KGCoE MSD

Technical Review Agenda

Azamat Boranbayev Nick Liotta Mike Miranda Sigitas Rimkus Alex Usachev P11543: Variable LED Hemispherical Imager

Meeting Purpose: Detailed design review of P11543 – Variable LED Hemispherical Imager. The objectives of this are to present and receive feedback from others about our final design and bill of materials.

Meeting Date: February 9, 2011

Meeting Location: 78-2150

Meeting Time: 3:00 - 5:00 PM

Project #	Project Name	Project Track	Project Family
11543	Variable LED Hemi-	Printing and Imaging	N/A
	spherical Imager	Systems	
Start Term	Team Guide	Project Sponsor	Doc. Rev.
20102	Prof. Hanzlik	Dr. Wyble and Dr. Gu	1.1

1 Project Description

1.1 Project Background

The many forms of LEDs are the emerging technology for illumination. Fundamental evaluation and quantification of image appearance as a function of illumination spectrum, intensity, and incident angles require a tunable light source. An illumination cavity consisting of a 1 meter diameter hemisphere is required. The design of the hemisphere will enable repeatable positioning of LED clusters. The hemisphere will be broken into 5 degree increments for both latitude and longitude. The LED cluster will consist of 1-7 LEDs mounted in a repeatable manner to maximize additivity of output. Customer required at least two (2) LED clusters to be operational at any point in time. Additionally, each of the seven LEDs within the cluster should be addressable for intensity and on-off time control. This means up to 14 independent addressable LED outputs. Customer interface should be some user friendly PC window for initial setup and running.

1.2 Objectives and Scope

This project consists of three main objectives:

- Design a hemisphere containing mounting points for multiple LED clusters.
- Design clusters of LEDs in order to project light in the visible spectrum, as well as in the IR and UV spectrums.
- Design a computer-based control system in order to selectively address each LED within a particular cluster.

1.3 Deliverables

A fully functional 1-meter hemispherical LED based illumination system with user manual and all supporting documentation.

1.3.1 Deliverables by Discipline

Electrical and Computer Engineering

- Control system operating 14 LEDs independently for intensity and on-off time.
- Provide user friendly PC window type interface.
- Work with mechanical team to provide a harnessing solution from the hemisphere to the control electronics and the PC.
- Conduct testing of electrical subsystems.

Mechanical Engineering

- Design and development of a 1-meter hemisphere that can mount and locate the LED clusters.
- Development, design, and delivery of a cluster module that holds LEDs in the required geometrical relationship and enables easy movement to other positions of the cluster within the hemisphere.
- Development, design, and delivery of reliable electrical connections and quick disconnect and removal.

1.4 Core Team Members

- Azamat Boranbayev (ME)
- Nick Liotta (EE)
- Mike Miranda (EE)
- Sigitas Rimkus (ME)
- Alex Usachev (CE)

2 Document Outline

This report contains the following items and documents in the order listed below.

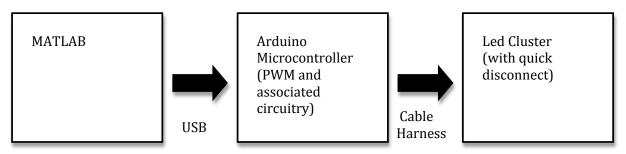
- Customer Needs
- Engineering Specifications
- Project Timeline
- Risk Assessment

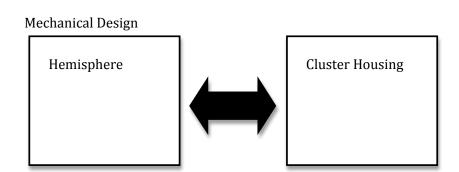
- LED Cluster Assembly
 - LED Cluster
 - PCB Housing
- LED Control
- Hemisphere

3 Component Overview

3.1 LED Cluster Assembly

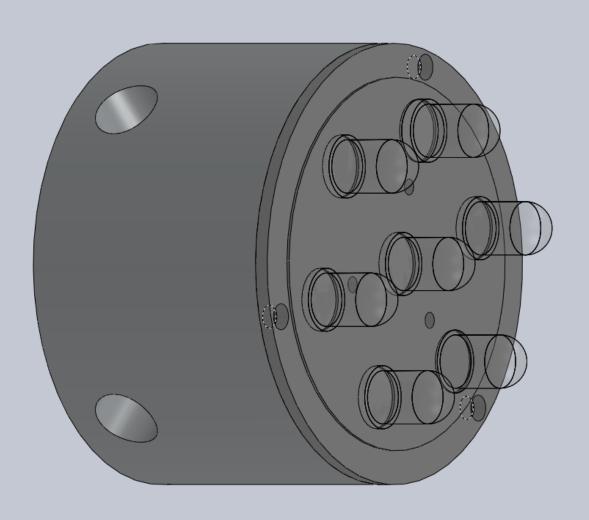
The LED cluster will be constructed in order to provide a PCB mounting point for all the LEDs on top of a cylindrical shell which will interface with the geodesic hemisphere. The LEDs will be user replaceable through PCB through-hole connectors and all wire strain relief will be provided by the internal geometry of the cluster housing. All control signal wires will be routed through the housing out to a CPC connector. Cable will be used to provide an interface between the LED control mechanism and the LED cluster.

