
The jOOQ™ User Manual

SQL was never meant to be abstracted. To be confined in the narrow
boundaries of heavy mappers, hiding the beauty and simplicity of relational
data. SQL was never meant to be object-oriented. SQL was never meant to
be anything other than... SQL!

The jOOQ User Manual

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 2 / 174

Overview

This manual is divided into six main sections:

- Getting started with jOOQ
This section will get you started with jOOQ quickly. It contains simple explanations about what
jOOQ is, what jOOQ isn't and how to set it up for the first time

- SQL building
This section explains all about the jOOQ syntax used for building queries through the query DSL
and the query model API. It explains the central factories, the supported SQL statements and
various other syntax elements

- Code generation
This section explains how to configure and use the built-in source code generator

- SQL execution
This section will get you through the specifics of what can be done with jOOQ at runtime, in order
to execute queries, perform CRUD operations, import and export data, and hook into the jOOQ
execution lifecycle for debugging

- Tools
This section is dedicated to tools that ship with jOOQ, such as the jOOQ console

- Reference
This section is a reference for elements in this manual

#Overview

The jOOQ User Manual

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 3 / 174

Table of contents

1. Preface.. 7
2. Copyright, License, and Trademarks... 9
3. Getting started with jOOQ.. 13
3.1. How to read this manual... 13
3.2. The sample database used in this manual... 14
3.3. Different use cases for jOOQ... 15
3.3.1. jOOQ as a SQL builder... 16
3.3.2. jOOQ as a SQL builder with code generation.. 17
3.3.3. jOOQ as a SQL executor.. 17
3.3.4. jOOQ for CRUD... 18
3.3.5. jOOQ for PROs.. 19
3.4. Tutorials... 19
3.4.1. jOOQ in 7 easy steps.. 19
3.4.1.1. Step 1: Preparation... 19
3.4.1.2. Step 2: Your database.. 20
3.4.1.3. Step 3: Code generation... 20
3.4.1.4. Step 4: Connect to your database... 22
3.4.1.5. Step 5: Querying.. 23
3.4.1.6. Step 6: Iterating... 23
3.4.1.7. Step 7: Explore!.. 24
3.4.2. Using jOOQ in modern IDEs... 24
3.4.3. Using jOOQ with Spring.. 25
3.4.4. A simple web application with jOOQ.. 25
3.5. jOOQ and Scala.. 25
3.6. jOOQ and NoSQL... 26
3.7. Dependencies.. 26
3.8. Build your own.. 27
3.9. jOOQ and backwards-compatibility... 27
4. SQL building.. 29
4.1. The query DSL type... 29
4.1.1. DSL subclasses.. 30
4.2. The DSLContext class.. 30
4.2.1. SQL Dialect... 31
4.2.2. Connection vs. DataSource.. 32
4.2.3. Custom data... 33
4.2.4. Custom ExecuteListeners... 34
4.2.5. Custom Settings.. 35
4.2.6. Runtime schema and table mapping.. 35
4.3. SQL Statements.. 37
4.3.1. jOOQ's DSL and model API.. 38
4.3.2. The SELECT statement.. 39
4.3.2.1. The SELECT clause.. 40
4.3.2.2. The FROM clause.. 42
4.3.2.3. The JOIN clause.. 42
4.3.2.4. The WHERE clause.. 44
4.3.2.5. The CONNECT BY clause... 45
4.3.2.6. The GROUP BY clause... 46
4.3.2.7. The HAVING clause... 47
4.3.2.8. The ORDER BY clause.. 47
4.3.2.9. The LIMIT .. OFFSET clause... 49

The jOOQ User Manual

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 4 / 174

4.3.2.10. The FOR UPDATE clause... 50
4.3.2.11. UNION, INTERSECTION and EXCEPT.. 52
4.3.2.12. Oracle-style hints... 53
4.3.2.13. Lexical and logical SELECT clause order... 53
4.3.3. The INSERT statement... 55
4.3.4. The UPDATE statement... 57
4.3.5. The DELETE statement.. 58
4.3.6. The MERGE statement.. 58
4.3.7. The TRUNCATE statement.. 59
4.4. Table expressions... 59
4.4.1. Generated Tables.. 60
4.4.2. Aliased Tables.. 60
4.4.3. Joined tables... 61
4.4.4. The VALUES() table constructor.. 62
4.4.5. Nested SELECTs... 63
4.4.6. The Oracle 11g PIVOT clause.. 64
4.4.7. jOOQ's relational division syntax.. 64
4.4.8. Array and cursor unnesting... 65
4.4.9. The DUAL table... 65
4.5. Column expressions.. 66
4.5.1. Table columns.. 67
4.5.2. Aliased columns.. 67
4.5.3. Cast expressions... 67
4.5.4. Arithmetic expressions.. 68
4.5.5. String concatenation.. 69
4.5.6. General functions... 69
4.5.7. Numeric functions.. 69
4.5.8. Bitwise functions... 70
4.5.9. String functions... 71
4.5.10. Date and time functions.. 72
4.5.11. System functions.. 72
4.5.12. Aggregate functions... 72
4.5.13. Window functions... 74
4.5.14. Grouping functions.. 76
4.5.15. User-defined functions... 78
4.5.16. User-defined aggregate functions... 78
4.5.17. The CASE expression... 79
4.5.18. Sequences and serials.. 80
4.5.19. Tuples or row value expressions.. 81
4.6. Conditional expressions... 82
4.6.1. Condition building.. 82
4.6.2. AND, OR, NOT boolean operators... 83
4.6.3. Comparison predicate... 84
4.6.4. Comparison predicate (degree > 1)... 85
4.6.5. Quantified comparison predicate... 85
4.6.6. NULL predicate.. 86
4.6.7. NULL predicate (degree > 1)... 86
4.6.8. DISTINCT predicate... 87
4.6.9. BETWEEN predicate... 87
4.6.10. BETWEEN predicate (degree > 1)... 88
4.6.11. LIKE predicate.. 88
4.6.12. IN predicate... 89
4.6.13. IN predicate (degree > 1)... 90
4.6.14. EXISTS predicate... 90

The jOOQ User Manual

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 5 / 174

4.6.15. OVERLAPS predicate.. 91
4.7. Plain SQL.. 91
4.8. Bind values and parameters... 94
4.8.1. Indexed parameters... 94
4.8.2. Named parameters.. 95
4.8.3. Inlined parameters... 96
4.8.4. SQL injection and plain SQL QueryParts... 96
4.9. QueryParts... 97
4.9.1. SQL rendering.. 97
4.9.2. Pretty printing SQL... 98
4.9.3. Variable binding... 99
4.9.4. Extend jOOQ with custom types.. 99
4.9.5. Plain SQL QueryParts.. 100
4.9.6. Serializability... 101
4.10. SQL building in Scala.. 101
5. SQL execution.. 104
5.1. Comparison between jOOQ and JDBC.. 104
5.2. Query vs. ResultQuery.. 105
5.3. Fetching.. 105
5.3.1. Record vs. TableRecord... 107
5.3.2. Record1 to Record22.. 108
5.3.3. Arrays, Maps and Lists.. 109
5.3.4. RecordHandler.. 109
5.3.5. RecordMapper... 110
5.3.6. POJOs... 110
5.3.7. Lazy fetching.. 113
5.3.8. Many fetching.. 114
5.3.9. Later fetching... 115
5.3.10. ResultSet fetching.. 116
5.3.11. Data type conversion.. 117
5.3.12. Interning data.. 118
5.4. Static statements vs. Prepared Statements.. 119
5.5. Reusing a Query's PreparedStatement.. 120
5.6. Using JDBC batch operations... 121
5.7. Sequence execution.. 122
5.8. Stored procedures and functions... 123
5.8.1. Oracle Packages.. 124
5.8.2. Oracle member procedures.. 125
5.9. Exporting to XML, CSV, JSON, HTML, Text... 125
5.9.1. Exporting XML... 126
5.9.2. Exporting CSV.. 126
5.9.3. Exporting JSON.. 127
5.9.4. Exporting HTML.. 127
5.9.5. Exporting Text.. 127
5.10. Importing data.. 128
5.10.1. Importing CSV... 128
5.10.2. Importing XML.. 129
5.11. CRUD with UpdatableRecords... 130
5.11.1. Simple CRUD... 130
5.11.2. Records' internal flags.. 132
5.11.3. IDENTITY values.. 132
5.11.4. Navigation methods.. 133
5.11.5. Non-updatable records.. 134
5.11.6. Optimistic locking... 134

The jOOQ User Manual

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 6 / 174

5.11.7. Batch execution.. 136
5.12. DAOs... 136
5.13. Exception handling.. 137
5.14. ExecuteListeners.. 138
5.15. Database meta data... 139
5.16. Logging... 140
5.17. Performance considerations.. 140
6. Code generation.. 142
6.1. Configuration and setup of the generator... 142
6.2. Advanced generator configuration... 147
6.3. Generated global artefacts... 152
6.4. Generated tables... 152
6.5. Generated records.. 153
6.6. Generated POJOs... 154
6.7. Generated Interfaces.. 155
6.8. Generated DAOs.. 156
6.9. Generated sequences.. 156
6.10. Generated procedures... 157
6.11. Generated UDTs.. 157
6.12. Custom data types and type conversion.. 158
6.13. Mapping generated schemata and tables.. 159
6.14. Code generation for large schemas... 159
6.15. Code generation and version control.. 160
7. Tools.. 162
7.1. JDBC mocking for unit testing.. 162
7.2. jOOQ Console... 164
8. Reference... 165
8.1. Supported RDBMS... 165
8.2. Data types.. 165
8.2.1. BLOBs and CLOBs.. 166
8.2.2. Unsigned integer types... 166
8.2.3. INTERVAL data types... 166
8.2.4. XML data types... 167
8.2.5. Geospacial data types... 167
8.2.6. CURSOR data types... 167
8.2.7. ARRAY and TABLE data types.. 167
8.3. jOOQ's BNF pseudo-notation... 168
8.4. Quality Assurance.. 168
8.5. Migrating to jOOQ 3.0.. 170
8.6. Credits... 174

The jOOQ User Manual 1. Preface

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 7 / 174

1. Preface

jOOQ's reason for being - compared to JPA

Java and SQL have come a long way. SQL is an "old", yet established and well-understood technology.
Java is a legacy too, although its platform JVM allows for many new and contemporary languages built on
top of it. Yet, after all these years, libraries dealing with the interface between SQL and Java have come
and gone, leaving JPA to be a standard that is accepted only with doubts, short of any surviving options.

So far, there had been only few database abstraction frameworks or libraries, that truly respected SQL
as a first class citizen among languages. Most frameworks, including the industry standards JPA, EJB,
Hibernate, JDO, Criteria Query, and many others try to hide SQL itself, minimising its scope to things
called JPQL, HQL, JDOQL and various other inferior query languages

jOOQ has come to fill this gap.

jOOQ's reason for being - compared to LINQ

Other platforms incorporate ideas such as LINQ (with LINQ-to-SQL), or Scala's SLICK, or also Java's
QueryDSL to better integrate querying as a concept into their respective language. By querying, they
understand querying of arbitrary targets, such as SQL, XML, Collections and other heterogeneous data
stores. jOOQ claims that this is going the wrong way too.

In more advanced querying use-cases (more than simple CRUD and the occasional JOIN), people will
want to profit from the expressivity of SQL. Due to the relational nature of SQL, this is quite different
from what object-oriented and partially functional languages such as C#, Scala, or Java can offer.

It is very hard to formally express and validate joins and the ad-hoc table expression types they create.
It gets even harder when you want support for more advanced table expressions, such as pivot tables,
unnested cursors, or just arbitrary projections from derived tables. With a very strong object-oriented
typing model, these features will probably stay out of scope.

In essence, the decision of creating an API that looks like SQL or one that looks like C#, Scala, Java
is a definite decision in favour of one or the other platform. While it will be easier to evolve SLICK in
similar ways as LINQ (or QueryDSL in the Java world), SQL feature scope that clearly communicates
its underlying intent will be very hard to add, later on (e.g. how would you model Oracle's partitioned
outer join syntax? How would you model ANSI/ISO SQL:1999 grouping sets? How can you support scalar
subquery caching? etc...).

jOOQ has come to fill this gap.

jOOQ's reason for being - compared to SQL / JDBC

So why not just use SQL?

SQL can be written as plain text and passed through the JDBC API. Over the years, people have become
wary of this approach for many reasons:

The jOOQ User Manual 1. Preface

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 8 / 174

- No typesafety
- No syntax safety
- No bind value index safety
- Verbose SQL String concatenation
- Boring bind value indexing techniques
- Verbose resource and exception handling in JDBC
- A very "stateful", not very object-oriented JDBC API, which is hard to use

For these many reasons, other frameworks have tried to abstract JDBC away in the past in one way or
another. Unfortunately, many have completely abstracted SQL away as well

jOOQ has come to fill this gap.

jOOQ is different

SQL was never meant to be abstracted. To be confined in the narrow boundaries of heavy mappers,
hiding the beauty and simplicity of relational data. SQL was never meant to be object-oriented. SQL
was never meant to be anything other than... SQL!

The jOOQ User Manual 2. Copyright, License, and Trademarks

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 9 / 174

2. Copyright, License, and Trademarks

This section lists the various licenses that apply to different versions of jOOQ. Prior to version 3.2, jOOQ
was shipped for free under the terms of the Apache Software License 2.0. With jOOQ 3.2, jOOQ became
dual-licensed: Apache Software License 2.0 (for use with Open Source databases) and commercial (for
use with commercial databases).

This manual itself (as well as the www.jooq.org public website) is licensed to you under the terms of
the CC BY-SA 4.0 license.

Please contact legal@datageekery.com, should you have any questions regarding licensing.

License for jOOQ 1.x, 2.x, 3.0, 3.1

Copyright (c) 2009-2015, Lukas Eder, lukas.eder@gmail.com
All rights reserved.

This software is licensed to you under the Apache License, Version 2.0
(the "License"); You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

. Neither the name "jOOQ" nor the names of its contributors may be
 used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.jooq.org/licensing
http://www.jooq.org
https://creativecommons.org/licenses/by-sa/4.0/
mailto:legal@datageekery.com

The jOOQ User Manual 2. Copyright, License, and Trademarks

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 10 / 174

License for jOOQ 3.2 and later

Copyright (c) 2009-2015, Data Geekery GmbH (http://www.datageekery.com)
All rights reserved.

This work is dual-licensed
- under the Apache Software License 2.0 (the "ASL")
- under the jOOQ License and Maintenance Agreement (the "jOOQ License")
===
You may choose which license applies to you:

- If you're using this work with Open Source databases, you may choose
 either ASL or jOOQ License.
- If you're using this work with at least one commercial database, you must
 choose jOOQ License

For more information, please visit http://www.jooq.org/licenses

Apache Software License 2.0:

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

jOOQ License and Maintenance Agreement:

Data Geekery grants the Customer the non-exclusive, timely limited and
non-transferable license to install and use the Software under the terms of
the jOOQ License and Maintenance Agreement.

This library is distributed with a LIMITED WARRANTY. See the jOOQ License
and Maintenance Agreement for more details: http://www.jooq.org/licensing

Trademarks owned by Data Geekery™ GmbH

- jOOλ™ is a trademark by Data Geekery™ GmbH
- jOOQ™ is a trademark by Data Geekery™ GmbH
- jOOR™ is a trademark by Data Geekery™ GmbH
- jOOU™ is a trademark by Data Geekery™ GmbH
- jOOX™ is a trademark by Data Geekery™ GmbH

The jOOQ User Manual 2. Copyright, License, and Trademarks

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 11 / 174

Trademarks owned by database vendors with no affiliation to Data
Geekery™ GmbH

- Access® is a registered trademark of Microsoft® Inc.
- Adaptive Server® Enterprise is a registered trademark of Sybase®, Inc.
- CUBRID™ is a trademark of NHN® Corp.
- DB2® is a registered trademark of IBM® Corp.
- Derby is a trademark of the Apache™ Software Foundation
- H2 is a trademark of the H2 Group
- HSQLDB is a trademark of The hsql Development Group
- Ingres is a trademark of Actian™ Corp.
- MariaDB is a trademark of Monty Program Ab
- MySQL® is a registered trademark of Oracle® Corp.
- Firebird® is a registered trademark of Firebird Foundation Inc.
- Oracle® database is a registered trademark of Oracle® Corp.
- PostgreSQL® is a registered trademark of The PostgreSQL Global Development Group
- Postgres Plus® is a registered trademark of EnterpriseDB® software
- SQL Anywhere® is a registered trademark of Sybase®, Inc.
- SQL Server® is a registered trademark of Microsoft® Inc.
- SQLite is a trademark of Hipp, Wyrick & Company, Inc.

Other trademarks by vendors with no affiliation to Data Geekery™ GmbH

- Java® is a registered trademark by Oracle® Corp. and/or its affiliates
- Scala is a trademark of EPFL

Other trademark remarks

Other names may be trademarks of their respective owners.

Throughout the manual, the above trademarks are referenced without a formal ® (R) or ™ (TM) symbol.
It is believed that referencing third-party trademarks in this manual or on the jOOQ website constitutes
"fair use". Please contact us if you think that your trademark(s) are not properly attributed.

Contributions

The following are authors and contributors of jOOQ or parts of jOOQ in alphabetical order:

mailto:contact@datageekery.com

The jOOQ User Manual 2. Copyright, License, and Trademarks

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 12 / 174

- Aaron Digulla
- Arnaud Roger
- Art O Cathain
- Artur Dryomov
- Ben Manes
- Brent Douglas
- Brett Meyer
- Christopher Deckers
- Ed Schaller
- Espen Stromsnes
- Gonzalo Ortiz Jaureguizar
- Gregory Hlavac
- Henrik Sjöstrand
- Ivan Dugic
- Javier Durante
- Johannes Bühler
- Joseph B Phillips
- Laurent Pireyn
- Lukas Eder
- Michael Doberenz
- Michał Kołodziejski
- Peter Ertl
- Robin Stocker
- Sander Plas
- Sean Wellington
- Sergey Epik
- Stanislas Nanchen
- Sugiharto Lim
- Sven Jacobs
- Thomas Darimont
- Tsukasa Kitachi
- Vladimir Kulev
- Vladimir Vinogradov
- Zoltan Tamasi

See the following website for details about contributing to jOOQ:
http://www.jooq.org/legal/contributions

http://www.jooq.org/legal/contributions

The jOOQ User Manual 3. Getting started with jOOQ

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 13 / 174

3. Getting started with jOOQ

These chapters contain a quick overview of how to get started with this manual and with jOOQ. While
the subsequent chapters contain a lot of reference information, this chapter here just wraps up the
essentials.

3.1. How to read this manual

This section helps you correctly interpret this manual in the context of jOOQ.

Code blocks

The following are code blocks:

-- A SQL code block
SELECT 1 FROM DUAL

// A Java code block
for (int i = 0; i < 10; i++);

<!-- An XML code block -->
<hello what="world"></hello>

A config file code block
org.jooq.property=value

These are useful to provide examples in code. Often, with jOOQ, it is even more useful to compare SQL
code with its corresponding Java/jOOQ code. When this is done, the blocks are aligned side-by-side,
with SQL usually being on the left, and an equivalent jOOQ DSL query in Java usually being on the right:

-- In SQL:
SELECT 1 FROM DUAL

// Using jOOQ:
create.selectOne()

Code block contents

The contents of code blocks follow conventions, too. If nothing else is mentioned next to any given code
block, then the following can be assumed:

-- SQL assumptions

-- If nothing else is specified, assume that the Oracle syntax is used
SELECT 1 FROM DUAL

The jOOQ User Manual 3.2. The sample database used in this manual

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 14 / 174

// Java assumptions
// ----------------

// Whenever you see "standalone functions", assume they were static imported from org.jooq.impl.DSL
// "DSL" is the entry point of the static query DSL
exists(); max(); min(); val(); inline(); // correspond to DSL.exists(); DSL.max(); DSL.min(); etc...

// Whenever you see BOOK/Book, AUTHOR/Author and similar entities, assume they were (static) imported from the generated schema
BOOK.TITLE, AUTHOR.LAST_NAME // correspond to com.example.generated.Tables.BOOK.TITLE, com.example.generated.Tables.BOOK.TITLE
FK_BOOK_AUTHOR // corresponds to com.example.generated.Keys.FK_BOOK_AUTHOR

// Whenever you see "create" being used in Java code, assume that this is an instance of org.jooq.DSLContext.
// The reason why it is called "create" is the fact, that a jOOQ QueryPart is being created from the DSL object:
// "create" is thus the entry point of the non-static query DSL
DSLContext create = DSL.using(connection, SQLDialect.ORACLE);

Your naming may differ, of course. For instance, you could name the "create" instance "db", instead.

Execution

When you're coding PL/SQL, T-SQL or some other procedural SQL language, SQL statements are always
executed immediately at the semi-colon. This is not the case in jOOQ, because as an internal DSL, jOOQ
can never be sure that your statement is complete until you call fetch() or execute(). The manual tries
to apply fetch() and execute() as thoroughly as possible. If not, it is implied:

SELECT 1 FROM DUAL
UPDATE t SET v = 1

create.selectOne().fetch();
create.update(T).set(T.V, 1).execute();

Degree (arity)

jOOQ records (and many other API elements) have a degree N between 1 and 22. The variable degree
of an API element is denoted as [N], e.g. Row[N] or Record[N]. The term "degree" is preferred over arity,
as "degree" is the term used in the SQL standard, whereas "arity" is used more often in mathematics
and relational theory.

Settings

jOOQ allows to override runtime behaviour using org.jooq.conf.Settings. If nothing is specified, the
default runtime settings are assumed.

Sample database

jOOQ query examples run against the sample database. See the manual's section about the sample
database used in this manual to learn more about the sample database.

3.2. The sample database used in this manual

For the examples in this manual, the same database will always be referred to. It essentially consists of
these entities created using the Oracle dialect

http://www.jooq.org/javadoc/3.0.x/org/jooq/conf/Settings.html

The jOOQ User Manual 3.3. Different use cases for jOOQ

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 15 / 174

CREATE TABLE language (
 id NUMBER(7) NOT NULL PRIMARY KEY,
 cd CHAR(2) NOT NULL,
 description VARCHAR2(50)
);

CREATE TABLE author (
 id NUMBER(7) NOT NULL PRIMARY KEY,
 first_name VARCHAR2(50),
 last_name VARCHAR2(50) NOT NULL,
 date_of_birth DATE,
 year_of_birth NUMBER(7),
 distinguished NUMBER(1)
);

CREATE TABLE book (
 id NUMBER(7) NOT NULL PRIMARY KEY,
 author_id NUMBER(7) NOT NULL,
 title VARCHAR2(400) NOT NULL,
 published_in NUMBER(7) NOT NULL,
 language_id NUMBER(7) NOT NULL,

 CONSTRAINT fk_book_author FOREIGN KEY (author_id) REFERENCES author(id),
 CONSTRAINT fk_book_language FOREIGN KEY (language_id) REFERENCES language(id)
);

CREATE TABLE book_store (
 name VARCHAR2(400) NOT NULL UNIQUE
);

CREATE TABLE book_to_book_store (
 name VARCHAR2(400) NOT NULL,
 book_id INTEGER NOT NULL,
 stock INTEGER,

 PRIMARY KEY(name, book_id),
 CONSTRAINT fk_b2bs_book_store FOREIGN KEY (name) REFERENCES book_store (name) ON DELETE CASCADE,
 CONSTRAINT fk_b2bs_book FOREIGN KEY (book_id) REFERENCES book (id) ON DELETE CASCADE
);

More entities, types (e.g. UDT's, ARRAY types, ENUM types, etc), stored procedures and packages are
introduced for specific examples

In addition to the above, you may assume the following sample data:

INSERT INTO language (id, cd, description) VALUES (1, 'en', 'English');
INSERT INTO language (id, cd, description) VALUES (2, 'de', 'Deutsch');
INSERT INTO language (id, cd, description) VALUES (3, 'fr', 'Français');
INSERT INTO language (id, cd, description) VALUES (4, 'pt', 'Português');

INSERT INTO author (id, first_name, last_name, date_of_birth , year_of_birth)
 VALUES (1 , 'George' , 'Orwell' , DATE '1903-06-26', 1903);
INSERT INTO author (id, first_name, last_name, date_of_birth , year_of_birth)
 VALUES (2 , 'Paulo' , 'Coelho' , DATE '1947-08-24', 1947);

INSERT INTO book (id, author_id, title , published_in, language_id)
 VALUES (1 , 1 , '1984' , 1948 , 1);
INSERT INTO book (id, author_id, title , published_in, language_id)
 VALUES (2 , 1 , 'Animal Farm' , 1945 , 1);
INSERT INTO book (id, author_id, title , published_in, language_id)
 VALUES (3 , 2 , 'O Alquimista', 1988 , 4);
INSERT INTO book (id, author_id, title , published_in, language_id)
 VALUES (4 , 2 , 'Brida' , 1990 , 2);

INSERT INTO book_store VALUES ('Orell Füssli');
INSERT INTO book_store VALUES ('Ex Libris');
INSERT INTO book_store VALUES ('Buchhandlung im Volkshaus');

INSERT INTO book_to_book_store VALUES ('Orell Füssli' , 1, 10);
INSERT INTO book_to_book_store VALUES ('Orell Füssli' , 2, 10);
INSERT INTO book_to_book_store VALUES ('Orell Füssli' , 3, 10);
INSERT INTO book_to_book_store VALUES ('Ex Libris' , 1, 1);
INSERT INTO book_to_book_store VALUES ('Ex Libris' , 3, 2);
INSERT INTO book_to_book_store VALUES ('Buchhandlung im Volkshaus', 3, 1);

3.3. Different use cases for jOOQ

jOOQ has originally been created as a library for complete abstraction of JDBC and all database
interaction. Various best practices that are frequently encountered in pre-existing software products
are applied to this library. This includes:

The jOOQ User Manual 3.3.1. jOOQ as a SQL builder

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 16 / 174

- Typesafe database object referencing through generated schema, table, column, record,
procedure, type, dao, pojo artefacts (see the chapter about code generation)

- Typesafe SQL construction / SQL building through a complete querying DSL API modelling SQL
as a domain specific language in Java (see the chapter about the query DSL API)

- Convenient query execution through an improved API for result fetching (see the chapters about
the various types of data fetching)

- SQL dialect abstraction and SQL clause emulation to improve cross-database compatibility and
to enable missing features in simpler databases (see the chapter about SQL dialects)

- SQL logging and debugging using jOOQ as an integral part of your development process (see the
chapters about logging and about the jOOQ Console)

Effectively, jOOQ was originally designed to replace any other database abstraction framework short
of the ones handling connection pooling and transaction management (see also the credits for other
database abstraction libraries)

Use jOOQ the way you prefer

... but open source is community-driven. And the community has shown various ways of using jOOQ
that diverge from its original intent. Some use cases encountered are:

- Using Hibernate for 70% of the queries (i.e. CRUD) and jOOQ for the remaining 30% where SQL
is really needed

- Using jOOQ for SQL building and JDBC for SQL execution
- Using jOOQ for SQL building and Spring Data for SQL execution
- Using jOOQ without the source code generator to build the basis of a framework for dynamic

SQL execution.

The following sections explain about various use cases for using jOOQ in your application.

3.3.1. jOOQ as a SQL builder

This is the most simple of all use cases, allowing for construction of valid SQL for any database. In
this use case, you will not use jOOQ's code generator and probably not even jOOQ's query execution
facilities. Instead, you'll use jOOQ's query DSL API to wrap strings, literals and other user-defined objects
into an object-oriented, type-safe AST modelling your SQL statements. An example is given here:

// Fetch a SQL string from a jOOQ Query in order to manually execute it with another tool.
String sql = create.select(field("BOOK.TITLE"), field("AUTHOR.FIRST_NAME"), field("AUTHOR.LAST_NAME"))
 .from(table("BOOK"))
 .join(table("AUTHOR"))
 .on(field("BOOK.AUTHOR_ID").equal(field("AUTHOR.ID")))
 .where(field("BOOK.PUBLISHED_IN").equal(1948))
 .getSQL();

The SQL string built with the jOOQ query DSL can then be executed using JDBC directly, using Spring's
JdbcTemplate, using Apache DbUtils and many other tools.

If you wish to use jOOQ only as a SQL builder, the following sections of the manual will be of interest
to you:

The jOOQ User Manual 3.3.2. jOOQ as a SQL builder with code generation

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 17 / 174

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Plain SQL: This section contains information useful in particular to those that want to supply
table expressions, column expressions, etc. as plain SQL to jOOQ, rather than through
generated artefacts

3.3.2. jOOQ as a SQL builder with code generation

In addition to using jOOQ as a standalone SQL builder, you can also use jOOQ's code generation
features in order to compile your SQL statements using a Java compiler against an actual database
schema. This adds a lot of power and expressiveness to just simply constructing SQL using the query
DSL and custom strings and literals, as you can be sure that all database artefacts actually exist in the
database, and that their type is correct. An example is given here:

// Fetch a SQL string from a jOOQ Query in order to manually execute it with another tool.
String sql = create.select(BOOK.TITLE, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .from(BOOK)
 .join(AUTHOR)
 .on(BOOK.AUTHOR_ID.equal(AUTHOR.ID))
 .where(BOOK.PUBLISHED_IN.equal(1948))
 .getSQL();

The SQL string that you can generate as such can then be executed using JDBC directly, using Spring's
JdbcTemplate, using Apache DbUtils and many other tools.

If you wish to use jOOQ only as a SQL builder with code generation, the following sections of the manual
will be of interest to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

3.3.3. jOOQ as a SQL executor

Instead of any tool mentioned in the previous chapters, you can also use jOOQ directly to execute your
jOOQ-generated SQL statements. This will add a lot of convenience on top of the previously discussed
API for typesafe SQL construction, when you can re-use the information from generated classes to fetch
records and custom data types. An example is given here:

// Typesafely execute the SQL statement directly with jOOQ
Result<Record3<String, String, String>> result =
create.select(BOOK.TITLE, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .from(BOOK)
 .join(AUTHOR)
 .on(BOOK.AUTHOR_ID.equal(AUTHOR.ID))
 .where(BOOK.PUBLISHED_IN.equal(1948))
 .fetch();

By having jOOQ execute your SQL, the jOOQ query DSL becomes truly embedded SQL.

jOOQ doesn't stop here, though! You can execute any SQL with jOOQ. In other words, you can use any
other SQL building tool and run the SQL statements with jOOQ. An example is given here:

The jOOQ User Manual 3.3.4. jOOQ for CRUD

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 18 / 174

// Use your favourite tool to construct SQL strings:
String sql = "SELECT title, first_name, last_name FROM book JOIN author ON book.author_id = author.id " +
 "WHERE book.published_in = 1984";

// Fetch results using jOOQ
Result<Record> result = create.fetch(sql);

// Or execute that SQL with JDBC, fetching the ResultSet with jOOQ:
ResultSet rs = connection.createStatement().executeQuery(sql);
Result<Record> result = create.fetch(rs);

If you wish to use jOOQ as a SQL executor with (or without) code generation, the following sections of
the manual will be of interest to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

- Fetching: This section contains some useful information about the various ways of fetching data
with jOOQ

3.3.4. jOOQ for CRUD

This is probably the most complete use-case for jOOQ: Use all of jOOQ's features. Apart from jOOQ's
fluent API for query construction, jOOQ can also help you execute everyday CRUD operations. An
example is given here:

// Fetch all authors
for (AuthorRecord author : create.fetch(AUTHOR)) {

 // Skip previously distinguished authors
 if ((int) author.getDistinguished() == 1)
 continue;

 // Check if the author has written more than 5 books
 if (author.fetchChildren(Keys.FK_BOOK_AUTHOR).size() > 5) {

 // Mark the author as a "distinguished" author
 author.setDistinguished(1);
 author.store();
 }
}

If you wish to use all of jOOQ's features, the following sections of the manual will be of interest to you
(including all sub-sections):

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

The jOOQ User Manual 3.3.5. jOOQ for PROs

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 19 / 174

3.3.5. jOOQ for PROs

jOOQ isn't just a library that helps you build and execute SQL against your generated, compilable
schema. jOOQ ships with a lot of tools. Here are some of the most important tools shipped with jOOQ:

- jOOQ Console: This small application hooks into jOOQ's execute listener support to allow for
tracing, debugging and introspecting any SQL statement executed through the jOOQ API. This
includes setting breakpoints, introspecting bind values, running probe SQL statements, ad-hoc
patching of SQL, measuring execution times, exporting stack traces. Use this tool to better know
your SQL!

- jOOQ's Execute Listeners: jOOQ allows you to hook your custom execute listeners into jOOQ's
SQL statement execution lifecycle in order to centrally coordinate any arbitrary operation
performed on SQL being executed. Use this for logging, identity generation, SQL tracing,
performance measurements, etc.

- Logging: jOOQ has a standard DEBUG logger built-in, for logging and tracing all your executed
SQL statements and fetched result sets

- Stored Procedures: jOOQ supports stored procedures and functions of your favourite database.
All routines and user-defined types are generated and can be included in jOOQ's SQL building
API as function references.

- Batch execution: Batch execution is important when executing a big load of SQL statements.
jOOQ simplifies these operations compared to JDBC

- Exporting and Importing: jOOQ ships with an API to easily export/import data in various formats

If you're a power user of your favourite, feature-rich database, jOOQ will help you access all of your
database's vendor-specific features, such as OLAP features, stored procedures, user-defined types,
vendor-specific SQL, functions, etc. Examples are given throughout this manual.

3.4. Tutorials

Don't have time to read the full manual? Here are a couple of tutorials that will get you into the most
essential parts of jOOQ as quick as possible.

3.4.1. jOOQ in 7 easy steps

This manual section is intended for new users, to help them get a running application with jOOQ, quickly.

3.4.1.1. Step 1: Preparation

If you haven't already downloaded it, download jOOQ:
http://www.jooq.org/download

Alternatively, you can create a Maven dependency to download jOOQ artefacts:

http://www.jooq.org/download

The jOOQ User Manual 3.4.1.2. Step 2: Your database

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 20 / 174

<dependency>
 <groupId>org.jooq</groupId>
 <artifactId>jooq</artifactId>
 <version>3.0.1</version>
</dependency>
<dependency>
 <groupId>org.jooq</groupId>
 <artifactId>jooq-meta</artifactId>
 <version>3.0.1</version>
</dependency>
<dependency>
 <groupId>org.jooq</groupId>
 <artifactId>jooq-codegen</artifactId>
 <version>3.0.1</version>
</dependency>

Please refer to the manual's section about Code generation configuration to learn how to use jOOQ's
code generator with Maven.

For this example, we'll be using MySQL. If you haven't already downloaded MySQL Connector/J,
download it here:
http://dev.mysql.com/downloads/connector/j/

If you don't have a MySQL instance up and running yet, get XAMPP now! XAMPP is a simple installation
bundle for Apache, MySQL, PHP and Perl

3.4.1.2. Step 2: Your database

We're going to create a database called "guestbook" and a corresponding "posts" table. Connect to
MySQL via your command line client and type the following:

CREATE DATABASE guestbook;

CREATE TABLE `posts` (
 `id` bigint(20) NOT NULL,
 `body` varchar(255) DEFAULT NULL,
 `timestamp` datetime DEFAULT NULL,
 `title` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`id`)
);

3.4.1.3. Step 3: Code generation

In this step, we're going to use jOOQ's command line tools to generate classes that map to the Posts
table we just created. More detailed information about how to set up the jOOQ code generator can
be found here:
jOOQ manual pages about setting up the code generator

The easiest way to generate a schema is to copy the jOOQ jar files (there should be 3) and the MySQL
Connector jar file to a temporary directory. Then, create a guestbook.xml that looks like this:

http://dev.mysql.com/downloads/connector/j/
http://www.apachefriends.org/en/xampp.html

The jOOQ User Manual 3.4.1.3. Step 3: Code generation

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 21 / 174

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-3.0.0.xsd">
 <!-- Configure the database connection here -->
 <jdbc>
 <driver>com.mysql.jdbc.Driver</driver>
 <url>jdbc:mysql://localhost:3306/guestbook</url>
 <user>root</user>
 <password></password>
 </jdbc>

 <generator>
 <!-- The default code generator. You can override this one, to generate your own code style.
 Defaults to org.jooq.util.JavaGenerator -->
 <name>org.jooq.util.JavaGenerator</name>

 <database>
 <!-- The database type. The format here is:
 org.util.[database].[database]Database -->
 <name>org.jooq.util.mysql.MySQLDatabase</name>

 <!-- The database schema (or in the absence of schema support, in your RDBMS this
 can be the owner, user, database name) to be generated -->
 <inputSchema>guestbook</inputSchema>

 <!-- All elements that are generated from your schema
 (A Java regular expression. Use the pipe to separate several expressions)
 Watch out for case-sensitivity. Depending on your database, this might be important! -->
 <includes>.*</includes>

 <!-- All elements that are excluded from your schema
 (A Java regular expression. Use the pipe to separate several expressions).
 Excludes match before includes -->
 <excludes></excludes>
 </database>

 <target>
 <!-- The destination package of your generated classes (within the destination directory) -->
 <packageName>test.generated</packageName>

 <!-- The destination directory of your generated classes -->
 <directory>C:/workspace/MySQLTest/src</directory>
 </target>
 </generator>
</configuration>

Replace the username with whatever user has the appropriate privileges to query the database meta
data. You'll also want to look at the other values and replace as necessary. Here are the two interesting
properties:

generator.target.package - set this to the parent package you want to create for the generated classes.
The setting of test.generated will cause the test.generated.Posts and test.generated.PostsRecord to be
created

generator.target.directory - the directory to output to.

Once you have the JAR files and library.xml in your temp directory, type this on a Windows machine:

java -classpath jooq-3.0.1.jar;jooq-meta-3.0.1.jar;jooq-codegen-3.0.1.jar;mysql-connector-java-5.1.18-bin.jar;.
 org.jooq.util.GenerationTool /library.xml

... or type this on a UNIX / Linux / Mac system (colons instead of semi-colons):

java -classpath jooq-3.0.1.jar:jooq-meta-3.0.1.jar:jooq-codegen-3.0.1.jar:mysql-connector-java-5.1.18-bin.jar:.
 org.jooq.util.GenerationTool /library.xml

There are two things to note:

o The prefix slash before the /library.xml. Even though it's in our working directory, we need to
prepend a slash, as the configuration file is loaded from the classpath.

o The "trailing" period in the classpath: .. We need this because we want the current directory on
the classpath in order to find the above /library.xml file at the root of your classpath.

Replace the filenames with your actual filenames. In this example, jOOQ 3.0.1 is being used. If everything
has worked, you should see this in your console output:

The jOOQ User Manual 3.4.1.4. Step 4: Connect to your database

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 22 / 174

Nov 1, 2011 7:25:06 PM org.jooq.impl.JooqLogger info
INFO: Initialising properties : /guestbook.xml
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Database parameters
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: --
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: dialect : MYSQL
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: schema : guestbook
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: target dir : C:/workspace/MySQLTest/src
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: target package : test.generated
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: --
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Emptying : C:/workspace/MySQLTest/src/test/generated
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Generating classes in : C:/workspace/MySQLTest/src/test/generated
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Generating schema : Guestbook.java
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Schema generated : Total: 122.18ms
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Sequences fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Tables fetched : 5 (5 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Generating tables : C:/workspace/MySQLTest/src/test/generated/tables
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: ARRAYs fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Enums fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: UDTs fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Generating table : Posts.java
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Tables generated : Total: 680.464ms, +558.284ms
Nov 1, 2011 7:25:07 PM org.jooq.impl.JooqLogger info
INFO: Generating Keys : C:/workspace/MySQLTest/src/test/generated/tables
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: Keys generated : Total: 718.621ms, +38.157ms
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: Generating records : C:/workspace/MySQLTest/src/test/generated/tables/records
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: Generating record : PostsRecord.java
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: Table records generated : Total: 782.545ms, +63.924ms
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: Routines fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: Packages fetched : 0 (0 included, 0 excluded)
Nov 1, 2011 7:25:08 PM org.jooq.impl.JooqLogger info
INFO: GENERATION FINISHED! : Total: 791.688ms, +9.143ms

3.4.1.4. Step 4: Connect to your database

Let's just write a vanilla main class in the project containing the generated classes:

The jOOQ User Manual 3.4.1.5. Step 5: Querying

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 23 / 174

// For convenience, always static import your generated tables and jOOQ functions to decrease verbosity:
import static test.generated.Tables.*;
import static org.jooq.impl.DSL.*;

import java.sql.*;

public class Main {
 public static void main(String[] args) {
 Connection conn = null;

 String userName = "root";
 String password = "";
 String url = "jdbc:mysql://localhost:3306/guestbook";

 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 conn = DriverManager.getConnection(url, userName, password);
 } catch (Exception e) {
 // For the sake of this tutorial, let's keep exception handling simple
 e.printStackTrace();
 } finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ignore) {
 }
 }
 }
 }
}

This is pretty standard code for establishing a MySQL connection.

3.4.1.5. Step 5: Querying

Let's add a simple query constructed with jOOQ's query DSL:

DSLContext create = DSL.using(conn, SQLDialect.MYSQL);
Result<Record> result = create.select().from(POSTS).fetch();

First get an instance of DSLContext so we can write a simple SELECT query. We pass an instance of
the MySQL connection to DSL. Note that the DSLContext doesn't close the connection. We'll have to
do that ourselves.

We then use jOOQ's query DSL to return an instance of Result. We'll be using this result in the next step.

3.4.1.6. Step 6: Iterating

After the line where we retrieve the results, let's iterate over the results and print out the data:

for (Record r : result) {
 Long id = r.getValue(POSTS.ID);
 String title = r.getValue(POSTS.TITLE);
 String description = r.getValue(POSTS.BODY);

 System.out.println("ID: " + id + " title: " + title + " desciption: " + description);
}

The full program should now look like this:

The jOOQ User Manual 3.4.1.7. Step 7: Explore!

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 24 / 174

package test;

// For convenience, always static import your generated tables and
// jOOQ functions to decrease verbosity:
import static test.generated.Tables.*;
import static org.jooq.impl.DSL.*;

import java.sql.*;

import org.jooq.*;
import org.jooq.impl.*;

public class Main {

 /**
 * @param args
 */
 public static void main(String[] args) {
 Connection conn = null;

 String userName = "root";
 String password = "";
 String url = "jdbc:mysql://localhost:3306/guestbook";

 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 conn = DriverManager.getConnection(url, userName, password);

 DSLContext create = DSL.using(conn, SQLDialect.MYSQL);
 Result<Record> result = create.select().from(POSTS).fetch();

 for (Record r : result) {
 Long id = r.getValue(POSTS.ID);
 String title = r.getValue(POSTS.TITLE);
 String description = r.getValue(POSTS.BODY);

 System.out.println("ID: " + id + " title: " + title + " desciption: " + description);
 }
 } catch (Exception e) {
 // For the sake of this tutorial, let's keep exception handling simple
 e.printStackTrace();
 } finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ignore) {
 }
 }
 }
 }
}

3.4.1.7. Step 7: Explore!

jOOQ has grown to be a comprehensive SQL library. For more information, please consider the
documentation:
http://www.jooq.org/learn

... explore the Javadoc:
http://www.jooq.org/javadoc/latest/

... or join the news group:
https://groups.google.com/forum/#!forum/jooq-user

This tutorial is the courtesy of Ikai Lan. See the original source here:
http://ikaisays.com/2011/11/01/getting-started-with-jooq-a-tutorial/

3.4.2. Using jOOQ in modern IDEs

Feel free to contribute a tutorial!

http://www.jooq.org/learn
http://www.jooq.org/javadoc/latest/
https://groups.google.com/forum/#!forum/jooq-user
http://ikaisays.com/2011/11/01/getting-started-with-jooq-a-tutorial/

The jOOQ User Manual 3.4.3. Using jOOQ with Spring

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 25 / 174

3.4.3. Using jOOQ with Spring

Feel free to contribute a tutorial!

3.4.4. A simple web application with jOOQ

Feel free to contribute a tutorial!

3.5. jOOQ and Scala

As any other library, jOOQ can be easily used in Scala, taking advantage of the many Scala language
features such as for example:

- Optional "." to dereference methods from expressions
- Optional "(" and ")" to delimit method argument lists
- Optioanl ";" at the end of a Scala statement
- Type inference using "var" and "val" keywords

But jOOQ also leverages other useful Scala features, such as

- implicit defs for operator overloading
- Scala Macros (soon to come)

All of the above heavily improve jOOQ's querying DSL API experience for Scala developers.

A short example jOOQ application in Scala might look like this:

The jOOQ User Manual 3.6. jOOQ and NoSQL

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 26 / 174

import collection.JavaConversions._ // Import implicit defs for iteration over org.jooq.Result
 //
import java.sql.DriverManager //
 //
import org.jooq._ //
import org.jooq.impl._ //
import org.jooq.impl.DSL._ //
import org.jooq.scala.example.h2.Tables._ //
import org.jooq.scala.Conversions._ // Import implicit defs for overloaded jOOQ/SQL operators
 //
object Test { //
 def main(args: Array[String]): Unit = { //
 val c = DriverManager.getConnection("jdbc:h2:~/test", "sa", ""); // Standard JDBC connection
 val e = DSL.using(c, SQLDialect.H2); //
 val x = AUTHOR as "x" // SQL-esque table aliasing
 //
 for (r <- e // Iteration over Result. "r" is an org.jooq.Record3
 select (//
 BOOK.ID * BOOK.AUTHOR_ID, // Using the overloaded "*" operator
 BOOK.ID + BOOK.AUTHOR_ID * 3 + 4, // Using the overloaded "+" operator
 BOOK.TITLE || " abc" || " xy" // Using the overloaded "||" operator
) //
 from BOOK // No need to use parentheses or "." here
 leftOuterJoin (//
 select (x.ID, x.YEAR_OF_BIRTH) // Dereference fields from aliased table
 from x //
 limit 1 //
 asTable x.getName() //
) //
 on BOOK.AUTHOR_ID === x.ID // Using the overloaded "===" operator
 where (BOOK.ID <> 2) // Using the olerloaded "<>" operator
 or (BOOK.TITLE in ("O Alquimista", "Brida")) // Neat IN predicate expression
 fetch //
) { //
 println(r) //
 } //
 } //
}

For more details about jOOQ's Scala integration, please refer to the manual's section about SQL building
with Scala.

3.6. jOOQ and NoSQL

jOOQ users often get excited about jOOQ's intuitive API and would then wish for NoSQL support.

There are a variety of NoSQL databases that implement some sort of proprietary query language. Some
of these query languages even look like SQL. Examples are JCR-SQL2, CQL (Cassandra Query Language),
Cypher (Neo4j's Query Language), SOQL (Salesforce Query Language) and many more.

Mapping the jOOQ API onto these alternative query languages would be a very poor fit and a leaky
abstraction. We believe in the power and expressivity of the SQL standard and its various dialects.
Databases that extend this standard too much, or implement it not thoroughly enough are often not
suitable targets for jOOQ. It would be better to build a new, dedicated API for just that one particular
query language.

jOOQ is about SQL, and about SQL alone. Read more about our visions in the manual's preface.

3.7. Dependencies

Dependencies are a big hassle in modern software. Many libraries depend on other, non-JDK library
parts that come in different, incompatible versions, potentially causing trouble in your runtime
environment. jOOQ has no external dependencies on any third-party libraries.

However, the above rule has some exceptions:

http://www.h2database.com/jcr/grammar.html
https://cassandra.apache.org/doc/cql/CQL.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://www.salesforce.com/us/developer/docs/officetoolkit/Content/sforce_api_calls_soql.htm

The jOOQ User Manual 3.8. Build your own

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 27 / 174

- logging APIs are referenced as "optional dependencies". jOOQ tries to find slf4j or log4j on the
classpath. If it fails, it will use the java.util.logging.Logger

- Oracle ojdbc types used for array creation are loaded using reflection. The same applies to
Postgres PG* types.

- Small libraries with compatible licenses are incorporated into jOOQ. These include jOOR, jOOU,
parts of OpenCSV, json simple, parts of commons-lang

- javax.persistence and javax.validation will be needed if you activate the relevant code generation
flags

3.8. Build your own

In order to build jOOQ yourself, please download the sources from https://github.com/jOOQ/jOOQ and
use Maven to build jOOQ, preferably in Eclipse. jOOQ requires Java 6+ to compile and run.

