be able to do basic analysis of the log files of the various tools 
used in the project. 

1.3 Solutions Developed 
In this section, we summarize our contributions. For architectural and implementation details, 
we point the reader to Sections 5, 6 and 7.  

1.3.1 Data Workflow (Section 7.1.2) 
Our solution starts by loading Twitter data into the Hadoop cluster from a relational database 
using Sqoop, a tool for bulk loading structured data into Hadoop. Web page data is fetched and 
stored in HDFS using Nutch, a web-crawling tool. Once the data is on disk, the Noise Reduction 
team will produce a clean version of the data that will 1) be loaded into HBase and 2) used by 
other teams for their respective data analysis tasks. Other teams will save their results in a 
predefined format (Avro files [18]) that we will later load into HBase. A description of our 
predefined format can be found in Section 7.2.3, and instructions on how to manipulate Avro 
files can be found in Section 6.2. As new data is added to HBase, it will be indexed into Solr in 
real-time using the hbase-indexer tool. When the data is indexed in Solr, it can be queried, and 
results will be produced according to a scoring function that incorporates all of the results from 
the data analysis phase. 

1.3.2 Loading Data Into HBase (Section 7.4.2) 
Over the course of the semester, we implemented three programs to load data into HBase. We 
first developed a centralized (i.e., not distributed) Java program that simply reads records from 
one of the Avro files produced by the teams and writes data to HBase through an HBase API for 
Java; we were able to load all the small tweet collections using this program, with each 
collection taking less than one minute. However, our implementation did not scale to the big 
collections ---we ran into memory limitations--- so we developed a MapReduce program that 
reads Avro files from HDFS and uploads records into HBase in a distributed fashion, again, 
through an HBase API. Our MapReduce implementation loads each collection in at most 30 
minutes. Finally, we developed a solution that makes use of the bulk load tools that come with 
the HBase libraries. This solution involves transforming an Avro file into HFile format ---a native 
low-level HBase format--- determining an appropriate number of splits for the HBase tables into 
regions, and uploading the HFiles into the different regions. For this task, we write a 
MapReduce job where the Map function creates the HFiles and the Reduce function uses the 
HBase libraries to send the HFiles to the corresponding regions. 

1.3.3 Collaboration With Other Teams (Section 5.4) 
We interacted with all the other teams in the class. A big portion of these interactions involved 
helping the teams work with Avro files. Avro is a serialized format, so it is not immediately 
readable to a human. We instructed most teams on how to interpret these Avro files by using 
the libraries in the Hadoop cluster. Similarly, we helped the teams to adapt their workflow to 
read and write Avro files; through the semester, we went over multiple revisions of the output 
format with each team. Another part of part of our collaboration with other teams was sketching 
out the schema and workflow for the class and helping them with MapReduce programming for 
their respective tasks. Below, we give a brief summary of our interactions with each team. 
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1.4 Roadmap 
The rest of this report is organized as follows. In Section 2, we give a literature review covering 
the basic concepts of Hadoop and the origins of this infrastructure, the role of Hadoop in 
information storage and retrieval, and a brief description of useful tools for Hadoop. We 
also point the user to some useful resources to start learning Hadoop. In Section 3, we state 
the requirements of our team for this class. In Section 4, we give a high-level overview of our 
proposed design, background knowledge, and technical tools used for the project. Then, in 
Section 5, we give details about the implementation of our project, including a detailed 
timeline of our work each week, an evaluation of our implementation, and details of our 
collaboration with the other teams in the class. Section 6 is a user’s manual, which, we 
hope, will be valuable to the reader interested in learning how to work with Avro files, interact 
with HBase, and use Nutch to crawl web pages. Section 7 is a developer’s manual; here, 
the reader can get technical specifications of the Hadoop cluster used in the course. This 
section is also of interest to readers who want to know how to install Solr and Nutch, two main 
tools that we used as part of the course. It is also in this section where we provide specific 
details about our design for Avro, HBase, and the data flow for the IDEAL project. We 
close by describing our solutions for loading data into HBase. Finally, in Section 8, we give 
some conclusions based on our experiences in the class, and we also pose some directions 
for future work. 

2. Literature Review 
Our literature review is divided into three parts. First, we describe the Hadoop framework and its 
main features. Then, we discuss how Hadoop interacts with information storage and retrieval 
tools. Finally, we present a non-exhaustive list of references that explains how to set up and 
start using Hadoop. After reading this section, the reader should 1) understand, at a high level, 
what Hadoop is and its advantages, 2) have a general awareness of the readily available 
software packages that can be used with Hadoop, and 3) know where to find resources to start 
using Hadoop and MapReduce. 

2.1 What is Hadoop? 
As described in the Apache Hadoop website [19], Hadoop is “a framework that allows for the 
distributed processing of large data sets across clusters of computers using simple 
programming models.” Sometimes, we also call it the Hadoop (software) stack or Hadoop 
ecosystem. The two core components of the Hadoop ecosystem are the Hadoop Distributed 
File System (HDFS) and MapReduce, which were inspired by the Google File System [4] and 
Google MapReduce [2], respectively. HDFS provides a scalable, fault-tolerant way to store large 
volumes of data on a cluster. Hadoop MapReduce is a paradigm to process data in parallel in a 
distributed system. 
 
Hadoop is useful to tackle computational tasks involving big datasets (i.e., on the scale of 
hundreds of gigabytes, terabytes, or more). When working with such datasets, there are two 
notable challenges. First, storing the data in its totality in one single disk becomes problematic; 
fitting the data into memory is even more challenging. Second, even if one can afford expensive 
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hardware to store the data, it would take a prohibitively large amount of time to complete any 
kind of useful analysis. Hadoop solves the first problem by providing a distributed file system 
(HDFS). This way, a user is able to store big collections of data in a cluster of commodity 
software. Hadoop also provides a framework to tackle the second problem (computation on a 
big dataset), namely Hadoop MapReduce.  
 
It is important to note that the operations related to distributing the data across nodes, reacting 
to errors in hardware, and scheduling details of MapReduce jobs, are transparent to the user. 
Hadoop takes care of most of the low-level tasks and provides simple interfaces to interact with 
the system. Other Apache projects, such as Hive [20], Pig [21], or Zookeeper [22], further 
abstract common programming tasks, making it even easier to analyze big datasets. 

2.2 Hadoop for Information Storage and Retrieval 
The distributed computing and storage capabilities of Hadoop have been used to make off-the-
shelf information storage and retrieval tools more scalable. For the purposes of this project, we 
focus on HBase, Nutch, Solr, and Mahout.  
 
HBase is a data storage system inspired by Google’s BigTable [1]. HBase extends HDFS by 
allowing real-time random IO operations, whereas HDFS assumes that data will only be written 
once and always processed in bulk. Data in HBase is organized as a multi-dimensional map. A 
table is a map of row ids to column families; each column family in turn is a map from columns 
to values1.  HBase has the properties of being distributed (over a Hadoop cluster), scalable, and 
sparse (i.e., a column only exists in a row if it has a value; there are no NULL columns as in a 
relational database). These properties have made HBase the tool of choice for companies like 
Facebook, Yahoo, and Twitter. 
 
Solr [15] is an open source search platform developed by Apache. This tool is the core of the 
search engine that we develop in this class project. Solr can be configured to ingest and index 
data from a Hadoop cluster, allowing us to extend this powerful platform and all its readily-
available tools to collections that do not fit in one single server.  
 
Nutch [14] is a tool for large-scale web crawling. Given a collection of URLs, Nutch recursively 
traverses these URLs making it very simple to create large collections of web pages. Nutch 
includes tools for basic processing of the crawled data, and it readily supports integration with 
Hadoop and Solr. We use Nutch to efficiently fetch web pages from the URLs found in our tweet 
collections. However, we do not make use of the web-crawling capabilities of this tool. 
 
Mahout [23] is a machine-learning library. The library contains many standard machine learning 
algorithms for classification, topic modelling, and clustering, among others. Furthermore, most 
of the algorithms in the library already have MapReduce implementations, so it is possible to run 
basic machine learning tasks on big datasets with little programming demand.  
 
                                                
1To be accurate, a column maps to a map of timestamps to values. In other words, each column supports 
versioning by keeping track of its current and past values. 
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We finish this section by noting that, if there is not a readily-available implementation of a 
desired algorithm, a developer can always write the appropriate MapReduce program from 
scratch. The book MapReduce: Design Patterns [8] provides a good compilation of different 
MapReduce patterns to use for many data manipulation tasks. Also, a developer is not 
constrained to using Java as the programming language, since Hadoop has streaming 
packages to run code written in other languages. Therefore, a user can take advantage of other 
packages or libraries that he/she already knows how to use. 

2.3 Getting Started with Hadoop 
There are many tutorials on how to set up a Hadoop cluster and run basic programs. The 
Apache foundation offers a tutorial to set up a single node cluster [13]. For a more informal, 
“Quick Start” style tutorial, we suggest reading reference [12] to the interested reader. In order 
to take advantage of Hadoop, a user must learn how to interact with HDFS; the Yahoo! 
Developer Network [9] provides a good introduction. Understanding of the MapReduce 
paradigm is also a must. As stated above, the book MapReduce: Design Patterns provides a 
broad collection of examples and explanations of the basic MapReduce concepts. Readers 
specifically interested in text processing will benefit from the book Data-Intensive Text 
Processing with MapReduce [5]. Finally, users interested in the low-level details about index 
construction in Hadoop can use Chapter 4 of Introduction to Information Storage and Retrieval 
[7]  as a reference. 

3. Requirements        
IDEAL is a Big Data project. One primary goal of the project is to make it possible for users to 
extract relevant content from collections on the scale of terabytes. There are various challenges 
to consider when working with this amount of data. As discussed in Section 2, it is not possible 
to store all the data in a single commodity disk, let alone load it into memory for any processing 
or data analytics task.  
 
As the Hadoop team, our objective is to make information retrieval scalable in the IDEAL 
project. We work with the rest of the teams to help them parallelize their respective tasks as 
much as possible. Additionally, we are responsible for designing a general schema to store the 
data in the Hadoop cluster. The goal is that teams modify a unified data representation instead 
of producing disjoint results across the system. In designing the schema, we collaborate with 
the Solr team; we also work with the Solr team on indexing and loading the data from the cluster 
into Solr. On the user-support side, we help the teams to use tools in the cluster, such as 
Mahout, Nutch, and avro-tools. We also provide assistance on writing MapReduce programs for 
tasks that are not readily available in Mahout.  
 
Below, we summarize our tasks for the project: 
 

● Design a schema for the storage of Twitter data and web page data. 
○ Decide on whether to use HDFS, HBase, or some other framework. 

● Instruct other teams about the schema and propose data formatting standards. 
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● Load data into the cluster. 
○ Coordinate with the cluster administrator (Sunshin Lee) for this requirement. 

● Load data into HBase. 
● Coordinate with the other teams to make sure that they take advantage of the parallel 

computing capabilities of Hadoop. 
● Provide support to other teams for writing and running MapReduce jobs. 

4. Design  

4.1 Approach 
Our approach is to have a workflow where teams in charge of data analysis read and write data 
from/to HDFS. Teams interact with HBase only through a data-loading tool that we provide. The 
data in HBase is a structured representation of all our collections containing only the data 
required by Solr for query processing. As the data is uploaded and updated in HBase, the 
changes are indexed in real time in Solr via the Lily HBase indexer [10]. 

4.2 Tools 
Programming languages: Java and Python 
HDFS (Hadoop File System): Distributed file system. Files are stored across a cluster of 
computers. 
HBase: Non-relational database. HBase is sparse, scalable, and well-integrated in the Hadoop 
ecosystem. 
Lily HBase Indexer: Tool for indexing HBase rows into Solr. 
Sqoop: Tool for transferring data in bulk from a database to HDFS. 
Nutch: Web crawler. We will use it to fetch web pages from a collection of URLs. 

4.3 Methodology 
Loading data into the cluster 
The original Twitter data was stored in a relational database at the beginning of the semester. 
Sunshin Lee, the cluster administrator, used Sqoop to copy the data to HDFS as AVRO files, 
sequence files, and comma-separated values (CSV). After that, Nutch is to crawl web pages 
corresponding to the URLs extracted from the HDFS tweets. These webpages are stored in 
HDFS as WARC files. Web pages that are in text form (e.g., ending with .htm or .txt) also are 
stored in HDFS as HTML and text files. From here, the noise reduction team processes these 
files to discard irrelevant content as much as possible. Then, other teams can use the “clean” 
files for their respective machine learning tasks. 
Communication with Solr 
Each team in charge of data analysis reads data from HDFS and writes interim results back to 
HDFS. These results are then added to the corresponding tweet / webpage in HBase. The Lily 
HBase indexer automatically updates the Solr index. 
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4.4 Conceptual Background 
● Fundamentals of HBase and Google Bigtable. 
● Architecture of HBase and HDFS. 
● MapReduce paradigm. 
● Internal working of the HBase Indexer. 

4.5 Deliverables 
● Data workflow design. 
● Avro file conventions. 
● Programs for uploading data into HBase. 
● Performance metrics and optimization suggestions. 

5. Implementation    
5.1 Timeline  
Week 1: Get Solr running on our laptop. (see Section 7.3) 
Week 2: Set up a Hadoop pseudo-cluster to practice Hadoop (Section 7.3) 
Week 3: Reorganize the report of the previous week and start learning Mahout. 
Weeks 4 and 5:  

● Use Python script to download web pages mentioned in tweets. 
● Index web pages and tweets into Solr. 
● Research different options to store the data in the cluster. 

○ Data will be stored in HDFS as HTML, WARC, or CSV fields. 
○ We recommend HBase for communicating with Solr. 

● Research Apache Nutch to crawl web pages instead of using a Python script. (see 
Section 7.2 Data) 

Weeks 6 and 7 and 8: 
● Created sample HBase tables via the HBase shell and the Java API. 
● Researched different options and data formats for loading data into HBase. 
● Finalized details of the data workflow with other teams. 
● Implemented prototype workflow for indexing data from HBase to Solr. 
● Implemented prototype web page fetching using Nutch. 
● Learned how to use the Lily indexer to synchronize Solr and HBase. 
● Defined details of the HBase schema with the Solr team. 