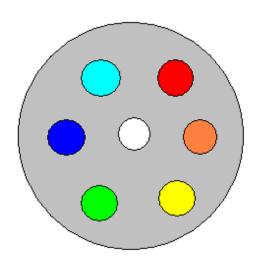

3.2 LED Control

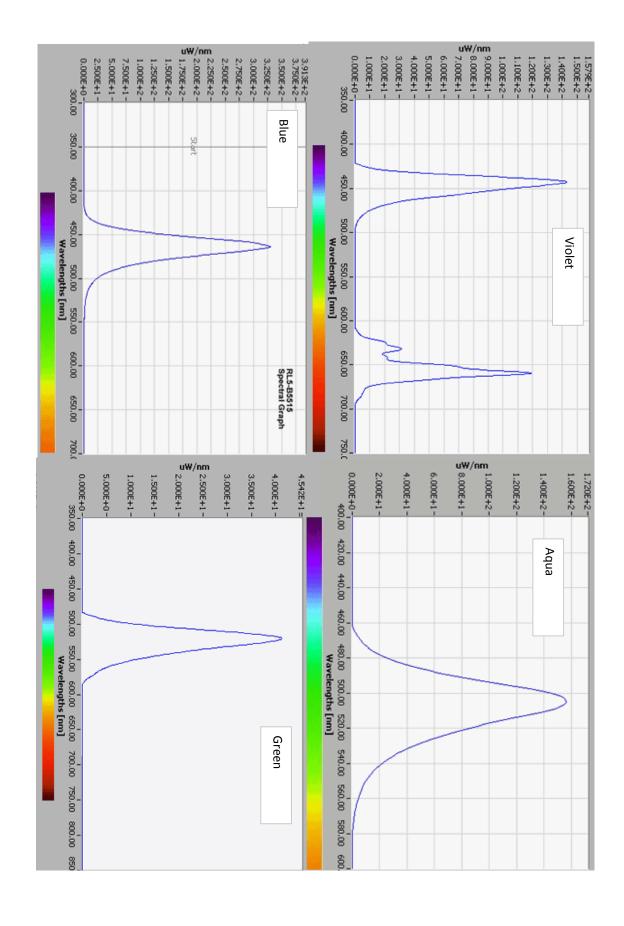

The microcontroller being used in the Arduino Duelminelove. It interfaces with MATLAB to control each LED in the cluster with an 8-bit output allowing the user to alter the intensity of a desired LED as needed. There is one microcontroller used per cluster, providing 6 PWM outputs and one digital output to each cluster. The microcontrollers are stored in a "black-box" which will house communication and power cables, as well as provide easy access to each microcontroller if the need for troubleshooting arises.

