The jOOQ™ User Manual

SQL was never meant to be abstracted. To be confined in the narrow
boundaries of heavy mappers, hiding the beauty and simplicity of relational
data. SQL was never meant to be object-oriented. SQL was never meant to
be anything other than... SQL!

The jOOQ User Manual

Overview

This manual is divided into six main sections:

Getting started with JOOQ

This section will get you started with jOOQ quickly. It contains simple explanations about what
jO0Q is, what jOOQ isn't and how to set it up for the first time

SQL building

This section explains all about the jOOQ syntax used for building queries through the query DSL
and the query model API. It explains the central factories, the supported SQL statements and
various other syntax elements

Code generation

This section explains how to configure and use the built-in source code generator

SQL execution

This section will get you through the specifics of what can be done with jJOOQ at runtime, in order
to execute queries, perform CRUD operations, import and export data, and hook into the jOOQ
execution lifecycle for debugging

Tools

This section is dedicated to tools that ship with jOOQ, such as the jJOOQ console

Reference

This section is a reference for elements in this manual

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page2/174

#Overview

The jOOQ User Manual

Table of contents

P BT ACE s 7
2. Copyright, LICENSE, @Nd Trad@MIAIKS........c.iiiiiiiiiieieie bbb 9
3. Getting Started WIth JOOQ i

3.1. How to read this manual........cccooeiviininni.
3.2. The sample database used in this manual
3.3. Different use €Cases fOr JOOQ . ..ot
3.3.1.jOOQ as a SQL builder.......ccccovviririinn.
3.3.2.j00Q as a SQL builder with code generation

3.3.3. JOOQ @S 3 SQL EXECULON .ttt bbbt
3.3.4 JOOQ TOF CRUD ...ttt et
3.3.5. JOOQ FOF PROS.....ooieiiit et
B TULOTIAIS . s L
3471, JOOQ IN 7 CASY STEDS ettt ettt
SAT T STEP T PIEPAIATION. c.. ettt
3.4.7.2. STEP 2 YOUT QATADASE. ...
3.4.7.3. SEEP 31 COUE GONEIATION. ...ttt bbb
3.4.7.4. Step 4: CONNECE TO YOUT dATADASE.
3.4.1.5. Step 5:
3.4.1.6. Step 6:
3.4.1.7. Step 7:
3.4.2. Using jOOQ in modern IDEs
3.4.3. USING JOOQ WITN SPIINE ..o
3.4.4. A simple web application WIth JOOQ.o
3.5, JOOQ AN SCaIA. ...
3.6, JOOQ ANA NOSQL i
3.7 DEPENAENCIES ...
3.8 BUIIT YOUI OWN ..o
3.9. JOOQ and backwards-COMPATIDIITY........iiiiiri s
A SQL DUIIAING 22
A1 TRE QUETY DSL LYo
AT.T. DSL SUDCIASSES. ... e
4.2. The DSLContext class...
A2, SQL DIAIECE ..ottt ettt
4.2.2. CONNECLION VS, DATASOUITE.eiiiiiieieit ettt bbbttt
4.2.3. CuStom data.....ccoeverrmrvereernns

4.2.4. Custom Executelisteners
4. 2.5, CUSTOM SEELINES. ..ttt 8Lttt
4.2.6. Runtime schema and table MaPPING. ..o
2.3, SOL STATEMIBNTS .ottt ettt ettt
4.3.7. JOOQ'S DSL @NA MOAEI APt
4.3.2. TNE SELECT STATEIMENT. ...ttt
A.3.2.7. TRE SELECT ClAUS ..o
4.3.2.2. TRE FROM CIUSE. ...ttt
A.3.2.3. TRE JOIN ClAUSE. ...t
4.3.2.4. TRE WHERE ClAUSE ...t
4.3.2.5. The CONNECT BY clause
4.3.2.6. THE GROUP BY ClAUSE.....couiiiiiiiiiciei s
4.3.2.7. TRE HAVING ClAUSE ...
4.3.2.8. The ORDER BY clause......ccccovvvvviverncen.

4.3.2.9. The LIMIT .. OFFSET clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page3/174

The jOOQ User Manual

4.3.2.10. TNE FOR UPDATE ClAUSE ...ttt
4.3.2.17. UNION, INTERSECTION GNGA EXCEPT ...ttt
4.3.2.12. Oracle-style NiNtS......coovviinrnenn,
4.3.2.13. Lexical and logical SELECT clause order
4.3.3. TNE INSERT SEATEIMIENT.....ouiiiiiiiiiei e
4.3.4. TRE UPDATE STATEIMENT ...ttt
4.3.5. TNE DELETE STATEMIENT ..ottt
4.3.6. TNE MERGE STATEMENT. ...ttt
4.3.7. THE TRUNCATE STATEIMENT. ..ottt
A4, TaDIE EXPIOSSIONS ..ot
A4, GENETALEA TADIES ...
A2 AlRRSEA TADIES ..o
443, JOINEA TADIES ...ttt ettt ettt 61
444, THE VALUES() 18010 CONSIIUCTON ...ttt ettt
AA.5. NESTEA SELECTS .ot
4.4.6. The Oracle 11g PIVOT clause..........
4.4.7.j00Q's relational division syntax
4.4.8. AITay aNd CUISOT UNNESTING ...ttt
449, TRE DUAL TADIE. ..
4.5. Column expressions

45,1, TaDIE COMUMMNS ...t
A.5.2. AlIRSEA COIUMINS. ... s 2k
45,3, CAST OXPIESSIONS ittt ettt b8 bRt
A58, ATTENMETIC EXPIESSIONSttt
455, SEING CONCATENMATION ... vttt
4.5.6. General functions

45,7, NUMEIIC TUNCEIONS. ... oottt ettt ettt ettt ettt ettt ettt

4.5.8. Bitwise functions

4.5.9. String functionsS........ccccceveveen.

4.5.10. Date and time functions
57T, SYSTEIM TUNCLIONS. ...t

4512, ABEIEEATE TUNCIIONS ..o

4513 WINAOW TUNCEIONS. ...

4574, GrOUPING FUNCIIOMNS ...t

4.5.15. USEr-AefiNEA TUNCLIONS. ...t

4.5.16. User-defined aggregate fUNCHIONS. ..o 78
4577, TNE CASE @XPIESSION. ..ottt 79
4.5.18. SEQUENCES ANA SEIIAIS ... 80
4.5.79. TUPIES OF TOW VAlUE EXPIESSIONS...ouiriiit ittt 81
4.6, CONAILIONA] EXPIESSIONS. ... ieieeiiii bbb

4.6.7. CONAILION DUITAING .ttt

4.6.2. AND, OR, NOT boolean operators
4.6.3. COMPATISON PIOAICATE ...ttt
4.6.4. Comparison predicate (degree > 1)
4.6.5. Quantified comparison predicate
0.0, NULL PIrEAICATO. ...
4.6.7. NULL PrediCate (AEEMEE >).t
.68, DISTINCT PrEAICATE.cveieiiiii bbb
4.6.9. BETWEEN PIOOICATEo
4.6.10. BETWEEN PrediCate (AEEIMEE >).
40171, LIKE PIOAICATE ...
.0.12. IN PIEAICATE ..ot
4.6.13. IN PrediCatle (AEEMEE > M)ttt
4.6.14. EXISTS predicate
© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 4/174

The jOOQ User Manual

4.6.715. OVERLAPS PrEAICATE ..ottt 91
4.7. Plain SQL
4.8. Bind values and parameters

4.8.1. Indexed parameters

4.8.2. NAMEA PATAMELETS. ... et

4.8.3. INHNEA PATAMELEIS ...t
4.8.4. SQL injection and plain SQL QUETINYPATITS. ...t 96
9. QUETYPAITS bR
49,7, SQL TENAGTINE. ..o
4.9.2. Pretly PrINTING SOL .. et 8 81ttt
4.9.3. VaATIADIE DINAING. ..o
4.9.4. Extend JOOQ WITN CUSTOM TYPES....uiiiiiiiiiiieiieie s
4.9.5. PlAIN SQL QUENYPAITS ...ttt
4.9.6. SEIIANIZADIITTY ...
470, SQL DUITAING TN SCIA. 1.t

5. SQL eXeCULtiON. ..o

5.1. Comparison between jOOQ and JDBC
5.2, QUETY VS, RESUITQUETY ...ttt
D3 FECNING s
5.3.1. RECOIA VS. TADIERECOIT.t
5.3.2. RECOTAT 10 RECOTTAZ 2.t
5.3.3. AITAYS, MAPS QNG LISTS ..o
5,314, RECOTAHANAIRT ...
5.3, RECOIAMADPE ...
5,310, POJOS.
5,37 LAZY FEECIING .o
5,308 IMANY TEICIINE. o
5,300, LAt TOICNING e
5.3.10. ResultSet fetching.............
5.3.11. Data type conversion

53012, INTEIMING TATA. i

5.4. Static statements VS. Prepared STATEMENTS. ...t 119
5.5. Reusing a QUETY'S Prepar@aSTatEMIENT. it 120
5.6. USING JDBC DALCN OPIATIONS. ... 121
5.7 SEOUENCE EXECUTION. ..ttt bbbt et h bbbt 122
5.8. Stored procedures aNd fUNCHIONS. ..o 123
5.8, 1. OrACIE PACKAZES. oo e 124
5.8.2. Oracle MEmMDEr PrOCEAUIES.oi.iiiieiieiee bbb s 125
5.9. EXporting to XML, CSV, JSON, HTML, TEXE.....viiiiieiiirieiisieei sttt 125
5.9.1. Exporting XML
5.9.2. EXPOITING CSV .ttt
5.9.3. Exporting JSON.......ccc..c....