Week 9: 
● Talked to Sunshin about using Sqoop and Nutch to load data into HDFS. Sunshin 

loaded all the collections, and teams will extract web pages for their own collections. 
● Learned how to interact with HBase programmatically in order to load data from HDFS 

into HBase.  
● Designed Avro schemas for each team. 
● Wrote documentation for the schemas and a tutorial on how to create Avro files using 

the schemas. 
● Wrote a program to sequentially convert tweets in TSV format to Avro. 
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● Wrote a program to sequentially load Avro data into HBase. The program loaded our 
small tweet collection in about 1 minute (380,403 tweets in Avro format). 

Week 10: 
● Wrote a program to extract and expand shorten URLs from big collections. 
● Crawled the web pages for our big collection. 
● Wrote a MapReduce program to load Avro data into HBase. 
● Loaded cleaned (i.e., after noise reduction) tweets into HBase. 

Week 11 
● Modified Avro schema due to changes in HBase schema. 
● Loaded all the small collections into HBase. 
● Continued working with other teams in producing Avro files. 

○ Noise reducing team: Done with small collection. 
○ Classification team: Discussed, waiting their output. 
○ NER team: Provided help on modifying their output avro schema, waiting 

feedback. 
Week 12 

● Modified Avro schema for LDA team from conversations with LDA and Solr teams. 
● Tested and debugged MapReduce HBase upload program. 
● Continued working with other teams in producing Avro files. 

○ Noise reducing team: They are working to produce clean web page data. 
○ Classification team: Discussed, waiting for their output. 
○ NER team: Provided help on modifying their output avro schema, waiting 

feedback. 
○ LDA team: We agreed on the Avro schema for them. They have output to be 

loaded into HBase. 
○ Clustering: They will produce files to be loaded into HBase. 

Week 13 
● Resolved issues of running our MapReduce HBase upload program. 
● Loaded big tweet collections into HBase: 85,589,755 rows in total. 
● Coordinated with Solr team to indexed data in HBase into Solr, the small tweet collection 

has been indexed. 
● Continued working with other teams in producing Avro files. 

○ Noise reducing team: Loaded cleaned small web page collections. 
○ Classification team: Waiting for their output. 
○ NER team: Loaded their output for tweets into HBase. 
○ LDA team: We agreed on the Avro schema for them. They have output to be 

loaded into HBase. Waiting for their output. 
○ Clustering: Loaded their output for tweets into HBase. 
○ Social Network:  We agreed on a format with them. We are waiting for their 

output. 

Weeks 14 and 15 
● Implemented a bulk-loading program to write data into HBase directly (i.e., bypassing 

the HBase write path). 
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● Integrated the pangool software library into our infrastructure for the Classification team. 
● Continued working with other teams in loading HBase 

○ Noise reducing team: Loaded cleaned big web page collections into HBase. 
○ Classification team: Helped them with MapReduce programming and loaded 

their classification results into HBase. 
○ NER team: Loaded their output for web pages into HBase. 
○ LDA team: Loaded their output for tweets into HBase. 
○ Clustering: loaded their output for web pages into HBase. 
○ Social Network:  Loaded their output for tweets and web pages into HBase. 

5.2 Milestones and Deliverables 
● Tools for loading data into HBase.  

● We developed a sequential program, a MapReduce program, and a bulk-loading 
program. 

● HBase schema and synchronization with Solr. 
● We developed a schema for HBase and for each team based on the needs of the 

project. 
● Optimization of other team’s tasks. 

● We worked with the NER and Classification team to integrate their tools into our 
workflow and avoiding wasted disk space. Other teams used existing tools for 
MapReduce, but we did not optimize their jobs. 

5.3 Evaluation 
We report the performance (in terms of running time) of our three HBase loading programs. We 
focus on the tweet collections because they were larger and more challenging to handle. 
However, we provide loading times for the web page collections in Appendix D. Also, we just 
show the sizes of the collections that we upload and the time taken. A detailed description of the 
format of these collections can be found in Section 7.2, and description of the implementation of 
each program can be found in Section 7.4 and the Appendix. 

5.3.1 Non-Distributed Program 
Our first solution was a non-distributed Java program that reads Avro files from the main node 
of the cluster and writes data to HBase by invoking the HBase API for Java. The process should 
be familiar to anyone who has written programs to communicate with a database (relational or 
otherwise) through an API. 
We were able to load all the small tweet collections, after being processed by the Noise 
Reduction team, using our non-distributed program. Table 1 reports the time to load each 
collection into HBase. Each collection took less than one minute to be uploaded, but most of the 
big collections could not be loaded with this program due to memory constraints in the main 
node.  
We could use this program to load the big collections by adding more memory to the main node 
or breaking down the input files into smaller pieces ---effectively “distributing” the load by hand. 
However, both ideas are just temporary solutions; as the project grows, at some point, we are 
not going to be able scale anymore; furthermore, so far, we have not used the distributed 
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computing capabilities of the Hadoop cluster. In the next section, we show a distributed 
approach to load the data. 
 

 
Table 1. Time to load the small tweet collections into HBase using a non-distributed program 

5.3.2 MapReduce Program 
Our second implementation was a MapReduce program that reads Avro files from HDFS and 
writes data to HBase by using the HBase API for Java. This program only has a Map function 
(without a Reduce). Each mapper writes exactly one record to the data store. We were able to 
load all the big collections to HBase, with the largest collection taking 30 minutes. For 
comparison, we also tested loading the small collections with our MapReduce program. We 
note that, it is rather unnecessary to use the Mapreduce framework to process data that can be 
handled by a non-distributed program in only a few seconds. There is an appreciable cost in 
running a distributed program (i.e., communication between nodes, scheduling and supervising 
tasks across the cluster, etc.) that is not justified for small files. Table 2. reports the times for 
each collection; we also show the time taken by loading all the collections at once (i.e. all big 
and small collections in a single MapReduce job). There are two insights from this results that 
we want to emphasize. First, as discussed above, we don’t gain anything by processing the 
small collections with MapReduce; in fact the log files for these jobs show that most of the small 
collections are being processed by a single mapper, which is no different than using a non-
distributed program ---except that we still pay the overhead of managing the MapReduce job. 
Second, loading all the data at once is much faster than loading collections one at a time. It is 
preferable to wait until we have multiple collections before loading data into HBase. 
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Table 2. Time to load all the tweet collections to HBase using MapReduce 

 

5.3.3 Bulk-Load Method 
HBase has a tool that allows a developer to directly upload HFiles, native HBase files, to the 
data store, effectively bypassing the normal workflow that is followed when writing to HBase 
through the API. We describe these ideas and its pros and cons in more detail in Section 7.4. 
For the purposes of this section, we just emphasize that bulk-loading is a much more efficient 
way to load large amounts of data into HBase than the API.  
In order to use the bulk-loading tool, we first need to convert our Avro files to HFiles, which we 
did by using a MapReduce program. Then, we upload these files to HBase using the libraries 
included in the Hadoop distribution (see Section 7.3). Table 3 (rightmost column) reports the 
time taken to convert each collection to an HFile using our program. We are not including the 
time it takes to upload the HFiles to HBase because we consider it negligible. Loading the 
HFiles for individual collections takes two or three seconds, and loading the HFile for all the 
collections combined takes only six seconds. Even with this added upload time, the 
improvement from our MapReduce program is Section 5.3.2 is noticeable. With the bulk load 
approach, all the big collections can be loaded in around 7 minutes, whereas it takes well over 
one hour to do the same through the API. 
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Table 3. Comparing our three solutions for uploading data to HBase 

 

 

5.4 Collaboration With Other Teams 

5.4.1 Solr 
We were in constant collaboration with the Solr team at different stages of the project. In the 
initial weeks, we discussed workflows for the project and explored different alternatives to index 
the results of each team into Solr. Towards the end of the planning phase, we had to choose 
either to read data directly from HDFS or to add HBase to the workflow to make use of the real-
time Lily Indexer tool. In class discussions, we decided to do the latter. After the workflow was 
decided, we collaborated with the Solr team for the design of the schema for the HBase tables 
and Avro files. We made many of our design decisions based on the information that the Solr 
team needed to have indexed into Solr. In the later stages of the semester, when we had most 
of the data loaded into HBase, we helped the Solr team with generating test tables (i.e., 
samples of the complete data) that they could use for prototyping and testing. 

5.4.2 Noise Reduction 
Similar to the Solr team, most of our work with the Noise Reduction (NR) team involved schema 
design and data formatting considerations. The NR team is responsible for generating the input 
files for most of the other teams; they are the first team in “touching” the data. Therefore, it was 
important to agree on a design and workflow with this team as early as possible. Furthermore, it 
was important to put special consideration into the schema of the NR team in order to avoid 
significant subsequent changes to their output files. The scenario that we wanted to prevent was 
having to ask the rest of the teams to redo their analysis of the data just because we forgot to 
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include an important field in the initial output from NR. Fortunately, we did not encounter this 
problem.  

5.4.3 Classification 
The classification team had to use a third-party software library, pangool [3], for completing their 
task. We helped the classification team by adapting a Naive Bayes implementation in pangool to 
our infrastructure. To summarize, we modified the Naive Bayes MapReduce program to use our 
Avro libraries for reading and writing data according to our pre-specified schema. Details of 
these changes can be found in Section 7. 

5.4.4 NER 
Most of our interactions with the NER team were helping them to use Avro files and follow our 
schema conventions. We showed this team how to use avro-tools, an Avro utility, to convert 
Avro to a readable format, concatenate small Avro files in HDFS to avoid wasted space, and 
generate Avro from a given schema. We also helped this team to produce Avro files in a 
MapReduce program. 

5.4.5 LDA, Clustering, and Social Networks 
With the remaining teams, our interactions were mostly to decide details of their respective 
schemas and upload their results into HBase. The Clustering and LDA teams used Mahout, so 
they did not have to write MapReduce programs for their rspective tasks. It is likely that the 
Mahout jobs generated by these teams could be sped up; however, due to time limitations, we 
leave this performance tuning for future work. The Social Networks team did not use the 
MapReduce because this framework is not a good solution for the kind of analysis they were 
required to do (i.e., iterative graph algorithms). Instead, they used the Graphx library [24] for 
Spark [16].  

6. User’s Manual 
This section provides a guide for using the Hadoop cluster for this project. We present 
instructions and examples on how to use HBase, Avro files, and Nutch. 
 
For the rest of the section, we assume that the user is working on the Cloudera Virtual Machine 
or the Hadoop cluster for this class. 

6.1 The HBase Shell 
The HBase shell (or just “the shell”) is a command-line utility where a user can execute run 
commands to interact with HBase. Through the shell, a user can create or delete tables, update 
or remove data in the existing tables, get data stored in HBase, among other common 
operations. Users familiar with command-line utilities to interact with SQL databases should find 
the HBase shell familiar and easy to use despite the fact that HBase is a NoSQL data store. 

6.2.1 Running the HBase Shell 
We start the HBase shell by using the command 
 
$	
  hbase	
  shell 
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We should see the output shown in Figure 1. 
 

 
Figure 1. Starting the HBase shell. 

 
Now that the we are in the HBase shell, we are ready to interact with HBase. 
 
Note: If the commands in the next section do not work as expected, it may be because HBase 
is not running in your system. In the virtual machine, you can check whether HBase is running 
by pointing your browser to localhost:60010. If HBase is down, you will not be able to connect. 
You can start HBase by running the following commands: 
 
/usr/lib/hbase/bin/hbase-­‐daemon.sh	
  start	
  master 
/usr/lib/hbase/bin/hbase-­‐daemon.sh	
  start	
  regionserver 
 
We check the browser again to see that HBase is running now. 
 
6.2.2 Common Operations 
First, let’s get a list of the existing tables. If this is your first time using HBase in your system, 
there should not be any tables yet. We get a list of the tables using the “list” command, which 
should return 0 rows as output (see Figure 2). 
 

 
Figure 2. HBase does not have any tables yet. 

 
Now, we will create our first HBase table. We will create a table for tweets with two column 
families: “original” and “analysis”. We will use the “create” command, which has syntax 
 
create	
  ‘table_name’	
  ,	
  [{NAME	
  =>	
  ‘col_family_1’},	
  …	
  ,	
  {NAME	
  =>	
  ‘col_family_n’}] 
 
In this case, we are giving the name of the table and a list of column families. We note that there 
are other parameters for the “create” command, so you should check the HBase 
documentation. We show the command to create the “tweets” table in Figure 3. 
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Figure 3. Creating a table for tweets. 

      
We can check that the table was created correctly using the “describe” command, which gives 
us metadata of a table, as shown in Figure 4. 
 

 
Figure 4. Details of each column family for the ‘tweets’ table 

 
The output of the “describe” command is the name of the table we are describing, its status 
(ENABLED or DISABLED), and metadata about each column family. 
 
Now that we have a table to work with, we can store data in HBase. Let’s add a tweet about 
Egypt. We will use the “put” command, which adds data for a specific column of a row. The 
syntax for the command is 
 
put	
  ‘table_name’,	
  'row_id',	
  'col_family:column',	
  'value' 
 
The “put” command adds a value for a specific column of a row in a table. If the column does 
not exist, a new column is create; otherwise, the column’s value is updated. Similarly, if the row 
with ID “row_id” doesn’t exist, the row gets created. Here is a concrete example: 
 
put	
  'tweets',	
  'egypt.0001',	
  'original:text_original',	
  'This	
  is	
  a	
  tweet	
  about	
  #Egypt' 
 
Here, we are putting the value “This is a tweet about #Egypt” in the “text_original” column of the 
“original” column family of the “egypt.0001” row.  
 
One big limitation of the “put” command is that it only allows us to add data for one column 
at a time. If we want to add data for 10 columns, we have to write 10 different “put” commands. 
Furthermore, the “put” command is the only way to add data in the shell. It is impractical to 
manually store data in HBase through the shell. Instead, one should add data programmatically 
using an HBase API, such as the one for Java. 
 
As an exercise, try putting the value “CNN” in “original:user_screen_name” and “Egypt” in 
“original:hashtags” for the same row id. Once that is done, we can retrieve the data using the 
“get” command. “get” allows us to fetch data for a specific row id. Figure 5 shows an example of 
the output of the “get” command. 
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Figure 5. Using the “get” command to get data about a tweet 

 
Now, we will add one more row to the table: 
put	
  'tweets',	
  'egypt.0002',	
  'original:text_original',	
  'This	
  is	
  another	
  tweet	
  #jan25' 
put	
  'tweets',	
  'egypt.0002',	
  'original:hashtags',	
  'jan25' 
 
Again, we can retrieve the data for this new row using “get”. If instead, we want to get all the 
data in the table, we use the “scan” command, as shown Figure 6.: 

 
Figure 6. Retrieving all the data in an HBase table. 

