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ABSTRACT The main objective of the OSISIM 
project (Open System Integrated Simulator) is to set up 
an atelier for the modelization of communication 
networks and the analysis of their performances. The 
atelier gives the end-user powerful tools to edit a 
communication system in a graphical environment. 
The representation of a system to be simulated is based 
on models of several standard networks available in 
the library which is the kernel of the atelier. 
Each model implements uniform and well-defined sets 
of functions, while having clearly specified interfaces. 
This article describes the architecture of  the atelier, 
and focuses on the internal structure of basic models. 

Introduction 
The main objective of the OSISIM project is to set 
up an atelier for the modelization of 
communication networks and the analysis of their 
performances. In the literature, we find the 
description of different toolkits dedicated to this 
field, as TOPNET [1], which is based on PROT 
net, a class of Petri nets; NETMOD [2], which is 
based on simple analytical models; BONeS [3], 
which is based on block-oriented modeling 
paradigm.  On the other hand, our approach is 
based on queueing networks.   
 

Our atelier, named AMS (Atelier for Modelization 
and Simulation), has to integrate the facilities and 
the tools in such a way as to be easy to use by the 
end-user. It gives the end-user some powerful 
tools to easily edit a new communication system 
in a graphical environment. The major facilities 
are : 
• basic library that includes the models of 

several standard networks studied separately; 
• tools for editing communication systems and 

their characteristics; 
• tools for visualizing simulation results; 
• tools for simulation control. 
 

The AMS will be based on the latest techniques in 
software engineering such as : graphics, 
windowing, pop-up menus and the object-oriented 
programming paradigm. QNAP2 [6,7] (Queueing 
Network Analysis Package 2) and GSS4 [8] 

(Graphical Support System 4)1 are the main 
software packages that will be used to operate the 
AMS. 
 

One component of this atelier is a library of basic 
models including most of the standard networks 
such as LANs (Ethernet, Token Ring, FDDI, etc), 
WANs (X25, TCP/IP), satellite and radio 
networks. It is obvious that the usefulness of the 
atelier heavily depends on the number of available 
models necessary to make up transmission 
systems and networks.  
 

The end-user of the AMS is not expected to be a 
specialist in modeling or performance analysis; 
however, he or she should be a communication 
system designer. He or she will use the AMS to 
build and validate an architectural choice,  or to 
compare several possible ways of solving a 
problem. 
 

Models have to be constructed in a very modular 
fashion. That is why we have to build basic 
models, which will make up other models of more 
complex systems. Each basic model implements 
uniform and well-defined sets of functions, while 
having clearly specified interfaces.  
 

This paper describes, in the first section, the 
architecture of  the AMS [4]. The second section 
focuses on the internal structure of a basic model 
[5], and the ways to reduce the code related to its 
behavior. 

I. Description of AMS 

I.1. AMS architecture 

Figure 1 shows the architecture of AMS. The 
components of this architecture are arranged in 
three principal groups : the objects that can be 
manipulated by end-users (i.e. basic models) in 
order to describe the communication system to be 
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simulated, the processes for editing and 
generating code, and the set of files containing the 
internal representation of the system under study.  

figure 1 : The architecture of the AMS 

Hereafter follows a description of these 
components. 
I.1.1 Objects manipulated by the user 

a) Basic Models : The core of the AMS is the 
library of basic models. A basic model is mainly a 
communication entity such as a standard network, 
protocol, gateway, etc. Each basic model is 
characterized by a definite number of parameters 
and an exhaustive list of measurements; in fact, 
only a sub-list is provided by default.  
In order to facilitate the use of these models, their 
interconnection and their maintenance, a unified 
internal architecture for basic models is defined 
(see the following section) and used to structure 
each of them. 
b) Draw_Elements  : Design objects for basic 
models interconnection. 
c) Scenario_Elements : These objects define the 
scenario which will be followed during the 
simulation.  
d) Result_Elements : These objects define the 
type and the form of results the end-user wants to 
obtain after the simulation. 
I.1.2  AMS processes  

a) Arch_Draw : It is the process that allows the 
end-user to edit his system graphically. It 
generates the description of the edited system. The 
validity of the system is checked during the 
edition such as the connectivity between basic 
models. 
b) Scenario_Def : This process helps the end-user 
to define the scenario he has chosen.  

c) Result_View : This process allows the end-user 
to choose the types of simulation results he wants. 
d) Code_Generator : This process generates the 
code that describes the modelization of the global 
system by means of the elements edited by the 
end-user. This code is mainly written in the 
QNAP2 language. The efficiency of this code 
depends upon the internal structure of the basic 
models. Before the code is generated, the validity 
of the whole system is checked.  
e) Processor : This process compiles and executes 
the generated code. It requires the description of 
the simulation experiment which includes a 
number of data for simulation control (example : 
simulation time length). 
I.1.3 Files containing the description of the system 
to be simulated. 

a) Arch_Descrip : A file which contains the 
description of the system edited. This file is 
generated by the Arch_Draw process. 
b) Scenario_Descrip :  This file contains the 
functional description of the simulation steps. It is 
generated by the Scenario_Def process. 
c) Result_Descrip : This file contains the 
description of the results. It is generated by the 
Result_View  process. 
d) Simul_Descrip : This file contains code that 
describes the modelization of the whole system. It 
is generated by the Code_Generator process. 
e) Results : This file corresponds to simulation 
results The results are presented under the form 
specified by the end-user  

I.2. Functional description of AMS 

The AMS is composed of four processes which 
are Arch_Draw, Scenario_Def, Result_View and 
Code_Generator. These processes, except the last 
one, execute their codes in parallel. They 
manipulate the files described above concurrently. 
 