5.9.4. Exporting HTML
5.9.5. Exporting Text

5.10. Importing data
5.10.1. Importing CSV
5.10.2. Importing XML

5.177. CRUD WIth UpAatablERECOTAS. ...t 130
51170 SIMPIE CRUD . vttt 130
5.77.2. RECOTS" INTEIMAL FIAZS ...t 132
51130 IDENTITY VaAIUES ...ttt 132
51714, NAVIZATION METNOAS ... 133
51715, NON-UPAATEDIE TECOMTS. ..ot 134
51716, OPTMISTIC TOCKING. ...t 134

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 5/174

The jOOQ User Manual

5.1 1.7, BATCN @XECULION. ...ttt
D02, DADS ...
5.13. Exception handling
5.14. Executelisteners

5.15. Database META GaTa ...t 139
D10, LOZEINE et E Rt 140
5.17. PerformanCe CONSIAEIATIONS.c..iiiiiiciie e 140
0. OO BENEIATION. ...t 142
6.7. Configuration and SELUP OF The GENEIATON ... e 142
6.2. Advanced Zenerator CONFIGUIATION. ..ottt 147
6.3, GENEIAtEd GlODAI ArTEIACES. ...t 152
0.4, GENEIALEA TADIES. ...

6.5, GENETGLET TECONTS. ..ot

0.6, GENETALEA POJOS.....o.ooeeeeeeeeeeeeeeeeeee ettt

6.7. GENETALET INTEITACES ...t

6.8. Generated DAOs.............

6.9. Generated sequences

6.70. GENETALEA PIrOCEAUIES.ottt 157
6. 17, GENEIATEA UDTS oo 157
6.12. CUStoM data tyPeSs aNd TYPE COMVEISION.....iiiiiiiiiiriiiieiee ettt 158
6.13. Mapping generated SChemMata aNd TADIES ..o 159
6.14. Code generation fOr large SCNEMAS ... 159
6.15. Code generation and VEISION CONTIOL ...t 160
7 TOONS 2L 162
7.7, JDBC MOCKING TOI UNIT TESTING.cv.vevviierirtireieist i 162
7.2, JOOQ CONSOI@ ...

B REIEIEICE ...

8.1, SUPPOIMTEA RDBIMS......ciiiiiiie b

8.2. Data types.....ccccoevevrernn.

8.2.1. BLOBs and CLOBs

8.2.2. UNSIGNEU INTEGEI TYPES oottt 166
8.2.3. INTERVAL QALA LY PES ittt 166
8. 2.4 XIMIL AL LY DS oottt 167
8.2.5. GEOSPACIAI AALA TYPES vttt 167
8.2.6. CURSOR LA TYPES. . eeirtiriii ittt 167
8.2.7. ARRAY aNd TABLE A TYPES. . 167
8.3. JOOQ'S BNF PSEUAONOTATION ...ttt 168
B2 QUANTY ASSUIANCE. ...tk 168
8.5. MIgrating 0 JOOQ 3.0 it 170
B0, CTEAITS oL 174

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 6/174

The jOOQ User Manual 1. Preface

1. Preface

jO0Q's reason for being - compared to JPA

Java and SQL have come a long way. SQL is an "old", yet established and well-understood technology.
Javais alegacy too, although its platform JVM allows for many new and contemporary languages built on
top of it. Yet, after all these years, libraries dealing with the interface between SQL and Java have come
and gone, leaving JPA to be a standard that is accepted only with doubts, short of any surviving options.

So far, there had been only few database abstraction frameworks or libraries, that truly respected SQL
as a first class citizen among languages. Most frameworks, including the industry standards JPA, EJB,
Hibernate, JDO, Criteria Query, and many others try to hide SQL itself, minimising its scope to things
called JPQL, HQL, JDOQL and various other inferior query languages

JOOQ has come to fill this gap.

jO0Q's reason for being - compared to LINQ

Other platforms incorporate ideas such as LINQ (with LINQ-to-SQL), or Scala's SLICK, or also Java's
QueryDSL to better integrate querying as a concept into their respective language. By querying, they
understand querying of arbitrary targets, such as SQL, XML, Collections and other heterogeneous data
stores. jJOOQ claims that this is going the wrong way too.

In more advanced querying use-cases (more than simple CRUD and the occasional JOIN), people will
want to profit from the expressivity of SQL. Due to the relational nature of SQL, this is quite different
from what object-oriented and partially functional languages such as C#, Scala, or Java can offer.

It is very hard to formally express and validate joins and the ad-hoc table expression types they create.
It gets even harder when you want support for more advanced table expressions, such as pivot tables,
unnested cursors, or just arbitrary projections from derived tables. With a very strong object-oriented
typing model, these features will probably stay out of scope.

In essence, the decision of creating an API that looks like SQL or one that looks like C#, Scala, Java
is a definite decision in favour of one or the other platform. While it will be easier to evolve SLICK in
similar ways as LINQ (or QueryDSL in the Java world), SQL feature scope that clearly communicates
its underlying intent will be very hard to add, later on (e.g. how would you model Oracle's partitioned
outer join syntax? How would you model ANSI/ISO SQL:1999 grouping sets? How can you support scalar
subquery caching? etc...).

JOOQ has come to fill this gap.

jO0Q's reason for being - compared to SQL / JDBC

So why not just use SQL?

SQL can be written as plain text and passed through the JDBC API. Over the years, people have become
wary of this approach for many reasons:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 7/174

The jOOQ User Manual 1. Preface

- No typesafety

- No syntax safety

- No bind value index safety

- Verbose SQL String concatenation

- Boring bind value indexing techniques

- Verbose resource and exception handling in JDBC

- Avery "stateful", not very object-oriented JDBC API, which is hard to use

For these many reasons, other frameworks have tried to abstract JDBC away in the past in one way or
another. Unfortunately, many have completely abstracted SQL away as well

jOOQ has come to fill this gap.

jO0Q is different

SQL was never meant to be abstracted. To be confined in the narrow boundaries of heavy mappers,
hiding the beauty and simplicity of relational data. SQL was never meant to be object-oriented. SQL
was never meant to be anything other than... SQL!

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 8/174

The jOOQ User Manual 2. Copyright, License, and Trademarks

2. Copyright, License, and Trademarks

This section lists the various licenses that apply to different versions of jOOQ. Prior to version 3.2, JOOQ
was shipped for free under the terms of the Apache Software License 2.0. With jJOOQ 3.2,jO0Q became
dual-licensed: Apache Software License 2.0 (for use with Open Source databases) and commercial (for
use with commercial databases).

This manual itself (as well as the www.joog.org public website) is licensed to you under the terms of
the CC BY-SA 4.0 license.

Please contact legal@datageekery.com, should you have any questions regarding licensing.

License for jJOOQ 1.x, 2.x, 3.0, 3.1

Copyright (c) 2009-2015, Lukas Eder, |ukas.eder @nail.com
Al rights reserved.

This software is |licensed to you under the Apache License, Version 2.0
(the "License"); You may obtain a copy of the License at

htt p: // ww. apache. org/ | i censes/ LI CENSE- 2. 0

Redi stribution and use in source and binary forms, with or without
nodi fication, are pernitted provided that the follow ng conditions are net:

. Redistributions of source code nust retain the above copyright notice, this
list of conditions and the follow ng disclainer.

. Redistributions in binary formmust reproduce the above copyright notice,
this list of conditions and the follow ng disclainmer in the docunentation
and/or other materials provided with the distribution.

. Neither the nane "jOOQ' nor the names of its contributors may be
used to endorse or pronote products derived fromthis software w thout
specific prior witten perm ssion.