 
The “scan” command also supports options for scanning only a range of row IDs. Suppose that 
we have row IDs of the form “egypt.XXXX” and “malasya.XXXX” for two different collections. 
Then, using the “scan” command, we can retrieve the data for one entire collection only. 
 
This is the end of this section. There is much more to the HBase shell, but the examples above 
should get you started. 

6.2 Working with Avro Files 
Every team processing data in HDFS will have an Avro schema. For the purposes of loading 
HBase and standardization, we ask teams to output their results of data processing in Avro 
format, according to the schemas in the Appendix.  
 
This section shows how to read and write Avro files. Even though Avro is a convenient file 
format to work on Hadoop, Avro files are serialized, so they cannot be read and written like 
normal text files. However, Apache provides a package to interact with Avro.  
 
For the remaining of the section, we assume that the user is working on the Cloudera 
Virtual Machine, and we will use the schema for the Noise Reduction team to illustrate how to 
read and write Avro. This schema is the following: 
 
Noise	
  Reduction: 
{"namespace":	
  "cs5604.tweet.NoiseReduction", 
	
  "type":	
  "record", 
	
  "name":	
  "TweetNoiseReduction", 
	
  "fields":	
  [ 
	
  	
  	
  	
  	
  {"name":	
  "doc_id",	
  "type":	
  "string"}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "tweet_id",	
  "type":	
  "string"}, 
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  {"doc":	
  "original",	
  "name":	
  "text_clean",	
  "type":	
  "string"}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "text_original",	
  "type":	
  "string"}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "created_at",	
  	
  "type":	
  "string"}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "user_screen_name",	
  "type":	
  "string"}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "user_id",	
  "type":	
  "string"}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "source",	
  "type":	
  ["string",	
  "null"]}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "lang",	
  "type":	
  ["string",	
  "null"]}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "favorite_count",	
  "type":	
  ["int",	
  "null"]}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "retweet_count",	
  "type":	
  ["int",	
  "null"]}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "contributors_id",	
  "type":	
  ["string",	
  "null"]}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "coordinates",	
  "type":	
  ["string",	
  "null"]}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "urls",	
  "type":	
  ["string",	
  "null"]}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "hashtags",	
  "type":	
  ["string",	
  "null"]}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "user_mentions_id",	
  "type":	
  ["string",	
  "null"]}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "in_reply_to_user_id",	
  "type":	
  ["string",	
  "null"]}, 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "in_reply_to_status_id",	
  "type":	
  ["string",	
  "null"]}, 
 
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "text_clean2",	
  "type":	
  ["null",	
  "string"],	
  "default":	
  null},	
   
	
  	
  	
  	
  	
  {"doc":	
  "original",	
  "name":	
  "collection",	
  "type":	
  ["null",	
  "string"],	
  "default":	
  null}	
   
 
	
  ] 
} 
 

Writing Avro Files (Java) 
The schema above was compiled into a Java class using a standard Avro tool. We will use this 
Java class to write Avro. The examples in this section write Avro files sequentially. We are 
currently working on the MapReduce version, but the code below can be used for prototyping. 
 
package cs5604.hadoop; 
 
import java.io.File; 
import java.io.IOException; 
import org.apache.avro.file.DataFileWriter; 
import org.apache.avro.io.DatumWriter; 
import org.apache.avro.specific.SpecificDatumWriter; 
// The import below is the class compiled from the schema. These classes will be distributed to each team 
import cs5604.tweet.NoiseReduction.TweetNoiseReduction; 
 
public class CreateDummyTweets { 
 
    /** 
     * @param args 
     * @throws IOException  
     */ 
    public static void main(String[] args) throws IOException { 
        // object representing a tweet from the noise reduction team 
        TweetNoiseReduction tweet = new TweetNoiseReduction(); 
 
        DatumWriter<TweetNoiseReduction> tweetDatumWriter = new 
SpecificDatumWriter<TweetNoiseReduction>(TweetNoiseReduction.class); 
        DataFileWriter<TweetNoiseReduction> dataFileWriter = new 
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DataFileWriter<TweetNoiseReduction>(tweetDatumWriter); 
        dataFileWriter.create(tweet.getSchema(), new File("tweets.avro")); // data will be saved to this file 
 
        // notice that there are getter methods corresponding to the fields in the schema 
        // write first tweet 
        tweet.setDocId("egypt.1"); 
        tweet.setTweetId("123k25lse"); 
        tweet.setUserId("123"); 
        tweet.setUserScreenName("CNN"); 
        tweet.setCreatedAt("2014-12-01 13:00:12"); 
        tweet.setTextOriginal("This is the original tweet #freedom #egypt http://twi.tter.com"); 
        tweet.setTextClean("This is the original tweet"); 
        tweet.setHashtags("egypt|freedom"); 
        tweet.setUrls("http://twi.tter.com"); 
        tweet.setLang("English"); 
        dataFileWriter.append(tweet); 
        // write second tweet 
        tweet = new TweetNoiseReduction(); 
        tweet.setDocId("egypt.2"); 
        tweet.setTweetId("123k25lse"); 
        tweet.setUserId("235"); 
        tweet.setUserScreenName("MSNBC"); 
        tweet.setCreatedAt("2014-12-01 13:00:12"); 
        tweet.setTextOriginal("This is another tweet"); 
        tweet.setTextClean("This is another tweet"); 
        tweet.setLang("English"); 
        dataFileWriter.append(tweet); 
        // write third tweet 
        tweet = new TweetNoiseReduction(); 
        tweet.setDocId("egypt.3"); 
        tweet.setTweetId("12413edsf2"); 
        tweet.setUserId("421"); 
        tweet.setUserScreenName("paul"); 
        tweet.setCreatedAt("2014-12-01 13:00:12"); 
        tweet.setTextOriginal("RT @CNN: \"This is the original tweet #freedom #egypt http://twi.tter.com\""); 
        tweet.setTextClean("This is the original tweet"); 
        tweet.setHashtags("egypt|freedom"); 
        tweet.setUrls("http://twi.tter.com"); 
        tweet.setRetweetCount(1); 
        tweet.setInReplyToUserId("123k25lse"); 
        tweet.setLang("English"); 
        dataFileWriter.append(tweet); 
 
        dataFileWriter.close(); 
    } 
} 
 
Let’s walk through this code example. First, we import the Avro libraries (from /usr/lib/avro) and 
the TweetNoiseReduction class corresponding to the Avro schema: 
 
import java.io.File; 
import java.io.IOException; 
import org.apache.avro.file.DataFileWriter; 
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import org.apache.avro.io.DatumWriter; 
import org.apache.avro.specific.SpecificDatumWriter; 
// The import below is the class compiled from the schema. These classes will be distributed to each team 
import cs5604.tweet.NoiseReduction.TweetNoiseReduction; 
 
Then, we instantiate a TweetNoiseReduction object that we will use to write the data to the Avro 
file. In order to write data, we instantiate a DatumWriter and a DataFileWriter for the 
TweetNoiseReduction class. We also specify the name of the output file (“tweets.avro”): 
 
 // object representing a tweet from the noise reduction team 
        TweetNoiseReduction tweet = new TweetNoiseReduction(); 
 
        DatumWriter<TweetNoiseReduction> tweetDatumWriter = new 
SpecificDatumWriter<TweetNoiseReduction>(TweetNoiseReduction.class); 
        DataFileWriter<TweetNoiseReduction> dataFileWriter = new 
DataFileWriter<TweetNoiseReduction>(tweetDatumWriter); 
        dataFileWriter.create(tweet.getSchema(), new File("tweets.avro")); // data will be saved to this file 
Now, we fill in the data for the first tweet: 
// write first tweet 
        tweet.setDocId("egypt.1"); 
        tweet.setTweetId("123k25lse"); 
        tweet.setUserId("123"); 
        tweet.setUserScreenName("CNN"); 
        tweet.setCreatedAt("2014-12-01 13:00:12"); 
        tweet.setTextOriginal("This is the original tweet #freedom #egypt http://twi.tter.com"); 
        tweet.setTextClean("This is the original tweet"); 
        tweet.setHashtags("egypt|freedom"); 
        tweet.setUrls("http://twi.tter.com"); 
        tweet.setLang("English"); 
 
 
We notice that not all fields are mandatory. For the Noise Reduction team, in particular, the only 
data that they need to provide are the fields that do not have a “null” indicator in the schema. 
 
After filling in the data, we write the tweet to file: 
 
dataFileWriter.append(tweet); 
 
We repeat for the other two tweets. At the end, we have to close the file to save our changes: 
 
dataFileWriter.close(); 

Writing Avro Files (Python) 
We can also read and write Avro using Python. In this case, however, we will not use pre-
compiled classes, so it is the responsibility of the developer to keep the data consistent with the 
schema. This subsection assumes that the user is comfortable with python and can write non-
trivial data-processing scripts. 
 
First, open the Python shell and check that you have the Avro library installed (Figure 7). 
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Figure 7. Trying to import Avro in Python. We see an error because the Avro libraries are not installed yet. 

 
The error in Figure 7 indicates that I don’t have Avro in my system. We can install the library 
using the pip utility. Since, I don’t have root access in the Hadoop cluster, I have to install Avro 
for my local user, and the procedure is shown in Figure 8: 

 
Figure 8. Installing the Avro libraries for Python. 

 
Let’s try again: 

 
Figure 9. Successfully importing the Avro library. 

As shown in Figure 9, there is no problem this time. 
 
Now, we can write a script to convert a TSV file to Avro. We will use the script below to convert 
our small tweet collection to an Avro file. 
 
import avro.schema 
from avro.datafile import DataFileWriter 
from avro.io import DatumWriter 
 
def main(): 
    # load schema from file 
    schema = avro.schema.parse(open(“noise-reduction.avsc").read()) 
    # instantiate writer  
    writer = DataFileWriter(open("z4t.avro", "w"), DatumWriter(), schema) 
 
    doc_id = 0  # the id of the tweet 
    with open("data/z4t.csv") as f: 
        # skip header 
        f.readline() 
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       # iterate the TSV file 
        for line in f: 
            line = line.decode('utf-8').strip() 
            doc_id += 1 
            tokens = line.split("\t") 
 
            text_original = tokens[0] 
            user_screen_name = tokens[1] 
            tweet_id = tokens[2] 
            created_at = tokens[3] 
 
            # hashtags are words that start with a “#” 
            hashtags = [word for word in text_original.split() if word.startswith("#")] 
            # URLs are words that start with “http”  
            urls = [word for word in text_original.split() if word.startswith("http")] 
            # make a json object for the tweet. The keys have to map to fields in the Avro schema 
            json_tweet = {"doc_id": "egypt" + str(doc_id), "text_original": text_original, 
                           "created_at": created_at, "tweet_id": tweet_id, "user_screen_name": user_screen_name, 
                           "hashtags": "|".join(hashtags), "urls": "|".join(urls)} 
            # write to file 
            writer.append(json_tweet) 
     
    writer.close()             
    print "%s records written to avro" % doc_id 
 
 
if __name__ =="__main__": 
    main() 
 
Let’s walk through the code. First, we load the Noise Reduction schema and instantiate a 
DataFileWriter to save the Avro data in “z4t.avro”. 
 
# load schema from file 
    schema = avro.schema.parse(open(“noise-reduction.avsc").read()) 
    # instantiate writer  
    writer = DataFileWriter(open("z4t.avro", "w"), DatumWriter(), schema) 
 
Then, we open our small collection fle, “z4t.csv”. In this tab-separated file, the first row is the 
text of the tweet, the second row has the user screen name, the third row has the tweet id, and 
the fourth row has the creation time of the tweet. 
 
We iterate through each line splitting the text by tab and extracting the corresponding data: 
 
        for line in f: 
            line = line.decode('utf-8').strip() 
            doc_id += 1 
            tokens = line.split("\t") 
 
            text_original = tokens[0] 
            user_screen_name = tokens[1] 
            tweet_id = tokens[2] 
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            created_at = tokens[3] 
 
 
We can extract hashtags and URLs, by checking which words start with “#” and “http”, 
respectively (Note: this is not a perfect filter): 
    # hashtags are words that start with a “#” 
            hashtags = [word for word in text_original.split() if word.startswith("#")] 
            # URLs are words that start with “http”  
            urls = [word for word in text_original.split() if word.startswith("http")] 
 
Once we have all the data, we put it in a JSON object, and we write to the file. Notice that we 
store lists as “|”-separated strings. 
 
 json_tweet = {"doc_id": "egypt" + str(doc_id), "text_original": text_original, 
                           "created_at": created_at, "tweet_id": tweet_id, "user_screen_name": user_screen_name, 
                           "hashtags": "|".join(hashtags), "urls": "|".join(urls)} 
            # write to file 
            writer.append(json_tweet) 
 
 
Finally, we close the output file once we are done iterating the input file: 
 
writer.close()     
 

Reading Avro Files 
Reading Avro files programmatically in Java and Python is similar to writing files. We plan to 
include detailed code examples in a future edition, but, for now, we will show how to convert 
Avro data to Json using the “avro-tools” utility. Json is human-readable and easy to process by 
most programming languages. 
By typing “avro-tools” in the terminal, we get the output shown in Figure 10: 
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Figure 10. The options available in avro-tools. 

 
For now, the options that we are interested in are “tojson” and “fromjson” , which allows us to 
write Avro files to json format and vice versa. 
 
