
Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

344

Chapter 10 - Streams, files, and BOSS

Overview

Sequenceable collections are often processed in linear order, one element after another. Although
linear access can be performed with collection accessing and enumeration methods, Smalltalk library
contains a group of classes called streams that simplify linear access and improve its efficiency. It is
important to understand that streams are not a new kind of collection but rather a mechanism for accessing
an existing collection.

Smalltalk distinguishes two kinds of streams with largely overlapping protocols - internal and
external. Internal streams are used to access sequenceable collections whereas external streams are for file
access.

Storing data in a file and reading it back requires two facilities: access to the contents of the file
(provided by external streams) and access to the file system itself (for operations such as accessing
directories and files, and for creation, naming, and deleting files and directories). Access to the file system
is provided by class Filename. Most file operations thus require both an instance of an external stream and
an instance of Filename.

External streams provide byte-by-byte access to file contents but no tools to store objects, thus
lacking the facility that most Smalltalk programs need. Although every class knows how to convert its
instances into text representing executable Smalltalk code, this facility is too inefficient for larger objects.
VisualWorks thus provides a special group of classes for storing objects as binary codes. This tool is called
the Binary Object Streaming Service (BOSS). Since storage and retrieval of binary objects depend on files
and streaming access, the use of BOSS requires understanding of external streams and Filename objects.

10.1 Introduction to streams

Sequenceable collections must often be accessed one element after another with intermediate
processing, as if viewed through a window that remembers which element is being viewed (Figure 10.1).
Another, and historically more relevant analogy, is that a stream is like a digital magnetic tape whose
recordings (collections of sound codes) are read one after another in the order in which they were recorded.
This kind of access is called streaming and although it can be achieved with standard enumeration methods,
the Smalltalk library  provides a group of classes that makes streaming access  easier and more efficient. A
stream is thus a tool for viewing existing sequenceable collections - a collection accessor. A stream is not a
new kind of collection.

Figure 10.1. Stream is a mechanism for accessing a sequenceable collection via a positionable window.

Here are a few examples of situations that require streaming:

• Construction of text from strings extracted from a file or entered by the user. Examples include creation
of reports and form letters.

• Analysis of text such as extraction of words from an article or processing of Smalltalk source code by
the compiler.

anObject anObject anObject anObject anObject anObject anObject anObject

position

nextprevious

a sequenceable
collection

a stream



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

345

• Reading and writing of files.

Execution of each of these tasks involves some or all of the following operations:

• Opening a stream on a collection.
• Selecting the starting position.
• Moving to the next or the previous element and examining its contents.
• Replacing the object at the current position with another object.
• Adding an object behind the object processed so far.
• Peeking ahead at the next element without changing the current position.
• Repositioning the stream pointer to the beginning or the end of the stream, or to any location given by

an index.
• Testing whether the position pointer is at the end of the stream.
• Accessing file elements.

Since different tasks require different types of streaming access, Smalltalk streams are
implemented by a group of classes, a subtree of the abstract class Stream. Stream factors out the shared
properties of all streams such as having contents (the underlying collection), testing whether the end of the
stream has been reached, and moving the position pointer. Some of these methods are completely defined in
the abstract class Stream and possibly overridden at lower levels, others are defined as 'subclass
responsibility'.

An example of a stream operation shared by all types of streams is enumeration. Its
implementation is the same for all streams and class Stream thus contains its full definition:

do: aBlock
"Evaluate aBlock for each of the elements of the receiver."

[self atEnd] whileFalse: [aBlock value: self next] “Evaluate block with successive elements.”

Method next which is the basis of the method is left as subclass responsibility.
To emphasize the close relationship between streams and collections, all classes in the Stream

hierarchy with the exception of Random are defined in category Collections - Streams even though the
Stream subtree in the class hierarchy is totally disjoint from the Collection subtree1. The whole subtree is as
follows:

Object
Stream

PeekableStream
PositionableStream

ExternalStream
BufferedExternalStream

ExternalReadStream
ExternalReadAppendStream
ExternalReadWriteStream

ExternalWriteStream
InternalStream

ReadStream
WriteStream

ReadWriteStream
TextStream

Random

                                                          
1 Class Random is a subclass of Stream only because its elements are obtained in a linear fashion. Unlike
other streams, elements accessed by Random don’t exist independently and are created when requested by
message next.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

346

As we have already suggested, streams can be classified according to several parameters. The first
distinction used in the class hierarchy is whether the stream allows reading the next element and returning to
the original position; in other words, whether it is possible to "peek" ahead without moving the cell
(window) pointer. With elements generated by random number generators, this is obviously not possible
since a random number generator cannot be asked to recall the random number that it generated before, and
this is where Random splits from other streams in the Stream tree. Since we have already covered random
numbers, the rest of this chapter deals with peekable collections only.

The fact that we can peek ahead does not imply that we can reposition the window to any place in
the stream, in other words, jump from one place to another. This additional property is needed, for example,
for random access of files, and its underlying mechanism is defined in class PositionableStream via its
instance variable position. Its value is an integer number, an index that points to the current position of the
window on the stream, an element in the underlying sequenceable collection. Most stream accessing
operations first move the pointer by one position "to the right" (increment the index) and then access the
corresponding element. The pointer thus always points before the element that will be accessed by the next
stream accessing message. Since the index of the first element in a stream is 1, resetting a stream sets
position to 0. To provide control over positioning limits, PositionableStream has two instance variables
called readLimit and writeLimit. These two integers determine the current last position accessed by the
stream; the first position is always the element at index 1 of the underlying collection.

Class PositionableStream is the root of two sub-trees - internal streams and external streams.
Internal streams are used for accessing sequenceable collections residing, in principle, in the internal
memory of the computer. Smalltalk uses internal streams extensively to construct messages, menu labels,
arrays of coordinates of geometric objects, parsing during the compilation of Smalltalk programs, and in
other operations. External streams are an extension of the stream concept to files. They are used to read or
write elements of files stored on external media such as disks or obtained from the network.

One important difference between internal and external streams is in the kind of objects stored in
their underlying collections (Figure 10.2). Elements of collections accessed by internal streams can be any
objects such as integers, characters, strings, rectangles, or even other streams. External streams, on the
other hand, are byte-oriented which means that their elements are individual bytes such as ASCII characters
or binary codes with another interpretation. Byte orientation of external streams is due to the fact that files
are managed by operating system functions, and operating systems access consecutive elements of files as
bytes.

Figure 10.2. Internal streams may stream over collections containing any objects but external stream access
is byte-oriented.

Another difference between internal and external streams is that their hierarchy contains an
additional abstract class called BufferedExternalStream. This class implements the concept of a buffer, a
memory area holding the working copy of a portion of a file (Figure 10.3).

anObject anObject anObject anObject anObject anObject anObject anObject

a byte a byte a byte a byte a byte a byte a byte a byte

internal stream

external stream



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

347

Figure 10.3. Only a part of a file is kept in the memory.

Another difference between internal and external streams is that internal streams include class
TextStream specialized for accessing Text objects. External streams, on the other hand, include appendable
streams that allow adding information only at the end of a file which does not have an equivalent among
internal streams.

Besides the distinction between internal and external streams, we can also distinguish streams that
can only be read from streams that can only be written, and streams that can be either read or written. This
classification applies both to internal and external streams although there are a few differences in details.

After this brief overview, we will now present internal streams. External streams, files, and related
concepts of external storage are covered in the second part of this chapter.

10.2 Internal streams

The Smalltalk library uses internal streams a lot but novice programmers often neglect them,
probably because their functions can be implemented by operating directly on their underlying collections.
Or possibly because there is such an overwhelming number of stream methods, some of them with rather
obscure behaviors. This is unfortunate because stream methods considerably simplify frequently needed
operations in the same way that specialized enumeration methods simplify specialized enumeration.
Moreover, streams may significantly improve performance, for example as an alternative of string
concatenation. And finally, most uses of streams depend on only four or five simple messages.

In the rest of this section, we will outline stream protocols, and the next section will give examples
of their use. Note that although most streaming methods are shared by all stream classes, some are not:

Main lessons learned:

• A stream is an accessor of consecutive elements of sequenceable collections.
• The two main groups of streams are internal and external streams.
• Internal streams are used to access sequenceable collections whose elements may be arbitrary objects

stored in memory. External streams are used to access consecutive bytes stored in a file or on the
network.

• Besides the distinction between internal and external streams, Smalltalk also distinguishes between
read-only, write-only, and read-write streams.

• The class hierarchies of internal and external streams are somewhat different. The hierarchy of external
streams includes class BufferedExternalStream which is responsible for hiding the fact that only a part
of a file is present in memory at any time, internal streams include TextStream.

Internal storage - memory
memory

External storage - disk
memory

Buffered part of file

Complete file

position

position



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

348

There are methods that only work with external streams, methods that can be used with read streams but not
with write streams, and so on. Most of these limitations are obvious and natural.

Creation

Internal streams are usually created with class methods on: with:, or by messages addressed to the
underlying sequenceable collections; rarely, streams are created with and on:from:to: and with:from:to:. All
these methods create a new stream over the specified collection and initialize the position,  readLimit,  and
writeLimit variables. The details are initially a bit confusing because each method initializes these variables
differently but you don’t have to think about the details in most cases because the typical behavior is quite
natural.

It is interesting to note that creation methods succeed even if the underlying collection is not
sequenceable (for example a Set) but any subsequent attempt to access a stream created over such a
collection will fail. Now for the details:

aStreamClass on: aCollection, creates a stream over aCollection and positions the pointer at the start, to
position = 0. The initial settings of the readLimit and writeLimit depend on the kind of stream and the effect
is summarized in Figure 10.4.

position readLimit writeLimit
ReadStream 0 end of collection end - irrelevant

ReadWriteStream 0 0 end of collection
WriteStream 0 0 - irrelevant end of collection

Figure 10.4. Effect of on: on various types of internal streams.

aStreamClass with: aCollection, creates a stream over aCollection and initializes position, readLimit, and
writeLimit to the last index, positioning the pointer at the end. To remember the difference between with: and
on:, use the mnemonic that the first letter of with: is ‘at the end of the alphabet’ whereas the first letter of
on: is ‘at the start of the alphabet’. The effect of with: is summarized in Figure 10.5. with differences with
respect to on: italicized.

position readLimit writeLimit
ReadStream end of collection end of collection end - irrelevant

ReadWriteStream end of collection end of collection end of collection
WriteStream end of collection end - irrelevant end of collection

Figure 10.5. Effect of with: on various types of internal streams.

The following are examples of the effect of several stream creation messages:

ReadStream on: #(1 3 'abc') "Opens a read stream on array #(1 3 'abc'); position is initialized to 0."
ReadStream with: #(1 3 'abc') "Opens a read stream on array #(1 3 'abc'); position is initialized to 3."
WriteStream on: (String new: 16) "Opens a write stream on an empty string; position is initialized to 0."
ReadStream with: ('abcd' ) asSet “Succeeds but any attempt to access the stream will fail.”