Some useful hints to build jOOQ yourself:

- Get the latest version of Git or EGit
- Get the latest version of Maven or M2E
- Check out the jOOQ sources from https://github.com/jOOQ/jOOQ
- Optionally, import Maven artefacts into an Eclipse workspace using the following command (see

the maven-eclipse-plugin documentation for details):

* mvn eclipse:eclipse

- Build the jooq-parent artefact by using any of these commands:

* mvn clean package
create .jar files in ${project.build.directory}

* mvn clean install
install the .jar files in your local repository (e.g. ~/.m2)

* mvn clean {goal} -Dmaven.test.skip=true
don't run unit tests when building artefacts

3.9. jOOQ and backwards-compatibility

jOOQ follows the rules of semantic versioning according to http://semver.org quite strictly. Those rules
impose a versioning scheme [X].[Y].[Z] that can be summarised as follows:

- If a patch release includes bugfixes, performance improvements and API-irrelevant new features,
[Z] is incremented by one.

- If a minor release includes backwards-compatible, API-relevant new features, [Y] is incremented
by one and [Z] is reset to zero.

- If a major release includes backwards-incompatible, API-relevant new features, [X] is
incremented by one and [Y], [Z] are reset to zero.

http://www.slf4j.org/
http://logging.apache.org/log4j
http://download.oracle.com/javase/8/docs/apijava/util/logging/Logger.html
https://github.com/jOOQ/jOOR
https://github.com/jOOQ/jOOU
http://opencsv.sourceforge.net/
http://code.google.com/p/json-simple/
http://commons.apache.org/lang/
http://docs.oracle.com/javaee/6/api/javax/persistence/package-summary.html
http://docs.oracle.com/javaee/6/api/javax/validation/package-summary.html
https://github.com/jOOQ/jOOQ
http://git-scm.com
http://www.eclipse.org/egit
http://maven.apache.org
http://eclipse.org/m2e
https://github.com/jOOQ/jOOQ
http://maven.apache.org/plugins/maven-eclipse-plugin/
http://semver.org

The jOOQ User Manual 3.9. jOOQ and backwards-compatibility

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 28 / 174

jOOQ's understanding of backwards-compatibility

Backwards-compatibility is important to jOOQ. You've chosen jOOQ as a strategic SQL engine and you
don't want your SQL to break. That is why there is at most one major release per year, which changes
only those parts of jOOQ's API and functionality, which were agreed upon on the user group. During
the year, only minor releases are shipped, adding new features in a backwards-compatible way

However, there are some elements of API evolution that would be considered backwards-incompatible
in other APIs, but not in jOOQ. As discussed later on in the section about jOOQ's query DSL API, much
of jOOQ's API is indeed an internal domain-specific language implemented mostly using Java interfaces.
Adding language elements to these interfaces means any of these actions:

- Adding methods to the interface
- Overloading methods for convenience
- Changing the type hierarchy of interfaces

It becomes obvious that it would be impossible to add new language elements (e.g. new SQL functions,
new SELECT clauses) to the API without breaking any client code that actually implements those
interfaces. Hence, the following rule should be observed:

jOOQ's DSL interfaces should not be implemented by client code! Extend only those extension points
that are explicitly documented as "extendable" (e.g. custom QueryParts)

The jOOQ User Manual 4. SQL building

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 29 / 174

4. SQL building

SQL is a declarative language that is hard to integrate into procedural, object-oriented, functional or
any other type of programming languages. jOOQ's philosophy is to give SQL the credit it deserves and
integrate SQL itself as an "internal domain specific language" directly into Java.

With this philosophy in mind, SQL building is the main feature of jOOQ. All other features (such as SQL
execution and code generation) are mere convenience built on top of jOOQ's SQL building capabilities.

This section explains all about the various syntax elements involved with jOOQ's SQL building
capabilities. For a complete overview of all syntax elements, please refer to the manual's section about
jOOQ's BNF pseudo-notation

4.1. The query DSL type

jOOQ exposes a lot of interfaces and hides most implementation facts from client code. The reasons
for this are:

- Interface-driven design. This allows for modelling queries in a fluent API most efficiently
- Reduction of complexity for client code.
- API guarantee. You only depend on the exposed interfaces, not concrete (potentially dialect-

specific) implementations.

The org.jooq.impl.DSL class is the main class from where you will create all jOOQ objects. It serves as a
static factory for table expressions, column expressions (or "fields"), conditional expressions and many
other QueryParts.

The static query DSL API

With jOOQ 2.0, static factory methods have been introduced in order to make client code look more
like SQL. Ideally, when working with jOOQ, you will simply static import all methods from the DSL class:

import static org.jooq.impl.DSL.*;

Note, that when working with Eclipse, you could also add the DSL to your favourites. This will allow to
access functions even more fluently:

concat(trim(FIRST_NAME), trim(LAST_NAME));

// ... which is in fact the same as:
DSL.concat(DSL.trim(FIRST_NAME), DSL.trim(LAST_NAME));

http://en.wikipedia.org/wiki/Domain_Specific_Language
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html

The jOOQ User Manual 4.1.1. DSL subclasses

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 30 / 174

4.1.1. DSL subclasses

There are a couple of subclasses for the general query DSL. Each SQL dialect has its own dialect-specific
DSL. For instance, if you're only using the MySQL dialect, you can choose to reference the MySQLDSL
instead of the standard DSL:

The advantage of referencing a dialect-specific DSL lies in the fact that you have access to more
proprietary RDMBS functionality. This may include:

- MySQL's encryption functions
- PL/SQL constructs, pgplsql, or any other dialect's ROUTINE-language (maybe in the future)

4.2. The DSLContext class

DSLContext references a org.jooq.Configuration, an object that configures jOOQ's behaviour when
executing queries (see SQL execution for more details). Unlike the static DSL, the DSLContext allow for
creating SQL statements that are already "configured" and ready for execution.

Fluent creation of a DSLContext object

The DSLContext object can be created fluently from the DSL type:

// Create it from a pre-existing configuration
DSLContext create = DSL.using(configuration);

// Create it from ad-hoc arguments
DSLContext create = DSL.using(connection, dialect);

If you do not have a reference to a pre-existing Configuration object (e.g. created from
org.jooq.impl.DefaultConfiguration), the various overloaded DSL.using() methods will create one for
you.

Contents of a Configuration object

A Configuration can be supplied with these objects:

http://www.jooq.org/javadoc/3.0.x/org/jooq/Configuration.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DefaultConfiguration.html

The jOOQ User Manual 4.2.1. SQL Dialect

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 31 / 174

- org.jooq.SQLDialect : The dialect of your database. This may be any of the currently supported
database types (see SQL Dialect for more details)

- org.jooq.conf.Settings : An optional runtime configuration (see Custom Settings for more details)
- org.jooq.ExecuteListenerProvider : An optional reference to a provider class that can provide

execute listeners to jOOQ (see ExecuteListeners for more details)
- Any of these:

* java.sql.Connection : An optional JDBC Connection that will be re-used for the whole
lifecycle of your Configuration (see Connection vs. DataSource for more details). For
simplicity, this is the use-case referenced from this manual, most of the time.

* java.sql.DataSource : An optional JDBC DataSource that will be re-used for the whole
lifecycle of your Configuration. If you prefer using DataSources over Connections, jOOQ will
internally fetch new Connections from your DataSource, conveniently closing them again
after query execution. This is particularly useful in J2EE or Spring contexts (see Connection
vs. DataSource for more details)

* org.jooq.ConnectionProvider : A custom abstraction that is used by jOOQ to "acquire"
and "release" connections. jOOQ will internally "acquire" new Connections from your
ConnectionProvider, conveniently "releasing" them again after query execution. (see
Connection vs. DataSource for more details)

Wrapping a Configuration object, a DSLContext can construct statements, for later execution. An
example is given here:

// The DSLContext is "configured" with a Connection and a SQLDialect
DSLContext create = DSL.using(connection, dialect);

// This select statement contains an internal reference to the DSLContext's Configuration:
Select<?> select = create.selectOne();

// Using the internally referenced Configuration, the select statement can now be executed:
Result<?> result = select.fetch();

Note that you do not need to keep a reference to a DSLContext. You may as well inline your local variable,
and fluently execute a SQL statement as such:

// Execute a statement from a single execution chain:
Result<?> result =
DSL.using(connection, dialect)
 .select()
 .from(BOOK)
 .where(BOOK.TITLE.like("Animal%"))
 .fetch();

4.2.1. SQL Dialect

While jOOQ tries to represent the SQL standard as much as possible, many features are vendor-specific
to a given database and to its "SQL dialect". jOOQ models this using the org.jooq.SQLDialect enum type.

The SQL dialect is one of the main attributes of a Configuration. Queries created from DSLContexts will
assume dialect-specific behaviour when rendering SQL and binding bind values.

Some parts of the jOOQ API are officially supported only by a given subset of the supported SQL dialects.
For instance, the Oracle CONNECT BY clause, which is supported by the Oracle and CUBRID databases,
is annotated with a org.jooq.Support annotation, as such:

http://www.jooq.org/javadoc/3.0.x/org/jooq/SQLDialect.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/conf/Settings.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ExecuteListenerProvider.html
http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://download.oracle.com/javase/8/docs/apijava/sql/DataSource.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ConnectionProvider.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/SQLDialect.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Support.html

The jOOQ User Manual 4.2.2. Connection vs. DataSource

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 32 / 174

/**
 * Add an Oracle-specific <code>CONNECT BY</code> clause to the query
 */
@Support({ SQLDialect.CUBRID, SQLDialect.ORACLE })
SelectConnectByConditionStep<R> connectBy(Condition condition);

jOOQ API methods which are not annotated with the org.jooq.Support annotation, or which are
annotated with the Support annotation, but without any SQL dialects can be safely used in all SQL
dialects. An example for this is the SELECT statement factory method:

/**
 * Create a new DSL select statement.
 */
@Support
SelectSelectStep<R> select(Field<?>... fields);

jOOQ's SQL clause emulation capabilities

The aforementioned Support annotation does not only designate, which databases natively support a
feature. It also indicates that a feature is emulated by jOOQ for some databases lacking this feature. An
example of this is the DISTINCT predicate, a predicate syntax defined by SQL:1999 and implemented
only by H2, HSQLDB, and Postgres:

A IS DISTINCT FROM B

Nevertheless, the IS DISTINCT FROM predicate is supported by jOOQ in all dialects, as its semantics can
be expressed with an equivalent CASE expression. For more details, see the manual's section about
the DISTINCT predicate.

jOOQ and the Oracle SQL dialect

Oracle SQL is much more expressive than many other SQL dialects. It features many unique keywords,
clauses and functions that are out of scope for the SQL standard. Some examples for this are

- The CONNECT BY clause, for hierarchical queries
- The PIVOT keyword for creating PIVOT tables
- Packages, object-oriented user-defined types, member procedures as described in the section

about stored procedures and functions
- Advanced analytical functions as described in the section about window functions

jOOQ has a historic affinity to Oracle's SQL extensions. If something is supported in Oracle SQL, it has
a high probability of making it into the jOOQ API

4.2.2. Connection vs. DataSource

Interact with JDBC Connections

While you can use jOOQ for SQL building only, you can also run queries against a JDBC
java.sql.Connection. Internally, jOOQ creates java.sql.Statement or java.sql.PreparedStatement objects

http://www.jooq.org/javadoc/3.0.x/org/jooq/Support.html
http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html

The jOOQ User Manual 4.2.3. Custom data

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 33 / 174

from such a Connection, in order to execute statements. The normal operation mode is to provide a
Configuration with a JDBC Connection, whose lifecycle you will control yourself. This means that jOOQ
will not actively close connections, rollback or commit transactions.

Note, in this case, jOOQ will internally use a org.jooq.impl.DefaultConnectionProvider, which you can
reference directly if you prefer that. The DefaultConnectionProvider exposes various transaction-
control methods, such as commit(), rollback(), etc.

Interact with JDBC DataSources

If you're in a J2EE or Spring context, however, you may wish to use a javax.sql.DataSource instead.
Connections obtained from such a DataSource will be closed after query execution by jOOQ. The
semantics of such a close operation should be the returning of the connection into a connection pool,
not the actual closing of the underlying connection. Typically, this makes sense in an environment using
distributed JTA transactions. An example of using DataSources with jOOQ can be seen in the tutorial
section about using jOOQ with Spring.

Note, in this case, jOOQ will internally use a org.jooq.impl.DataSourceConnectionProvider, which you
can reference directly if you prefer that.

Inject custom behaviour

If your specific environment works differently from any of the above approaches, you can inject your own
custom implementation of a ConnectionProvider into jOOQ. This is the API contract you have to fulfil:

public interface ConnectionProvider {

 // Provide jOOQ with a connection
 Connection acquire() throws DataAccessException;

 // Get a connection back from jOOQ
 void release(Connection connection) throws DataAccessException;
}

Note that acquire() should always return the same Connection until this connection is returned via
release()

4.2.3. Custom data

In advanced use cases of integrating your application with jOOQ, you may want to put custom data into
your Configuration, which you can then access from your...

- Custom ExecuteListeners
- Custom QueryParts

Here is an example of how to use the custom data API. Let's assume that you have written an
ExecuteListener, that prevents INSERT statements, when a given flag is set to true:

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DefaultConnectionProvider.html
http://download.oracle.com/javase/8/docs/apijavax/sql/DataSource.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DataSourceConnectionProvider.html

The jOOQ User Manual 4.2.4. Custom ExecuteListeners

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 34 / 174

// Implement an ExecuteListener
public class NoInsertListener extends DefaultExecuteListener {

 @Override
 public void start(ExecuteContext ctx) {

 // This listener is active only, when your custom flag is set to true
 if (Boolean.TRUE.equals(ctx.configuration().data("com.example.my-namespace.no-inserts"))) {

 // If active, fail this execution, if an INSERT statement is being executed
 if (ctx.query() instanceof Insert) {
 throw new DataAccessException("No INSERT statements allowed");
 }
 }
 }
}

See the manual's section about ExecuteListeners to learn more about how to implement an
ExecuteListener.

Now, the above listener can be added to your Configuration, but you will also need to pass the flag to
the Configuration, in order for the listener to work:

// Create your Configuration
Configuration configuration = new DefaultConfiguration().set(connection).set(dialect);

// Set a new execute listener provider onto the configuration:
configuration.set(new DefaultExecuteListenerProvider(new NoInsertListener()));

// Use any String literal to identify your custom data
configuration.data("com.example.my-namespace.no-inserts", true);

// Try to execute an INSERT statement
try {
 DSL.using(configuration)
 .insertInto(AUTHOR, AUTHOR.ID, AUTHOR.LAST_NAME)
 .values(1, "Orwell")
 .execute();

 // You shouldn't get here
 Assert.fail();
}

// Your NoInsertListener should be throwing this exception here:
catch (DataAccessException expected) {
 Assert.assertEquals("No INSERT statements allowed", expected.getMessage());
}

Using the data() methods, you can store and retrieve custom data in your Configurations.

4.2.4. Custom ExecuteListeners

ExecuteListeners are a useful tool to...

- implement custom logging
- apply triggers written in Java
- collect query execution statistics
- integrate with the jOOQ Console

ExecuteListeners are hooked into your Configuration by returning them from an
org.jooq.ExecuteListenerProvider:

// Create your Configuration
Configuration configuration = new DefaultConfiguration().set(connection).set(dialect);

// Hook your listener providers into the configuration:
configuration.set(
 new DefaultExecuteListenerProvider(new MyFirstListener()),
 new DefaultExecuteListenerProvider(new PerformanceLoggingListener()),
 new DefaultExecuteListenerProvider(new NoInsertListener())
);

http://www.jooq.org/javadoc/3.0.x/org/jooq/ExecuteListenerProvider.html

The jOOQ User Manual 4.2.5. Custom Settings

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 35 / 174

See the manual's section about ExecuteListeners to see examples of such listener implementations.

4.2.5. Custom Settings

The jOOQ Configuration allows for some optional configuration elements to be used by advanced users.
The org.jooq.conf.Settings class is a JAXB-annotated type, that can be provided to a Configuration in
several ways:

- In the DSLContext constructor (DSL.using()). This will override default settings below
- in the org.jooq.impl.DefaultConfiguration constructor. This will override default settings below
- From a location specified by a JVM parameter: -Dorg.jooq.settings
- From the classpath at /jooq-settings.xml
- From the settings defaults, as specified in http://www.jooq.org/xsd/jooq-runtime-3.0.0.xsd

Example

For example, if you want to indicate to jOOQ, that it should inline all bind variables, and execute static
java.sql.Statement instead of binding its variables to java.sql.PreparedStatement, you can do so by
creating the following DSLContext:

Settings settings = new Settings();
settings.setStatementType(StatementType.STATIC_STATEMENT);
DSLContext create = DSL.using(connection, dialect, settings);

Subsequent sections of the manual contain some more in-depth explanations about these settings:

- Runtime schema and table mapping
- Execute CRUD with optimistic locking enabled
- Enabling DEBUG logging of all executed SQL

Please refer to the jOOQ runtime configuration XSD for more details:
http://www.jooq.org/xsd/jooq-runtime-3.0.0.xsd

4.2.6. Runtime schema and table mapping

Mapping your DEV schema to a productive environment

You may wish to design your database in a way that you have several instances of your schema. This
is useful when you want to cleanly separate data belonging to several customers / organisation units /
branches / users and put each of those entities' data in a separate database or schema.

In our AUTHOR example this would mean that you provide a book reference database to several
companies, such as My Book World and Books R Us. In that case, you'll probably have a schema setup
like this:

http://www.jooq.org/javadoc/3.0.x/org/jooq/conf/Settings.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DefaultConfiguration.html
http://www.jooq.org/xsd/jooq-runtime-3.0.0.xsd
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://www.jooq.org/xsd/jooq-runtime-3.0.0.xsd

The jOOQ User Manual 4.2.6. Runtime schema and table mapping

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 36 / 174

- DEV: Your development schema. This will be the schema that you base code generation upon,
with jOOQ

- MY_BOOK_WORLD: The schema instance for My Book World
- BOOKS_R_US: The schema instance for Books R Us

Mapping DEV to MY_BOOK_WORLD with jOOQ

When a user from My Book World logs in, you want them to access the MY_BOOK_WORLD schema
using classes generated from DEV. This can be achieved with the org.jooq.conf.RenderMapping class,
that you can equip your Configuration's settings with. Take the following example:

Settings settings = new Settings()
 .withRenderMapping(new RenderMapping()
 .withSchemata(
 new MappedSchema().withInput("DEV")
 .withOutput("MY_BOOK_WORLD")));

// Add the settings to the DSLContext
DSLContext create = DSL.using(connection, SQLDialect.ORACLE, settings);

// Run queries with the "mapped" Configuration
create.selectFrom(AUTHOR).fetch();

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * FROM MY_BOOK_WORLD.AUTHOR

Even if AUTHOR was generated from DEV.

Mapping several schemata

Your development database may not be restricted to hold only one DEV schema. You may also have
a LOG schema and a MASTER schema. Let's say the MASTER schema is shared among all customers,
but each customer has their own LOG schema instance. Then you can enhance your RenderMapping
like this (e.g. using an XML configuration file):

<settings xmlns="http://www.jooq.org/xsd/jooq-runtime-3.0.0.xsd">
 <renderMapping>
 <schemata>
 <schema>
 <input>DEV</input>
 <output>MY_BOOK_WORLD</output>
 </schema>
 <schema>
 <input>LOG</input>
 <output>MY_BOOK_WORLD_LOG</output>
 </schema>
 </schemata>
 </renderMapping>
</settings>

Note, you can load the above XML file like this:

Settings settings = JAXB.unmarshal(new File("jooq-runtime.xml"), Settings.class);

This will map generated classes from DEV to MY_BOOK_WORLD, from LOG to MY_BOOK_WORLD_LOG,
but leave the MASTER schema alone. Whenever you want to change your mapping configuration, you
will have to create a new Configuration.

http://www.jooq.org/javadoc/3.0.x/org/jooq/conf/RenderMapping.html

The jOOQ User Manual 4.3. SQL Statements

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 37 / 174

Using a default schema

If you wish not to render any schema name at all, use the following Settings property for this:

Settings settings = new Settings()
 .withRenderSchema(false);

// Add the settings to the Configuration
DSLContext create = DSL.using(connection, SQLDialect.ORACLE, settings);

// Run queries that omit rendering schema names
create.selectFrom(AUTHOR).fetch();

Mapping of tables

Not only schemata can be mapped, but also tables. If you are not the owner of the database
your application connects to, you might need to install your schema with some sort of prefix to
every table. In our examples, this might mean that you will have to map DEV.AUTHOR to something
MY_BOOK_WORLD.MY_APP__AUTHOR, where MY_APP__ is a prefix applied to all of your tables. This can
be achieved by creating the following mapping:

Settings settings = new Settings()
 .withRenderMapping(new RenderMapping()
 .withSchemata(
 new MappedSchema().withInput("DEV")
 .withOutput("MY_BOOK_WORLD")
 .withTables(
 new MappedTable().withInput("AUTHOR")
 .withOutput("MY_APP__AUTHOR"))));

// Add the settings to the Configuration
DSLContext create = DSL.using(connection, SQLDialect.ORACLE, settings);

// Run queries with the "mapped" configuration
create.selectFrom(AUTHOR).fetch();

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * FROM MY_BOOK_WORLD.MY_APP__AUTHOR

Table mapping and schema mapping can be applied independently, by specifying several
MappedSchema entries in the above configuration. jOOQ will process them in order of appearance and
map at first match. Note that you can always omit a MappedSchema's output value, in case of which,
only the table mapping is applied. If you omit a MappedSchema's input value, the table mapping is
applied to all schemata!

Hard-wiring mappings at code-generation time

Note that the manual's section about code generation schema mapping explains how you can hard-
wire your schema mappings at code generation time

4.3. SQL Statements

jOOQ currently supports 6 types of SQL statements. All of these statements are constructed from a
DSLContext instance with an optional JDBC Connection or DataSource. If supplied with a Connection or
DataSource, they can be executed. Depending on the query type, executed queries can return results.

The jOOQ User Manual 4.3.1. jOOQ's DSL and model API

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 38 / 174

4.3.1. jOOQ's DSL and model API

jOOQ ships with its own DSL (or Domain Specific Language) that emulates SQL in Java. This means,
that you can write SQL statements almost as if Java natively supported it, just like .NET's C# does with
LINQ to SQL.

Here is an example to illustrate what that means:

-- Select all books by authors born after 1920,
-- named "Paulo" from a catalogue:
SELECT *
 FROM author a
 JOIN book b ON a.id = b.author_id
 WHERE a.year_of_birth > 1920
 AND a.first_name = 'Paulo'
 ORDER BY b.title

Result<Record> result =
create.select()
 .from(AUTHOR.as("a"))
 .join(BOOK.as("b")).on(a.ID.equal(b.AUTHOR_ID))
 .where(a.YEAR_OF_BIRTH.greaterThan(1920)
 .and(a.FIRST_NAME.equal("Paulo")))
 .orderBy(b.TITLE)
 .fetch();

We'll see how the aliasing works later in the section about aliased tables

jOOQ as an internal domain specific language in Java (a.k.a. the DSL API)

Many other frameworks have similar APIs with similar feature sets. Yet, what makes jOOQ special is its
informal BNF notation modelling a unified SQL dialect suitable for many vendor-specific dialects, and
implementing that BNF notation as a hierarchy of interfaces in Java. This concept is extremely powerful,
when using jOOQ in modern IDEs with syntax completion. Not only can you code much faster, your
SQL code will be compile-checked to a certain extent. An example of a DSL query equivalent to the
previous one is given here:

DSLContext create = DSL.using(connection, dialect);
Result<?> result = create.select()
 .from(AUTHOR)
 .join(BOOK).on(BOOK.AUTHOR_ID.equal(AUTHOR.ID))
 .fetch();

Unlike other, simpler frameworks that use "fluent APIs" or "method chaining", jOOQ's BNF-based
interface hierarchy will not allow bad query syntax. The following will not compile, for instance:

DSLContext create = DSL.using(connection, dialect);
Result<?> result = create.select()
 .join(BOOK).on(BOOK.AUTHOR_ID.equal(AUTHOR.ID))
 // ^^^^ "join" is not possible here
 .from(AUTHOR)
 .fetch();

Result<?> result = create.select()
 .from(AUTHOR)
 .join(BOOK)
 .fetch();
 // ^^^^^ "on" is missing here

Result<?> result = create.select(rowNumber())
 // ^^^^^^^^^ "over()" is missing here
 .from(AUTHOR)
 .fetch();

Result<?> result = create.select()
 .from(AUTHOR)
 .where(AUTHOR.ID.in(select(BOOK.TITLE).from(BOOK)))
 // ^^^^^^^^^^^^^^^^^^
 // AUTHOR.ID is of type Field<Integer> but subselect returns Record1<String>
 .fetch();

Result<?> result = create.select()
 .from(AUTHOR)
 .where(AUTHOR.ID.in(select(BOOK.AUTHOR_ID, BOOK.ID).from(BOOK)))
 // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 // AUTHOR.ID is of degree 1 but subselect returns Record2<Integer, Integer>
 .fetch();

http://en.wikipedia.org/wiki/Domain-specific_language
http://msdn.microsoft.com/en-us/library/bb425822.aspx
http://en.wikipedia.org/wiki/Fluent_interface
http://en.wikipedia.org/wiki/Method_chaining

The jOOQ User Manual 4.3.2. The SELECT statement

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 39 / 174

History of SQL building and incremental query building (a.k.a. the model
API)

Historically, jOOQ started out as an object-oriented SQL builder library like any other. This meant that
all queries and their syntactic components were modeled as so-called QueryParts, which delegate SQL
rendering and variable binding to child components. This part of the API will be referred to as the
model API (or non-DSL API), which is still maintained and used internally by jOOQ for incremental query
building. An example of incremental query building is given here:

DSLContext create = DSL.using(connection, dialect);
SelectQuery<Record> query = create.selectQuery();
query.addFrom(AUTHOR);

// Join books only under certain circumstances
if (join) {
 query.addJoin(BOOK, BOOK.AUTHOR_ID.equal(AUTHOR.ID));
}

Result<?> result = query.fetch();

This query is equivalent to the one shown before using the DSL syntax. In fact, internally, the DSL API
constructs precisely this SelectQuery object. Note, that you can always access the SelectQuery object
to switch between DSL and model APIs:

DSLContext create = DSL.using(connection, dialect);
SelectFinalStep<?> select = create.select().from(AUTHOR);

// Add the JOIN clause on the internal QueryObject representation
SelectQuery<?> query = select.getQuery();
query.addJoin(BOOK, BOOK.AUTHOR_ID.equal(AUTHOR.ID));

Mutability

Note, that for historic reasons, the DSL API mixes mutable and immutable behaviour with respect to
the internal representation of the QueryPart being constructed. While creating conditional expressions,
column expressions (such as functions) assumes immutable behaviour, creating SQL statements does
not. In other words, the following can be said:

// Conditional expressions (immutable)
// -----------------------------------
Condition a = BOOK.TITLE.equal("1984");
Condition b = BOOK.TITLE.equal("Animal Farm");

// The following can be said
a != a.or(b); // or() does not modify a
a.or(b) != a.or(b); // or() always creates new objects

// Statements (mutable)
// --------------------
SelectFromStep<?> s1 = select();
SelectJoinStep<?> s2 = s1.from(BOOK);
SelectJoinStep<?> s3 = s1.from(AUTHOR);

// The following can be said
s1 == s2; // The internal object is always the same
s2 == s3; // The internal object is always the same

On the other hand, beware that you can always extract and modify bind values from any QueryPart.

4.3.2. The SELECT statement

When you don't just perform CRUD (i.e. SELECT * FROM your_table WHERE ID = ?), you're usually
generating new record types using custom projections. With jOOQ, this is as intuitive, as if using SQL

The jOOQ User Manual 4.3.2.1. The SELECT clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 40 / 174

directly. A more or less complete example of the "standard" SQL syntax, plus some extensions, is
provided by a query like this:

SELECT from a complex table expression

-- get all authors' first and last names, and the number
-- of books they've written in German, if they have written
-- more than five books in German in the last three years
-- (from 2011), and sort those authors by last names
-- limiting results to the second and third row, locking
-- the rows for a subsequent update... whew!

 SELECT AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME, COUNT(*)
 FROM AUTHOR
 JOIN BOOK ON AUTHOR.ID = BOOK.AUTHOR_ID
 WHERE BOOK.LANGUAGE = 'DE'
 AND BOOK.PUBLISHED > '2008-01-01'
GROUP BY AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME
 HAVING COUNT(*) > 5
ORDER BY AUTHOR.LAST_NAME ASC NULLS FIRST
 LIMIT 2
 OFFSET 1
 FOR UPDATE

// And with jOOQ...

DSLContext create = DSL.using(connection, dialect);

create.select(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME, count())
 .from(AUTHOR)
 .join(BOOK).on(BOOK.AUTHOR_ID.equal(AUTHOR.ID))
 .where(BOOK.LANGUAGE.equal("DE"))
 .and(BOOK.PUBLISHED.greaterThan("2008-01-01"))
 .groupBy(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .having(count().greaterThan(5))
 .orderBy(AUTHOR.LAST_NAME.asc().nullsFirst())
 .limit(2)
 .offset(1)
 .forUpdate();

Details about the various clauses of this query will be provided in subsequent sections.

SELECT from single tables

A very similar, but limited API is available, if you want to select from single tables in order to retrieve
TableRecords or even UpdatableRecords. The decision, which type of select to create is already made
at the very first step, when you create the SELECT statement with the DSL or DSLContext types:

public <R extends Record> SelectWhereStep<R> selectFrom(Table<R> table);

As you can see, there is no way to further restrict/project the selected fields. This just selects all known
TableFields in the supplied Table, and it also binds <R extends Record> to your Table's associated
Record. An example of such a Query would then be:

BookRecord book = create.selectFrom(BOOK)
 .where(BOOK.LANGUAGE.equal("DE"))
 .orderBy(BOOK.TITLE)
 .fetchAny();

The "reduced" SELECT API is limited in the way that it skips DSL access to any of these clauses:

- The SELECT clause
- The JOIN clause

In most parts of this manual, it is assumed that you do not use the "reduced" SELECT API. For more
information about the simple SELECT API, see the manual's section about fetching strongly or weakly
typed records.

4.3.2.1. The SELECT clause

The SELECT clause lets you project your own record types, referencing table fields, functions, arithmetic
expressions, etc. The DSL type provides several methods for expressing a SELECT clause:

The jOOQ User Manual 4.3.2.1. The SELECT clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 41 / 174

-- The SELECT clause
SELECT BOOK.ID, BOOK.TITLE
SELECT BOOK.ID, TRIM(BOOK.TITLE)

// Provide a varargs Fields list to the SELECT clause:
Select<?> s1 = create.select(BOOK.ID, BOOK.TITLE);
Select<?> s2 = create.select(BOOK.ID, trim(BOOK.TITLE));

Some commonly used projections can be easily created using convenience methods:

-- Simple SELECTs
SELECT COUNT(*)
SELECT 0 -- Not a bind variable
SELECT 1 -- Not a bind variable

// Select commonly used values
Select<?> select1 = create.selectCount();
Select<?> select2 = create.selectZero();
Select<?> select2 = create.selectOne();

See more details about functions and expressions in the manual's section about Column expressions

The SELECT DISTINCT clause

The DISTINCT keyword can be included in the method name, constructing a SELECT clause

SELECT DISTINCT BOOK.TITLE Select<?> select1 = create.selectDistinct(BOOK.TITLE);

SELECT *

jOOQ does not explicitly support the asterisk operator in projections. However, you can omit the
projection as in these examples:

// Explicitly selects all columns available from BOOK
create.select().from(BOOK);

// Explicitly selects all columns available from BOOK and AUTHOR
create.select().from(BOOK, AUTHOR);
create.select().from(BOOK).crossJoin(AUTHOR);

// Renders a SELECT * statement, as columns are unknown to jOOQ
create.select().from(tableByName("BOOK"));

Typesafe projections with degree up to 22

Since jOOQ 3.0, records and row value expressions up to degree 22 are now generically typesafe. This is
reflected by an overloaded SELECT (and SELECT DISTINCT) API in both DSL and DSLContext. An extract
from the DSL type:

// Non-typesafe select methods:
public static SelectSelectStep<Record> select(Collection<? extends Field<?>> fields);
public static SelectSelectStep<Record> select(Field<?>... fields);

// Typesafe select methods:
public static <T1> SelectSelectStep<Record1<T1>> select(Field<T1> field1);
public static <T1, T2> SelectSelectStep<Record2<T1, T2>> select(Field<T1> field1, Field<T2> field2);
public static <T1, T2, T3> SelectSelectStep<Record3<T1, T2, T3>> select(Field<T1> field1, Field<T2> field2, Field<T3> field3);
// [...]

Since the generic R type is bound to some Record[N], the associated T type information can be used in
various other contexts, e.g. the IN predicate. Such a SELECT statement can be assigned typesafely:

Select<Record2<Integer, String>> s1 = create.select(BOOK.ID, BOOK.TITLE);
Select<Record2<Integer, String>> s2 = create.select(BOOK.ID, trim(BOOK.TITLE));

For more information about typesafe record types with degree up to 22, see the manual's section about
Record1 to Record22.

The jOOQ User Manual 4.3.2.2. The FROM clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 42 / 174

4.3.2.2. The FROM clause

The SQL FROM clause allows for specifying any number of table expressions to select data from. The
following are examples of how to form normal FROM clauses:

SELECT 1 FROM BOOK
SELECT 1 FROM BOOK, AUTHOR
SELECT 1 FROM BOOK "b", AUTHOR "a"

create.selectOne().from(BOOK);
create.selectOne().from(BOOK, AUTHOR);
create.selectOne().from(BOOK.as("b"), AUTHOR.as("a"));

Read more about aliasing in the manual's section about aliased tables.

More advanced table expressions

Apart from simple tables, you can pass any arbitrary table expression to the jOOQ FROM clause. This
may include unnested cursors in Oracle:

SELECT *
FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(null, null, 'ALLSTATS'));

create.select()
 .from(table(DbmsXplan.displayCursor(null, null,
 "ALLSTATS"));

Note, in order to access the DbmsXplan package, you can use the code generator to generate Oracle's
SYS schema.

Selecting FROM DUAL with jOOQ

In many SQL dialects, FROM is a mandatory clause, in some it isn't. jOOQ allows you to omit the FROM
clause, returning just one record. An example:

SELECT 1 FROM DUAL
SELECT 1

DSL.using(SQLDialect.ORACLE).selectOne().getSQL();
DSL.using(SQLDialect.POSTGRES).selectOne().getSQL();

Read more about dual or dummy tables in the manual's section about the DUAL table. The following
are examples of how to form normal FROM clauses:

4.3.2.3. The JOIN clause

jOOQ supports many different types of standard SQL JOIN operations:

- [INNER] JOIN
- LEFT [OUTER] JOIN
- RIGHT [OUTER] JOIN
- FULL OUTER JOIN
- CROSS JOIN
- NATURAL JOIN
- NATURAL LEFT [OUTER] JOIN
- NATURAL RIGHT [OUTER] JOIN

The jOOQ User Manual 4.3.2.3. The JOIN clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 43 / 174

All of these JOIN methods can be called on org.jooq.Table types, or directly after the FROM clause for
convenience. The following example joins AUTHOR and BOOK

DSLContext create = DSL.using(connection, dialect);

// Call "join" directly on the AUTHOR table
Result<?> result = create.select()
 .from(AUTHOR.join(BOOK)
 .on(BOOK.AUTHOR_ID.equal(AUTHOR.ID)))
 .fetch();

// Call "join" on the type returned by "from"
Result<?> result = create.select()
 .from(AUTHOR)
 .join(BOOK)
 .on(BOOK.AUTHOR_ID.equal(AUTHOR.ID))
 .fetch();

The two syntaxes will produce the same SQL statement. However, calling "join" on org.jooq.Table objects
allows for more powerful, nested JOIN expressions (if you can handle the parentheses):

SELECT *
FROM AUTHOR
LEFT OUTER JOIN (
 BOOK JOIN BOOK_TO_BOOK_STORE
 ON BOOK_TO_BOOK_STORE.BOOK_ID = BOOK.ID
)
ON BOOK.AUTHOR_ID = AUTHOR.ID

// Nest joins and provide JOIN conditions only at the end
create.select()
 .from(AUTHOR
 .leftOuterJoin(BOOK
 .join(BOOK_TO_BOOK_STORE)
 .on(BOOK_TO_BOOK_STORE.BOOK_ID.equal(BOOK.ID)))
 .on(BOOK.AUTHOR_ID.equal(AUTHOR.ID)));

- See the section about conditional expressions to learn more about the many ways to create
org.jooq.Condition objects in jOOQ.

- See the section about table expressions to learn about the various ways of referencing
org.jooq.Table objects in jOOQ

JOIN ON KEY, convenience provided by jOOQ

Surprisingly, the SQL standard does not allow to formally JOIN on well-known foreign key relationship
information. Naturally, when you join BOOK to AUTHOR, you will want to do that based on the
BOOK.AUTHOR_ID foreign key to AUTHOR.ID primary key relation. Not being able to do this in SQL leads
to a lot of repetitive code, re-writing the same JOIN predicate again and again - especially, when your
foreign keys contain more than one column. With jOOQ, when you use code generation, you can use
foreign key constraint information in JOIN expressions as such:

SELECT *
FROM AUTHOR
JOIN BOOK ON BOOK.AUTHOR_ID = AUTHOR.ID

create.select()
 .from(AUTHOR)
 .join(BOOK).onKey();

In case of ambiguity, you can also supply field references for your foreign keys, or the generated foreign
key reference to the onKey() method.

Note that formal support for the Sybase JOIN ON KEY syntax is on the roadmap.

The JOIN USING syntax

Most often, you will provide jOOQ with JOIN conditions in the JOIN .. ON clause. SQL supports a different
means of specifying how two tables are to be joined. This is the JOIN .. USING clause. Instead of a
condition, you supply a set of fields whose names are common to both tables to the left and right
of a JOIN operation. This can be useful when your database schema has a high degree of relational
normalisation. An example:

http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Condition.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html
http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/Database_normalization

The jOOQ User Manual 4.3.2.4. The WHERE clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 44 / 174

-- Assuming that both tables contain AUTHOR_ID columns
SELECT *
FROM AUTHOR
JOIN BOOK USING (AUTHOR_ID)

// join(...).using(...)
create.select()
 .from(AUTHOR)
 .join(BOOK).using(AUTHOR.AUTHOR_ID);

In schemas with high degrees of normalisation, you may also choose to use NATURAL JOIN, which takes
no JOIN arguments as it joins using all fields that are common to the table expressions to the left and
to the right of the JOIN operator. An example:

-- Assuming that both tables contain AUTHOR_ID columns
SELECT *
FROM AUTHOR
NATURAL JOIN BOOK

// naturalJoin(...)
create.select()
 .from(AUTHOR)
 .naturalJoin(BOOK);

Oracle's partitioned OUTER JOIN

Oracle SQL ships with a special syntax available for OUTER JOIN clauses. According to the Oracle
documentation about partitioned outer joins this can be used to fill gaps for simplified analytical
calculations. jOOQ only supports putting the PARTITION BY clause to the right of the OUTER JOIN
clause. The following example will create at least one record per AUTHOR and per existing value in
BOOK.PUBLISHED_IN, regardless if an AUTHOR has actually published a book in that year.

SELECT *
FROM AUTHOR
LEFT OUTER JOIN BOOK
PARTITION BY (PUBLISHED_IN)
ON BOOK.AUTHOR_ID = AUTHOR.ID

create.select()
 .from(AUTHOR)
 .leftOuterJoin(BOOK)
 .partitionBy(BOOK.PUBLISHED_IN)
 .on(BOOK.AUTHOR_ID.equal(AUTHOR.ID));

4.3.2.4. The WHERE clause

The WHERE clause can be used for JOIN or filter predicates, in order to restrict the data returned by the
table expressions supplied to the previously specified from clause and join clause. Here is an example:

SELECT *
FROM BOOK
WHERE AUTHOR_ID = 1
AND TITLE = '1984'

create.select()
 .from(BOOK)
 .where(BOOK.AUTHOR_ID.equal(1))
 .and(BOOK.TITLE.equal("1984"));

The above syntax is convenience provided by jOOQ, allowing you to connect the org.jooq.Condition
supplied in the WHERE clause with another condition using an AND operator. You can of course also
create a more complex condition and supply that to the WHERE clause directly (observe the different
placing of parentheses). The results will be the same:

SELECT *
FROM BOOK
WHERE AUTHOR_ID = 1
AND TITLE = '1984'

create.select()
 .from(BOOK)
 .where(BOOK.AUTHOR_ID.equal(1).and(
 BOOK.TITLE.equal("1984")));

You will find more information about creating conditional expressions later in the manual.

http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_10002.htm#i2196190
http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_10002.htm#i2196190
http://www.jooq.org/javadoc/3.0.x/org/jooq/Condition.html

The jOOQ User Manual 4.3.2.5. The CONNECT BY clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 45 / 174

4.3.2.5. The CONNECT BY clause

The Oracle database knows a very succinct syntax for creating hierarchical queries: the CONNECT BY
clause, which is fully supported by jOOQ, including all related functions and pseudo-columns. A more
or less formal definition of this clause is given here:

-- SELECT ..
-- FROM ..
-- WHERE ..
 CONNECT BY [NOCYCLE] condition [AND condition, ...] [START WITH condition]
-- GROUP BY ..
-- ORDER [SIBLINGS] BY ..

An example for an iterative query, iterating through values between 1 and 5 is this:

SELECT LEVEL
FROM DUAL
CONNECT BY LEVEL <= 5

// Get a table with elements 1, 2, 3, 4, 5
create.select(level())
 .connectBy(level().lessOrEqual(5));

Here's a more complex example where you can recursively fetch directories in your database, and
concatenate them to a path:

SELECT
 SUBSTR(SYS_CONNECT_BY_PATH(DIRECTORY.NAME, '/'), 2)
FROM DIRECTORY
CONNECT BY
 PRIOR DIRECTORY.ID = DIRECTORY.PARENT_ID
START WITH DIRECTORY.PARENT_ID IS NULL
ORDER BY 1

.select(
 sysConnectByPath(DIRECTORY.NAME, "/").substring(2))
.from(DIRECTORY)
.connectBy(
 prior(DIRECTORY.ID).equal(DIRECTORY.PARENT_ID))
.startWith(DIRECTORY.PARENT_ID.isNull())
.orderBy(1);

The output might then look like this

+--+
|substring |
+--+
|C: |
|C:/eclipse |
|C:/eclipse/configuration |
|C:/eclipse/dropins |
|C:/eclipse/eclipse.exe |
+--+
|...21 record(s) truncated...

Some of the supported functions and pseudo-columns are these (available from the DSL):

- LEVEL
- CONNECT_BY_IS_CYCLE
- CONNECT_BY_IS_LEAF
- CONNECT_BY_ROOT
- SYS_CONNECT_BY_PATH
- PRIOR

Note that this syntax is also supported in the CUBRID database and might be emulated in other dialects
supporting common table expressions in the future.

The jOOQ User Manual 4.3.2.6. The GROUP BY clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 46 / 174

ORDER SIBLINGS

The Oracle database allows for specifying a SIBLINGS keyword in the ORDER BY clause. Instead of
ordering the overall result, this will only order siblings among each other, keeping the hierarchy intact.
An example is given here:

SELECT DIRECTORY.NAME
FROM DIRECTORY
CONNECT BY
 PRIOR DIRECTORY.ID = DIRECTORY.PARENT_ID
START WITH DIRECTORY.PARENT_ID IS NULL
ORDER SIBLINGS BY 1

.select(DIRECTORY.NAME)

.from(DIRECTORY)

.connectBy(
 prior(DIRECTORY.ID).equal(DIRECTORY.PARENT_ID))
.startWith(DIRECTORY.PARENT_ID.isNull())
.orderSiblingsBy(1);

4.3.2.6. The GROUP BY clause

GROUP BY can be used to create unique groups of data, to form aggregations, to remove duplicates
and for other reasons. It will transform your previously defined set of table expressions, and return
only one record per unique group as specified in this clause. For instance, you can group books by
BOOK.AUTHOR_ID:

SELECT AUTHOR_ID, COUNT(*)
FROM BOOK
GROUP BY AUTHOR_ID

create.select(BOOK.AUTHOR_ID, count())
 .from(BOOK)
 .groupBy(BOOK.AUTHOR_ID);

The above example counts all books per author.

Note, as defined in the SQL standard, when grouping, you may no longer project any columns that are
not a formal part of the GROUP BY clause, or aggregate functions.

MySQL's deviation from the SQL standard

MySQL has a peculiar way of not adhering to this standard behaviour. This is documented in the MySQL
manual. In short, with MySQL, you can also project any other field that is not part of the GROUP BY
clause. The projected values will just be arbitrary values from within the group. You cannot rely on any
ordering. For example:

SELECT AUTHOR_ID, TITLE
FROM BOOK
GROUP BY AUTHOR_ID

create.select(BOOK.AUTHOR_ID, BOOK.TITLE)
 .from(BOOK)
 .groupBy(AUTHOR_ID);

This will return an arbitrary title per author. jOOQ supports this syntax, as jOOQ is not doing any checks
internally, about the consistence of tables/fields/functions that you provide it.

Empty GROUP BY clauses

jOOQ supports empty GROUP BY () clause as well. This will result in SELECT statements that return only
one record.

SELECT COUNT(*)
FROM BOOK
GROUP BY ()

create.selectCount()
 .from(BOOK)
 .groupBy();

http://dev.mysql.com/doc/refman/5.6/en/group-by-hidden-columns.html
http://dev.mysql.com/doc/refman/5.6/en/group-by-hidden-columns.html

The jOOQ User Manual 4.3.2.7. The HAVING clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 47 / 174

ROLLUP(), CUBE() and GROUPING SETS()

Some databases support the SQL standard grouping functions and some extensions thereof. See the
manual's section about grouping functions for more details.

4.3.2.7. The HAVING clause

The HAVING clause is commonly used to further restrict data resulting from a previously issued GROUP
BY clause. An example, selecting only those authors that have written at least two books:

SELECT AUTHOR_ID, COUNT(*)
FROM BOOK
GROUP BY AUTHOR_ID
HAVING COUNT(*) >= 2

create.select(BOOK.AUTHOR_ID, count(*))
 .from(BOOK)
 .groupBy(AUTHOR_ID)
 .having(count().greaterOrEqual(2));

According to the SQL standard, you may omit the GROUP BY clause and still issue a HAVING clause. This
will implicitly GROUP BY (). jOOQ also supports this syntax. The following example selects one record,
only if there are at least 4 books in the books table:

SELECT COUNT(*)
FROM BOOK
HAVING COUNT(*) >= 4

create.select(count(*))
 .from(BOOK)
 .having(count().greaterOrEqual(4));

4.3.2.8. The ORDER BY clause

Databases are allowed to return data in any arbitrary order, unless you explicitly declare that order in
the ORDER BY clause. In jOOQ, this is straight-forward:

SELECT AUTHOR_ID, TITLE
FROM BOOK
ORDER BY AUTHOR_ID ASC, TITLE DESC

create.select(BOOK.AUTHOR_ID, BOOK.TITLE)
 .from(BOOK)
 .orderBy(BOOK.AUTHOR_ID.asc(), BOOK.TITLE.desc());

Any jOOQ column expression (or field) can be transformed into an org.jooq.SortField by calling the asc()
and desc() methods.

Ordering by field index

The SQL standard allows for specifying integer literals (literals, not bind values!) to reference column
indexes from the projection (SELECT clause). This may be useful if you do not want to repeat a lengthy
expression, by which you want to order - although most databases also allow for referencing aliased
column references in the ORDER BY clause. An example of this is given here:

SELECT AUTHOR_ID, TITLE
FROM BOOK
ORDER BY 1 ASC, 2 DESC

create.select(BOOK.AUTHOR_ID, BOOK.TITLE)
 .from(BOOK)
 .orderBy(one().asc(), inline(2).desc());

Note, how one() is used as a convenience short-cut for inline(1)

http://www.jooq.org/javadoc/3.0.x/org/jooq/SortField.html

The jOOQ User Manual 4.3.2.8. The ORDER BY clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 48 / 174

Ordering and NULLS

A few databases support the SQL standard "null ordering" clause in sort specification lists, to define
whether NULL values should come first or last in an ordered result.