As an example, we will convert the Avro file that we generated above in Java to JSON. We run 
the following command 
 
avro-­‐tools	
  tojson	
  tweets.avro	
  >	
  tweets.json 
 
This command creates a file containing three tweets: 
{"doc_id":"egypt.1","tweet_id":"123k25lse","text_clean":"This	
  is	
  the	
  original	
  
tweet","text_original":"This	
  is	
  the	
  original	
  tweet	
  #freedom	
  #egypt	
  
http://twi.tter.com","created_at":"2014-­‐12-­‐01	
  
13:00:12","user_screen_name":"CNN","user_id":"123","source":null,"lang":{"string":"English"},"
favorite_count":null,"retweet_count":null,"contributors_id":null,"coordinates":null,"urls":{"s
tring":"http://twi.tter.com"},"hashtags":{"string":"egypt|freedom"},"user_mentions_id":null,"i
n_reply_to_user_id":null,"in_reply_to_status_id":null} 
{"doc_id":"egypt.2","tweet_id":"123k25lse","text_clean":"This	
  is	
  another	
  
tweet","text_original":"This	
  is	
  another	
  tweet","created_at":"2014-­‐12-­‐01	
  
13:00:12","user_screen_name":"MSNBC","user_id":"235","source":null,"lang":{"string":"English"}
,"favorite_count":null,"retweet_count":null,"contributors_id":null,"coordinates":null,"urls":{
"string":"http://twi.tter.com"},"hashtags":{"string":"egypt|freedom"},"user_mentions_id":null,
"in_reply_to_user_id":null,"in_reply_to_status_id":null} 
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{"doc_id":"egypt.3","tweet_id":"12413edsf2","text_clean":"This	
  is	
  the	
  original	
  
tweet","text_original":"RT	
  @CNN:	
  \"This	
  is	
  the	
  original	
  tweet	
  #freedom	
  #egypt	
  
http://twi.tter.com\"","created_at":"2014-­‐12-­‐01	
  
13:00:12","user_screen_name":"paul","user_id":"421","source":null,"lang":{"string":"English"},
"favorite_count":null,"retweet_count":{"int":1},"contributors_id":null,"coordinates":null,"url
s":{"string":"http://twi.tter.com"},"hashtags":{"string":"egypt|freedom"},"user_mentions_id":n
ull,"in_reply_to_user_id":{"string":"123k25lse"},"in_reply_to_status_id":null} 
 

6.3 Loading Avro Data into HBase  
We have written a command-line program to load Avro data into HBase. Teams can use this 
utility to easily import their data. The current version loads the data sequentially; we could load 
our small collection into HBase in about one minute using this program. However, we don’t 
expect it to scale to the big collections, so we are working on a MapReduce implementation. 
 
The program takes two arguments: 1) an Avro file generated from any of the schemas provided 
to the teams and 2) either the word “tweets” or “webpages” indicating what kind of data to write. 
 
As an example, we will load the avro file created in the “Writing Avro Files (Python)” section. 
The example assumes HBase is currently running and that there is a table called ‘tweets’ with 
column families “original” and “analysis“ (see Section 6.2). Run the command: 
 
java	
  -­‐jar	
  hbase-­‐loader.jar	
  z4t.avro	
  tweets 
 
After about one minute, the program should report the number of rows inserted to HBase. You 
can see that the data has been loaded using the HBase shell (Figure 11). 

 
Figure 11. ‘tweets’ table after importing a sample collection. 

 
 
We have also developed a MapReduce version of this program. The MapReduce JAR takes 
three arguments: 1) an Avro file generated from any of the schemas provided to the teams, 2) 
an output directory name in HDFS, and 3) the name of an HBase table with column families 
“original” and “analysis” where the data from 1) will be stored. For example, we will load the 
z4t.avro file that we created above. First, we store the file in HDFS: 
hadoop	
  fs	
  -­‐mkdir	
  data_for_upload 
hadoop	
  fs	
  -­‐copyFromLocal	
  z4t.avro	
  data_for_upload 
hadoop	
  fs	
  -­‐ls	
  data_for_upload 
 
After running these commands, we should see the file stored in HDFS, as shown in Figure 12: 
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Figure 12. Loading a file from the main Hadoop node into HDFS. 

 
Then, we start the MapReduce job as follows: 
 
hadoop	
  jar	
  mr-­‐hbase-­‐loader.jar	
  data_for_upload	
  output	
  tweets 
 
We can see the progress of the MapReduce job either in Hue or in the Resource Manager node 
of the cluster. For the cluster used in the class, the Resource Manager is at 
http://128.173.49.66:8088/cluster . Figure 13 is a screenshot of the Resource Manager view: 

 
Figure 13. Our MapReduce job is being processed. 

 
This shows that our job (first row) is queued to start. As the job progresses, we can see the 
status in the terminal, as shown in Figure 14: 
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Figure 14. Progress of a MapReduce job. 

 
 As a technical note, this job does not have a Reduce task. All the data is uploaded in the Map 
task. 

6.3 Crawling web pages  
 
In this project, we initially only have tweet data. We obtain web page data by crawling the URLs 
mentioned in tweets. Generally, to crawl web pages, one can simply use a URL library, such as, 
urllib in Python. However, in this project, we have terabytes of tweets, so we want to crawl data 
in parallel and store the crawled data in a distributed manner. After obtaining the web page 
dataset, we still have to parse and process the data. It is hard to achieve these goals with a 
simple Python script. Luckily, there is an open source program called Apache Nutch [14] that 
provides all the features we are seeking. 
 
Below, we will briefly introduce how to crawl web pages using a Python script. Then, we will 
introduce Apache Nutch, including its architecture and how to install, and a quick start guide. 
Finally, we will demonstrate using Nutch to crawl the web pages mentioned in billions of tweets. 
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6.5.1 Python Script Approach 
 
There is a Python script provided by the TAs of the class. We ran the script on our small tweet 
collection. Our tweets collection is about the Egyptian revolution, and it has 380,404 tweets. 
Extracting the URLs from these tweets and downloading the corresponding web pages takes 
about 1 minute on a 2012 Mac Air. The screenshot in Figure 15 shows the output of the script 
and the list of text files generated. 

 
Figure 15. Crawling web page data using Python. 

 
Although the running time of the script is very short for our collection, it was reported by some 
teams that the script would take about half an hour to run for some collections. This is a huge 
performance problem if we are going to process several TBs of tweets. 
 

6.5.2 Apache Nutch Approach 
 
There are many web crawlers out there. The reason we choose Nutch is that it fits the purpose 
of large-scale crawling (ultimately, we want to fetch terabytes of web pages). Furthermore, 
Nutch nicely integrates with our Hadoop cluster. 
 
Nutch takes a plain text file as input. The file is just a list of URLs serving as the starting point of 
the crawling loop. Crawling is an iterative process:   

URL→web page→new URL→web page→ … 
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Figure 16. Nutch Architecture 

 
Now, we want to document our experience of installing Nutch 1.9 and crawling web page a 
Hadoop cluster. 

Quick Start Guide 
We can use the crawl script at “bin/crawl” to start crawling. 
 

- save all the urls to a plain text file seed.txt user a folder (eg. urls) 
- load the that folder into HDFS: hdfs	
  dfs	
  -­‐copyFromLocal	
  urls	
  urls 
- use the crawl script to start crawling 

bin/crawl	
  urls	
  SitesFromTweets	
  <solr_url>	
  1 
- where urls is the path to the directory containing URL list 
- SitesFromTweets is the directory to store the crawled web pages, will created 

automatically if not exist. 
- <solr_url> is the Solr instance to index the crawled web pages. Because in this 

project, we don’t want the web pages to be indexed directly by Solr, we disable 
these function by commenting out the related  code in bin/crawl script. Therefore, 
one can provide any string at this place. 

- number 1 is the number of round Nutch will perform crawling. Because we only 
crawl the web pages in the URL list, this number should be set to 1. 
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Extracting URLs From a Big Tweet Collection 
All the big collections are currently stored as Avro files, so the Python script used to extract 
URLs from CSV files needs to be modified to work with Avro. Python can directly read Avro 
files, but for simplicity, we use avro-tool to convert an Avro file to JSON; then, Python will read 
tweets from a JSON file. 
 
To expand the shorten URLs, we use the urllib of Python as follows: 
 
resp	
  =	
  urllib.urlopen(shourt_url) 
long_url	
  =	
  resp.url 
 
Expanding short URLs turns out to be the bottleneck of the entire web page crawling process 
because the operation of expanding URLs requires us to visit the web pages through an Internet 
connection, and we have little control over how long the communication takes. What we can do 
is to run the Python script in parallel to fire multiple connections, but, in a cluster setting, we 
access the internet through only one IP address. Multiple connections may be rejected by the 
URL expanding server. 
 
Given the above, our current script uses only one connection. The script expands one URL in 
slightly less than one second. In other words, our script expands 36,000 URLs in 9.5 hours in 
our testing on the head node of the cluster hadoop.dlib.vt.edu. In our big collection, there are 
11,747,983 tweets mentioning 9,093,437 shortened URLs; 4,510,250 of them are unique. To 
expand all these 4,510,250 URLs using the current serial implementation would take 49 days. 
Therefore, we can only expanded some of them, the most frequently mentioned URLs. 
 
Below, are the instructions to run the script: 

- Run hdfs	
  dfs	
  -­‐copyToLocal	
  /class/CS5604S15/dataset/#egypt_B_AVRO	
  
~/dataset 

- Run avro-­‐tools	
  to	
  json	
  ~/dataset/#egypt_B_AVRO/part-­‐m-­‐0000.avro	
  >	
  
egypt_B.json 

- Run python	
  extractURLs.py	
  egypt_B.json	
  10 
-­‐ where 10 means extract only the URLs that appear at least 10 times	
  

Here is the extractURLs.py script: 
 

import	
  sys 
import	
  re 
import	
  urllib 
from	
  collections	
  import	
  defaultdict 
 
#	
  run	
  this	
  script	
  like: 
#	
  python	
  extractURLs.py	
  egypt_tweets.json	
  3 
#	
  where	
  egypt_tweets.json	
  can	
  be	
  extracted	
  from	
  egypt_tweets.avro	
  by	
  "avro-­‐tool	
  tojson" 
#	
  where	
  3	
  means	
  only	
  extract	
  those	
  URLs	
  that	
  appear	
  at	
  least	
  3	
  times 
#	
  You	
  can	
  try	
  this	
  script	
  on	
  a	
  very	
  large	
  json	
  file 
#	
  Use	
  Ctrl	
  +	
  c	
  to	
  stop	
  this	
  script,	
  the	
  already	
  expanded	
  URLs	
  will	
  still	
  be	
  saved. 
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tweetFile	
  =	
  sys.argv[1] 
archiveID	
  =	
  tweetFile.split(".")[0] 
min_repeat	
  =	
  int(sys.argv[2]) 
 
####	
  load	
  tweets	
  from	
  file 
f	
  =	
  open(tweetFile,"r") 
f.close() 
tweets	
  =	
  [] 
with	
  open(tweetFile,"r")	
  as	
  f: 
	
  	
  	
  	
  for	
  line	
  in	
  f.readlines(): 
	
  	
  	
  	
  	
  	
  	
  	
  t	
  =	
  re.findall(r'"text":\{"string":"(.+)"\},"to_user_id"',line)[0] 
	
  	
  	
  	
  	
  	
  	
  	
  tweets.append(t) 
 
n_tweets	
  =	
  len(tweets) 
print	
  "#	
  of	
  tweets	
  read	
  from	
  %s:	
  %d"	
  %	
  (tweetFile,	
  len(tweets)) 
 
####	
  Extract	
  URLs	
  from	
  Tweets 
urls_dct	
  =	
  defaultdict(int) 
n_urls	
  =	
  0 
for	
  tweet	
  in	
  tweets: 
	
  	
  	
  	
  regExp	
  =	
  "(?P<url>https?://[a-­‐zA-­‐Z0-­‐9\./-­‐]+)" 
	
  	
  	
  	
  url_li	
  =	
  re.findall(regExp,	
  tweet) 
	
  	
  	
  	
  while	
  (len(url_li)	
  >	
  0): 
	
  	
  	
  	
  	
  	
  	
  	
  url	
  =	
  url_li.pop() 
	
  	
  	
  	
  	
  	
  	
  	
  n_urls	
  +=	
  1 
	
  	
  	
  	
  	
  	
  	
  	
  urls_dct[url]	
  +=	
  1 
 
print	
  "#	
  of	
  short	
  URLs	
  in	
  tweets:",	
  n_urls 
print	
  "#	
  of	
  Unique	
  short	
  URLs	
  in	
  tweets:",	
  len(urls_dct.keys()) 
 
####	
  filter	
  out	
  the	
  more	
  frequent	
  URLs 
uniq_urls_high_freq	
  =	
  [] 
for	
  url	
  in	
  urls_dct: 
	
  	
  	
  	
  if	
  urls_dct[url]	
  >=	
  min_repeat: 
	
  	
  	
  	
  	
  	
  	
  	
  uniq_urls_high_freq.append(url) 
print	
  '#	
  of	
  unique	
  URLs	
  repeat	
  at	
  least	
  %d	
  times:	
  %d'	
  %	
  (min_repeat,	
  
len(uniq_urls_high_freq)) 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   
####	
  expand	
  shorten	
  URLs	
  and	
  save	
  to	
  file 
urls_fname	
  =	
  "%s_urls.txt"	
  %	
  archiveID 
with	
  open(urls_fname,"w")	
  as	
  f_urls: 
	
  	
  	
  	
  expanded_urls_lst	
  =	
  [] 
	
  	
  	
  	
  n_uniq_urls_high_freq	
  =	
  len(uniq_urls_high_freq) 
	
  	
  	
  	
  i_url	
  =	
  0 
	
  	
  	
  	
  for	
  url	
  in	
  uniq_urls_high_freq: 
	
  	
  	
  	
  	
  	
  	
  	
  print	
  "%d/%d"	
  %	
  (i_url,n_uniq_urls_high_freq), 
	
  	
  	
  	
  	
  	
  	
  	
  i_url	
  +=	
  1	
  	
  	
  	
   
	
  	
  	
  	
  	
  	
  	
  	
  print	
  "expanding",url, 
	
  	
  	
  	
  	
  	
  	
  	
  if	
  'http://t.co/'	
  or	
  'https://t.co/'	
  in	
  url: 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  try: 
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  resp	
  =	
  urllib.urlopen(url) 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  except	
  KeyboardInterrupt: 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  "" 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  "-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐" 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  "%d	
  short	
  URLs	
  in	
  %d	
  tweets:"	
  %	
  (n_urls,	
  n_tweets) 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  "%d	
  unique	
  short	
  URLs"	
  %	
  (len(urls_dct.keys())) 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  '%d	
  unique	
  URLs	
  repeat	
  at	
  least	
  %d	
  times'	
  %	
  