Most stream applications use the on: creation message and only a few use with:. Creating a new
stream with message new is illegal because it does not specify the underlying collection.

Instead of creating a stream by sending a creation message to a stream class, you can also create a
stream by sending readStream, writeStream, or readWriteStream to a sequenceable collection as in

#(12 43 23 67) readStream

which produces the same result as



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

349

ReadStream on: #(12 43 23 67)

Accessing

This protocol includes many instance messages that return the contents of the stream (the
underlying collection), reposition the pointer, or access elements of the underlying collection. The ‘setting’
messages (various forms of put which add one or more new elements) grow the underlying collection if
necessary. Some of the messages in this protocol are:

size - returns the larger of readLimit and position. If position is larger, it increases readLimit to position.
contents - returns a copy of the part of the underlying collection from the start to the readLimit of the

stream. Its definition is

contents
"Answer a copy of the receiver's collection from 1 to readLimit."

readLimit := readLimit max: position.
^collection copyFrom: 1 to: readLimit

next is used for reading the next element. It first moves the pointer to the right by one position (increments
position by 1) and returns the element at this position. If the pointer is already at the end of the
stream (measured with respect to readLimit or writeLimit), next returns nil and does not change the
pointer.

nextPut: anObject -  increments the pointer and stores anObject as the next element of the underlying
collection. Returns anObject just like other adding messages. Overwrites the existing element of
the collection if there was one at this position, and grows the collection if the new element is being
added to a full collection. It is important to note that the stream does not work with a copy of the
collection but with the collection itself.

nextPutAll: aSequenceableCollection – stores individual elements of aSequenceableCollection of size n as
the next n elements of the stream. Compare this with nextPut: which would add the whole
collection as a single element (Figure 10.6). The difference is similar to the difference between
add: and addAll: collection messages. Another similarity between add methods in collections and
nextPut in streams is that they all return the argument rather than the modified receiver.

Figure 10.6. Result of nextPut: (left) and nextPutAll: (right). Note which elements are added and which
elements are gone.

peek - increments position and returns the element at that position like next, but resets the pointer to its
original place.

13 24 72 -8 26 46

13 24 #(23 34) -8 26 46 13 24 26 46

stream nextPut: #(23 34) stream nextPutAll: #(23 34)

23 34

position

underlying collection

position position



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

350

upTo: anObject - repeats sending next until it reaches the first occurrence of anObject or the readLimit. It
returns a collection whose elements2 are the elements retrieved by the consecutive next messages
from the start of the iteration up to but not including anObject. The pointer is left pointing at
anObject so that the next next message will return the item following anObject. If anObject is not
found, the message returns a collection containing all elements from the current position up to and
including the last element of the receiver stream.

through: anObject - has the same effect as upTo: but anObject is included in the returned stream. The final
value of position is the same as for upTo:.

Positioning

Methods in this protocol reposition the pointer without retrieving or storing elements.

position: anInteger - changes the value of pointer to anInteger. This method is used mainly for reading and
the value of anInteger is usually between 0 and readLimit. Remember that the element accessed by
next will be the element at position anInteger + 1.

reset - resets the pointer to 0 to prepare for access to the first element. Same as position: 0.

setToEnd sets pointer to the last element of the stream marked by readLimit.

skip: anInteger - jumps over the specified number of elements without accessing them. Performs

self position: position + anInteger

In other words, method skip: performs relative repositioning with respect to the initial position,
whereas position: is for absolute repositioning. As a consequence, skip: -1 may be legal but position: -1
never is.

skipUpTo: anObject - skips forward to anObject and leaves pointer pointing at it. Next access will thus be to
the element following anObject. Returns the receiver stream on success, nil if it does not find
anObject.

skipSeparators - skips a sequence of any of the following characters: space, cr, tab, line feed, null, and form
feed. This and some other methods hint that internal streams are often used for character
processing.

do: - uninterrupted enumeration over the underlying collection until self atEnd  returns true. Since it uses
next to access the consecutive elements, it starts at the current position rather than at the start of
the collection. As a consequence, it may not enumerate over all elements of the collection.

Testing

Testing messages determine whether the stream is empty, what is the current position in the stream,
and whether position points at the end.

atEnd - returns true if position is greater than or equal to readLimit. If the stream is not defined over the
whole underlying collection(e.g, on:from:to:), readLimit does not refer to the last element of the
collection.

                                                          
2 We will use ‘stream elements’ to refer to the elements of the underlying collection.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

351

isEmpty - tests whether position = 0, in other words, refers to how much of the collection has been viewed.
This is somewhat confusing because it is not clear what it means that a stream is empty. As an
example

(ReadStream on: 'abcd') isEmpty

returns true although the underlying collection is not empty.

position - returns the current value of the pointer.

The following code fragment illustrates some of these new messages and more examples will be
given later:

| stream |
stream := ReadStream on: #(13 3 'abc' 'xyz' $a $b). “Creates new stream over the specified array.”
stream contents. "Returns #(13 3 'abc' 'xyz' $a $b)."
stream position. "Returns 0 - stream is positioned to read the first element."
stream next. "Returns 13, the next element of the underlying collection."
stream skip: 2. "Increments position by 2 and returns receiver stream."
stream next. "Returns 'xyz' and increments position."
stream skip: 20. "Opens an Exception notifier - position out of bounds."

Exercises

1. What is the relationship between the position and the index in the underlying collection?
2. Examine what happens to the underlying collection when you add new elements at the end of a write

stream.
3. Examine what happens to the underlying collection when you add new elements at the end of a write

stream opened over its sub-range.
4. How does on:from:to: work and how does it limit the new stream’s access to a part of the underlying

collection?
5. Message upTo: anObject returns a subcollection of the stream’s collection. What happens when you

then send nextPut: to this stream?
6. What does skipSeparators return?
7. printString for streams returns only the name of the class. Redefine it to return class name followed by

contents, position, and (depending on the kind of stream) the value of readLimit and writeLimit.
8. Can any other enumeration methods in addition to do: be used on streams?
9. Explain the result of each of the following lines:

 (ReadStream on: 'abcdef') next; next; position: 3; next
 (WriteStream on: Array new) nextPut: $a; nextPut: 13
 (ReadStream on: 'abcdef') peek; peek
 (WriteStream on: String new) nextPut: $a; nextPut: $b; nextPut: 3

Main lessons learned:

• The main stream protocols are creation, accessing, positioning, testing, and enumeration.
• The essential stream messages are on:, with:, next, nextPut:, nextPutAll:, and testing.
• Stream creation messages create a stream over a collection and position a pointer at the start or at the

end of the underlying collection.
• A stream may be opened over a sub-range of the underlying collection.
• The values of readLimit and writeLimit represents the effective end of the stream.
• The most common accessing messages are next and nextPut:. Both first increment the pointer and then

access (and possibly change) the collection.
• Positioning messages are used for random (non-linear) access.
• Details of stream messages depend on the kind of stream.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

352

 (WriteStream with: 'abcd') nextPutAll: 'xyz'; yourself
 (WriteStream on: 'abcd') nextPutAll: 'xyz'; yourself
 (WriteStream with: 'abcd') nextPutAll: 'xyz'; contents
 (ReadWriteStream with: 'abcd') position: 2; nextPutAll: 'xyz'; contents

10. How does contents work on writeable streams?

10.3 Examples of operations on internal streams

In this section, we will give several examples of stream behavior and demonstrate some of the most
common uses of streams.

Example 1:  Stream enumeration
As we already mentioned, stream implementation of do: operates only over the elements following

the current position.  Because the method does not reset the pointer when it ends, the pointer ends up
pointing at the end of the stream. The method returns the receiver stream. As an example,

| stream |
stream := ReadStream on: 'abcdefg'. “Creates a stream on characters; position = 0.”
stream skip: 2. “Value of position is now 2.”
stream do: [:element | Transcript show: (element printString)]

prints ‘cdefg’ and returns the read stream with position = 7.

Example 2: Using streams to edit strings - filtering
Problem: String modification is a typical use of internal streams. Write method replace: char with: aString
to replace all occurrences of character char with replacement string aString. As an example,

'This is ~ true' replace: $~ with: ‘not’ “Should produce ‘This is not true'. ”

Figure 10.7. Principle of solution of Example 2.

Solution: To solve this problem (Figure 10.7), we will create a ReadStream on the string entered by the
user, create an uninitialized WriteStream of suitable size for creating the output, and process the
ReadStream one character after another, copying all characters except for $~ into the WriteStream, and
replacing every $~ character with 'not'.
We will put replace: char with: aString in class CharacterArray and its definition is as follows:

replace: char with: aString
"Replace all occurrences of char with aString."
| output input |
"Open ReadStream on string."
input := ReadStream on: self.

T h i s i s ~  t r u e

T h i s i s n  t r u eo t

FILTER

Read stream on original string

Write stream with resulting string



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

353

"Create a WriteStream on a String."
output := WriteStream on: (String new: self size).
input do: [:ch | "Use the stream to build the result."

ch == char
ifFalse: ["Make replacement on match."

output nextPut: ch]
ifTrue: ["Leave other characters unchanged."output nextPutAll: aString]].

"Returns processed string."

This is a typical use of internal streams - scanning a ReadStream  and constructing a WriteStream
a piece at a time. Note the use of contents to obtain the resulting string. Since the elements of the
underlying String are characters, we use nextPut: to enter the unchanged characters but nextPutAll: to enter
the string ' aString as a sequence of characters.

Example 3: Constructing a string using a stream
Problem: As an experiment with the use of streams, write a code fragment to create a simple personalized
letter from a pre-stored template. The letter is a reminder that a book borrowed from the library is overdue
and it should have the following form:

May 23, 1997

Dear Ms. Jones,

I would like to remind you that the book borrowed from the Xaviera Library is now overdue.

Yours,

Ivan Tomek
Adjunct Librarian

The program should automatically calculate the date, the user selects one of Mr. Mrs. or Ms. from a
multiple choice dialog, and the names of the borrower and the Adjunct Librarian are entered by the user.
(Unfortunately, I am usually the one who gets the reminders rather than the one who issues them.)
Solution: In this program - another typical application of internal streams - we will use a TextStream
because it can handle emphasis and inherits messages for inserting carriage returns, tabs, and other useful
characters. We start by opening a TextStream of suitable size, construct the text from strings that are either
predefined or calculated or selected by the user, and return the resulting Text object. The principle is simple
and the code is as follows:

| labels letter |
labels := #('Miss' 'Mr.'  'Mrs.' 'Ms.').
"Create a TextStream on a String of suitable length."
letter := TextStream on: (String new: 170).
"Construct letter."
letter emphasis: nil; cr; cr;

nextPutAll: (Date today printString); cr; cr;
nextPutAll: 'Dear ';
nextPutAll: (Dialog

choose: 'Which one do you want?'
fromList: labels
values: labels
lines: 4
cancel: ['']);
space; nextPutAll: (Dialog request: 'Enter borrower''s name' initialAnswer: '');

nextPut: $,; cr; cr; tab;
nextPutAll: 'Please note that the book which you borrowed from our Library is now '; cr;
crtab: 3; emphasis: #(#bold #underline); nextPutAll: 'overdue';
emphasis: nil; cr; cr; cr; "Set and clear emphasis"



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

354

nextPutAll: 'Yours,'; cr; cr; cr;
nextPutAll: (Dialog request: 'Enter Adjunct Librarian''s name' initialAnswer: ''); cr;

   nextPutAll: 'Adjunct Librarian'

Test the program and print the letter – the contents of the letter TextStream. Use class Document.
Note again that this example is only an illustration of the use of streams. To implement the problem of
creating form letters, we would have to create one or more classes to perform the task in a more general
context.