SELECT
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME
FROM AUTHOR
ORDER BY LAST_NAME ASC,
 FIRST_NAME ASC NULLS LAST

create.select(
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME)
 .from(AUTHOR)
 .orderBy(AUTHOR.LAST_NAME.asc(),
 AUTHOR.FIRST_NAME.asc().nullsLast());

If your database doesn't support this syntax, jOOQ emulates it using a CASE expression as follows

SELECT
 AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME
FROM AUTHOR
ORDER BY LAST_NAME ASC,
 CASE WHEN FIRST_NAME IS NULL
 THEN 1 ELSE 0 END ASC,
 FIRST_NAME ASC

Ordering using CASE expressions

Using CASE expressions in SQL ORDER BY clauses is a common pattern, if you want to introduce
some sort indirection / sort mapping into your queries. As with SQL, you can add any type of column
expression into your ORDER BY clause. For instance, if you have two favourite books that you always
want to appear on top, you could write:

SELECT *
FROM BOOK
ORDER BY CASE TITLE
 WHEN '1984' THEN 0
 WHEN 'Animal Farm' THEN 1
 ELSE 2 END ASC

create.select()
 .from(BOOK)
 .orderBy(decode().value(BOOK.TITLE)
 .when("1984", 0)
 .when("Animal Farm", 1)
 .otherwise(2).asc());

But writing these things can become quite verbose. jOOQ supports a convenient syntax for specifying
sort mappings. The same query can be written in jOOQ as such:

create.select()
 .from(BOOK)
 .orderBy(BOOK.TITLE.sortAsc("1984", "Animal Farm"));

More complex sort indirections can be provided using a Map:

create.select()
 .from(BOOK)
 .orderBy(BOOK.TITLE.sort(new HashMap<String, Integer>() {{
 put("1984", 1);
 put("Animal Farm", 13);
 put("The jOOQ book", 10);
 }}));

Of course, you can combine this feature with the previously discussed NULLS FIRST / NULLS LAST
feature. So, if in fact these two books are the ones you like least, you can put all NULLS FIRST (all the
other books):

create.select()
 .from(BOOK)
 .orderBy(BOOK.TITLE.sortAsc("1984", "Animal Farm").nullsFirst());

The jOOQ User Manual 4.3.2.9. The LIMIT .. OFFSET clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 49 / 174

jOOQ's understanding of SELECT .. ORDER BY

The SQL standard defines that a "query expression" can be ordered, and that query expressions can
contain UNION, INTERSECT and EXCEPT clauses, whose subqueries cannot be ordered. While this is
defined as such in the SQL standard, many databases allowing for the non-standard LIMIT clause in
one way or another, do not adhere to this part of the SQL standard. Hence, jOOQ allows for ordering all
SELECT statements, regardless whether they are constructed as a part of a UNION or not. Corner-cases
are handled internally by jOOQ, by introducing synthetic subselects to adhere to the correct syntax,
where this is needed.

Oracle's ORDER SIBLINGS BY clause

jOOQ also supports Oracle's SIBLINGS keyword to be used with ORDER BY clauses for hierarchical
queries using CONNECT BY

4.3.2.9. The LIMIT .. OFFSET clause

While being extremely useful for every application that does paging, or just to limit result sets to
reasonable sizes, this clause is not yet part of any SQL standard (up until SQL:2008). Hence, there exist a
variety of possible implementations in various SQL dialects, concerning this limit clause. jOOQ chose to
implement the LIMIT .. OFFSET clause as understood and supported by MySQL, H2, HSQLDB, Postgres,
and SQLite. Here is an example of how to apply limits with jOOQ:

create.select().from(BOOK).limit(1).offset(2);

This will limit the result to 1 books starting with the 2nd book (starting at offset 0!). limit() is supported
in all dialects, offset() in all but Sybase ASE, which has no reasonable means to emulate it. This is how
jOOQ trivially emulates the above query in various SQL dialects with native OFFSET pagination support:

-- MySQL, H2, HSQLDB, Postgres, and SQLite
SELECT * FROM BOOK LIMIT 1 OFFSET 2

-- CUBRID supports a MySQL variant of the LIMIT .. OFFSET clause
SELECT * FROM BOOK LIMIT 2, 1

-- Derby, SQL Server 2012, Oracle 12c (syntax not yet supported by jOOQ), the SQL:2008 standard
SELECT * FROM BOOK OFFSET 2 ROWS FETCH NEXT 1 ROWS ONLY

-- Ingres (almost the SQL:2008 standard)
SELECT * FROM BOOK OFFSET 2 FETCH FIRST 1 ROWS ONLY

-- Firebird
SELECT * FROM BOOK ROWS 2 TO 3

-- Sybase SQL Anywhere
SELECT TOP 1 ROWS START AT 3 * FROM BOOK

-- DB2 (almost the SQL:2008 standard, without OFFSET)
SELECT * FROM BOOK FETCH FIRST 1 ROWS ONLY

-- Sybase ASE, SQL Server 2008 (without OFFSET)
SELECT TOP 1 * FROM BOOK

Things get a little more tricky in those databases that have no native idiom for OFFSET pagination (actual
queries may vary):

The jOOQ User Manual 4.3.2.10. The FOR UPDATE clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 50 / 174

-- DB2 (with OFFSET), SQL Server 2008 (with OFFSET)
SELECT * FROM (
 SELECT BOOK.*,
 ROW_NUMBER() OVER (ORDER BY ID ASC) AS RN
 FROM BOOK
) AS X
WHERE RN > 1
AND RN <= 3

-- DB2 (with OFFSET), SQL Server 2008 (with OFFSET)
SELECT * FROM (
 SELECT DISTINCT BOOK.ID, BOOK.TITLE
 DENSE_RANK() OVER (ORDER BY ID ASC, TITLE ASC) AS RN
 FROM BOOK
) AS X
WHERE RN > 1
AND RN <= 3

-- Oracle 11g and less
SELECT *
FROM (
 SELECT b.*, ROWNUM RN
 FROM (
 SELECT *
 FROM BOOK
 ORDER BY ID ASC
) b
 WHERE ROWNUM <= 3
)
WHERE RN > 1

As you can see, jOOQ will take care of the incredibly painful ROW_NUMBER() OVER() (or ROWNUM for
Oracle) filtering in subselects for you, you'll just have to write limit(1).offset(2) in any dialect.

Side-note: If you're interested in understanding why we chose ROWNUM for Oracle, please refer to this
very interesting benchmark, comparing the different approaches of doing pagination in Oracle: http://
www.inf.unideb.hu/~gabora/pagination/results.html.

SQL Server's ORDER BY, TOP and subqueries

As can be seen in the above example, writing correct SQL can be quite tricky, depending on the SQL
dialect. For instance, with SQL Server, you cannot have an ORDER BY clause in a subquery, unless you
also have a TOP clause. This is illustrated by the fact that jOOQ renders a TOP 100 PERCENT clause for
you. The same applies to the fact that ROW_NUMBER() OVER() needs an ORDER BY windowing clause,
even if you don't provide one to the jOOQ query. By default, jOOQ adds ordering by the first column
of your projection.

4.3.2.10. The FOR UPDATE clause

For inter-process synchronisation and other reasons, you may choose to use the SELECT .. FOR UPDATE
clause to indicate to the database, that a set of cells or records should be locked by a given transaction
for subsequent updates. With jOOQ, this can be achieved as such:

SELECT *
FROM BOOK
WHERE ID = 3
FOR UPDATE

create.select()
 .from(BOOK)
 .where(BOOK.ID.equal(3))
 .forUpdate();

The above example will produce a record-lock, locking the whole record for updates. Some databases
also support cell-locks using FOR UPDATE OF ..

SELECT *
FROM BOOK
WHERE ID = 3
FOR UPDATE OF TITLE

create.select()
 .from(BOOK)
 .where(BOOK.ID.equal(3))
 .forUpdate().of(BOOK.TITLE);

http://www.inf.unideb.hu/~gabora/pagination/results.html
http://www.inf.unideb.hu/~gabora/pagination/results.html

The jOOQ User Manual 4.3.2.10. The FOR UPDATE clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 51 / 174

Oracle goes a bit further and also allows to specify the actual locking behaviour. It features these
additional clauses, which are all supported by jOOQ:

- FOR UPDATE NOWAIT: This is the default behaviour. If the lock cannot be acquired, the query
fails immediately

- FOR UPDATE WAIT n: Try to wait for [n] seconds for the lock acquisition. The query will fail only
afterwards

- FOR UPDATE SKIP LOCKED: This peculiar syntax will skip all locked records. This is particularly
useful when implementing queue tables with multiple consumers

With jOOQ, you can use those Oracle extensions as such:

create.select().from(BOOK).where(BOOK.ID.equal(3)).forUpdate().nowait();
create.select().from(BOOK).where(BOOK.ID.equal(3)).forUpdate().wait(5);
create.select().from(BOOK).where(BOOK.ID.equal(3)).forUpdate().skipLocked();

FOR UPDATE in CUBRID and SQL Server

The SQL standard specifies a FOR UPDATE clause to be applicable for cursors. Most databases interpret
this as being applicable for all SELECT statements. An exception to this rule are the CUBRID and SQL
Server databases, that do not allow for any FOR UPDATE clause in a regular SQL SELECT statement.
jOOQ emulates the FOR UPDATE behaviour, by locking record by record with JDBC. JDBC allows for
specifying the flags TYPE_SCROLL_SENSITIVE, CONCUR_UPDATABLE for any statement, and then using
ResultSet.updateXXX() methods to produce a cell-lock / row-lock. Here's a simplified example in JDBC:

try (
 PreparedStatement stmt = connection.prepareStatement(
 "SELECT * FROM author WHERE id IN (3, 4, 5)",
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet rs = stmt.executeQuery()
) {
 while (rs.next()) {
 // UPDATE the primary key for row-locks, or any other columns for cell-locks
 rs.updateObject(1, rs.getObject(1));
 rs.updateRow();

 // Do more stuff with this record
 }
}

The main drawback of this approach is the fact that the database has to maintain a scrollable cursor,
whose records are locked one by one. This can cause a major risk of deadlocks or race conditions if
the JDBC driver can recover from the unsuccessful locking, if two Java threads execute the following
statements:

-- thread 1
SELECT * FROM author ORDER BY id ASC;

-- thread 2
SELECT * FROM author ORDER BY id DESC;

So use this technique with care, possibly only ever locking single rows!

Pessimistic (shared) locking with the FOR SHARE clause

Some databases (MySQL, Postgres) also allow to issue a non-exclusive lock explicitly using a FOR SHARE
clause. This is also supported by jOOQ

The jOOQ User Manual 4.3.2.11. UNION, INTERSECTION and EXCEPT

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 52 / 174

Optimistic locking in jOOQ

Note, that jOOQ also supports optimistic locking, if you're doing simple CRUD. This is documented in
the section's manual about optimistic locking.

4.3.2.11. UNION, INTERSECTION and EXCEPT

SQL allows to perform set operations as understood in standard set theory on result sets. These
operations include unions, intersections, subtractions. For two subselects to be combinable by such a
set operator, each subselect must return a table expression of the same degree and type.

UNION and UNION ALL

These operators combine two results into one. While UNION removes all duplicate records resulting
from this combination, UNION ALL leaves subselect results as they are. Typically, you should prefer
UNION ALL over UNION, if you don't really need to remove duplicates. The following example shows
how to use such a UNION operation in jOOQ.

SELECT * FROM BOOK WHERE ID = 3
UNION ALL
SELECT * FROM BOOK WHERE ID = 5

create.selectFrom(BOOK).where(BOOK.ID.equal(3))
 .unionAll(
create.selectFrom(BOOK).where(BOOK.ID.equal(5)));

INTERSECT [ALL] and EXCEPT [ALL]

INTERSECT is the operation that produces only those values that are returned by both subselects.
EXCEPT is the operation that returns only those values that are returned exclusively in the first subselect.
Both operators will remove duplicates from their results. The SQL standard allows to specify the ALL
keyword for both of these operators as well, but this is hardly supported in any database. jOOQ does
not support INTERSECT ALL, EXEPT ALL operations either.

jOOQ's set operators and how they're different from standard SQL

As previously mentioned in the manual's section about the ORDER BY clause, jOOQ has slightly changed
the semantics of these set operators. While in SQL, a subselect may not contain any ORDER BY clause
or LIMIT clause (unless you wrap the subselect into a nested SELECT), jOOQ allows you to do so. In
order to select both the youngest and the oldest author from the database, you can issue the following
statement with jOOQ (rendered to the MySQL dialect):

 (SELECT * FROM AUTHOR
 ORDER BY DATE_OF_BIRTH ASC LIMIT 1)
UNION
 (SELECT * FROM AUTHOR
 ORDER BY DATE_OF_BIRTH DESC LIMIT 1)

create.selectFrom(AUTHOR)
 .orderBy(AUTHOR.DATE_OF_BIRTH.asc()).limit(1)
 .union(
create.selectFrom(AUTHOR)
 .orderBy(AUTHOR.DATE_OF_BIRTH.desc()).limit(1));

The jOOQ User Manual 4.3.2.12. Oracle-style hints

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 53 / 174

Projection typesafety for degrees between 1 and 22

Two subselects that are combined by a set operator are required to be of the same degree and, in most
databases, also of the same type. jOOQ 3.0's introduction of Typesafe Record[N] types helps compile-
checking these constraints:

// Some sample SELECT statements
Select<Record2<Integer, String>> s1 = select(BOOK.ID, BOOK.TITLE).from(BOOK);
Select<Record1<Integer>> s2 = selectOne();
Select<Record2<Integer, Integer>> s3 = select(one(), zero());
Select<Record2<Integer, String>> s4 = select(one(), inline("abc"));

// Let's try to combine them:
s1.union(s2); // Doesn't compile because of a degree mismatch. Expected: Record2<...>, got: Record1<...>
s1.union(s3); // Doesn't compile because of a type mismatch. Expected: <Integer, String>, got: <Integer, Integer>
s1.union(s4); // OK. The two Record[N] types match

4.3.2.12. Oracle-style hints

If you are closely coupling your application to an Oracle (or CUBRID) database, you might need to be
able to pass hints of the form /*+HINT*/ with your SQL statements to the Oracle database. For example:

SELECT /*+ALL_ROWS*/ FIRST_NAME, LAST_NAME
 FROM AUTHOR

This can be done in jOOQ using the .hint() clause in your SELECT statement:

create.select(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .hint("/*+ALL_ROWS*/")
 .from(AUTHOR);

Note that you can pass any string in the .hint() clause. If you use that clause, the passed string will always
be put in between the SELECT [DISTINCT] keywords and the actual projection list. This can be useful in
other databases too, such as MySQL, for instance:

SELECT SQL_CALC_FOUND_ROWS field1, field2
FROM table1

create.select(field1, field2)
 .hint("SQL_CALC_FOUND_ROWS")
 .from(table1)

4.3.2.13. Lexical and logical SELECT clause order

SQL has a lexical and a logical order of SELECT clauses. The lexical order of SELECT clauses is inspired
by the English language. As SQL statements are commands for the database, it is natural to express a
statement in an imperative tense, such as "SELECT this and that!".

Logical SELECT clause order

The logical order of SELECT clauses, however, does not correspond to the syntax. In fact, the logical
order is this:

The jOOQ User Manual 4.3.2.13. Lexical and logical SELECT clause order

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 54 / 174

- The FROM clause: First, all data sources are defined and joined
- The WHERE clause: Then, data is filtered as early as possible
- The CONNECT BY clause: Then, data is traversed iteratively or recursively, to produce new tuples
- The GROUP BY clause: Then, data is reduced to groups, possibly producing new tuples if

grouping functions like ROLLUP(), CUBE(), GROUPING SETS() are used
- The HAVING clause: Then, data is filtered again
- The SELECT clause: Only now, the projection is evaluated. In case of a SELECT DISTINCT

statement, data is further reduced to remove duplicates
- The UNION clause: Optionally, the above is repeated for several UNION-connected subqueries.

Unless this is a UNION ALL clause, data is further reduced to remove duplicates
- The ORDER BY clause: Now, all remaining tuples are ordered
- The LIMIT clause: Then, a paging view is created for the ordered tuples
- The FOR UPDATE clause: Finally, pessimistic locking is applied

The SQL Server documentation also explains this, with slightly different clauses:

- FROM
- ON
- JOIN
- WHERE
- GROUP BY
- WITH CUBE or WITH ROLLUP
- HAVING
- SELECT
- DISTINCT
- ORDER BY
- TOP

As can be seen, databases have to logically reorder a SQL statement in order to determine the best
execution plan.

Alternative syntaxes: LINQ, SLICK

Some "higher-level" abstractions, such as C#'s LINQ or Scala's SLICK try to inverse the lexical order of
SELECT clauses to what appears to be closer to the logical order. The obvious advantage of moving
the SELECT clause to the end is the fact that the projection type, which is the record type returned by
the SELECT statement can be re-used more easily in the target environment of the internal domain
specific language.

A LINQ example:

// LINQ-to-SQL looks somewhat similar to SQL
// AS clause // FROM clause
From p In db.Products

// WHERE clause
Where p.UnitsInStock <= p.ReorderLevel AndAlso Not p.Discontinued

// SELECT clause
Select p

A SLICK example:

http://msdn.microsoft.com/en-us/library/ms189499.aspx

The jOOQ User Manual 4.3.3. The INSERT statement

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 55 / 174

// "for" is the "entry-point" to the DSL
val q = for {

 // FROM clause WHERE clause
 c <- Coffees if c.supID === 101

// SELECT clause and projection to a tuple
} yield (c.name, c.price)

While this looks like a good idea at first, it only complicates translation to more advanced SQL statements
while impairing readability for those users that are used to writing SQL. jOOQ is designed to look just
like SQL. This is specifically true for SLICK, which not only changed the SELECT clause order, but also
heavily "integrated" SQL clauses with the Scala language.

For these reasons, the jOOQ DSL API is modelled in SQL's lexical order.

4.3.3. The INSERT statement

The INSERT statement is used to insert new records into a database table. Records can either be
supplied using a VALUES() constructor, or a SELECT statement. jOOQ supports both types of INSERT
statements. An example of an INSERT statement using a VALUES() constructor is given here:

INSERT INTO AUTHOR
 (ID, FIRST_NAME, LAST_NAME)
VALUES (100, 'Hermann', 'Hesse');

create.insertInto(AUTHOR,
 AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values(100, "Hermann", "Hesse");

Note that for explicit degrees up to 22, the VALUES() constructor provides additional typesafety. The
following example illustrates this:

InsertValuesStep3<AuthorRecord, Integer, String, String> step =
 create.insertInto(AUTHOR, AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME);
 step.values("A", "B", "C");
 // ^^^ Doesn't compile, the expected type is Integer

INSERT multiple rows with the VALUES() constructor

The SQL standard specifies that multiple rows can be supplied to the VALUES() constructor in an INSERT
statement. Here's an example of a multi-record INSERT

INSERT INTO AUTHOR
 (ID, FIRST_NAME, LAST_NAME)
VALUES (100, 'Hermann', 'Hesse'),
 (101, 'Alfred', 'Döblin');

create.insertInto(AUTHOR,
 AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values(100, "Hermann", "Hesse")
 .values(101, "Alfred", "Döblin");

jOOQ tries to stay close to actual SQL. In detail, however, Java's expressiveness is limited. That's why the
values() clause is repeated for every record in multi-record inserts.

Some RDBMS do not support inserting several records in a single statement. In those cases, jOOQ
emulates multi-record INSERTs using the following SQL:

INSERT INTO AUTHOR
 (ID, FIRST_NAME, LAST_NAME)
SELECT 100, 'Hermann', 'Hesse' FROM DUAL UNION ALL
SELECT 101, 'Alfred', 'Döblin' FROM DUAL;

create.insertInto(AUTHOR,
 AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values(100, "Hermann", "Hesse")
 .values(101, "Alfred", "Döblin");

The jOOQ User Manual 4.3.3. The INSERT statement

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 56 / 174

INSERT using jOOQ's alternative syntax

MySQL (and some other RDBMS) allow for using a non-SQL-standard, UPDATE-like syntax for INSERT
statements. This is also supported in jOOQ, should you prefer that syntax. The above INSERT statement
can also be expressed as follows:

create.insertInto(AUTHOR)
 .set(AUTHOR.ID, 100)
 .set(AUTHOR.FIRST_NAME, "Hermann")
 .set(AUTHOR.LAST_NAME, "Hesse")
 .newRecord()
 .set(AUTHOR.ID, 101)
 .set(AUTHOR.FIRST_NAME, "Alfred")
 .set(AUTHOR.LAST_NAME, "Döblin");

As you can see, this syntax is a bit more verbose, but also more readable, as every field can be matched
with its value. Internally, the two syntaxes are strictly equivalent.

MySQL's INSERT .. ON DUPLICATE KEY UPDATE

The MySQL database supports a very convenient way to INSERT or UPDATE a record. This is a non-
standard extension to the SQL syntax, which is supported by jOOQ and emulated in other RDBMS,
where this is possible (i.e. if they support the SQL standard MERGE statement). Here is an example how
to use the ON DUPLICATE KEY UPDATE clause:

// Add a new author called "Koontz" with ID 3.
// If that ID is already present, update the author's name
create.insertInto(AUTHOR, AUTHOR.ID, AUTHOR.LAST_NAME)
 .values(3, "Koontz")
 .onDuplicateKeyUpdate()
 .set(AUTHOR.LAST_NAME, "Koontz");

The synthetic ON DUPLICATE KEY IGNORE clause

The MySQL database also supports an INSERT IGNORE INTO clause. This is supported by jOOQ using
the more convenient SQL syntax variant of ON DUPLICATE KEY IGNORE, which can be equally emulated
in other databases using a MERGE statement:

// Add a new author called "Koontz" with ID 3.
// If that ID is already present, ignore the INSERT statement
create.insertInto(AUTHOR, AUTHOR.ID, AUTHOR.LAST_NAME)
 .values(3, "Koontz")
 .onDuplicateKeyIgnore();

Postgres's INSERT .. RETURNING

The Postgres database has native support for an INSERT .. RETURNING clause. This is a very powerful
concept that is emulated for all other dialects using JDBC's getGeneratedKeys() method. Take this
example:

http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html#getGeneratedKeys()

The jOOQ User Manual 4.3.4. The UPDATE statement

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 57 / 174

// Add another author, with a generated ID
Record<?> record =
create.insertInto(AUTHOR, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values("Charlotte", "Roche")
 .returning(AUTHOR.ID)
 .fetchOne();

System.out.println(record.getValue(AUTHOR.ID));

// For some RDBMS, this also works when inserting several values
// The following should return a 2x2 table
Result<?> result =
create.insertInto(AUTHOR, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values("Johann Wolfgang", "von Goethe")
 .values("Friedrich", "Schiller")
 // You can request any field. Also trigger-generated values
 .returning(AUTHOR.ID, AUTHOR.CREATION_DATE)
 .fetch();

Some databases have poor support for returning generated keys after INSERTs. In those cases, jOOQ
might need to issue another SELECT statement in order to fetch an @@identity value. Be aware, that
this can lead to race-conditions in those databases that cannot properly return generated ID values.
For more information, please consider the jOOQ Javadoc for the returning() clause.

The INSERT SELECT statement

In some occasions, you may prefer the INSERT SELECT syntax, for instance, when you copy records
from one table to another:

create.insertInto(AUTHOR_ARCHIVE)
 .select(create.selectFrom(AUTHOR).where(AUTHOR.DECEASED.isTrue()));

4.3.4. The UPDATE statement

The UPDATE statement is used to modify one or several pre-existing records in a database table.
UPDATE statements are only possible on single tables. Support for multi-table updates will be
implemented in the near future. An example update query is given here:

UPDATE AUTHOR
 SET FIRST_NAME = 'Hermann',
 LAST_NAME = 'Hesse'
 WHERE ID = 3;

create.update(AUTHOR)
 .set(AUTHOR.FIRST_NAME, "Hermann")
 .set(AUTHOR.LAST_NAME, "Hesse")
 .where(AUTHOR.ID.equal(3));

Most databases allow for using scalar subselects in UPDATE statements in one way or another. jOOQ
models this through a set(Field<T>, Select<? extends Record1<T>>) method in the UPDATE DSL API:

UPDATE AUTHOR
 SET FIRST_NAME = (
 SELECT FIRST_NAME
 FROM PERSON
 WHERE PERSON.ID = AUTHOR.ID
),
 WHERE ID = 3;

create.update(AUTHOR)
 .set(AUTHOR.FIRST_NAME,
 select(PERSON.FIRST_NAME)
 .from(PERSON)
 .where(PERSON.ID.equal(AUTHOR.ID))
)
 .where(AUTHOR.ID.equal(3));

Using row value expressions in an UPDATE statement

jOOQ supports formal row value expressions in various contexts, among which the UPDATE statement.
Only one row value expression can be updated at a time. Here's an example:

The jOOQ User Manual 4.3.5. The DELETE statement

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 58 / 174

UPDATE AUTHOR
 SET (FIRST_NAME, LAST_NAME) =
 ('Hermann', 'Hesse')
 WHERE ID = 3;

create.update(AUTHOR)
 .set(row(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME),
 row("Herman", "Hesse"))
 .where(AUTHOR.ID.equal(3));

This can be particularly useful when using subselects:

UPDATE AUTHOR
 SET (FIRST_NAME, LAST_NAME) = (
 SELECT PERSON.FIRST_NAME, PERSON.LAST_NAME
 FROM PERSON
 WHERE PERSON.ID = AUTHOR.ID
)
 WHERE ID = 3;

create.update(AUTHOR)
 .set(row(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME),
 select(PERSON.FIRST_NAME, PERSON.LAST_NAME)
 .from(PERSON)
 .where(PERSON.ID.equal(AUTHOR.ID))
)
 .where(AUTHOR.ID.equal(3));

The above row value expressions usages are completely typesafe.

UPDATE .. RETURNING

The Firebird and Postgres databases support a RETURNING clause on their UPDATE statements, similar
as the RETURNING clause in INSERT statements. This is useful to fetch trigger-generated values in one
go. An example is given here:

-- Fetch a trigger-generated value
UPDATE BOOK
SET TITLE = 'Animal Farm'
WHERE ID = 5
RETURNING TITLE

String title = create.update(BOOK)
 .set(BOOK.TITLE, "Animal Farm")
 .where(BOOK.ID.equal(5))
 .returning(BOOK.TITLE)
 .fetchOne().getValue(BOOK.TITLE);

The UPDATE .. RETURNING clause is currently not emulated for other databases. Future versions might
execute an additional SELECT statement to fetch results.

4.3.5. The DELETE statement

The DELETE statement removes records from a database table. DELETE statements are only possible
on single tables. Support for multi-table deletes will be implemented in the near future. An example
delete query is given here:

DELETE AUTHOR
 WHERE ID = 100;

create.delete(AUTHOR)
 .where(AUTHOR.ID.equal(100));

4.3.6. The MERGE statement

The MERGE statement is one of the most advanced standardised SQL constructs, which is supported
by DB2, HSQLDB, Oracle, SQL Server and Sybase (MySQL has the similar INSERT .. ON DUPLICATE KEY
UPDATE construct)

The point of the standard MERGE statement is to take a TARGET table, and merge (INSERT, UPDATE)
data from a SOURCE table into it. DB2, Oracle, SQL Server and Sybase also allow for DELETING some
data and for adding many additional clauses. With jOOQ 3.0.1, only Oracle's MERGE extensions are
supported. Here is an example:

The jOOQ User Manual 4.3.7. The TRUNCATE statement

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 59 / 174

-- Check if there is already an author called 'Hitchcock'
-- If there is, rename him to John. If there isn't add him.
MERGE INTO AUTHOR
USING (SELECT 1 FROM DUAL)
ON (LAST_NAME = 'Hitchcock')
WHEN MATCHED THEN UPDATE SET FIRST_NAME = 'John'
WHEN NOT MATCHED THEN INSERT (LAST_NAME) VALUES ('Hitchcock')

create.mergeInto(AUTHOR)
 .using(create().selectOne())
 .on(AUTHOR.LAST_NAME.equal("Hitchcock"))
 .whenMatchedThenUpdate()
 .set(AUTHOR.FIRST_NAME, "John")
 .whenNotMatchedThenInsert(AUTHOR.LAST_NAME)
 .values("Hitchcock");

MERGE Statement (H2-specific syntax)

The H2 database ships with a somewhat less powerful but a little more intuitive syntax for its own
version of the MERGE statement. An example more or less equivalent to the previous one can be seen
here:

-- Check if there is already an author called 'Hitchcock'
-- If there is, rename him to John. If there isn't add him.

MERGE INTO AUTHOR (FIRST_NAME, LAST_NAME)
KEY (LAST_NAME)
VALUES ('John', 'Hitchcock')

create.mergeInto(AUTHOR,
 AUTHOR.FIRST_NAME,
 AUTHOR.LAST_NAME)
 .key(AUTHOR.LAST_NAME)
 .values("John", "Hitchcock")
 .execute();

This syntax can be fully emulated by jOOQ for all other databases that support the SQL standard MERGE
statement. For more information about the H2 MERGE syntax, see the documentation here:
http://www.h2database.com/html/grammar.html#merge

Typesafety of VALUES() for degrees up to 22

Much like the INSERT statement, the MERGE statement's VALUES() clause provides typesafety for
degrees up to 22, in both the standard syntax variant as well as the H2 variant.

4.3.7. The TRUNCATE statement

The TRUNCATE statement is the only DDL statement supported by jOOQ so far. It is popular in many
databases when you want to bypass constraints for table truncation. Databases may behave differently,
when a truncated table is referenced by other tables. For instance, they may fail if records from a
truncated table are referenced, even with ON DELETE CASCADE clauses in place. Please, consider your
database manual to learn more about its TRUNCATE implementation.

The TRUNCATE syntax is trivial:

TRUNCATE TABLE AUTHOR; create.truncate(AUTHOR).execute();

TRUNCATE is not supported by Ingres and SQLite. jOOQ will execute a DELETE FROM AUTHOR
statement instead.

4.4. Table expressions

The following sections explain the various types of table expressions supported by jOOQ

http://www.h2database.com/html/grammar.html#merge

The jOOQ User Manual 4.4.1. Generated Tables

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 60 / 174

4.4.1. Generated Tables

Most of the times, when thinking about a table expression you're probably thinking about an actual
table in your database schema. If you're using jOOQ's code generator, you will have all tables from your
database schema available to you as type safe Java objects. You can then use these tables in SQL FROM
clauses, JOIN clauses or in other SQL statements, just like any other table expression. An example is
given here:

SELECT *
FROM AUTHOR -- Table expression AUTHOR
JOIN BOOK -- Table expression BOOK
ON (AUTHOR.ID = BOOK.AUTHOR_ID)

create.select()
 .from(AUTHOR) // Table expression AUTHOR
 .join(BOOK) // Table expression BOOK
 .on(AUTHOR.ID.equal(BOOK.AUTHOR_ID));

The above example shows how AUTHOR and BOOK tables are joined in a SELECT statement. It also
shows how you can access table columns by dereferencing the relevant Java attributes of their tables.

See the manual's section about generated tables for more information about what is really generated
by the code generator

4.4.2. Aliased Tables

The strength of jOOQ's code generator becomes more obvious when you perform table aliasing and
dereference fields from generated aliased tables. This can best be shown by example:

-- Select all books by authors born after 1920,
-- named "Paulo" from a catalogue:

SELECT *
 FROM author a
 JOIN book b ON a.id = b.author_id
 WHERE a.year_of_birth > 1920
 AND a.first_name = 'Paulo'
 ORDER BY b.title

// Declare your aliases before using them in SQL:
Author a = AUTHOR.as("a");
Book b = BOOK.as("b");

// Use aliased tables in your statement
create.select()
 .from(a)
 .join(b).on(a.ID.equal(b.AUTHOR_ID))
 .where(a.YEAR_OF_BIRTH.greaterThan(1920)
 .and(a.FIRST_NAME.equal("Paulo")))
 .orderBy(b.TITLE);

As you can see in the above example, calling as() on generated tables returns an object of the same
type as the table. This means that the resulting object can be used to dereference fields from the
aliased table. This is quite powerful in terms of having your Java compiler check the syntax of your SQL
statements. If you remove a column from a table, dereferencing that column from that table alias will
cause compilation errors.

Dereferencing columns from other table expressions

Only few table expressions provide the SQL syntax typesafety as shown above, where generated tables
are used. Most tables, however, expose their fields through field() methods:

// "Type-unsafe" aliased table:
Table<?> a = AUTHOR.as("a");

// Get fields from a:
Field<?> id = a.field("ID");
Field<?> firstName = a.field("FIRST_NAME");

The jOOQ User Manual 4.4.3. Joined tables

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 61 / 174

Derived column lists

The SQL standard specifies how a table can be renamed / aliased in one go along with its columns.
It references the term "derived column list" for the following syntax (as supported by Postgres, for
instance):

SELECT t.a, t.b
FROM (
 SELECT 1, 2
) t(a, b)

This feature is useful in various use-cases where column names are not known in advance (but the
table's degree is!). An example for this are unnested tables, or the VALUES() table constructor:

-- Unnested tables
SELECT t.a, t.b
FROM unnest(my_table_function()) t(a, b)

-- VALUES() constructor
SELECT t.a, t.b
FROM VALUES(1, 2),(3, 4) t(a, b)

Only few databases really support such a syntax, but fortunately, jOOQ can emulate it easily using
UNION ALL and an empty dummy record specifying the new column names. The two statements are
equivalent:

-- Using derived column lists
SELECT t.a, t.b
FROM (
 SELECT 1, 2
) t(a, b)

-- Using UNION ALL and a dummy record
SELECT t.a, t.b
FROM (
 SELECT null a, null b FROM DUAL WHERE 1 = 0
 UNION ALL
 SELECT 1, 2 FROM DUAL
) t

In jOOQ, you would simply specify a varargs list of column aliases as such:

// Unnested tables
create.select().from(unnest(myTableFunction()).as("t", "a", "b"));

// VALUES() constructor
create.select().from(values(
 row(1, 2),
 row(3, 4)
).as("t", "a", "b"));

4.4.3. Joined tables

The JOIN operators that can be used in SQL SELECT statements are the most powerful and best
supported means of creating new table expressions in SQL. Informally, the following can be said:

A(colA1, ..., colAn) "join" B(colB1, ..., colBm) "produces" C(colA1, ..., colAn, colB1, ..., colBm)

SQL and relational algebra distinguish between at least the following JOIN types (upper-case: SQL, lower-
case: relational algebra):

The jOOQ User Manual 4.4.4. The VALUES() table constructor

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 62 / 174

- CROSS JOIN or cartesian product: The basic JOIN in SQL, producing a relational cross product,
combining every record of table A with every record of table B. Note that cartesian products can
also be produced by listing comma-separated table expressions in the FROM clause of a SELECT
statement

- NATURAL JOIN: The basic JOIN in relational algebra, yet a rarely used JOIN in databases with
everyday degree of normalisation. This JOIN type unconditionally equi-joins two tables by all
columns with the same name (requiring foreign keys and primary keys to share the same name).
Note that the JOIN columns will only figure once in the resulting table expression.

- INNER JOIN or equi-join: This JOIN operation performs a cartesian product (CROSS JOIN)
with a filtering predicate being applied to the resulting table expression. Most often, a equal
comparison predicate comparing foreign keys and primary keys will be applied as a filter, but any
other predicate will work, too.

- OUTER JOIN: This JOIN operation performs a cartesian product (CROSS JOIN) with a filtering
predicate being applied to the resulting table expression. Most often, a equal comparison
predicate comparing foreign keys and primary keys will be applied as a filter, but any other
predicate will work, too. Unlike the INNER JOIN, an OUTER JOIN will add "empty records" to the
left (table A) or right (table B) or both tables, in case the conditional expression fails to produce
a .

- semi-join: In SQL, this JOIN operation can only be expressed implicitly using IN predicates or
EXISTS predicates. The table expression resulting from a semi-join will only contain the left-hand
side table A

- anti-join: In SQL, this JOIN operation can only be expressed implicitly using NOT IN predicates or
NOT EXISTS predicates. The table expression resulting from a semi-join will only contain the left-
hand side table A

- division: This JOIN operation is hard to express at all, in SQL. See the manual's chapter about
relational division for details on how jOOQ emulates this operation.

jOOQ supports all of these JOIN types (except semi-join and anti-join) directly on any table expression:

// jOOQ's relational division convenience syntax
DivideByOnStep divideBy(Table<?> table)

// Various overloaded INNER JOINs
TableOnStep join(TableLike<?>)
TableOnStep join(String)
TableOnStep join(String, Object...)
TableOnStep join(String, QueryPart...)

// Various overloaded OUTER JOINs (supporting Oracle's partitioned OUTER JOIN)
// Overloading is similar to that of INNER JOIN
TablePartitionByStep leftOuterJoin(TableLike<?>)
TablePartitionByStep rightOuterJoin(TableLike<?>)

// Various overloaded FULL OUTER JOINs
TableOnStep fullOuterJoin(TableLike<?>)

// Various overloaded CROSS JOINs
Table<Record> crossJoin(TableLike<?>)

// Various overloaded NATURAL JOINs
Table<Record> naturalJoin(TableLike<?>)
Table<Record> naturalLeftOuterJoin(TableLike<?>)
Table<Record> naturalRightOuterJoin(TableLike<?>)

Note that most of jOOQ's JOIN operations give way to a similar DSL API hierarchy as previously seen in
the manual's section about the JOIN clause

4.4.4. The VALUES() table constructor

Some databases allow for expressing in-memory temporary tables using a VALUES() constructor. This
constructor usually works the same way as the VALUES() clause known from the INSERT statement or

The jOOQ User Manual 4.4.5. Nested SELECTs

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 63 / 174

from the MERGE statement. With jOOQ, you can also use the VALUES() table constructor, to create
tables that can be used in a SELECT statement's FROM clause:

SELECT a, b
FROM VALUES(1, 'a'),
 (2, 'b') t(a, b)

create.select()
 .from(values(row(1, "a"),
 row(2, "b")).as("t", "a", "b"));

Note, that it is usually quite useful to provide column aliases ("derived column lists") along with the table
alias for the VALUES() constructor.

The above statement is emulated by jOOQ for those databases that do not support the VALUES()
constructor, natively (actual emulations may vary):

-- If derived column expressions are supported:
SELECT a, b
FROM (
 SELECT 1, 'a' FROM DUAL UNION ALL
 SELECT 2, 'b' FROM DUAL
) t(a, b)

-- If derived column expressions are not supported:
SELECT a, b
FROM (

 -- An empty dummy record is added to provide column names for the emulated derived column expression
 SELECT NULL a, NULL b FROM DUAL WHERE 1 = 0 UNION ALL

 -- Then, the actual VALUES() constructor is emulated
 SELECT 1, 'a' FROM DUAL UNION ALL
 SELECT 2, 'b' FROM DUAL
) t

4.4.5. Nested SELECTs

A SELECT statement can appear almost anywhere a table expression can. Such a "nested SELECT" is
often called a "derived table". Apart from many convenience methods accepting org.jooq.Select objects
directly, a SELECT statement can always be transformed into a org.jooq.Table object using the asTable()
method.

Example: Scalar subquery

SELECT *
 FROM BOOK
 WHERE BOOK.AUTHOR_ID = (
 SELECT ID
 FROM AUTHOR
 WHERE LAST_NAME = 'Orwell')

create.select()
 .from(BOOK)
 .where(BOOK.AUTHOR_ID.equal(create
 .select(AUTHOR.ID)
 .from(AUTHOR)
 .where(AUTHOR.LAST_NAME.equal("Orwell"))));

Example: Derived table

SELECT nested.* FROM (
 SELECT AUTHOR_ID, count(*) books
 FROM BOOK
 GROUP BY AUTHOR_ID
) nested
ORDER BY nested.books DESC

Table<Record> nested =
 create.select(BOOK.AUTHOR_ID, count().as("books"))
 .from(BOOK)
 .groupBy(BOOK.AUTHOR_ID).asTable("nested");

create.select(nested.fields())
 .from(nested)
 .orderBy(nested.field("books"));

http://www.jooq.org/javadoc/3.0.x/org/jooq/Select.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html

The jOOQ User Manual 4.4.6. The Oracle 11g PIVOT clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 64 / 174

Example: Correlated subquery

 SELECT LAST_NAME, (
 SELECT COUNT(*)
 FROM BOOK
 WHERE BOOK.AUTHOR_ID = AUTHOR.ID) books
 FROM AUTHOR
ORDER BY books DESC

// The type of books cannot be inferred from the Select<?>
Field<Object> books =
 create.selectCount()
 .from(BOOK)
 .where(BOOK.AUTHOR_ID.equal(AUTHOR.ID))
 .asField("books");
create.select(AUTHOR.ID, books)
 .from(AUTHOR)
 .orderBy(books, AUTHOR.ID));

4.4.6. The Oracle 11g PIVOT clause

If you are closely coupling your application to an Oracle database, you can take advantage of some
Oracle-specific features, such as the PIVOT clause, used for statistical analyses. The formal syntax
definition is as follows:

-- SELECT ..
 FROM table PIVOT (aggregateFunction [, aggregateFunction] FOR column IN (expression [, expression]))
-- WHERE ..

The PIVOT clause is available from the org.jooq.Table type, as pivoting is done directly on a table.
Currently, only Oracle's PIVOT clause is supported. Support for SQL Server's slightly different PIVOT
clause will be added later. Also, jOOQ may emulate PIVOT for other dialects in the future.

4.4.7. jOOQ's relational division syntax

There is one operation in relational algebra that is not given a lot of attention, because it is rarely used
in real-world applications. It is the relational division, the opposite operation of the cross product (or,
relational multiplication). The following is an approximate definition of a relational division:

Assume the following cross join / cartesian product
C = A × B

Then it can be said that
A = C ÷ B
B = C ÷ A

With jOOQ, you can simplify using relational divisions by using the following syntax:

C.divideBy(B).on(C.ID.equal(B.C_ID)).returning(C.TEXT)

The above roughly translates to

SELECT DISTINCT C.TEXT FROM C "c1"
WHERE NOT EXISTS (
 SELECT 1 FROM B
 WHERE NOT EXISTS (
 SELECT 1 FROM C "c2"
 WHERE "c2".TEXT = "c1".TEXT
 AND "c2".ID = B.C_ID
)
)

http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html

The jOOQ User Manual 4.4.8. Array and cursor unnesting

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 65 / 174

Or in plain text: Find those TEXT values in C whose ID's correspond to all ID's in B. Note that from the
above SQL statement, it is immediately clear that proper indexing is of the essence. Be sure to have
indexes on all columns referenced from the on(...) and returning(...) clauses.

For more information about relational division and some nice, real-life examples, see

- http://en.wikipedia.org/wiki/Relational_algebra#Division
- http://www.simple-talk.com/sql/t-sql-programming/divided-we-stand-the-sql-of-relational-

division/

4.4.8. Array and cursor unnesting

The SQL standard specifies how SQL databases should implement ARRAY and TABLE types, as well as
CURSOR types. Put simply, a CURSOR is a pointer to any materialised table expression. Depending on
the cursor's features, this table expression can be scrolled through in both directions, records can be
locked, updated, removed, inserted, etc. Often, CURSOR types contain s, whereas ARRAY and TABLE
types contain simple scalar values, although that is not a requirement

ARRAY types in SQL are similar to Java's array types. They contain a "component type" or "element type"
and a "dimension". This sort of ARRAY type is implemented in H2, HSQLDB and Postgres and supported
by jOOQ as such. Oracle uses strongly-typed arrays, which means that an ARRAY type (VARRAY or TABLE
type) has a name and possibly a maximum capacity associated with it.

Unnesting array and cursor types

The real power of these types become more obvious when you fetch them from stored procedures
to unnest them as table expressions and use them in your FROM clause. An example is given here,
where Oracle's DBMS_XPLAN package is used to fetch a cursor containing data about the most recent
execution plan:

SELECT *
FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(null, null, 'ALLSTATS'));

create.select()
 .from(table(DbmsXplan.displayCursor(null, null,
 "ALLSTATS"));

Note, in order to access the DbmsXplan package, you can use the code generator to generate Oracle's
SYS schema.

4.4.9. The DUAL table

The SQL standard specifies that the FROM clause is optional in a SELECT statement. However, according
to the standard, you may then no longer use some other clauses, such as the WHERE clause. In the real
world, there exist three types of databases:

- The ones that always require a FROM clause (as required by the SQL standard)
- The ones that never require a FROM clause (and still allow a WHERE clause)
- The ones that require a FROM clause only with a WHERE clause, GROUP BY clause, or HAVING

clause

http://en.wikipedia.org/wiki/Relational_algebra#Division
http://www.simple-talk.com/sql/t-sql-programming/divided-we-stand-the-sql-of-relational-division/
http://www.simple-talk.com/sql/t-sql-programming/divided-we-stand-the-sql-of-relational-division/

The jOOQ User Manual 4.5. Column expressions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 66 / 174

With jOOQ, you don't have to worry about the above distinction of SQL dialects. jOOQ never requires
a FROM clause, but renders the necessary "DUAL" table, if needed. The following program shows how
jOOQ renders "DUAL" tables

SELECT 1
SELECT 1 FROM "db_root"
SELECT 1 FROM "SYSIBM"."DUAL"
SELECT 1 FROM "SYSIBM"."SYSDUMMY1"
SELECT 1 FROM "RDB$DATABASE"
SELECT 1 FROM dual
SELECT 1 FROM "INFORMATION_SCHEMA"."SYSTEM_USERS"
SELECT 1 FROM (select 1 as dual) as dual
SELECT 1 FROM dual
SELECT 1 FROM dual
SELECT 1
SELECT 1
SELECT 1
SELECT 1 FROM [SYS].[DUMMY]

DSL.using(SQLDialect.ASE).selectOne().getSQL();
DSL.using(SQLDialect.CUBRID).selectOne().getSQL();
DSL.using(SQLDialect.DB2).selectOne().getSQL();
DSL.using(SQLDialect.DERBY).selectOne().getSQL();
DSL.using(SQLDialect.FIREBIRD).selectOne().getSQL();
DSL.using(SQLDialect.H2).selectOne().getSQL();
DSL.using(SQLDialect.HSQLDB).selectOne().getSQL();
DSL.using(SQLDialect.INGRES).selectOne().getSQL();
DSL.using(SQLDialect.MYSQL).selectOne().getSQL();
DSL.using(SQLDialect.ORACLE).selectOne().getSQL();
DSL.using(SQLDialect.POSTGRES).selectOne().getSQL();
DSL.using(SQLDialect.SQLITE).selectOne().getSQL();
DSL.using(SQLDialect.SQLSERVER).selectOne().getSQL();
DSL.using(SQLDialect.SYBASE).selectOne().getSQL();

Note, that some databases (H2, MySQL) can normally do without "DUAL". However, there exist some
corner-cases with complex nested SELECT statements, where this will cause syntax errors (or parser
bugs). To stay on the safe side, jOOQ will always render "dual" in those dialects.

4.5. Column expressions

Column expressions can be used in various SQL clauses in order to refer to one or several columns.
This chapter explains how to form various types of column expressions with jOOQ. A particular type of
column expression is given in the section about tuples or row value expressions, where an expression
may have a degree of more than one.

Using column expressions in jOOQ

jOOQ allows you to freely create arbitrary column expressions using a fluent expression construction
API. Many expressions can be formed as functions from DSL methods, other expressions can be formed
based on a pre-existing column expression. For example:

// A regular table column expression
Field<String> field1 = BOOK.TITLE;

// A function created from the DSL using "prefix" notation
Field<String> field2 = trim(BOOK.TITLE);

// The same function created from a pre-existing Field using "postfix" notation
Field<String> field3 = BOOK.TITLE.trim();

// More complex function with advanced DSL syntax
Field<String> field4 = listAgg(BOOK.TITLE)
 .withinGroupOrderBy(BOOK.ID.asc())
 .over().partitionBy(AUTHOR.ID);

In general, it is up to you whether you want to use the "prefix" notation or the "postfix" notation to
create new column expressions based on existing ones. The "SQL way" would be to use the "prefix
notation", with functions created from the DSL. The "Java way" or "object-oriented way" would be to use
the "postfix" notation with functions created from org.jooq.Field objects. Both ways ultimately create
the same query part, though.

http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html

The jOOQ User Manual 4.5.1. Table columns

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 67 / 174

4.5.1. Table columns

Table columns are the most simple implementations of a column expression. They are mainly produced
by jOOQ's code generator and can be dereferenced from the generated tables. This manual is full of
examples involving table columns. Another example is given in this query:

SELECT BOOK.ID, BOOK.TITLE
FROM BOOK
WHERE BOOK.TITLE LIKE '%SQL%'
ORDER BY BOOK.TITLE

create.select(BOOK.ID, BOOK.TITLE)
 .from(BOOK)
 .where(BOOK.TITLE.like("%SQL%"))
 .orderBy(BOOK.TITLE);

Table columns implement a more specific interface called org.jooq.TableField, which is parameterised
with its associated <R extends Record> record type.