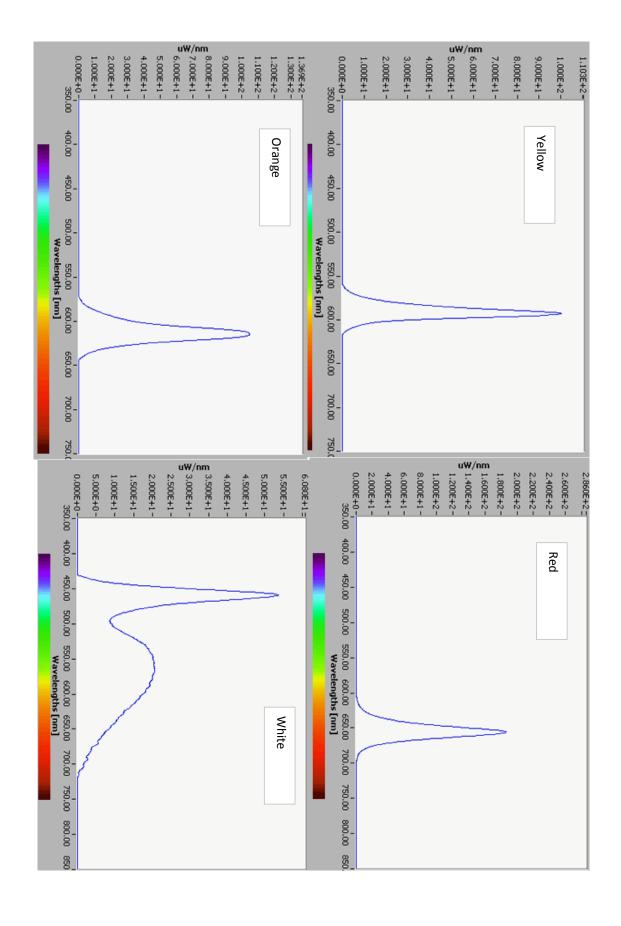
3.3 Hemisphere

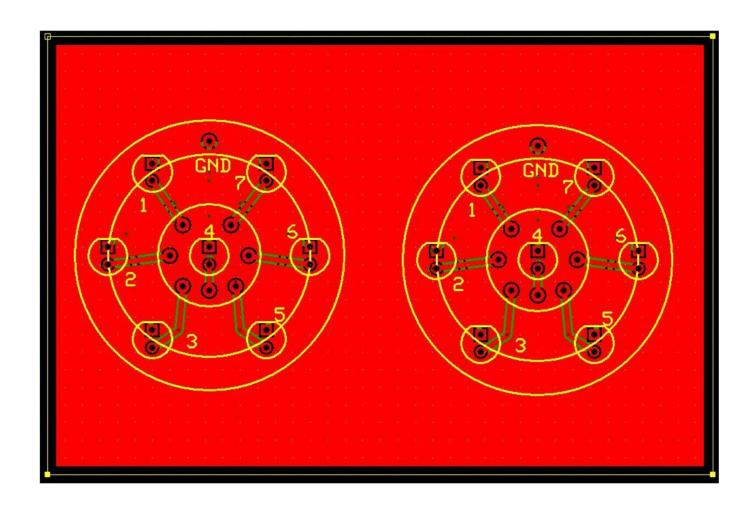
The hemisphere is the interface point for the LED cluster assembly. It is used to direct light from the LED cluster onto a designated sample area from various locations. The LED cluster is attached to the hemisphere through the use of magnets embedded into the based of each cluster.

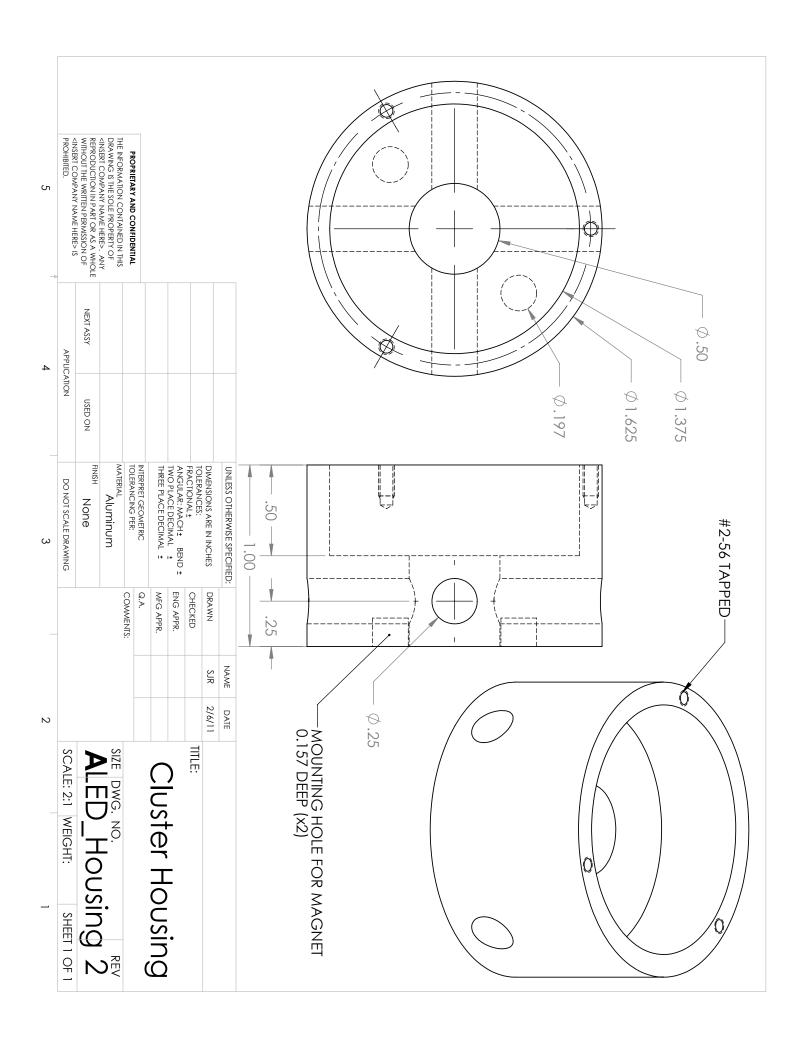

Software/Hardware Design



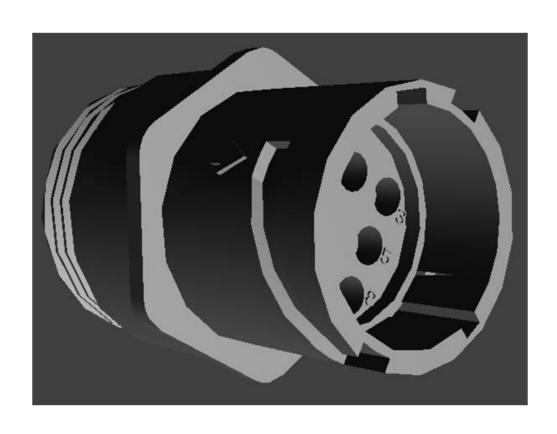

Importance: Scale of 1-5 (1 = preference only, 5 = must have)