(len(uniq_urls_high_freq),min_repeat) 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  "URLs	
  save	
  to:",urls_fname	
  	
  	
  	
   
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  exit() 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  except: 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  "	
  FAILED!" 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  continue 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  "" 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  url	
  ==	
  resp.url: 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  continue 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  url	
  =	
  resp.url 
	
  	
  	
  	
  	
  	
  	
  	
  expanded_urls_lst.append(url) 
	
  	
  	
  	
  	
  	
  	
  	
  f_urls.write("%s\n"	
  %	
  url) 
 
print	
  "-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐" 
print	
  "%d	
  short	
  URLs	
  in	
  %d	
  tweets:"	
  %	
  (n_urls,	
  n_tweets) 
print	
  "%d	
  unique	
  short	
  URLs"	
  %	
  (len(urls_dct.keys())) 
print	
  '%d	
  unique	
  URLs	
  repeat	
  at	
  least	
  %d	
  times'	
  %	
  (len(uniq_urls_high_freq),min_repeat) 
print	
  "URLs	
  save	
  to:",urls_fname	
  	
  	
  	
   

 
 
 

7. Developer’s Manual  
7.1 Technical Specifications 

7.1.1 Hadoop Cluster Specifications 
In this course, we use two different Hadoop systems for development and production.  
 
Development is done in a virtual machine provided by Cloudera. This virtual machine runs a 
Red Hat operating system and simulates a single-node Hadoop cluster installation. The virtual 
machine comes installed with all the tools that we need in the production cluster, except for 
Nutch, for which we describe the installation in Section 7.2.  
The production cluster has the CDH 5.3.1 Cloudera version of Hadoop installed. The cluster 
has the following specifications: 

● Number of nodes 
○ 19 Hadoop nodes 
○ 1 Manager node 
○ 2 Tweet DB nodes 
○ 1 HDFS backup node 
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● CPU 
○ Intel i5 Haswell Quad core 3.3 Ghz Xeon 

● RAM 
○ 660 GB in total 
○ 32 GB in each of the 19 Hadoop nodes 
○ 4 GB in the manager node 
○ 16 GB in the tweet DB nodes 
○ 16 GB in the HDFS backup node 

● Storage 
○ 60 TB across Hadoop, manager, and tweet DB nodes 
○ 11.3 TB for backup 

7.1.2 Architecture and Data Workflow 
In coordination with the other teams, we designed the data workflow depicted in Figure 17. The 
main stages of this workflow are the following: 

1. HDFS Data Loading 
a. Twitter data is loaded from a relational database into the Hadoop cluster using 

Sqoop, a tool for bulk loading structured data into HDFS. 
b. Web page data is fetched using Nutch, a web-crawler, and stored into HDFS as 

plain text, HTML, and WARC files. 
2. Noise Reduction 

a. Tweets and web pages are processed by the Noise Reduction team. The noise-
reduced data is stored in HDFS as plain text, HTML, and in Avro format. 

3. Data Analysis 
a. The data analysis teams take the noise-reduced data as input for their respective 

tasks. Every team will produce (in addition to their other outputs), a file in Avro 
format to be loaded into HDFS. 

b. As necessary, every team will also produce data to be shared with other teams. 
For example, the Clustering team can produce a file to be used by the Social 
Networks team. 

4. HBase Data Loading 
a. The data produced at the end of Steps 2 and 3 will be loaded into HBase by the 

creator of the data using a MapReduce program written by our team. The noise-
reduced data will be loaded first, and the rest of the teams will subsequently load 
data in the form of updates or additions to the existing noise-reduced data in 
Solr.  

5. Indexing into Solr 
a. Data in HDFS will be indexed into Solr using the hbase-indexer  tool. 
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Figure 17. Data workflow for our course project. 

 

7.2 Data 

7.2.1 Data Description 

Tweets 
The initial tweet data loaded into the cluster is in three formats: Avro, CSV, and Sequence Files. 
However, in this class, we mostly used the Avro version, so we just show an example of this 
format (after converting to JSON) below.  
 
{ 
	
  	
  	
  "archivesource":{ 
	
  	
  	
  	
  	
  	
  "string":"twitter-­‐search" 
	
  	
  	
  }, 
	
  	
  	
  "text":{ 
	
  	
  	
  	
  	
  	
  "string":"RT	
  @WilliamMScherer:	
  Colorado	
  Rockies	
  winter	
  storm.	
  Central	
  Mtns:	
  4\"-­‐8\"	
  
&gt;10,000'kft.	
  1\"-­‐3\"	
  snow:9000'-­‐10000'kft.	
  Pikes	
  Peak:8\"-­‐14\"+.	
  #COwx	
  â€¦" 
	
  	
  	
  }, 
	
  	
  	
  "to_user_id":{ 
	
  	
  	
  	
  	
  	
  "string":"" 
	
  	
  	
  }, 
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  "from_user":{ 
	
  	
  	
  	
  	
  	
  "string":"gjeni_u" 
	
  	
  	
  }, 
	
  	
  	
  "id":{ 
	
  	
  	
  	
  	
  	
  "string":"520330344818819073" 
	
  	
  	
  }, 
	
  	
  	
  "from_user_id":{ 
	
  	
  	
  	
  	
  	
  "string":"1027114068" 
	
  	
  	
  }, 
	
  	
  	
  "iso_language_code":{ 
	
  	
  	
  	
  	
  	
  "string":"en" 
	
  	
  	
  }, 
	
  	
  	
  "source":{ 
	
  	
  	
  	
  	
  	
  "string":"<a	
  href=\"http://twitter.com\"	
  rel=\"nofollow\">Twitter	
  Web	
  Client</a>" 
	
  	
  	
  }, 
	
  	
  	
  "profile_image_url":{ 
	
  	
  	
  	
  	
  	
  "string":"http://abs.twimg.com/images/themes/theme10/bg.gif" 
	
  	
  	
  }, 
	
  	
  	
  "geo_type":{ 
	
  	
  	
  	
  	
  	
  "string":"" 
	
  	
  	
  }, 
	
  	
  	
  "geo_coordinates_0":{ 
	
  	
  	
  	
  	
  	
  "double":0.0 
	
  	
  	
  }, 
	
  	
  	
  "geo_coordinates_1":{ 
	
  	
  	
  	
  	
  	
  "double":0.0 
	
  	
  	
  }, 
	
  	
  	
  "created_at":{ 
	
  	
  	
  	
  	
  	
  "string":"Thu	
  Oct	
  09	
  21:49:56	
  +0000	
  2014" 
	
  	
  	
  }, 
	
  	
  	
  "time":{ 
	
  	
  	
  	
  	
  	
  "int":1412891396 
	
  	
  	
  } 
} 
 

Web pages 
Web pages crawled from Nutch come in a serialized format. We do not show this format here, 
but, below, we describe what data is extracted from these pages in our Avro schemas. 

Sizes of the collections 
Table 4 reports the sizes (in megabytes) of the tweet and web page collections. The “S” and “B” 
suffixes indicate that a collection is small or big, respectively. The black cells in the table 
correspond to data that we did not have at time of writing. 
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Table 4. Sizes of the collections used in this course. 

7.2.2 HBase Schemas 
The HBase schema for both tweets and web pages was designed in collaboration with the Solr 
team. We decided to have two separate column families (i.e., column groups) for the content 
and metadata of a document and for the analysis data produced by each team. Below, we show 
the schema for tweets; the schema for web pages can be found in Appendix E. 
 
Column Family Column Qualifier 
========================================== 

     
original    
    collection 

 text_original    
    text_clean 
    text_clean2 
    created_at 
    source  
    user_screen_name 
    user_id 
    lang 
    retweet_count 
    favorite_count 
    contributors_id 
    coordinates 
    urls 
    hashtags  
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    user_mentions_id  
    in_reply_to_user_id 
    in_reply_to_status_id 
     
analysis   ner_people 
    ner_locations 
    ner_dates 
    ner_organizations 
    cluster_id 
    cluster_label 
    class 
    social_importance 
    lda_vectors 
    lda_topics 
 
 
An important consideration when designing an HBase table is to decide on an appropriate 
convention for the row ID (i.e., unique identifier) of an HBase row. Data in HBase is stored in 
lexicographical order; one can take advantage of this fact to design the row ID in such a way 
that common operations become efficient. For example, at the time of design and 
implementation of our project, we considered that it would be of interest for a user to get data for 
a particular collection. With that in mind, we decided to use the collection name as a prefix for 
each document. The format of the row ID is [collection_Name]--[UID], where collection_name 
is the collection that the document belongs to and UID is a unique identifier for the document. 
An example of a row ID for a tweet is “Jan.25_S--100003”, indicating that the tweet is part of the 
Jan.25_S collection. This format for the row ID is more useful than just using a unique identifier, 
such as the tweet ID. However, a disadvantage of this naming convention is that bulk-loading 
can be inefficient and cause load balancing problems because it is not immediately obvious how 
to split an HBase table into balanced regions with such specific prefixes. 

7.2.3 Avro Schemas  
 
Every team processing data in HDFS has an Avro schema. For the purposes of loading HBase 
and standardization, we asked teams to output their results of data processing in Avro format 
according to our proposed schemas. 
The schemas simply reflect the HBase schema. The only required field for each Avro object is 
“doc_id”, since we need to know the id of the document to be updated in HBase (the Noise 
Reduction team has some additional required fields). Null fields or empty strings will not be 
uploaded to HBase. 
As said above, every team has a separate schema. This separation has two purposes: 1) 
avoiding accidental overwrites between teams and 2) being able to make changes to the 
schema of one team without affecting the rest of the class.  
The detailed schemas for each team can be found in Appendix A. 
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Field Definitions 
Most fields in the schema are text strings, except for a few integer fields in the Twitter schema. 
Fields that can be interpretable as lists (i.e., hashtags, list of clusters, list of topics, list of NER 
locations) are written as pipe-separated strings in Avro. For example, the list of hashtags 
(“#Egypt”, “#Jan25”, “#revolution”) should be written as  “Egypt | Jan25 | revolution”. 
 
Compiling the Avro Schemas 
We show how to compile the Twitter schemas. The process for web pages is the same. First, 
we put all the schemas from the Appendix in the same directory shown in Figure. 18: 

 
Figure 18. Directory containing a set of Avro schemas to be compiled 

 
 
Then, we run the avro-tools utility: 
 
avro-­‐tools	
  compile	
  schema	
  tweets	
  ./ 
 
This command generates the Java classes corresponding to the schema in the current 
directory, and we obtain the directory structure shown in Figure. 19: 
 

 
Figure 19. Directory structure of the Java classes generated from an Avro schema 

 
Instructions on how to use the generated classes for reading and writing Avro can be found in 
the User’s manual. 

7.3 Installation 

7.3.1 Installation of Solr 
Solr can run on any platform as long as Java is installed. As of Solr 4.10.3, it requires Java 1.7 

or greater. To check the version of Java, run Java -version in terminal. 

Get Solr running (on Mac OS X) 

1. Download Solr 4.10.3 from http://lucene.apache.org/solr/  
1. Extract the downloaded file. You will get a folder named solr-4.10.3 containing bin, docs, 

and example folders 

2. Run bin/solr start -e cloud -noprompt to start 
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3. There are two collections created automatically, collection1 and gettingstarted. We will 
only use collection1 here. 

4. Indexing Data: Install SimplePostTool. Set $CLASSPATH environment variable: export 

CLASSPATH=dist/solr-core-4.10.3.jar    

5. Indexing a directory of “rich” files. Run                                                                        java 

-Dauto -Drecursive org.apache.solr.util.SimplePostTool docs/ 

6. Indexing Solr XML: java org.apache.solr.util.SimplePostTool exampledocs/*.xml 

7. Indexing JSON: java -Dauto org.apache.solr.util.SimplePostTool 

example/exampledocs/books.json 

8. Indexing CSV (Comma/Column Separated Values): java -Dauto 

org.apache.solr.util.SimplePostTool example/exampledocs/books.csv 

 

Loading data into Solr 
 

Run java -Dauto -Drecursive org.apache.solr.util.SimplePostTool ~/5604/data/ 

where ~/5604/data/ is the location of  the sample collection in my computer. 

 
Now look at the administration page of Solr at http://localhost:8983/solr/#/collection1  

 
Figure 20. Administration page of Solr 
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In Figure. 20 you can see all the 47 files have been indexed. 
     By using the Query tab, you can search all the indexed documents. The results will be shown 
in JSON format. 
 

7.3.2 Installation of Hadoop 
Use the virtual machine version of Hadoop from 
http://www.cloudera.com/content/cloudera/en/downloads/quickstart_vms/cdh-5-3-x.html 
 
After you enter the cluster, run  source	
  /etc/my.sh. This will set up all the environment 
variables. To run a simple example, execute the following commands: 
 
cd	
  $HADOOP_PREFIX	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  which	
  is	
  /usr/local/hadoop 
bin/hadoop	
  jar	
  share/hadoop/mapreduce/hadoop-­‐mapreduce-­‐examples-­‐2.6.0.jar	
  grep	
  input	
  
output	
  ‘dfs[a-­‐z.]+’ 
 

Run an example of HDFS: 
We follow the tutorial from [11]: 

1. Download example input data 
2. Restart the Hadoop cluster: 

$/usr/local/hadoop/bin/start-­‐all.sh 
3. Copy local example data to HDFS: 

/bin/hadoop	
  dfs	
  -­‐copyFromLocal	
  /Download_datapath/	
  /HDFS	
  directory	
  store	
  input	
  
data/ 

 

Run the MapReduce job 
 

$bin/hadoop	
  jar	
  hadoop*examples*.jar	
  command	
  /HDFS	
  directory	
  store	
  input	
  data/	
  
/HDFS	
  Directory	
  store	
  output/ 
 

Retrieve the job results from HDFS 
 

1. Read it directly: 
 

$bin/hadoop	
  dfs	
  -­‐cat	
  /HDFS	
  Directory	
  store	
  output/part-­‐r-­‐00000 
 
      2.   Or copy it from HDFS directory to local directory: 
 

$mkdir	
  /local	
  directory/	
  
$bin/hadoop	
  dfs	
  -­‐getmerge	
  /HDFS	
  Directory	
  store	
  output/	
  	
  /local	
  directory/ 

7.3.3 Installation of Apache Nutch 
Since we want to use Hadoop cluster, the binary distribution of Nutch doesn’t work in this case. 
The distribution works well in “local mode”, i.e., not using Hadoop, but from what we could 
determine, there is not an “apache-nutch-1.9.job” file in the binary distribution, which is required 
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to be deployed to all the data nodes in the cluster. For this reason, we build Nutch from the 
source code. 
To start crawling web pages, we must declare a crawler in the Nutch configuration file, 
“conf/nutch-site.xml”. We add the following lines: 
 
<property> 
 <name>http.agent.name</name> 
 <value>MyCrawler</value> 
</property> 

7.4 Operation 

7.4.1 MapReduce Introduction 

MapReduce is a programming model for processing large data sets with a parallel, 
distributed algorithm on a cluster[6].  