Example 4: An example of TextStream methods
As an example of how TextStream handles character oriented operations, the definition of cr

inherited from Stream is

cr
"Append a return character to the receiver."
self nextPut: Character cr

and this is then used with the tab method to define crtab as follows:

crtab
"Append a return character, followed by a single tab character, to the receiver."

self cr; tab

Example 5: Skipping up to a specific character
A compiler skips over characters such as spaces and line feeds which don't have any effect on

execution. This is implemented by messages such as skipTo:, upTo:, and others. We will now illustrate this
principle by reading a string entered by the user and converting it into an array of strings corresponding to
sections of the original terminated by $-. As an example, if the user enters the string

 'This is-not-my day'

the program will convert it to

#('This is'   'not'   'my day')

The basis of the solution is message upTo: anObject which returns the collection of objects
preceding the next occurrence of anObject or the tail of the stream; it returns an empty collection when
issued at the end of the collection. The message sets the pointer to anObject so that next access starts just
behind it. Our program again first opens a ReadStream on the original string, and then constructs the
resulting collection by streaming.

|stream  collection string |
“Create OrderedCollection to hold the result – we cannot predict the eventual size.”
collection := OrderedCollection new.
stream := ReadStream on: (Dialog request: 'Enter text using - as separator' initialAnswer: ‘’).
[(string := stream upTo: $-) isEmpty] “Get next piece of string. Stop at end of stream.”

whileFalse: [collection addLast: string].
collection asArray “Convert because the specification required an Array.”

Example 6: Using with: to access the whole underlying stream
When you create an instance of ReadWriteStream on an existing stream, its position is initialized

to 0. As a consequence, a message such as

(ReadWriteStream on: 'A string') contents

returns an empty string and stream size returns 0. If you then add a new element with nextPut:, it will
replace the first element of the original collection, and repeated use of nextPut: will eventually destroy all



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

355

original data. If you want to be able to access the contents of the whole underlying collection or add
elements at the end, use the with: creation message as in

| rwStream |
(rwStream := (ReadWriteStream with: 'A string') nextPutAll: '!!!'; yourself) contents.
rwStream nextPutAll:  ' And another string!!!'.
rwStream contents "Returns 'A string!!! And another string!!!'"

Example 7: The use of internal streams is not limited to strings
Although internal streams are used mainly for operations on strings, they work with collections of

any objects. In fact, enumeration methods such as collect: and select: defined in class
SequenceableCollection are based on internal streams. As an example, method reverse which returns a
copy of a collection with its elements in reverse order is defined as follows:

reverse
"Answer a new sequenceable collection with its elements in the opposite order."
| aStream |

aStream := WriteStream on: (self species new: self size).
self size to: 1 by: -1 do:

[:index | aStream nextPut: (self at: index)].
^aStream contents

Example 8: Streams can make code more readable
Since operations on streams are actually operations on their underlying collections, what do we

gain by using streams? One advantage of streams is conceptual clarity and simplicity. As an example, the
following two code fragments have exactly the same effect but the second formulation is more natural,
simpler and less error prone because we don’t have to deal explicitly with the position pointer:

“Displaying selected elements of a collection. Implementation with collection.”
|array position|
array := #('a' 'b' 'c' 'd' 'e').
position := 1.
Transcript show: (array at: position); cr.
position := position + 2.
Transcript show: (array at: position); cr.
position := position + 1.
Transcript show: (array at: position); cr.
etc.

“Displaying selected elements of a collection. Implementation with stream.”
| array stream |
array := #('a' 'b' 'c' 'd' 'e').
stream := ReadStream on: array.
Transcript show: (stream next); cr.
stream skip: 1. “Note that we had to increment the pointer by 2 in the previous version.”
Transcript show: (stream next); cr.
Transcript show: (stream next); cr.
etc.

Example 9: Stream operations are often more efficient
A classical example where streams improve execution speed is concatenation. The following two

code fragments produce the same string but the implementation with concatenation is many times slower
than the implementation with streams.

“Test of concatenation. Implementation with string concatenation.”
Time millisecondsToRun: [

| string |
string := 'abcdefg'.
1000 timesRepeat: [string := string , 'abcd']] “Returns 181 on my laptop.”



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

356

“Test of concatenation. Implementation using internal stream”
Time millisecondsToRun: [

| string stream |
string := 'abcdefg'.
stream := WriteStream on: (String new: 8000).
stream nextPutAll: string.
1000 timesRepeat: [stream nextPutAll: 'abcd']] “Returns 5.”

The reason why concatenation is very inefficient is that it creates a new string containing a copy of
the original and then adds the argument string to it. Don’t use concatenation if you must repeat it more than
a few times and if execution speed is important.

Exercises

1. Implement the problem in Example 2 with Collection methods and compare the two solutions.
2. Implement the problem in Example 2 with String methods and compare the two solutions.
3. Can you implement Examples 2 and 3 with class StringParameterSubstitution? Note that this

implementation of string replacement is also based on streams.
4. Explain the definition of printString with your current background on streams.
5. What will happen if you open a ReadStream and a WriteStream over the same collection and use the

two streams alternatively?
6. Browse uses of ReadWriteStream.
7. What happens when you execute nextPut: after reaching the last element and the underlying collection

is not large enough?
8. Arrays cannot grow or shrink. What happens when you add an element to a stream whose underlying

collection is an array?
9. Write method skipSeparators: aCollection to skip all elements included in aCollection.
10. The Transcript - an instance of TextCollector - is a major application of internal streams. In essence, a

TextCollector is a value holder for the Transcript window and its contents are accessed via a write
stream. This is why some parts of the Transcript protocol are identical to the protocol of internal
streams. Write a short description of TextCollector focusing on its relation to internal streams.

Main lessons learned:

• Internal streams are used mainly (but not exclusively) for operations on strings.
• Class TextStream adds emphasis handling to inherited character-oriented text operations.
• Appropriate use of internal streams makes programs simpler and often more efficient.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

357

10.4 Example: A Text filter

In Examples 2 and 3 in the previous section, we needed to replace strings, sometimes obtained by
evaluating a block. In other words, we needed to filter input text and transform it into new text. This seems
like a generally useful functionality and we will now implement it as a new class called TextFilter.

Specification: Class TextFilter takes an initial String object and replaces occurrences of any one of matching
substrings with a corresponding String or Text object. Replacement objects are specified as String or Text
objects or as blocks that calculate String or Text objects.
Examples of application:

• A form letter could contain ‘formal parameters’ (in the terminology of StringParameterSubstitution)
such as ‘<name>’ and ‘<date>’, and the filtering process would replace the first parameter with a string
provided by the user, and the second by an expression calculating today’s day.

• A text editor could provide an extended string replacement facility allowing the user to replace not just
one string but any number of strings simultaneously.

Scenario
Assume original string = ‘abcdefg’ and match/replacement pairs pair1 = ‘bc’->‘xxx’, pair2 = ‘bed’->‘y’.
1. Set current position in string to 1. Compare $a with the first character of pair1 key (no match) and first

character of pair2 key (no match).
2. Increment position in string, compare with first character in both pairs, find match in both.
3. Increment position in string, compare with second character in both pairs, find match in both. pair1

match is complete, perform replacement, reset matching for both pairs.
4. Increment position in string, compare with first character in both pairs, and so on.

Preliminary Design: The specification can be implemented with a class-tool and the only questions are how
to represent the necessary parameters and how to perform the replacement. We will implement the
replacement by scanning the given string character by character and matching it against all match strings at
each step. When a match is found, the corresponding replacement is made and the search continues from the
next character of the original string. All partial matches are reset at this point.

Considering this principle, we immediately see that the state of processing and additional parameters
require the following information:

• The original string and our current place in it.
• The new string as constructed up to this point and our current place in it.
• A collection of match strings and their replacements (strings, texts, or blocks)
• For each match/replacement pair, remember currently reached position in matching.

Design Refinement: We will now decide on the details of the components identified in Preliminary Design,
and construct the replacement algorithm.

• The original string is accessed one-element-t-a-time and we will access it through a ReadStream. This
also takes care of keeping track of the current location in the string.

• For the same reason, we will access the new string through a WriteStream.
• The obvious storage for strings and their translations is a dictionary with the match string as the key

and the replacement string as the value. When we consider that we must also keep track of how much
of the match string has been checked, we decide to hold this information also as a part of the value.
Altogether the dictionary elements will be match string -> Array (replacement value, position).

The replacement algorithm will be as follows:

1. Create a ReadStream over the original string and a WriteStream over the string being constructed.
Initialize the second element of the value array of each element to 0.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

358

2. Repeat for each position of the input stream beginning from the start:
a.  For each element of the dictionary do:

i.  Increment current position holder for match string.
ii.  Compare input string and match character.

1.  If no match, reset current position holder for match string to 0.
2.  If match, check if this is the last character to match.

 If this is the last character (match succeeded), make replacement in output stream,
reset current position holder for match string in all dictionary entries to 0, and repeat
Step a.

 If this is not the last character (match incomplete), increment current position holder.

The intent is to perform filtering is a one-step operation – by submitting a string with all filter
parameters, executing the message without interruption, and receiving the result. We will thus never need
more than one instance of the filter at a time and we will implement the method as a class method,
somewhat like sort: in SequenceableCollectionSorter3.

We now have all necessary information except for the placement of TextFilter in the class
hierarchy. Since there are no related classes, we will make TextFilter a subclass of Object.

Implementation:
The comment of TextFilter is as follows:

I implement general filtering of text. To create an instance, I need the original string and two arrays
consisting of strings to be matched, and replacements. Replacement values may be string or text objects or
blocks. My filtering method returns the result without affection the original.

Class Variables:
InputStream <readstream> streams over input string
Outputstream <WriteStream> used to build filtered string
MatchDictionary <String, Text, Block> used to do replacements

TextFilter will implement all its functionality via class method filter: aString match: matchArray
replace: replaceArray. The definition strictly follows the algorithm outlined above but we will restrict our
implementation to string replacements and leave extension to Text and BlockClosure arguments as an
exercise. The definition is as follows:

filter: aString match: matchArray replace: replacementArray
"I filter aString using matchArray and replacementArray, and return the resulting String ."