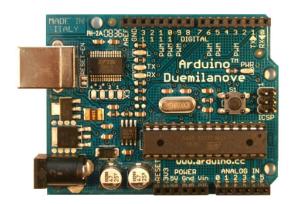

Light enough to be hand portable	<14		Ś	Weight	CN17	_	24
~10 degree separation of nodes for longitude and latitude	324		#	Number of cluster mounting locations	CN15/CN16	4	23
	Yes		Binary	Measurable location of each node	CN15/CN16	σı	22
	_		3	Diameter	CN14	σı	21
				Hemisphere			
	No		Binary	Power constraints	CN5	_	20
No GUI	Yes	Yes	Binary	MATLAB compatibility	CN4	ဒ	19
Arduino microprocessor comes with USB port	Yes	Yes	Binary	USB connection	CN4	ω	18
	7 - 12	6 - 20	<	Input voltage	CN5	4	17
Center LED will be digital, most likely to be white	Yes	Yes	Binary	Separate PWM output for each LED	CN2	σı	16
				Microprocessor			
Methods still in debate	Yes		Binary	Uniform illumination	CN13	4	15
	<30		sec	Disconnect time	CN12	22	14
	>2	2	#	Amount	CN6	ω	13
	<5.1		cm	Casing diameter	CN13	а	12
	Yes		Binary	Casing	CN9	ω	⇉
	Yes		Binary	Illumination of sample area	CN10	σı	10
Gaps may appear, especially within the green spectrum	400-650	415-690	nm	Spectral range covered	CN8	S)	9
				LED Cluster			
	20	15-25	mA	Individual drive current	CN10	4	œ
T1-3/4	Ŋ		mm	Casing	CN10	4	7
	<18	15-20	deg	Cone angle	CN10	4	6
	Yes		Binary	Individual replaceability	CN11	4	បា
	<30		sec	Individual disconnect time	CN11	O	4
If using UV or IR cluster, 6 can be used since 7th output will be digital	7	7	#	Amount per cluster	CN6	G	ω
	8	œ	bit	Individual intensity control	CN1/CN3	G	N
Using pulse-width modulation	Yes	Yes	Binary	Individual addressability	CN7	G	_
				LED			
Comments/Status	Ideal Value	Marginal Value	Unit of Measure	Specification (description)	Customer Need #	Importance	Engineering Spec #
						c	Revision #




Color	Dominant Wave Length (nm)	Cone Angle Range	Intensity (mc Current
UV	380	15	30mW
Violet	420	15 415-490	1000 20mA
Blue	467	15 420-490	5500 20mA
Aqua	505	18 480-540	9000 20mA
Green	525	20 490-570	8000 20mA
Yellow	590	15 575-610	5600 20mA
Orange	605	15 570-640	5000 20mA
Red	644	15 630-690	5000 20mA
White	x=.29 y=.29	15	18000 20mA







Arduino

Arduino Duemilanove

Overview

The Arduino Duemilanove ("2009") is a microcontroller board based on the ATmega168 (datasheet) or ATmega328(datasheet). It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started.

"Duemilanove" means 2009 in Italian and is named after the year of its release. The Duemilanove is the latest in a series of USB Arduino boards; for a comparison with previous versions, see the index of Arduino

boards.

Summary

Microcontroller ATmega168

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA

Flash Memory 16 KB (ATmega168) or 32 KB (ATmega328) of which 2 KB used by

bootloader

SRAM 1 KB (ATmega168) or 2 KB (ATmega328)
EEPROM 512 bytes (ATmega168) or 1 KB (ATmega328)

Clock Speed 16 MHz

Schematic & Reference Design

$$\label{eq:each_entropy} \begin{split} \text{EAGLE files: } & \underline{\text{arduino-duemilanove-reference-design.zip}} \\ \text{Schematic: } & \underline{\text{arduino-duemilanove-schematic.pdf}} \end{split}$$

Power

The Arduino Duemilanove can be powered via the USB connection or with an external power supply. The power source is selected automatically.

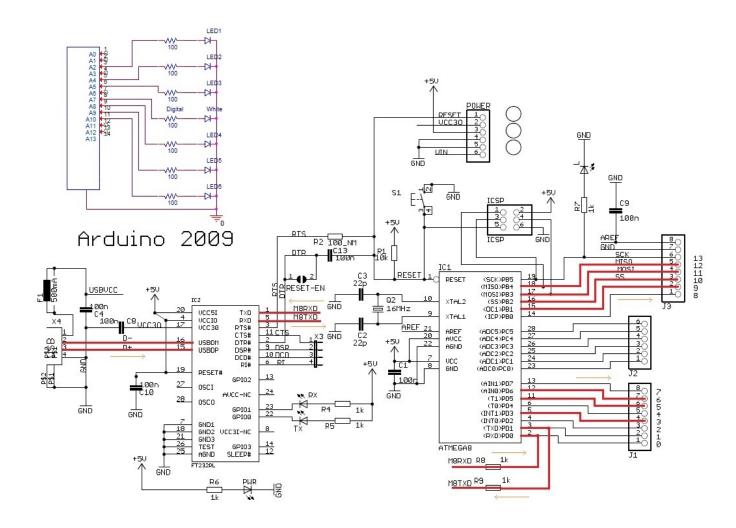
External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts. The power pins are as follows:

- VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.
- **5V.** The regulated power supply used to power the microcontroller and other components on the board. This can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.
- 3V3. A 3.3 volt supply generated by the on-board FTDI chip. Maximum current draw is 50 mA.
- **GND.** Ground pins.