The name MapReduce comes from functional programming: 

- Map is the name of a higher-order function that applies a given function to each 
element of a list. Example: 

val numbers = List(1,2,3,4,5) 

numbers.map(x => x * x) == List(1,4,9,16,25). 

- Reduce is the name of a higher-order function that analyze a recursive data structure 
and recombines, through use of a given combining operation, the results of recursively 
processing its constituent parts, building up a return value.  Example 

val numbers = List(1,2,3,4,5) 

numbers.reduce(_ + _) == 15. 

 
MapReduce takes an input, splits it into smaller parts, executes the code of the mapper 
on every part, shuffles and sorts all the results, then gives them to one or more reducers 
that merge all the results into one. 
The canonical first example of a MapReduce program is counting words in a big 
collection of documents. An implementation of this example can be found in the Apache 
Hadoop website [17] and is illustrated in Figure 21. The Mapper task maps each word in 
a line to the number 1 and sends this pair to the Shuffler and Sorter. Once the keys are 
sorted, the Reducer task simply aggregates the number of times a unique key appears 
to obtain the final word count. 



46 

 
Figure 21. Example of a simple MapReduce program for counting words. Each mapper emits a <word, 1> key-value 

pair. The shufflers sort these pairs lexicographically by key and send them to the reducers, which simply add the 
counts for each word to obtain a final count. 

 

7.4.2 Loading Data Into HBase  

Non-Distributed Program 
We wrote a program to load Avro data into HBase sequentially: hbase-loader.jar. This program 
can load a small tweet collection (around 500 MBs of data) into HBase in under two minutes. 
The code can be found in Appendix B. The code was compiled into a runnable jar file called 
hbase-loader.jar. Instructions on how to run the jar file can be found in the User’s manual.  

MapReduce Program 
hbase-loader.jar does not scale to the big collections, which are between one and two orders of 
magnitude larger in size than the small collections. Trying to load a big collection from the main 
node with hbase-loader.jar throws the Java OutOfMemory exception, even when changing the 
default settings of the Java Virtual Machine to use all the available memory in the node. We 
developed a MapReduce version of the program to load the big collections: mr-hbase-loader.jar. 
This program is a Map-only task that reads Avro files from HDFS and writes the deserialized 
data to HBase. The code can be found in the Appendix. 
 
We note that the developer should set cluster-specific configuration in the main function of the 
MapReduce program. For example, in the Hadoop cluster used in this class, Zookeeper was 
configured to run in nodes 1, 2, and 3. The default HBase configuration expects Zookeeper to 
be running in each node. We can adjust configuration settings in the config object of the 
MapReduce program (See Appendix C) for an example. 

Bulk-Loading Program 
When using HBase programmatically, as in the two implementations above, the data to be 
loaded traverses the entire write-path depicted in Figure 22. First, data for a row is received by 
the Region Server, which is a program that determines the region in the cluster that the row 
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belongs to; we note that data in HBase is stored in lexicographical order by key, so a region 
contains keys in this order, and, when amount of rows in the regions becomes too large, the 
Region Server splits it into two. After the row gets to a region, it then goes to a local MemStore, 
where the data is kept in memory temporarily until a certain number of operations have been 
submitted to the region. At that time, the row data is written to an HFile for long-term storage. 
It is possible to bypass the HBase workflow by writing HFiles and directly writing those files to 
the appropriate region in HBase, as described in [26]. The three main parts of the process are  
 

1. Pre-splitting the HBase table, so that each region has a roughly balanced number of 
rows. 

2. Writing the HFiles using a MapReduce program (our program is in Appendix F). 
3. Using the HBase libraries to load the HFiles. 

 
Disadvantages of bulk-loading 
One main challenge in the bulk-loading process is pre-splitting the destination table into an 
appropriate number of regions. When we create the HFiles to be uploaded into HBase (step 2 
above), the number of reducers in the MapReduce job is equal to the number of regions we 
create in step 1. In fact there is a one-to-one mapping between reducers and regions in that 
each reducer is in charge of processing all the data that is going to ultimately reside in the 
corresponding region. If the HBase table is pre-split in such a way that most of the input data 
goes to one single region (i.e., the load is unbalanced), then one of the reducers in the 
MapReduce job will be heavily loaded, and we will essentially be creating the HFiles 
sequentially, losing the distributed computing advantage.  
We have explained why a good initial split of an HBase table is important, but not how to get 
good splits. Before splitting the destination table, it is necessary to have a good understanding 
of the distribution of the row IDs in our data. Sometimes, the data is naturally well-distributed. 
For example, suppose that the row IDs of our dataset are 8-digit numbers uniformly distributed 
in the range [00000000, 99999999]. Then, it is sufficient to pre-split the HBase table into 10 
regions with the split points being the natural numbers from 0 to 9. If, on the other hand, our row 
IDs are words in the English dictionary, pre-splitting the table into 26 regions, one for each letter 
of the alphabet, would not give us a balanced load, since some starting letters are more 
common than others (i.e., there are more words starting with “T” than words starting with “X”). 
Therefore, pre-splitting requires us to do a preliminary analysis of the data to estimate the row 
ID distribution. 
An HBase schema designer who foresees using bulk-loading should incorporate “uniformity” as 
one aspect to consider when deciding on a row ID. For example, in our schema for the IDEAL 
project, we are using the collection name as a prefix for the row ID of a document –for instance, 
“egypt_B--00012”. Retrieving data for a particular collection can be done efficiently with this ID 
format –that was one of our goals in the design. However, it is going to be very hard to keep the 
load balanced across regions with these row IDs, unless we know in advance the names of 
most of the collections that we are interested in. If we knew that Solr is going to be the only 
“user” of HBase and that we are not interested on optimizing any specific user queries, we could 
change the ID to something better distributed yet meaningless to a person. A key that balances 
the opposing goals of being well-distributed yet informative is left as an open question. 
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Another disadvantage of bulk-loading specific to our project is that, by skipping the HBase write-
path, we are also avoiding the table replication mechanism. Briefly, table replication is a process 
by which the data of an HBase table in one cluster is copied to another cluster. The real-time 
Lily Indexer that we are using to load data from HBase into Solr critically depends on table 
replication. Therefore, if we use bulk-loading, we are limiting to only loading Solr in batches of 
data and not in real time. 
 

 
Figure 22. Depiction of the HBase write-path. Data to be inserted into an HBase table is first received by a Region 
Server that is in charge of sending the data to its appropriate Region in the cluster (based on row ID). The Region 

server handles a local memory space and decides when to write data to disk in the form of HFiles. 
 

8. Conclusions and Future Work 
8.1 Conclusions 
Our proposed solution makes it easy to integrate the results from different teams working 
independently. We found that we could combine results from all the teams in HBase 
incrementally very quickly. Our ultimate goal, of course, is loading data into Solr efficiently and 
indexing new results as we get them. We could not scale the indexing process to the big 
collections by the end of the course, but we believe that it is simply a matter of giving the Solr 
installation more computing resources.  
Regarding our use of Avro for standardization of the data, we conclude that it was a good 
design decision to use this format. Avro is well-supported by the Hadoop infrastructure (i.e., 
easy to handle in HDFS and via MapReduce) and supports versioning, which is a very important 
property for a young project like IDEAL. Having a schema for each team was valuable during 
the initial stages of the class where we still had to settle details about the output of each team 
and the data needed in Solr, and we believe that this property will also be valuable at all points 
of the project as new ways to analyze the collections are proposed. 
As a general, Hadoop is an appropriate framework for a project like IDEAL. Most teams were 
able to do their analysis in a matter of minutes using existing tools for Hadoop, and the few 
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teams that had to write their own MapReduce programs did not have any major difficulties –an 
exception being the Social Networks team, who had to use a different framework.  

8.2 Future Work 
We name just a few open challenges. First, we wrote programs for most of the data handling 
tasks, such as pre-processing data and uploading to HBase. Writing specialized programs has a 
development cost that could be avoided using existing off-the-shelf tools. For example, we could 
use the Apache Pig [21] platform to move data in Avro format from HDFS to HBase. Apache Pig 
also abstracts many common data analysis tasks, such as summarization. Teams can make 
use of this tool instead of writing their own programs. Second, even though Hadoop was a good 
fit in the class project, we recommend researching Spark. Spark is an engine for large-scale 
data processing. The engine can run either in standalone mode or in a distributed system like 
Hadoop. According to the Spark website, this framework can run in as little as 8 GBs of memory 
per node (in a distributed setting), and scale to “hundreds of gigabytes.” Thus, the Hadoop 
cluster that we used has more than enough resources for accommodating Spark. When 
possible, Spark works with data in memory, thus avoiding costly disk I/O operations. In practice, 
Spark has been shown to be faster than MapReduce. Recently, Spark won that Daytona 
Graysort Contest, being the fastest open-source engine to sort 1 petabyte (1000 terabytes) of 
data [25]. Furthermore, the engine is unarguably a superior choice when it comes to running 
iterative algorithms ---which have to be scheduled as a sequence of jobs in MapReduce. For our 
use case, running iterative algorithms efficiently is very important, since many machine-learning 
tasks, such as K-means clustering and PageRank, are iterative in nature. Another place for 
improvement is performance tuning in the Hadoop cluster. Analyzing the log files produced by 
the many MapReduce jobs run through the semester would give us insights on how to make the 
jobs run faster. For this course, speed was generally not a problem, so we leave performance 
tuning for future work. Finally, as mentioned in Section 7.4.2, if we want to use a bulk-loading 
approach for loading data into HBase, it will be necessary to formulate a row ID format that 
gives a better load balancing than the current format. 
 

9. Inventory of VTechWorks Files   
1. Final report: HadoopFinalReport.pdf 
2. Final report for editing: HadoopFinalReport.docx 
3. Final presentation: HadoopPresentation.pdf 
4. Final presentation for editing: HadoopPresentation.pptx 
5. Code: hadoop_team_code.tar.gz 

a. Avro schema for tweets and webpages 
b. Our three programs for HBase loading  
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Appendix 
A. Avro Schemas 
In this section, we list the Avro schemas that we designed for use by the different teams (except 
for Solr and Hadoop). See Section 7.2.3 for more information about the design decisions. 
 
Tweets 
Noise Reduction: 
{"namespace": "cs5604.tweet.NoiseReduction", 
 "type": "record", 
 "name": "TweetNoiseReduction", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "original", "name": "tweet_id", "type": "string"}, 
     {"doc": "original", "name": "text_clean", "type": "string"}, 
     {"doc": "original", "name": "text_original", "type": "string"}, 
     {"doc": "original", "name": "created_at",  "type": "string"}, 
     {"doc": "original", "name": "user_screen_name", "type": "string"}, 
     {"doc": "original", "name": "user_id", "type": "string"}, 
     {"doc": "original", "name": "source", "type": ["string", "null"]}, 
     {"doc": "original", "name": "lang", "type": ["string", "null"]}, 
     {"doc": "original", "name": "favorite_count", "type": ["int", "null"]}, 
     {"doc": "original", "name": "retweet_count", "type": ["int", "null"]}, 
     {"doc": "original", "name": "contributors_id", "type": ["string", "null"]}, 
     {"doc": "original", "name": "coordinates", "type": ["string", "null"]}, 
     {"doc": "original", "name": "urls", "type": ["string", "null"]}, 
     {"doc": "original", "name": "hashtags", "type": ["string", "null"]}, 
     {"doc": "original", "name": "user_mentions_id", "type": ["string", "null"]}, 
     {"doc": "original", "name": "in_reply_to_user_id", "type": ["string", "null"]}, 
     {"doc": "original", "name": "in_reply_to_status_id", "type": ["string", "null"]}, 
     {"doc": "original", "name": "text_clean2", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "collection", "type": ["null", "string"], "default": null}     
 
 ] 
} 
 
Clustering: 
{"namespace": "cs5604.tweet.clustering", 
 "type": "record", 
 "name": "TweetClustering", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "analysis", "name": "cluster_label", "type": ["string", "null"]}, 
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     {"doc": "analysis", "name": "cluster_id", "type": ["string", "null"]} 
 ] 
} 
 
 
NER: 
{"namespace": "cs5604.tweet.NER", 
 "type": "record", 
 "name": "TweetNER", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "analysis", "name": "ner_people", "type": ["string", "null"]}, 
     {"doc": "analysis", "name": "ner_locations", "type": ["string", "null"]}, 
     {"doc": "analysis", "name": "ner_dates", "type": ["string", "null"]}, 
     {"doc": "analysis", "name": "ner_organizations", "type": ["string", "null"]} 
 ] 
} 
 
Social Network: 
{"namespace": "cs5604.tweet.social", 
 "type": "record", 
 "name": "TweetSocial", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "analysis", "name": "social_importance", "type": ["double", “null”], “default”: 0}, 
 ] 
} 
 
Classification: 
{"namespace": "cs5604.tweet.classification", 
 "type": "record", 
 "name": "TweetClassification", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "analysis", "name": "class", "type": ["string", “null”]}, 
 ] 
} 
 
LDA 
{"namespace": "cs5604.tweet.LDA", 
 "type": "record", 
 "name": "TweetLDA", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
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     {"doc": "analysis", "name": "lda_topics", "type": ["string", “null”]}, 
     {"doc": "analysis", "name": "lda_vectors", "type": ["string", “null”]} 
 ] 
} 
 