"Initialization."
MatchDictionary := Dictionary new.
matchArray with: replacementArray do:

[:match :replace | MatchDictionary at: match put: (Array with: replace with: 0)].
InputStream := ReadStream on: aString.
OutputStream := WriteStream on: (String new: aString size).
"Filtering."
[InputStream atEnd] whileFalse: [self matchAndReplace].
^OutputStream contents

Most of the work is done by class method match which takes a single character from the input
stream and tries to match it. Its definition is

matchAndReplace
"Get next character, match it against all dictionary entries, and do replacement if necessary."

| ch |
                                                          
3 Defining behavior via class methods is generally frowned upon by Smalltalk experts because it may
complicate specialization via subclassing. In our example, we are following the philosophy of the sorting
mechanism in class SequenceableCollectionSorter which serves a similar purpose.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

359

ch := InputStream next.
“Copy the input character into the output stream for now.”
OutputStream nextPut: ch.
“Now try to match against successive entries in the dictionary.”
MatchDictionary

keysAndValuesDo:
[:key :value |
| index |
“Get index of next character in this dictionary entry.”
index := (value at: 2) + 1.
“Check if it equals the input character.”
ch == (key at: index)

ifTrue: [index = key size “We have a match. Did we match the whole 
replacement value?”

ifTrue: “We matched the whole value.”
“Go back in output stream for replacement.”
[OutputStream skip: key size negated.
“Put replacement into output stream.”
OutputStream nextPutAll: (value at: 1).
“Reset match positions in all entries.”
MatchDictionary do: [:valueArray |

valueArray at: 2 put: 0].
“Done with this character.”
^self]

ifFalse: “Not end of matching yet - update index.”
[value at: 2 put: index]]

ifFalse: “No match, reset index in this entry to 0.”
[value at: 2 put: 0]]

This seems a bit long but that’s mainly because of our copious comments. To test the method, I
executed the following test code

|matchArray replacementArray|
matchArray := #('ab' 'eab').
replacementArray := #('xx' 'yy').
TextFilter filter: 'abcdeab' match: matchArray replace: replacementArray .

with inspect and got 'xxcdexx' which is not quite what I expected - I hoped for the ‘better’ match ‘xxcdyy’.
(Essentially, by ‘better’ I mean ‘more compressed’.) What is the problem?

In fact, the problem is with our specification. What is happening is that in our example that the ‘ab’
-> ‘xx’ replacement is made before the method can make the nicer ‘eab’ -> ‘yy’ replacement. We should have
said that if several replacements are possible in a given pass, one of those that give the longest replacement
will be made. Implementing this specification would have produced the ‘expected’ result. We will formulate
a better specification and develop a solution in the next chapter.

Could we have avoided our mistake? If we executed a scenario corresponding to our example in its
entirety, we would have noticed the problem. The conclusion is that not only the implementation but also
the design and even the specification must be tested.

Exercises

Main lessons learned:

• When we know that we will never need several instances of a class, we can implement its functionality
as a class protocol.

• Before you conclude that your design is incorrect, make sure that your specification is correct and
complete. Better still, make sure that your specification is correct before you start design. A good way
to obtain this assurance is to completely execute a set of exhaustive scenarios.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

360

1. Extend TextFilter to accept blocks as replacement arguments as stated in the specification.

10.5 Example: Circular Buffer

In computing terminology, a buffer is a memory area that accepts data from one process and emits
it to another process; the two processes work at their own speeds. An example of the use of a buffer is
reading a block of data from a file into memory where it is processed one byte at a time by a program.
Another example is a computing node on a network that accepts parcels of data arriving in unpredictable
amounts and at unpredictable times, processes them one byte at-a-time, and possibly sends the data on to
another network node.

The hardware implementation of buffers often has the form of a special memory chip with a fixed
number of memory locations with pointers to the first byte to be retrieved, and to the location where the
next byte is to be stored as in Figure 10.8. When a new byte arrives, it is stored at the next available
location and the pointer is incremented, and when a byte is required from storage, it is removed from the
location pointed to and the pointer incremented.

Figure 10.8. Buffer as a fixed size array with pointers to the next available byte and the next available
location.

In reality, of course, a byte read from the buffer is not ‘removed’ and only the changed value of the
pointer indicates that the byte has been used. Similarly, an ‘empty’ position is not really empty but the new
value simply overrides the old value. Finally, when a pointer reaches the end of the array, the buffer is
treated as if it were circular, as if its beginning were glued to its end, and when the pointer reaches the end,
it ‘increments’ by being repositioned to the start. In mathematical terms, incrementing is performed in
modular arithmetic as the remainder of division of the position by the size of the buffer.

The buffer does not, of course, have to be a special hardware chip and, in fact, it usually is not.
Instead, it can be just a memory region that emulates the circular buffer area. Implementing this pretend
circular buffer structure is the purpose of this section.

Problem. Implement a circular buffer based on a fixed-size array. Instances of the CircularBuffer class
implementing this structure must be able to return the next available byte as a result of executing the next
message which also updates the internal pointer, and to store a byte in response to nextPut:, again
automatically updating the internal pointer. The buffer can also be tested with messages isEmpty and isFull.

Solution. If it wasn’t for the very suggestive choice of message names, our first impulse would probably be
to implement CircularBuffer as some kind of collection. On second thought, it becomes clear that
CircularBuffer is not a collection but rather a mechanism for accessing the collection hidden inside it. Since
the access is ‘linear’, this immediately suggests that CircularBuffer is a stream. We will thus implement it as
a part of the Stream hierarchy.

The next question, of course, is where to put it in the Stream tree. To answer this question, let’s
start from the top and go down only as far as necessary to inherit useful behaviors. Class PeekableStream
adds the ability to peak ahead but if we emulate the model of a hardware chip, such functionality should not
be present and we conclude that we should subclass CircularBuffer directly to Stream.

The last question before we start implementing the class is what functionality it should implement.
According to the specification, we need an accessing protocol (next, nextPut:), a testing protocol (isEmpty,

8 63 51 38 29 79 4511

next available locationnext available byte



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

361

isFull), and it will be useful to implement enumeration (message do:) for consistency with other streams and
for printing. A printing protocol is necessary for the inspector and for testing, and initialization is required to
back up the creation protocol. Printing obviously enumerates over all elements in the buffer and we will
thus need an enumeration protocol. With this, we can now start implementing the class.

The class will need an instance variable for the array that holds the data (array), pointers to the first
available location and the first available element (firstLocation and firstElement), and it will be useful to
have a variable to hold the state (isEmpty). The modular arithmetic that we will need for updating indices
will require the size of the underlying array. We will keep it in an instance variable so that we don’t have to
retrieve it every time and since the buffer may not be full at all times, we will refer to it as capacity.

The creation message will create an instance with an array of the specified size and initialize the
remaining instance variable

new: anInteger
^self basicNew initialize: anInteger

where

initialize: anInteger
array := Array new: anInteger.
capacity := array size.
firstIndex := 1.
lastIndex := 1.
isEmpty := true

initializes the instance variables in an obvious way. A simple test such as

CircularArray new: 10

executed with inspect confirms that everything is OK so far.
What should we implement next? We cannot do anything without nextPut: and next, and these

require testing for empty and full so we will first implement the testing methods. Method isEmpty simply
returns the value of isEmpty but isFull requires calculation. The buffer is full if the firstLocation has been
pushed far enough to coincide with firstElement and so

isFull
"Are all slots occupied?"

^(firstElement = firstLocation) and: [isEmpty not]

because the two pointers will coincide not only when the buffer is full but also when it is empty.
With these two methods, we can now implement next and nextPut:. Method nextPut: adds a new

element if the buffer is not yet full. After the test, it then puts the new element into the first available
location and updates the pointer:

nextPut: anObject
"Add new element if there is room, otherwise execute exception block."

self isFull ifTrue: [^self error: 'Buffer is full'].
array at: firstLocation put: anObject.
self moveFirstLocationIndex.
^anObject

Moving of the first location pointer is left to another method which increments the pointer using
modular arithmetic and adds 1 because modulo n arithmetic counts from 0 to n-1 whereas arrays are
numbered from 1 to n-1:

moveFirstLocationIndex
"An element has been added, 'increment' firstIndex."

firstLocation := (firstLocation rem: capacity) + 1.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

362

isEmpty := false

Method next first checks whether the buffer is empty and if it is not, it returns the element at the
pointer location and updates the pointer:

next
"Return next element and move pointer, return nil if empty."

^isEmpty
ifTrue: [nil]
ifFalse:

[| el |
el := array at: firstElement.
self moveFirstElementIndex.
el]

Here incrementing is done with modular arithmetic as follows:

moveFirstElementIndex
"Element was removed, update firstElement."

firstElement := (firstElement rem:  capacity) + 1.
isEmpty := firstElement = firstLocation

Finally, we can now implement printing, in other words method printOn: aStream. The desired
format is

CircularBuffer (13 25 11)

which hides how the data is arranged internally and shows the first element to be retrieved next as the first
element inside the brackets, in this case 13. The definition is simple

printOn: aStream
"Append to the argument aStream a sequence of characters that identifies the collection."

| first |
aStream print: self class; nextPutAll: ' ('.
first := true.
self do:  [:element |  first ifTrue: [first := false]

ifFalse: [aStream space].
element printOn: aStream].

aStream nextPut: $)

if we have a do: message that processes the elements starting with the first available element and ending
with the last one. This operation is implemented as follows:

do: aBlock
"Evaluate aBlock with each of the receiver's elements as the argument."

self isEmpty ifTrue: [^self].
firstElement >= firstLocation

ifTrue:
[firstElement to: capacity do: [:index | aBlock value: (array at: index)].
1 to: firstLocation - 1 do: [:index | aBlock value: (array at: index)]]

ifFalse: [firstElement to: firstLocation - 1 do: [:index | aBlock value: (array at: index)]]

The principle of this method is that if the buffer is not empty, the index of the first available
element is either less then the index of the last available element or the opposite is true (Figure 10.9). The
handling of these two cases can be deduced from the diagram.

8 63 51 38 29 79 451151



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

363

Figure 10.9. The two possible relative positions of firstElement and firstLocation. Arrows point
from first available element upward. Filled circle denotes the first lement, filled square is the last element.

Exercises

1. We have cached the value of size and isEmpty in instance variables to avoid the need to recalculate
them. Is there any advantage in caching isEmpty? Implement this modification and note that this
internal change has no effect on the behavior of CircularBuffer or any other classes the use it.

10.6 Itroduction to files and external streams

External streams are the basis of operations on files and all other data transmission that occurs as a
stream of bytes such as network data transmission. We will focus on the use of external streams with files
which allows operation on textual data, graphics, sound, and other digital information. In this section, we
introduce the basics of file and external streams, and several examples of their use are presented in the
following sections.