TH'S SOFTWARE |'S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS "AS | S"
AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE
| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
ARE DI SCLAI MED. | N NO EVENT SHALL THE COPYRI GHT OANER OR CONTRI BUTORS BE
LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR
CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF
SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS

I NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG NEGLI GENCE OR OTHERW SE)
ARISING I N ANY WAY OQUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE
POSSI BI LI TY OF SUCH DAVAGE.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page9/174

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.jooq.org/licensing
http://www.jooq.org
https://creativecommons.org/licenses/by-sa/4.0/
mailto:legal@datageekery.com

The jOOQ User Manual 2. Copyright, License, and Trademarks

License for JOOQ 3.2 and later

Copyright (c) 2009-2015, Data Geekery GrmbH (http://ww. dat ageekery. com)
Al rights reserved.

This work is dual-licensed
- under the Apache Software License 2.0 (the "ASL")
- under the jOOQ License and Maintenance Agreenent (the "jOOQ License")

You may choose which |icense applies to you:

- If you're using this work with Open Source databases, you may choose
ei ther ASL or jOOQ License.

- If you're using this work with at |east one conmercial database, you nust
choose j OOQ Li cense

For nore information, please visit http://ww.jooq.org/licenses

Apache Software License 2.0:

Li censed under the Apache License, Version 2.0 (the "License");

you may not use this file except in conpliance with the License.

You may obtain a copy of the License at

htt p: // ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governi ng pernmi ssions and
limtations under the License.

j OOQ License and Mai ntenance Agreenent:

Dat a Geekery grants the Custoner the non-exclusive, tinely limted and
non-transferable license to install and use the Software under the terms of
the jOOQ Li cense and Mai nt enance Agreenent .

This library is distributed with a LIMTED WARRANTY. See the jOOQ License
and Mai ntenance Agreement for nore details: http://ww.jooq.org/licensing

Trademarks owned by Data Geekery™ GmbH

- JOOA™ is a trademark by Data Geekery™ GmbH
- jOOQ™ is a trademark by Data Geekery™ GmbH
- JOOR™ s a trademark by Data Geekery™ GmbH
- jJOOU™ is a trademark by Data Geekery™ GmbH
- JOOX™is a trademark by Data Geekery™ GmbH

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 10/174

The jOOQ User Manual 2. Copyright, License, and Trademarks

Trademarks owned by database vendors with no affiliation to Data
Geekery™ GmbH

- Access® is a registered trademark of Microsoft® Inc.

- Adaptive Server® Enterprise is a registered trademark of Sybase®, Inc.
- CUBRID™ is a trademark of NHN® Corp.

- DB2® is a registered trademark of IBM® Corp.

- Derby is a trademark of the Apache™ Software Foundation

- H2is atrademark of the H2 Group

- HSQLDB is a trademark of The hsgl Development Group

- Ingresis a trademark of Actian™ Corp.

- MariaDB is a trademark of Monty Program Ab

- MySQL® is a registered trademark of Oracle® Corp.

- Firebird® is a registered trademark of Firebird Foundation Inc.

- Oracle® database is a registered trademark of Oracle® Corp.

- PostgreSQL® is a registered trademark of The PostgreSQL Global Development Group
- Postgres Plus® is a registered trademark of EnterpriseDB® software

- SQL Anywhere® is a registered trademark of Sybase®, Inc.

- SQL Server® is a registered trademark of Microsoft® Inc.

- SQLite is a trademark of Hipp, Wyrick & Company, Inc.

Other trademarks by vendors with no affiliation to Data Geekery™ GmbH

- Java®is a registered trademark by Oracle® Corp. and/or its affiliates
- Scalais atrademark of EPFL
Other trademark remarks

Other names may be trademarks of their respective owners.

Throughout the manual, the above trademarks are referenced without a formal ® (R) or ™ (TM) symbol.
It is believed that referencing third-party trademarks in this manual or on the jJOOQ website constitutes
"fair use". Please contact us if you think that your trademark(s) are not properly attributed.

Contributions

The following are authors and contributors of jOOQ or parts of jOOQ in alphabetical order:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 11 /174

mailto:contact@datageekery.com

The jOOQ User Manual

- Aaron Digulla

- Arnaud Roger

- Art O Cathain

- Artur Dryomov

- Ben Manes

- Brent Douglas

- Brett Meyer

- Christopher Deckers
- Ed Schaller

- Espen Stromsnes
- Gonzalo Ortiz Jaureguizar
- Gregory Hlavac

- Henrik Sjostrand

- lvan Dugic

- Javier Durante

- Johannes Buhler

- Joseph B Phillips

- Laurent Pireyn

- Lukas Eder

- Michael Doberenz
- Michat Kotodziejski
- Peter Ertl

- Robin Stocker

- Sander Plas

- Sean Wellington

- Sergey Epik

- Stanislas Nanchen
- Sugiharto Lim

- Sven Jacobs

- Thomas Darimont
- Tsukasa Kitachi

- Vladimir Kulev

- Vladimir Vinogradov
- Zoltan Tamasi

See the following website for details about contributing to jOOQ:
http://www.joog.org/legal/contributions

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

2. Copyright, License, and Trademarks

Page 12 /174

http://www.jooq.org/legal/contributions

The jOOQ User Manual 3. Getting started with jOOQ

3. Getting started with jJOOQ

These chapters contain a quick overview of how to get started with this manual and with jOOQ. While
the subsequent chapters contain a lot of reference information, this chapter here just wraps up the
essentials.

3.7. How to read this manual

This section helps you correctly interpret this manual in the context of jOOQ.

Code blocks

The following are code blocks:

-- A SQL code bl ock
SELECT 1 FROM DUAL

/1 A Java code bl ock
for (int i =0; i < 10; i++);

<!-- An XML code bl ock -->
<hel | o what ="wor | d"></ hel | 0>

A config file code bl ock
org.j ooq. property=val ue

These are useful to provide examples in code. Often, with jOOQ, it is even more useful to compare SQL
code with its corresponding Java/jJOOQ code. When this is done, the blocks are aligned side-by-side,
with SQL usually being on the left, and an equivalent JOOQ DSL query in Java usually being on the right:

- In SQL: /] Using jOOQ
SELECT 1 FROM DUAL create. sel ect One()

Code block contents

The contents of code blocks follow conventions, too. If nothing else is mentioned next to any given code
block, then the following can be assumed:

-- SQL assunptions

- If nothing else is specified, assune that the Oracle syntax is used
SELECT 1 FROM DUAL

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 13/174

The jOOQ User Manual 3.2. The sample database used in this manual

/1l Java assunptions
A

/'l \Whenever you see "standal one functions", assume they were static inported from org.jooq.inpl.DSL

/1 "DSL" is the entry point of the static query DSL

exists(); max(); min(); val(); inline(); // correspond to DSL.exists(); DSL.max(); DSL.min(); etc...

/1 \Whenever you see BOOK/ Book, AUTHOR/ Author and simlar entities, assune they were (static) inported fromthe generated schema
BOOK. TI TLE, AUTHOR. LAST_NAME // correspond to com exanpl e. gener at ed. Tabl es. BOOK. TI TLE, com exanpl e. gener at ed. Tabl es. BOOK. Tl TLE
FK_BOOK_AUTHOR /'l corresponds to com exanpl e. gener at ed. Keys. FK_BOOK_AUTHOR

/'l Whenever you see "create" being used in Java code, assune that this is an instance of org.jooq. DSLCont ext.

/1l The reason why it is called "create" is the fact, that a jOOQ QueryPart is being created fromthe DSL object:

/Il "create" is thus the entry point of the non-static query DSL
DSLCont ext create = DSL.using(connection, SQLDi al ect.ORACLE);

Your naming may differ, of course. For instance, you could name the "create" instance "db", instead.

Execution

When you're coding PL/SQL, T-SQL or some other procedural SQL language, SQL statements are always
executed immediately at the semi-colon. This is not the case in jJOOQ, because as an internal DSL, jOOQ
can never be sure that your statement is complete until you call fetch() or execute(). The manual tries
to apply fetch() and execute() as thoroughly as possible. If not, it is implied:

SELECT 1 FROM DUAL create.sel ectOne().fetch();
UPDATE t SET v = 1 create.update(T).set(T.V, 1).execute();

Degree (arity)

jOOQ records (and many other APl elements) have a degree N between 1 and 22. The variable degree
of an APl element is denoted as [N], e.g. Row[N] or Record[N]. The term "degree" is preferred over arity,
as "degree" is the term used in the SQL standard, whereas "arity" is used more often in mathematics
and relational theory.

Settings

jOOQ allows to override runtime behaviour using org.joog.conf.Settings. If nothing is specified, the
default runtime settings are assumed.

Sample database

jOOQ query examples run against the sample database. See the manual's section about the sample
database used in this manual to learn more about the sample database.