See the manual's section about generated tables for more information about what is really generated
by the code generator

4.5.2. Aliased columns

Just like tables, columns can be renamed using aliases. Here is an example:

 SELECT FIRST_NAME || ' ' || LAST_NAME author, COUNT(*) books
 FROM AUTHOR
 JOIN BOOK ON AUTHOR.ID = AUTHOR_ID
GROUP BY FIRST_NAME, LAST_NAME;

Here is how it's done with jOOQ:

Record record = create.select(
 concat(AUTHOR.FIRST_NAME, val(" "), AUTHOR.LAST_NAME).as("author"),
 count().as("books"))
 .from(AUTHOR)
 .join(BOOK).on(AUTHOR.ID.equal(BOOK.AUTHOR_ID))
 .groupBy(AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME).fetchAny();

When you alias Fields like above, you can access those Fields' values using the alias name:

System.out.println("Author : " + record.getValue("author"));
System.out.println("Books : " + record.getValue("books"));

4.5.3. Cast expressions

jOOQ's source code generator tries to find the most accurate type mapping between your vendor-
specific data types and a matching Java type. For instance, most VARCHAR, CHAR, CLOB types will
map to String. Most BINARY, BYTEA, BLOB types will map to byte[]. NUMERIC types will default to
java.math.BigDecimal, but can also be any of java.math.BigInteger, java.lang.Long, java.lang.Integer,
java.lang.Short, java.lang.Byte, java.lang.Double, java.lang.Float.

Sometimes, this automatic mapping might not be what you needed, or jOOQ cannot know the type of
a field. In those cases you would write SQL type CAST like this:

http://www.jooq.org/javadoc/3.0.x/org/jooq/TableField.html
http://download.oracle.com/javase/8/docs/apijava/math/BigDecimal.html
http://download.oracle.com/javase/8/docs/apijava/math/BigInteger.html
http://download.oracle.com/javase/8/docs/apijava/lang/Long.html
http://download.oracle.com/javase/8/docs/apijava/lang/Integer.html
http://download.oracle.com/javase/8/docs/apijava/lang/Short.html
http://download.oracle.com/javase/8/docs/apijava/lang/Byte.html
http://download.oracle.com/javase/8/docs/apijava/lang/Double.html
http://download.oracle.com/javase/8/docs/apijava/lang/Float.html

The jOOQ User Manual 4.5.4. Arithmetic expressions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 68 / 174

-- Let's say, your Postgres column LAST_NAME was VARCHAR(30)
-- Then you could do this:
SELECT CAST(AUTHOR.LAST_NAME AS TEXT) FROM DUAL

in jOOQ, you can write something like that:

create.select(TAuthor.LAST_NAME.cast(PostgresDataType.TEXT));

The same thing can be achieved by casting a Field directly to String.class, as TEXT is the default data
type in Postgres to map to Java's String

create.select(TAuthor.LAST_NAME.cast(String.class));

The complete CAST API in org.jooq.Field consists of these three methods:

public interface Field<T> {

 // Cast this field to the type of another field
 <Z> Field<Z> cast(Field<Z> field);

 // Cast this field to a given DataType
 <Z> Field<Z> cast(DataType<Z> type);

 // Cast this field to the default DataType for a given Class
 <Z> Field<Z> cast(Class<? extends Z> type);
}

// And additional convenience methods in the DSL:
public class DSL {
 <T> Field<T> cast(Object object, Field<T> field);
 <T> Field<T> cast(Object object, DataType<T> type);
 <T> Field<T> cast(Object object, Class<? extends T> type);
 <T> Field<T> castNull(Field<T> field);
 <T> Field<T> castNull(DataType<T> type);
 <T> Field<T> castNull(Class<? extends T> type);
}

4.5.4. Arithmetic expressions

Numeric arithmetic expressions

Your database can do the math for you. Arithmetic operations are implemented just like numeric
functions, with similar limitations as far as type restrictions are concerned. You can use any of these
operators:

 + - * / %

In order to express a SQL query like this one:

SELECT ((1 + 2) * (5 - 3) / 2) % 10 FROM DUAL

You can write something like this in jOOQ:

create.select(val(1).add(2).mul(val(5).sub(3)).div(2).mod(10);

http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html

The jOOQ User Manual 4.5.5. String concatenation

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 69 / 174

Datetime arithmetic expressions

jOOQ also supports the Oracle-style syntax for adding days to a Field<? extends java.util.Date>

SELECT SYSDATE + 3 FROM DUAL; create.select(currentTimestamp().add(3));

For more advanced datetime arithmetic, use the DSL's timestampDiff() and dateDiff() functions, as well
as jOOQ's built-in SQL standard INTERVAL data type support:

- INTERVAL YEAR TO MONTH: org.jooq.types.YearToMonth
- INTERVAL DAY TO SECOND: org.jooq.types.DayToSecond

4.5.5. String concatenation

The SQL standard defines the concatenation operator to be an infix operator, similar to the ones we've
seen in the chapter about arithmetic expressions. This operator looks like this: ||. Some other dialects
do not support this operator, but expect a concat() function, instead. jOOQ renders the right operator /
function, depending on your SQL dialect:

SELECT 'A' || 'B' || 'C' FROM DUAL
-- Or in MySQL:
SELECT concat('A', 'B', 'C') FROM DUAL

// For all RDBMS, including MySQL:
create.select(concat("A", "B", "C"));

4.5.6. General functions

There are a variety of general functions supported by jOOQ As discussed in the chapter about SQL
dialects functions are mostly emulated in your database, in case they are not natively supported.

This is a list of general functions supported by jOOQ's DSL:

- COALESCE: Get the first non-null value in a list of arguments.
- NULLIF: Return NULL if both arguments are equal, or the first argument, otherwise.
- NVL: Get the first non-null value among two arguments.
- NVL2: Get the second argument if the first is null, or the third argument, otherwise.

Please refer to the DSL Javadoc for more details.

4.5.7. Numeric functions

Math can be done efficiently in the database before returning results to your Java application. In addition
to the arithmetic expressions discussed previously, jOOQ also supports a variety of numeric functions.
As discussed in the chapter about SQL dialects numeric functions (as any function type) are mostly
emulated in your database, in case they are not natively supported.

http://www.jooq.org/javadoc/3.0.x/org/jooq/types/YearToMonth.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/DayToSecond.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html

The jOOQ User Manual 4.5.8. Bitwise functions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 70 / 174

This is a list of numeric functions supported by jOOQ's DSL:

- ABS: Get the absolute value of a value.
- ACOS: Get the arc cosine of a value.
- ASIN: Get the arc sine of a value.
- ATAN: Get the arc tangent of a value.
- ATAN2: Get the atan2 function of two values.
- CEIL: Get the smalles integer value larger than a given numeric value.
- COS: Get the cosine of a value.
- COSH: Get the hyperbolic cosine of a value.
- COT: Get the cotangent of a value.
- COTH: Get the hyperbolic cotangent of a value.
- DEG: Transform radians into degrees.
- EXP: Calculate e^value.
- FLOOR: Get the largest integer value smaller than a given numeric value.
- GREATEST: Finds the greatest among all argument values (can also be used with non-numeric

values).
- LEAST: Finds the least among all argument values (can also be used with non-numeric values).
- LN: Get the natural logarithm of a value.
- LOG: Get the logarithm of a value given a base.
- POWER: Calculate value^exponent.
- RAD: Transform degrees into radians.
- RAND: Get a random number.
- ROUND: Rounds a value to the nearest integer.
- SIGN: Get the sign of a value (-1, 0, 1).
- SIN: Get the sine of a value.
- SINH: Get the hyperbolic sine of a value.
- SQRT: Calculate the square root of a value.
- TAN: Get the tangent of a value.
- TANH: Get the hyperbolic tangent of a value.
- TRUNC: Truncate the decimals off a given value.

Please refer to the DSL Javadoc for more details.

4.5.8. Bitwise functions

Interestingly, bitwise functions and bitwise arithmetic is not very popular among SQL databases. Most
databases only support a few bitwise operations, while others ship with the full set of operators. jOOQ's
API includes most bitwise operations as listed below. In order to avoid ambiguities with conditional
operators, all bitwise functions are prefixed with "bit"

- BIT_COUNT: Count the number of bits set to 1 in a number
- BIT_AND: Set only those bits that are set in two numbers
- BIT_OR: Set all bits that are set in at least one number
- BIT_NAND: Set only those bits that are set in two numbers, and inverse the result
- BIT_NOR: Set all bits that are set in at least one number, and inverse the result
- BIT_NOT: Inverse the bits in a number
- BIT_XOR: Set all bits that are set in at exactly one number
- BIT_XNOR: Set all bits that are set in at exactly one number, and inverse the result
- SHL: Shift bits to the left
- SHR: Shift bits to the right

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html

The jOOQ User Manual 4.5.9. String functions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 71 / 174

Some background about bitwise operation emulation

As stated before, not all databases support all of these bitwise operations. jOOQ emulates them
wherever this is possible. More details can be seen in this blog post:
http://blog.jooq.org/2011/10/30/the-comprehensive-sql-bitwise-operations-compatibility-list/

4.5.9. String functions

String formatting can be done efficiently in the database before returning results to your Java
application. As discussed in the chapter about SQL dialects string functions (as any function type) are
mostly emulated in your database, in case they are not natively supported.

This is a list of numeric functions supported by jOOQ's DSL:

- ASCII: Get the ASCII code of a character.
- BIT_LENGTH: Get the length of a string in bits.
- CHAR_LENGTH: Get the length of a string in characters.
- CONCAT: Concatenate several strings.
- ESCAPE: Escape a string for use with the LIKE predicate.
- LENGTH: Get the length of a string.
- LOWER: Get a string in lower case letters.
- LPAD: Pad a string on the left side.
- LTRIM: Trim a string on the left side.
- OCTET_LENGTH: Get the length of a string in octets.
- POSITION: Find a string within another string.
- REPEAT: Repeat a string a given number of times.
- REPLACE: Replace a string within another string.
- RPAD: Pad a string on the right side.
- RTRIM: Trim a string on the right side.
- SUBSTRING: Get a substring of a string.
- TRIM: Trim a string on both sides.
- UPPER: Get a string in upper case letters.

Please refer to the DSL Javadoc for more details.

Regular expressions, REGEXP, REGEXP_LIKE, etc.

Various databases have some means of searching through columns using regular expressions if the LIKE
predicate does not provide sufficient pattern matching power. While there are many different functions
and operators in the various databases, jOOQ settled for the SQL:2008 standard REGEX_LIKE operator.
Being an operator (and not a function), you should use the corresponding method on org.jooq.Field:

create.selectFrom(BOOK).where(TITLE.likeRegex("^.*SQL.*$"));

Note that the SQL standard specifies that patterns should follow the XQuery standards. In the real
world, the POSIX regular expression standard is the most used one, some use Java regular expressions,
and only a few ones use Perl regular expressions. jOOQ does not make any assumptions about
regular expression syntax. For cross-database compatibility, please read the relevant database manuals
carefully, to learn about the appropriate syntax. Please refer to the DSL Javadoc for more details.

http://blog.jooq.org/2011/10/30/the-comprehensive-sql-bitwise-operations-compatibility-list/
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html

The jOOQ User Manual 4.5.10. Date and time functions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 72 / 174

4.5.10. Date and time functions

This is a list of date and time functions supported by jOOQ's DSL:

- CURRENT_DATE: Get current date as a DATE object.
- CURRENT_TIME: Get current time as a TIME object.
- CURRENT_TIMESTAMP: Get current date as a TIMESTAMP object.
- DATE_ADD: Add a number of days or an interval to a date.
- DATE_DIFF: Get the difference in days between two dates.
- TIMESTAMP_ADD: Add a number of days or an interval to a timestamp.
- TIMESTAMP_DIFF: Get the difference as an INTERVAL DAY TO SECOND between two dates.

Intervals in jOOQ

jOOQ fills a gap opened by JDBC, which neglects an important SQL data type as defined by the SQL
standards: INTERVAL types. See the manual's section about INTERVAL data types for more details.

4.5.11. System functions

This is a list of system functions supported by jOOQ's DSL:

- CURRENT_USER: Get current user.

4.5.12. Aggregate functions

Aggregate functions work just like functions, even if they have a slightly different semantics. Here are
some example aggregate functions from the DSL:

The jOOQ User Manual 4.5.12. Aggregate functions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 73 / 174

// Every-day, SQL standard aggregate functions
AggregateFunction<Integer> count();
AggregateFunction<Integer> count(Field<?> field);
AggregateFunction<T> max (Field<T> field);
AggregateFunction<T> min (Field<T> field);
AggregateFunction<BigDecimal> sum (Field<? extends Number> field);
AggregateFunction<BigDecimal> avg (Field<? extends Number> field);

// DISTINCT keyword in aggregate functions
AggregateFunction<Integer> countDistinct(Field<?> field);
AggregateFunction<T> maxDistinct (Field<T> field);
AggregateFunction<T> minDistinct (Field<T> field);
AggregateFunction<BigDecimal> sumDistinct (Field<? extends Number> field);
AggregateFunction<BigDecimal> avgDistinct (Field<? extends Number> field);

// String aggregate functions
AggregateFunction<String> groupConcat (Field<?> field);
AggregateFunction<String> groupConcatDistinct(Field<?> field);
OrderedAggregateFunction<String> listAgg(Field<?> field);
OrderedAggregateFunction<String> listAgg(Field<?> field, String separator);

// Statistical functions
AggregateFunction<BigDecimal> median (Field<? extends Number> field);
AggregateFunction<BigDecimal> stddevPop (Field<? extends Number> field);
AggregateFunction<BigDecimal> stddevSamp(Field<? extends Number> field);
AggregateFunction<BigDecimal> varPop (Field<? extends Number> field);
AggregateFunction<BigDecimal> varSamp (Field<? extends Number> field);

// Linear regression functions
AggregateFunction<BigDecimal> regrAvgX (Field<? extends Number> y, Field<? extends Number> x);
AggregateFunction<BigDecimal> regrAvgY (Field<? extends Number> y, Field<? extends Number> x);
AggregateFunction<BigDecimal> regrCount (Field<? extends Number> y, Field<? extends Number> x);
AggregateFunction<BigDecimal> regrIntercept(Field<? extends Number> y, Field<? extends Number> x);
AggregateFunction<BigDecimal> regrR2 (Field<? extends Number> y, Field<? extends Number> x);
AggregateFunction<BigDecimal> regrSlope (Field<? extends Number> y, Field<? extends Number> x);
AggregateFunction<BigDecimal> regrSXX (Field<? extends Number> y, Field<? extends Number> x);
AggregateFunction<BigDecimal> regrSXY (Field<? extends Number> y, Field<? extends Number> x);
AggregateFunction<BigDecimal> regrSYY (Field<? extends Number> y, Field<? extends Number> x);

Here's an example, counting the number of books any author has written:

SELECT AUTHOR_ID, COUNT(*)
FROM BOOK
GROUP BY AUTHOR_ID

create.select(BOOK.AUTHOR_ID, count())
 .from(BOOK)
 .groupBy(BOOK.AUTHOR_ID);

Aggregate functions have strong limitations about when they may be used and when not. For instance,
you can use aggregate functions in scalar queries. Typically, this means you only select aggregate
functions, no regular columns or other column expressions. Another use case is to use them along with
a GROUP BY clause as seen in the previous example. Note, that jOOQ does not check whether your
using of aggregate functions is correct according to the SQL standards, or according to your database's
behaviour.

Ordered-set aggregate functions

Oracle and some other databases support "ordered-set aggregate functions". This means you can
provide an ORDER BY clause to an aggregate function, which will be taken into consideration when
aggregating. The best example for this is Oracle's LISTAGG() (also known as GROUP_CONCAT in other
SQL dialects). The following query groups by authors and concatenates their books' titles

SELECT LISTAGG(TITLE, ', ')
 WITHIN GROUP (ORDER BY TITLE)
FROM BOOK
GROUP BY AUTHOR_ID

create.select(listAgg(BOOK.TITLE, ", ")
 .withinGroupOrderBy(BOOK.TITLE))
 .from(BOOK)
 .groupBy(BOOK.AUTHOR_ID)

The above query might yield:

+---------------------+
| LISTAGG |
+---------------------+
| 1984, Animal Farm |
| O Alquimista, Brida |
+---------------------+

The jOOQ User Manual 4.5.13. Window functions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 74 / 174

FIRST and LAST: Oracle's "ranked" aggregate functions

Oracle allows for restricting aggregate functions using the KEEP() clause, which is supported by jOOQ.
In Oracle, some aggregate functions (MIN, MAX, SUM, AVG, COUNT, VARIANCE, or STDDEV) can be
restricted by this clause, hence org.jooq.AggregateFunction also allows for specifying it. Here are a
couple of examples using this clause:

SUM(BOOK.AMOUNT_SOLD)
 KEEP(DENSE_RANK FIRST ORDER BY BOOK.AUTHOR_ID)

sum(BOOK.AMOUNT_SOLD)
 .keepDenseRankFirstOrderBy(BOOK.AUTHOR_ID)

User-defined aggregate functions

jOOQ also supports using your own user-defined aggregate functions. See the manual's section about
user-defined aggregate functions for more details.

Window functions / analytical functions

In those databases that support window functions, jOOQ's org.jooq.AggregateFunction can be
transformed into a window function / analytical function by calling over() on it. See the manual's section
about window functions for more details.

4.5.13. Window functions

Most major RDBMS support the concept of window functions. jOOQ knows of implementations in DB2,
Oracle, Postgres, SQL Server, and Sybase SQL Anywhere, and supports most of their specific syntaxes.
Note, that H2 and HSQLDB have implemented ROW_NUMBER() functions, without true windowing
support.

As previously discussed, any org.jooq.AggregateFunction can be transformed into a window function
using the over() method. See the chapter about aggregate functions for details. In addition to those,
there are also some more window functions supported by jOOQ, as declared in the DSL:

// Ranking functions
 WindowOverStep<Integer> rowNumber();
 WindowOverStep<Integer> rank();
 WindowOverStep<Integer> denseRank();
 WindowOverStep<BigDecimal> percentRank();

// Windowing functions
<T> WindowIgnoreNullsStep<T> firstValue(Field<T> field);
<T> WindowIgnoreNullsStep<T> lastValue(Field<T> field)
<T> WindowIgnoreNullsStep<T> lead(Field<T> field);
<T> WindowIgnoreNullsStep<T> lead(Field<T> field, int offset);
<T> WindowIgnoreNullsStep<T> lead(Field<T> field, int offset, T defaultValue);
<T> WindowIgnoreNullsStep<T> lead(Field<T> field, int offset, Field<T> defaultValue);
<T> WindowIgnoreNullsStep<T> lag(Field<T> field);
<T> WindowIgnoreNullsStep<T> lag(Field<T> field, int offset);
<T> WindowIgnoreNullsStep<T> lag(Field<T> field, int offset, T defaultValue);
<T> WindowIgnoreNullsStep<T> lag(Field<T> field, int offset, Field<T> defaultValue);

// Statistical functions
 WindowOverStep<BigDecimal> cumeDist();
 WindowOverStep<Integer> ntile(int number);

SQL distinguishes between various window function types (e.g. "ranking functions"). Depending on the
function, SQL expects mandatory PARTITION BY or ORDER BY clauses within the OVER() clause. jOOQ
does not enforce those rules for two reasons:

http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html

The jOOQ User Manual 4.5.13. Window functions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 75 / 174

- Your JDBC driver or database already checks SQL syntax semantics
- Not all databases behave correctly according to the SQL standard

If possible, however, jOOQ tries to render missing clauses for you, if a given SQL dialect is more
restrictive.

Some examples

Here are some simple examples of window functions with jOOQ:

-- Sample uses of ROW_NUMBER()
ROW_NUMBER() OVER()
ROW_NUMBER() OVER(PARTITION BY 1)
ROW_NUMBER() OVER(ORDER BY BOOK.ID)
ROW_NUMBER() OVER(PARTITION BY BOOK.AUTHOR_ID ORDER BY BOOK.ID)

-- Sample uses of FIRST_VALUE
FIRST_VALUE(BOOK.ID) OVER()
FIRST_VALUE(BOOK.ID IGNORE NULLS) OVER()
FIRST_VALUE(BOOK.ID RESPECT NULLS) OVER()

// Sample uses of rowNumber()
rowNumber().over()
rowNumber().over().partitionByOne()
rowNumber().over().partitionBy(BOOK.AUTHOR_ID)
rowNumber().over().partitionBy(BOOK.AUTHOR_ID).orderBy(BOOK.ID)

// Sample uses of firstValue()
firstValue(BOOK.ID).over()
firstValue(BOOK.ID).ignoreNulls().over()
firstValue(BOOK.ID).respectNulls().over()

An advanced window function example

Window functions can be used for things like calculating a "running total". The following example
fetches transactions and the running total for every transaction going back to the beginning of the
transaction table (ordered by booked_at). Window functions are accessible from the previously seen
org.jooq.AggregateFunction type using the over() method:

SELECT booked_at, amount,
 SUM(amount) OVER (PARTITION BY 1
 ORDER BY booked_at
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS total
 FROM transactions

create.select(t.BOOKED_AT, t.AMOUNT,
 sum(t.AMOUNT).over().partitionByOne()
 .orderBy(t.BOOKED_AT)
 .rowsBetweenUnboundedPreceding()
 .andCurrentRow().as("total")
 .from(TRANSACTIONS.as("t"));

Window functions created from ordered-set aggregate functions

In the previous chapter about aggregate functions, we have seen the concept of "ordered-set aggregate
functions", such as Oracle's LISTAGG(). These functions have a window function / analytical function
variant, as well. For example:

SELECT LISTAGG(TITLE, ', ')
 WITHIN GROUP (ORDER BY TITLE)
 OVER (PARTITION BY BOOK.AUTHOR_ID)
FROM BOOK

create.select(listAgg(BOOK.TITLE, ", ")
 .withinGroupOrderBy(BOOK.TITLE)
 .over().partitionBy(BOOK.AUTHOR_ID))
 .from(BOOK)

Window functions created from Oracle's FIRST and LAST aggregate
functions

In the previous chapter about aggregate functions, we have seen the concept of "FIRST and LAST
aggregate functions". These functions have a window function / analytical function variant, as well. For
example:

http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html

The jOOQ User Manual 4.5.14. Grouping functions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 76 / 174

SUM(BOOK.AMOUNT_SOLD)
 KEEP(DENSE_RANK FIRST ORDER BY BOOK.AUTHOR_ID)
 OVER(PARTITION BY 1)

sum(BOOK.AMOUNT_SOLD)
 .keepDenseRankFirstOrderBy(BOOK.AUTHOR_ID)
 .over().partitionByOne()

Window functions created from user-defined aggregate functions

User-defined aggregate functions also implement org.jooq.AggregateFunction, hence they can also
be transformed into window functions using over(). This is supported by Oracle in particular. See the
manual's section about user-defined aggregate functions for more details.

4.5.14. Grouping functions

ROLLUP() explained in SQL

The SQL standard defines special functions that can be used in the GROUP BY clause: the grouping
functions. These functions can be used to generate several groupings in a single clause. This can best
be explained in SQL. Let's take ROLLUP() for instance:

-- ROLLUP() with one argument
SELECT AUTHOR_ID, COUNT(*)
FROM BOOK
GROUP BY ROLLUP(AUTHOR_ID)

-- ROLLUP() with two arguments
SELECT AUTHOR_ID, PUBLISHED_IN, COUNT(*)
FROM BOOK
GROUP BY ROLLUP(AUTHOR_ID, PUBLISHED_IN)

-- The same query using UNION ALL:
 SELECT AUTHOR_ID, COUNT(*) FROM BOOK GROUP BY (AUTHOR_ID)
UNION ALL
 SELECT NULL, COUNT(*) FROM BOOK GROUP BY ()
ORDER BY 1 NULLS LAST

-- The same query using UNION ALL:
 SELECT AUTHOR_ID, PUBLISHED_IN, COUNT(*)
 FROM BOOK GROUP BY (AUTHOR_ID, PUBLISHED_IN)
UNION ALL
 SELECT AUTHOR_ID, NULL, COUNT(*)
 FROM BOOK GROUP BY (AUTHOR_ID)
UNION ALL
 SELECT NULL, NULL, COUNT(*)
 FROM BOOK GROUP BY ()
ORDER BY 1 NULLS LAST, 2 NULLS LAST

In English, the ROLLUP() grouping function provides N+1 groupings, when N is the number of arguments
to the ROLLUP() function. Each grouping has an additional group field from the ROLLUP() argument
field list. The results of the second query might look something like this:

+-----------+--------------+----------+
| AUTHOR_ID | PUBLISHED_IN | COUNT(*) |
+-----------+--------------+----------+
| 1 | 1945 | 1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
| 1 | 1948 | 1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
| 1 | NULL | 2 | <- GROUP BY (AUTHOR_ID)
| 2 | 1988 | 1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
| 2 | 1990 | 1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
| 2 | NULL | 2 | <- GROUP BY (AUTHOR_ID)
| NULL | NULL | 4 | <- GROUP BY ()
+-----------+--------------+----------+

CUBE() explained in SQL

CUBE() is different from ROLLUP() in the way that it doesn't just create N+1 groupings, it creates all 2^N
possible combinations between all group fields in the CUBE() function argument list. Let's re-consider
our second query from before:

http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html

The jOOQ User Manual 4.5.14. Grouping functions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 77 / 174

-- CUBE() with two arguments
SELECT AUTHOR_ID, PUBLISHED_IN, COUNT(*)
FROM BOOK
GROUP BY CUBE(AUTHOR_ID, PUBLISHED_IN)

-- The same query using UNION ALL:
 SELECT AUTHOR_ID, PUBLISHED_IN, COUNT(*)
 FROM BOOK GROUP BY (AUTHOR_ID, PUBLISHED_IN)
UNION ALL
 SELECT AUTHOR_ID, NULL, COUNT(*)
 FROM BOOK GROUP BY (AUTHOR_ID)
UNION ALL
 SELECT NULL, PUBLISHED_IN, COUNT(*)
 FROM BOOK GROUP BY (PUBLISHED_IN)
UNION ALL
 SELECT NULL, NULL, COUNT(*)
 FROM BOOK GROUP BY ()
ORDER BY 1 NULLS FIRST, 2 NULLS FIRST

The results would then hold:

+-----------+--------------+----------+
| AUTHOR_ID | PUBLISHED_IN | COUNT(*) |
+-----------+--------------+----------+
| NULL | NULL | 2 | <- GROUP BY ()
| NULL | 1945 | 1 | <- GROUP BY (PUBLISHED_IN)
| NULL | 1948 | 1 | <- GROUP BY (PUBLISHED_IN)
| NULL | 1988 | 1 | <- GROUP BY (PUBLISHED_IN)
| NULL | 1990 | 1 | <- GROUP BY (PUBLISHED_IN)
| 1 | NULL | 2 | <- GROUP BY (AUTHOR_ID)
| 1 | 1945 | 1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
| 1 | 1948 | 1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
| 2 | NULL | 2 | <- GROUP BY (AUTHOR_ID)
| 2 | 1988 | 1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
| 2 | 1990 | 1 | <- GROUP BY (AUTHOR_ID, PUBLISHED_IN)
+-----------+--------------+----------+

GROUPING SETS()

GROUPING SETS() are the generalised way to create multiple groupings. From our previous examples

- ROLLUP(AUTHOR_ID, PUBLISHED_IN) corresponds to GROUPING SETS((AUTHOR_ID,
PUBLISHED_IN), (AUTHOR_ID), ())

- CUBE(AUTHOR_ID, PUBLISHED_IN) corresponds to GROUPING SETS((AUTHOR_ID,
PUBLISHED_IN), (AUTHOR_ID), (PUBLISHED_IN), ())

This is nicely explained in the SQL Server manual pages about GROUPING SETS() and other grouping
functions:
http://msdn.microsoft.com/en-us/library/bb510427(v=sql.105)

jOOQ's support for ROLLUP(), CUBE(), GROUPING SETS()

jOOQ fully supports all of these functions, as well as the utility functions GROUPING() and
GROUPING_ID(), used for identifying the grouping set ID of a record. The DSL API thus includes:

// The various grouping function constructors
GroupField rollup(Field<?>... fields);
GroupField cube(Field<?>... fields);
GroupField groupingSets(Field<?>... fields);
GroupField groupingSets(Field<?>[]... fields);
GroupField groupingSets(Collection<? extends Field<?>>... fields);

// The utility functions generating IDs per GROUPING SET
Field<Integer> grouping(Field<?>);
Field<Integer> groupingId(Field<?>...);

http://msdn.microsoft.com/en-us/library/bb510427(v=sql.105)

The jOOQ User Manual 4.5.15. User-defined functions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 78 / 174

MySQL's and CUBRID's WITH ROLLUP syntax

MySQL and CUBRID don't know any grouping functions, but they support a WITH ROLLUP clause, that
is equivalent to simple ROLLUP() grouping functions. jOOQ emulates ROLLUP() in MySQL and CUBRID,
by rendering this WITH ROLLUP clause. The following two statements mean the same:

-- Statement 1: SQL standard
GROUP BY ROLLUP(A, B, C)

-- Statement 2: SQL standard
GROUP BY A, ROLLUP(B, C)

-- Statement 1: MySQL
GROUP BY A, B, C WITH ROLLUP

-- Statement 2: MySQL
-- This is not supported in MySQL

4.5.15. User-defined functions

Some databases support user-defined functions, which can be embedded in any SQL statement, if
you're using jOOQ's code generator. Let's say you have the following simple function in Oracle SQL:

CREATE OR REPLACE FUNCTION echo (INPUT NUMBER)
RETURN NUMBER
IS
BEGIN
 RETURN INPUT;
END echo;

The above function will be made available from a generated Routines class. You can use it like any other
column expression:

SELECT echo(1) FROM DUAL WHERE echo(2) = 2 create.select(echo(1)).where(echo(2).equal(2));

Note that user-defined functions returning CURSOR or ARRAY data types can also be used wherever
table expressions can be used, if they are unnested

4.5.16. User-defined aggregate functions

Some databases support user-defined aggregate functions, which can then be used along with GROUP
BY clauses or as window functions. An example for such a database is Oracle. With Oracle, you can
define the following OBJECT type (the example was taken from the Oracle 11g documentation):

http://docs.oracle.com/cd/B28359_01/appdev.111/b28425/ext_agg_ref.htm

The jOOQ User Manual 4.5.17. The CASE expression

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 79 / 174

CREATE TYPE U_SECOND_MAX AS OBJECT
(
 MAX NUMBER, -- highest value seen so far
 SECMAX NUMBER, -- second highest value seen so far
 STATIC FUNCTION ODCIAggregateInitialize(sctx IN OUT U_SECOND_MAX) RETURN NUMBER,
 MEMBER FUNCTION ODCIAggregateIterate(self IN OUT U_SECOND_MAX, value IN NUMBER) RETURN NUMBER,
 MEMBER FUNCTION ODCIAggregateTerminate(self IN U_SECOND_MAX, returnValue OUT NUMBER, flags IN NUMBER) RETURN NUMBER,
 MEMBER FUNCTION ODCIAggregateMerge(self IN OUT U_SECOND_MAX, ctx2 IN U_SECOND_MAX) RETURN NUMBER
);

CREATE OR REPLACE TYPE BODY U_SECOND_MAX IS
STATIC FUNCTION ODCIAggregateInitialize(sctx IN OUT U_SECOND_MAX)
RETURN NUMBER IS
BEGIN
 SCTX := U_SECOND_MAX(0, 0);
 RETURN ODCIConst.Success;
END;

MEMBER FUNCTION ODCIAggregateIterate(self IN OUT U_SECOND_MAX, value IN NUMBER) RETURN NUMBER IS
BEGIN
 IF VALUE > SELF.MAX THEN
 SELF.SECMAX := SELF.MAX;
 SELF.MAX := VALUE;
 ELSIF VALUE > SELF.SECMAX THEN
 SELF.SECMAX := VALUE;
 END IF;
 RETURN ODCIConst.Success;
END;

MEMBER FUNCTION ODCIAggregateTerminate(self IN U_SECOND_MAX, returnValue OUT NUMBER, flags IN NUMBER) RETURN NUMBER IS
BEGIN
 RETURNVALUE := SELF.SECMAX;
 RETURN ODCIConst.Success;
END;

MEMBER FUNCTION ODCIAggregateMerge(self IN OUT U_SECOND_MAX, ctx2 IN U_SECOND_MAX) RETURN NUMBER IS
BEGIN
 IF CTX2.MAX > SELF.MAX THEN
 IF CTX2.SECMAX > SELF.SECMAX THEN
 SELF.SECMAX := CTX2.SECMAX;
 ELSE
 SELF.SECMAX := SELF.MAX;
 END IF;
 SELF.MAX := CTX2.MAX;
 ELSIF CTX2.MAX > SELF.SECMAX THEN
 SELF.SECMAX := CTX2.MAX;
 END IF;
 RETURN ODCIConst.Success;
END;
END;

The above OBJECT type is then available to function declarations as such:

CREATE FUNCTION SECOND_MAX (input NUMBER) RETURN NUMBER
PARALLEL_ENABLE AGGREGATE USING U_SECOND_MAX;

Using the generated aggregate function

jOOQ's code generator will detect such aggregate functions and generate them differently from regular
user-defined functions. They implement the org.jooq.AggregateFunction type, as mentioned in the
manual's section about aggregate functions. Here's how you can use the SECOND_MAX() aggregate
function with jOOQ:

-- Get the second-latest publishing date by author
SELECT SECOND_MAX(PUBLISHED_IN)
FROM BOOK
GROUP BY AUTHOR_ID

// Routines.secondMax() can be static-imported
create.select(secondMax(BOOK.PUBLISHED_IN))
 .from(BOOK)
 .groupBy(BOOK.AUTHOR_ID)

4.5.17. The CASE expression

The CASE expression is part of the standard SQL syntax. While some RDBMS also offer an IF expression,
or a DECODE function, you can always rely on the two types of CASE syntax:

http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html

The jOOQ User Manual 4.5.18. Sequences and serials

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 80 / 174

CASE WHEN AUTHOR.FIRST_NAME = 'Paulo' THEN 'brazilian'
 WHEN AUTHOR.FIRST_NAME = 'George' THEN 'english'
 ELSE 'unknown'
END

-- OR:

CASE AUTHOR.FIRST_NAME WHEN 'Paulo' THEN 'brazilian'
 WHEN 'George' THEN 'english'
 ELSE 'unknown'
END

DSL.decode()
 .when(AUTHOR.FIRST_NAME.equal("Paulo"), "brazilian")
 .when(AUTHOR.FIRST_NAME.equal("George"), "english")
 .otherwise("unknown");

// OR:

DSL.decode().value(AUTHOR.FIRST_NAME)
 .when("Paulo", "brazilian")
 .when("George", "english")
 .otherwise("unknown");

In jOOQ, both syntaxes are supported (The second one is emulated in Derby, which only knows the first
one). Unfortunately, both case and else are reserved words in Java. jOOQ chose to use decode() from
the Oracle DECODE function, and otherwise(), which means the same as else.

A CASE expression can be used anywhere where you can place a column expression (or Field). For
instance, you can SELECT the above expression, if you're selecting from AUTHOR:

SELECT AUTHOR.FIRST_NAME, [... CASE EXPR ...] AS nationality
 FROM AUTHOR

The Oracle DECODE() function

Oracle knows a more succinct, but maybe less readable DECODE() function with a variable number of
arguments. This function roughly does the same as the second case expression syntax. jOOQ supports
the DECODE() function and emulates it using CASE expressions in all dialects other than Oracle:

-- Oracle:
DECODE(FIRST_NAME, 'Paulo', 'brazilian',
 'George', 'english',
 'unknown');

-- Other SQL dialects
CASE AUTHOR.FIRST_NAME WHEN 'Paulo' THEN 'brazilian'
 WHEN 'George' THEN 'english'
 ELSE 'unknown'
END

// Use the Oracle-style DECODE() function with jOOQ.
// Note, that you will not be able to rely on type-safety
DSL.decode(AUTHOR.FIRST_NAME,
 "Paulo", "brazilian",
 "George", "english",
 "unknown");

CASE clauses in an ORDER BY clause

Sort indirection is often implemented with a CASE clause of a SELECT's ORDER BY clause. See the
manual's section about the ORDER BY clause for more details.

4.5.18. Sequences and serials

Sequences implement the org.jooq.Sequence interface, providing essentially this functionality:

// Get a field for the CURRVAL sequence property
Field<T> currval();

// Get a field for the NEXTVAL sequence property
Field<T> nextval();

So if you have a sequence like this in Oracle:

CREATE SEQUENCE s_author_id

http://www.jooq.org/javadoc/3.0.x/org/jooq/Sequence.html

The jOOQ User Manual 4.5.19. Tuples or row value expressions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 81 / 174

You can then use your generated sequence object directly in a SQL statement as such:

// Reference the sequence in a SELECT statement:
BigInteger nextID = create.select(s).fetchOne(S_AUTHOR_ID.nextval());

// Reference the sequence in an INSERT statement:
create.insertInto(AUTHOR, AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values(S_AUTHOR_ID.nextval(), val("William"), val("Shakespeare"));

- For more information about generated sequences, refer to the manual's section about
generated sequences

- For more information about executing standalone calls to sequences, refer to the manual's
section about sequence execution

4.5.19. Tuples or row value expressions

According to the SQL standard, row value expressions can have a degree of more than one. This is
commonly used in the INSERT statement, where the VALUES row value constructor allows for providing
a row value expression as a source for INSERT data. Row value expressions can appear in various other
places, though. They are supported by jOOQ as records / rows. jOOQ's DSL allows for the construction
of type-safe records up to the degree of 22. Higher-degree Rows are supported as well, but without
any type-safety. Row types are modelled as follows:

// The DSL provides overloaded row value expression constructor methods:
public static <T1> Row1<T1> row(T1 t1) { ... }
public static <T1, T2> Row2<T1, T2> row(T1 t1, T2 t2) { ... }
public static <T1, T2, T3> Row3<T1, T2, T3> row(T1 t1, T2 t2, T3 t3) { ... }
public static <T1, T2, T3, T4> Row4<T1, T2, T3, T4> row(T1 t1, T2 t2, T3 t3, T4 t4) { ... }

// [... idem for Row5, Row6, Row7, ..., Row22]

// Degrees of more than 22 are supported without type-safety
public static RowN row(Object... values) { ... }

Using row value expressions in predicates

Row value expressions are incompatible with most other QueryParts, but they can be used as a basis
for constructing various conditional expressions, such as:

- comparison predicates
- NULL predicates
- BETWEEN predicates
- IN predicates
- OVERLAPS predicate (for degree 2 row value expressions only)

See the relevant sections for more details about how to use row value expressions in predicates.

Using row value expressions in UPDATE statements

The UPDATE statement also supports a variant where row value expressions are updated, rather than
single columns. See the relevant section for more details

The jOOQ User Manual 4.6. Conditional expressions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 82 / 174

Higher-degree row value expressions

jOOQ chose to explicitly support degrees up to 22 to match Scala's typesafe tuple, function and product
support. Unlike Scala, however, jOOQ also supports higher degrees without the additional typesafety.

4.6. Conditional expressions

Conditions or conditional expressions are widely used in SQL and in the jOOQ API. They can be used in

- The CASE expression
- The JOIN clause (or JOIN .. ON clause, to be precise) of a SELECT statement, UPDATE statement,

DELETE statement
- The WHERE clause of a SELECT statement, UPDATE statement, DELETE statement
- The CONNECT BY clause of a SELECT statement
- The HAVING clause of a SELECT statement
- The MERGE statement's ON clause

Boolean types in SQL

Before SQL:1999, boolean types did not really exist in SQL. They were modelled by 0 and 1 numeric/
char values. With SQL:1999, true booleans were introduced and are now supported by most databases.
In short, these are possible boolean values:

- 1 or TRUE
- 0 or FALSE
- NULL or UNKNOWN

It is important to know that SQL differs from many other languages in the way it interprets the NULL
boolean value. Most importantly, the following facts are to be remembered:

- [ANY] = NULL yields NULL (not FALSE)
- [ANY] != NULL yields NULL (not TRUE)
- NULL = NULL yields NULL (not TRUE)
- NULL != NULL yields NULL (not FALSE)

For simplified NULL handling, please refer to the section about the DISTINCT predicate.

Note that jOOQ does not model these values as actual column expression compatible.

4.6.1. Condition building

With jOOQ, most conditional expressions are built from column expressions, calling various methods
on them. For instance, to build a comparison predicate, you can write the following expression:

The jOOQ User Manual 4.6.2. AND, OR, NOT boolean operators

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 83 / 174

TITLE = 'Animal Farm'
TITLE != 'Animal Farm'

BOOK.TITLE.equal("Animal Farm")
BOOK.TITLE.notEqual("Animal Farm")

Create conditions from the DSL

There are a few types of conditions, that can be created statically from the DSL. These are:

- plain SQL conditions, that allow you to phrase your own SQL string conditional expression
- The EXISTS predicate, a standalone predicate that creates a conditional expression
- Constant TRUE and FALSE conditional expressions

Connect conditions using boolean operators

Conditions can also be connected using boolean operators as will be discussed in a subsequent
chapter.

4.6.2. AND, OR, NOT boolean operators

In SQL, as in most other languages, conditional expressions can be connected using the AND and OR
binary operators, as well as the NOT unary operator, to form new conditional expressions. In jOOQ,
this is modelled as such:

-- A simple conditional expression
TITLE = 'Animal Farm' OR TITLE = '1984'

-- A more complex conditional expression
 (TITLE = 'Animal Farm' OR TITLE = '1984')
AND NOT (AUTHOR.LAST_NAME = 'Orwell')

// A simple boolean connection
BOOK.TITLE.equal("Animal Farm").or(BOOK.TITLE.equal("1984"))

// A more complex conditional expression
BOOK.TITLE.equal("Animal Farm").or(BOOK.TITLE.equal("1984"))
 .andNot(AUTHOR.LAST_NAME.equal("Orwell"))

The above example shows that the number of parentheses in Java can quickly explode. Proper
indentation may become crucial in making such code readable. In order to understand how jOOQ
composes combined conditional expressions, let's assign component expressions first:

Condition a = BOOK.TITLE.equal("Animal Farm");
Condition b = BOOK.TITLE.equal("1984");
Condition c = AUTHOR.LAST_NAME.equal("Orwell");

Condition combined1 = a.or(b); // These OR-connected conditions form a new condition, wrapped in parentheses
Condition combined2 = combined1.andNot(c); // The left-hand side of the AND NOT () operator is already wrapped in parentheses

The Condition API

Here are all boolean operators on the org.jooq.Condition interface:

http://www.jooq.org/javadoc/3.0.x/org/jooq/Condition.html

The jOOQ User Manual 4.6.3. Comparison predicate

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 84 / 174

and(Condition) // Combine conditions with AND
and(String) // Combine conditions with AND. Convenience for adding plain SQL to the right-hand side
and(String, Object...) // Combine conditions with AND. Convenience for adding plain SQL to the right-hand side
and(String, QueryPart...) // Combine conditions with AND. Convenience for adding plain SQL to the right-hand side
andExists(Select<?>) // Combine conditions with AND. Convenience for adding an exists predicate to the rhs
andNot(Condition) // Combine conditions with AND. Convenience for adding an inverted condition to the rhs
andNotExists(Select<?>) // Combine conditions with AND. Convenience for adding an inverted exists predicate to the rhs

or(Condition) // Combine conditions with OR
or(String) // Combine conditions with OR. Convenience for adding plain SQL to the right-hand side
or(String, Object...) // Combine conditions with OR. Convenience for adding plain SQL to the right-hand side
or(String, QueryPart...) // Combine conditions with OR. Convenience for adding plain SQL to the right-hand side
orExists(Select<?>) // Combine conditions with OR. Convenience for adding an exists predicate to the rhs
orNot(Condition) // Combine conditions with OR. Convenience for adding an inverted condition to the rhs
orNotExists(Select<?>) // Combine conditions with OR. Convenience for adding an inverted exists predicate to the rhs

not() // Invert a condition (synonym for DSL.not(Condition)

4.6.3. Comparison predicate

In SQL, comparison predicates are formed using common comparison operators:

- = to test for equality
- <> or != to test for non-equality
- > to test for being strictly greater
- >= to test for being greater or equal
- < to test for being strictly less
- <= to test for being less or equal

Unfortunately, Java does not support operator overloading, hence these operators are also
implemented as methods in jOOQ, like any other SQL syntax elements. The relevant parts of the
org.jooq.Field interface are these:

eq or equal(T); // = (some bind value)
eq or equal(Field<T>); // = (some column expression)
eq or equal(Select<? extends Record1<T>>); // = (some scalar SELECT statement)
ne or notEqual(T); // <> (some bind value)
ne or notEqual(Field<T>); // <> (some column expression)
ne or notEqual(Select<? extends Record1<T>>); // <> (some scalar SELECT statement)
lt or lessThan(T); // < (some bind value)
lt or lessThan(Field<T>); // < (some column expression)
lt or lessThan(Select<? extends Record1<T>>); // < (some scalar SELECT statement)
le or lessOrEqual(T); // <= (some bind value)
le or lessOrEqual(Field<T>); // <= (some column expression)
le or lessOrEqual(Select<? extends Record1<T>>); // <= (some scalar SELECT statement)
gt or greaterThan(T); // > (some bind value)
gt or greaterThan(Field<T>); // > (some column expression)
gt or greaterThan(Select<? extends Record1<T>>); // > (some scalar SELECT statement)
ge or greaterOrEqual(T); // >= (some bind value)
ge or greaterOrEqual(Field<T>); // >= (some column expression)
ge or greaterOrEqual(Select<? extends Record1<T>>); // >= (some scalar SELECT statement)

Note that every operator is represented by two methods. A verbose one (such as equal()) and a two-
character one (such as eq()). Both methods are the same. You may choose either one, depending on
your taste. The manual will always use the more verbose one.

jOOQ's convenience methods using comparison operators

In addition to the above, jOOQ provides a few convenience methods for common operations performed
on strings using comparison predicates:

http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html

The jOOQ User Manual 4.6.4. Comparison predicate (degree > 1)

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 85 / 174

-- case insensitivity
LOWER(TITLE) = LOWER('animal farm')
LOWER(TITLE) <> LOWER('animal farm')

// case insensitivity
BOOK.TITLE.equalIgnoreCase("animal farm")
BOOK.TITLE.notEqualIgnoreCase("animal farm")

4.6.4. Comparison predicate (degree > 1)

All variants of the comparison predicate that we've seen in the previous chapter also work for row value
expressions. If your database does not support row value expression comparison predicates, jOOQ
emulates them the way they are defined in the SQL standard:

-- Row value expressions (equal)
(A, B) = (X, Y)
(A, B, C) = (X, Y, Z)
-- greater than
(A, B) > (X, Y)

(A, B, C) > (X, Y, Z)

-- greater or equal
(A, B) >= (X, Y)

(A, B, C) >= (X, Y, Z)

-- Inverse comparisons

(A, B) <> (X, Y)
(A, B) < (X, Y)
(A, B) <= (X, Y)

-- Equivalent factored-out predicates (equal)
(A = X) AND (B = Y)
(A = X) AND (B = Y) AND (C = Z)
-- greater than
(A > X)
 OR ((A = X) AND (B > Y))
(A > X)
 OR ((A = X) AND (B > Y))
 OR ((A = X) AND (B = Y) AND (C > Z))
-- greater or equal
(A > X)
 OR ((A = X) AND (B > Y))
 OR ((A = X) AND (B = Y))
(A > X)
 OR ((A = X) AND (B > Y))
 OR ((A = X) AND (B = Y) AND (C > Z))
 OR ((A = X) AND (B = Y) AND (C = Z))
-- For simplicity, these predicates are shown in terms
-- of their negated counter parts
NOT((A, B) = (X, Y))
NOT((A, B) >= (X, Y))
NOT((A, B) > (X, Y))

jOOQ supports all of the above row value expression comparison predicates, both with column
expression lists and scalar subselects at the right-hand side:

-- With regular column expressions
(BOOK.AUTHOR_ID, BOOK.TITLE) = (1, 'Animal Farm')

-- With scalar subselects
(BOOK.AUTHOR_ID, BOOK.TITLE) = (
 SELECT PERSON.ID, 'Animal Farm'
 FROM PERSON
 WHERE PERSON.ID = 1
)

// Column expressions
row(BOOK.AUTHOR_ID, BOOK.TITLE).equal(1, "Animal Farm");

// Subselects
row(BOOK.AUTHOR_ID, BOOK.TITLE).equal(
 select(PERSON.ID, val("Animal Farm"))
 .from(PERSON)
 .where(PERSON.ID.equal(1))
);

4.6.5. Quantified comparison predicate

If the right-hand side of a comparison predicate turns out to be a non-scalar table subquery, you can
wrap that subquery in a quantifier, such as ALL, ANY, or SOME. Note that the SQL standard defines ANY
and SOME to be equivalent. jOOQ settled for the more intuitive ANY and doesn't support SOME. Here
are some examples, supported by jOOQ:

TITLE = ANY('Animal Farm', '1982')
PUBLISHED_IN > ALL(1920, 1940)

BOOK.TITLE.equal(any("Animal Farm", "1982"));
BOOK.PUBLISHED_IN.greaterThan(all(1920, 1940));

For the example, the right-hand side of the quantified comparison predicates were filled with argument
lists. But it is easy to imagine that the source of values results from a subselect.