Let us describe how an end-user works with the 
AMS. First of all, he executes the Arch_Draw 
process. Using the basic models and the 
Draw_Element, he prepares the system to be 
modeled. For each basic model, he can modify the 
predefined values of parameters while taking into 
account the variation limits of the parameters. 
With regard to measurements, the end-user can 
either just ask for the default list of measurements, 
or, for specific measurements he can choose from 
the exhaustive list.  
 

When the description of the system is complete, 
he executes the Scenario_Def process, and uses 
Scenario_Element to elaborate different scenarios 
based on the parameters of the basic models. He 
also executes the Result_View process in order to 
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determine the results he wants in accordance with 
the measurements of each basic model. 
 

The end-user can call these processes in any 
order. The process Code_Generator can be called 
only if all the elements required to generate the 
code are edited.  
 

Calling the Code_Generator process blocks up the 
three other processes. It is going to validate the 
different editions done by the end-user. If the 
process detects some contradiction or omission, it 
signals to the end-user what the problem is, stops 
its execution, and releases the three other 
processes, in order to allow the end-user to correct 
or complete his description. 
 

To launch the simulation the end-user has to 
execute the processor. 

II.  Basic Models 

II.1 Internal structure of basic models 

Each basic model is to be detailed so as to reflect 
its exact behavior. Hence, we have to specify the 
functions performed by the basic model as exactly 
as possible. Hereafter, basic models will be called 
Detailed Basic Models (DBMs). The primary 
advantage of this approach is to have accurate 
measurements and to highlight the largest possible 
number of parameters to characterize the system. 
 

As a rule, a DBM can't be used alone, it must be 
connected with one or several other DBMs, in 
order to make up a complex system. That's why 
each DBM needs one or more interfaces so as to 
be connected to other DBMs. 
 

Figure 2 shows the structure of a DBM  code. 
There are three blocks : Behavior Engine (BE), 
Interfaces (Int) and Measurement Block (MB). 
 

In the BE block, we find a modelization of the 
behavior of the DBM. The behavior is controlled 
by a set of parameters so that the end-user can 
choose the values he wants to allocate to each 
parameter. 
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figure 2 : Internal structure of a DBM code 

A DBM can have several interfaces, N in figure 2. 
That number N can either be a fixed value known 
during the modelization phase (for instance, an 
optical fiber cable can connect two workstations 
and therefore N=2); or N can vary so that the 
modeler can specify only the minimal and the 
maximal values (for instance, an Ethernet cable 
can connect several workstations). 
 

The validity of the interconnection between 
several DBMs is not checked by the DBMs 
themselves but with tools belonging to the AMS. 
 

Figure 3 shows how an interface, using messages, 
reacts with its BE and with the outside world (i.e. 
another interface belonging to another DBM). 
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figure 3 : A DBM with its BE and one Interface 

Figure 4 represents a standard interface with its 
two internal queues. Qio receives messages from 
the outside, to be sent later to the BE. Qii receives 
messages from the BE to be sent later to another 
DBM  which it is connected to. 
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figure 4 : A standard interface 

Seen from the outside, all the interfaces are 
similar  but they differ in the way they interact 
with their BEs. An interface doesn't play any 
active role, its main function is to convey 
messages from a BE to the outside and vice versa. 
 

Each DBM has an identifier on which we find the 
exhaustive list of parameters and their default 



 

values, the measurement list, and a few text lines, 
summarizing the main functions of the DBM. 

II. 2 Reduced Basic Models (RBM) 

Each basic model is to be detailed so as to reflect 
its exact behavior. Namely, the functions 
performed by the basic model are to be specified 
as exactly as possible. The reasons why we have 
chosen this approach are that we want : 
• to have a model behavior close to a real 

behavior; 
• to derive accurate measurements from the 

simulation runs. 
However, this approach has some drawbacks 
because of the large size of the code resulting 
from the description of the DBM. These 
drawbacks are : 
• the compilation is very time consuming; 
• the simulation is also very time consuming; 
• the code describing a system is, of course, very 

long, because the system is composed of 
several DBMs, each of them having a long 
code; 

• during the simulation run, a large-sized 
memory is needed; 

• the end-user will be submerged with details, so 
that his work for editing will be difficult. 

 

In order to soften the effects of these drawbacks, 
we suggest reducing the DBM code, by 
eliminating, for example less significant details. 
The code so obtained will be called RBM for 
Reduced Basic Model. To do this, we are faced 
with new problems, such as : 
• how can less significant details be chosen ? 
• during the construction of the system code, the 

question that arises is : for which component is 
the DBM required ? and for which one is the 
RBM sufficient ?; the choice may be made 
even more difficult, because each DBM can 
have several RBMs associated to it. 