Web pages 
Noise Reduction 
{"namespace": "cs5604.webpage.NoiseReduction", 
 "type": "record", 
 "name": "WebpageNoiseReduction", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "original", "name": "text_clean", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "text_original", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "created_at",  "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "accessed_at",  "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "author", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "subtitle", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "section", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "lang", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "coordinates", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "urls", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "content_type", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "text_clean2", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "collection", "type": ["null", "string"], "default": null} , 
     {"doc": "original", "name": "url", "type": ["null", "string"], "default": null}, 
     {"doc": "original", "name": "appears_in_tweet_ids", "type": ["null", "string"], "default": null}     
 ] 
} 
 
Clustering 
{"namespace": "cs5604.webpage.clustering", 
 "type": "record", 
 "name": "WebpageClustering", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "analysis", "name": "cluster_label", "type": ["string", "null"]}, 
     {"doc": "analysis", "name": "cluster_id", "type": ["string", "null"]} 
 ] 
} 
 
 
NER 
{"namespace": "cs5604.webpage.NER", 
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 "type": "record", 
 "name": "WebpageNER", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "analysis", "name": "ner_locations", "type": ["string", "null"]}, 
     {"doc": "analysis", "name": "ner_people", "type": ["string", "null"]}, 
     {"doc": "analysis", "name": "ner_dates", "type": ["string", "null"]}, 
     {"doc": "analysis", "name": "ner_organizations", "type": ["string", "null"]} 
 ] 
} 
 
Social Network: 
{"namespace": "cs5604.webpage.social", 
 "type": "record", 
 "name": "WebpageSocial", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "analysis", "name": "social_importance", "type": ["double", “null”], “default”: 0}, 
 ] 
} 
 
Classification: 
{"namespace": "cs5604.webpage.classification", 
 "type": "record", 
 "name": "WebpageClassification", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "analysis", "name": "class", "type": ["string", “null”]}, 
 ] 
} 
 
LDA 
{"namespace": "cs5604.webpage.LDA", 
 "type": "record", 
 "name": "WebpageLDA", 
 "fields": [ 
     {"name": "doc_id", "type": "string"}, 
     {"doc": "analysis", "name": "lda_topics", "type": ["string", “null”]}, 
     {"doc": "analysis", "name": "lda_vectors", "type": ["string", “null”]}, 
 ] 
} 
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B. AvroToHBase.java 
In this section, we show the centralized program that we use to load data into HBase (See 
Section 7.4.2). Our program takes as input an Avro file. The main routine is a while loop that 
reads each record in the input file and stores it in an array. When all the records have been 
read, the data is put into HBase with a single call to the API. 
 
package cs5604.hadoop; 
 
import java.io.File; 
import java.io.IOException; 
import java.util.ArrayList; 
import org.apache.avro.Schema; 
import org.apache.avro.file.DataFileReader; 
import org.apache.avro.io.DatumReader; 
import org.apache.avro.specific.SpecificDatumReader; 
import org.apache.hadoop.hbase.HBaseConfiguration; 
import org.apache.hadoop.hbase.client.HTable; 
import org.apache.hadoop.hbase.client.Put; 
import org.apache.hadoop.hbase.util.Bytes; 
import org.apache.hadoop.conf.Configuration; 
import cs5604.tweet.Tweet; 
import cs5604.webpage.Webpage; 
 
public class AvroToHBase { 
  
 public static enum DataType { 
  tweets, 
  webpages 
 }; 
  
 /** 
  * @param args 
  * @throws IOException  
  */ 
 public static void main(String[] args) throws IOException { 
  // check command line arguments 
  if (args.length != 2) { 
   System.out.println("Number of arguments should be 2. " +  args.length + " arguments 
found."); 
   System.out.println("usage: java -jar hbase-loader.jar AVRO_FILE {tweets, webpages}"); 
   System.out.println("example: java -jar hbase-loader.jar tweet_clusters.avro tweets"); 
   System.out.println("example: java -jar hbase-loader.jar webpage_importance.avro 
webpages"); 
   System.exit(1); 
  } 
  String dataFile = args[0]; 
  DataType dt = null; 
   
  try { 
   dt = DataType.valueOf(args[1]); 
  } catch (IllegalArgumentException exception) { 
   System.out.println("Data type must be either \"tweets\" or \"webpages\". \"" + args[1] + "\" 
was found."); 
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   System.exit(1); 
  } 
  String tableName = args[1]; 
  
  // connect to HBase 
  Configuration config = HBaseConfiguration.create();   
  HTable table = new HTable(config, tableName); 
  ArrayList<Put> puts = new ArrayList<Put>();   
   
  switch(dt) { 
   case tweets: 
    DatumReader<Tweet> datumReader = new 
SpecificDatumReader<Tweet>(Tweet.class); 
          DataFileReader<Tweet> dataFileReader = new DataFileReader<Tweet>(new File(dataFile), 
datumReader); 
          Tweet record = null; 
           
                 
          while (dataFileReader.hasNext()) { 
           // Reuse user object by passing it to next(). This saves us from 
           // allocating and garbage collecting many objects for files with 
           // many items. 
           record = dataFileReader.next(record); 
           //System.out.println(record); 
            
           Put p = new Put(Bytes.toBytes(record.getDocId().toString())); 
            
           for (Schema.Field field : record.getSchema().getFields()) { 
            // skip row id 
            if (field.name().equals("doc_id")) { 
             continue; 
            } 
            String columnFamily = field.doc(); 
            String columnQualifier = field.name(); 
            assert(columnFamily.length() > 0); 
             
            Object value = record.get(columnQualifier); 
  
            if (value != null && ! (value.toString().isEmpty())) { 
             //System.out.println("Value is " + value); 
             p.add(Bytes.toBytes(columnFamily), Bytes.toBytes(columnQualifier), 
Bytes.toBytes(value.toString())); 
            } 
           } 
           if (!p.isEmpty()) { 
            // add to buffer 
            puts.add(p); 
           } else { 
            System.out.println("WARN: All fields are null for row with id " + record.getDocId() 
+ 
                          ". Nothing to add."); 
           } 
          } 
          dataFileReader.close(); 
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          break; 
   case webpages: 
    DatumReader<Webpage> daReader = new 
SpecificDatumReader<Webpage>(Webpage.class); 
          DataFileReader<Webpage> daFileReader = new DataFileReader<Webpage>(new 
File(dataFile), daReader); 
          Webpage rec = null; 
           
                 
          while (daFileReader.hasNext()) { 
           // Reuse user object by passing it to next(). This saves us from 
           // allocating and garbage collecting many objects for files with 
           // many items. 
           rec = daFileReader.next(rec); 
           //System.out.println(record); 
            
           Put p = new Put(Bytes.toBytes(rec.get("doc_id").toString())); 
            
           for (Schema.Field field : rec.getSchema().getFields()) { 
            //System.out.println("Field is " + field.name()); 
            //System.out.println("Family is " + field.doc()); 
            // skip row id 
            if (field.name().equals("doc_id")) { 
             continue; 
            } 
            String columnFamily = field.doc(); 
            String columnQualifier = field.name(); 
            assert(columnFamily.length() > 0); 
             
            Object value = rec.get(columnQualifier); 
  
            if (value != null) { 
             //System.out.println("Value is " + value); 
             p.add(Bytes.toBytes(columnFamily), Bytes.toBytes(columnQualifier), 
Bytes.toBytes(value.toString())); 
            } 
           } 
           // add to buffer 
           puts.add(p); 
          } 
          daFileReader.close(); 
          break;  
      default: 
       System.out.println("Reached unexpected switch statement case. Quitting."); 
       System.exit(1); 
  } 
         
        // write to HBase 
  table.put(puts); 
  table.flushCommits(); 
  table.close(); 
   
        System.out.println("" + puts.size() + " rows were written to the " + tableName + " table"); 
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 } 
} 
 
 

C. WriteHBaseMR.java 
Here, we present a MapReduce program to insert data into HBase through the HBase API. The 
program takes as input an Avro file (from HDFS) and writes records to HBase in the Mapper 
task. A lot of the code below is for setting up the job and validating the user input; the most 
interesting parts are the TweetMapper and WebpageMapper methods, which process tweets 
and web pages, respectively. 
 
package	
  cs5604.hadoop;	
  
	
  
import	
  java.io.IOException;	
  
import	
  org.apache.hadoop.hbase.HBaseConfiguration;	
  
import	
  org.apache.hadoop.hbase.client.Put;	
  
import	
  org.apache.hadoop.hbase.io.ImmutableBytesWritable;	
  
import	
  org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;	
  
import	
  org.apache.hadoop.hbase.util.Bytes;	
  
import	
  org.apache.avro.Schema;	
  
import	
  org.apache.avro.mapred.AvroKey;	
  
import	
  org.apache.avro.mapreduce.AvroJob;	
  
import	
  org.apache.avro.mapreduce.AvroKeyInputFormat;	
  
import	
  org.apache.hadoop.conf.Configuration;	
  
import	
  org.apache.hadoop.conf.Configured;	
  
import	
  org.apache.hadoop.fs.Path;	
  
import	
  org.apache.hadoop.io.NullWritable;	
  
import	
  org.apache.hadoop.mapreduce.Job;	
  
import	
  org.apache.hadoop.mapreduce.Mapper;	
  
import	
  org.apache.hadoop.mapreduce.lib.input.FileInputFormat;	
  
import	
  org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;	
  
import	
  org.apache.hadoop.util.GenericOptionsParser;	
  
import	
  org.apache.hadoop.util.Tool;	
  
import	
  org.apache.hadoop.util.ToolRunner;	
  
	
  
import	
  cs5604.tweet.Tweet;	
  
import	
  cs5604.webpage.Webpage;	
  
	
  
public	
  class	
  WriteHBaseMR	
  extends	
  Configured	
  implements	
  Tool{	
  
	
   public	
  static	
  String	
  tableName;	
  
	
   //	
  allowed	
  HBase	
  table	
  names	
  
	
   public	
  static	
  enum	
  TableName	
  {	
  
	
   	
   tweets,	
  
	
   	
   webpages,	
  
	
   	
   test_tweets,	
  
	
   	
   test_webpages	
  
	
   };	
  
	
   	
  
	
   public	
  static	
  class	
  TweetMapper	
  extends	
  	
  
	
   	
   Mapper<AvroKey<Tweet>,	
  NullWritable,	
  ImmutableBytesWritable,	
  Put>	
  {	
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   protected	
  void	
  map(AvroKey<Tweet>	
  key,	
  NullWritable	
  value,	
  Context	
  context)	
  	
  
	
   	
   	
   	
   throws	
  IOException,	
  InterruptedException	
  {	
  
	
   	
   	
   Tweet	
  t	
  =	
  key.datum();	
  
	
   	
   	
   ImmutableBytesWritable	
  s	
  =	
  new	
  
ImmutableBytesWritable(Bytes.toBytes(t.getDocId().toString()));	
  
	
   	
   	
   	
  
	
   	
   	
   Put	
  p	
  =	
  datumToPut(t);	
  
	
   	
   	
   if	
  (!p.isEmpty())	
  {	
  
	
   	
   	
   	
   context.write(s,	
  datumToPut(t));	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  }	
  else	
  {	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   System.out.println("WARN:	
  All	
  fields	
  are	
  null	
  for	
  row	
  with	
  id	
  "	
  +	
  
t.getDocId()	
  +	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ".	
  Nothing	
  to	
  add.");	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
   	
   }	
  
	
   	
   	
  
	
   	
   private	
  static	
  Put	
  datumToPut(Tweet	
  t)	
  throws	
  IOException	
  {	
   	
   	
  
	
   	
   	
   Put	
  p	
  =	
  new	
  Put(Bytes.toBytes(t.getDocId().toString()));	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  for	
  (Schema.Field	
  field	
  :	
  t.getSchema().getFields())	
  {	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   //	
  skip	
  row	
  id	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   if	
  (field.name().equals("doc_id"))	
  {	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   continue;	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   }	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   String	
  columnFamily	
  =	
  field.doc();	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   String	
  columnQualifier	
  =	
  field.name();	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   assert(columnFamily.length()	
  >	
  0);	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   Object	
  field_value	
  =	
  t.get(columnQualifier);	
  
	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   if	
  (field_value	
  !=	
  null	
  &&	
  !	
  (field_value.toString().isEmpty()))	
  {	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   p.add(Bytes.toBytes(columnFamily),	
  
Bytes.toBytes(columnQualifier),	
  Bytes.toBytes(field_value.toString()));	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   }	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  }	
   	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  return	
  p;	
  
	
  	
  	
  	
  	
   }	
  
	
   	
  
	
   }	
  
	
  
	
   	
  
	
   public	
  static	
  class	
  WebpageMapper	
  extends	
  	
  
	
   	
   Mapper<AvroKey<Webpage>,	
  NullWritable,	
  ImmutableBytesWritable,	
  Put>	
  {	
  
	
   	
   protected	
  void	
  map(AvroKey<Webpage>	
  key,	
  NullWritable	
  value,	
  Context	
  context)	
  	
  
	
   	
   	
   	
   throws	
  IOException,	
  InterruptedException	
  {	
  
	
   	
   	
   Webpage	
  w	
  =	
  key.datum();	
  
	
   	
   	
   ImmutableBytesWritable	
  s	
  =	
  new	
  
ImmutableBytesWritable(Bytes.toBytes(w.getDocId().toString()));	
  
	
   	
   	
   	
  
	
   	
   	
   Put	
  p	
  =	
  datumToPut(w);	
  
	
   	
   	
   if	
  (!p.isEmpty())	
  {	
  
	
   	
   	
   	
   context.write(s,	
  datumToPut(w));	
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  }	
  else	
  {	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   System.out.println("WARN:	
  All	
  fields	
  are	
  null	
  for	
  row	
  with	
  id	
  "	
  +	
  
w.getDocId()	
  +	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ".	
  Nothing	
  to	
  add.");	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  }	
  
	
   	
   	
   	
  
	
   	
   	
   	
  
	
   	
   }	
  
	
   	
   	
  
	
   	
   private	
  static	
  Put	
  datumToPut(Webpage	
  w)	
  throws	
  IOException	
  {	
  
	
   	
   	
   Put	
  p	
  =	
  new	
  Put(Bytes.toBytes(w.getDocId().toString()));	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  for	
  (Schema.Field	
  field	
  :	
  w.getSchema().getFields())	
  {	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   //	
  skip	
  row	
  id	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   if	
  (field.name().equals("doc_id"))	
  {	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   continue;	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   }	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   String	
  columnFamily	
  =	
  field.doc();	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   String	
  columnQualifier	
  =	
  field.name();	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   assert(columnFamily.length()	
  >	
  0);	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   Object	
  field_value	
  =	
  w.get(columnQualifier);	
  
	
   	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   if	
  (field_value	
  !=	
  null	
  &&	
  !	
  (field_value.toString().isEmpty()))	
  {	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   p.add(Bytes.toBytes(columnFamily),	
  
Bytes.toBytes(columnQualifier),	
  Bytes.toBytes(field_value.toString()));	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   }	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  }	
   	
  
	
   	
   	
  	
  	
  	
  return	
  p;	
  
	
   	
  	
  	
  	
  }	
  
	
   }	
  
	
   	
  
	
   @Override	
  
	
   public	
  int	
  run(String[]	
  rawArgs)	
  throws	
  Exception	
  {	
  
	
   	
   if	
  (rawArgs.length	
  !=	
  3)	
  {	
  
	
   	
   	
   System.err.printf("Usage:	
  %s	
  [generic	
  options]	
  <input>	
  <output>	
  
<tableName>\n",	
  
	
   	
   	
   	
   	
   getClass().getName());	
  
	
   	
   	
   ToolRunner.printGenericCommandUsage(System.err);	
  
	
   	
   	
   return	
  -­‐1;	
  
	
   	
   }	
  
	
   	
   	
  
	
   	
   TableName	
  tn	
  =	
  null;	
  
	
   	
   String[]	
  args	
  =	
  new	
  GenericOptionsParser(rawArgs).getRemainingArgs();	
  
	
   	
   try	
  {	
  
	
   	
   	
   tn	
  =	
  TableName.valueOf(args[2]);	
  
	
   	
   }	
  catch	
  (IllegalArgumentException	
  exception)	
  {	
  
	
   	
   	
   System.out.println("Data	
  type	
  must	
  be	
  either	
  \"tweets\"	
  or	
  \"webpages\".	
  