3.2. The sample database used In this manual

For the examples in this manual, the same database will always be referred to. It essentially consists of
these entities created using the Oracle dialect

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 14 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/conf/Settings.html

The jOOQ User Manual 3.3. Different use cases for jJOOQ

CREATE TABLE | anguage (

id NUVBER(7) NOT NULL PRI MARY KEY,
cd CHAR(2) NOT NULL,
descri ption VARCHAR2(50)

)i

CREATE TABLE aut hor (

id NUVBER(7) NOT NULL PRI MARY KEY,
first_nane VARCHAR2(50) ,
| ast _name VARCHAR2(50) NOT NULL,

date_of _birth DATE,

year _of _birth NUVBER(7),

di stingui shed NUMBER(1)
)

CREATE TABLE book (

id NUVBER(7) NOT NULL PRI MARY KEY,

aut hor _i d NUVBER(7) NOT NULL,

title VARCHAR2(400) NOT NULL,

publ i shed_in NUVBER(7) NOT NULL,

| anguage_i d NUVBER(7) NOT NULL,

CONSTRAI NT f k_book_aut hor FOREI GN KEY (aut hor _i d) REFERENCES aut hor (i d),

CONSTRAI NT f k_book_| anguage FOREI GN KEY (| anguage_i d) REFERENCES | anguage(i d)
)

CREATE TABLE book_store (
nane VARCHAR2(400) NOT NULL UNI QUE
)

CREATE TABLE book_t o_book_store (

nane VARCHAR2(400) NOT NULL,

book_i d | NTEGER NOT NULL,

st ock | NTEGER,

PRI MARY KEY(name, book_id),

CONSTRAI NT f k_b2bs_book_store FOREI GN KEY (name) REFERENCES book_store (name) ON DELETE CASCADE,
CONSTRAI NT f k_b2bs_book FOREI GN KEY (book_i d) REFERENCES book (i d) ON DELETE CASCADE

More entities, types (e.g. UDT's, ARRAY types, ENUM types, etc), stored procedures and packages are
introduced for specific examples

In addition to the above, you may assume the following sample data:

I NSERT | NTO | anguage (id, cd, description) VALUES (1, 'en', 'English);

I NSERT | NTO | anguage (id, cd, description) VALUES (2, 'de', 'Deutsch');

I NSERT | NTO | anguage (id, cd, description) VALUES (3, 'fr', 'Francais');
I NSERT | NTO | anguage (id, cd, description) VALUES (4, 'pt', 'Portugués');

I NSERT | NTO aut hor (id, first_nane, |ast_nane, date_of _birth , year_of _birth)
VALUES (1, '"George’ , 'Orwell' , DATE '1903-06-26', 1903)

I NSERT | NTO aut hor (id, first_nane, |ast_nane, date_of birth , year_of _birth)
VALUES (2, 'Paulo , 'Coel ho' , DATE '1947-08-24', 1947)

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (1,1 , '1984' , 1948 , 1 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (2,1 , "Animal Farm , 1945 , 1 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (3, 2 , 'O A quinista, 1988 , 4 ;

I NSERT | NTO book (id, author_id, title , published_in, |anguage_id)
VALUES (4, 2 , ' Brida , 1990 , 2 ;

I NSERT | NTO book_store VALUES (' Orell Fussli');
I NSERT | NTO book_store VALUES (' Ex Libris");
I NSERT | NTO book_store VALUES (' Buchhandl ung i m Vol kshaus');

I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 1, 10);
I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 2, 10);
I NSERT | NTO book_t o_book_store VALUES (' Orell Fussli' , 3, 10);
I NSERT | NTO book_t o_book_store VALUES (' Ex Libris' , 1, 1);
I NSERT | NTO book_t o_book_store VALUES (' Ex Libris' , 3, 2)
I NSERT | NTO book_t o_book_store VALUES (' Buchhandl ung i m Vol kshaus', 3, 1)

3.3. Different use cases for jJO0OQ

jOOQ has originally been created as a library for complete abstraction of JDBC and all database
interaction. Various best practices that are frequently encountered in pre-existing software products
are applied to this library. This includes:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 15/174

The jOOQ User Manual 3.3.1.jO0Q as a SQL builder

- Typesafe database object referencing through generated schema, table, column, record,
procedure, type, dao, pojo artefacts (see the chapter about code generation)

- Typesafe SQL construction / SQL building through a complete querying DSL APl modelling SQL
as a domain specific language in Java (see the chapter about the query DSL API)

- Convenient query execution through an improved API for result fetching (see the chapters about
the various types of data fetching)

- SQL dialect abstraction and SQL clause emulation to improve cross-database compatibility and
to enable missing features in simpler databases (see the chapter about SQL dialects)

- SQL logging and debugging using jOOQ as an integral part of your development process (see the

chapters about logging and about the [OOQ Console)

Effectively, JOOQ was originally designed to replace any other database abstraction framework short
of the ones handling connection pooling and transaction management (see also the credits for other
database abstraction libraries)

Use JOOQ the way you prefer

... but open source is community-driven. And the community has shown various ways of using jOOQ
that diverge from its original intent. Some use cases encountered are:

- Using Hibernate for 70% of the queries (i.e. CRUD) and jOOQ for the remaining 30% where SQL
is really needed

- Using jJOOQ for SQL building and JDBC for SQL execution

- Using jJOOQ for SQL building and Spring Data for SQL execution

- Using JOOQ without the source code generator to build the basis of a framework for dynamic
SQL execution.

The following sections explain about various use cases for using jOOQ in your application.

3.3.1.J00Q as a SQL builder

This is the most simple of all use cases, allowing for construction of valid SQL for any database. In
this use case, you will not use jJOOQ's code generator and probably not even jOOQ's query execution
facilities. Instead, you'll use JOOQ's query DSL API to wrap strings, literals and other user-defined objects
into an object-oriented, type-safe AST modelling your SQL statements. An example is given here:

/] Fetch a SQL string froma jOOQ Query in order to nmanually execute it with another tool.
String sql = create.select(field("BOOK TITLE"), field("AUTHOR FI RST_NAME"), fiel d("AUTHOR LAST_NAME"))
.fron(tabl e("BOXK"))
.join(tabl e("AUTHOR"))
.on(field("BOOK AUTHOR | D"). equal (fiel d("AUTHOR I D")))
.where(field("BOOK. PUBLI SHED | N') . equal (1948))
-get SQAL() ;

The SQL string built with the JOOQ query DSL can then be executed using JDBC directly, using Spring's
JdbcTemplate, using Apache DbUtils and many other tools.

If you wish to use jOOQ only as a SQL builder, the following sections of the manual will be of interest
to you:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 16 /174

The jOOQ User Manual 3.3.2.jO0Q as a SQL builder with code generation

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Plain SQL: This section contains information useful in particular to those that want to supply
table expressions, column expressions, etc. as plain SQL to jOOQ, rather than through
generated artefacts

3.3.2.)J00Q as a SQL builder with code generation

In addition to using jOOQ as a standalone SQL builder, you can also use jOOQ's code generation
features in order to compile your SQL statements using a Java compiler against an actual database
schema. This adds a lot of power and expressiveness to just simply constructing SQL using the query
DSL and custom strings and literals, as you can be sure that all database artefacts actually exist in the
database, and that their type is correct. An example is given here:

I/ Fetch a SQL string froma jOOQ Query in order to manual ly execute it with another tool.
String sgql = create. sel ect (BOOK. TI TLE, AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)

. f r om(BOOK)

. j oi n(AUTHOR)

. on(BOOK. AUTHOR | D. equal (AUTHOR. | D))
. wher e(BOOK. PUBLI SHED_I N. equal (1948))
. get SQL();

The SQL string that you can generate as such can then be executed using JDBC directly, using Spring's
JdbcTemplate, using Apache DbUtils and many other tools.