Smalltalk operations on files and directories are implemented by combining external streams and
class Filename (Figure 10.10). The main purpose of external streams is to provide byte-oriented streaming
access to data, the role of Filename is to construct filenames, allow checking whether a file exists, whether a
filename name has the proper structure, creating a new directory or file, and perform other file-system
related operations.

firstLocationfirstElement firstLocation firstElement



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

364

Figure 10.10. Main classes used in file processing.

The cookbook procedure for processing data stored in a file is as follows:

1. Create a Filename object with a filename string. The string is the name of the file that may include its
drive/directory path.

2. Create the appropriate kind of external stream and associate the Filename object with it.
3. Perform byte operations on to the stream.
4. Close the stream object; this will close the file too.

Closing a file is very important for two reasons. One is that if a file is not explicitly closed, the data
‘written to it’ may not be stored on the disk. The second reason is that the operating system assigns to each
file that it opens one of a limited number of 'handles'. Failure to close a file means that the handle is not
released and if too many handles are in use, new files cannot be open. It may then be impossible even to
save your work when leaving Smalltalk!

As a preliminary example demonstrating the above procedure and the role of external streams and
Filename objects, the following code fragment opens a file for writing, stores some information in it, and
closes the stream and its associated file.

|file fileStream|
file := Filename named: 'c:\testfile'. "Open a file called 'testfile' in the root directory on drive C."
fileStream := file writeStream. "Attach the file to a write stream (write only access)."
fileStream nextPutAll: 'abc'. "Store the ASCII codes of 'abc' in the file buffer."
fileStream close "Flush buffer to disk and release OS handle."

Execute the program and open the file with the file editor to see that the file has indeed been
created and contains the string 'abc'.

Although almost all Smalltalk applications use files, direct byte-oriented operations on files via
streams as shown above are rare (except when reading data, possibly coming from a network) because
Filename and external stream operations cannot directly store objects. Smalltalk programmers thus use files
and external streams mainly as a vehicle for more powerful object-oriented tools such as BOSS (Section
10.9) and for operations on directories or files as a whole.

Class Filename and various external stream classes contain a large number of methods and we will
present only the most important ones. Before we do, however, a few comments about the classes
themselves.

Object

Filename

MacFilename PCFilename UnixFilename

Object

Stream

PeakableStream

PositionableStream

ExternalStream

BufferedExternalStream

ExternalReadStream ExternalWriteStream

ExternalReadAppendStream ExternalReadWriteStream



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

365

Class Filename is an abstract class and its concrete subclasses (MaxFilename, PCFilename and its
subclasses, and UnixFilename) implement the platform-specific behavior needed on your machine, such as
parsing platform-specific syntax of file names. However, you never need to deal with these concrete
subclasses because Filename automatically sends all platform-dependent messages to the subclass
representing your platform. This is done via Filename’s class variable DefaultClass which holds the name
of the appropriate Filename class. Removing explicit dependence on one platform makes it possible to write
programs that will run on different platforms. This arrangement is similar to the implementation of strings.

External streams perform data transfer operations. Instances of external streams are never created
by class messages to external stream classes but by messages to the Filename object as in our example
above. The Filename object, in turn, asks class ExternalStream to create and return the appropriate kind of
stream; this procedure also opens the file.

After this brief introduction, we will now introduce class Filename and its essential protocols. We
will then present external streams.

Exercises

1. Examine and describe how Filename achieves passing of messages to its concrete subclass. Compare
this with the similar behavior of Character.

2. We created a write stream by sending writeStream to Filename. Examine its definition.

10.7 Class Filename

Class Filename is an interface to the file system and provides access to files and directories. The
essence of its comment is as follows:

Class Filename is an abstract class.  Instances of its subclasses encapsulate the platform-specific syntax of
OS file path names.  This class can almost be used as a concrete class, except name syntax is not
interpreted.  There is standard protocol provided to do most of the things that OS's can do with references
to files -- deleting, renaming, etc.

The best way to understand the role of Filename is to examine its protocols and file-related
protocols in other classes.

Creating Filename objects

Filename objects can be created in two ways:

• By sending named: aString to Filename as in Filename named: 'prog'.
• By sending asFilename to a string as in  'c:\st\prog' asFilename.

In both cases, the string may be either a 'relative' specification (the first example) or an 'absolute'
specification (the second example). In other words, the filename string may refer either to a file in the
currently active directory or specify the complete path. As another example of relative specification, ‘file.st’
refers to the file called ‘file.st’ in the current directory, whereas 'c:\smalltalk\examples\example.1' specifies

Main lessons learned:

• Byte-oriented file operations require the combination of Filename and an external stream.
• Filename objects provide interaction with the file system, external streams provide byte-by-byte access

to file elements.
• Filename is an abstract class which transparently communicates with appropriate concrete subclass.
• Smalltalk programs rarely perform byte-oriented file access explicitly. To store and retrieve objects in

files, use tools such as BOSS or a data base program.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

366

the path including the disk drive. Certain messages (but not creation messages) allow wildcard characters #
(any single character) and * (any group of characters) inside a filename. As an example, in some contexts
‘story.1#’ refers to any string consisting of ‘story.1’ followed by a single character (such as ‘story.12’),
whereas ‘story.1*’ refers to any string starting with ‘story.1’ followed by zero or more characters (as in
‘story.1’,  ‘story.12’ or ‘story.123’).

If you are developing an application that should run on several different platforms, you must
consider that different operating systems use different separators between directories and file names in the
filename path (in our example, we assumed the PC platform which uses \). To get the appropriate separator
for an arbitrary platform, use message Filename separator; this way, the program can construct path name
at run time in the appropriate way. Remember, however, that different platforms also have different rules
for the maximum filename length. To get the maximum filename length for a platform, execute Filename
maxLength. You can ignore these details if your application is designed to run on one platform only.

Filename prompts in class Dialog

Class Dialog provides several powerful requestFileName: messages in the file name dialogs
protocol. All these methods prompt the user for a file name and return a string which can then be used to
construct the Filename object as explained above. These messages also allow you to specify, for example,
whether the file should be new (succeeds only if the file does not yet exist) or old (succeeds only if the file
already exists). Some of these messages repeat prompting until the desired condition is satisfied, and some
allow you to specify a block to be executed when the message fails. The simplest of these messages is
requestFileName: which displays a prompt . It can be used as in

| file |
file := (Dialog requestFileName: 'Enter file name') asFilename

This message behaves just like the familiar Dialog request: but allows wildcard characters * and #
in the answer. If the user enters a string with wildcard characters, the method displays a pop up menu
containing the names of all matching filenames and allows the user to make a selection, try again, or abort
by clicking Cancel (Figure 10.11). In the last case, the message returns an empty string and this must be
kept in mind to prevent asFilename from crashing.

Figure 10.11. Possible result of typing ‘*.hlp’ in response to Dialog requestFileName:.

The proper use of the combination of requestFileName: and asFilename should thus be something like



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

367

| file name |
name := Dialog requestFileName: 'Enter file name'.
name isEmpty ifTrue: [^self].
file := name asFilename.
etc.

A more powerful filename dialog message has the form requestFilename:default:. This message
allows the specification of an initial filename as in

Dialog requestFileName: 'Select a file' default: '*.st'

An even more powerful version is requestFileName:default:version: which lets you specify not
only the default filename but also its type. The version: argument may be #mustBeNew (user is asked how
to proceed if the filename already exists on the specified path), #mustBeOld (user is asked what to do if the
name is not found on the specified path), #new (user is warned if the file exists), #old (user is warned if the
file does not exist), or #any. Yet another version of file prompt messages is the message
requestFileName:default:version:ifFail: which includes an exception block to be executed when the 'version'
condition fails in the case of #mustBeNew or #mustBeOld.

Accessing operations are scattered across several protocols and include the following methods:
 
contentsOfEntireFile - opens an external read stream on the file, gets its contents, returns it as a String, and
closes the stream and the file. The user is not aware of the read stream created and closed during the
operation. Note that we can also access the contents of a file by attaching it to an external stream and
sending contents to the stream. However, message contentsOfEntireFile saves you from creating an external
stream and closing it explicitly. The following example creates a new file, stores some data in it, closes the
file, and gets and displays its contents.

|file fileStream|
“Create a file, put some text in it, and close it.”
file := Filename named: 'c:\testfile'.
fileStream := file writeStream.
fileStream nextPutAll: 'abc'.
fileStream close.
“Display file contents in the Transcript”
Transcript cr; show: (Filename named: 'c:\testfile') contentsOfEntireFile “Displays the string ‘abc’.”

directory - returns the directory containing the file corresponding to the Filename receiver. As an example,

| file |
file := 'c:\abc\xyz’ asFilename.
file directory

returns an object such as a FATFilename (a concrete subclass of abstract class PCFilename for the MS-DOS
operating system). Note that both files and directories are instances of Filename.

Class message defaultDirectoryName returns the String describing the full path of the current directory as in

Filename defaultDirectoryName " Returns, for example, 'c:\visual\image'"

The related class message currentDirectory returns the corresponding Filename directory object.

Deleting, copying, moving, renaming, and printing files



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

368

delete - as in fileName delete - deletes the Filename object (a file or a directory). As an example of its use,
the following fragment creates and opens a file called ‘test’ in the root directory of drive C, stores data in it,
closes it, displays the file’s contents, and deletes the file:

|file fileStream|
"Create, initialize, and close a file."
file := Filename named: 'c:\testfile'.
fileStream := file writeStream. “Create write stream on the file.”
fileStream nextPutAll: 'abc'.
fileStream close.
"Display file contents in the Transcript."
Transcript cr; show: (Filename named: 'c:\testfile') contentsOfEntireFile.
"Delete the file."
(Filename named: 'c:\testfile') delete

Note that delete must be sent to the Filename object - the stream does not understand delete.

renameTo: pathName renames the receiver Filename object, and moves it to a new directory if the new path
is different from the old one; the original name is deleted. As an example,

| filename |
filename := Filename named: 'test'.
filename renameTo: 'c:\smalltalk\examples\example.1'. “Renames and moves the file.”

copyTo: pathNameString creates a copy of the receiver under a new name, possibly in a new location. The
original file and its name remain unchanged.

To print a text file, print its String contents. To print a PostScript file, use class Document.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

369

Testing

exists - checks whether the receiver Filename exists and returns true or false. Note again that the receiver
may be a file or a directory. As an example,

Filename defaultDirectoryName asFilename exists

returns true.

isDirectory - tests whether the Filename receiver is a directory or a file. Returns true for a directory, false
for a file. As an example,

Filename currentDirectory isDirectory

returns true.