Memory

The ATmega168 has 16 KB of flash memory for storing code (of which 2 KB is used for the bootloader); the ATmega328 has 32 KB, (also with 2 KB used for the bootloader). The ATmega168 has 1 KB of SRAM and 512 bytes of EEPROM (which can be read and written with the **EEPROM library**); the ATmega328 has 2 KB of SRAM and 1 KB of EEPROM.


Input and Output

Each of the 14 digital pins on the Duemilanove can be used as an input or output, using pinMode(), <a href="mailto:digitalWrite(), and digitalWrite(), and digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

- Serial: o (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins are connected to the corresponding pins of the FTDI USB-to-TTL Serial chip.
- External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
- PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
- SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication using the <u>SPI</u> library.
- LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

The Duemilanove has 6 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and the analogReference() function. Additionally, some pins have specialized functionality:

- I²C: 4 (SDA) and 5 (SCL). Support I²C (TWI) communication using the <u>Wire library</u>. There are a couple of other pins on the board:
- AREF. Reference voltage for the analog inputs. Used with <u>analogReference()</u>.

Geodesic Dome Concepts

Geodesic Dome Concepts

2V/L2 Icosahedral Dome Concept

The plans for this dome can be found here. The concept was built using toothpicks and a hot glue gun. The length of each strut was normalized to the length of one toothpick, meaning that the longest strut was a toothpick in length, the second longest was a certain percentage of that, et cetera.


Dome Parameters

From the website mentioned above, the following parameters for the dome were found:

- Vertices/connections: 26
 - 10 x 4-way
 - 6 x 5-way
 - 10 x 6-way
- Edges/struts and bending angles
 - A x 30: 0.54653 (15.86°)
 - B x 35: 0.61803 (18.00°)
 - Total: 65 struts (2 different kinds)
 - Strut variance of 13.1%¹
- Faces: 40 (3-sided)
 - A-A-A x 30 (55.57°, 55.57°, 68.86°)
 - B-B-B x 10 (60.00°, 60.00°, 60.00°)
 - 2 different kinds of faces
- Diameter: 2.000, radius: 1.000
- Height: 1.000 or 50.00% of diameter

Table of Contents

- 1 Geodesic Dome Concepts
 - 1.1 2V/L2 lcosahedral Dome Concept
 - 1.1.1 Dome Parameters
 - 1.1.2 Dome Construction
 - 1.1.3 Comments
 - 1.2 3V Octahedral Dome Concept
 - 1.2.1 Dome Parameters
 - 1.2.2 Dome Construction
 - 1.2.3 Comments
- 2 General Comments on Dome Concepts

Map

¹The variance is the percent difference between the longest and shortest struts. The lower the value, the better.

Dome Construction

Using the provided dome calculator at the website mentioned above, the following strut lengths were obtained. It should be noted that the strut lengths were normalized such that the longest strut is a toothpick in length.

- Strut A: 0.8843 (2-3/16 in.)
- Strut B: 1.0000 (2-9/16 in.)

Comments

Some things learned from building this dome concept:

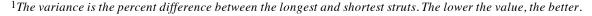
- Has a very rigid structure.
- If expanded to full scale, the various strut orientations would allow for easy location of mounting points for the LED clusters.
- When compared to the 3V octahedral dome, this dome is larger in size while using only five more struts.

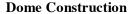
2V/L2 Icosahedral Dome Completed Concept

A rough estimate of manufacturing time to construct this dome concept would be between 80 and 105 minutes based on the estimates listed below.

- Time to prepare struts (counting, measuring, and cutting):
 - 20-30 minutes
- Time to assemble struts into dome:
 - o 60-75 minutes

- Total time required:
 - 80-105 minutes


3V Octahedral Dome Concept


The plans for this dome can be found <u>here</u>. The concept was built using toothpicks and a hot glue gun. The length of each strut was normalized to the length of one toothpick, meaning that the longest strut was a toothpick in length, the second longest was a certain percentage of that, et cetera.

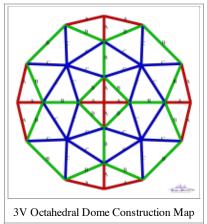
Dome Parameters

From the website mentioned above, the following parameters for the dome were found:

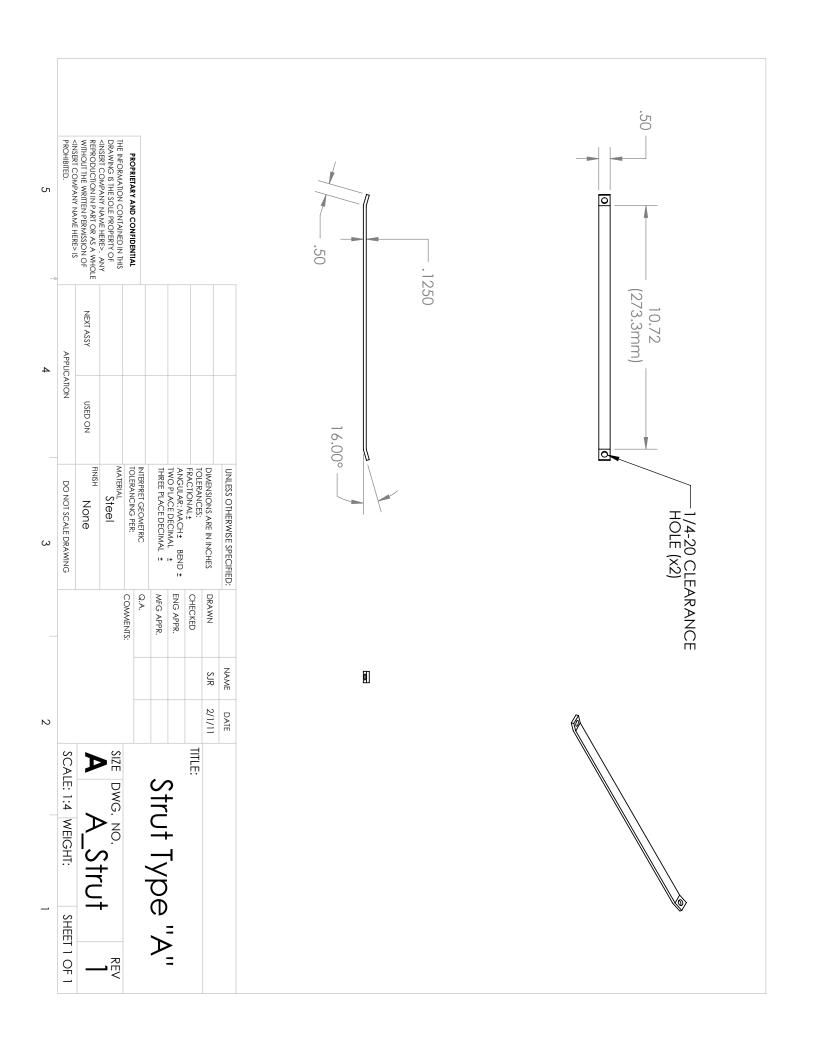
- Vertices/connections: 25
 - 4 x 3-way
 - o 9 x 4-way
 - 12 x 6-way
- Edges/struts and bending angles
 - A x 16: 0.45951 (13.28°)
 - B x 20: 0.63246 (18.44°)
 - C x 24: 0.67142 (19.62°)
 - Total: 60 struts (3 different kinds)
 - Strut variance of 46.1%¹
- Faces: 36 (3-sided)
 - A-A-B x 12 (46.51°, 46.51°, 89.98°)
 - B-C-C x 24 (56.20°, 61.90°, 61.90°)
 - 2 different kinds of faces
- Diameter: 2.000, radius: 1.000
- Height: 1.000 or 50.00% of diameter

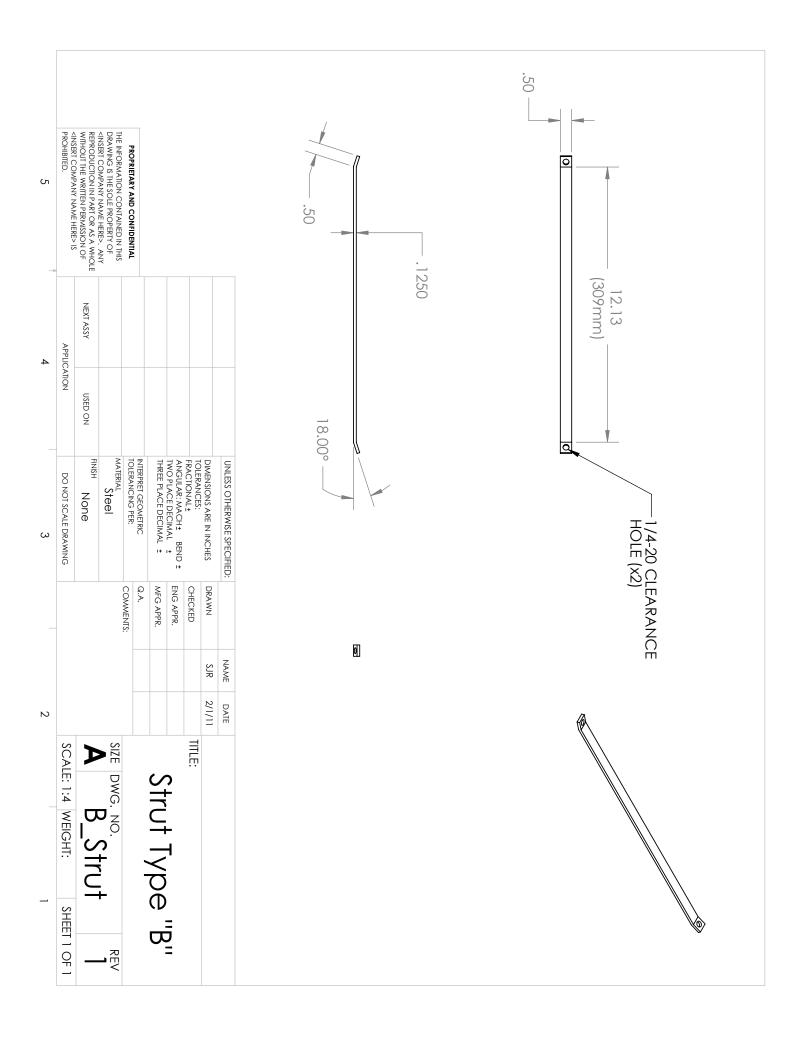
Using the provided dome calculator at the <u>website</u> mentioned above, the following strut lengths were obtained. It should be noted that the strut lengths were normalized such that the longest strut is a toothpick in length.