If you wish to use jJOOQ only as a SQL builder with code generation, the following sections of the manual
will be of interest to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

3.3.3.]00Q as a SQL executor

Instead of any tool mentioned in the previous chapters, you can also use jOOQ directly to execute your
jOOQ-generated SQL statements. This will add a lot of convenience on top of the previously discussed
API for typesafe SQL construction, when you can re-use the information from generated classes to fetch
records and custom data types. An example is given here:

/1l Typesafely execute the SQL statement directly with jOOQ
Resul t <Record3<String, String, String>> result =
create. sel ect (BOOK. TI TLE, AUTHOR FI RST_NAME, AUTHOR. LAST_NANE)
. f r om(BOOK)
.j 0i n(AUTHOR)
. on(BOOK. AUTHOR I D. equal (AUTHOR. | D))
. wher e(BOOK. PUBLI SHED_I N. equal (1948))
.fetch();

By having jOOQ execute your SQL, the jOOQ query DSL becomes truly embedded SQL.

jOOQ doesn't stop here, though! You can execute any SQL with jOOQ. In other words, you can use any
other SQL building tool and run the SQL statements with jOOQ. An example is given here:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 17 /174

The jOOQ User Manual 3.3.4.j00Q for CRUD

I/ Use your favourite tool to construct SQL strings:
String sql = "SELECT title, first_nane, |ast_name FROM book JO N aut hor ON book.author_id = author.id " +
"WHERE book. publ i shed_in = 1984";

I/ Fetch results using jOOQ
Resul t <Record> result = create.fetch(sql);

/Il O execute that SQL with JDBC, fetching the ResultSet wth jOOQ

Resul tSet rs = connection.createStatenment().executeQuery(sql);
Resul t <Record> result = create.fetch(rs);

If you wish to use jOOQ as a SQL executor with (or without) code generation, the following sections of
the manual will be of interest to you:

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ API

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ API

- Fetching: This section contains some useful information about the various ways of fetching data
with jJOOQ

3.3.4.)00Q for CRUD

This is probably the most complete use-case for jJOOQ: Use all of jOOQ's features. Apart from jOOQ's
fluent API for query construction, jOOQ can also help you execute everyday CRUD operations. An
example is given here:

/1l Fetch all authors
for (AuthorRecord author : create.fetch(AUTHOR)) {

/1 Skip previously distinguished authors
if ((int) author.getDistinguished() == 1)
conti nue;

/'l Check if the author has witten nore than 5 books
if (author.fetchChildren(Keys. FK_BOOK_AUTHOR) . si ze() > 5) {

/1 Mark the author as a "distingui shed" author

aut hor . set Di sti ngui shed(1);
aut hor. store();

If you wish to use all of JOOQ's features, the following sections of the manual will be of interest to you
(including all sub-sections):

- SQL building: This section contains a lot of information about creating SQL statements using the
jOOQ AP

- Code generation: This section contains the necessary information to run jOOQ's code generator
against your developer database

- SQL execution: This section contains a lot of information about executing SQL statements using
the jOOQ AP

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 18/174

The jOOQ User Manual 3.3.5.jO0Q for PROs

3.3.5.)j00Q for PROs

jOOQ isn't just a library that helps you build and execute SQL against your generated, compilable
schema. jJOOQ ships with a lot of tools. Here are some of the most important tools shipped with jOOQ:

- JOOQ Console: This small application hooks into jOOQ's execute listener support to allow for
tracing, debugging and introspecting any SQL statement executed through the jOOQ API. This
includes setting breakpoints, introspecting bind values, running probe SQL statements, ad-hoc
patching of SQL, measuring execution times, exporting stack traces. Use this tool to better know
your SQL!

- JOOQ's Execute Listeners: jOOQ allows you to hook your custom execute listeners into jOOQ's
SQL statement execution lifecycle in order to centrally coordinate any arbitrary operation
performed on SQL being executed. Use this for logging, identity generation, SQL tracing,
performance measurements, etc.

- Logging: jOOQ has a standard DEBUG logger built-in, for logging and tracing all your executed
SQL statements and fetched result sets

- Stored Procedures: jOOQ supports stored procedures and functions of your favourite database.
All routines and user-defined types are generated and can be included in jOOQ's SQL building
API as function references.

- Batch execution: Batch execution is important when executing a big load of SQL statements.
jOOQ simplifies these operations compared to JDBC

- Exporting and Importing: jOOQ ships with an API to easily export/import data in various formats

If you're a power user of your favourite, feature-rich database, jOOQ will help you access all of your
database's vendor-specific features, such as OLAP features, stored procedures, user-defined types,
vendor-specific SQL, functions, etc. Examples are given throughout this manual.

3.4. Tutorials

Don't have time to read the full manual? Here are a couple of tutorials that will get you into the most
essential parts of JOOQ as quick as possible.

3.4.1.]00Q In 7 easy steps

This manual section is intended for new users, to help them get a running application with jOOQ, quickly.

3.4.1.1. Step 1: Preparation

If you haven't already downloaded it, download jOOQ:
http://www.joog.org/download

Alternatively, you can create a Maven dependency to download jOOQ artefacts:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 19/174

http://www.jooq.org/download

The jOOQ User Manual 3.4.1.2. Step 2: Your database

<dependency>
<gr oupl d>or g. j oog</ gr oupl d>
<artifactld>j ooq</artifactld>
<ver si on>3. 0. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j oog</ gr oupl d>
<artifactld>j oog-neta</artifactld>
<ver si on>3. 0. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. j oog</ gr oupl d>
<artifact!d>j oog-codegen</artifactld>
<ver si on>3. 0. 1</ ver si on>

</ dependency>

Please refer to the manual's section about Code generation configuration to learn how to use jOOQ's
code generator with Maven.

For this example, we'll be using MySQL. If you haven't already downloaded MySQL Connector/J,
download it here:
http://dev.mysgl.com/downloads/connector/j/

If you don't have a MySQL instance up and running yet, get XAMPP now! XAMPP is a simple installation
bundle for Apache, MySQL, PHP and Per]

3.4.1.2. Step 2: Your database

We're going to create a database called "guestbook" and a corresponding "posts" table. Connect to
MySQL via your command line client and type the following:

CREATE DATABASE guest book;

CREATE TABLE "posts™ (

“id bigint(20) NOT NULL

“body" varchar(255) DEFAULT NULL,
“tinmestanp® datetine DEFAULT NULL
“title® varchar(255) DEFAULT NULL,
PRI MARY KEY (“id)

UE

3.4.1.3. Step 3: Code generation

In this step, we're going to use jOOQ's command line tools to generate classes that map to the Posts
table we just created. More detailed information about how to set up the jOOQ code generator can
be found here:

I00Q manual pages about setting up the code generator

The easiest way to generate a schema is to copy the jOOQ jar files (there should be 3) and the MySQL
Connector jar file to a temporary directory. Then, create a guestbook.xml that looks like this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 20/174

http://dev.mysql.com/downloads/connector/j/
http://www.apachefriends.org/en/xampp.html

The jOOQ User Manual 3.4.1.3. Step 3: Code generation

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<configuration xm ns="http://ww.jooq.org/xsd/joog-codegen-3.0.0.xsd">
<!-- Configure the database connection here -->
<j dbc>
<driver>com nysql . jdbc. Driver</driver>
<ur | >j dbc: nysql : / /| ocal host : 3306/ guest book</ ur| >
<user >r oot </ user >
<passwor d></ passwor d>
</ j dbc>

<gener at or >
<!-- The default code generator. You can override this one, to generate your own code style.
Defaults to org.jooq.util.JavaGenerator -->
<nane>or g. j ooq. uti | .JavaGener at or </ name>

<dat abase>
<!-- The database type. The format here is:
org.util.[database].[database] Dat abase -->
<nane>or g. j ooq. util.nysql . M/SQLDat abase</ nane>

<!-- The database schena (or in the absence of schenma support, in your RDBMS this
can be the owner, user, database nane) to be generated -->
<i nput Schema>guest book</ i nput Schena>

<l-- Al elenents that are generated from your schenma
(A Java regul ar expression. Use the pipe to separate several expressions)
Watch out for case-sensitivity. Depending on your database, this mght be inportant! -->

<i ncl udes>. *</i ncl udes>
<l-- Al elenents that are excluded from your schema
(A Java regul ar expression. Use the pipe to separate several expressions).
Excl udes match before includes -->
<excl udes></ excl udes>
</ dat abase>
<t arget >
<l-- The destination package of your generated classes (within the destination directory) -->
<packageNanme>t est . gener at ed</ packageNane>
<!-- The destination directory of your generated classes -->
<di rect ory>C: / wor kspace/ M\ySQLTest / src</ di rect ory>
</target>

</ gener at or >
</ configuration>

Replace the username with whatever user has the appropriate privileges to query the database meta
data. You'll also want to look at the other values and replace as necessary. Here are the two interesting
properties:

generator.target.package - set this to the parent package you want to create for the generated classes.
The setting of test.generated will cause the test.generated.Posts and test.generated.PostsRecord to be
Created

generator.target.directory - the directory to output to.

Once you have the JAR files and library.xml in your temp directory, type this on a Windows machine:

java -classpath joog-3.0.1.jar;joog-nmeta-3.0.1.jar;joog-codegen-3.0.1.jar; nysql-connector-java-5.1.18-bin.jar;.
org.jooq.util.GenerationTool /library.xm

... or type this on a UNIX/ Linux / Mac system (colons instead of semi-colons):

java -classpath joog-3.0.1.jar:jooqg-neta-3.0.1.jar:jooq-codegen-3.0.1.jar:nysqgl-connector-java-5.1.18-bin.jar:.
org.jooq.util.GenerationTool /library.xn

There are two things to note:

0 The prefix slash before the /library.xml. Even though it's in our working directory, we need to
prepend a slash, as the configuration file is loaded from the classpath.