Directory operations

makeDirectory - creates a directory according to the specification in the Filename receiver as in

(Filename named: ‘new’) makeDirectory “Creates subdirectory ‘new’ of the current directory.”
(Filename named: ‘c:\dos\new’) makeDirectory “Creates directory ‘new’ with the specified path.”

dates returns an IdentityDictionary containing the dates of creation, last modification, and last access of the
receiver - if these parameters are supported by the operating system. As an example,

| file |
file := (Dialog requestFileName: 'Enter file name' default: ‘*.st’) asFilename.
file dates

returns an instance of IdentityDictionary with date information on a file selected by the user. On PC
platforms, for example, this fragment will return something like

IdentityDictionary (#statusChanged->nil #modified->#(6 April 1993 1:59:50 pm ) #accessed->nil )

where nil values indicate that the corresponding parameter is not supported on the current platform.

directoryContents returns an array of strings, the names of files and subdirectories in the current directory.
As an example,

Filename currentDirectory directoryContents

could return something like #('VISUAL.IM' 'VISUAL.SOU' 'VISUAL.CHA' 'WORKSP.2')

Exercises

Main lessons learned:

• Class Filename supports operations such as deletion, renaming, copying, and closing of files and
directories. It also provides tests and access to internal parameters such as the length of a file and the
contents of a directory.

• Some file operations require only Filename, others also require an external stream.
• Filename can be used to create directories but creation of files requires an external stream.
• Class Dialog provides several file-related dialogs that search the directory for the specified filename,

allowing wildcard characters and specification of the type of the desired file.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

370

1. Try requestFileName:default:version: with various values of version: and names of files that already
exist/don’t yet exist.

2. What happens when you send message directory to a Filename object and the directory with the
specified name does not exist?

3. Create a table of all essential messages introduced in this section. For each method, specify whether it
is a class or an instance method, what are its arguments, what object it returns, what are its
preconditions, and what is its effect.

4. Why are defaultDirectoryName and currentDirectory class methods?
5. Define method deleteDirectory: aString ifFail: aBlock which checks whether aString is a directory name,

deletes the directory if appropriate, and executes aBlock otherwise.

10.8 Examples of the use of file operations that don’t require external streams

External streams are needed only for byte-by-byte access to files. Operations on directories, and
operations on the contents of a file treated as a string do not require explicit use of external streams. This
section gives several examples of such operations.

Example : List alphabetically all files in the current directory and their sizes
Solution: As we know, there are two messages to access to current directory. Message currentDirectory
returns the current directory as a Filename object, and message currentDirectoryString returns a String
containing the filename path of the current directory. Since we need the cntents of the file, we need the
Filename object. We will thus use the currentDirectory message.

If you examine the Filename protocols, you will find that you can get the contents of a Filename
directory object by sending it the directoryContents message. This message returns an Array of strings -
names of the files and subdirectories in the receiver - and to sort it alphabetically, we will convert it to a
SortedCollection. To obtain information on the corresponding files, we must create Filename objects over
the individual string elements and ask them about their size using the instance message fileSize (returns the
size of the file in bytes). The whole program is as follows:

|  names |
“Extract names and convert to sorted collection.”
names := Filename currentDirectory directoryContents asSortedCollection.
Transcript cr.
“Convert names individually to filenames and extract and print the desired information.”
names do: [:name | Transcript show: name; tab; show: name asFilename fileSize printString; cr]

Note that the program does not check whether the extracted names are names of files or directories
and lists them all. We leave it to you to correct this imperfection.

Example 2: Test whether two files (two directories) entered by the user have the same contents
Solution: To check whether two files contain the same data, we don’t need an external stream because we
can compare the contentsOfEntireFile of both files:

| file1 file2 text1 text2 |
"Let the user select two files from the current directory."
file1 := (Dialog requestFileName: 'Select the first file.' default: '*.*') asFilename.
file2 := (Dialog requestFileName: 'Select the second file.' default: '*.*' ) asFilename.
text1 := file1 contentsOfEntireFile.
text2 := file2 contentsOfEntireFile.
text1 = text2

If the files are large, this program will work with two large objects and take a long time to execute. Using
streams explicitly may then be preferable.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

371

Example 3: Let user delete a file from a list
Problem: Implement a method to display the file names in the current directory in a multiple choice dialog,
and allow the user to delete a file
Solution: This problem does not require a specific Filename and we will implement it as a class method in
Filename, following the example of several existing *fromUser methods. The method will obtain the current
directory, display its contents in a multiple choice dialog asking the user which file to delete, and delete the
file if the user makes a selection. The implementation is as follows:

deleteFromUser
“Display dialog with names in current directory and allow user to delete one.”

| choice fileNames |
“Display dialog with names of all files in the current directory.”
fileNames := Filename currentDirectory directoryContents asSortedCollection.
choice := Dialog

choose: 'Which file do you want to delete?'
fromList: fileNames
values: fileNames
lines: 20
cancel: [''].

“If the user selected a file, delete it.”
choice isEmpty ifFalse: [choice asFilename delete]

Exercises

1. Refine Example 1 to distinguish between files and subdirectories. Your version of the program should
print ‘directory’ instead of the size for those filenames that are directories.

2. Define a new method called = to test whether two files or directories have the same contents.
3. Why does Example 2 take so long to execute for larger files?
4. The method in Example 3 is not a safe way to delete files and it does not distinguish between files and

directories. Write a new version that will request a confirmation and ask the user whether to delete a
subdirectory if it is not empty.

5. When you use named: to create a new Filename object on a PC platform, the name is reduced to at
most 8 characters. How does this happen? Since this can be a problem with names of drives on
networks, can it be avoided? (Hint: Try another creation method, possibly inherited.)

10.9 External streams

We have seen that Filename and external stream functionalities somewhat overlap. If you find it
confusing, the rule of thumb is that creating external streams and attaching them to Filename objects is
necessary only to access the contents of the file in a streaming fashion or to store or access objects created
by BOSS. External streams are not necessary for operations on whole files and directories.

We have already seen that the attachment of a stream to a file is performed by asking a Filename to
create a stream of the desired kind. The following messages are available for this purpose: appendStream,
newReadAppendStream, newReadWriteStream, readStream, readAppendStream,  readWriteStream, and
writeStream. Each of them creates a different kind of stream over the same file and will now explain them
briefly. A summary table is provided below.

Creating external streams

Main lessons learned:

• File and directory operations that don’t require explicit byte-oriented access can be performed without
external streams. These operations include operations on entire contents of a file, deleting, renaming,
accessing contents, and similar operations.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

372

• appendStream opens an 'append stream', a file that allows only sequential writing at the end. As an
example, create file ‘test’ containing the string ‘abc’ using the file editor. The following program

|file fileStream|
file := ‘test’ asFilename.
fileStream := file appendStream. "Attach file to an append stream."
fileStream nextPutAll: 'xyz'. "Store the ASCII codes of 'xyz' in the file buffer."
fileStream close "Close file via its associated stream."

opens the file for appending, writes the three characters ‘xyz’ at the end, and closes the file. The file
now contains 'abcxyz'. Check this by opening an editor on the file.

• newReadAppendStream opens an ExternalReadWrite stream at the beginning of the file for
unrestricted reading, but writing is restricted to appending at the end. For reading, the file can be
positioned with position: but this has no effect on writing. The message clears (erases) all original
contents if the file already exists; this is suggested by the word new in the name of the method.

• newReadWriteStream opens a new read/write stream that can be randomly positioned for both reading
and writing using position:. The word new in the name of the method indicates that if the file existed
before the message was sent, the original contents are deleted. Writing to a position within the file
replaces the old byte with the new value.

• readAppendStream has the same properties as newReadAppendStream but does not reset and clear
the receiver file.

• readStream can only read an existing file and is fully positionable.
• readWriteStream opens a read/write stream on a new or existing file without deleting the old contents.

This is indicated by the absence of new in the name of the message. The message opens the file at the
beginning and allows arbitrary positioning. It behaves as newReadWriteStream in all other respects.

• writeStream opens a purely sequential write stream at the beginning of an existing or new file. If the
file existed, all data is lost. The stream does not understand any positioning messages and cannot be
read.

readable writeable positionable append only clears
original

appendStream no yes no yes no
newReadAppendStream yes yes reading yes yes
newReadWriteStream yes yes yes no yes
readAppendStream yes yes reading yes no
readStream yes no yes n/a no
readWriteStream yes yes yes no no
writeStream no yes yes no no

Table 10.1. Properties of external streams.

To understand how stream messages work, it is useful to examine the definition of
newReadAppendStream which is as follows:
  
  newReadWriteStream
  "Answer a new readWrite stream connected to the file represented by the receiver."
  ^ExternalReadWriteStream on:
  (FileConnection
  openFileNamed: self
  mode: #readWrite
  creationRule: #truncateOrCreate)
  



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

373

This explains how the limited number of external stream classes (Figure 10.8) can provide such a
variety of accessing modes - the type of access is controlled by an instance of FileConnection. The other
stream creation messages are similar.

Since a file and its mode of access are two separate things, a file initially accessed via one kind of
stream may be closed and accessed again via another type of stream. As an example, we have already seen
that you may open a file for writing, store some data in it, close it, and open it for reading later.

Operations on external streams

The following are the main operations on external streams:

Accessing

Includes reading or writing of individual bytes to or from the buffer and control of the buffer itself.
The operation of accessing messages depends on the principle of the interface between Smalltalk’s external
streams and the operating system, and between the operating system and disk storage. This will be
explained next.

As we already mentioned, external streams are 'buffered' which means that the stream object holds
on to the part of the file which it is currently accessing via its instance variable ioBuffer. When accessing
operations fill the stream buffer, its contents are automatically sent to the operating system and the buffer is
reset. You can also perform this operation explicitly by sending flush, commit, or close to the stream (see
below). For read-only streams, the buffer is just a multi-byte window into a file stored on the disk.

In addition to the buffer kept by Smalltalk, the operating system maintains its own buffer which
operates in a similar way but is under the control of the operating system. Sending the contents of the stream
buffer to the operating system thus writes to the operating system's buffer but it does not guarantee that the
contents of the buffer is written to the disk ('committed'). Messages close and commit perform even this
task.

Figure 10.12. Data transfers resulting from various stream messages.

The buffer flushing, committing, and accessing messages are defined on writeable streams (Figure
10.12). Note again that these operations work on external streams, not on FileName objects! Note also that
flush and commit are needed only for explicit buffer operations and that these operations happen
automatically when the corresponding buffers become full.

• flush - sends the bytes accumulated in the stream’s memory buffer to the operating system.
• commit - writes the contents of stream’s buffer to the disk.
• next, nextPut: - streaming access in the style of next and nextPut: messages of internal streams. Operate

on the contents of the stream buffer and flush or refill it when necessary.

We have already mentioned that external streams are normally read one character at a time; in
other words, they are byte-oriented. They can, however, also be accessed in a bit-wise fashion. To access
external streams one bit at a time, send message binary to the stream. To change bit access back to byte
access, send text to the stream. Note that although you can change stream access from byte-oriented to bit-
oriented and vice versa while the file is open. On the other hand, you cannot change the type of stream (for
example from write only to read only); to do this, you must close the file and create the desired new kind of
stream.

an ExternalStream object

an
IOBuffer
object

an
OS buffer

disk or other
secondary storage

flush OS commit

commit

next

nextPut:



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

374

Positioning

• position, position:, setToEnd – work the same way as for internal streams.