\""	
  +	
  args[2]	
  +	
  "\"	
  was	
  found.");	
  
	
   	
   	
   return	
  -­‐1;	
  
	
   	
   }	
  
	
   	
   tableName	
  =	
  args[2];	
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   Configuration	
  config	
  =	
  HBaseConfiguration.create();	
  
	
   	
   config.set("mapreduce.task.timeout",	
  "300000"); 

	
  	
  	
  	
  	
  	
  	
  //	
  cluster-­‐specific	
  configuration.	
  In	
  the	
  production	
  cluster 
	
  	
  	
  	
  	
  	
  	
  //	
  zookeeper	
  only	
  runs	
  on	
  nodes	
  1,	
  2,	
  and	
  3	
  

	
   	
   config.set("hbase.zookeeper.quorum",	
  
"node1.dlrl:2181,node2.dlrl:2181,node3.dlrl:2181"); 

	
  	
  	
  	
  	
  	
  	
  	
  //	
  set	
  the	
  job	
  name	
  to	
  be	
  “hbase-­‐load”	
  and	
  the	
  name	
  of	
  input	
  file	
  
	
   	
   Job	
  job	
  =	
  Job.getInstance(config,	
  "hbase-­‐load	
  -­‐	
  "	
  +	
  args[0]);	
  
	
   	
   	
  
	
   	
   job.setJarByClass(WriteHBaseMR.class);	
  
	
   	
  
	
   	
   Path	
  inPath	
  =	
  new	
  Path(args[0]);	
  
	
   	
   Path	
  outPath	
  =	
  new	
  Path(args[1]);	
  
	
  
	
   	
   FileInputFormat.setInputPaths(job,	
  inPath);	
  
	
   	
   FileOutputFormat.setOutputPath(job,	
  outPath);	
  
	
   	
   outPath.getFileSystem(super.getConf()).delete(outPath,	
  true);	
  
	
  
	
   	
   job.setInputFormatClass(AvroKeyInputFormat.class);	
  
	
   	
    

	
  	
  	
  	
  	
  	
  	
  //	
  call	
  appropriate	
  mapper	
  for	
  tweets	
  or	
  webpages	
  
	
   	
   switch(tn)	
  {	
  
	
   	
   	
   case	
  test_tweets:	
  
	
   	
   	
   case	
  tweets:	
  
	
   	
   	
   	
   job.setMapperClass(TweetMapper.class);	
  
	
   	
   	
   	
   AvroJob.setInputKeySchema(job,	
  Tweet.getClassSchema());	
  
	
   	
   	
   	
   break;	
  
	
   	
   	
   case	
  test_webpages:	
  
	
   	
   	
   case	
  webpages:	
  
	
   	
   	
   	
   job.setMapperClass(WebpageMapper.class);	
  
	
   	
   	
   	
   AvroJob.setInputKeySchema(job,	
  Webpage.getClassSchema());	
  
	
   	
   	
   	
   break;	
  
	
   	
   	
   default:	
  	
  
	
   	
   	
   	
   System.out.println("Reached	
  unexpected	
  switch	
  statement	
  case.	
  
Quitting.");	
  
	
   	
   	
  	
  	
  	
  	
   return	
  -­‐1;	
  
	
   	
   }	
  
	
   	
   	
  
	
   	
   TableMapReduceUtil.addDependencyJars(job);	
  
	
   	
   TableMapReduceUtil.initTableReducerJob(tableName,	
  null,	
  job);	
  

	
   	
    
	
  	
  	
  	
  	
  	
  	
  //	
  Map	
  only	
  job.	
  Set	
  number	
  of	
  reducers	
  to	
  0	
  

	
   	
   job.setNumReduceTasks(0);	
  
	
  
	
   	
   return	
  (job.waitForCompletion(true)	
  ?	
  0	
  :	
  1);	
  
	
   }	
  
	
  
	
   public	
  static	
  void	
  main(String[]	
  args)	
  throws	
  Exception	
  {	
  
	
   	
   int	
  result	
  =	
  ToolRunner.run(new	
  WriteHBaseMR(),	
  args);	
  
	
   	
   System.exit(result);	
  
	
   }	
  
} 
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D. Loading time for webpages 
At the time of writing, we only had access to cleaned web page data for six small collections 
(LDA was missing) and three big collections (Clustering, Noise Reduction, and Solr teams). 
Table D.1 reports the time taken to upload the data using our MapReduce program. 

 
Table D.1 Time taken to load the web page collections into HBase using MapReduce and the 

HBase API 
 

E. HBase Schema for webpages 
Below is the HBase schema for web pages. The “analysis” column family is identical to the 
column family for tweets with the same name. The “document” family is meant to store data 
specific to a web page, such as the content or the domain. 
Table: webpages [rowkey: uuid ] 
 
Column Family Column Qualifier 
========================================== 
document   title 
    collection 
    domain 
    text_original 
    text_clean1 
    text_clean2 
    author 
    subtitle 
    created_at 
    section 
    urls 
    twitter_link 
    facebook_link 
    google_plus_link 
    pinterest 
    coordinates 
     
analysis   ner_people 
    ner_locations 
    ner_dates 
    ner_organizations 
    cluster_id 
    cluster_label 
    class 
    social_importance 
    lda_vectors 
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    lda_topics 
 

F. HFile Generation 
Here, we show our MapReduce program to generate HFiles for the bulk-loading process (See 
Section 7.4.2). The mappers (for tweet and web pages) convert the input file (Avro) to a 
sequence of “Put” HBase operations. A reducer that comes with the HBase distribution handles 
these “Put” objects, but that part is opaque to the programmer. The programmer simply calls the 
right reducer using this statement: HFileOutputFormat.configureIncrementalLoad(job, htable); 
 
package cs5604.hadoop; 
 
import java.io.IOException; 
import org.apache.hadoop.hbase.HBaseConfiguration; 
import org.apache.hadoop.hbase.client.HTable; 
import org.apache.hadoop.hbase.client.Put; 
import org.apache.hadoop.hbase.io.ImmutableBytesWritable; 
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat; 
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil; 
import org.apache.hadoop.hbase.util.Bytes; 
import org.apache.avro.Schema; 
import org.apache.avro.mapred.AvroKey; 
import org.apache.avro.mapreduce.AvroJob; 
import org.apache.avro.mapreduce.AvroKeyInputFormat; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.conf.Configured; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.NullWritable; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.Mapper; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
import org.apache.hadoop.util.GenericOptionsParser; 
import org.apache.hadoop.util.Tool; 
import org.apache.hadoop.util.ToolRunner; 
 
import cs5604.tweet.Tweet; 
import cs5604.webpage.Webpage; 
 
public class HBaseBulkload extends Configured implements Tool{ 
 public static String tableName; 
  
 public static enum TableName { 
  tweets, 
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  webpages, 
  test_tweets, 
  test_webpages, 
  bulk_tweets, 
  bulk_webpages 
 }; 
  
 public static class TweetMapper extends  
  Mapper<AvroKey<Tweet>, NullWritable, ImmutableBytesWritable, Put> { 
  protected void map(AvroKey<Tweet> key, NullWritable value, Context context)  
    throws IOException, InterruptedException { 
   Tweet t = key.datum(); 
   ImmutableBytesWritable s = new 
ImmutableBytesWritable(Bytes.toBytes(t.getDocId().toString())); 
    
   Put p = datumToPut(t); 
   if (!p.isEmpty()) { 
    context.write(s, datumToPut(t)); 
         } else { 
          System.out.println("WARN: All fields are null for row with id " + t.getDocId() + 
                        ". Nothing to add."); 
         } 
  } 
   
  private static Put datumToPut(Tweet t) throws IOException {   
   Put p = new Put(Bytes.toBytes(t.getDocId().toString())); 
         for (Schema.Field field : t.getSchema().getFields()) { 
          // skip row id 
          if (field.name().equals("doc_id")) { 
           continue; 
          } 
          String columnFamily = field.doc(); 
          String columnQualifier = field.name(); 
          assert(columnFamily.length() > 0); 
           
          Object field_value = t.get(columnQualifier); 
 
          if (field_value != null && ! (field_value.toString().isEmpty())) { 
            
           p.add(Bytes.toBytes(columnFamily), Bytes.toBytes(columnQualifier), 
Bytes.toBytes(field_value.toString())); 
          } 
         }  
         return p; 
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     } 
  
 } 
 
  
 public static class WebpageMapper extends  
  Mapper<AvroKey<Webpage>, NullWritable, ImmutableBytesWritable, Put> { 
  protected void map(AvroKey<Webpage> key, NullWritable value, Context 
context)  
    throws IOException, InterruptedException { 
   Webpage w = key.datum(); 
   ImmutableBytesWritable s = new 
ImmutableBytesWritable(Bytes.toBytes(w.getDocId().toString())); 
    
   Put p = datumToPut(w); 
   if (!p.isEmpty()) { 
    context.write(s, datumToPut(w)); 
  
         } else { 
          System.out.println("WARN: All fields are null for row with id " + w.getDocId() + 
                        ". Nothing to add."); 
         } 
    
    
  } 
   
  private static Put datumToPut(Webpage w) throws IOException { 
   Put p = new Put(Bytes.toBytes(w.getDocId().toString())); 
         for (Schema.Field field : w.getSchema().getFields()) { 
          // skip row id 
          if (field.name().equals("doc_id")) { 
           continue; 
          } 
          String columnFamily = field.doc(); 
          String columnQualifier = field.name(); 
          assert(columnFamily.length() > 0); 
           
          Object field_value = w.get(columnQualifier); 
  
          if (field_value != null && ! (field_value.toString().isEmpty())) { 
            
           p.add(Bytes.toBytes(columnFamily), Bytes.toBytes(columnQualifier), 
Bytes.toBytes(field_value.toString())); 
          } 
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         }  
      return p; 
     } 
 } 
  
 @Override 
 public int run(String[] rawArgs) throws Exception { 
  if (rawArgs.length != 3) { 
   System.err.printf("Usage: %s [generic options] <input> <output> 
<tableName>\n", 
     getClass().getName()); 
   ToolRunner.printGenericCommandUsage(System.err); 
   return -1; 
  } 
   
  TableName tn = null; 
  String[] args = new GenericOptionsParser(rawArgs).getRemainingArgs(); 
  try { 
   tn = TableName.valueOf(args[2]); 
  } catch (IllegalArgumentException exception) { 
   System.out.println("Data type must be either \"tweets\" or \"webpages\". 
\"" + args[2] + "\" was found."); 
   return -1; 
  } 
  tableName = args[2]; 
   
  Configuration config = HBaseConfiguration.create(); 
  config.set("mapreduce.task.timeout", "300000"); 
  config.set("hbase.zookeeper.quorum", 
"node1.dlrl:2181,node2.dlrl:2181,node3.dlrl:2181"); 
  Job job = Job.getInstance(config, "hbase-bulk-load - " + args[0]); 
   
  job.setJarByClass(HBaseBulkload.class); 
  
  Path inPath = new Path(args[0]); 
  Path outPath = new Path(args[1]); 
 
  FileInputFormat.setInputPaths(job, inPath); 
  FileOutputFormat.setOutputPath(job, outPath); 
  outPath.getFileSystem(super.getConf()).delete(outPath, true); 
 
  job.setInputFormatClass(AvroKeyInputFormat.class); 
  job.setMapOutputKeyClass(ImmutableBytesWritable.class); 
  job.setMapOutputValueClass(Put.class); 
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  switch(tn) { 
   case test_tweets: 
   case tweets: 
   case bulk_tweets: 
    job.setMapperClass(TweetMapper.class); 
    AvroJob.setInputKeySchema(job, Tweet.getClassSchema()); 
    break; 
   case test_webpages: 
   case webpages: 
   case bulk_webpages: 
    job.setMapperClass(WebpageMapper.class); 
    AvroJob.setInputKeySchema(job, Webpage.getClassSchema()); 
    break; 
   default:  
    System.out.println("Reached unexpected switch statement case. 
Quitting."); 
       return -1; 
  } 
   
  TableMapReduceUtil.addDependencyJars(job); 
  HTable htable = new HTable(config, tableName); 
  HFileOutputFormat.configureIncrementalLoad(job, htable); 
  //TableMapReduceUtil.initTableReducerJob(tableName, null, job); 
 
 
  return (job.waitForCompletion(true) ? 0 : 1); 
 } 
 
 public static void main(String[] args) throws Exception { 
  int result = ToolRunner.run(new HBaseBulkload(), args); 
  System.exit(result); 
 } 
} 
 