The jOOQ User Manual 4.6.6. NULL predicate

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 86 / 174

ANY and the IN predicate

It is interesting to note that the SQL standard defines the IN predicate in terms of the ANY-quantified
predicate. The following two expressions are equivalent:

[ROW VALUE EXPRESSION] IN [IN PREDICATE VALUE] [ROW VALUE EXPRESSION] = ANY [IN PREDICATE VALUE]

Typically, the IN predicate is more readable than the quantified comparison predicate.

4.6.6. NULL predicate

In SQL, you cannot compare NULL with any value using comparison predicates, as the result would
yield NULL again, which is neither TRUE nor FALSE (see also the manual's section about conditional
expressions). In order to test a column expression for NULL, use the NULL predicate as such:

TITLE IS NULL
TITLE IS NOT NULL

BOOK.TITLE.isNull()
BOOK.TITLE.isNotNull()

4.6.7. NULL predicate (degree > 1)

The SQL NULL predicate also works well for row value expressions, although it has some subtle,
counter-intuitive features when it comes to inversing predicates with the NOT() operator! Here are some
examples:

-- Row value expressions
(A, B) IS NULL
(A, B) IS NOT NULL

-- Inverse of the above
NOT((A, B) IS NULL)
NOT((A, B) IS NOT NULL)

-- Equivalent factored-out predicates
(A IS NULL) AND (B IS NULL)
(A IS NOT NULL) AND (B IS NOT NULL)

-- Inverse
(A IS NOT NULL) OR (B IS NOT NULL)
(A IS NULL) OR (B IS NULL)

The SQL standard contains a nice truth table for the above rules:

+-----------------------+-----------+---------------+---------------+-------------------+
| Expression | R IS NULL | R IS NOT NULL | NOT R IS NULL | NOT R IS NOT NULL |
+-----------------------+-----------+---------------+---------------+-------------------+
degree 1: null	true	false	false	true
degree 1: not null	false	true	true	false
degree > 1: all null	true	false	false	true
degree > 1: some null	false	false	true	true
degree > 1: none null	false	true	true	false
+-----------------------+-----------+---------------+---------------+-------------------+

In jOOQ, you would simply use the isNull() and isNotNull() methods on row value expressions. Again,
as with the row value expression comparison predicate, the row value expression NULL predicate is
emulated by jOOQ, if your database does not natively support it:

row(BOOK.ID, BOOK.TITLE).isNull();
row(BOOK.ID, BOOK.TITLE).isNotNull();

The jOOQ User Manual 4.6.8. DISTINCT predicate

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 87 / 174

4.6.8. DISTINCT predicate

Some databases support the DISTINCT predicate, which serves as a convenient, NULL-safe comparison
predicate. With the DISTINCT predicate, the following truth table can be assumed:

- [ANY] IS DISTINCT FROM NULL yields TRUE
- [ANY] IS NOT DISTINCT FROM NULL yields FALSE
- NULL IS DISTINCT FROM NULL yields FALSE
- NULL IS NOT DISTINCT FROM NULL yields TRUE

For instance, you can compare two fields for distinctness, ignoring the fact that any of the two could be
NULL, which would lead to funny results. This is supported by jOOQ as such:

TITLE IS DISTINCT FROM SUB_TITLE
TITLE IS NOT DISTINCT FROM SUB_TITLE

BOOK.TITLE.isDistinctFrom(BOOK.SUB_TITLE)
BOOK.TITLE.isNotDistinctFrom(BOOK.SUB_TITLE)

If your database does not natively support the DISTINCT predicate, jOOQ emulates it with an equivalent
CASE expression, modelling the above truth table:

-- [A] IS DISTINCT FROM [B]
CASE WHEN [A] IS NULL AND [B] IS NULL THEN FALSE
 WHEN [A] IS NULL AND [B] IS NOT NULL THEN TRUE
 WHEN [A] IS NOT NULL AND [B] IS NULL THEN TRUE
 WHEN [A] = [B] THEN FALSE
 ELSE TRUE
END

-- [A] IS NOT DISTINCT FROM [B]
CASE WHEN [A] IS NULL AND [B] IS NULL THEN TRUE
 WHEN [A] IS NULL AND [B] IS NOT NULL THEN FALSE
 WHEN [A] IS NOT NULL AND [B] IS NULL THEN FALSE
 WHEN [A] = [B] THEN TRUE
 ELSE FALSE
END

4.6.9. BETWEEN predicate

The BETWEEN predicate can be seen as syntactic sugar for a pair of comparison predicates. According
to the SQL standard, the following two predicates are equivalent:

[A] BETWEEN [B] AND [C] [A] >= [B] AND [A] <= [C]

Note the inclusiveness of range boundaries in the definition of the BETWEEN predicate. Intuitively, this
is supported in jOOQ as such:

PUBLISHED_IN BETWEEN 1920 AND 1940
PUBLISHED_IN NOT BETWEEN 1920 AND 1940

BOOK.PUBLISHED_IN.between(1920).and(1940)
BOOK.PUBLISHED_IN.notBetween(1920).and(1940)

BETWEEN SYMMETRIC

The SQL standard defines the SYMMETRIC keyword to be used along with BETWEEN to indicate that you
do not care which bound of the range is larger than the other. A database system should simply swap
range bounds, in case the first bound is greater than the second one. jOOQ supports this keyword as
well, emulating it if necessary.

The jOOQ User Manual 4.6.10. BETWEEN predicate (degree > 1)

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 88 / 174

PUBLISHED_IN BETWEEN SYMMETRIC 1940 AND 1920
PUBLISHED_IN NOT BETWEEN SYMMETRIC 1940 AND 1920

BOOK.PUBLISHED_IN.betweenSymmetric(1940).and(1920)
BOOK.PUBLISHED_IN.notBetweenSymmetric(1940).and(1920)

The emulation is done trivially:

[A] BETWEEN SYMMETRIC [B] AND [C] ([A] BETWEEN [B] AND [C]) OR ([A] BETWEEN [C] AND [B])

4.6.10. BETWEEN predicate (degree > 1)

The SQL BETWEEN predicate also works well for row value expressions. Much like the BETWEEN
predicate for degree 1, it is defined in terms of a pair of regular comparison predicates:

[A] BETWEEN [B] AND [C]
[A] BETWEEN SYMMETRIC [B] AND [C]

 [A] >= [B] AND [A] <= [C]
([A] >= [B] AND [A] <= [C]) OR ([A] >= [C] AND [A] <= [B])

The above can be factored out according to the rules listed in the manual's section about row value
expression comparison predicates.

jOOQ supports the BETWEEN [SYMMETRIC] predicate and emulates it in all SQL dialects where
necessary. An example is given here:

row(BOOK.ID, BOOK.TITLE).between(1, "A").and(10, "Z");

4.6.11. LIKE predicate

LIKE predicates are popular for simple wildcard-enabled pattern matching. Supported wildcards in all
SQL databases are:

- _: (single-character wildcard)
- %: (multi-character wildcard)

With jOOQ, the LIKE predicate can be created from any column expression as such:

TITLE LIKE '%abc%'
TITLE NOT LIKE '%abc%'

BOOK.TITLE.like("%abc%")
BOOK.TITLE.notLike("%abc%")

Escaping operands with the LIKE predicate

Often, your pattern may contain any of the wildcard characters "_" and "%", in case of which you may
want to escape them. jOOQ does not automatically escape patterns in like() and notLike() methods.
Instead, you can explicitly define an escape character as such:

TITLE LIKE '%The !%-Sign Book%' ESCAPE '!'
TITLE NOT LIKE '%The !%-Sign Book%' ESCAPE '!'

BOOK.TITLE.like("%The !%-Sign Book%", '!')
BOOK.TITLE.notLike("%The !%-Sign Book%", '!')

The jOOQ User Manual 4.6.12. IN predicate

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 89 / 174

In the above predicate expressions, the exclamation mark character is passed as the escape character
to escape wildcard characters "!_" and "!%", as well as to escape the escape character itself: "!!"

Please refer to your database manual for more details about escaping patterns with the LIKE predicate.

jOOQ's convenience methods using the LIKE predicate

In addition to the above, jOOQ provides a few convenience methods for common operations performed
on strings using the LIKE predicate. Typical operations are "contains predicates", "starts with predicates",
"ends with predicates", etc. Here is the full convenience API wrapping LIKE predicates:

-- case insensitivity
LOWER(TITLE) LIKE LOWER('%abc%')
LOWER(TITLE) NOT LIKE LOWER('%abc%')

-- contains and similar methods
TITLE LIKE '%' || 'abc' || '%'
TITLE LIKE 'abc' || '%'
TITLE LIKE '%' || 'abc'

// case insensitivity
BOOK.TITLE.likeIgnoreCase("%abc%")
BOOK.TITLE.notLikeIgnoreCase("%abc%")

// contains and similar methods
BOOK.TITLE.contains("abc")
BOOK.TITLE.startsWith("abc")
BOOK.TITLE.endsWith("abc")

Note, that jOOQ escapes % and _ characters in value in some of the above predicate implementations.
For simplicity, this has been omitted in this manual.

4.6.12. IN predicate

In SQL, apart from comparing a value against several values, the IN predicate can be used to create
semi-joins or anti-joins. jOOQ knows the following methods on the org.jooq.Field interface, to construct
such IN predicates:

in(Collection<T>) // Construct an IN predicate from a collection of bind values
in(T...) // Construct an IN predicate from bind values
in(Field<?>...) // Construct an IN predicate from column expressions
in(Select<? extends Record1<T>>) // Construct an IN predicate from a subselect
notIn(Collection<T>) // Construct a NOT IN predicate from a collection of bind values
notIn(T...) // Construct a NOT IN predicate from bind values
notIn(Field<?>...) // Construct a NOT IN predicate from column expressions
notIn(Select<? extends Record1<T>>) // Construct a NOT IN predicate from a subselect

A sample IN predicate might look like this:

TITLE IN ('Animal Farm', '1984')
TITLE NOT IN ('Animal Farm', '1984')

BOOK.TITLE.in("Animal Farm", "1984")
BOOK.TITLE.notIn("Animal Farm", "1984")

NOT IN and NULL values

Beware that you should probably not have any NULL values in the right hand side of a NOT IN predicate,
as the whole expression would evaluate to NULL, which is rarely desired. This can be shown informally
using the following reasoning:

-- The following conditional expressions are formally or informally equivalent
A NOT IN (B, C)
A != ANY(B, C)
A != B AND A != C

-- Substitute C for NULL, you'll get
A NOT IN (B, NULL) -- Substitute C for NULL
A != B AND A != NULL -- From the above rules
A != B AND NULL -- [ANY] != NULL yields NULL
NULL -- [ANY] AND NULL yields NULL

http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html

The jOOQ User Manual 4.6.13. IN predicate (degree > 1)

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 90 / 174

A good way to prevent this from happening is to use the EXISTS predicate for anti-joins, which is NULL-
value insensitive. See the manual's section about conditional expressions to see a boolean truth table.

4.6.13. IN predicate (degree > 1)

The SQL IN predicate also works well for row value expressions. Much like the IN predicate for degree
1, it is defined in terms of a quantified comparison predicate. The two expressions are equivalent:

R IN [IN predicate value] R = ANY [IN predicate value]

jOOQ supports the IN predicate. Emulation of the IN predicate where row value expressions aren't well
supported is currently only available for IN predicates that do not take a subselect as an IN predicate
value. An example is given here:

row(BOOK.ID, BOOK.TITLE).in(row(1, "A"), row(2, "B"));

4.6.14. EXISTS predicate

Slightly less intuitive, yet more powerful than the previously discussed IN predicate is the EXISTS
predicate, that can be used to form semi-joins or anti-joins. With jOOQ, the EXISTS predicate can be
formed in various ways:

- From the DSL, using static methods. This is probably the most used case
- From a conditional expression using convenience methods attached to boolean operators
- From a SELECT statement using convenience methods attached to the where clause, and from

other clauses

An example of an EXISTS predicate can be seen here:

 EXISTS (SELECT 1 FROM BOOK
 WHERE AUTHOR_ID = 3)
NOT EXISTS (SELECT 1 FROM BOOK
 WHERE AUTHOR_ID = 3)

 exists(create.selectOne().from(BOOK)
 .where(BOOK.AUTHOR_ID.equal(3)));
notExists(create.selectOne().from(BOOK)
 .where(BOOK.AUTHOR_ID.equal(3)));

Note that in SQL, the projection of a subselect in an EXISTS predicate is irrelevant. To help you write
queries like the above, you can use jOOQ's selectZero() or selectOne() DSL methods

Performance of IN vs. EXISTS

In theory, the two types of predicates can perform equally well. If your database system ships with
a sophisticated cost-based optimiser, it will be able to transform one predicate into the other, if you
have all necessary constraints set (e.g. referential constraints, not null constraints). However, in reality,
performance between the two might differ substantially. An interesting blog post investigating this topic
on the MySQL database can be seen here:
http://blog.jooq.org/2012/07/27/not-in-vs-not-exists-vs-left-join-is-null-mysql/

http://blog.jooq.org/2012/07/27/not-in-vs-not-exists-vs-left-join-is-null-mysql/

The jOOQ User Manual 4.6.15. OVERLAPS predicate

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 91 / 174

4.6.15. OVERLAPS predicate

When comparing dates, the SQL standard allows for using a special OVERLAPS predicate, which checks
whether two date ranges overlap each other. The following can be said:

-- This yields true
(DATE '2010-01-01', DATE '2010-01-03') OVERLAPS (DATE '2010-01-02' DATE '2010-01-04')

-- INTERVAL data types are also supported. This is equivalent to the above
(DATE '2010-01-01', CAST('+2 00:00:00' AS INTERVAL DAY TO SECOND)) OVERLAPS
(DATE '2010-01-02', CAST('+2 00:00:00' AS INTERVAL DAY TO SECOND))

The OVERLAPS predicate in jOOQ

jOOQ supports the OVERLAPS predicate on row value expressions of degree 2. The following methods
are contained in org.jooq.Row2:

Condition overlaps(T1 t1, T2 t2);
Condition overlaps(Field<T1> t1, Field<T2> t2);
Condition overlaps(Row2<T1, T2> row);

This allows for expressing the above predicates as such:

// The date range tuples version
row(Date.valueOf('2010-01-01'), Date.valueOf('2010-01-03')).overlaps(Date.valueOf('2010-01-02'), Date.valueOf('2010-01-04'))

// The INTERVAL tuples version
row(Date.valueOf('2010-01-01'), new DayToSecond(2)).overlaps(Date.valueOf('2010-01-02'), new DayToSecond(2))

jOOQ's extensions to the standard

Unlike the standard (or any database implementing the standard), jOOQ also supports the OVERLAPS
predicate for comparing arbitrary row vlaue expressions of degree 2. For instance, (1, 3) OVERLAPS (2,
4) will yield true in jOOQ. This is emulated as such

-- This predicate
(A, B) OVERLAPS (C, D)

-- can be emulated as such
(C <= B) AND (A <= D)

4.7. Plain SQL

A DSL is a nice thing to have, it feels "fluent" and "natural", especially if it models a well-known language,
such as SQL. But a DSL is always expressed in a host language (Java in this case), which was not made
for exactly the same purposes as its hosted DSL. If it were, then jOOQ would be implemented on a
compiler-level, similar to LINQ in .NET. But it's not, and so, the DSL is limited by language constraints
of its host language. We have seen many functionalities where the DSL becomes a bit verbose. This
can be especially true for:

http://www.jooq.org/javadoc/3.0.x/org/jooq/Row2.html

The jOOQ User Manual 4.7. Plain SQL

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 92 / 174

- aliasing
- nested selects
- arithmetic expressions
- casting

You'll probably find other examples. If verbosity scares you off, don't worry. The verbose use-cases for
jOOQ are rather rare, and when they come up, you do have an option. Just write SQL the way you're
used to!

jOOQ allows you to embed SQL as a String into any supported statement in these contexts:

- Plain SQL as a conditional expression
- Plain SQL as a column expression
- Plain SQL as a function
- Plain SQL as a table expression
- Plain SQL as a query

The DSL plain SQL API

Plain SQL API methods are usually overloaded in three ways. Let's look at the condition query part
constructor:

// Construct a condition without bind values
// Example: condition("a = b")
Condition condition(String sql);

// Construct a condition with bind values
// Example: condition("a = ?", 1);
Condition condition(String sql, Object... bindings);

// Construct a condition taking other jOOQ object arguments
// Example: condition("a = {0}", val(1));
Condition condition(String sql, QueryPart... parts);

Please refer to the org.jooq.impl.DSL Javadoc for more details. The following is a more complete listing
of plain SQL construction methods from the DSL:

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html

The jOOQ User Manual 4.7. Plain SQL

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 93 / 174

// A condition
Condition condition(String sql);
Condition condition(String sql, Object... bindings);
Condition condition(String sql, QueryPart... parts);

// A field with an unknown data type
Field<Object> field(String sql);
Field<Object> field(String sql, Object... bindings);
Field<Object> field(String sql, QueryPart... parts);

// A field with a known data type
<T> Field<T> field(String sql, Class<T> type);
<T> Field<T> field(String sql, Class<T> type, Object... bindings);
<T> Field<T> field(String sql, Class<T> type, QueryPart... parts);
<T> Field<T> field(String sql, DataType<T> type);
<T> Field<T> field(String sql, DataType<T> type, Object... bindings);
<T> Field<T> field(String sql, DataType<T> type, QueryPart... parts);

// A field with a known name (properly escaped)
Field<Object> fieldByName(String... fieldName);
<T> Field<T> fieldByName(Class<T> type, String... fieldName);
<T> Field<T> fieldByName(DataType<T> type, String... fieldName)

// A function
<T> Field<T> function(String name, Class<T> type, Field<?>... arguments);
<T> Field<T> function(String name, DataType<T> type, Field<?>... arguments);

// A table
Table<?> table(String sql);
Table<?> table(String sql, Object... bindings);
Table<?> table(String sql, QueryPart... parts);

// A table with a known name (properly escaped)
Table<Record> tableByName(String... fieldName);

// A query without results (update, insert, etc)
Query query(String sql);
Query query(String sql, Object... bindings);
Query query(String sql, QueryPart... parts);

// A query with results
ResultQuery<Record> resultQuery(String sql);
ResultQuery<Record> resultQuery(String sql, Object... bindings);
ResultQuery<Record> resultQuery(String sql, QueryPart... parts);

// A query with results. This is the same as resultQuery(...).fetch();
Result<Record> fetch(String sql);
Result<Record> fetch(String sql, Object... bindings);
Result<Record> fetch(String sql, QueryPart... parts);

Apart from the general factory methods, plain SQL is also available in various other contexts. For
instance, when adding a .where("a = b") clause to a query. Hence, there exist several convenience
methods where plain SQL can be inserted usefully. This is an example displaying all various use-cases
in one single query:

// You can use your table aliases in plain SQL fields
// As long as that will produce syntactically correct SQL
Field<?> LAST_NAME = create.field("a.LAST_NAME");

// You can alias your plain SQL fields
Field<?> COUNT1 = create.field("count(*) x");

// If you know a reasonable Java type for your field, you
// can also provide jOOQ with that type
Field<Integer> COUNT2 = create.field("count(*) y", Integer.class);

 // Use plain SQL as select fields
create.select(LAST_NAME, COUNT1, COUNT2)

 // Use plain SQL as aliased tables (be aware of syntax!)
 .from("author a")
 .join("book b")

 // Use plain SQL for conditions both in JOIN and WHERE clauses
 .on("a.id = b.author_id")

 // Bind a variable in plain SQL
 .where("b.title != ?", "Brida")

 // Use plain SQL again as fields in GROUP BY and ORDER BY clauses
 .groupBy(LAST_NAME)
 .orderBy(LAST_NAME);

Important things to note about plain SQL!

There are some important things to keep in mind when using plain SQL:

The jOOQ User Manual 4.8. Bind values and parameters

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 94 / 174

- jOOQ doesn't know what you're doing. You're on your own again!
- You have to provide something that will be syntactically correct. If it's not, then jOOQ won't know.

Only your JDBC driver or your RDBMS will detect the syntax error.
- You have to provide consistency when you use variable binding. The number of ? must match

the number of variables
- Your SQL is inserted into jOOQ queries without further checks. Hence, jOOQ can't prevent SQL

injection.

4.8. Bind values and parameters

Bind values are used in SQL / JDBC for various reasons. Among the most obvious ones are:

- Protection against SQL injection. Instead of inlining values possibly originating from user input,
you bind those values to your prepared statement and let the JDBC driver / database take care
of handling security aspects.

- Increased speed. Advanced databases such as Oracle can keep execution plans of similar
queries in a dedicated cache to prevent hard-parsing your query again and again. In many cases,
the actual value of a bind variable does not influence the execution plan, hence it can be reused.
Preparing a statement will thus be faster

- On a JDBC level, you can also reuse the SQL string and prepared statement object instead of
constructing it again, as you can bind new values to the prepared statement. jOOQ currently
does not cache prepared statements, internally.

The following sections explain how you can introduce bind values in jOOQ, and how you can control
the way they are rendered and bound to SQL.

4.8.1. Indexed parameters

JDBC only knows indexed bind values. A typical example for using bind values with JDBC is this:

try (PreparedStatement stmt = connection.prepareStatement("SELECT * FROM BOOK WHERE ID = ? AND TITLE = ?")) {

 // bind values to the above statement for appropriate indexes
 stmt.setInt(1, 5);
 stmt.setString(2, "Animal Farm");
 stmt.executeQuery();
}

With dynamic SQL, keeping track of the number of question marks and their corresponding index may
turn out to be hard. jOOQ abstracts this and lets you provide the bind value right where it is needed.
A trivial example is this:

create.select().from(BOOK).where(BOOK.ID.equal(5)).and(BOOK.TITLE.equal("Animal Farm"));

// This notation is in fact a short form for the equivalent:
create.select().from(BOOK).where(BOOK.ID.equal(val(5))).and(BOOK.TITLE.equal(val("Animal Farm")));

Note the using of DSL.val() to explicitly create an indexed bind value. You don't have to worry about that
index. When the query is rendered, each bind value will render a question mark. When the query binds
its variables, each bind value will generate the appropriate bind value index.

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html#val(java.lang.Object)

The jOOQ User Manual 4.8.2. Named parameters

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 95 / 174

Extract bind values from a query

Should you decide to run the above query outside of jOOQ, using your own java.sql.PreparedStatement,
you can do so as follows:

Select<?> select = create.select().from(BOOK).where(BOOK.ID.equal(5)).and(BOOK.TITLE.equal("Animal Farm"));

// Render the SQL statement:
String sql = select.getSQL();
assertEquals("SELECT * FROM BOOK WHERE ID = ? AND TITLE = ?", sql);

// Get the bind values:
List<Object> values = select.getBindValues();
assertEquals(2, values.size());
assertEquals(5, values.get(0));
assertEquals("Animal Farm", values.get(1));

You can also extract specific bind values by index from a query, if you wish to modify their underlying
value after creating a query. This can be achieved as such:

Select<?> select = create.select().from(BOOK).where(BOOK.ID.equal(5)).and(BOOK.TITLE.equal("Animal Farm"));
Param<?> param = select.getParam("2");

// You could now modify the Query's underlying bind value:
if ("Animal Farm".equals(param.getValue())) {
 param.setConverted("1984");
}

For more details about jOOQ's internals, see the manual's section about QueryParts.

4.8.2. Named parameters

Some SQL access abstractions that are built on top of JDBC, or some that bypass JDBC may support
named parameters. jOOQ allows you to give names to your parameters as well, although those names
are not rendered to SQL strings by default. Here is an example of how to create named parameters
using the org.jooq.Param type:

// Create a query with a named parameter. You can then use that name for accessing the parameter again
Query query1 = create.select().from(AUTHOR).where(LAST_NAME.equal(param("lastName", "Poe")));
Param<?> param1 = query.getParam("lastName");

// Or, keep a reference to the typed parameter in order not to lose the <T> type information:
Param<String> param2 = param("lastName", "Poe");
Query query2 = create.select().from(AUTHOR).where(LAST_NAME.equal(param2));

// You can now change the bind value directly on the Param reference:
param2.setValue("Orwell");

The org.jooq.Query interface also allows for setting new bind values directly, without accessing the
Param type:

Query query1 = create.select().from(AUTHOR).where(LAST_NAME.equal("Poe"));
query1.bind(1, "Orwell");

// Or, with named parameters
Query query2 = create.select().from(AUTHOR).where(LAST_NAME.equal(param("lastName", "Poe")));
query2.bind("lastName", "Orwell");

In order to actually render named parameter names in generated SQL, use the
DSLContext.renderNamedParams() method:

http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Param.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Query.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/DSLContext.html#renderNamedParams(org.jooq.QueryPart)

The jOOQ User Manual 4.8.3. Inlined parameters

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 96 / 174

create.renderNamedParams(
 create.select()
 .from(AUTHOR)
 .where(LAST_NAME.equal(
 param("lastName", "Poe"))));

-- The named bind variable can be rendered

SELECT *
FROM AUTHOR
WHERE LAST_NAME = :lastName

4.8.3. Inlined parameters

Sometimes, you may wish to avoid rendering bind variables while still using custom values in SQL. jOOQ
refers to that as "inlined" bind values. When bind values are inlined, they render the actual value in SQL
rather than a JDBC question mark. Bind value inlining can be achieved in two ways:

- By using the Settings and setting the org.jooq.conf.StatementType to STATIC_STATEMENT. This
will inline all bind values for SQL statements rendered from such a Configuration.

- By using DSL.inline() methods.

In both cases, your inlined bind values will be properly escaped to avoid SQL syntax errors and SQL
injection. Some examples:

// Use dedicated calls to inline() in order to specify
// single bind values to be rendered as inline values
// --
create.select()
 .from(AUTHOR)
 .where(LAST_NAME.equal(inline("Poe")));

// Or render the whole query with inlined values
// --
Settings settings = new Settings()
 .withStatementType(StatementType.STATIC_STATEMENT);

// Add the settings to the Configuration
DSLContext create = DSL.using(connection, SQLDialect.ORACLE, settings);

// Run queries that omit rendering schema names
create.select()
 .from(AUTHOR)
 .where(LAST_NAME.equal("Poe"));

4.8.4. SQL injection and plain SQL QueryParts

Special care needs to be taken when using plain SQL QueryParts. While jOOQ's API allows you to specify
bind values for use with plain SQL, you're not forced to do that. For instance, both of the following
queries will lead to the same, valid result:

// This query will use bind values, internally.
create.fetch("SELECT * FROM BOOK WHERE ID = ? AND TITLE = ?", 5, "Animal Farm");

// This query will not use bind values, internally.
create.fetch("SELECT * FROM BOOK WHERE ID = 5 AND TITLE = 'Animal Farm'");

All methods in the jOOQ API that allow for plain (unescaped, untreated) SQL contain a warning message
in their relevant Javadoc, to remind you of the risk of SQL injection in what is otherwise a SQL-injection-
safe API.

http://www.jooq.org/javadoc/3.0.x/org/jooq/conf/StatementType.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html#inline(java.lang.Object)

The jOOQ User Manual 4.9. QueryParts

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 97 / 174

4.9. QueryParts

A org.jooq.Query and all its contained objects is a org.jooq.QueryPart. QueryParts essentially provide
this functionality:

- they can render SQL using the toSQL(RenderContext) method
- they can bind variables using the bind(BindContext) method

Both of these methods are contained in jOOQ's internal API's org.jooq.QueryPartInternal, which is
internally implemented by every QueryPart.

The following sections explain some more details about SQL rendering and variable binding, as well as
other implementation details about QueryParts in general.

4.9.1. SQL rendering

Every org.jooq.QueryPart must implement the toSQL(RenderContext) method to render its SQL string
to a org.jooq.RenderContext. This RenderContext has two purposes:

- It provides some information about the "state" of SQL rendering.
- It provides a common API for constructing SQL strings on the context's internal

java.lang.StringBuilder

An overview of the org.jooq.RenderContext API is given here:

// These methods are useful for generating unique aliases within a RenderContext (and thus within a Query)
String peekAlias();
String nextAlias();

// These methods return rendered SQL
String render();
String render(QueryPart part);

// These methods allow for fluent appending of SQL to the RenderContext's internal StringBuilder
RenderContext keyword(String keyword);
RenderContext literal(String literal);
RenderContext sql(String sql);
RenderContext sql(char sql);
RenderContext sql(int sql);
RenderContext sql(QueryPart part);

// These methods allow for controlling formatting of SQL, if the relevant Setting is active
RenderContext formatNewLine();
RenderContext formatSeparator();
RenderContext formatIndentStart();
RenderContext formatIndentStart(int indent);
RenderContext formatIndentLockStart();
RenderContext formatIndentEnd();
RenderContext formatIndentEnd(int indent);
RenderContext formatIndentLockEnd();

// These methods control the RenderContext's internal state
boolean inline();
RenderContext inline(boolean inline);
boolean qualify();
RenderContext qualify(boolean qualify);
boolean namedParams();
RenderContext namedParams(boolean renderNamedParams);
CastMode castMode();
RenderContext castMode(CastMode mode);
Boolean cast();
RenderContext castModeSome(SQLDialect... dialects);

http://www.jooq.org/javadoc/3.0.x/org/jooq/Query.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPart.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPartInternal.html#toSQL(org.jooq.RenderContext)
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPartInternal.html#bind(org.jooq.BindContext)
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPartInternal.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPart.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPartInternal.html#toSQL(org.jooq.RenderContext)
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html
http://download.oracle.com/javase/8/docs/apijava/lang/StringBuilder.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html

The jOOQ User Manual 4.9.2. Pretty printing SQL

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 98 / 174

The following additional methods are inherited from a common org.jooq.Context, which is shared
among org.jooq.RenderContext and org.jooq.BindContext:

// These methods indicate whether fields or tables are being declared (MY_TABLE AS MY_ALIAS) or referenced (MY_ALIAS)
boolean declareFields();
Context declareFields(boolean declareFields);
boolean declareTables();
Context declareTables(boolean declareTables);

// These methods indicate whether a top-level query is being rendered, or a subquery
boolean subquery();
Context subquery(boolean subquery);

// These methods provide the bind value indices within the scope of the whole Context (and thus of the whole Query)
int nextIndex();
int peekIndex();

An example of rendering SQL

A simple example can be provided by checking out jOOQ's internal representation of a (simplified)
CompareCondition. It is used for any org.jooq.Condition comparing two fields as for example the
AUTHOR.ID = BOOK.AUTHOR_ID condition here:

-- [...]
FROM AUTHOR
JOIN BOOK ON AUTHOR.ID = BOOK.AUTHOR_ID
-- [...]

This is how jOOQ renders such a condition (simplified example):

@Override
public final void toSQL(RenderContext context) {
 // The CompareCondition delegates rendering of the Fields to the Fields
 // themselves and connects them using the Condition's comparator operator:
 context.sql(field1)
 .sql(" ")
 .sql(comparator.toSQL())
 .sql(" ")
 .sql(field2);
}

See the manual's sections about custom QueryParts and plain SQL QueryParts to learn about how to
write your own query parts in order to extend jOOQ.

4.9.2. Pretty printing SQL

As mentioned in the previous chapter about SQL rendering, there are some elements in the
org.jooq.RenderContext that are used for formatting / pretty-printing rendered SQL. In order to obtain
pretty-printed SQL, just use the following custom settings:

// Create a DSLContext that will render "formatted" SQL
DSLContext pretty = DSL.using(dialect, new Settings().withRenderFormatted(true));

And then, use the above DSLContext to render pretty-printed SQL:

String sql = pretty.select(
 AUTHOR.LAST_NAME, count().as("c"))
 .from(BOOK)
 .join(AUTHOR)
 .on(BOOK.AUTHOR_ID.equal(AUTHOR.ID))
 .where(BOOK.TITLE.notEqual("1984"))
 .groupBy(AUTHOR.LAST_NAME)
 .having(count().equal(2))
 .getSQL();

select
 "TEST"."AUTHOR"."LAST_NAME",
 count(*) "c"
from "TEST"."BOOK"
 join "TEST"."AUTHOR"
 on "TEST"."BOOK"."AUTHOR_ID" = "TEST"."AUTHOR"."ID"
where "TEST"."BOOK"."TITLE" <> '1984'
group by "TEST"."AUTHOR"."LAST_NAME"
having count(*) = 2

http://www.jooq.org/javadoc/3.0.x/org/jooq/Context.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/BindContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Condition.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html

The jOOQ User Manual 4.9.3. Variable binding

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 99 / 174

The section about ExecuteListeners shows an example of how such pretty printing can be used to log
readable SQL to the stdout.

4.9.3. Variable binding

Every org.jooq.QueryPart must implement the bind(BindContext) method. This BindContext has two
purposes:

- It provides some information about the "state" of the variable binding in process.
- It provides a common API for binding values to the context's internal java.sql.PreparedStatement

An overview of the org.jooq.RenderContext API is given here:

// This method provides access to the PreparedStatement to which bind values are bound
PreparedStatement statement();

// These methods provide convenience to delegate variable binding
BindContext bind(QueryPart part) throws DataAccessException;
BindContext bind(Collection<? extends QueryPart> parts) throws DataAccessException;
BindContext bind(QueryPart[] parts) throws DataAccessException;

// These methods perform the actual variable binding
BindContext bindValue(Object value, Class<?> type) throws DataAccessException;
BindContext bindValues(Object... values) throws DataAccessException;

Some additional methods are inherited from a common org.jooq.Context, which is shared among
org.jooq.RenderContext and org.jooq.BindContext. Details are documented in the previous chapter
about SQL rendering

An example of binding values to SQL

A simple example can be provided by checking out jOOQ's internal representation of a (simplified)
CompareCondition. It is used for any org.jooq.Condition comparing two fields as for example the
AUTHOR.ID = BOOK.AUTHOR_ID condition here:

-- [...]
WHERE AUTHOR.ID = ?
-- [...]

This is how jOOQ binds values on such a condition:

@Override
public final void bind(BindContext context) throws DataAccessException {
 // The CompareCondition itself does not bind any variables.
 // But the two fields involved in the condition might do so...
 context.bind(field1).bind(field2);
}

See the manual's sections about custom QueryParts and plain SQL QueryParts to learn about how to
write your own query parts in order to extend jOOQ.

4.9.4. Extend jOOQ with custom types

If a SQL clause is too complex to express with jOOQ, you can extend either one of the following types
for use directly in a jOOQ query:

http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPart.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPartInternal.html#bind(org.jooq.BindContext)
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Context.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/BindContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Condition.html

The jOOQ User Manual 4.9.5. Plain SQL QueryParts

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 100 / 174

public abstract class CustomField<T> extends AbstractField<T> {}
public abstract class CustomCondition extends AbstractCondition {}
public abstract class CustomTable<R extends TableRecord<R>> extends TableImpl<R> {}
public abstract class CustomRecord<R extends TableRecord<R>> extends TableRecordImpl<R> {}

These classes are declared public and covered by jOOQ's integration tests. When you extend these
classes, you will have to provide your own implementations for the QueryParts' toSQL() and bind()
methods, as discussed before:

// This method must produce valid SQL. If your QueryPart contains other parts, you may delegate SQL generation to them
// in the correct order, passing the render context.
//
// If context.inline() is true, you must inline all bind variables
// If context.inline() is false, you must generate ? for your bind variables
public void toSQL(RenderContext context);

// This method must bind all bind variables to a PreparedStatement. If your QueryPart contains other QueryParts, $
// you may delegate variable binding to them in the correct order, passing the bind context.
//
// Every QueryPart must ensure, that it starts binding its variables at context.nextIndex().
public void bind(BindContext context) throws DataAccessException;

The above contract may be a bit tricky to understand at first. The best thing is to check out jOOQ
source code and have a look at a couple of QueryParts, to see how it's done. Here's an example
org.jooq.impl.CustomField showing how to create a field multiplying another field by 2

// Create an anonymous CustomField, initialised with BOOK.ID arguments
final Field<Integer> IDx2 = new CustomField<Integer>(BOOK.ID.getName(), BOOK.ID.getDataType()) {
 @Override
 public void toSQL(RenderContext context) {

 // In inline mode, render the multiplication directly
 if (context.inline()) {
 context.sql(BOOK.ID).sql(" * 2");
 }

 // In non-inline mode, render a bind value
 else {
 context.sql(BOOK.ID).sql(" * ?");
 }
 }

 @Override
 public void bind(BindContext context) {
 try {

 // Manually bind the value 2
 context.statement().setInt(context.nextIndex(), 2);

 // Alternatively, you could also write:
 // context.bind(DSL.val(2));
 }
 catch (SQLException e) {
 throw new DataAccessException("Bind error", e);
 }
 }
};

// Use the above field in a SQL statement:
create.select(IDx2).from(BOOK);

4.9.5. Plain SQL QueryParts

If you don't need the integration of rather complex QueryParts into jOOQ, then you might be safer using
simple Plain SQL functionality, where you can provide jOOQ with a simple String representation of your
embedded SQL. Plain SQL methods in jOOQ's API come in two flavours.

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/CustomField.html

The jOOQ User Manual 4.9.6. Serializability

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 101 / 174

- method(String, Object...): This is a method that accepts a SQL string and a list of bind values that
are to be bound to the variables contained in the SQL string

- method(String, QueryPart...): This is a method that accepts a SQL string and a list of QueryParts
that are "injected" at the position of their respective placeholders in the SQL string

The above distinction is best explained using an example:

// Plain SQL using bind values. The value 5 is bound to the first variable, "Animal Farm" to the second variable:
create.selectFrom(BOOK).where("BOOK.ID = ? AND TITLE = ?", 5, "Animal Farm");

// Plain SQL using placeholders (counting from zero).
// The QueryPart "id" is substituted for the placeholder {0}, the QueryPart "title" for {1}
Field<Integer> id = val(5);
Field<String> title = val("Animal Farm");
create.selectFrom(BOOK).where("BOOK.ID = {0} AND TITLE = {1}", id, title);

The above technique allows for creating rather complex SQL clauses that are currently not supported
by jOOQ, without extending any of the custom QueryParts as indicated in the previous chapter.

4.9.6. Serializability

The only transient, non-serializable element in any jOOQ object is the Configuration's underlying
java.sql.Connection. When you want to execute queries after de-serialisation, or when you want to
store/refresh/delete Updatable Records, you may have to "re-attach" them to a Configuration

// Deserialise a SELECT statement
ObjectInputStream in = new ObjectInputStream(...);
Select<?> select = (Select<?>) in.readObject();

// This will throw a DetachedException:
select.execute();

// In order to execute the above select, attach it first
DSLContext create = DSL.using(connection, SQLDialect.ORACLE);
create.attach(select);

Automatically attaching QueryParts

Another way of attaching QueryParts automatically, or rather providing them with a new
java.sql.Connection at will, is to hook into the Execute Listener support. More details about this can be
found in the manual's chapter about ExecuteListeners

4.10. SQL building in Scala

jOOQ-Scala is a maven module used for leveraging some advanced Scala features for those users that
wish to use jOOQ with Scala.

Using Scala's implicit defs to allow for operator overloading

The most obvious Scala feature to use in jOOQ are implicit defs for implicit conversions in order to
enhance the org.jooq.Field type with SQL-esque operators.

The following depicts a trait which wraps all fields:

http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html

The jOOQ User Manual 4.10. SQL building in Scala

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 102 / 174

/**
 * A Scala-esque representation of {@link org.jooq.Field}, adding overloaded
 * operators for common jOOQ operations to arbitrary fields
 */
trait SAnyField[T] extends Field[T] {

 // String operations
 // -----------------

 def ||(value : String) : Field[String]
 def ||(value : Field[_]) : Field[String]

 // Comparison predicates
 // ---------------------

 def ===(value : T) : Condition
 def ===(value : Field[T]) : Condition

 def !==(value : T) : Condition
 def !==(value : Field[T]) : Condition

 def <>(value : T) : Condition
 def <>(value : Field[T]) : Condition

 def >(value : T) : Condition
 def >(value : Field[T]) : Condition

 def >=(value : T) : Condition
 def >=(value : Field[T]) : Condition

 def <(value : T) : Condition
 def <(value : Field[T]) : Condition

 def <=(value : T) : Condition
 def <=(value : Field[T]) : Condition

 def <=>(value : T) : Condition
 def <=>(value : Field[T]) : Condition
}

The following depicts a trait which wraps numeric fields:

/**
 * A Scala-esque representation of {@link org.jooq.Field}, adding overloaded
 * operators for common jOOQ operations to numeric fields
 */
trait SNumberField[T <: Number] extends SAnyField[T] {

 // Arithmetic operations
 // ---------------------

 def unary_- : Field[T]

 def +(value : Number) : Field[T]
 def +(value : Field[_ <: Number]) : Field[T]

 def -(value : Number) : Field[T]
 def -(value : Field[_ <: Number]) : Field[T]

 def *(value : Number) : Field[T]
 def *(value : Field[_ <: Number]) : Field[T]

 def /(value : Number) : Field[T]
 def /(value : Field[_ <: Number]) : Field[T]

 def %(value : Number) : Field[T]
 def %(value : Field[_ <: Number]) : Field[T]

 // Bitwise operations
 // ------------------

 def unary_~ : Field[T]

 def &(value : T) : Field[T]
 def &(value : Field[T]) : Field[T]

 def |(value : T) : Field[T]
 def |(value : Field[T]) : Field[T]

 def ^(value : T) : Field[T]
 def ^(value : Field[T]) : Field[T]

 def <<(value : T) : Field[T]
 def <<(value : Field[T]) : Field[T]

 def >>(value : T) : Field[T]
 def >>(value : Field[T]) : Field[T]
}

An example query using such overloaded operators would then look like this:

The jOOQ User Manual 4.10. SQL building in Scala

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 103 / 174

select (
 BOOK.ID * BOOK.AUTHOR_ID,
 BOOK.ID + BOOK.AUTHOR_ID * 3 + 4,
 BOOK.TITLE || " abc" || " xy")
from BOOK
leftOuterJoin (
 select (x.ID, x.YEAR_OF_BIRTH)
 from x
 limit 1
 asTable x.getName()
)
on BOOK.AUTHOR_ID === x.ID
where (BOOK.ID <> 2)
or (BOOK.TITLE in ("O Alquimista", "Brida"))
fetch

Scala 2.10 Macros

This feature is still being experimented with. With Scala Macros, it might be possible to inline a true SQL
dialect into the Scala syntax, backed by the jOOQ API. Stay tuned!

The jOOQ User Manual 5. SQL execution

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 104 / 174

5. SQL execution

In a previous section of the manual, we've seen how jOOQ can be used to build SQL that can be executed
with any API including JDBC or ... jOOQ. This section of the manual deals with various means of actually
executing SQL with jOOQ.

SQL execution with JDBC

JDBC calls executable objects "java.sql.Statement". It distinguishes between three types of statements:

- java.sql.Statement, or "static statement": This statement type is used for any arbitrary type of
SQL statement. It is particularly useful with inlined parameters

- java.sql.PreparedStatement: This statement type is used for any arbitrary type of SQL statement.
It is particularly useful with indexed parameters (note that JDBC does not support named
parameters)

- java.sql.CallableStatement: This statement type is used for SQL statements that are "called"
rather than "executed". In particular, this includes calls to stored procedures. Callable
statements can register OUT parameters

Today, the JDBC API may look weird to users being used to object-oriented design. While statements
hide a lot of SQL dialect-specific implementation details quite well, they assume a lot of knowledge
about the internal state of a statement. For instance, you can use the PreparedStatement.addBatch()
method, to add a the prepared statement being created to an "internal list" of batch statements. Instead
of returning a new type, this method forces user to reflect on the prepared statement's internal state
or "mode".

jOOQ is wrapping JDBC

These things are abstracted away by jOOQ, which exposes such concepts in a more object-oriented way.
For more details about jOOQ's batch query execution, see the manual's section about batch execution.

The following sections of this manual will show how jOOQ is wrapping JDBC for SQL execution

5.1. Comparison between jOOQ and JDBC

Similarities with JDBC

Even if there are two general types of Query, there are a lot of similarities between JDBC and jOOQ.
Just to name a few:

- Both APIs return the number of affected records in non-result queries. JDBC:
Statement.executeUpdate(), jOOQ: Query.execute()

- Both APIs return a scrollable result set type from result queries. JDBC: java.sql.ResultSet, jOOQ:
org.jooq.Result

http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://download.oracle.com/javase/8/docs/apijava/sql/CallableStatement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html#addBatch()
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html#executeUpdate(java.lang.String)
http://www.jooq.org/javadoc/3.0.x/org/jooq/Query.html#execute()
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html

The jOOQ User Manual 5.2. Query vs. ResultQuery

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 105 / 174

Differences to JDBC

Some of the most important differences between JDBC and jOOQ are listed here:

- Query vs. ResultQuery: JDBC does not formally distinguish between queries that can return
results, and queries that cannot. The same API is used for both. This greatly reduces the
possibility for fetching convenience methods

- Exception handling: While SQL uses the checked java.sql.SQLException, jOOQ wraps all
exceptions in an unchecked org.jooq.exception.DataAccessException

- org.jooq.Result: Unlike its JDBC counter-part, this type implements java.util.List and is fully
loaded into Java memory, freeing resources as early as possible. Just like statements, this means
that users don't have to deal with a "weird" internal result set state.

- org.jooq.Cursor: If you want more fine-grained control over how many records are fetched into
memory at once, you can still do that using jOOQ's lazy fetching feature

- Statement type: jOOQ does not formally distinguish between static statements and prepared
statements. By default, all statements are prepared statements in jOOQ, internally. Executing a
statement as a static statement can be done simply using a custom settings flag

- Closing Statements: JDBC keeps open resources even if they are already consumed. With
JDBC, there is a lot of verbosity around safely closing resources. In jOOQ, resources are closed
after consumption, by default. If you want to keep them open after consumption, you have to
explicitly say so.

5.2. Query vs. ResultQuery

Unlike JDBC, jOOQ has a lot of knowledge about a SQL query's structure and internals (see the manual's
section about SQL building). Hence, jOOQ distinguishes between these two fundamental types of
queries. While every org.jooq.Query can be executed, only org.jooq.ResultQuery can return results (see
the manual's section about fetching to learn more about fetching results). With plain SQL, the distinction
can be made clear most easily:

// Create a Query object and execute it:
Query query = create.query("DELETE FROM BOOK");
query.execute();

// Create a ResultQuery object and execute it, fetching results:
ResultQuery<Record> resultQuery = create.resultQuery("SELECT * FROM BOOK");
Result<Record> resultQuery.fetch();

5.3. Fetching

Fetching is something that has been completely neglegted by JDBC and also by various other database
abstraction libraries. Fetching is much more than just looping or listing records or mapped objects.
There are so many ways you may want to fetch data from a database, it should be considered a first-
class feature of any database abstraction API. Just to name a few, here are some of jOOQ's fetching
modes:

http://download.oracle.com/javase/8/docs/apijava/sql/SQLException.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/exception/DataAccessException.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/util/List.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Cursor.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Query.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html

The jOOQ User Manual 5.3. Fetching

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 106 / 174

- Untyped vs. typed fetching: Sometimes you care about the returned type of your records,
sometimes (with arbitrary projections) you don't.

- Fetching arrays, maps, or lists: Instead of letting you transform your result sets into any more
suitable data type, a library should do that work for you.

- Fetching through handler callbacks: This is an entirely different fetching paradigm. With Java 8's
lambda expressions, this will become even more powerful.

- Fetching through mapper callbacks: This is an entirely different fetching paradigm. With Java 8's
lambda expressions, this will become even more powerful.

- Fetching custom POJOs: This is what made Hibernate and JPA so strong. Automatic mapping of
tables to custom POJOs.

- Lazy vs. eager fetching: It should be easy to distinguish these two fetch modes.
- Fetching many results: Some databases allow for returning many result sets from a single query.