In closing, we will now illustrate the difference between the various writeable external streams on
a short example.

Example:  Behavior of writeable external streams
In this example, we assume that the underlying file called 'test' already exists and contains the

string '123456789'. Each example is executed from this initial state.

• After executing the following code fragment that uses appendStream

| stream |
stream := (Filename named: 'test') appendStream.
stream nextPutAll: 'abc'. "Store characters $a, $b, $c at the end of the file."
stream close

the contents of the file  become '123456789abc'. The new data have been appended at the end, the old
data have not changed. Neither positioning nor reading are possible.

• When you change the previous program to use newReadAppendStream as in

| stream |
stream :=(Filename named: 'test') newReadAppendStream.
stream nextPutAll: 'abc'. " Store characters $a, $b, $c in the file ."
stream close

the contents of the file  become '123456789' to 'abc'. The old data is thus lost. The stream can be
positioned with position: but positioning affects only reading. Writing always occurs at the end of the
file.

• With newReadWriteStream, writing erases the original contents of the file. The pointer can be
repositioned for reading and for writing within the limits of the new contents.

| stream |
stream := (Filename named: 'test') newReadWriteStream.
stream nextPutAll: 'abc'. "The stream now contains three characters $a, $b, $c."
stream position: 1; nextPut: $X."Replaces the second element."
stream close

changes the contents from '123456789' to 'aXc', erasing the original contents. Message nextPut: issued
after setting position to 1 overwrites the element in position 2 because the value of position is
incremented before writing takes place.

• With readWriteStream, we don't lose the original contents of the file.

   |stream |
stream := (Filename named: 'test') readWriteStream.
stream position: stream size. "Position at end."
stream nextPutAll: 'abc'.
stream position: 1.
stream nextPut: $X.
stream close

changes the original contents '123456789' to '1X3456789abc'. The stream is fully positionable.
• Finally, a writeStream allows positioning and writing starts from the beginning of the file. The original

contents of the file are lost.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

375

| stream |
stream := (Filename named: 'test') writeStream.
stream nextPutAll: 'abc'.
stream close

changes the contents of the file to 'abc'.
Finally, note that we have been careful to close the file stream when it was no longer needed.

Exercises

1. How is it that the reading position of a ReadAppendStream can be changed but writing always occurs
at the end of the file?

2. We have seen that different kinds of file access are obtained by collaboration with class
FileConnection. Write a short descripion of this class.

3.  For each task listed below, write the message that will open the file for the specified purpose assuming
that the file is named ‘test’ and is stored in directory c:\binary.
a.  Append new data to the end of the file.
b.  Empty the file and write new data into it in sequential order.
c.  Open the file, add data at the end, and read data anywhere in the file.
d.  Open the file without losing the existing data and write new data anywhere in the file. No reading

is anticipated.
e.  Same as the previous situation but you want to be able to read the data randomly too.

4. One of the numerous suggestions for extensions of VisualWorks tools is adding save and load
commands to the <operate> menu in the Workspace. Implement these extensions as described below.
(Hint: Use the Resource Finder tool to examine the menu bar of the Visual Launcher to find how it
opens a Workspace.)
a.  Command save opens a file dialog and when the user accepts, the contents of the whole

Workspace window is saved in the specified file. The load command works similarly but adds the
contents of the file to the current Workspace contents.

b.  Add command save it to save only the currently selected part of the Workspace.
5. Define an internal read-append stream that stores its contents in an external stream and resets itself

when it reaches a specified size.

10.10 Storing objects with BOSS

BOSS - Binary Object Streaming Service - is a very important tool for converting most types of
Smalltalk objects into compact binary representation that requires relatively little memory space. Although
BOSS is used mainly to store objects in a file and retrieve them, it can also be used for other purposes such
as sending objects across a network. BOSS is the essence of all programs that store data in a file.

BOSS is implemented by a group of Smalltalk classes in category System-Binary Storage. It is a
very powerful tool that can, for example, store both classes and their instances, help converting from one
version of a class to another, and read objects in the sequence in which they were stored or in random order.

Main lessons learned:

• Several kinds of external streams can be opened by sending the appropriate stream creation message to
the Filename object.

• External streams differ in the kind of access (read-only, write-only, read-write) and the kind of
positioning (random, sequential only, append only) that they provide.

• Stream messages operate on a part of the file stored in a buffer. The contents of the buffer is flushed to
the operating system or committed to the disk only when the buffer fills, when a flush or commit
message is sent, or when the file is closed.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

376

In this section, we will limit ourselves to the simplest but most important use of BOSS - storing class
instances and accessing them sequentially. For more sophisticated use, refer to User's Guide.
The typical BOSS usage pattern is as follows:

1. Create an instance of class BinaryObjectStorage and open it on an external stream associated with a
file.

2. Read the stored objects from the stream using next or write them to the stream using nextPut:.
3. Close the BOSS object; this closes the file too.

The main BOSS protocols are as follows:

Creating and closing BOSS

The following two class methods are used to create BOSS objects and tie them to streams:

• onOld: aStream creates a BOSS object for reading the stream argument associated with an existing file
or for appending to it. The stream must, of course, be capable of the desired type of access.

• onNew: aStream creates a BOSS object for writing to aStream starting at the beginning of the file. The
file does not have to be new but will be treated as if it were. The stream must be capable of desired type
of access.

• close closes the stream and the file associated with the BOSS object.

Accessing - reading and storing objects, changing position

BOSS is based on streams and its accessing messages are a subset of Stream accessing messages.
The most important ones are

next reads and reconstructs the next object from the BOSS stream
nexPut: anObject increments the position pointer and stores anObject in the stream
nextPutAll: aCollection stores all elements of a collection of objects, one after another
position returns the current position in the stream
position: changes the current position
reset resets position to start
setToEnd resets position to end
atEnd tests whether the stream is positioned at the end

The following example shows how to use BOSS to store an object in a new file called 'c:\boss.tst':

| boss |
"Create a BOSS object."
boss := BinaryObjectStorage onNew: (Filename named: 'c:\boss.tst') writeStream.
"Store object in file using BOSS."
boss nextPut: #(‘string1’ ‘string2’).
"Close BOSS object and the file."
boss close

The following complementary program reads the object back and recreates it. Note that it is not
necessary to specify that the object is an array, this information is recovered by BOSS. Using BOSS is thus
simple and the only thing you must watch is to assign the retrieved objects to the correct variables when you
read the objects back.

| array boss|
"Create a BOSS object."
boss := BinaryObjectStorage onOld: (Filename named: 'c:\boss.tst') readStream.
"Read the array previously stored in the file."
array := boss next.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

377

"Close the file."
boss close

In most situations, you will use BOSS to store complete objects by a single operation rather than
storing each component separately. As an example, store a whole collection as one object rather than
storing the elements as separate objects one after another - and read it back without reconstructing it
laboriously by enumeration. If, however, BOSS is used to access and frequently modify a large collection of
objects, and if this access is not always sequential, you may want to store the objects one after another.

Another point to realize is that when inter-related objects are ‘bossed’ to one file, no duplication
occurs and object relationships are preserved. This does not happen if the objects are stored in separate
files. The following example illustrates the difference.

Example: Store network of inter-related objects in one file

Consider the simplest group of inter-related objects – two arrays sharing one element (Figure
10.13). Clearly, this group consists of three objects – the two arrays, and the shared fraction.

Figure 10.13. Two arrays sharing one element.

The following program creates the arrays, bosses them in two separate files,, and reads them back.
When you execute it with inspect, you will find that the test at the end returns false, indicating that the two
reconstituted arrays do not share the fraction that the original arrays did (Figure 10.14). This is not
surprising because we did not boss out any inverse references from the fraction to the other array.

Figure 10.13. The two arrays after bossing out into two separate files, and bossing in again.

| array1 array2 boss x |
x := 3/4.
"Create two arrays sharing one object and boss each to its own file."
array1 := Array with: x.
array2 := Array with: x.
boss := BinaryObjectStorage onNew: (Filename named: 'c:\boss.tst1') writeStream.
boss nextPut: array1.
boss close.
boss := BinaryObjectStorage onNew: (Filename named: 'c:\boss.tst2') writeStream.
boss nextPut: array2.
boss close.
"Read the two objects back."
boss := BinaryObjectStorage onOld: (Filename named: 'c:\boss.tst1') readStream.
array1 := boss next.

array1 array2

3 / 4

array1 array2

3 / 4 3 / 4



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

378

boss close.
boss := BinaryObjectStorage onOld: (Filename named: 'c:\boss.tst2') readStream.
array2 := boss next.
boss close.
"Check whether the two arrays still share the element."
(array1 at: 1) = (array2 at: 1) “Returns false.”

If we now modify the program to write both arrays to the same file

| array1 array2 boss x |
x := 3/4.
"Create two arrays sharing one object and boss both to the same file."
array1 := Array with: x.
array2 := Array with: x.
boss := BinaryObjectStorage onNew: (Filename named: 'c:\boss.tst1') writeStream.
boss nextPut: array1.
boss nextPut: array2.
boss close.
"Read the two objects back."
boss := BinaryObjectStorage onOld: (Filename named: 'c:\boss.tst1') readStream.
array1 := boss next.
array2 := boss next.
boss close.
"Check whether the two arrays still share the element."
(array1 at: 1) = (array2 at: 1) “Returns true.”

we find that the two reconstituted arrays now do share the fraction, as they did before being bossed out. We
conclude that storing multiple objects in one file preserves the original structure of their relationship. In
fact, the second version also saves space because it stores the shared fraction object only ones.

In closing, we want to repeat that BOSS is one of the most important Smalltalk tools and if you
don’t have a data base program, you will probably store all your data using it. The small amount of space
that we dedicated to BOSS is a tribute to the simplicity of its basic use and does not reflect its importance.
We will use BOSS in all our applications to store persistent data.

Exercises

1. What happens to the value of a variable associated with a BinaryObjectStorage when you close the
BOSS object?

2. Must the stream used by BOSS be an external stream?
3. Write a program to use BOSS to store an array containing the factorials of all integers from 1 to 20 in

file ‘test’ in directory c:\. Write another program to read the object back and print it in the Transcript.
4. Open a file editor on the BOSS file created in the previous exercise.
5. BOSS can be used as a simple database system by storing elements of a collection in consecutive

locations and accessing them by position, for example through some translation table (a dictionary).
Explain how this would be done on the example of an inventory of items with unique Ids. Explain the
BOSS accessing methods suitable for this use.