- Strut A: 0.6844 (1-12/16 in.)
- Strut B: 0.9420 (2-7/16 in.)
- Strut C: 1.0000 (2-9/16 in.)

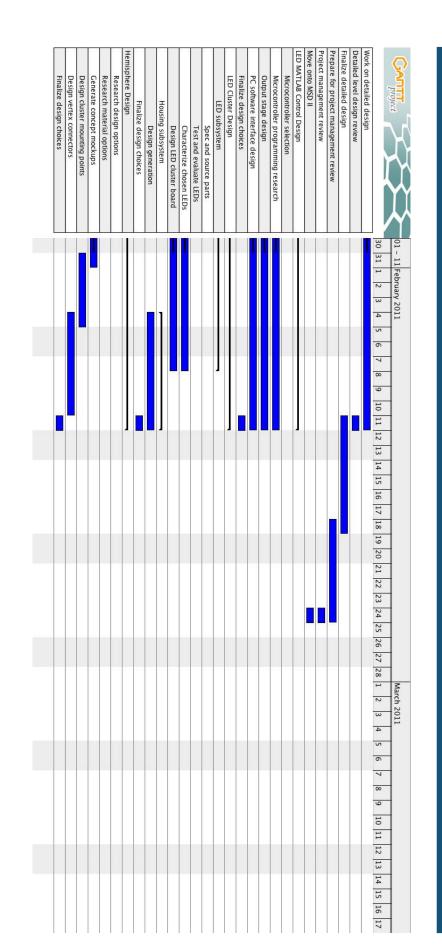

Comments

Some things learned from building this dome concept:


- Has a less rigid structure when compare to the 2V/L2 icosahedral dome.
- If expanded to full scale, the various strut orientations would allow for somewhat difficult location of mounting points for the LED clusters.
- When compared to the 3V octahedral dome, this dome appears to be far less "elegant".


A rough estimate of manufacturing time to construct this dome concept would be between 100 and 120 minutes based on the estimates listed below.

- Time to prepare struts (counting, measuring, and cutting):
 - 30-40 minutes
- Time to assemble struts into dome:
 - 70-80 minutes
- Total time required:
 - 100-120 minutes



3V Octahedral Dome Completed Concept

Gantt Chart

ω	7	6	σ	4	ω	ю	_	5	Revision #
Testing equipment availability	MATLAB functionality	Need more components to interface cluster with microcontroller	Not having enough PWM outputs	Nodes not being accurate	>75 mA LEDs	More than 2 clusters	Possibility of sphere	Risk Item	2
Unable to characterize LEDs and spectrum covered	Cannot control PWM	Redesign control circuit or black Poor engineering box	Need multiple microcontrollers	Cluster location unknown to computer software	Budget	Need larger microcontroller, more LEDs, more housings, et cetera	Need to make two hemispheres that are easily connected together	Effect	
Unavailability of needed testing equipment	Bugs in code	Poor engineering	More than two clusters required by customer	Poor manufacturing	Need to cover required spectrum	Additional requirements from the customer	Customer changes need (should know by 12/17)	Cause	
_	N	_	2	12	ω	N	ω	Likelihood	
9	9	-1	ω	9	_	ω	ω	Severity	
9	18	_	6	18	ω	O	9	Importance	
Confirm equipment availability with customer	Simulate with prototype	Build a good prototype	Find a device with enough PWM outputs.	Jig hemisphere accurately	Understand what spectrum range can be covered. Request larger budget	Be able to build more clusters and use a larger microcontroller than needed	Talk with customer and decide on action as soon as possible	Action to Minimize Risk	
Miranda	Usachev	Liotta	Usachev	Rimkus, Boranbayev	Miranda	Usachev	ALL	Owner	

 $\label{eq:Likelihood: Scale of 1-3 (1 = unlikely, 3 = very likely)} \\ \text{Severity: Scale of 1.3.9 (1 = not severe, 3 = somewhat severe, 9 = critically severe)} \\$