0 The "trailing" period in the classpath: .. We need this because we want the current directory on
the classpath in order to find the above /library.xml file at the root of your classpath.

Replace the filenames with your actual filenames. In this example, JOOQ 3.0.1 is being used. If everything
has worked, you should see this in your console output:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 21 /174

The jOOQ User Manual

Nov 1, 2011 7:25:06 PM org.jooq

| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO
Nov 1,
| NFO

Initialising propert
2011 7:25:07 PMorg

Dat abase paraneters
2011 7:25:07 PMorg

ies
.j ooq

.j ooq

.inpl.JooqgLogger info
/ guest book. xm
.inpl.JooqgLogger info

.inpl.JooqgLogger info

2011 7:25:07 PMorg
di al ect

2011 7:25:07 PMorg
schena

2011 7:25:07 PMorg
target dir

2011 7:25:07 PMorg
target package

2011 7:25:07 PMorg

.j ooq
.j ooq
.j ooq
.j ooq

.j ooq

.inpl.JooqgLogger info
o MYSQL

.inpl.JooqgLogger info
guest book
.inpl.JooqgLogger info
C: / wor kspace/ MySQLTest / src
.inpl.JooqgLogger info
test.generated
.inpl.JooqgLogger info

2011 7:25:07 PMorg
Enptyi ng

2011 7:25:07 PMorg
CGenerating classes i

2011 7:25:07 PMorg
Generating schema

2011 7:25:07 PMorg
Schena gener at ed

2011 7:25:07 PMorg
Sequences fetched

2011 7:25:07 PMorg
Tabl es fetched

2011 7:25:07 PMorg
CGenerating tables

2011 7:25:07 PMorg
ARRAYs f et ched

2011 7:25:07 PMorg
Enuns fetched

2011 7:25:07 PMorg
UDTs fetched

2011 7:25:07 PMorg
CGenerating table

2011 7:25:07 PMorg
Tabl es generat ed

2011 7:25:07 PMorg
Generating Keys

2011 7:25:08 PMorg
Keys generat ed

2011 7:25:08 PMorg
Generating records

2011 7:25:08 PMorg
Generating record

2011 7:25:08 PMorg

.jooq
.jooq
n.

.j ooq
.j ooq
.j ooq
.j ooq
.j ooq
.j ooq
.j ooq
.j ooq
.j ooq
.j ooq
.j ooq
.j ooq
.j ooq
.j ooq

.j ooq

Tabl e records generated

2011 7:25:08 PMorg
Routi nes fetched

2011 7:25:08 PMorg
Packages fetched

2011 7:25:08 PMorg
CENERATI ON FI NI SHED!

.j ooq
.j ooq

.j ooq

.inpl.JooqgLogger info

C: / wor kspace/ M\ySQLTest / src/ t est/ gener at ed
.inpl.JooqgLogger info

C: /wor kspace/ M\ySQLTest / src/ t est/ gener at ed
.inpl.JooqgLogger info

Guest book. j ava
.inpl.JooqgLogger info

Total : 122.18ms
.inpl.JooqgLogger info
: 0 (0 included, 0 excluded)
.inpl.JooqgLogger info
: 5 (5 included, 0 excluded)
.inpl.JooqgLogger info

C: /wor kspace/ M\ySQLTest / src/ t est/ gener at ed/ t abl es
.inpl.JooqgLogger info
: 0 (0 included, 0 excluded)
.inpl.JooqgLogger info
: 0 (0 included, 0 excluded)
.inpl.JooqgLogger info
: 0 (0 included, 0 excluded)
.inpl.JooqgLogger info

Posts. j ava
.inpl.JooqgLogger info

Total : 680.464ns, +558.284ns
.inpl.JooqgLogger info

C: /wor kspace/ M\ySQLTest / src/ t est/ gener at ed/ t abl es
.inpl.JooqgLogger info

Total : 718.621ns, +38.157ns
.inpl.JooqgLogger info

C: / wor kspace/ M\ySQLTest / src/ t est/ gener at ed/ t abl es/ recor ds
.inpl.JooqgLogger info

Post sRecord. j ava
.inpl.JooqgLogger info

Total : 782.545ns, +63.924ns
.inpl.JooqgLogger info
: 0 (0 included, 0 excluded)
.inpl.JooqgLogger info
: 0 (0 included, 0 excluded)
.inpl.JooqgLogger info

Total : 791.688ns, +9.143ns

3.4.1.4. Step 4: Connect to your database

3.4.1.4. Step 4. Connect to your database

Let's just write a vanilla main class in the project containing the generated classes:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 22 /174

The jOOQ User Manual

/'l For
i mpor t
i mpor t

i mport

conveni ence, always static inport your generated tables and jOOQ functions to decrease verbosity:

static test.generated. Tabl es. *;
static org.jooq.inpl.DSL.*;

java.sql.*;

public class Main {
public static void main(String[] args) {

This is pretty standard code for establishing a MySQL connection.

Connection conn = null;

String userName = "root";

String password = "";

String url = "jdbc:nysql://1ocal host: 3306/ guest book";
try {

Cl ass. f or Nane(" com nysql . j dbc. Driver"). new nstance();
conn = Driver Manager. get Connection(url, userNane, password);
} catch (Exception e) {
/'l For the sake of this tutorial, let's keep exception handling sinple
e.printStackTrace();
} finally {
if (conn !=null) {
try {
conn. cl ose();
} catch (SQLException ignore) {
}

3.4.1.5. Step 5: Querying

Let's add a simple query constructed with jOOQ's query DSL:

DSLCont ext create = DSL.using(conn, SQLDi al ect. MYSQL);
Resul t <Record> result = create.select().fron(POSTS).fetch();

3.4.1.5. Step 5: Querying

First get an instance of DSLContext so we can write a simple SELECT query. We pass an instance of
the MySQL connection to DSL. Note that the DSLContext doesn't close the connection. We'll have to
do that ourselves.

We then use jOOQ's query DSL to return an instance of Result. We'll be using this resultin the next step.

3.4.1.6. Step 6: Iterating

After the line where we retrieve the results, let's iterate over the results and print out the data:

for (Record r : result) {
Long id = r.getVal ue(POSTS. 1 D);
String title = r.getVal ue(POSTS. Tl TLE) ;
String description = r.getVal ue(POSTS. BODY) ;

Systemout.printin("ID " +id + " title: " + title + " desciption: " + description);

The full program should now look like this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 23 /174

The jOOQ User Manual 3.4.1.7. Step 7: Explore!

package test;

/'l For conveni ence, always static inmport your generated tables and
/1 jOOQ functions to decrease verbosity:

inmport static test.generated. Tables. *;

import static org.jooq.inpl.DSL.*;

import java.sql.*;
import org.jooq.*;
import org.jooq.inpl.*;
public class Main {

/**

* (@aram ar gs

*/

public static void main(String[] args) {
Connection conn = null;

String userName = "root";

String password = "";

String url = "jdbc:nysql://1ocal host: 3306/ guest book";
try {

Cl ass. f or Nane(" com nysql . j dbc. Driver"). new nstance();
conn = Driver Manager. get Connection(url, userNane, password);

DSLCont ext create = DSL.using(conn, SQLDi al ect. MYSQL) ;
Resul t <Record> result = create.sel ect().fron(POSTS).fetch();

for (Record r : result) {
Long id = r.getVal ue(POSTS. |1 D);
String title = r.getVal ue(POSTS. TI TLE) ;
String description = r.getVal ue(POSTS. BODY) ;

Systemout.printIn("ID: " +id + " title: " + title + " desciption: " + description);

}

} catch (Exception e) {
/'l For the sake of this tutorial, let's keep exception handling sinple
e.printStackTrace();

} finally {
if (conn !=null) {

try {

conn. cl ose();
} catch (SQLException ignore) {
}

3.4.1.7. Step 7: Explore!

jOOQ has grown to be a comprehensive SQL library. For more information, please consider the
documentation:
http://www.joog.org/learn

... explore the Javadoc:
http://www.jooq.org/javadoc/latest/

... or join the news group:
https://groups.google.com/forum/#!forum/joog-user

This tutorial is the courtesy of Ikai Lan. See the original source here:
http://ikaisays.com/2011/11/01/getting-started-with-joog-a-tutorial/

3.4.2. Using JOOQ in modern IDEs

Feel free to contribute a tutorial!

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 24 /174

http://www.jooq.org/learn
http://www.jooq.org/javadoc/latest/
https://groups.google.com/forum/#!forum/jooq-user
http://ikaisays.com/2011/11/01/getting-started-with-jooq-a-tutorial/

The jOOQ User Manual 3.4.3. Using jOOQ with Spring

3.4.3. Using JOOQ with Spring

Feel free to contribute a tutorial!