JDBC can handle this but it's very verbose. A list of results should be returned instead.
- Fetching data asynchronously: Some queries take too long to execute to wait for their results.

You should be able to spawn query execution in a separate process.

Convenience and how ResultQuery, Result, and Record share API

The term "fetch" is always reused in jOOQ when you can fetch data from the database. An
org.jooq.ResultQuery provides many overloaded means of fetching data:

Various modes of fetching

These modes of fetching are also documented in subsequent sections of the manual

// The "standard" fetch
Result<R> fetch();

// The "standard" fetch when you know your query returns only one record
R fetchOne();

// The "standard" fetch when you only want to fetch the first record
R fetchAny();

// Create a "lazy" Cursor, that keeps an open underlying JDBC ResultSet
Cursor<R> fetchLazy();
Cursor<R> fetchLazy(int fetchSize);

// Create a java.util.concurrent.Future, to handle asynchronous execution of the ResultQuery
FutureResult<R> fetchLater();
FutureResult<R> fetchLater(ExecutorService executor);

// Fetch several results at once
List<Result<Record>> fetchMany();

// Fetch records into a custom callback
<H extends RecordHandler<R>> H fetchInto(H handler);

// Map records using a custom callback
<E> List<E> fetch(RecordMapper<? super R, E> mapper);

// Execute a ResultQuery with jOOQ, but return a JDBC ResultSet, not a jOOQ object
ResultSet fetchResultSet();

Fetch convenience

These means of fetching are also available from org.jooq.Result and org.jooq.Record APIs

http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html

The jOOQ User Manual 5.3.1. Record vs. TableRecord

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 107 / 174

// These methods are convenience for fetching only a single field,
// possibly converting results to another type
<T> List<T> fetch(Field<T> field);
<T> List<T> fetch(Field<?> field, Class<? extends T> type);
<T, U> List<U> fetch(Field<T> field, Converter<? super T, U> converter);
 List<?> fetch(int fieldIndex);
<T> List<T> fetch(int fieldIndex, Class<? extends T> type);
<U> List<U> fetch(int fieldIndex, Converter<?, U> converter);
 List<?> fetch(String fieldName);
<T> List<T> fetch(String fieldName, Class<? extends T> type);
<U> List<U> fetch(String fieldName, Converter<?, U> converter);

// These methods are convenience for fetching only a single field, possibly converting results to another type
// Instead of returning lists, these return arrays
<T> T[] fetchArray(Field<T> field);
<T> T[] fetchArray(Field<?> field, Class<? extends T> type);
<T, U> U[] fetchArray(Field<T> field, Converter<? super T, U> converter);
 Object[] fetchArray(int fieldIndex);
<T> T[] fetchArray(int fieldIndex, Class<? extends T> type);
<U> U[] fetchArray(int fieldIndex, Converter<?, U> converter);
 Object[] fetchArray(String fieldName);
<T> T[] fetchArray(String fieldName, Class<? extends T> type);
<U> U[] fetchArray(String fieldName, Converter<?, U> converter);

// These methods are convenience for fetching only a single field from a single record,
// possibly converting results to another type
<T> T fetchOne(Field<T> field);
<T> T fetchOne(Field<?> field, Class<? extends T> type);
<T, U> U fetchOne(Field<T> field, Converter<? super T, U> converter);
 Object fetchOne(int fieldIndex);
<T> T fetchOne(int fieldIndex, Class<? extends T> type);
<U> U fetchOne(int fieldIndex, Converter<?, U> converter);
 Object fetchOne(String fieldName);
<T> T fetchOne(String fieldName, Class<? extends T> type);
<U> U fetchOne(String fieldName, Converter<?, U> converter);

Fetch transformations

These means of fetching are also available from org.jooq.Result and org.jooq.Record APIs

// Transform your Records into arrays, Results into matrices
 Object[][] fetchArrays();
 Object[] fetchOneArray();

// Reduce your Result object into maps
<K> Map<K, R> fetchMap(Field<K> key);
<K, V> Map<K, V> fetchMap(Field<K> key, Field<V> value);
<K, E> Map<K, E> fetchMap(Field<K> key, Class<E> value);
 Map<Record, R> fetchMap(Field<?>[] key);
<E> Map<Record, E> fetchMap(Field<?>[] key, Class<E> value);

// Transform your Result object into maps
 List<Map<String, Object>> fetchMaps();
 Map<String, Object> fetchOneMap();

// Transform your Result object into groups
<K> Map<K, Result<R>> fetchGroups(Field<K> key);
<K, V> Map<K, List<V>> fetchGroups(Field<K> key, Field<V> value);
<K, E> Map<K, List<E>> fetchGroups(Field<K> key, Class<E> value);
 Map<Record, Result<R>> fetchGroups(Field<?>[] key);
<E> Map<Record, List<E>> fetchGroups(Field<?>[] key, Class<E> value);

// Transform your Records into custom POJOs
<E> List<E> fetchInto(Class<? extends E> type);

// Transform your records into another table type
<Z extends Record> Result<Z> fetchInto(Table<Z> table);

Note, that apart from the fetchLazy() methods, all fetch() methods will immediately close underlying
JDBC result sets.

5.3.1. Record vs. TableRecord

jOOQ understands that SQL is much more expressive than Java, when it comes to the declarative typing
of table expressions. As a declarative language, SQL allows for creating ad-hoc row value expressions
(records with indexed columns, or tuples) and records (records with named columns). In Java, this is

http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html#fetchLazy()

The jOOQ User Manual 5.3.2. Record1 to Record22

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 108 / 174

not possible to the same extent. Yet, still, sometimes you wish to use strongly typed records, when you
know that you're selecting only from a single table

Fetching strongly or weakly typed records

When fetching data only from a single table, the table expression's type is known to jOOQ if you use
jOOQ's code generator to generate TableRecords for your database tables. In order to fetch such
strongly typed records, you will have to use the simple select API:

// Use the selectFrom() method:
BookRecord book = create.selectFrom(BOOK).where(BOOK.ID.equal(1)).fetchOne();

// Typesafe field access is now possible:
System.out.println("Title : " + book.getTitle());
System.out.println("Published in: " + book.getPublishedIn());

When you use the DSLContext.selectFrom() method, jOOQ will return the record type supplied with the
argument table. Beware though, that you will no longer be able to use any clause that modifies the type
of your table expression. This includes:

- The SELECT clause
- The JOIN clause

5.3.2. Record1 to Record22

jOOQ's row value expression (or tuple) support has been explained earlier in this manual. It is useful for
constructing row value expressions where they can be used in SQL. The same typesafety is also applied
to records for degrees up to 22. To express this fact, org.jooq.Record is extended by org.jooq.Record1
to org.jooq.Record22. Apart from the fact that these extensions of the R type can be used throughout
the jOOQ DSL, they also provide a useful API. Here is org.jooq.Record2, for instance:

public interface Record2<T1, T2> extends Record {

 // Access fields and values as row value expressions
 Row2<T1, T2> fieldsRow();
 Row2<T1, T2> valuesRow();

 // Access fields by index
 Field<T1> field1();
 Field<T2> field2();

 // Access values by index
 T1 value1();
 T2 value2();
}

Higher-degree records

jOOQ chose to explicitly support degrees up to 22 to match Scala's typesafe tuple, function and product
support. Unlike Scala, however, jOOQ also supports higher degrees without the additional typesafety.

http://www.jooq.org/javadoc/3.0.x/org/jooq/DSLContext.html#selectFrom(org.jooq.Table)
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record1.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record22.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record2.html

The jOOQ User Manual 5.3.3. Arrays, Maps and Lists

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 109 / 174

5.3.3. Arrays, Maps and Lists

By default, jOOQ returns an org.jooq.Result object, which is essentially a java.util.List of org.jooq.Record.
Often, you will find yourself wanting to transform this result object into a type that corresponds more to
your specific needs. Or you just want to list all values of one specific column. Here are some examples
to illustrate those use cases:

// Fetching only book titles (the two calls are equivalent):
List<String> titles1 = create.select().from(BOOK).fetch().getValues(BOOK.TITLE);
List<String> titles2 = create.select().from(BOOK).fetch(BOOK.TITLE);
String[] titles3 = create.select().from(BOOK).fetchArray(BOOK.TITLE);

// Fetching only book IDs, converted to Long
List<Long> ids1 = create.select().from(BOOK).fetch().getValues(BOOK.ID, Long.class);
List<Long> ids2 = create.select().from(BOOK).fetch(BOOK.ID, Long.class);
Long[] ids3 = create.select().from(BOOK).fetchArray(BOOK.ID, Long.class);

// Fetching book IDs and mapping each ID to their records or titles
Map<Integer, BookRecord> map1 = create.selectFrom(BOOK).fetch().intoMap(BOOK.ID);
Map<Integer, BookRecord> map2 = create.selectFrom(BOOK).fetchMap(BOOK.ID);
Map<Integer, String> map3 = create.selectFrom(BOOK).fetch().intoMap(BOOK.ID, BOOK.TITLE);
Map<Integer, String> map4 = create.selectFrom(BOOK).fetchMap(BOOK.ID, BOOK.TITLE);

// Group by AUTHOR_ID and list all books written by any author:
Map<Integer, Result<BookRecord>> group1 = create.selectFrom(BOOK).fetch().intoGroups(BOOK.AUTHOR_ID);
Map<Integer, Result<BookRecord>> group2 = create.selectFrom(BOOK).fetchGroups(BOOK.AUTHOR_ID);
Map<Integer, List<String>> group3 = create.selectFrom(BOOK).fetch().intoGroups(BOOK.AUTHOR_ID, BOOK.TITLE);
Map<Integer, List<String>> group4 = create.selectFrom(BOOK).fetchGroups(BOOK.AUTHOR_ID, BOOK.TITLE);

Note that most of these convenience methods are available both through org.jooq.ResultQuery and
org.jooq.Result, some are even available through org.jooq.Record as well.

5.3.4. RecordHandler

In a more functional operating mode, you might want to write callbacks that receive records from
your select statement results in order to do some processing. This is a common data access pattern
in Spring's JdbcTemplate, and it is also available in jOOQ. With jOOQ, you can implement your own
org.jooq.RecordHandler classes and plug them into jOOQ's org.jooq.ResultQuery:

// Write callbacks to receive records from select statements
create.selectFrom(BOOK)
 .orderBy(BOOK.ID)
 .fetch()
 .into(new RecordHandler<BookRecord>() {
 @Override
 public void next(BookRecord book) {
 Util.doThingsWithBook(book);
 }
 });

// Or more concisely
create.selectFrom(BOOK)
 .orderBy(BOOK.ID)
 .fetchInto(new RecordHandler<BookRecord>() {...});

// Or even more concisely with Java 8's lambda expressions:
create.selectFrom(BOOK)
 .orderBy(BOOK.ID)
 .fetchInto(book -> { Util.doThingsWithBook(book); };);

See also the manual's section about the RecordMapper, which provides similar features

http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/util/List.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RecordHandler.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html

The jOOQ User Manual 5.3.5. RecordMapper

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 110 / 174

5.3.5. RecordMapper

In a more functional operating mode, you might want to write callbacks that map records from your
select statement results in order to do some processing. This is a common data access pattern in
Spring's JdbcTemplate, and it is also available in jOOQ. With jOOQ, you can implement your own
org.jooq.RecordMapper classes and plug them into jOOQ's org.jooq.ResultQuery:

// Write callbacks to receive records from select statements
List<Integer> ids =
create.selectFrom(BOOK)
 .orderBy(BOOK.ID)
 .fetch()
 .map(new RecordMapper<BookRecord, Integer>() {
 @Override
 public Integer map(BookRecord book) {
 return book.getId();
 }
 });

// Or more concisely
create.selectFrom(BOOK)
 .orderBy(BOOK.ID)
 .fetch(new RecordMapper<BookRecord, Integer>() {...});

// Or even more concisely with Java 8's lambda expressions:
create.selectFrom(BOOK)
 .orderBy(BOOK.ID)
 .fetch(book -> book.getId());

See also the manual's section about the RecordHandler, which provides similar features

5.3.6. POJOs

Fetching data in records is fine as long as your application is not really layered, or as long as you're
still writing code in the DAO layer. But if you have a more advanced application architecture, you may
not want to allow for jOOQ artefacts to leak into other layers. You may choose to write POJOs (Plain
Old Java Objects) as your primary DTOs (Data Transfer Objects), without any dependencies on jOOQ's
org.jooq.Record types, which may even potentially hold a reference to a Configuration, and thus a JDBC
java.sql.Connection. Like Hibernate/JPA, jOOQ allows you to operate with POJOs. Unlike Hibernate/JPA,
jOOQ does not "attach" those POJOs or create proxies with any magic in them.

If you're using jOOQ's code generator, you can configure it to generate POJOs for you, but you're not
required to use those generated POJOs. You can use your own.

Using JPA-annotated POJOs

jOOQ tries to find JPA annotations on your POJO types. If it finds any, they are used as the primary source
for mapping meta-information. Only the javax.persistence.Column annotation is used and understood
by jOOQ. An example:

http://www.jooq.org/javadoc/3.0.x/org/jooq/RecordMapper.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://download.oracle.com/javase/8/docs/apijavax/persistence/Column.html

The jOOQ User Manual 5.3.6. POJOs

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 111 / 174

// A JPA-annotated POJO class
public class MyBook {
 @Column(name = "ID")
 public int myId;

 @Column(name = "TITLE")
 public String myTitle;
}

// The various "into()" methods allow for fetching records into your custom POJOs:
MyBook myBook = create.select().from(BOOK).fetchAny().into(MyBook.class);
List<MyBook> myBooks = create.select().from(BOOK).fetch().into(MyBook.class);
List<MyBook> myBooks = create.select().from(BOOK).fetchInto(MyBook.class);

Just as with any other JPA implementation, you can put the javax.persistence.Column annotation on
any class member, including attributes, setters and getters. Please refer to the Record.into() Javadoc
for more details.

Using simple POJOs

If jOOQ does not find any JPA-annotations, columns are mapped to the "best-matching" constructor,
attribute or setter. An example illustrates this:

// A "mutable" POJO class
public class MyBook1 {
 public int id;
 public String title;
}

// The various "into()" methods allow for fetching records into your custom POJOs:
MyBook1 myBook = create.select().from(BOOK).fetchAny().into(MyBook1.class);
List<MyBook1> myBooks = create.select().from(BOOK).fetch().into(MyBook1.class);
List<MyBook1> myBooks = create.select().from(BOOK).fetchInto(MyBook1.class);

Please refer to the Record.into() Javadoc for more details.

Using "immutable" POJOs

If jOOQ does not find any default constructor, columns are mapped to the "best-matching" constructor.
This allows for using "immutable" POJOs with jOOQ. An example illustrates this:

// An "immutable" POJO class
public class MyBook2 {
 public final int id;
 public final String title;

 public MyBook2(int id, String title) {
 this.id = id;
 this.title = title;
 }
}

// With "immutable" POJO classes, there must be an exact match between projected fields and available constructors:
MyBook2 myBook = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetchAny().into(MyBook2.class);
List<MyBook2> myBooks = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetch().into(MyBook2.class);
List<MyBook2> myBooks = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetchInto(MyBook2.class);

// An "immutable" POJO class with a java.beans.ConstructorProperties annotation
public class MyBook3 {
 public final String title;
 public final int id;

 @ConstructorProperties({ "title", "id"})
 public MyBook2(String title, int id) {
 this.title = title;
 this.id = id;
 }
}

// With annotated "immutable" POJO classes, there doesn't need to be an exact match between fields and constructor arguments.
// In the below cases, only BOOK.ID is really set onto the POJO, BOOK.TITLE remains null and BOOK.AUTHOR_ID is ignored
MyBook3 myBook = create.select(BOOK.ID, BOOK.AUTHOR_ID).from(BOOK).fetchAny().into(MyBook3.class);
List<MyBook3> myBooks = create.select(BOOK.ID, BOOK.AUTHOR_ID).from(BOOK).fetch().into(MyBook3.class);
List<MyBook3> myBooks = create.select(BOOK.ID, BOOK.AUTHOR_ID).from(BOOK).fetchInto(MyBook3.class);

http://download.oracle.com/javase/8/docs/apijavax/persistence/Column.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html#into(java.lang.Class)
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html#into(java.lang.Class)

The jOOQ User Manual 5.3.6. POJOs

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 112 / 174

Please refer to the Record.into() Javadoc for more details.

Using proxyable types

jOOQ also allows for fetching data into abstract classes or interfaces, or in other words, "proxyable"
types. This means that jOOQ will return a java.util.HashMap wrapped in a java.lang.reflect.Proxy
implementing your custom type. An example of this is given here:

// A "proxyable" type
public interface MyBook3 {
 int getId();
 void setId(int id);

 String getTitle();
 void setTitle(String title);
}

// The various "into()" methods allow for fetching records into your custom POJOs:
MyBook3 myBook = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetchAny().into(MyBook3.class);
List<MyBook3> myBooks = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetch().into(MyBook3.class);
List<MyBook3> myBooks = create.select(BOOK.ID, BOOK.TITLE).from(BOOK).fetchInto(MyBook3.class);

Please refer to the Record.into() Javadoc for more details.

Loading POJOs back into Records to store them

The above examples show how to fetch data into your own custom POJOs / DTOs. When you have
modified the data contained in POJOs, you probably want to store those modifications back to the
database. An example of this is given here:

// A "mutable" POJO class
public class MyBook {
 public int id;
 public String title;
}

// Create a new POJO instance
MyBook myBook = new MyBook();
myBook.id = 10;
myBook.title = "Animal Farm";

// Load a jOOQ-generated BookRecord from your POJO
BookRecord book = create.newRecord(BOOK, myBook);

// Insert it (implicitly)
book.store();

// Insert it (explicitly)
create.executeInsert(book);

// or update it (ID = 10)
create.executeUpdate(book);

Note: Because of your manual setting of ID = 10, jOOQ's store() method will asume that you want to
insert a new record. See the manual's section about CRUD with UpdatableRecords for more details
on this.

Interaction with DAOs

If you're using jOOQ's code generator, you can configure it to generate DAOs for you. Those DAOs
operate on generated POJOs. An example of using such a DAO is given here:

http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html#into(java.lang.Class)
http://download.oracle.com/javase/8/docs/apijava/util/HashMap.html
http://download.oracle.com/javase/8/docs/apijava/lang/reflect/Proxy.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html#into(java.lang.Class)

The jOOQ User Manual 5.3.7. Lazy fetching

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 113 / 174

// Initialise a Configuration
Configuration configuration = new DefaultConfiguration().set(connection).set(SQLDialect.ORACLE);

// Initialise the DAO with the Configuration
BookDao bookDao = new BookDao(configuration);

// Start using the DAO
Book book = bookDao.findById(5);

// Modify and update the POJO
book.setTitle("1984");
book.setPublishedIn(1948);
bookDao.update(book);

// Delete it again
bookDao.delete(book);

More complex data structures

jOOQ currently doesn't support more complex data structures, the way Hibernate/JPA attempt to map
relational data onto POJOs. While future developments in this direction are not excluded, jOOQ claims
that generic mapping strategies lead to an enormous additional complexity that only serves very few
use cases. You are likely to find a solution using any of jOOQ's various fetching modes, with only little
boiler-plate code on the client side.

5.3.7. Lazy fetching

Unlike JDBC's java.sql.ResultSet, jOOQ's org.jooq.Result does not represent an open database cursor
with various fetch modes and scroll modes, that needs to be closed after usage. jOOQ's results are
simple in-memory Java java.util.List objects, containing all of the result values. If your result sets are
large, or if you have a lot of network latency, you may wish to fetch records one-by-one, or in small
chunks. jOOQ supports a org.jooq.Cursor type for that purpose. In order to obtain such a reference,
use the ResultQuery.fetchLazy() method. An example is given here:

// Obtain a Cursor reference:
Cursor<BookRecord> cursor = null;

try {
 cursor = create.selectFrom(BOOK).fetchLazy();

 // Cursor has similar methods as Iterator<R>
 while (cursor.hasNext()) {
 BookRecord book = cursor.fetchOne();

 Util.doThingsWithBook(book);
 }
}

// Close the cursor and the cursor's underlying JDBC ResultSet
finally {
 if (cursor != null) {
 cursor.close();
 }
}

As a org.jooq.Cursor holds an internal reference to an open java.sql.ResultSet, it may need to be closed
at the end of iteration. If a cursor is completely scrolled through, it will conveniently close the underlying
ResultSet. However, you should not rely on that.

Cursors ship with all the other fetch features

Like org.jooq.ResultQuery or org.jooq.Result, org.jooq.Cursor gives access to all of the other fetch
features that we've seen so far, i.e.

http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/util/List.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Cursor.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html#fetchLazy()
http://www.jooq.org/javadoc/3.0.x/org/jooq/Cursor.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Cursor.html

The jOOQ User Manual 5.3.8. Many fetching

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 114 / 174

- Strongly or weakly typed records: Cursors are also typed with the <R> type, allowing to fetch
custom, generated org.jooq.TableRecord or plain org.jooq.Record types.

- RecordHandler callbacks: You can use your own org.jooq.RecordHandler callbacks to receive
lazily fetched records.

- RecordMapper callbacks: You can use your own org.jooq.RecordMapper callbacks to map lazily
fetched records.

- POJOs: You can fetch data into your own custom POJO types.

5.3.8. Many fetching

Many databases support returning several result sets, or cursors, from single queries. An example for
this is Sybase ASE's sp_help command:

> sp_help 'author'

+--------+-----+-----------+-------------+-------------------+
|Name |Owner|Object_type|Object_status|Create_date |
+--------+-----+-----------+-------------+-------------------+
| author|dbo |user table | -- none -- |Sep 22 2011 11:20PM|
+--------+-----+-----------+-------------+-------------------+

+-------------+-------+------+----+-----+-----+
|Column_name |Type |Length|Prec|Scale|... |
+-------------+-------+------+----+-----+-----+
id	int	4	NULL	NULL	0
first_name	varchar	50	NULL	NULL	1
last_name	varchar	50	NULL	NULL	0
date_of_birth	date	4	NULL	NULL	1
year_of_birth	int	4	NULL	NULL	1
+-------------+-------+------+----+-----+-----+

The correct (and verbose) way to do this with JDBC is as follows:

ResultSet rs = statement.executeQuery();

// Repeat until there are no more result sets
for (;;) {

 // Empty the current result set
 while (rs.next()) {
 // [.. do something with it ..]
 }

 // Get the next result set, if available
 if (statement.getMoreResults()) {
 rs = statement.getResultSet();
 }
 else {
 break;
 }
}

// Be sure that all result sets are closed
statement.getMoreResults(Statement.CLOSE_ALL_RESULTS);
statement.close();

As previously discussed in the chapter about differences between jOOQ and JDBC, jOOQ does not rely
on an internal state of any JDBC object, which is "externalised" by Javadoc. Instead, it has a straight-
forward API allowing you to do the above in a one-liner:

// Get some information about the author table, its columns, keys, indexes, etc
List<Result<Record>> results = create.fetchMany("sp_help 'author'");

Using generics, the resulting structure is immediately clear.

http://www.jooq.org/javadoc/3.0.x/org/jooq/TableRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RecordHandler.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RecordMapper.html

The jOOQ User Manual 5.3.9. Later fetching

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 115 / 174

5.3.9. Later fetching

Using Java 8 CompletableFutures

Java 8 has introduced the new java.util.concurrent.CompletableFuture type, which allows for functional
composition of asynchronous execution units. When applying this to SQL and jOOQ, you might be
writing code as follows:

// Initiate an asynchronous call chain
CompletableFuture

 // This lambda will supply an int value indicating the number of inserted rows
 .supplyAsync(() ->
 DSL.using(configuration)
 .insertInto(AUTHOR, AUTHOR.ID, AUTHOR.LAST_NAME)
 .values(3, "Hitchcock")
 .execute()
)

 // This will supply an AuthorRecord value for the newly inserted author
 .handleAsync((rows, throwable) ->
 DSL.using(configuration)
 .fetchOne(AUTHOR, AUTHOR.ID.eq(3))
)

 // This should supply an int value indicating the number of rows,
 // but in fact it'll throw a constraint violation exception
 .handleAsync((record, throwable) -> {
 record.changed(true);
 return record.insert();
 })

 // This will supply an int value indicating the number of deleted rows
 .handleAsync((rows, throwable) ->
 DSL.using(configuration)
 .delete(AUTHOR)
 .where(AUTHOR.ID.eq(3))
 .execute()
)
 .join();

The above example will execute four actions one after the other, but asynchronously in the JDK's default
or common java.util.concurrent.ForkJoinPool.

For more information, please refer to the java.util.concurrent.CompletableFuture Javadoc and official
documentation.

Using deprecated API

Some queries take very long to execute, yet they are not crucial for the continuation of the main
program. For instance, you could be generating a complicated report in a Swing application, and
while this report is being calculated in your database, you want to display a background progress bar,
allowing the user to pursue some other work. This can be achived simply with jOOQ, by creating a
org.jooq.FutureResult, a type that extends java.util.concurrent.Future. An example is given here:

// Spawn off this query in a separate process:
FutureResult<BookRecord> future = create.selectFrom(BOOK).where(... complex predicates ...).fetchLater();

// This example actively waits for the result to be done
while (!future.isDone()) {
 progressBar.increment(1);
 Thread.sleep(50);
}

// The result should be ready, now
Result<BookRecord> result = future.get();

http://download.oracle.com/javase/8/docs/apijava/util/concurrent/CompletableFuture.html
http://download.oracle.com/javase/8/docs/apijava/util/concurrent/ForkJoinPool.html
http://download.oracle.com/javase/8/docs/apijava/util/concurrent/CompletableFuture.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/FutureResult.html
http://download.oracle.com/javase/8/docs/apijava/util/concurrent/Future.html

The jOOQ User Manual 5.3.10. ResultSet fetching

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 116 / 174

Note, that instead of letting jOOQ spawn a new thread, you can also provide jOOQ with your own
java.util.concurrent.ExecutorService:

// Spawn off this query in a separate process:
ExecutorService service = // [...]
FutureResult<BookRecord> future = create.selectFrom(BOOK).where(... complex predicates ...).fetchLater(service);

5.3.10. ResultSet fetching

When interacting with legacy applications, you may prefer to have jOOQ return a java.sql.ResultSet,
rather than jOOQ's own org.jooq.Result types. This can be done simply, in two ways:

// jOOQ's Cursor type exposes the underlying ResultSet:
ResultSet rs1 = create.selectFrom(BOOK).fetchLazy().resultSet();

// But you can also directly access that ResultSet from ResultQuery:
ResultSet rs2 = create.selectFrom(BOOK).fetchResultSet();

// Don't forget to close these, though!
rs1.close();
rs2.close();

Transform jOOQ's Result into a JDBC ResultSet

Instead of operating on a JDBC ResultSet holding an open resource from your database, you can also
let jOOQ's org.jooq.Result wrap itself in a java.sql.ResultSet. The advantage of this is that the so-created
ResultSet has no open connection to the database. It is a completely in-memory ResultSet:

// Transform a jOOQ Result into a ResultSet
Result<BookRecord> result = create.selectFrom(BOOK).fetch();
ResultSet rs = result.intoResultSet();

The inverse: Fetch data from a legacy ResultSet using jOOQ

The inverse of the above is possible too. Maybe, a legacy part of your application produces JDBC
java.sql.ResultSet, and you want to turn them into a org.jooq.Result:

// Transform a JDBC ResultSet into a jOOQ Result
ResultSet rs = connection.createStatement().executeQuery("SELECT * FROM BOOK");

// As a Result:
Result<Record> result = create.fetch(rs);

// As a Cursor
Cursor<Record> cursor = create.fetchLazy(rs);

You can also tighten the interaction with jOOQ's data type system and data type conversion features,
by passing the record type to the above fetch methods:

http://download.oracle.com/javase/8/docs/apijava/util/concurrent/ExecutorService.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html

The jOOQ User Manual 5.3.11. Data type conversion

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 117 / 174

// Pass an array of types:
Result<Record> result = create.fetch (rs, Integer.class, String.class);
Cursor<Record> result = create.fetchLazy(rs, Integer.class, String.class);

// Pass an array of data types:
Result<Record> result = create.fetch (rs, SQLDataType.INTEGER, SQLDataType.VARCHAR);
Cursor<Record> result = create.fetchLazy(rs, SQLDataType.INTEGER, SQLDataType.VARCHAR);

// Pass an array of fields:
Result<Record> result = create.fetch (rs, BOOK.ID, BOOK.TITLE);
Cursor<Record> result = create.fetchLazy(rs, BOOK.ID, BOOK.TITLE);

If supplied, the additional information is used to override the information obtained from the ResultSet's
java.sql.ResultSetMetaData information.

5.3.11. Data type conversion

Apart from a few extra features (user-defined types), jOOQ only supports basic types as supported by
the JDBC API. In your application, you may choose to transform these data types into your own ones,
without writing too much boiler-plate code. This can be done using jOOQ's org.jooq.Converter types.
A converter essentially allows for two-way conversion between two Java data types <T> and <U>. By
convention, the <T> type corresponds to the type in your database whereas the >U> type corresponds
to your own user type. The Converter API is given here:

public interface Converter<T, U> extends Serializable {

 /**
 * Convert a database object to a user object
 */
 U from(T databaseObject);

 /**
 * Convert a user object to a database object
 */
 T to(U userObject);

 /**
 * The database type
 */
 Class<T> fromType();

 /**
 * The user type
 */
 Class<U> toType();
}

Such a converter can be used in many parts of the jOOQ API. Some examples have been illustrated in
the manual's section about fetching.

A Converter for GregorianCalendar

Here is a some more elaborate example involving a Converter for java.util.GregorianCalendar:

http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSetMetaData.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Converter.html
http://download.oracle.com/javase/8/docs/apijava/util/GregorianCalendar.html

The jOOQ User Manual 5.3.12. Interning data

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 118 / 174

// You may prefer Java Calendars over JDBC Timestamps
public class CalendarConverter implements Converter<Timestamp, GregorianCalendar> {

 @Override
 public GregorianCalendar from(Timestamp databaseObject) {
 GregorianCalendar calendar = (GregorianCalendar) Calendar.getInstance();
 calendar.setTimeInMillis(databaseObject.getTime());
 return calendar;
 }

 @Override
 public Timestamp to(GregorianCalendar userObject) {
 return new Timestamp(userObject.getTime().getTime());
 }

 @Override
 public Class<Timestamp> fromType() {
 return Timestamp.class;
 }

 @Override
 public Class<GregorianCalendar> toType() {
 return GregorianCalendar.class;
 }
}

// Now you can fetch calendar values from jOOQ's API:
List<GregorianCalendar> dates1 = create.selectFrom(BOOK).fetch().getValues(BOOK.PUBLISHING_DATE, new CalendarConverter());
List<GregorianCalendar> dates2 = create.selectFrom(BOOK).fetch(BOOK.PUBLISHING_DATE, new CalendarConverter());

Enum Converters

jOOQ ships with a built-in default org.jooq.impl.EnumConverter, that you can use to map VARCHAR
values to enum literals or NUMBER values to enum ordinals (both modes are supported). Let's say, you
want to map a YES / NO / MAYBE column to a custom Enum:

// Define your Enum
public enum YNM {
 YES, NO, MAYBE
}

// Define your converter
public class YNMConverter extends EnumConverter<String, YNM> {
 public YNMConverter() {
 super(String.class, YNM.class);
 }
}

// And you're all set for converting records to your custom Enum:
for (BookRecord book : create.selectFrom(BOOK).fetch()) {
 switch (book.getValue(BOOK.I_LIKE, new YNMConverter())) {
 case YES: System.out.println("I like this book : " + book.getTitle()); break;
 case NO: System.out.println("I didn't like this book : " + book.getTitle()); break;
 case MAYBE: System.out.println("I'm not sure about this book : " + book.getTitle()); break;
 }
}

Using Converters in generated source code

jOOQ also allows for generated source code to reference your own custom converters, in order to
permanently replace a table column's <T> type by your own, custom <U> type. See the manual's section
about custom data types for details.

5.3.12. Interning data

SQL result tables are not optimal in terms of used memory as they are not designed to represent
hierarchical data as produced by JOIN operations. Specifically, FOREIGN KEY values may repeat
themselves unnecessarily:

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/EnumConverter.html

The jOOQ User Manual 5.4. Static statements vs. Prepared Statements

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 119 / 174

+----+-----------+--------------+
| ID | AUTHOR_ID | TITLE |
+----+-----------+--------------+
1	1	1984
2	1	Animal Farm
3	2	O Alquimista
4	2	Brida
+----+-----------+--------------+

Now, if you have millions of records with only few distinct values for AUTHOR_ID, you may not want to
hold references to distinct (but equal) java.lang.Integer objects. This is specifically true for IDs of type
java.util.UUID or string representations thereof. jOOQ allows you to "intern" those values:

// Interning data after fetching
Result<?> r1 = create.select(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
 .from(BOOK)
 .join(AUTHOR).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .fetch()
 .intern(BOOK.AUTHOR_ID);

// Interning data while fetching
Result<?> r1 = create.select(BOOK.ID, BOOK.AUTHOR_ID, BOOK.TITLE)
 .from(BOOK)
 .join(AUTHOR).on(BOOK.AUTHOR_ID.eq(AUTHOR.ID))
 .intern(BOOK.AUTHOR_ID)
 .fetch();

You can specify as many fields as you want for interning. The above has the following effect:

- If the interned Field is of type java.lang.String, then String.intern() is called upon each string
- If the interned Field is of any other type, then the call is ignored

Future versions of jOOQ will implement interning of data for non-String data types by collecting values
in java.util.Set, removing duplicate instances.

Note, that jOOQ will not use interned data for identity comparisons: string1 == string2. Interning is used
only to reduce the memory footprint of org.jooq.Result objects.

5.4. Static statements vs. Prepared Statements

With JDBC, you have full control over your SQL statements. You can decide yourself, if you want
to execute a static java.sql.Statement without bind values, or a java.sql.PreparedStatement with (or
without) bind values. But you have to decide early, which way to go. And you'll have to prevent SQL
injection and syntax errors manually, when inlining your bind variables.

With jOOQ, this is easier. As a matter of fact, it is plain simple. With jOOQ, you can just set a flag in
your Configuration's Settings, and all queries produced by that configuration will be executed as static
statements, with all bind values inlined. An example is given here:

-- These statements are rendered by the two factories:
SELECT ? FROM DUAL WHERE ? = ?
SELECT 1 FROM DUAL WHERE 1 = 1

// This DSLContext executes PreparedStatements
DSLContext prepare = DSL.using(connection, SQLDialect.ORACLE);

// This DSLContext executes static Statements
DSLContext inlined = DSL.using(connection, SQLDialect.ORACLE,
 new
 Settings().withStatementType(StatementType.STATIC_STATEMENT));

prepare.select(val(1)).where(val(1).equal(1)).fetch();
inlined.select(val(1)).where(val(1).equal(1)).fetch();

http://download.oracle.com/javase/8/docs/apijava/lang/Integer.html
http://download.oracle.com/javase/8/docs/apijava/util/UUID.html
http://download.oracle.com/javase/8/docs/apijava/lang/String.html
http://download.oracle.com/javase/8/docs/apijava/lang/String.html#intern()
http://download.oracle.com/javase/8/docs/apijava/util/Set.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html

The jOOQ User Manual 5.5. Reusing a Query's PreparedStatement

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 120 / 174

Reasons for choosing one or the other

Not all databases are equal. Some databases show improved performance if you use
java.sql.PreparedStatement, as the database will then be able to re-use execution plans for identical
SQL statements, regardless of actual bind values. This heavily improves the time it takes for soft-parsing
a SQL statement. In other situations, assuming that bind values are irrelevant for SQL execution plans
may be a bad idea, as you might run into "bind value peeking" issues. You may be better off spending
the extra cost for a new hard-parse of your SQL statement and instead having the database fine-tune
the new plan to the concrete bind values.

Whichever aproach is more optimal for you cannot be decided by jOOQ. In most cases, prepared
statements are probably better. But you always have the option of forcing jOOQ to render inlined bind
values.

Inlining bind values on a per-bind-value basis

Note that you don't have to inline all your bind values at once. If you know that a bind value is not really
a variable and should be inlined explicitly, you can do so by using DSL.inline(), as documented in the
manual's section about inlined parameters

5.5. Reusing a Query's PreparedStatement

As previously discussed in the chapter about differences between jOOQ and JDBC, reusing
PreparedStatements is handled a bit differently in jOOQ from how it is handled in JDBC

Keeping open PreparedStatements with JDBC

With JDBC, you can easily reuse a java.sql.PreparedStatement by not closing it between subsequent
executions. An example is given here:

// Execute the statement
try (PreparedStatement stmt = connection.prepareStatement("SELECT 1 FROM DUAL")) {

 // Fetch a first ResultSet
 try (ResultSet rs1 = stmt.executeQuery()) { ... }

 // Without closing the statement, execute it again to fetch another ResultSet
 try (ResultSet rs2 = stmt.executeQuery()) { ... }
}

The above technique can be quite useful when you want to reuse expensive database resources. This
can be the case when your statement is executed very frequently and your database would take non-
negligible time to soft-parse the prepared statement and generate a new statement / cursor resource.

Keeping open PreparedStatements with jOOQ

This is also modeled in jOOQ. However, the difference to JDBC is that closing a statement is the default
action, whereas keeping it open has to be configured explicitly. This is better than JDBC, because the
default action should be the one that is used most often. Keeping open statements is rarely done in
average applications. Here's an example of how to keep open PreparedStatements with jOOQ:

http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html#inline(Object)
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html

The jOOQ User Manual 5.6. Using JDBC batch operations

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 121 / 174

// Create a query which is configured to keep its underlying PreparedStatement open
ResultQuery<Record> query = create.selectOne().keepStatement(true);

// Execute the query twice, against the same underlying PreparedStatement:
try {
 Result<Record> result1 = query.fetch(); // This will lazily create a new PreparedStatement
 Result<Record> result2 = query.fetch(); // This will reuse the previous PreparedStatement
}

// ... but now, you must not forget to close the query
finally {
 query.close();
}

The above example shows how a query can be executed twice against the same underlying
PreparedStatement. Unlike in other execution scenarios, you must not forget to close this query now

5.6. Using JDBC batch operations

With JDBC, you can easily execute several statements at once using the addBatch() method. Essentially,
there are two modes in JDBC

- Execute several queries without bind values
- Execute one query several times with bind values

Using JDBC

In code, this looks like the following snippet:

// 1. several queries
// ------------------
try (Statement stmt = connection.createStatement()) {
 stmt.addBatch("INSERT INTO author(id, first_name, last_name) VALUES (1, 'Erich', 'Gamma')");
 stmt.addBatch("INSERT INTO author(id, first_name, last_name) VALUES (2, 'Richard', 'Helm')");
 stmt.addBatch("INSERT INTO author(id, first_name, last_name) VALUES (3, 'Ralph', 'Johnson')");
 stmt.addBatch("INSERT INTO author(id, first_name, last_name) VALUES (4, 'John', 'Vlissides')");
 int[] result = stmt.executeBatch();
}

// 2. a single query
// -----------------
try (PreparedStatement stmt = connection.prepareStatement("INSERT INTO author(id, first_name, last_name) VALUES (?, ?, ?)")) {
 stmt.setInt(1, 1);
 stmt.setString(2, "Erich");
 stmt.setString(3, "Gamma");
 stmt.addBatch();

 stmt.setInt(1, 2);
 stmt.setString(2, "Richard");
 stmt.setString(3, "Helm");
 stmt.addBatch();

 stmt.setInt(1, 3);
 stmt.setString(2, "Ralph");
 stmt.setString(3, "Johnson");
 stmt.addBatch();

 stmt.setInt(1, 4);
 stmt.setString(2, "John");
 stmt.setString(3, "Vlissides");
 stmt.addBatch();

 int[] result = stmt.executeBatch();
}

Using jOOQ

jOOQ supports executing queries in batch mode as follows:

The jOOQ User Manual 5.7. Sequence execution

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 122 / 174

// 1. several queries
// ------------------
create.batch(
 create.insertInto(AUTHOR, ID, FIRST_NAME, LAST_NAME).values(1, "Erich" , "Gamma"),
 create.insertInto(AUTHOR, ID, FIRST_NAME, LAST_NAME).values(2, "Richard", "Helm"),
 create.insertInto(AUTHOR, ID, FIRST_NAME, LAST_NAME).values(3, "Ralph" , "Johnson"),
 create.insertInto(AUTHOR, ID, FIRST_NAME, LAST_NAME).values(4, "John" , "Vlissides"))
.execute();

// 2. a single query
// -----------------
create.batch(create.insertInto(AUTHOR, ID, FIRST_NAME, LAST_NAME).values((Integer) null, null, null))
 .bind(1 , "Erich" , "Gamma")
 .bind(2 , "Richard" , "Helm")
 .bind(3 , "Ralph" , "Johnson")
 .bind(4 , "John" , "Vlissides")
 .execute();

When creating a batch execution with a single query and multiple bind values, you will still have to
provide jOOQ with dummy bind values for the original query. In the above example, these are set to
null. For subsequent calls to bind(), there will be no type safety provided by jOOQ.

5.7. Sequence execution

Most databases support sequences of some sort, to provide you with unique values to be used for
primary keys and other enumerations. If you're using jOOQ's code generator, it will generate a sequence
object per sequence for you. There are two ways of using such a sequence object:

Standalone calls to sequences

Instead of actually phrasing a select statement, you can also use the DSLContext's convenience
methods:

// Fetch the next value from a sequence
BigInteger nextID = create.nextval(S_AUTHOR_ID);

// Fetch the current value from a sequence
BigInteger currID = create.currval(S_AUTHOR_ID);

Inlining sequence references in SQL

You can inline sequence references in jOOQ SQL statements. The following are examples of how to
do that:

// Reference the sequence in a SELECT statement:
BigInteger nextID = create.select(s).fetchOne(S_AUTHOR_ID.nextval());

// Reference the sequence in an INSERT statement:
create.insertInto(AUTHOR, AUTHOR.ID, AUTHOR.FIRST_NAME, AUTHOR.LAST_NAME)
 .values(S_AUTHOR_ID.nextval(), val("William"), val("Shakespeare"));

For more info about inlining sequence references in SQL statements, please refer to the manual's
section about sequences and serials.

The jOOQ User Manual 5.8. Stored procedures and functions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 123 / 174

5.8. Stored procedures and functions

Many RDBMS support the concept of "routines", usually calling them procedures and/or functions.
These concepts have been around in programming languages for a while, also outside of databases.
Famous languages distinguishing procedures from functions are:

- Ada
- BASIC
- Pascal
- etc...

The general distinction between (stored) procedures and (stored) functions can be summarised like this:

Procedures

- Are called using JDBC CallableStatement
- Have no return value
- Usually support OUT parameters

Functions

- Can be used in SQL statements
- Have a return value
- Usually don't support OUT parameters

Exceptions to these rules

- DB2, H2, and HSQLDB don't allow for JDBC escape syntax when calling functions. Functions must
be used in a SELECT statement

- H2 only knows functions (without OUT parameters)
- Oracle functions may have OUT parameters
- Oracle knows functions that must not be used in SQL statements for transactional reasons
- Postgres only knows functions (with all features combined). OUT parameters can also be

interpreted as return values, which is quite elegant/surprising, depending on your taste
- The Sybase jconn3 JDBC driver doesn't handle null values correctly when using the JDBC escape

syntax on functions

In general, it can be said that the field of routines (procedures / functions) is far from being standardised
in modern RDBMS even if the SQL:2008 standard specifies things quite well. Every database has
its ways and JDBC only provides little abstraction over the great variety of procedures / functions
implementations, especially when advanced data types such as cursors / UDT's / arrays are involved.

The jOOQ User Manual 5.8.1. Oracle Packages

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 124 / 174

To simplify things a little bit, jOOQ handles both procedures and functions the same way, using a more
general org.jooq.Routine type.

Using jOOQ for standalone calls to stored procedures and functions

If you're using jOOQ's code generator, it will generate org.jooq.Routine objects for you. Let's consider
the following example:

-- Check whether there is an author in AUTHOR by that name and get his ID
CREATE OR REPLACE PROCEDURE author_exists (author_name VARCHAR2, result OUT NUMBER, id OUT NUMBER);

The generated artefacts can then be used as follows:

// Make an explicit call to the generated procedure object:
AuthorExists procedure = new AuthorExists();

// All IN and IN OUT parameters generate setters
procedure.setAuthorName("Paulo");
procedure.execute(configuration);

// All OUT and IN OUT parameters generate getters
assertEquals(new BigDecimal("1"), procedure.getResult());
assertEquals(new BigDecimal("2"), procedure.getId();

But you can also call the procedure using a generated convenience method in a global Routines class:

// The generated Routines class contains static methods for every procedure.
// Results are also returned in a generated object, holding getters for every OUT or IN OUT parameter.
AuthorExists procedure = Routines.authorExists(configuration, "Paulo");

// All OUT and IN OUT parameters generate getters
assertEquals(new BigDecimal("1"), procedure.getResult());
assertEquals(new BigDecimal("2"), procedure.getId();

For more details about code generation for procedures, see the manual's section about procedures
and code generation.

Inlining stored function references in SQL

Unlike procedures, functions can be inlined in SQL statements to generate column expressions or table
expressions, if you're using unnesting operators. Assume you have a function like this:

-- Check whether there is an author in AUTHOR by that name and get his ID
CREATE OR REPLACE FUNCTION author_exists (author_name VARCHAR2) RETURN NUMBER;

The generated artefacts can then be used as follows:

-- This is the rendered SQL

SELECT AUTHOR_EXISTS('Paulo') FROM DUAL

// Use the static-imported method from Routines:
boolean exists =
create.select(authorExists("Paulo")).fetchOne(0, boolean.class);

For more info about inlining stored function references in SQL statements, please refer to the manual's
section about user-defined functions.

5.8.1. Oracle Packages

Oracle uses the concept of a PACKAGE to group several procedures/functions into a sort of namespace.
The SQL 92 standard talks about "modules", to represent this concept, even if this is rarely implemented

http://www.jooq.org/javadoc/3.0.x/org/jooq/Routine.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Routine.html
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

The jOOQ User Manual 5.8.2. Oracle member procedures

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 125 / 174

as such. This is reflected in jOOQ by the use of Java sub-packages in the source code generation
destination package. Every Oracle package will be reflected by

- A Java package holding classes for formal Java representations of the procedure/function in that
package

- A Java class holding convenience methods to facilitate calling those procedures/functions

Apart from this, the generated source code looks exactly like the one for standalone procedures/
functions.

For more details about code generation for procedures and packages see the manual's section about
procedures and code generation.

5.8.2. Oracle member procedures

Oracle UDTs can have object-oriented structures including member functions and procedures. With
Oracle, you can do things like this:

CREATE OR REPLACE TYPE u_author_type AS OBJECT (
 id NUMBER(7),
 first_name VARCHAR2(50),
 last_name VARCHAR2(50),

 MEMBER PROCEDURE LOAD,
 MEMBER FUNCTION counBOOKs RETURN NUMBER
)

-- The type body is omitted for the example

These member functions and procedures can simply be mapped to Java methods:

// Create an empty, attached UDT record from the DSLContext
UAuthorType author = create.newRecord(U_AUTHOR_TYPE);

// Set the author ID and load the record using the LOAD procedure
author.setId(1);
author.load();

// The record is now updated with the LOAD implementation's content
assertNotNull(author.getFirstName());
assertNotNull(author.getLastName());

For more details about code generation for UDTs see the manual's section about user-defined types
and code generation.