Engineering Spec #	Specification (description)	Unit of Measure	Marginal Value	Ideal Value	Test Plan/How Engineering Specs will be Accomplised
	LED				
1	Individual addressability	Binary	Yes	Yes	Test with Prototype of Arduino Hooked up to LED's
2	Individual intensity control	bit	8	8	Done with Arduino-ALL PWM outputs are 8 bit
3	Amount per cluster	ø	7	7	If using UV or IR cluster, 6 can be used since 7th output will be digital
4	Individual disconnect time	sec	10	S	Disconnect
5	Individual replaceability	Binary	Yes	Yos	Need to Test when the PCB boards are populated by Changing different LED's
6	Cone angle	deg	15-20	<18	Bought all LED's within Marginal Value
7	Casing	mm		5	Bought Correct LED'S
8	Individual drive current	mA	15-25	20	Accomplished with Arduino Tested with Amp Meter
	LED Cluster				
9	Spectral range covered	ram	415-690	400-650	Measure Individual intensities of each LED with SpectraScan 655
10	Illumination of sample area	Binary		Yes.	Visually and Messure with tools Dr. Wyble and Jimwei have (Need more details
11	Casing	Binary		Yos	
12	Casing diameter	cm		<5.1	Measure With Calipers
13	Amount		2	>2	Count
14	Disconnect time	50C		<30	With Stop Watch
	Microprocessor				
15	Separate PWM output for each LED	Binary	Yes	Yes	Center LED will be digital, most likely to be white
16	Input voltage	٧	6 - 20	7 - 12	Test With Volt Meter
17	USB connection	Binary	Yes	Yes	Arduino microprocessor comes with USB port
18	MATLAB compatibility	Binary	Yes	Yes	Arduino is MATLAB compatible
19	Power constraints	Binary		No	
	Hemisphere				
20	Diameter	m		1	Measure
21	Measurable location of each node	Binary		Yes	Take a picture of sample area (Jimwei will help with this)
22	Number of cluster mounting locations	ø		324	-10 degree separation of nodes for longitude and latitude
23	Weight	kg		<14	Weigh

				\$929.68			Total
			\$32.00 adafruit.com	\$32.00	\$4.00	8	Bread Boards
			\$29.99 newegg.com	\$29.99	\$29.99	1	USB Hub
	AC/DC adapter		\$72.00 Bizoner.com	\$72.00	\$9.00	8	Power Cord
Arrived	Need 4 More		\$192.00 Bizoner.com	\$192.00	\$24.00	8	Arduino Deumilanove
			Microcontroller				
	From Ken Snyder			\$0.00			Resistors
	From Ken Snyder			\$0.00			Wire
	TBD			\$0.00			Focusing Lens LED's
in, Harwin	CONN Socket PCB for 0.8mm Pin, Harwin	952-1463-nd	\$47.25 Digikey	\$47.25	\$0.32	150	Socket PCB
Crimp, Tyco	CONN Socket 22-26 AWG Tin Crimp, Tyco	A25676-nd	\$13.26 Digikey	\$13.26	\$0.09	150	Socket 22-26 AWG Ting Crimp
ip, Tyco	CONN Pin 22-26 AWG Tin Crimp, Tyco	A25675-nd	\$13.26 Digikey	\$13.26	\$0.09	150	22-26AWG Tin Crimp
CPC, Tyco	CONN Plug Housing 11-8POS CPC, Tyco	A30030-nd	\$63.04 Digikey	\$63.0	\$3.94	16	Socket Connector
anging, Tyco	CONN Recept 11-8POS Free-Hanging, Tyco	A30020-nd	\$68.16 Digikey	\$68.16	\$4.26	16	Plug Housing Connector
	Need to Find Out Lead Time		\$145.02 PCB Express	\$145.02	\$24.17	6	PCB Board-with Removable LED's
	1.75"x12" round stock Al	8974K681	\$14.67 McMastercarr	\$14.67	\$14.67	1	Housing
		RL5-UV0315-380	\$12.00 superbrightleds.com	\$12.00	\$0.60	20	UV LED
		RL5-V1015	\$25.00 superbrightleds.com	\$25.00	\$1.25	20	Violet LED
Arrived		RL5-05015	\$4.40 superbrightleds.com	\$4.40	\$0.22	20	Orange LED
Arrived		RL5-Y5615	\$4.40 superbrightleds.com	\$4.40	\$0.22	20	Yellow LED
Arrived		RL5-R5015	\$4.40 superbrightleds.com	\$4.40	\$0.22	20	Red LED
Arrived		RL5-A9018	\$9.80 superbrightleds.com	\$9.80	\$0.49	20	Aqua LED
Arrived		RL5-G8020	\$9.80 superbrightleds.com	\$9.80	\$0.49	20	Green LED
Arrived		RL5-B5515	\$11.80 superbrightleds.com	\$11.80	\$0.59	20	Blue LED
Arrived		RL5-W10015	\$14.20 superbrightleds.com	\$14.20	\$0.71	20	White LED
			LED Cluster				
							Magnets
	Neodymium-iron-boron	5902K48	\$41.52 McMastercarr	\$41.52	\$1.73	24	Attachment
None		93827A211	\$6.11 McMastercarr	\$6.11	\$0.06	100	1/4-20 Nuts
None		92865A540	\$6.28 McMastercarr	\$6.28	\$0.06	100	1/4-20 Bolts
None	.125"x.5"x6' Steel	8910K113	\$89.32 McMastercarr	\$89.32	\$6.38	14	Struts
			Hemisphere				
Lead Tme	Notes	PN	Item Total Ordered Vendor	Item Total	Unit Cost	Qty	Description

Ordered/Already HAve
Ok to Order
Waiting for Final Design to Order
Need More Information to Order