3.4.4. A simple web application with jJOOQ

Feel free to contribute a tutorial!

3.5.]00Q and Scala

As any other library, JOOQ can be easily used in Scala, taking advantage of the many Scala language
features such as for example:

- Optional "." to dereference methods from expressions
- Optional "(" and ")" to delimit method argument lists

- Optioanl ";" at the end of a Scala statement

- Typeinference using "var" and "val" keywords

But jOOQ also leverages other useful Scala features, such as

- implicit defs for operator overloading
- Scala Macros (soon to come)

All of the above heavily improve jOOQ's querying DSL APl experience for Scala developers.

A short example jOOQ application in Scala might look like this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 25/174

The jOOQ User Manual 3.6.jOOQ and NoSQL

import collection.JavaConversions. _ // Inport inplicit defs for iteration over org.jooq.Result
Il
inport java.sql.DriverManager Il
Il
import org.jooq._ Il
inport org.jooq.inpl._ Il
inport org.jooq.inpl.DSL. _ Il
import org.jooq.scal a. exanpl e. h2. Tabl es. _ Il
import org.jooq.scal a. Conversions. _ /1l Inport inplicit defs for overloaded j OOQ SQL operators
Il
obj ect Test { Il
def main(args: Array[String]): Unit = { Il
val c¢ = DriverManager. get Connection("jdbc: h2: ~/test", "sa", ""); // Standard JDBC connection
val e = DSL.using(c, SQDialect.H2); Il
val x = AUTHOR as "x" /1l SQL-esque table aliasing
Il
for (r <- e Il lteration over Result. "r" is an org.jooq. Record3
sel ect (Il
BOOK. | D * BOOK. AUTHOR | D, /1l Using the overloaded "*" operator
BOOK. I D + BOOK. AUTHOR ID * 3 + 4, /1l Using the overloaded "+" operator
BOOK TITLE || " abc" || " xy" /'l Using the overloaded "||" operator
) Il
from BOOK /1 No need to use parentheses or "." here
leftQuterJoin (Il
select (x.1D, x.YEAR OF BI RTH) /I Dereference fields fromaliased table
from x Il
limt 1 Il
asTabl e x. get Nane() Il
) Il
on BOOK. AUTHOR I D === x.ID /1l Using the overloaded "===" oper at or
where (BOXK. ID <> 2) /'l Using the ol erl oaded "<>" operator
or (BOOK. TITLE in ("O Al quinista", "Brida")) /1 Neat IN predicate expression
fetch Il
) | 1
println(r) Il
Il
} Il

For more details about jOOQ's Scala integration, please refer to the manual's section about SQL building
with Scala.

3.6.)00Q and NoSQL

jOOQ users often get excited about jOOQ's intuitive APl and would then wish for NoSQL support.

There are a variety of NoSQL databases that implement some sort of proprietary query language. Some
of these query languages even look like SQL. Examples are JCR-SQL2, CQL (Cassandra Query Language),
Cypher (Neo4j's Query Language), SOQL (Salesforce Query Language) and many more.

Mapping the jOOQ API onto these alternative query languages would be a very poor fit and a leaky
abstraction. We believe in the power and expressivity of the SQL standard and its various dialects.
Databases that extend this standard too much, or implement it not thoroughly enough are often not
suitable targets for jOOQ. It would be better to build a new, dedicated API for just that one particular
query language.

jOOQ is about SQL, and about SQL alone. Read more about our visions in the manual's preface.

3.7. Dependencies

Dependencies are a big hassle in modern software. Many libraries depend on other, non-JDK library
parts that come in different, incompatible versions, potentially causing trouble in your runtime
environment. jOOQ has no external dependencies on any third-party libraries.

However, the above rule has some exceptions:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 26 /174

http://www.h2database.com/jcr/grammar.html
https://cassandra.apache.org/doc/cql/CQL.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://www.salesforce.com/us/developer/docs/officetoolkit/Content/sforce_api_calls_soql.htm

The jOOQ User Manual 3.8. Build your own

- logging APIs are referenced as "optional dependencies". jOOQ tries to find slf4j or log4j on the
classpath. If it fails, it will use the java.util.logging.Logger

- Oracle ojdbc types used for array creation are loaded using reflection. The same applies to
Postgres PG* types.

- Small libraries with compatible licenses are incorporated into jOOQ. These include JOOR, jOOU,
parts of OpenCSV, json simple, parts of commons-lang

- javax.persistence and javax.validation will be needed if you activate the relevant code generation

flags

3.8. Build your own

In order to build jOOQ yourself, please download the sources from https://github.com/[O0Q/j0O0Q and
use Maven to build jOOQ, preferably in Eclipse. jOOQ requires Java 6+ to compile and run.

Some useful hints to build jJOOQ yourself:

- Get the latest version of Git or EGit

- Get the latest version of Maven or M2E

- Check out the jJOOQ sources from https://github.com/[O0Q/[00Q

- Optionally, import Maven artefacts into an Eclipse workspace using the following command (see
the maven-eclipse-plugin documentation for details):

* mvn eclipse:eclipse
- Build the joog-parent artefact by using any of these commands:

* mvn clean package

create jar files in ${project.build.directory}
* mvn clean install

install the .jar files in your local repository (e.g. ~/.m?2)
* mvn clean {goal} -Dmaven.test.skip=true

don't run unit tests when building artefacts

3.9.)00Q and backwards-compatibility

jOOQ follows the rules of semantic versioning according to http://semver.org quite strictly. Those rules
impose a versioning scheme [X].[Y].[Z] that can be summarised as follows:

- If a patch release includes bugfixes, performance improvements and API-irrelevant new features,
[Z] is incremented by one.

- If @ minor release includes backwards-compatible, API-relevant new features, [Y] is incremented
by one and [Z] is reset to zero.

- If @ major release includes backwards-incompatible, API-relevant new features, [X] is
incremented by one and [Y], [Z] are reset to zero.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 27 /174

http://www.slf4j.org/
http://logging.apache.org/log4j
http://download.oracle.com/javase/8/docs/apijava/util/logging/Logger.html
https://github.com/jOOQ/jOOR
https://github.com/jOOQ/jOOU
http://opencsv.sourceforge.net/
http://code.google.com/p/json-simple/
http://commons.apache.org/lang/
http://docs.oracle.com/javaee/6/api/javax/persistence/package-summary.html
http://docs.oracle.com/javaee/6/api/javax/validation/package-summary.html
https://github.com/jOOQ/jOOQ
http://git-scm.com
http://www.eclipse.org/egit
http://maven.apache.org
http://eclipse.org/m2e
https://github.com/jOOQ/jOOQ
http://maven.apache.org/plugins/maven-eclipse-plugin/
http://semver.org

The jOOQ User Manual 3.9.j00Q and backwards-compatibility

jO0Q's understanding of backwards-compatibility

Backwards-compatibility is important to jJOOQ. You've chosen jOOQ as a strategic SQL engine and you
don't want your SQL to break. That is why there is at most one major release per year, which changes
only those parts of jJOOQ's APl and functionality, which were agreed upon on the user group. During
the year, only minor releases are shipped, adding new features in a backwards-compatible way

However, there are some elements of API evolution that would be considered backwards-incompatible
in other APIs, but not in jJOOQ. As discussed later on in the section about JOOQ's query DSL API, much
of JOOQ's APl is indeed an internal domain-specific language implemented mostly using Java interfaces.
Adding language elements to these interfaces means any of these actions:

- Adding methods to the interface
- Overloading methods for convenience
- Changing the type hierarchy of interfaces

It becomes obvious that it would be impossible to add new language elements (e.g. new SQL functions,
new SELECT clauses) to the API without breaking any client code that actually implements those
interfaces. Hence, the following rule should be observed:

jOOQ's DSL interfaces should not be implemented by client code! Extend only those extension points
that are explicitly documented as "extendable" (e.g. custom QueryParts)

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 28 /174

The jOOQ User Manual 4, SQL building

4. SQL building

SQL is a declarative language that is hard to integrate into procedural, object-oriented, functional or
any other type of programming languages. jJOOQ's philosophy is to give SQL the credit it deserves and
integrate SQL itself as an "internal domain specific language" directly into Java.

With this philosophy in mind, SQL building is the main feature of jOOQ. All other features (such as SOL
execution and code generation) are mere convenience built on top of JOOQ's SQL building capabilities.

This section explains all about the various syntax elements involved with jOOQ's SQL building
capabilities. For a complete overview of all syntax elements, please refer to the manual's section about
|I00Q's BNF pseudo-notation

4.7. The query DSL type

jOOQ exposes a lot of interfaces and hides most implementation facts from client code. The reasons
for this are:

- Interface-driven design. This allows for modelling queries in a fluent APl most efficiently

- Reduction of complexity for client code.