Main lessons learned:

• BOSS - a collection of built in Smalltalk classes - is the standard tool for storing objects in files.
• BOSS is one of the most important VisualWorks tools.
• To use BOSS, create an instance of BinaryObjectStorage on a suitable external stream, perform the

storage or retrieval operation, and close the BOSS object.
• Upon reading an object, BOSS recognizes its type automatically.
• Store compound objects as single entities rather than component by component.
• Store interrelated objects in the same file.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

379

6. Write a program that creates two arrays called array1 and array2, both containing element x = 5/6.
‘Boss’ array1 to file test.1a and array2 to file test.1b, and then boss the two objects back in, storing
them in variables array3 and array4. The original arrays array1 and array2 shared the same element x,
in other words, there were originally three objects – array1, array2, and x. Arrays array3 and array4, on
the other hand, each have their own copy of 5/6 corresponding to four objects altogether. The objects
bossed back are thus an imprecise representation of the original objects.

7. Repeat the previous exercise but write the two arrays to the same BOSS file. What do you get when
you read the two arrays back? Compare with the previous exercise and state a conclusion about storing
networks of inter-related objects.

10.11 Other ways of storing objects

 As you know, parts of the class library can be stored using file out and restored using file in. The
file out procedure saves the source code and adds a few extra characters to separate, for example, one
method from another. File in uses these extra characters and the compiler to recompile the code and save it
back in the library. As a simple example, the file out of the following method in protocol accessing

firstName: aString
firstName := aString

is the following ASCII file:

'From VisualWorks(R), Release 2.5 of September 26, 1995 on July 11, 1997 at 12:56:20 am'!

!Name methodsFor: 'accesing'!

firstName: aString
firstName := aString! !

As we have seen in the previous section, classes can also be stored by BOSS but their restoration
requires BOSS classes rather than the compiler.

Classes and their instances can also be stored and restored by methods storeOn: and readFrom:,
both defined in class Object and redefined in several classes at lower levels of the class hierarchy. This
approach is independent of BOSS but much less efficient and limited, and it is never used in Smalltalk
applications. We introduce it only because its implementation is an interesting example of the use of
polymorphism and delegation, and because it is the basis of the automatic saving of changes in your library
code.

Message storeOn: aStream constructs anASCII string describing the receiver and adds it to the
specified stream. Message readFrom: aStream then reconstructs the original object from it as in

| dictionary stream |
dictionary := Dictionary new.
dictionary add: 'Saleem' ->'Khan'; add: 'Ke'->'Qiu'.
stream := WriteStream on: (String new: 20).
“Store the Dictionary object in the stream using storeOn:.”
dictionary storeOn: stream. 
“Produces  stream on '((Dictionary new) add: (''Ke'' -> ''Qiu''); add: (''Saleem'' -> ''Khan''); yourself)' .”
“Create a copy of the original Dictionary object using readFrom:.”
Object readFrom: (ReadStream on: stream contents)

as you can see when you execute this fragment with inspect.
If the stream in which the string is stored is external, this approach can be used to store an object in

a file and reconstruct it but the representation is bulky.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

380

The basic definition of storeOn: in Object simply generates messages to create a new instance of
the receiver and further messages to initialize its variables. The interesting part of the definition is that it
asks each component of the receiver to store itself. Typically, this results in the component asking its own
components to store themselves, and so on. You can see how this can create problems if the structure is
circular. The definition of storeOn: is as follows:

storeOn: aStream
"Append to aStream an expression whose evaluation creates an object similar to the receiver.  This is
appropriate only for smaller simpler objects and it cannot handle arbitrary circular references of objects.”
aStream nextPut: $(.
self class isVariable

ifTrue: “For instances of classes with indexable elements.”
 [aStream nextPutAll: '(', self class name, ' basicNew: '; : self basicSize; nextPutAll: ') ']

ifFalse: “For instances of classes with named instance variables”
 [aStream nextPutAll: self class name, ' basicNew'].

“Get values of instance variables of the receiver object being stored and ask them to store themselves
using store:.”
1 to: self class instSize do:

 [:i | aStream nextPutAll: ' instVarAt: '; store: i;
nextPutAll: ' put: '; store: (self instVarAt: i); nextPut: $;].

1 to: self basicSize do: “Get values of indexed variables”
[:i | aStream nextPutAll: ' basicAt: '; store: i; store: (self basicAt: i); nextPut: $;].

aStream nextPutAll: ' yourself)'

If the object being stored has some special properties, we may be able to store the object more
efficiently. As an example, Array redefines storeOn: to take advantage of literal arrays as follows:

storeOn: aStream
"Use the literal form if possible."
self isLiteral

ifTrue:  [aStream nextPut: $#; nextPut: $(.
self do: [:element | storeOn: aStream.  space].
aStream nextPut: $)]

ifFalse: [super storeOn: aStream] “Use general implementation if not literal.”

and the definition of storeOn: in class Point is

storeOn: aStream
aStream nextPut: $(;
nextPutAll: self species name;
nextPutAll: ' x: ';
store: x;
nextPutAll: ' y: ';
store: y;
nextPut: $).

Note that the basic definition of storeOn: depends on method store: which is defined in class
Stream as follows:

store: anObject
"Have anObject print itself on the receiver for rereading."

anObject storeOn: self

This interesting definition simply exchanges the receiver and the argument of storeOn: (anObject
storeOn: aStream is equivalent to aStream store: anObject) to make the definition of storeOn: simpler.
Since store: both uses and is used by storeOn:, the definition of storeOn: is recursive - when it stores the
values of instance variables of an object, it asks them to store themselves (Figure 10.13).

create some of the code and send storeOn:
to components to create the rest



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

381

Figure 10.13. The definition of storeOn: is recursive.

As an illustration of the operation of this recursive definition, consider using storeOn: on a literal
array containing string elements: The storeOn: method creates the code to create a literal array and asks the
string elements to create their own description of how they are stored. As a result, when you inspect

| stream |
stream := WriteStream on: (String new: 16).
#('ab' 'cd' 'ef') storeOn: stream.
stream

you will find that the stream’s contents are

'#(''ab'' ''cd'' ''ef'' )

where the underlined parts were created by the string elements of the array, and the rest by storeOn: in
Array. When BOSS stores compound objects, it operates the same way.

As a closing note, the simple nature of storeOn: does not allow it to handle circular structures –
unlike BOSS which does.

Exercises

1. What is the difference between printOn: and storeOn:?
2. Examine and explain the result of executing storeOn: on the object created with message

 Array with: ‘abc’ with: (Array with: with: 13 $x with: 5 factorial) with: (Dictionary with: (‘key’ -> ‘value’)).
 Test that readFrom: reconstructs the original object.

3. Execute the previous exercise with an external stream and file and open a file editor on the file.
Compare the contents of the file with the contents of the equivalent BOSS file.

4. Explain the definition of readFrom: in three selected classes.
5. Rewrite the definition of storeOn: in Object without using store: to appreciate the gain in simplicity.
6. Explain the definitions of storeOn: in the following classes: Character, Collection, Date, and Time.

Main lessons learned:

• Methods storeOn: and readFrom: can store and reconstruct any object that does not have circular
structure.

• Both storeOn: and readFrom: are used by the system but applications use either BOSS or a data base
system to store objects in files.

• Method storeOn: is recursive and delegates the storage of the components of the object being stored to
the components themselves.

• Method storeOn: cannot handle circular structures.

storeOn:
(store yourself) create some of the code, send storeOn:

to components to create the rest

storeOn: storeOn:

storeOn:



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

382

7. How would a Point be stored by the original storeOn: method defined in Object? How is it stored by its
special storeOn: method? (Hint: Redefine storeOn: in Point to use super storeOn:.)

8. Find references to storeOn: and readFrom:.
9. Compare the speed and storage requirements of storeOn: and readFrom:, and BOSS, by storing several

arrays of increasing size. Plot the results in terms of speed and file size as a function of the size of the
arrays.

Conclusion

Sequenceable collections are often accessed linearly - one element after another. When a loop
executing identical statements for each element is desired, this is best implemented with enumeration. When
access is irregular, for example dispersed over several consecutive statements, streaming (use of streams for
accessing) is preferable because it eliminates the need to maintain the current position within the collection.
This becomes almost essential when the access is distributed over several methods.

All streams are subclasses of the abstract class Stream and can be divided into three groups: class
Random, internal streams, and external streams. In this chapter, we dealt with internal and external streams
and their three main forms - read-only, write-only, and read-write streams.

Internal streams are used for streaming over sequenceable collections, mainly strings and ordered
collections. Their main uses are for string processing and their advantage is increased clarity of programs,
simplification of programming, and sometimes increased execution speed. Internal streams are heavily used
by the system and experienced programmers but novice programmers often don’t take advantage of them
and access collection elements by their index when streaming would be preferable.

External streams are used for accessing files and networks in a byte-by-byte fashion. In
VisualWorks, files are implemented as instances of class Filename. Class Filename implements Smalltalk’s
interface to the platform’s file system and executes various file-oriented and disk-oriented operations
without explicit cooperation of an external stream. (Some of these operations use an external stream but
hide it.) When the operation requires explicit access to the elements of the file, an external stream of the
appropriate kind must first be created by sending a stream-creation message to the Filename object.
Filename objects themselves are created with a string specifying the name of the file or directory. Class
Dialog provides several powerful file-request messages that make obtaining the name of a file easier.

To use external streams and files properly, one must understand that external streams use an
intermediate buffer object to hold a working copy of a part of the file or transmitted data. Sending flush to
the stream sends the contents of the Smalltalk buffer to the operating system’s buffer, commit sends it
directly to the disk. The buffer is also flushed or committed whenever it becomes full, and committed when
the file is closed by sending the close message to the stream.

The Binary Object Streaming Service (or BOSS) stores and restores objects efficiently and with
minimum effort on the part of the programmer. To use BOSS, specify the file, create an appropriate external
stream over it, create a BinaryStorageObject over the stream, perform the required operation, and close the
BinaryStorageObject object. We have only covered basic storage and retrieval of class instances; more
sophisticated uses are described in the User Manual. There are only a few occasions when an application
might need to deal with a file directly, such as when you want to read a file containing a digitized picture
rather than a Smalltalk object.

Two other ways of storing and restoring objects are the use of a data base system (VisualWorks
library does not contain one), and the storeOn: and readFrom: messages. These two messages are heavily
used by the system to save changes to the library but not by applications because they are very inefficient.

Important classes introduced in this chapter

Classes whose names are boldfaced are very important, classes whose names are printed in italics are less
important, classes whose names are printed in regular font are not of much interest.



Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

383

BufferedExternalStream, ExternalStream, ExternalReadAppendStream, ExternalReadStream,
ExternalReadWriteStream, ExternalWriteStream, Filename, InternalStream, PositionableStream,
ReadStream, ReadWriteStream, Stream, TextStream, WriteStream.

Terms introduced in this chapter

append stream - stream allowing adding elements only at the end
binary object storage - storage of objects in binary form rather than as printable ASCII codes
buffer - area in memory holding data such as a part of a file
commit - save contents of a buffer on the disk
external stream - a stream designed for file or network access
file handle - a binary number used by the operating system to refer to a file
internal stream - accessor of sequenceable collections such as strings and ordered collections
stream - an accessor of linearly arranged data
streaming - linear access of sequentially organized data using a stream