 

The primary drawback of reducing DBMs is that 
the simulation measurements are less accurate, 
because the RBMs do not reflect the whole 
behavior of the real system. An RBM has the 
same internal structure as a DBM. 
 

There are several methods to reduce a DBM code, 
some of them are presented hereafter : 
II.2.1. Physically reducing the size of the code  

In order to reduce the size of a code, each DBM 
will have several parts of its code deleted 
physically. These parts may represent more or less 
significant parts of the whole behavior, yet, 
deleting them does not significantly change the 
behavior, in so far as the remaining code is still 
coherent. 
 

Remarks:  
• Unless deleting a part of the behavior entails 

deleting the measurements associated with that 
part, the end-user is not aware of the existence 
of RBMs and DBMs, all that he knows, is that 
there are basic models. 

• The same DBM code can be broken down into 
several RBMs, depending on which part is to 
be deleted. That is why  the DBM code has to 
be analyzed carefully prior to deleting 
anything. 

 

For the deletion to be efficient, the DBM code 
must be written in such a way as to facilitate this 
task. In other words, the different parts of the 
DBM behavior must be coded in a modular 
fashion and be easily identifiable. 
II.2.2 Logically reducing the size of the code  

With this method, no part of the DBM's code is 
deleted physically but some parts of it will not be 
executed when the simulation is running.  
 

The model builder (modeler) adds a set of 
predicates in the DBM's code. Each predicate 
governs a part of the code and when this predicate 
is true, the code associated with it will be 
executed, whereas if this predicate is false the 
code related to it will not be run. 
 

Each predicate is a combination of elementary 
conditions : let C=(c1, c2,...,cn) be the elementary 
conditions vector, with ci equal to 1 or 0, and  
P=(p1, p2,..., pm) the predicate vector with pi=f(C), 
i=1, 2,..., m, fi is a logical function using 
operators such as AND, OR, NOT, etc. We can 
have 2n different vectors C and k vectors P with              
k≤ 2min(n,m). We can have k different versions of 
the DBM code. 
II.2.3. Using assumptions to simplify the DBM 
code 

The third method consists of simplifying the 
DBM's code by making assumptions aimed at 
reducing the complexity of some algorithms 
which describe the behavior. This can be done by 
physically replacing the complex algorithms with 
other less complex ones. 
II.2.4. The problems which arise when we want to 
reduce DBMs 

The following choices have to be made by a 
competent modeler who has to decide which  part 
of code is to be deleted, which algorithm is to be 
replaced, etc. Besides, he has to determine which 
parts of the DBM's code significantly influence 
the performance and which do not. 
 

To achieve this, the modeler can be helped in 
three ways : either by experts in the field of 
network communications; or by researchers' 



 

theoretical and experimental studies; or he can 
make a simulation, called local simulation, for a 
specific DBM, possibly interconnecting it to the 
minimum number of DBMs required to have a 
coherent system. 
 

The modeler will often use the hybrid method 
(when several methods are used to reduced one 
DBM) because it gives him much flexibility, but 
this flexibility involves building several RBMs 
from the same DBM. This proliferation of RBMs 
entails several problems which are fairly hard to 
resolve. The first problem can be phrased as 
follows : "Given a DBM to be reduced,  which 
RBM will serve as a substitute ? ". 

II.3. Generic Models (GeMs) 

In order to classify basic models, we define what 
we call the Generic Models (GeMs), which are 
model classes. Each Basic model belongs to one 
or several GeMs according to the functionalities 
which it handles. This classification will allow us 
to use a tool to verify the validity of a system 
edited by the end-user of the AMS. 
 

The classification of the basic models will be done 
on the basis of several criteria, for instance, the 
largest possible number of links between one 
basic model and the other ones;  the OSI stack 
layer a basic model belongs to; the fact that a 
basic model is terminal or not, namely generating 
or consuming messages.  

II.4. Local and Global Measurements 

As we said earlier, each basic model is 
characterized by an exhaustive list of 
measurements, called local measurements (LMs). 
A default list is also defined for each basic model. 
In general, the defaults lists are defined in the 
same manner for all basic models and contain 
typical measurements which are related to the 
information handled by basic models or to the use 
of a basic model. 
Although typical measurements are defined in the 
same way, they are processed differently because 
basic models behave in different manners. 
 

The end-user is not only interested in  LMs, but 
also in measurements related to the whole system 
which (s)he has edited. These measurements are 
called the global measurements (GMs). The AMS 
gives the end-user the means  to define a GM in 
function of LMs, but the semantic of the GMs has 
to be defined by the end-user, except for some 
verifications which are done by the AMS in 
accordance with the type of LMs. 

Conclusion 
The paper describes briefly the atelier AMS, 
designed to evaluate the performance of open 
systems. It comprises a library of basic models. 
An internal structure is proposed for these models. 
The description of a basic model have to be 
reduced, in order to diminish the impact of some 
drawbacks such as the CPU time and memory 
size. These drawbacks appear when the system 
under study is more or less complex. 
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