5.9. Exporting to XML, CSV, JSON, HTML, Text

If you are using jOOQ for scripting purposes or in a slim, unlayered application server, you might be
interested in using jOOQ's exporting functionality (see also the importing functionality). You can export
any Result<Record> into the formats discussed in the subsequent chapters of the manual

The jOOQ User Manual 5.9.1. Exporting XML

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 126 / 174

5.9.1. Exporting XML

// Fetch books and format them as XML
String xml = create.selectFrom(BOOK).fetch().formatXML();

The above query will result in an XML document looking like the following one:

<result xmlns="http://www.jooq.org/xsd/jooq-export-2.6.0.xsd">
 <fields>
 <field name="ID" type="INTEGER"/>
 <field name="AUTHOR_ID" type="INTEGER"/>
 <field name="TITLE" type="VARCHAR"/>
 </fields>
 <records>
 <record>
 <value field="ID">1</value>
 <value field="AUTHOR_ID">1</value>
 <value field="TITLE">1984</value>
 </record>
 <record>
 <value field="ID">2</value>
 <value field="AUTHOR_ID">1</value>
 <value field="TITLE">Animal Farm</value>
 </record>
 </records>
</result>

The same result as an org.w3c.dom.Document can be obtained using the Result.intoXML() method:

// Fetch books and format them as XML
Document xml = create.selectFrom(BOOK).fetch().intoXML();

See the XSD schema definition here, for a formal definition of the XML export format:
http://www.jooq.org/xsd/jooq-export-2.6.0.xsd

5.9.2. Exporting CSV

// Fetch books and format them as CSV
String csv = create.selectFrom(BOOK).fetch().formatCSV();

The above query will result in a CSV document looking like the following one:

ID,AUTHOR_ID,TITLE
1,1,1984
2,1,Animal Farm

In addition to the standard behaviour, you can also specify a separator character, as well as a special
string to represent NULL values (which cannot be represented in standard CSV):

// Use ";" as the separator character
String csv = create.selectFrom(BOOK).fetch().formatCSV(';');

// Specify "{null}" as a representation for NULL values
String csv = create.selectFrom(BOOK).fetch().formatCSV(';', "{null}");

http://download.oracle.com/javase/8/docs/apiorg/w3c/dom/Document.html
http://www.jooq.org/xsd/jooq-export-2.6.0.xsd

The jOOQ User Manual 5.9.3. Exporting JSON

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 127 / 174

5.9.3. Exporting JSON

// Fetch books and format them as JSON
String json = create.selectFrom(BOOK).fetch().formatJSON();

The above query will result in a JSON document looking like the following one:

{"fields":[{"name":"field-1","type":"type-1"},
 {"name":"field-2","type":"type-2"},
 ...,
 {"name":"field-n","type":"type-n"}],
 "records":[[value-1-1,value-1-2,...,value-1-n],
 [value-2-1,value-2-2,...,value-2-n]]}

Note: This format has changed in jOOQ 2.6.0

5.9.4. Exporting HTML

// Fetch books and format them as HTML
String html = create.selectFrom(BOOK).fetch().formatHTML();

The above query will result in an HTML document looking like the following one

<table>
 <thead>
 <tr>
 <th>ID</th>
 <th>AUTHOR_ID</th>
 <th>TITLE</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>1</td>
 <td>1</td>
 <td>1984</td>
 </tr>
 <tr>
 <td>2</td>
 <td>1</td>
 <td>Animal Farm</td>
 </tr>
 </tbody>
</table>

5.9.5. Exporting Text

// Fetch books and format them as text
String text = create.selectFrom(BOOK).fetch().format();

The above query will result in a text document looking like the following one

The jOOQ User Manual 5.10. Importing data

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 128 / 174

+---+---------+-----------+
| ID|AUTHOR_ID|TITLE |
+---+---------+-----------+
| 1| 1|1984 |
| 2| 1|Animal Farm|
+---+---------+-----------+

A simple text representation can also be obtained by calling toString() on a Result object. See also the
manual's section about DEBUG logging

5.10. Importing data

If you are using jOOQ for scripting purposes or in a slim, unlayered application server, you might be
interested in using jOOQ's importing functionality (see also exporting functionality). You can import data
directly into a table from the formats described in the subsequent sections of this manual.

5.10.1. Importing CSV

The below CSV data represents two author records that may have been exported previously, by jOOQ's
exporting functionality, and then modified in Microsoft Excel or any other spreadsheet tool:

ID,AUTHOR_ID,TITLE <-- Note the CSV header. By default, the first line is ignored
1,1,1984
2,1,Animal Farm

With jOOQ, you can load this data using various parameters from the loader API. A simple load may
look like this:

DSLContext create = DSL.using(connection, dialect);

// Load data into the AUTHOR table from an input stream
// holding the CSV data. (watch out for encoding!)
create.loadInto(AUTHOR)
 .loadCSV(inputstream)
 .fields(ID, AUTHOR_ID, TITLE)
 .execute();

Here are various other examples:

The jOOQ User Manual 5.10.2. Importing XML

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 129 / 174

// Ignore the AUTHOR_ID column from the CSV file when inserting
create.loadInto(AUTHOR)
 .loadCSV(inputstream)
 .fields(ID, null, TITLE)
 .execute();

// Specify behaviour for duplicate records.
create.loadInto(AUTHOR)

 // choose any of these methods
 .onDuplicateKeyUpdate()
 .onDuplicateKeyIgnore()
 .onDuplicateKeyError() // the default

 .loadCSV(inputstream)
 .fields(ID, null, TITLE)
 .execute();

// Specify behaviour when errors occur.
create.loadInto(AUTHOR)

 // choose any of these methods
 .onErrorIgnore()
 .onErrorAbort() // the default

 .loadCSV(inputstream)
 .fields(ID, null, TITLE)
 .execute();

// Specify transactional behaviour where this is possible
// (e.g. not in container-managed transactions)
create.loadInto(AUTHOR)

 // choose any of these methods
 .commitEach()
 .commitAfter(10)
 .commitAll()
 .commitNone() // the default

 .loadCSV(inputstream)
 .fields(ID, null, TITLE)
 .execute();

Any of the above configuration methods can be combined to achieve the type of load you need. Please
refer to the API's Javadoc to learn about more details. Errors that occur during the load are reported
by the execute method's result:

Loader<Author> loader = /* .. */ .execute();

// The number of processed rows
int processed = loader.processed();

// The number of stored rows (INSERT or UPDATE)
int stored = loader.stored();

// The number of ignored rows (due to errors, or duplicate rule)
int ignored = loader.ignored();

// The errors that may have occurred during loading
List<LoaderError> errors = loader.errors();
LoaderError error = errors.get(0);

// The exception that caused the error
DataAccessException exception = error.exception();

// The row that caused the error
int rowIndex = error.rowIndex();
String[] row = error.row();

// The query that caused the error
Query query = error.query();

5.10.2. Importing XML

This is not yet supported

The jOOQ User Manual 5.11. CRUD with UpdatableRecords

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 130 / 174

5.11. CRUD with UpdatableRecords

Your database application probably consists of 50% - 80% CRUD, whereas only the remaining 20% -
50% of querying is actual querying. Most often, you will operate on records of tables without using any
advanced relational concepts. This is called CRUD for

- Create (INSERT)
- Read (SELECT)
- Update (UPDATE)
- Delete (DELETE)

CRUD always uses the same patterns, regardless of the nature of underlying tables. This again, leads to
a lot of boilerplate code, if you have to issue your statements yourself. Like Hibernate / JPA and other
ORMs, jOOQ facilitates CRUD using a specific API involving org.jooq.UpdatableRecord types.

Primary keys and updatability

In normalised databases, every table has a primary key by which a tuple/record within that table can be
uniquely identified. In simple cases, this is a (possibly auto-generated) number called ID. But in many
cases, primary keys include several non-numeric columns. An important feature of such keys is the fact
that in most databases, they are enforced using an index that allows for very fast random access to the
table. A typical way to access / modify / delete a book is this:

-- Inserting uses a previously generated key value or generates it afresh
INSERT INTO BOOK (ID, TITLE) VALUES (5, 'Animal Farm');

-- Other operations can use a previously generated key value
SELECT * FROM BOOK WHERE ID = 5;
UPDATE BOOK SET TITLE = '1984' WHERE ID = 5;
DELETE FROM BOOK WHERE ID = 5;

Normalised databases assume that a primary key is unique "forever", i.e. that a key, once inserted into
a table, will never be changed or re-inserted after deletion. In order to use jOOQ's CRUD operations
correctly, you should design your database accordingly.

5.11.1. Simple CRUD

If you're using jOOQ's code generator, it will generate org.jooq.UpdatableRecord implementations for
every table that has a primary key. When fetching such a record form the database, these records are
"attached" to the Configuration that created them. This means that they hold an internal reference to
the same database connection that was used to fetch them. This connection is used internally by any
of the following methods of the UpdatableRecord:

// Refresh a record from the database.
void refresh() throws DataAccessException;

// Store (insert or update) a record to the database.
int store() throws DataAccessException;

// Delete a record from the database
int delete() throws DataAccessException;

http://www.jooq.org/javadoc/3.0.x/org/jooq/UpdatableRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UpdatableRecord.html

The jOOQ User Manual 5.11.1. Simple CRUD

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 131 / 174

See the manual's section about serializability for some more insight on "attached" objects.

Storing

Storing a record will perform an INSERT statement or an UPDATE statement. In general, new records are
always inserted, whereas records loaded from the database are always updated. This is best visualised
in code:

// Create a new record
BookRecord book1 = create.newRecord(BOOK);

// Insert the record: INSERT INTO BOOK (TITLE) VALUES ('1984');
book1.setTitle("1984");
book1.store();

// Update the record: UPDATE BOOK SET PUBLISHED_IN = 1984 WHERE ID = [id]
book1.setPublishedIn(1948);
book1.store();

// Get the (possibly) auto-generated ID from the record
Integer id = book1.getId();

// Get another instance of the same book
BookRecord book2 = create.fetchOne(BOOK, BOOK.ID.equal(id));

// Update the record: UPDATE BOOK SET TITLE = 'Animal Farm' WHERE ID = [id]
book2.setTitle("Animal Farm");
book2.store();

Some remarks about storing:

- jOOQ sets only modified values in INSERT statements or UPDATE statements. This allows for
default values to be applied to inserted records, as specified in CREATE TABLE DDL statements.

- When store() performs an INSERT statement, jOOQ attempts to load any generated keys from
the database back into the record. For more details, see the manual's section about IDENTITY
values.

- When loading records from POJOs, jOOQ will assume the record is a new record. It will hence
attempt to INSERT it.

- When you activate optimistic locking, storing a record may fail, if the underlying database record
has been changed in the mean time.

Deleting

Deleting a record will remove it from the database. Here's how you delete records:

// Get a previously inserted book
BookRecord book = create.fetchOne(BOOK, BOOK.ID.equal(5));

// Delete the book
book.delete();

Refreshing

Refreshing a record from the database means that jOOQ will issue a SELECT statement to refresh all
record values that are not the primary key. This is particularly useful when you use jOOQ's optimistic
locking feature, in case a modified record is "stale" and cannot be stored to the database, because the
underlying database record has changed in the mean time.

In order to perform a refresh, use the following Java code:

The jOOQ User Manual 5.11.2. Records' internal flags

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 132 / 174

// Fetch an updatable record from the database
BookRecord book = create.fetchOne(BOOK, BOOK.ID.equal(5));

// Refresh the record
book.refresh();

CRUD and SELECT statements

CRUD operations can be combined with regular querying, if you select records from single database
tables, as explained in the manual's section about SELECT statements. For this, you will need to use the
selectFrom() method from the DSLContext:

// Loop over records returned from a SELECT statement
for (BookRecord book : create.fetch(BOOK, BOOK.PUBLISHED_IN.equal(1948))) {

 // Perform actions on BookRecords depending on some conditions
 if ("Orwell".equals(book.fetchParent(Keys.FK_BOOK_AUTHOR).getLastName())) {
 book.delete();
 }
}

5.11.2. Records' internal flags

All of jOOQ's Record types and subtypes maintain an internal state for every column value. This state
is composed of three elements:

- The value itself
- The "original" value, i.e. the value as it was originally fetched from the database or null, if the

record was never in the database
- The "changed" flag, indicating if the value was ever changed through the Record API.

The purpose of the above information is for jOOQ's CRUD operations to know, which values need to be
stored to the database, and which values have been left untouched.

5.11.3. IDENTITY values

Many databases support the concept of IDENTITY values, or SEQUENCE-generated key values. This is
reflected by JDBC's getGeneratedKeys() method. jOOQ abstracts using this method as many databases
and JDBC drivers behave differently with respect to generated keys. Let's assume the following SQL
Server BOOK table:

CREATE TABLE book (
 ID INTEGER IDENTITY(1,1) NOT NULL,

 -- [...]

 CONSTRAINT pk_book PRIMARY KEY (id)
)

If you're using jOOQ's code generator, the above table will generate a org.jooq.UpdatableRecord with
an IDENTITY column. This information is used by jOOQ internally, to update IDs after calling store():

http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html#getGeneratedKeys()
http://www.jooq.org/javadoc/3.0.x/org/jooq/UpdatableRecord.html

The jOOQ User Manual 5.11.4. Navigation methods

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 133 / 174

BookRecord book = create.newRecord(BOOK);
book.setTitle("1984");
book.store();

// The generated ID value is fetched after the above INSERT statement
System.out.println(book.getId());

Database compatibility

DB2, Derby, HSQLDB, Ingres

These SQL dialects implement the standard very neatly.

id INTEGER GENERATED BY DEFAULT AS IDENTITY
id INTEGER GENERATED BY DEFAULT AS IDENTITY (START WITH 1)

H2, MySQL, Postgres, SQL Server, Sybase ASE, Sybase SQL Anywhere

These SQL dialects implement identites, but the DDL syntax doesn’t follow the standard

-- H2 mimicks MySQL's and SQL Server's syntax
ID INTEGER IDENTITY(1,1)
ID INTEGER AUTO_INCREMENT
-- MySQL and SQLite
ID INTEGER NOT NULL AUTO_INCREMENT

-- Postgres serials implicitly create a sequence
-- Postgres also allows for selecting from custom sequences
-- That way, sequences can be shared among tables
id SERIAL NOT NULL

-- SQL Server
ID INTEGER IDENTITY(1,1) NOT NULL
-- Sybase ASE
id INTEGER IDENTITY NOT NULL
-- Sybase SQL Anywhere
id INTEGER NOT NULL IDENTITY

Oracle

Oracle does not know any identity columns at all. Instead, you will have to use a trigger and update the
ID column yourself, using a custom sequence. Something along these lines:

CREATE OR REPLACE TRIGGER my_trigger
BEFORE INSERT
ON my_table
REFERENCING NEW AS new
FOR EACH ROW
BEGIN
 SELECT my_sequence.nextval
 INTO :new.id
 FROM dual;
END my_trigger;

Note, that this approach can be employed in most databases supporting sequences and triggers! It is
a lot more flexible than standard identities

5.11.4. Navigation methods

org.jooq.TableRecord and org.jooq.UpdatableRecord contain foreign key navigation methods. These
navigation methods allow for "navigating" inbound or outbound foreign key references by executing an
appropriate query. An example is given here:

http://www.jooq.org/javadoc/3.0.x/org/jooq/TableRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UpdatableRecord.html

The jOOQ User Manual 5.11.5. Non-updatable records

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 134 / 174

CREATE TABLE book (
 AUTHOR_ID NUMBER(7) NOT NULL,

 -- [...]

 FOREIGN KEY (AUTHOR_ID) REFERENCES author(ID)
)

BookRecord book = create.fetch(BOOK, BOOK.ID.equal(5));

// Find the author of a book (static imported from Keys)
AuthorRecord author = book.fetchParent(FK_BOOK_AUTHOR);

// Find other books by that author
Result<BookRecord> books = author.fetchChildren(FK_BOOK_AUTHOR);

Note that, unlike in Hibernate, jOOQ's navigation methods will always lazy-fetch relevant records,
without caching any results. In other words, every time you run such a fetch method, a new query will
be issued.

These fetch methods only work on "attached" records. See the manual's section about serializability for
some more insight on "attached" objects.

5.11.5. Non-updatable records

Tables without a PRIMARY KEY are considered non-updatable by jOOQ, as jOOQ has no way of uniquely
identifying such a record within the database. If you're using jOOQ's code generator, such tables will
generate org.jooq.TableRecord classes, instead of org.jooq.UpdatableRecord classes. When you fetch
typed records from such a table, the returned records will not allow for calling any of the store(), refresh(),
delete() methods.

Note, that some databases use internal rowid or object-id values to identify such records. jOOQ does
not support these vendor-specific record meta-data.

5.11.6. Optimistic locking

jOOQ allows you to perform CRUD operations using optimistic locking. You can immediately take
advantage of this feature by activating the relevant executeWithOptimisticLocking Setting. Without any
further knowledge of the underlying data semantics, this will have the following impact on store() and
delete() methods:

- INSERT statements are not affected by this Setting flag
- Prior to UPDATE or DELETE statements, jOOQ will run a SELECT .. FOR UPDATE statement,

pessimistically locking the record for the subsequent UPDATE / DELETE
- The data fetched with the previous SELECT will be compared against the data in the record being

stored or deleted
- An org.jooq.exception.DataChangedException is thrown if the record had been modified in the

mean time
- The record is successfully stored / deleted, if the record had not been modified in the mean

time.

The above changes to jOOQ's behaviour are transparent to the API, the only thing you need to do for
it to be activated is to set the Settings flag. Here is an example illustrating optimistic locking:

http://www.jooq.org/javadoc/3.0.x/org/jooq/TableRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UpdatableRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/exception/DataChangedException.html

The jOOQ User Manual 5.11.6. Optimistic locking

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 135 / 174

// Properly configure the DSLContext
DSLContext optimistic = DSLContext.using(connection, SQLDialect.ORACLE,
 new Settings().withExecuteWithOptimisticLocking(true));

// Fetch a book two times
BookRecord book1 = optimistic.fetch(BOOK, BOOK.ID.equal(5));
BookRecord book2 = optimistic.fetch(BOOK, BOOK.ID.equal(5));

// Change the title and store this book. The underlying database record has not been modified, it can be safely updated.
book1.setTitle("Animal Farm");
book1.store();

// Book2 still references the original TITLE value, but the database holds a new value from book1.store().
// This store() will thus fail:
book2.setTitle("1984");
book2.store();

Optimised optimistic locking using TIMESTAMP fields

If you're using jOOQ's code generator, you can take indicate TIMESTAMP or UPDATE COUNTER fields
for every generated table in the code generation configuration. Let's say we have this table:

CREATE TABLE book (

 -- This column indicates when each book record was modified for the last time
 MODIFIED TIMESTAMP NOT NULL,
 -- [...]
)

The MODIFIED column will contain a timestamp indicating the last modification timestamp for any
book in the BOOK table. If you're using jOOQ and it's store() methods on UpdatableRecords, jOOQ will
then generate this TIMESTAMP value for you, automatically. However, instead of running an additional
SELECT .. FOR UPDATE statement prior to an UPDATE or DELETE statement, jOOQ adds a WHERE-clause
to the UPDATE or DELETE statement, checking for TIMESTAMP's integrity. This can be best illustrated
with an example:

// Properly configure the DSLContext
DSLContext optimistic = DSL.using(connection, SQLDialect.ORACLE,
 new Settings().withExecuteWithOptimisticLocking(true));

// Fetch a book two times
BookRecord book1 = optimistic.fetch(BOOK, BOOK.ID.equal(5));
BookRecord book2 = optimistic.fetch(BOOK, BOOK.ID.equal(5));

// Change the title and store this book. The MODIFIED value has not been changed since the book was fetched.
// It can be safely updated
book1.setTitle("Animal Farm");
book1.store();

// Book2 still references the original MODIFIED value, but the database holds a new value from book1.store().
// This store() will thus fail:
book2.setTitle("1984");
book2.store();

As before, without the added TIMESTAMP column, optimistic locking is transparent to the API.

Optimised optimistic locking using VERSION fields

Instead of using TIMESTAMPs, you may also use numeric VERSION fields, containing version numbers
that are incremented by jOOQ upon store() calls.

Note, for explicit pessimistic locking, please consider the manual's section about the FOR UPDATE
clause. For more details about how to configure TIMESTAMP or VERSION fields, consider the manual's
section about advanced code generator configuration.

The jOOQ User Manual 5.11.7. Batch execution

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 136 / 174

5.11.7. Batch execution

When inserting, updating, deleting a lot of records, you may wish to profit from JDBC batch operations,
which can be performed by jOOQ. These are available through jOOQ's DSLContext as shown in the
following example:

// Fetch a bunch of books
Result<BookRecord> books = create.fetch(BOOK);

// Modify the above books, and add some new ones:
modify(books);
addMore(books);

// Batch-update and/or insert all of the above books
create.batchStore(books);

Internally, jOOQ will render all the required SQL statements and execute them as a regular JDBC batch
execution.

5.12. DAOs

If you're using jOOQ's code generator, you can configure it to generate POJOs and DAOs for you.
jOOQ then generates one DAO per UpdatableRecord, i.e. per table with a single-column primary key.
Generated DAOs implement a common jOOQ type called org.jooq.DAO. This type contains the following
methods:

// <R> corresponds to the DAO's related table
// <P> corresponds to the DAO's related generated POJO type
// <T> corresponds to the DAO's related table's primary key type.
// Note that multi-column primary keys are not yet supported by DAOs
public interface DAO<R extends TableRecord<R>, P, T> {

 // These methods allow for inserting POJOs
 void insert(P object) throws DataAccessException;
 void insert(P... objects) throws DataAccessException;
 void insert(Collection<P> objects) throws DataAccessException;

 // These methods allow for updating POJOs based on their primary key
 void update(P object) throws DataAccessException;
 void update(P... objects) throws DataAccessException;
 void update(Collection<P> objects) throws DataAccessException;

 // These methods allow for deleting POJOs based on their primary key
 void delete(P... objects) throws DataAccessException;
 void delete(Collection<P> objects) throws DataAccessException;
 void deleteById(T... ids) throws DataAccessException;
 void deleteById(Collection<T> ids) throws DataAccessException;

 // These methods allow for checking record existence
 boolean exists(P object) throws DataAccessException;
 boolean existsById(T id) throws DataAccessException;
 long count() throws DataAccessException;

 // These methods allow for retrieving POJOs by primary key or by some other field
 List<P> findAll() throws DataAccessException;
 P findById(T id) throws DataAccessException;
 <Z> List<P> fetch(Field<Z> field, Z... values) throws DataAccessException;
 <Z> P fetchOne(Field<Z> field, Z value) throws DataAccessException;

 // These methods provide DAO meta-information
 Table<R> getTable();
 Class<P> getType();
}

Besides these base methods, generated DAO classes implement various useful fetch methods. An
incomplete example is given here, for the BOOK table:

http://www.jooq.org/javadoc/3.0.x/org/jooq/DAO.html

The jOOQ User Manual 5.13. Exception handling

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 137 / 174

// An example generated BookDao class
public class BookDao extends DAOImpl<BookRecord, Book, Integer> {

 // Columns with primary / unique keys produce fetchOne() methods
 public Book fetchOneById(Integer value) { ... }

 // Other columns produce fetch() methods, returning several records
 public List<Book> fetchByAuthorId(Integer... values) { ... }
 public List<Book> fetchByTitle(String... values) { ... }
}

Note that you can further subtype those pre-generated DAO classes, to add more useful DAO methods
to them. Using such a DAO is simple:

// Initialise an Configuration
Configuration configuration = new DefaultConfiguration().set(connection).set(SQLDialect.ORACLE);

// Initialise the DAO with the Configuration
BookDao bookDao = new BookDao(configuration);

// Start using the DAO
Book book = bookDao.findById(5);

// Modify and update the POJO
book.setTitle("1984");
book.setPublishedIn(1948);
bookDao.update(book);

// Delete it again
bookDao.delete(book);

5.13. Exception handling

Checked vs. unchecked exceptions

This is an eternal and religious debate. Pros and cons have been discussed time and again, and it still
is a matter of taste, today. In this case, jOOQ clearly takes a side. jOOQ's exception strategy is simple:

- All "system exceptions" are unchecked. If in the middle of a transaction involving business logic,
there is no way that you can recover sensibly from a lost database connection, or a constraint
violation that indicates a bug in your understanding of your database model.

- All "business exceptions" are checked. Business exceptions are true exceptions that you should
handle (e.g. not enough funds to complete a transaction).

With jOOQ, it's simple. All of jOOQ's exceptions are "system exceptions", hence they are all unchecked.

jOOQ's DataAccessException

jOOQ uses its own org.jooq.exception.DataAccessException to wrap any underlying
java.sql.SQLException that might have occurred. Note that all methods in jOOQ that may cause such a
DataAccessException document this both in the Javadoc as well as in their method signature.

DataAccessException is subtyped several times as follows:

http://www.jooq.org/javadoc/3.0.x/org/jooq/exception/DataAccessException.html
http://download.oracle.com/javase/8/docs/apijava/sql/SQLException.html

The jOOQ User Manual 5.14. ExecuteListeners

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 138 / 174

- DataAccessException: General exception usually originating from a java.sql.SQLException
- DataChangedException: An exception indicating that the database's underlying record has been

changed in the mean time (see optimistic locking)
- DataTypeException: Something went wrong during type conversion
- DetachedException: A SQL statement was executed on a "detached" UpdatableRecord or a

"detached" SQL statement.
- InvalidResultException: An operation was performed expecting only one result, but several

results were returned.
- MappingException: Something went wrong when loading a record from a POJO or when

mapping a record into a POJO

Override jOOQ's exception handling

The following section about execute listeners documents means of overriding jOOQ's exception
handling, if you wish to deal separately with some types of constraint violations, or if you raise business
errors from your database, etc.

5.14. ExecuteListeners

The Executor class lets you specify a list of org.jooq.ExecuteListener instances. The ExecuteListener
is essentially an event listener for Query, Routine, or ResultSet render, prepare, bind, execute, fetch
steps. It is a base type for loggers, debuggers, profilers, data collectors, triggers, etc. Advanced
ExecuteListeners can also provide custom implementations of Connection, PreparedStatement and
ResultSet to jOOQ in apropriate methods.

For convenience and better backwards-compatibility, consider extending
org.jooq.impl.DefaultExecuteListener instead of implementing this interface.

Here is a sample implementation of an ExecuteListener, that is simply counting the number of queries
per type that are being executed using jOOQ:

package com.example;

// Extending DefaultExecuteListener, which provides empty implementations for all methods...
public class StatisticsListener extends DefaultExecuteListener {
 public static Map<ExecuteType, Integer> STATISTICS = new HashMap<ExecuteType, Integer>();

 // Count "start" events for every type of query executed by jOOQ
 @Override
 public void start(ExecuteContext ctx) {
 synchronized (STATISTICS) {
 Integer count = STATISTICS.get(ctx.type());

 if (count == null) {
 count = 0;
 }

 STATISTICS.put(ctx.type(), count + 1);
 }
 }
}

Now, configure jOOQ's runtime to load your listener

// Create a configuration with an appropriate listener provider:
Configuration configuration = new DefaultConfiguration().set(connection).set(dialect);
configuration.set(new DefaultExecuteListenerProvider(new StatisticsListener()));

// Create a DSLContext from the above configuration
DSLContext create = DSL.using(configuration);

http://download.oracle.com/javase/8/docs/apijava/sql/SQLException.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ExecuteListener.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DefaultExecuteListener.html

The jOOQ User Manual 5.15. Database meta data

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 139 / 174

And log results any time with a snippet like this:

log.info("STATISTICS");
log.info("----------");

for (ExecuteType type : ExecuteType.values()) {
 log.info(type.name(), StatisticsListener.STATISTICS.get(type) + " executions");
}

This may result in the following log output:

15:16:52,982 INFO - TEST STATISTICS
15:16:52,982 INFO - ---------------
15:16:52,983 INFO - READ : 919 executions
15:16:52,983 INFO - WRITE : 117 executions
15:16:52,983 INFO - DDL : 2 executions
15:16:52,983 INFO - BATCH : 4 executions
15:16:52,983 INFO - ROUTINE : 21 executions
15:16:52,983 INFO - OTHER : 30 executions

Please read the ExecuteListener Javadoc for more details

Writing a custom ExecuteListener for logging

The following depicts an example of a custom ExecuteListener, which pretty-prints all queries being
executed by jOOQ to stdout:

import org.jooq.DSLContext;
import org.jooq.ExecuteContext;
import org.jooq.conf.Settings;
import org.jooq.impl.DefaultExecuteListener;
import org.jooq.tools.StringUtils;

public class PrettyPrinter extends DefaultExecuteListener {

 /**
 * Hook into the query execution lifecycle before executing queries
 */
 @Override
 public void executeStart(ExecuteContext ctx) {

 // Create a new DSLContext for logging rendering purposes
 // This DSLContext doesn't need a connection, only the SQLDialect...
 DSLContext create = DSL.using(ctx.configuration().dialect(),

 // ... and the flag for pretty-printing
 new Settings().withRenderFormatted(true));

 // If we're executing a query
 if (ctx.query() != null) {
 System.out.println(create.renderInlined(ctx.query()));
 }

 // If we're executing a routine
 else if (ctx.routine() != null) {
 System.out.println(create.renderInlined(ctx.routine()));
 }

 // If we're executing anything else (e.g. plain SQL)
 else if (!StringUtils.isBlank(ctx.sql())) {
 System.out.println(ctx.sql());
 }
 }
}

See also the manual's sections about logging and the jOOQ Console for more sample implementations
of actual ExecuteListeners.

5.15. Database meta data

Since jOOQ 3.0, a simple wrapping API has been added to wrap JDBC's rather awkward
java.sql.DatabaseMetaData. This API is still experimental, as the calls to the underlying JDBC type are
not always available for all SQL dialects.

http://www.jooq.org/javadoc/3.0.x/org/jooq/ExecuteListener.html
http://download.oracle.com/javase/8/docs/apijava/sql/DatabaseMetaData.html

The jOOQ User Manual 5.16. Logging

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 140 / 174

5.16. Logging

jOOQ logs all SQL queries and fetched result sets to its internal DEBUG logger, which is implemented
as an execute listener. By default, execute logging is activated in the jOOQ Settings. In order to see any
DEBUG log output, put either log4j or slf4j on jOOQ's classpath along with their respective configuration.
A sample log4j configuration can be seen here:

<?xml version="1.0" encoding="UTF-8"?>
<log4j:configuration>
 <appender name="stdout" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%m%n" />
 </layout>
 </appender>

 <root>
 <priority value="debug" />
 <appender-ref ref="stdout" />
 </root>
</log4j:configuration>

With the above configuration, let's fetch some data with jOOQ

// Using H2, this time
create.select(BOOK.ID, BOOK.TITLE).from(BOOK).orderBy(BOOK.ID).limit(1, 2).fetch();

The above query may result in the following log output:

Executing query : select "BOOK"."ID", "BOOK"."TITLE" from "BOOK" order by "BOOK"."ID" asc, limit ? offset ?
-> with bind values : select "BOOK"."ID", "BOOK"."TITLE" from "BOOK" order by "BOOK"."ID" asc, limit 2 offset 1
Query executed : Total: 1.439ms
Fetched result : +----+------------+
 : | ID|TITLE |
 : +----+------------+
 : | 2|Animal Farm |
 : | 3|O Alquimista|
 : +----+------------+
Finishing : Total: 4.814ms, +3.375ms

Essentially, jOOQ will log

- The SQL statement as rendered to the prepared statement
- The SQL statement with inlined bind values (for improved debugging)
- The query execution time
- The first 5 records of the result. This is formatted using jOOQ's text export
- The total execution + fetching time

If you wish to use your own logger (e.g. avoiding printing out sensitive data), you can deactivate jOOQ's
logger using your custom settings and implement your own execute listener logger.

5.17. Performance considerations

Many users may have switched from higher-level abstractions such as Hibernate to jOOQ, because
of Hibernate's difficult-to-manage performance, when it comes to large database schemas and
complex second-level caching strategies. However, jOOQ itself is not a lightweight database abstraction
framework, and it comes with its own overhead. Please be sure to consider the following points:

The jOOQ User Manual 5.17. Performance considerations

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 141 / 174

- It takes some time to construct jOOQ queries. If you can reuse the same queries, you might
cache them. Beware of thread-safety issues, though, as jOOQ's Configuration is not necessarily
threadsafe, and queries are "attached" to their creating DSLContext

- It takes some time to render SQL strings. Internally, jOOQ reuses the same
java.lang.StringBuilder for the complete query, but some rendering elements may take
their time. You could, of course, cache SQL generated by jOOQ and prepare your own
java.sql.PreparedStatement objects

- It takes some time to bind values to prepared statements. jOOQ does not keep any open
prepared statements, internally. Use a sophisticated connection pool, that will cache prepared
statements and inject them into jOOQ through the standard JDBC API

- It takes some time to fetch results. By default, jOOQ will always fetch the complete
java.sql.ResultSet into memory. Use lazy fetching to prevent that, and scroll over an open
underlying database cursor

Optimise wisely

Don't be put off by the above paragraphs. You should optimise wisely, i.e. only in places where you really
need very high throughput to your database. jOOQ's overhead compared to plain JDBC is typically less
than 1ms per query.

http://download.oracle.com/javase/8/docs/apijava/lang/StringBuilder.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html

The jOOQ User Manual 6. Code generation

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 142 / 174

6. Code generation

While optional, source code generation is one of jOOQ's main assets if you wish to increase developer
productivity. jOOQ's code generator takes your database schema and reverse-engineers it into a set of
Java classes modelling tables, records, sequences, POJOs, DAOs, stored procedures, user-defined types
and many more.

The essential ideas behind source code generation are these:

- Increased IDE support: Type your Java code directly against your database schema, with all type
information available

- Type-safety: When your database schema changes, your generated code will change as well.
Removing columns will lead to compilation errors, which you can detect early.

The following chapters will show how to configure the code generator and how to generate various
artefacts.

6.1. Configuration and setup of the generator

There are three binaries available with jOOQ, to be downloaded from http://www.jooq.org/download
or from Maven central:

- jooq-3.0.1.jar
The main library that you will include in your application to run jOOQ

- jooq-meta-3.0.1.jar
The utility that you will include in your build to navigate your database schema for code
generation. This can be used as a schema crawler as well.

- jooq-codegen-3.0.1.jar
The utility that you will include in your build to generate your database schema

Configure jOOQ's code generator

You need to tell jOOQ some things about your database connection. Here's an example of how to do
it for an Oracle database

http://www.jooq.org/download

The jOOQ User Manual 6.1. Configuration and setup of the generator

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 143 / 174

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>
 <!-- Configure the database connection here -->
 <jdbc>
 <driver>oracle.jdbc.OracleDriver</driver>
 <url>jdbc:oracle:thin:@[your jdbc connection parameters]</url>
 <user>[your database user]</user>
 <password>[your database password]</password>

 <!-- You can also pass user/password and other JDBC properties in the optional properties tag: -->
 <properties>
 <property><key>user</key><value>[db-user]</value></property>
 <property><key>password</key><value>[db-password]</value></property>
 </properties>
 </jdbc>

 <generator>
 <database>
 <!-- The database dialect from jooq-meta. Available dialects are
 named org.util.[database].[database]Database. Known values are:

 org.jooq.util.ase.ASEDatabase (to be used with Sybase ASE)
 org.jooq.util.cubrid.CUBRIDDatabase
 org.jooq.util.db2.DB2Database
 org.jooq.util.derby.DerbyDatabase
 org.jooq.util.h2.H2Database
 org.jooq.util.hsqldb.HSQLDBDatabase
 org.jooq.util.ingres.IngresDatabase
 org.jooq.util.mysql.MySQLDatabase
 org.jooq.util.oracle.OracleDatabase
 org.jooq.util.postgres.PostgresDatabase
 org.jooq.util.sqlite.SQLiteDatabase
 org.jooq.util.sqlserver.SQLServerDatabase
 org.jooq.util.sybase.SybaseDatabase (to be used with Sybase SQL Anywhere)

 You can also provide your own org.jooq.util.Database implementation
 here, if your database is currently not supported or if you wish to
 read the database schema from a file, such as a Hibernate .hbm.xml file -->
 <name>org.jooq.util.oracle.OracleDatabase</name>

 <!-- All elements that are generated from your schema (A Java regular expression.
 Use the pipe to separate several expressions) Watch out for
 case-sensitivity. Depending on your database, this might be
 important! You can create case-insensitive regular expressions
 using this syntax: (?i:expr) -->
 <includes>.*</includes>

 <!-- All elements that are excluded from your schema (A Java regular expression.
 Use the pipe to separate several expressions). Excludes match before
 includes -->
 <excludes></excludes>

 <!-- The schema that is used locally as a source for meta information.
 This could be your development schema or the production schema, etc
 This cannot be combined with the schemata element.

 If left empty, jOOQ will generate all available schemata. See the
 manual's next section to learn how to generate several schemata -->
 <inputSchema>[your database schema / owner / name]</inputSchema>
 </database>

 <generate>
 <!-- Generation flags: See advanced configuration properties -->
 </generate>

 <target>
 <!-- The destination package of your generated classes (within the
 destination directory) -->
 <packageName>[org.jooq.your.packagename]</packageName>

 <!-- The destination directory of your generated classes -->
 <directory>[/path/to/your/dir]</directory>
 </target>
 </generator>
</configuration>

There are also lots of advanced configuration parameters, which will be treated in the manual's
section about advanced code generation features Note, you can find the official XSD file for a formal
specification at:
http://www.jooq.org/xsd/jooq-codegen-3.0.0.xsd

Run jOOQ code generation

Code generation works by calling this class with the above property file as argument.

org.jooq.util.GenerationTool /jooq-config.xml

http://www.jooq.org/xsd/jooq-codegen-3.0.0.xsd

The jOOQ User Manual 6.1. Configuration and setup of the generator

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 144 / 174

Be sure that these elements are located on the classpath:

- The XML configuration file
- jooq-3.0.1.jar, jooq-meta-3.0.1.jar, jooq-codegen-3.0.1.jar
- The JDBC driver you configured

A command-line example (For Windows, unix/linux/etc will be similar)

- Put the property file, jooq*.jar and the JDBC driver into a directory, e.g. C:\temp\jooq
- Go to C:\temp\jooq
- Run java -cp jooq-3.0.1.jar;jooq-meta-3.0.1.jar;jooq-codegen-3.0.1.jar;[JDBC-driver].jar;.

org.jooq.util.GenerationTool /[XML file]

Note that the property file must be passed as a classpath resource

Run code generation from Eclipse

Of course, you can also run code generation from your IDE. In Eclipse, set up a project like this. Note that:

- this example uses jOOQ's log4j support by adding log4j.xml and log4j.jar to the project
classpath.

- the actual jooq-3.0.1.jar, jooq-meta-3.0.1.jar, jooq-codegen-3.0.1.jar artefacts may contain
version numbers in the file names.

Once the project is set up correctly with all required artefacts on the classpath, you can configure an
Eclipse Run Configuration for org.jooq.util.GenerationTool.

The jOOQ User Manual 6.1. Configuration and setup of the generator

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 145 / 174

With the XML file as an argument

And the classpath set up correctly

The jOOQ User Manual 6.1. Configuration and setup of the generator

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 146 / 174

Finally, run the code generation and see your generated artefacts

Run generation with ant

When running code generation with ant's <java/> task, you may have to set fork="true":

<!-- Run the code generation task -->
<target name="generate-test-classes">
 <java fork="true" classname="org.jooq.util.GenerationTool">
 [...]
 </java>
</target>

The jOOQ User Manual 6.2. Advanced generator configuration

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 147 / 174

Integrate generation with Maven

Using the official jOOQ-codegen-maven plugin, you can integrate source code generation in your Maven
build process:

<plugin>

 <!-- Specify the maven code generator plugin -->
 <groupId>org.jooq</groupId>
 <artifactId>jooq-codegen-maven</artifactId>
 <version>3.0.1</version>

 <!-- The plugin should hook into the generate goal -->
 <executions>
 <execution>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>

 <!-- Manage the plugin's dependency. In this example, we'll use a PostgreSQL database -->
 <dependencies>
 <dependency>
 <groupId>postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>8.4-702.jdbc4</version>
 </dependency>
 </dependencies>

 <!-- Specify the plugin configuration.
 The configuration format is the same as for the standalone code generator -->
 <configuration>

 <!-- JDBC connection parameters -->
 <jdbc>
 <driver>org.postgresql.Driver</driver>
 <url>jdbc:postgresql:postgres</url>
 <user>postgres</user>
 <password>test</password>
 </jdbc>

 <!-- Generator parameters -->
 <generator>
 <database>
 <name>org.jooq.util.postgres.PostgresDatabase</name>
 <includes>.*</includes>
 <excludes></excludes>
 <inputSchema>public</inputSchema>
 </database>
 <target>
 <packageName>org.jooq.util.maven.example</packageName>
 <directory>target/generated-sources/jooq</directory>
 </target>
 </generator>
 </configuration>
</plugin>

Use jOOQ generated classes in your application

Be sure, both jooq-3.0.1.jar and your generated package (see configuration) are located on your
classpath. Once this is done, you can execute SQL statements with your generated classes.

6.2. Advanced generator configuration

In the previous section we have seen how jOOQ's source code generator is configured and run within
a few steps. In this chapter we'll cover some advanced settings

The jOOQ User Manual 6.2. Advanced generator configuration

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 148 / 174

<!-- These properties can be added directly to the generator element: -->
<generator>
 <!-- The default code generator. You can override this one, to generate your own code style
 Defaults to org.jooq.util.JavaGenerator -->
 <name>org.jooq.util.JavaGenerator</name>

 <!-- The naming strategy used for class and field names.
 You may override this with your custom naming strategy. Some examples follow
 Defaults to org.jooq.util.DefaultGeneratorStrategy -->
 <strategy>
 <name>org.jooq.util.DefaultGeneratorStrategy</name>
 </strategy>
</generator>

The following example shows how you can override the DefaultGeneratorStrategy to render table and
column names the way they are defined in the database, rather than switching them to camel case:

The jOOQ User Manual 6.2. Advanced generator configuration

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 149 / 174

/**
 * It is recommended that you extend the DefaultGeneratorStrategy. Most of the
 * GeneratorStrategy API is already declared final. You only need to override any
 * of the following methods, for whatever generation behaviour you'd like to achieve
 *
 * Beware that most methods also receive a "Mode" object, to tell you whether a
 * TableDefinition is being rendered as a Table, Record, POJO, etc. Depending on
 * that information, you can add a suffix only for TableRecords, not for Tables
 */
public class AsInDatabaseStrategy extends DefaultGeneratorStrategy {

 /**
 * Override this to specifiy what identifiers in Java should look like.
 * This will just take the identifier as defined in the database.
 */
 @Override
 public String getJavaIdentifier(Definition definition) {
 return definition.getOutputName();
 }

 /**
 * Override these to specify what a setter in Java should look like. Setters
 * are used in TableRecords, UDTRecords, and POJOs. This example will name
 * setters "set[NAME_IN_DATABASE]"
 */
 @Override
 public String getJavaSetterName(Definition definition, Mode mode) {
 return "set" + definition.getOutputName();
 }

 /**
 * Just like setters...
 */
 @Override
 public String getJavaGetterName(Definition definition, Mode mode) {
 return "get" + definition.getOutputName();
 }

 /**
 * Override this method to define what a Java method generated from a database
 * Definition should look like. This is used mostly for convenience methods
 * when calling stored procedures and functions. This example shows how to
 * set a prefix to a CamelCase version of your procedure
 */
 @Override
 public String getJavaMethodName(Definition definition, Mode mode) {
 return "call" + org.jooq.tools.StringUtils.toCamelCase(definition.getOutputName());
 }

 /**
 * Override this method to define how your Java classes and Java files should
 * be named. This example applies no custom setting and uses CamelCase versions
 * instead
 */
 @Override
 public String getJavaClassName(Definition definition, Mode mode) {
 return super.getJavaClassName(definition, mode);
 }

 /**
 * Override this method to re-define the package names of your generated
 * artefacts.
 */
 @Override
 public String getJavaPackageName(Definition definition, Mode mode) {
 return super.getJavaPackageName(definition, mode);
 }

 /**
 * Override this method to define how Java members should be named. This is
 * used for POJOs and method arguments
 */
 @Override
 public String getJavaMemberName(Definition definition, Mode mode) {
 return definition.getOutputName();
 }

 /**
 * Override this method to define the base class for those artefacts that
 * allow for custom base classes
 */
 @Override
 public String getJavaClassExtends(Definition definition, Mode mode) {
 return Object.class.getName();
 }

 /**
 * Override this method to define the interfaces to be implemented by those
 * artefacts that allow for custom interface implementation
 */
 @Override
 public List<String> getJavaClassImplements(Definition definition, Mode mode) {
 return Arrays.asList(Serializable.class.getName(), Cloneable.class.getName());
 }

 /**
 * Override this method to define the suffix to apply to routines when
 * they are overloaded.
 *
 * Use this to resolve compile-time conflicts in generated source code, in
 * case you make heavy use of procedure overloading
 */
 @Override
 public String getOverloadSuffix(Definition definition, Mode mode, String overloadIndex) {
 return "_OverloadIndex_" + overloadIndex;
 }
}

The jOOQ User Manual 6.2. Advanced generator configuration

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 150 / 174

More examples can be found here:

- org.jooq.util.example.JPrefixGeneratorStrategy
- org.jooq.util.example.JVMArgsGeneratorStrategy

jooq-meta configuration

Within the <generator/> element, there are other configuration elements:

<!-- These properties can be added to the database element: -->
<database>

 <!-- All table and view columns that are used as "version" fields for
 optimistic locking (A Java regular expression. Use the pipe to separate several expressions).
 See UpdatableRecord.store() and UpdatableRecord.delete() for details -->
 <recordVersionFields>REC_VERSION</recordVersionFields>

 <!-- All table and view columns that are used as "timestamp" fields for
 optimistic locking (A Java regular expression. Use the pipe to separate several expressions).
 See UpdatableRecord.store() and UpdatableRecord.delete() for details -->
 <recordTimestampFields>REC_TIMESTAMP</recordTimestampFields>

 <!-- Generate java.sql.Timestamp fields for DATE columns. This is
 particularly useful for Oracle databases.
 Defaults to false -->
 <dateAsTimestamp>false</dateAsTimestamp>

 <!-- Generate jOOU data types for your unsigned data types, which are
 not natively supported in Java.
 Defaults to true -->
 <unsignedTypes>true</unsignedTypes>

 <!-- The schema that is used in generated source code. This will be the
 production schema. Use this to override your local development
 schema name for source code generation. If not specified, this
 will be the same as the input-schema. -->
 <outputSchema>[your database schema / owner / name]</outputSchema>

 <!-- A configuration element to configure several input and/or output
 schemata for jooq-meta, in case you're using jooq-meta in a multi-
 schema environment.
 This cannot be combined with the above inputSchema / outputSchema -->
 <schemata>
 <schema>
 <inputSchema>...</inputSchema>
 <outputSchema>...</outputSchema>
 </schema>
 [<schema>...</schema> ...]
 </schemata>

 <!-- A configuration element to configure custom data types -->
 <customTypes>...</customTypes>

 <!-- A configuration element to configure type overrides for generated
 artefacts (e.g. in combination with customTypes) -->
 <forcedTypes>...</forcedTypes>
</database>

Check out the some of the manual's "advanced" sections to find out more about the advanced
configuration parameters.

- Schema mapping
- Custom types

jooq-codegen configuration

Also, you can add some optional advanced configuration parameters for the generator:

https://github.com/jOOQ/jOOQ/blob/master/jOOQ-codegen/src/main/java/org/jooq/util/example/JPrefixGeneratorStrategy.java
https://github.com/jOOQ/jOOQ/blob/master/jOOQ-codegen/src/main/java/org/jooq/util/example/JVMArgsGeneratorStrategy.java

The jOOQ User Manual 6.2. Advanced generator configuration

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 151 / 174

<!-- These properties can be added to the generate element: -->
<generate>
 <!-- Primary key / foreign key relations should be generated and used.
 This is a prerequisite for various advanced features.
 Defaults to true -->
 <relations>true</relations>

 <!-- Generate deprecated code for backwards compatibility
 Defaults to true -->
 <deprecated>true</deprecated>

 <!-- Generate instance fields in your tables, as opposed to static
 fields. This simplifies aliasing.
 Defaults to true -->
 <instanceFields>true</instanceFields>

 <!-- Generate the javax.annotation.Generated annotation to indicate
 jOOQ version used for source code.
 Defaults to true -->
 <generatedAnnotation>true</generatedAnnotation>

 <!-- Generate jOOQ Record classes for type-safe querying. You can
 turn this off, if you don't need "active records" for CRUD
 Defaults to true -->
 <records>true</records>

 <!-- Generate POJOs in addition to Record classes for usage of the
 ResultQuery.fetchInto(Class) API
 Defaults to false -->
 <pojos>false</pojos>

 <!-- Generate immutable POJOs for usage of the ResultQuery.fetchInto(Class) API
 This overrides any value set in <pojos/>
 Defaults to false -->
 <immutablePojos>false</immutablePojos>

 <!-- Generate interfaces that will be implemented by records and/or pojos.
 You can also use these interfaces in Record.into(Class<?>) and similar
 methods, to let jOOQ return proxy objects for them.
 Defaults to false -->
 <interfaces>false</interfaces>

 <!-- Generate DAOs in addition to POJO classes
 Defaults to false -->
 <daos>false</daos>

 <!-- Annotate POJOs and Records with JPA annotations for increased
 compatibility and better integration with JPA/Hibernate, etc
 Defaults to false -->
 <jpaAnnotations>false</jpaAnnotations>

 <!-- Annotate POJOs and Records with JSR-303 validation annotations
 Defaults to false -->
 <validationAnnotations>false</validationAnnotations>

 <!-- Allow to turn off the generation of global object references, which include

 - Tables.java
 - Sequences.java
 - UDTs.java

 Turning off the generation of the above files may be necessary for very
 large schemas, which exceed the amount of allowed constants in a class's
 constant pool (64k) or, whose static initialiser would exceed 64k of
 byte code

 Defaults to true -->
 <globalObjectReferences>true</globalObjectReferences>
</generate>

Property interdependencies

Some of the above properties depend on other properties to work correctly. For instance, when
generating immutable pojos, pojos must be generated. jOOQ will enforce such properties even if you
tell it otherwise. Here is a list of property interdependencies:

- When daos = true, then jOOQ will set relations = true
- When daos = true, then jOOQ will set records = true
- When daos = true, then jOOQ will set pojos = true
- When immutablePojos = true, then jOOQ will set pojos = true

The jOOQ User Manual 6.3. Generated global artefacts

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 152 / 174

6.3. Generated global artefacts

For increased convenience at the use-site, jOOQ generates "global" artefacts at the code generation
root location, referencing tables, routines, sequences, etc. In detail, these global artefacts include the
following:

- Keys.java: This file contains all of the required primary key, unique key, foreign key and identity
references in the form of static members of type org.jooq.Key.

- Routines.java: This file contains all standalone routines (not in packages) in the form of static
factory methods for org.jooq.Routine types.

- Sequences.java: This file contains all sequence objects in the form of static members of type
org.jooq.Sequence.

- Tables.java: This file contains all table objects in the form of static member references to the
actual singleton org.jooq.Table object

- UDTs.java: This file contains all UDT objects in the form of static member references to the actual
singleton org.jooq.UDT object

Referencing global artefacts

When referencing global artefacts from your client application, you would typically static import them
as such:

// Static imports for all global artefacts (if they exist)
import static com.example.generated.Keys.*;
import static com.example.generated.Routines.*;
import static com.example.generated.Sequences.*;
import static com.example.generated.Tables.*;

// You could then reference your artefacts as follows:
create.insertInto(MY_TABLE)
 .values(MY_SEQUENCE.nextval(), myFunction())

// as a more concise form of this:
create.insertInto(com.example.generated.Tables.MY_TABLE)
 .values(com.example.generated.Sequences.MY_SEQUENCE.nextval(), com.example.generated.Routines.myFunction())

6.4. Generated tables

Every table in your database will generate a org.jooq.Table implementation that looks like this:

public class Book extends TableImpl<BookRecord> {

 // The singleton instance
 public static final Book BOOK = new Book();

 // Generated columns
 public final TableField<BookRecord, Integer> ID = createField("ID", SQLDataType.INTEGER, this);
 public final TableField<BookRecord, Integer> AUTHOR_ID = createField("AUTHOR_ID", SQLDataType.INTEGER, this);
 public final TableField<BookRecord, String> ITLE = createField("TITLE", SQLDataType.VARCHAR, this);

 // Covariant aliasing method, returning a table of the same type as BOOK
 @Override
 public Book as(java.lang.String alias) {
 return new Book(alias);
 }

 // [...]
}

http://www.jooq.org/javadoc/3.0.x/org/jooq/Key.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Routine.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Sequence.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UDT.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html

The jOOQ User Manual 6.5. Generated records

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 153 / 174

Flags influencing generated tables

These flags from the code generation configuration influence generated tables:

- recordVersionFields: Relevant methods from super classes are overridden to return the
VERSION field

- recordTimestampFields: Relevant methods from super classes are overridden to return the
TIMESTAMP field

- dateAsTimestamp: This influences all relevant columns
- unsignedTypes: This influences all relevant columns
- relations: Relevant methods from super classes are overridden to provide primary key, unique

key, foreign key and identity information
- instanceFields: This flag controls the "static" keyword on table columns, as well as aliasing

convenience
- records: The generated record type is referenced from tables allowing for type-safe single-table

record fetching

Flags controlling table generation

Table generation cannot be deactivated

6.5. Generated records

Every table in your database will generate an org.jooq.Record implementation that looks like this:

http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html

The jOOQ User Manual 6.6. Generated POJOs

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 154 / 174

// JPA annotations can be generated, optionally
@Entity
@Table(name = "BOOK", schema = "TEST")
public class BookRecord extends UpdatableRecordImpl<BookRecord>

// An interface common to records and pojos can be generated, optionally
implements IBook {

 // Every column generates a setter and a getter
 @Override
 public void setId(Integer value) {
 setValue(BOOK.ID, value);
 }

 @Id
 @Column(name = "ID", unique = true, nullable = false, precision = 7)
 @Override
 public Integer getId() {
 return getValue(BOOK.ID);
 }

 // More setters and getters
 public void setAuthorId(Integer value) {...}
 public Integer getAuthorId() {...}

 // Convenience methods for foreign key methods
 public void setAuthorId(AuthorRecord value) {
 if (value == null) {
 setValue(BOOK.AUTHOR_ID, null);
 }
 else {
 setValue(BOOK.AUTHOR_ID, value.getValue(AUTHOR.ID));
 }
 }

 // Navigation methods
 public AuthorRecord fetchAuthor() {
 return create().selectFrom(AUTHOR).where(AUTHOR.ID.equal(getValue(BOOK.AUTHOR_ID))).fetchOne();
 }

 // [...]
}

Flags influencing generated records

These flags from the code generation configuration influence generated records:

- dateAsTimestamp: This influences all relevant getters and setters
- unsignedTypes: This influences all relevant getters and setters
- relations: This is needed as a prerequisite for navigation methods
- daos: Records are a pre-requisite for DAOs. If DAOs are generated, records are generated as well
- interfaces: If interfaces are generated, records will implement them
- jpaAnnotations: JPA annotations are used on generated records

Flags controlling record generation

Record generation can be deactivated using the records flag

6.6. Generated POJOs

Every table in your database will generate a POJO implementation that looks like this:

The jOOQ User Manual 6.7. Generated Interfaces

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 155 / 174

// JPA annotations can be generated, optionally
@javax.persistence.Entity
@javax.persistence.Table(name = "BOOK", schema = "TEST")
public class Book implements java.io.Serializable

// An interface common to records and pojos can be generated, optionally
, IBook {

 // JSR-303 annotations can be generated, optionally
 @NotNull
 private Integer id;

 @NotNull
 private Integer authorId;

 @NotNull
 @Size(max = 400)
 private String title;

 // Every column generates a getter and a setter
 @Id
 @Column(name = "ID", unique = true, nullable = false, precision = 7)
 @Override
 public Integer getId() {
 return this.id;
 }

 @Override
 public void setId(Integer id) {
 this.id = id;
 }

 // [...]
}

Flags influencing generated POJOs

These flags from the code generation configuration influence generated POJOs:

- dateAsTimestamp: This influences all relevant getters and setters
- unsignedTypes: This influences all relevant getters and setters
- interfaces: If interfaces are generated, POJOs will implement them
- immutablePojos: Immutable POJOs have final members and no setters. All members must be

passed to the constructor
- daos: POJOs are a pre-requisite for DAOs. If DAOs are generated, POJOs are generated as well
- jpaAnnotations: JPA annotations are used on generated records
- validationAnnotations: JSR-303 validation annotations are used on generated records

Flags controlling POJO generation

POJO generation can be activated using the pojos flag

6.7. Generated Interfaces

Every table in your database will generate an interface that looks like this:

public interface IBook extends java.io.Serializable {

 // Every column generates a getter and a setter
 public void setId(Integer value);
 public Integer getId();

 // [...]
}

The jOOQ User Manual 6.8. Generated DAOs

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 156 / 174

Flags influencing generated interfaces

These flags from the code generation configuration influence generated interfaces:

- dateAsTimestamp: This influences all relevant getters and setters
- unsignedTypes: This influences all relevant getters and setters

Flags controlling POJO generation

POJO generation can be activated using the interfaces flag

6.8. Generated DAOs

Generated DAOs

Every table in your database will generate a org.jooq.DAO implementation that looks like this:

public class BookDao extends DAOImpl<BookRecord, Book, Integer> {

 // Generated constructors
 public BookDao() {
 super(BOOK, Book.class);
 }

 public BookDao(Configuration configuration) {
 super(BOOK, Book.class, configuration);
 }

 // Every column generates at least one fetch method
 public List<Book> fetchById(Integer... values) {
 return fetch(BOOK.ID, values);
 }

 public Book fetchOneById(Integer value) {
 return fetchOne(BOOK.ID, value);
 }

 public List<Book> fetchByAuthorId(Integer... values) {
 return fetch(BOOK.AUTHOR_ID, values);
 }

 // [...]
}

Flags controlling DAO generation

DAO generation can be activated using the daos flag

6.9. Generated sequences

Every sequence in your database will generate a org.jooq.Sequence implementation that looks like this:

http://www.jooq.org/javadoc/3.0.x/org/jooq/DAO.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Sequence.html

The jOOQ User Manual 6.10. Generated procedures

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 157 / 174

public final class Sequences {

 // Every sequence generates a member
 public static final Sequence<Integer> S_AUTHOR_ID = new SequenceImpl<Integer>("S_AUTHOR_ID", TEST, SQLDataType.INTEGER);
}

Flags controlling sequence generation

Sequence generation cannot be deactivated

6.10. Generated procedures

Every procedure or function (routine) in your database will generate a org.jooq.Routine implementation
that looks like this:

public class AuthorExists extends AbstractRoutine<java.lang.Void> {

 // All IN, IN OUT, OUT parameters and function return values generate a static member
 public static final Parameter<String> AUTHOR_NAME = createParameter("AUTHOR_NAME", SQLDataType.VARCHAR);
 public static final Parameter<BigDecimal> RESULT = createParameter("RESULT", SQLDataType.NUMERIC);

 // A constructor for a new "empty" procedure call
 public AuthorExists() {
 super("AUTHOR_EXISTS", TEST);

 addInParameter(AUTHOR_NAME);
 addOutParameter(RESULT);
 }

 // Every IN and IN OUT parameter generates a setter
 public void setAuthorName(String value) {
 setValue(AUTHOR_NAME, value);
 }

 // Every IN OUT, OUT and RETURN_VALUE generates a getter
 public BigDecimal getResult() {
 return getValue(RESULT);
 }

 // [...]
}

Package and member procedures or functions

Procedures or functions contained in packages or UDTs are generated in a sub-package that
corresponds to the package or UDT name.

Flags controlling routine generation

Routine generation cannot be deactivated

6.11. Generated UDTs

Every UDT in your database will generate a org.jooq.UDT implementation that looks like this:

http://www.jooq.org/javadoc/3.0.x/org/jooq/Routine.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UDT.html

The jOOQ User Manual 6.12. Custom data types and type conversion

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 158 / 174

public class AddressType extends UDTImpl<AddressTypeRecord> {

 // The singleton UDT instance
 public static final UAddressType U_ADDRESS_TYPE = new UAddressType();

 // Every UDT attribute generates a static member
 public static final UDTField<AddressTypeRecord, String> ZIP =
 createField("ZIP", SQLDataType.VARCHAR, U_ADDRESS_TYPE);
 public static final UDTField<AddressTypeRecord, String> CITY =
 createField("CITY", SQLDataType.VARCHAR, U_ADDRESS_TYPE);
 public static final UDTField<AddressTypeRecord, String> COUNTRY =
 createField("COUNTRY", SQLDataType.VARCHAR, U_ADDRESS_TYPE);

 // [...]
}

Besides the org.jooq.UDT implementation, a org.jooq.UDTRecord implementation is also generated

public class AddressTypeRecord extends UDTRecordImpl<AddressTypeRecord> {

 // Every attribute generates a getter and a setter

 public void setZip(String value) {...}
 public String getZip() {...}
 public void setCity(String value) {...}
 public String getCity() {...}
 public void setCountry(String value) {...}
 public String getCountry() {...}

 // [...]
}

Flags controlling UDT generation

UDT generation cannot be deactivated

6.12. Custom data types and type conversion

When using a custom type in jOOQ, you need to let jOOQ know about its associated org.jooq.Converter.
Ad-hoc usages of such converters has been discussed in the chapter about data type conversion. A
more common use-case, however, is to let jOOQ know about custom types at code generation time.
Use the following configuration elements to specify, that you'd like to use GregorianCalendar for all
database fields that start with DATE_OF_

<database>
 <!-- First, register your custom types here -->
 <customTypes>
 <customType>
 <!-- Specify the fully-qualified class name of your custom type -->
 <name>java.util.GregorianCalendar</name>

 <!-- Associate that custom type with your converter. Note, a
 custom type can only have one converter in jOOQ -->
 <converter>com.example.CalendarConverter</converter>
 </customType>
 </customTypes>

 <!-- Then, associate custom types with database columns -->
 <forcedTypes>
 <forcedType>
 <!-- Specify again he fully-qualified class name of your custom type -->
 <name>java.util.GregorianCalendar</name>

 <!-- Add a Java regular expression matching columns. Use the pipe to separate several expressions -->
 <expressions>.*\.DATE_OF_.*</expressions>
 </forcedType>
 </forcedTypes>
</database>

The above configuration will lead to AUTHOR.DATE_OF_BIRTH being generated like this:

http://www.jooq.org/javadoc/3.0.x/org/jooq/UDT.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UDTRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Converter.html

The jOOQ User Manual 6.13. Mapping generated schemata and tables

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 159 / 174

public class TAuthor extends TableImpl<TAuthorRecord> {

 // [...]
 public final TableField<TAuthorRecord, GregorianCalendar> DATE_OF_BIRTH = // [...]
 // [...]

}

This means that the bound type of <T> will be GregorianCalendar, wherever you reference
DATE_OF_BIRTH. jOOQ will use your custom converter when binding variables and when fetching data
from java.util.ResultSet:

// Get all date of births of authors born after 1980
List<GregorianCalendar> result =
create.selectFrom(AUTHOR)
 .where(AUTHOR.DATE_OF_BIRTH.greaterThan(new GregorianCalendar(1980, 0, 1)))
 .fetch(AUTHOR.DATE_OF_BIRTH);

6.13. Mapping generated schemata and tables

We've seen previously in the chapter about runtime schema mapping, that schemata and tables can
be mapped at runtime to other names. But you can also hard-wire schema mapping in generated
artefacts at code generation time, e.g. when you have 5 developers with their own dedicated developer
databases, and a common integration database. In the code generation configuration, you would then
write.

<schemata>
 <schema>
 <!-- Use this as the developer's schema: -->
 <inputSchema>LUKAS_DEV_SCHEMA</inputSchema>

 <!-- Use this as the integration / production database: -->
 <outputSchema>PROD</outputSchema>
 </schema>
</schemata>

6.14. Code generation for large schemas

Databases can become very large in real-world applications. This is not a problem for jOOQ's code
generator, but it can be for the Java compiler. jOOQ generates some classes for global access. These
classes can hit two sorts of limits of the compiler / JVM:

- Methods (including static / instance initialisers) are allowed to contain only 64kb of bytecode.
- Classes are allowed to contain at most 64k of constant literals

While there exist workarounds for the above two limitations (delegating initialisations to nested classes,
inheriting constant literals from implemented interfaces), the preferred approach is either one of these:

http://download.oracle.com/javase/8/docs/apijava/util/ResultSet.html

The jOOQ User Manual 6.15. Code generation and version control

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 160 / 174

- Distribute your database objects in several schemas. That is probably a good idea anyway for
such large databases

- Configure jOOQ's code generator to exclude excess database objects
- Configure jOOQ's code generator to avoid generating global objects using

<globalObjectReferences/>
- Remove uncompilable classes after code generation

6.15. Code generation and version control

When using jOOQ's code generation capabilities, you will need to make a strategic decision about
whether you consider your generated code as

- Part of your code base
- Derived artefacts

In this section we'll see that both approaches have their merits and that none of them is clearly better.

Part of your code base

When you consider generated code as part of your code base, you will want to:

- Check in generated sources in your version control system
- Use manual source code generation
- Possibly use even partial source code generation

This approach is particularly useful when your Java developers are not in full control of or do not have
full access to your database schema, or if you have many developers that work simultaneously on the
same database schema, which changes all the time. It is also useful to be able to track side-effects of
database changes, as your checked-in database schema can be considered when you want to analyse
the history of your schema.

With this approach, you can also keep track of the change of behaviour in the jOOQ code generator,
e.g. when upgrading jOOQ, or when modifying the code generation configuration.

The drawback of this approach is that it is more error-prone as the actual schema may go out of sync
with the generated schema.

Derived artefacts

When you consider generated code to be derived artefacts, you will want to:

- Check in only the actual DDL
- Regenerate jOOQ code every time the schema changes
- Regenerate jOOQ code on every machine - including continuous integration

The jOOQ User Manual 6.15. Code generation and version control

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 161 / 174

This approach is particularly useful when you have a smaller database schema that is under full control
by your Java developers, who want to profit from the increased quality of being able to regenerate all
derived artefacts in every step of your build.

The drawback of this approach is that the build may break in perfectly acceptable situations, when parts
of your database are temporarily unavailable.

Pragmatic combination

In some situations, you may want to choose a pragmatic combination, where you put only some parts
of the generated code under version control. For instance, jOOQ-meta's generated sources are put
under version control as few contributors will be able to run the jOOQ-meta code generator against
all supported databases.

The jOOQ User Manual 7. Tools

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 162 / 174

7. Tools

These chapters hold some information about tools to be used with jOOQ

7.1. JDBC mocking for unit testing

When writing unit tests for your data access layer, you have probably used some generic mocking tool
offered by popular providers like Mockito, jmock, mockrunner, or even DBUnit. With jOOQ, you can take
advantage of the built-in JDBC mock API that allows you to emulate a database on the JDBC level for
precisely those SQL/JDBC use cases supported by jOOQ.

Mocking the JDBC API

JDBC is a very complex API. It takes a lot of time to write a useful and correct mock implementation,
implementing at least these interfaces:

- java.sql.Connection
- java.sql.Statement
- java.sql.PreparedStatement
- java.sql.CallableStatement
- java.sql.ResultSet
- java.sql.ResultSetMetaData

Optionally, you may even want to implement interfaces, such as java.sql.Array, java.sql.Blob,
java.sql.Clob, and many others. In addition to the above, you might need to find a way to simultaneously
support incompatible JDBC minor versions, such as 4.0, 4.1

Using jOOQ's own mock API

This work is greatly simplified, when using jOOQ's own mock API. The org.jooq.tools.jdbc package
contains all the essential implementations for both JDBC 4.0 and 4.1, which are needed to mock JDBC
for jOOQ. In order to write mock tests, provide the jOOQ Configuration with a MockConnection, and
implement the MockDataProvider:

// Initialise your data provider (implementation further down):
MockDataProvider provider = new MyProvider();
MockConnection connection = new MockConnection(provider);

// Pass the mock connection to a jOOQ DSLContext:
DSLContext create = DSL.using(connection, SQLDialect.ORACLE);

// Execute queries transparently, with the above DSLContext:
Result<BookRecord> result = create.selectFrom(BOOK).where(BOOK.ID.equal(5)).fetch();

As you can see, the configuration setup is simple. Now, the MockDataProvider acts as your single point
of contact with JDBC / jOOQ. It unifies any of these execution modes, transparently:

http://code.google.com/p/mockito/
http://jmock.org/
http://mockrunner.sourceforge.net/
http://www.dbunit.org/
http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://download.oracle.com/javase/8/docs/apijava/sql/CallableStatement.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSetMetaData.html
http://download.oracle.com/javase/8/docs/apijava/sql/Array.html
http://download.oracle.com/javase/8/docs/apijava/sql/Blob.html
http://download.oracle.com/javase/8/docs/apijava/sql/Clob.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/tools/jdbc/MockConnection.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/tools/jdbc/MockDataProvider.html

The jOOQ User Manual 7.1. JDBC mocking for unit testing

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 163 / 174

- Statements without results
- Statements without results but with generated keys
- Statements with results
- Statements with several results
- Batch statements with single queries and multiple bind value sets
- Batch statements with multiple queries and no bind values

The above are the execution modes supported by jOOQ. Whether you're using any of jOOQ's various
fetching modes (e.g. pojo fetching, lazy fetching, many fetching, later fetching) is irrelevant, as those
modes are all built on top of the standard JDBC API.

Implementing MockDataProvider

Now, here's how to implement MockDataProvider:

public class MyProvider implements MockDataProvider {

 @Override
 public MockResult[] execute(MockExecuteContext ctx) throws SQLException {

 // You might need a DSLContext to create org.jooq.Result and org.jooq.Record objects
 DSLContext create = DSL.using(SQLDialect.ORACLE);
 MockResult[] mock = new MockResult[1];

 // The execute context contains SQL string(s), bind values, and other meta-data
 String sql = ctx.sql();

 // Exceptions are propagated through the JDBC and jOOQ APIs
 if (sql.toUpperCase().startsWith("DROP")) {
 throw new SQLException("Statement not supported: " + sql);
 }

 // You decide, whether any given statement returns results, and how many
 else if (sql.toUpperCase().startsWith("SELECT")) {

 // Always return one author record
 Result<AuthorRecord> result = create.newResult(AUTHOR);
 result.add(create.newRecord(AUTHOR));
 result.get(0).setValue(AUTHOR.ID, 1);
 result.get(0).setValue(AUTHOR.LAST_NAME, "Orwell");
 mock[0] = new MockResult(1, result);
 }

 // You can detect batch statements easily
 else if (ctx.batch()) {
 // [...]
 }

 return mock;
 }
}

Essentially, the MockExecuteContext contains all the necessary information for you to decide, what kind
of data you should return. The MockResult wraps up two pieces of information:

- Statement.getUpdateCount(): The number of affected rows
- Statement.getResultSet(): The result set

You should return as many MockResult objects as there were query executions (in batch mode) or
results (in fetch-many mode). Instead of an awkward JDBC ResultSet, however, you can construct a
"friendlier" org.jooq.Result with your own record types. The jOOQ mock API will use meta data provided
with this Result in order to create the necessary JDBC java.sql.ResultSetMetaData

See the MockDataProvider Javadoc for a list of rules that you should follow.

http://www.jooq.org/javadoc/3.0.x/org/jooq/tools/jdbc/MockExecuteContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/tools/jdbc/MockResult.html
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html#getUpdateCount
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html#getResultSet()
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSetMetaData.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/tools/jdbc/MockDataProvider.html

The jOOQ User Manual 7.2. jOOQ Console

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 164 / 174

7.2. jOOQ Console

The jOOQ Console is no longer supported or shipped with jOOQ 3.2+. You may still use the jOOQ 3.1
Console with new versions of jOOQ, at your own risk.

The jOOQ User Manual 8. Reference

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 165 / 174

8. Reference

These chapters hold some general jOOQ reference information

8.1. Supported RDBMS

A list of supported databases

Every RDMBS out there has its own little specialties. jOOQ considers those specialties as much as
possible, while trying to standardise the behaviour in jOOQ. In order to increase the quality of jOOQ,
some 70 unit tests are run for syntax and variable binding verification, as well as some 180 integration
tests with an overall of around 1200 queries for any of these databases:

- CUBRID 8.4
- DB2 9.7
- Derby 10.10
- Firebird 2.5
- H2 1.3
- HSQLDB 2.2
- Ingres 10.1
- MariaDB 5.2
- MySQL 5.5
- Oracle 11g
- PostgreSQL 9.0
- SQLite with Xerial JDBC driver
- SQL Azure
- SQL Server 2008 R8
- Sybase Adaptive Server Enterprise 15.5
- Sybase SQL Anywhere 12

For an up-to-date list of currently supported RDBMS, please refer to http://www.jooq.org/legal/
licensing/#databases.

8.2. Data types

There is always a small mismatch between SQL data types and Java data types. This is for two reasons:

- SQL data types are insufficiently covered by the JDBC API.
- Java data types are often less expressive than SQL data types

This chapter should document the most important notes about SQL, JDBC and jOOQ data types.

http://www.jooq.org/legal/licensing/#databases
http://www.jooq.org/legal/licensing/#databases

The jOOQ User Manual 8.2.1. BLOBs and CLOBs

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 166 / 174

8.2.1. BLOBs and CLOBs

jOOQ currently doesn't explicitly support JDBC BLOB and CLOB data types. If you use any of these data
types in your database, jOOQ will map them to byte[] and String instead. In simple cases (small data), this
simplification is sufficient. In more sophisticated cases, you may have to bypass jOOQ, in order to deal
with these data types and their respective resources. True support for LOBs is on the roadmap, though.

8.2.2. Unsigned integer types

Some databases explicitly support unsigned integer data types. In most normal JDBC-based
applications, they would just be mapped to their signed counterparts letting bit-wise shifting and
tweaking to the user. jOOQ ships with a set of unsigned java.lang.Number implementations modelling
the following types:

- org.jooq.types.UByte: Unsigned byte, an 8-bit unsigned integer
- org.jooq.types.UShort: Unsigned short, a 16-bit unsigned integer
- org.jooq.types.UInteger: Unsigned int, a 32-bit unsigned integer
- org.jooq.types.ULong: Unsigned long, a 64-bit unsigned integer

Each of these wrapper types extends java.lang.Number, wrapping a higher-level integer type, internally:

- UByte wraps java.lang.Short
- UShort wraps java.lang.Integer
- UInteger wraps java.lang.Long
- ULong wraps java.math.BigInteger

8.2.3. INTERVAL data types

jOOQ fills a gap opened by JDBC, which neglects an important SQL data type as defined by the SQL
standards: INTERVAL types. SQL knows two different types of intervals:

- YEAR TO MONTH: This interval type models a number of months and years
- DAY TO SECOND: This interval type models a number of days, hours, minutes, seconds and

milliseconds

Both interval types ship with a variant of subtypes, such as DAY TO HOUR, HOUR TO SECOND, etc. jOOQ
models these types as Java objects extending java.lang.Number: org.jooq.types.YearToMonth (where
Number.intValue() corresponds to the absolute number of months) and org.jooq.types.DayToSecond
(where Number.intValue() corresponds to the absolute number of milliseconds)

http://download.oracle.com/javase/8/docs/apijava/lang/Number.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/UByte.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/UShort.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/UInteger.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/ULong.html
http://download.oracle.com/javase/8/docs/apijava/lang/Number.html
http://download.oracle.com/javase/8/docs/apijava/lang/Short.html
http://download.oracle.com/javase/8/docs/apijava/lang/Integer.html
http://download.oracle.com/javase/8/docs/apijava/lang/Long.html
http://download.oracle.com/javase/8/docs/apijava/math/BigInteger.html
http://download.oracle.com/javase/8/docs/apijava/lang/Number.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/YearToMonth.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/DayToSecond.html

The jOOQ User Manual 8.2.4. XML data types

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 167 / 174

Interval arithmetic

In addition to the arithmetic expressions documented previously, interval arithmetic is also supported
by jOOQ. Essentially, the following operations are supported:

- DATETIME - DATETIME => INTERVAL
- DATETIME + or - INTERVAL => DATETIME
- INTERVAL + DATETIME => DATETIME
- INTERVAL + - INTERVAL => INTERVAL
- INTERVAL * or / NUMERIC => INTERVAL
- NUMERIC * INTERVAL => INTERVAL

8.2.4. XML data types

XML data types are currently not supported

8.2.5. Geospacial data types

Geospacial data types

Geospacial data types are currently not supported

8.2.6. CURSOR data types

Some databases support cursors returned from stored procedures. They are mapped to the following
jOOQ data type:

Field<Result<Record>> cursor;

In fact, such a cursor will be fetched immediately by jOOQ and wrapped in an org.jooq.Result object.

8.2.7. ARRAY and TABLE data types

The SQL standard specifies ARRAY data types, that can be mapped to Java arrays as such:

Field<Integer[]> intArray;

The above array type is supported by these SQL dialects:

http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html

The jOOQ User Manual 8.3. jOOQ's BNF pseudo-notation

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 168 / 174

- H2
- HSQLDB
- Postgres

Oracle typed arrays

Oracle has strongly-typed arrays and table types (as opposed to the previously seen anonymously typed
arrays). These arrays are wrapped by org.jooq.ArrayRecord types.

8.3. jOOQ's BNF pseudo-notation

This chapter will soon contain an overview over jOOQ's API using a pseudo BNF notation.

8.4. Quality Assurance

jOOQ is running some of your most mission-critical logic: the interface layer between your Java / Scala
application and the database. You have probably chosen jOOQ for any of the following reasons:

- To evade JDBC's verbosity and error-proneness due to string concatenation and index-based
variable binding

- To add lots of type-safety to your inline SQL
- To increase productivity when writing inline SQL using your favourite IDE's autocompletion

capabilities

With jOOQ being in the core of your application, you want to be sure that you can trust jOOQ. That is
why jOOQ is heavily unit and integration tested with a strong focus on integration tests:

Unit tests

Unit tests are performed against dummy JDBC interfaces using http://jmock.org/. These tests verify that
various org.jooq.QueryPart implementations render correct SQL and bind variables correctly.

Integration tests

This is the most important part of the jOOQ test suites. Some 1500 queries are currently run against
a standard integration test database. Both the test database and the queries are translated into every
one of the 14 supported SQL dialects to ensure that regressions are unlikely to be introduced into the
code base.

For libraries like jOOQ, integration tests are much more expressive than unit tests, as there are so many
subtle differences in SQL dialects. Simple mocks just don't give as much feedback as an actual database
instance.

jOOQ integration tests run the weirdest and most unrealistic queries. As a side-effect of these extensive
integration test suites, many corner-case bugs for JDBC drivers and/or open source databases have

http://www.jooq.org/javadoc/3.0.x/org/jooq/ArrayRecord.html
http://jmock.org/
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPart.html

The jOOQ User Manual 8.4. Quality Assurance

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 169 / 174

been discovered, feature requests submitted through jOOQ and reported mainly to CUBRID, Derby,
H2, HSQLDB.

Code generation tests

For every one of the 14 supported integration test databases, source code is generated and the tiniest
differences in generated source code can be discovered. In case of compilation errors in generated
source code, new test tables/views/columns are added to avoid regressions in this field.

API Usability tests and proofs of concept

jOOQ is used in jOOQ-meta as a proof of concept. This includes complex queries such as the following
Postgres query

Routines r1 = ROUTINES.as("r1");
Routines r2 = ROUTINES.as("r2");

for (Record record : create().select(
 r1.ROUTINE_SCHEMA,
 r1.ROUTINE_NAME,
 r1.SPECIFIC_NAME,

 // Ignore the data type when there is at least one out parameter
 decode()
 .when(exists(
 selectOne()
 .from(PARAMETERS)
 .where(PARAMETERS.SPECIFIC_SCHEMA.equal(r1.SPECIFIC_SCHEMA))
 .and(PARAMETERS.SPECIFIC_NAME.equal(r1.SPECIFIC_NAME))
 .and(upper(PARAMETERS.PARAMETER_MODE).notEqual("IN"))),
 val("void"))
 .otherwise(r1.DATA_TYPE).as("data_type"),
 r1.CHARACTER_MAXIMUM_LENGTH,
 r1.NUMERIC_PRECISION,
 r1.NUMERIC_SCALE,
 r1.TYPE_UDT_NAME,

 // Calculate overload index if applicable
 decode().when(
 exists(
 selectOne()
 .from(r2)
 .where(r2.ROUTINE_SCHEMA.in(getInputSchemata()))
 .and(r2.ROUTINE_SCHEMA.equal(r1.ROUTINE_SCHEMA))
 .and(r2.ROUTINE_NAME.equal(r1.ROUTINE_NAME))
 .and(r2.SPECIFIC_NAME.notEqual(r1.SPECIFIC_NAME))),
 select(count())
 .from(r2)
 .where(r2.ROUTINE_SCHEMA.in(getInputSchemata()))
 .and(r2.ROUTINE_SCHEMA.equal(r1.ROUTINE_SCHEMA))
 .and(r2.ROUTINE_NAME.equal(r1.ROUTINE_NAME))
 .and(r2.SPECIFIC_NAME.lessOrEqual(r1.SPECIFIC_NAME)).asField())
 .as("overload"))
 .from(r1)
 .where(r1.ROUTINE_SCHEMA.in(getInputSchemata()))
 .orderBy(
 r1.ROUTINE_SCHEMA.asc(),
 r1.ROUTINE_NAME.asc())
 .fetch()) {

 result.add(new PostgresRoutineDefinition(this, record));
}

These rather complex queries show that the jOOQ API is fit for advanced SQL use-cases, compared to
the rather simple, often unrealistic queries in the integration test suite.

Clean API and implementation. Code is kept DRY

As a general rule of thumb throughout the jOOQ code, everything is kept DRY. Some examples:

http://en.wikipedia.org/wiki/DRY

The jOOQ User Manual 8.5. Migrating to jOOQ 3.0

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 170 / 174

- There is only one place in the entire code base, which consumes values from a JDBC ResultSet
- There is only one place in the entire code base, which transforms jOOQ Records into custom

POJOs

Keeping things DRY leads to longer stack traces, but in turn, also increases the relevance of highly
reusable code-blocks. Chances that some parts of the jOOQ code base slips by integration test coverage
decrease significantly.

8.5. Migrating to jOOQ 3.0

This section is for all users of jOOQ 2.x who wish to upgrade to the next major release. In the next sub-
sections, the most important changes are explained. Some code hints are also added to help you fix
compilation errors.

Type-safe row value expressions

Support for row value expressions has been added in jOOQ 2.6. In jOOQ 3.0, many API parts were
thoroughly (but often incompatibly) changed, in order to provide you with even more type-safety.

Here are some affected API parts:

- [N] in Row[N] has been raised from 8 to 22. This means that existing row value expressions with
degree >= 9 are now type-safe

- Subqueries returned from DSL.select(...) now implement Select<Record[N]>, not Select<Record>
- IN predicates and comparison predicates taking subselects changed incompatibly
- INSERT and MERGE statements now take typesafe VALUES() clauses

Some hints related to row value expressions:

// SELECT statements are now more typesafe:
Record2<String, Integer> record = create.select(BOOK.TITLE, BOOK.ID).from(BOOK).where(ID.eq(1)).fetchOne();
Result<Record2<String, Integer>> result = create.select(BOOK.TITLE, BOOK.ID).from(BOOK).fetch();

// But Record2 extends Record. You don't have to use the additional typesafety:
Record record = create.select(BOOK.TITLE, BOOK.ID).from(BOOK).where(ID.eq(1)).fetchOne();
Result<?> result = create.select(BOOK.TITLE, BOOK.ID).from(BOOK).fetch();

SelectQuery and SelectXXXStep are now generic

In order to support type-safe row value expressions and type-safe Record[N] types, SelectQuery is now
generic: SelectQuery<R>

SimpleSelectQuery and SimpleSelectXXXStep API were removed

The duplication of the SELECT API is no longer useful, now that SelectQuery and SelectXXXStep are
generic.

The jOOQ User Manual 8.5. Migrating to jOOQ 3.0

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 171 / 174

Factory was split into DSL (query building) and DSLContext (query
execution)

The pre-existing Factory class has been split into two parts:

o The DSL: This class contains only static factory methods. All QueryParts constructed from
this class are "unattached", i.e. queries that are constructed through DSL cannot be executed
immediately. This is useful for subqueries.
The DSL class corresponds to the static part of the jOOQ 2.x Factory type

o The DSLContext: This type holds a reference to a Configuration and can construct executable
("attached") QueryParts.
The DSLContext type corresponds to the non-static part of the jOOQ 2.x Factory /
FactoryOperations type.

The FactoryOperations interface has been renamed to DSLContext. An example:

// jOOQ 2.6, check if there are any books
Factory create = new Factory(connection, dialect);
create.selectOne()
 .whereExists(
 create.selectFrom(BOOK) // Reuse the factory to create subselects
).fetch(); // Execute the "attached" query

// jOOQ 3.0
DSLContext create = DSL.using(connection, dialect);
create.selectOne()
 .whereExists(
 selectFrom(BOOK) // Create a static subselect from the DSL
).fetch(); // Execute the "attached" query

Quantified comparison predicates

Field.equalAny(...) and similar methods have been removed in favour of Field.equal(any(...)). This greatly
simplified the Field API. An example:

// jOOQ 2.6
Condition condition = BOOK.ID.equalAny(create.select(BOOK.ID).from(BOOK));

// jOOQ 3.0 adds some typesafety to comparison predicates involving quantified selects
QuantifiedSelect<Record1<Integer>> subselect = any(select(BOOK.ID).from(BOOK));
Condition condition = BOOK.ID.equal(subselect);

FieldProvider

The FieldProvider marker interface was removed. Its methods still exist on FieldProvider subtypes. Note,
they have changed names from getField() to field() and from getIndex() to indexOf()

GroupField

GroupField has been introduced as a DSL marker interface to denote fields that can be passed to
GROUP BY clauses. This includes all org.jooq.Field types. However, fields obtained from ROLLUP(),
CUBE(), and GROUPING SETS() functions no longer implement Field. Instead, they only implement
GroupField. An example:

The jOOQ User Manual 8.5. Migrating to jOOQ 3.0

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 172 / 174

// jOOQ 2.6
Field<?> field1a = Factory.rollup(...); // OK
Field<?> field2a = Factory.one(); // OK

// jOOQ 3.0
GroupField field1b = DSL.rollup(...); // OK
Field<?> field1c = DSL.rollup(...); // Compilation error
GroupField field2b = DSL.one(); // OK
Field<?> field2c = DSL.one(); // OK

NULL predicate

Beware! Previously, Field.equal(null) was translated internally to an IS NULL predicate. This is no longer
the case. Binding Java "null" to a comparison predicate will result in a regular comparison predicate
(which never returns true). This was changed for several reasons:

- To most users, this was a surprising "feature".
- Other predicates didn't behave in such a way, e.g. the IN predicate, the BETWEEN predicate, or

the LIKE predicate.
- Variable binding behaved unpredictably, as IS NULL predicates don't bind any variables.
- The generated SQL depended on the possible combinations of bind values, which creates

unnecessary hard-parses every time a new unique SQL statement is rendered.

Here is an example how to check if a field has a given value, without applying SQL's ternary NULL logic:

String possiblyNull = null; // Or else...

// jOOQ 2.6
Condition condition1 = BOOK.TITLE.equal(possiblyNull);

// jOOQ 3.0
Condition condition2 = BOOK.TITLE.equal(possiblyNull).or(BOOK.TITLE.isNull().and(val(possiblyNull).isNull()));
Condition condition3 = BOOK.TITLE.isNotDistinctFrom(possiblyNull);

Configuration

DSLContext, ExecuteContext, RenderContext, BindContext no longer extend Configuration for
"convenience". From jOOQ 3.0 onwards, composition is chosen over inheritance as these objects are
not really configurations. Most importantly

- DSLContext is only a DSL entry point for constructing "attached" QueryParts
- ExecuteContext has a well-defined lifecycle, tied to that of a single query execution
- RenderContext has a well-defined lifecycle, tied to that of a single rendering operation
- BindContext has a well-defined lifecycle, tied to that of a single variable binding operation

In order to resolve confusion that used to arise because of different lifecycle durations, these types are
now no longer formally connected through inheritance.

ConnectionProvider

In order to allow for simpler connection / data source management, jOOQ externalised connection
handling in a new ConnectionProvider type. The previous two connection modes are maintained
backwards-compatibly (JDBC standalone connection mode, pooled DataSource mode). Other
connection modes can be injected using:

The jOOQ User Manual 8.5. Migrating to jOOQ 3.0

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 173 / 174

public interface ConnectionProvider {

 // Provide jOOQ with a connection
 Connection acquire() throws DataAccessException;

 // Get a connection back from jOOQ
 void release(Connection connection) throws DataAccessException;
}

These are some side-effects of the above change

- Connection-related JDBC wrapper utility methods (commit, rollback, etc) have been moved to the
new DefaultConnectionProvider. They're no longer available from the DSLContext. This had been
confusing to some users who called upon these methods while operating in pool DataSource
mode.

ExecuteListeners

ExecuteListeners can no longer be configured via Settings. Instead they have to be injected into the
Configuration. This resolves many class loader issues that were encountered before. It also helps
listener implementations control their lifecycles themselves.

Data type API

The data type API has been changed drastically in order to enable some new DataType-related features.
These changes include:

- [SQLDialect]DataType and SQLDataType no longer implement DataType. They're mere constant
containers

- Various minor API changes have been done.

Object renames

These objects have been moved / renamed:

- jOOU: a library used to represent unsigned integer types was moved from org.jooq.util.unsigned
to org.jooq.util.types (which already contained INTERVAL data types)

Feature removals

Here are some minor features that have been removed in jOOQ 3.0

The jOOQ User Manual 8.6. Credits

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 174 / 174

- The ant task for code generation was removed, as it was not up to date at all. Code generation
through ant can be performed easily by calling jOOQ's GenerationTool through a <java> target.

- The navigation methods and "foreign key setters" are no longer generated in Record classes, as
they are useful only to few users and the generated code is very collision-prone.

- The code generation configuration no longer accepts comma-separated regular expressions.
Use the regex pipe | instead.

- The code generation configuration can no longer be loaded from .properties files. Only XML
configurations are supported.

- The master data type feature is no longer supported. This feature was unlikely to behave exactly
as users expected. It is better if users write their own code generators to generate master enum
data types from their database tables. jOOQ's enum mapping and converter features sufficiently
cover interacting with such user-defined types.

- The DSL subtypes are no longer instanciable. As DSL now only contains static methods,
subclassing is no longer useful. There are still dialect-specific DSL types providing static methods
for dialect-specific functions. But the code-generator no longer generates a schema-specific DSL

- The concept of a "main key" is no longer supported. The code generator produces
UpdatableRecords only if the underlying table has a PRIMARY KEY. The reason for this removal
is the fact that "main keys" are not reliable enough. They were chosen arbitrarily among UNIQUE
KEYs.

- The UpdatableTable type has been removed. While adding significant complexity to the type
hierarchy, this type adds not much value over a simple Table.getPrimaryKey() != null check.

- The USE statement support has been removed from jOOQ. Its behaviour was ill-defined, while it
didn't work the same way (or didn't work at all) in some databases.

8.6. Credits

jOOQ lives in a very challenging ecosystem. The Java to SQL interface is still one of the most important
system interfaces. Yet there are still a lot of open questions, best practices and no "true" standard has
been established. This situation gave way to a lot of tools, APIs, utilities which essentially tackle the same
problem domain as jOOQ. jOOQ has gotten great inspiration from pre-existing tools and this section
should give them some credit. Here is a list of inspirational tools in alphabetical order:

- Avajé EBean: Play! Framework's preferred ORM has a feature called asynchronous query
execution. This idea made it into jOOQ as org.jooq.ResultQuery

- Hibernate: The de-facto standard (JPA) with its useful table-to-POJO mapping features have
influenced jOOQ's org.jooq.ResultQuery facilities

- JaQu: H2's own fluent API for querying databases
- JPA: The de-facto standard in the javax.persistence packages, supplied by Oracle. Its annotations

are useful to jOOQ as well.
- OneWebSQL: A commercial SQL abstraction API with support for DAO source code generation,

which was integrated also in jOOQ
- QueryDSL: A "LINQ-port" to Java. It has a similar fluent API, a similar code-generation facility, yet

quite a different purpose. While jOOQ is all about SQL, QueryDSL (like LINQ) is mostly about
querying.

- SLICK: A "LINQ-like" database abstraction layer for Scala. Unlike LINQ, its API doesn't really
remind of SQL. Instead, it makes SQL look like Scala.

- Spring Data: Spring's JdbcTemplate knows RowMappers, which are reflected by jOOQ's
RecordHandler or RecordMapper

http://avaje.org
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html#fetchLater()
http://www.hibernate.org
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html#fetchInto(java.lang.Class)
http://www.h2database.com/html/jaqu.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://onewebsql.com
http://www.querydsl.com
http://slick.typesafe.com
http://www.springsource.org/features/data-access

	Preface
	Copyright, License, and Trademarks
	Getting started with jOOQ
	How to read this manual
	The sample database used in this manual
	Different use cases for jOOQ
	jOOQ as a SQL builder
	jOOQ as a SQL builder with code generation
	jOOQ as a SQL executor
	jOOQ for CRUD
	jOOQ for PROs

	Tutorials
	jOOQ in 7 easy steps
	Step 1: Preparation
	Step 2: Your database
	Step 3: Code generation
	Step 4: Connect to your database
	Step 5: Querying
	Step 6: Iterating
	Step 7: Explore!

	Using jOOQ in modern IDEs
	Using jOOQ with Spring
	A simple web application with jOOQ

	jOOQ and Scala
	jOOQ and NoSQL
	Dependencies
	Build your own
	jOOQ and backwards-compatibility

	SQL building
	The query DSL type
	DSL subclasses

	The DSLContext class
	SQL Dialect
	Connection vs. DataSource
	Custom data
	Custom ExecuteListeners
	Custom Settings
	Runtime schema and table mapping

	SQL Statements
	jOOQ's DSL and model API
	The SELECT statement
	The SELECT clause
	The FROM clause
	The JOIN clause
	The WHERE clause
	The CONNECT BY clause
	The GROUP BY clause
	The HAVING clause
	The ORDER BY clause
	The LIMIT .. OFFSET clause
	The FOR UPDATE clause
	UNION, INTERSECTION and EXCEPT
	Oracle-style hints
	Lexical and logical SELECT clause order

	The INSERT statement
	The UPDATE statement
	The DELETE statement
	The MERGE statement
	The TRUNCATE statement

	Table expressions
	Generated Tables
	Aliased Tables
	Joined tables
	The VALUES() table constructor
	Nested SELECTs
	The Oracle 11g PIVOT clause
	jOOQ's relational division syntax
	Array and cursor unnesting
	The DUAL table

	Column expressions
	Table columns
	Aliased columns
	Cast expressions
	Arithmetic expressions
	String concatenation
	General functions
	Numeric functions
	Bitwise functions
	String functions
	Date and time functions
	System functions
	Aggregate functions
	Window functions
	Grouping functions
	User-defined functions
	User-defined aggregate functions
	The CASE expression
	Sequences and serials
	Tuples or row value expressions

	Conditional expressions
	Condition building
	AND, OR, NOT boolean operators
	Comparison predicate
	Comparison predicate (degree > 1)
	Quantified comparison predicate
	NULL predicate
	NULL predicate (degree > 1)
	DISTINCT predicate
	BETWEEN predicate
	BETWEEN predicate (degree > 1)
	LIKE predicate
	IN predicate
	IN predicate (degree > 1)
	EXISTS predicate
	OVERLAPS predicate

	Plain SQL
	Bind values and parameters
	Indexed parameters
	Named parameters
	Inlined parameters
	SQL injection and plain SQL QueryParts

	QueryParts
	SQL rendering
	Pretty printing SQL
	Variable binding
	Extend jOOQ with custom types
	Plain SQL QueryParts
	Serializability

	SQL building in Scala

	SQL execution
	Comparison between jOOQ and JDBC
	Query vs. ResultQuery
	Fetching
	Record vs. TableRecord
	Record1 to Record22
	Arrays, Maps and Lists
	RecordHandler
	RecordMapper
	POJOs
	Lazy fetching
	Many fetching
	Later fetching
	ResultSet fetching
	Data type conversion
	Interning data

	Static statements vs. Prepared Statements
	Reusing a Query's PreparedStatement
	Using JDBC batch operations
	Sequence execution
	Stored procedures and functions
	Oracle Packages
	Oracle member procedures

	Exporting to XML, CSV, JSON, HTML, Text
	Exporting XML
	Exporting CSV
	Exporting JSON
	Exporting HTML
	Exporting Text

	Importing data
	Importing CSV
	Importing XML

	CRUD with UpdatableRecords
	Simple CRUD
	Records' internal flags
	IDENTITY values
	Navigation methods
	Non-updatable records
	Optimistic locking
	Batch execution

	DAOs
	Exception handling
	ExecuteListeners
	Database meta data
	Logging
	Performance considerations

	Code generation
	Configuration and setup of the generator
	Advanced generator configuration
	Generated global artefacts
	Generated tables
	Generated records
	Generated POJOs
	Generated Interfaces
	Generated DAOs
	Generated sequences
	Generated procedures
	Generated UDTs
	Custom data types and type conversion
	Mapping generated schemata and tables
	Code generation for large schemas
	Code generation and version control

	Tools
	JDBC mocking for unit testing
	jOOQ Console

	Reference
	Supported RDBMS
	Data types
	BLOBs and CLOBs
	Unsigned integer types
	INTERVAL data types
	XML data types
	Geospacial data types
	CURSOR data types
	ARRAY and TABLE data types

	jOOQ's BNF pseudo-notation
	Quality Assurance
	Migrating to jOOQ 3.0
	Credits