- APl guarantee. You only depend on the exposed interfaces, not concrete (potentially dialect-
specific) implementations.

The org.joog.impl.DSL class is the main class from where you will create all JOOQ objects. It serves as a
static factory for table expressions, column expressions (or "fields"), conditional expressions and many

other QueryParts.

The static query DSL API

With jOOQ 2.0, static factory methods have been introduced in order to make client code look more
like SQL. Ideally, when working with jOOQ), you will simply static import all methods from the DSL class:

import static org.jooq.inpl.DSL.*;

Note, that when working with Eclipse, you could also add the DSL to your favourites. This will allow to
access functions even more fluently:

concat (trim(FI RST_NAME), trin{LAST_NAME));

/1 ... which is in fact the same as:
DSL. concat (DSL. tri m(FI RST_NAME), DSL.tri nm(LAST_NAME));

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 29/174

http://en.wikipedia.org/wiki/Domain_Specific_Language
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html

The jOOQ User Manual 4.1.1. DSL subclasses

4.7.7. DSL subclasses

There are a couple of subclasses for the general query DSL. Each SQL dialect has its own dialect-specific
DSL. For instance, if you're only using the MySQL dialect, you can choose to reference the MySQLDSL
instead of the standard DSL:

The advantage of referencing a dialect-specific DSL lies in the fact that you have access to more
proprietary RDMBS functionality. This may include:

- MySQLU's encryption functions
- PL/SQL constructs, pgplsql, or any other dialect's ROUTINE-language (maybe in the future)

4.72. The DSLContext class

DSLContext references a org.joog.Configuration, an object that configures jOOQ's behaviour when
executing queries (see SQL execution for more details). Unlike the static DSL, the DSLContext allow for
creating SQL statements that are already "configured" and ready for execution.

Fluent creation of a DSLContext object

The DSLContext object can be created fluently from the DSL type:

I/l Create it froma pre-existing configuration
DSLCont ext create = DSL.using(configuration);

I/l Create it from ad-hoc argunents
DSLCont ext create = DSL.using(connection, dialect);

If you do not have a reference to a pre-existing Configuration object (e.g. created from
org.joog.impl.DefaultConfiguration), the various overloaded DSL.using() methods will create one for
you.

Contents of a Configuration object

A Configuration can be supplied with these objects:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 30/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Configuration.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DefaultConfiguration.html

The jOOQ User Manual 4.2.1.SQL Dialect

- org.jooq.SQLDialect : The dialect of your database. This may be any of the currently supported
database types (see SQL Dialect for more details)

- orgjoog.conf.Settings : An optional runtime configuration (see Custom Settings for more details)

- org.joog.ExecutelistenerProvider : An optional reference to a provider class that can provide
execute listeners to jOOQ (see Executelisteners for more details)

- Anyof these:

* java.sgl.Connection : An optional JDBC Connection that will be re-used for the whole
lifecycle of your Configuration (see Connection vs. DataSource for more details). For
simplicity, this is the use-case referenced from this manual, most of the time.

* java.sgl.DataSource : An optional JDBC DataSource that will be re-used for the whole
lifecycle of your Configuration. If you prefer using DataSources over Connections, jOOQ will
internally fetch new Connections from your DataSource, conveniently closing them again
after query execution. This is particularly useful in J2EE or Spring contexts (see Connection
vs. DataSource for more details)

* orgjoog.ConnectionProvider : A custom abstraction that is used by jOOQ to "acquire"
and "release" connections. jOOQ will internally "acquire" new Connections from your
ConnectionProvider, conveniently "releasing" them again after query execution. (see
Connection vs. DataSource for more details)

Wrapping a Configuration object, a DSLContext can construct statements, for later execution. An
example is given here:

/1 The DSLContext is "configured® with a Connection and a SQLDi al ect
DSLCont ext create = DSL. using(connection, dialect);

/'l This select statenent contains an internal reference to the DSLContext's Configuration:
Sel ect <?> sel ect = create. selectOne();

/1 Using the internally referenced Configuration, the select statenent can now be executed:
Resul t<?> result = select.fetch();

Note that you do not need to keep a reference to a DSLContext. You may as well inline your local variable,
and fluently execute a SQL statement as such:

Il Execute a statenent froma single execution chain:
Resul t<?> result =
DSL. usi ng(connection, dialect)

.select()

. f r om(BOOK)

. wher e(BOOK. TI TLE. I i ke(" Ani mal %))

.fetch();

4.2.1.SQL Dialect

While jOOQ tries to represent the SQL standard as much as possible, many features are vendor-specific
to a given database and to its "SQL dialect". JOOQ models this using the org.joog.SQLDialect enum type.

The SQL dialect is one of the main attributes of a Configuration. Queries created from DSLContexts will
assume dialect-specific behaviour when rendering SOL and binding bind values.

Some parts of the JOOQ API are officially supported only by a given subset of the supported SQL dialects.
For instance, the Oracle CONNECT BY clause, which is supported by the Oracle and CUBRID databases,
is annotated with a org.joog.Support annotation, as such:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 31/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/SQLDialect.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/conf/Settings.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ExecuteListenerProvider.html
http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://download.oracle.com/javase/8/docs/apijava/sql/DataSource.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ConnectionProvider.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/SQLDialect.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Support.html

The jOOQ User Manual 4.2.2. Connection vs. DataSource

/**
* Add an Oracl e-specific <code>CONNECT BY</code> clause to the query
*/

@upport ({ SQLDi al ect. CUBRI D, SQLDi al ect. ORACLE })

Sel ect Connect ByCondi ti onSt ep<R> connect By(Condi tion condition);

jOOQ APl methods which are not annotated with the org.joog.Support annotation, or which are
annotated with the Support annotation, but without any SQL dialects can be safely used in all SQL
dialects. An example for this is the SELECT statement factory method:

/**
* Create a new DSL sel ect statenent.
*/
@uppor t
Sel ect Sel ect St ep<R> sel ect (Fi el d<?>... fields);

jO0Q's SQL clause emulation capabilities

The aforementioned Support annotation does not only designate, which databases natively support a
feature. It also indicates that a feature is emulated by jOOQ for some databases lacking this feature. An
example of this is the DISTINCT predicate, a predicate syntax defined by SQL:1999 and implemented
only by H2, HSQLDB, and Postgres:

A 1S DI STINCT FROM B

Nevertheless, the IS DISTINCT FROM predicate is supported by jOOQ in all dialects, as its semantics can
be expressed with an equivalent CASE expression. For more details, see the manual's section about
the DISTINCT predicate.

jO0Q and the Oracle SQL dialect

Oracle SQL is much more expressive than many other SQL dialects. It features many unique keywords,
clauses and functions that are out of scope for the SQL standard. Some examples for this are

- The CONNECT BY clause, for hierarchical queries

- The PIVOT keyword for creating PIVOT tables

- Packages, object-oriented user-defined types, member procedures as described in the section
about stored procedures and functions

- Advanced analytical functions as described in the section about window functions

jOOQ has a historic affinity to Oracle's SQL extensions. If something is supported in Oracle SQL, it has
a high probability of making it into the jJOOQ AP

4.72.72. Connection vs. DataSource

Interact with JDBC Connections

While you can use jOOQ for SQL building only, you can also run queries against a JDBC
java.sgl.Connection. Internally, jJOOQ creates java.sgl.Statement or java.sql.PreparedStatement objects

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 32/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Support.html
http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html

The jOOQ User Manual 4.2.3. Custom data

from such a Connection, in order to execute statements. The normal operation mode is to provide a
Configuration with a JDBC Connection, whose lifecycle you will control yourself. This means that jOOQ
will not actively close connections, rollback or commit transactions.

Note, in this case, JOOQ will internally use a org.joog.impl.DefaultConnectionProvider, which you can
reference directly if you prefer that. The DefaultConnectionProvider exposes various transaction-
control methods, such as commit(), rollback(), etc.

Interact with JDBC DataSources

If you're in a J2EE or Spring context, however, you may wish to use a javax.sgl.DataSource instead.
Connections obtained from such a DataSource will be closed after query execution by jOOQ. The
semantics of such a close operation should be the returning of the connection into a connection pool,
not the actual closing of the underlying connection. Typically, this makes sense in an environment using
distributed JTA transactions. An example of using DataSources with jOOQ can be seen in the tutorial
section about using JOOQ with Spring.

Note, in this case, JOOQ will internally use a org.joog.impl.DataSourceConnectionProvider, which you
can reference directly if you prefer that.

Inject custom behaviour

If your specific environment works differently from any of the above approaches, you can inject your own
custom implementation of a ConnectionProvider into jJOOQ. This is the API contract you have to fulfil:

public interface ConnectionProvider {

// Provide jOOQ with a connection
Connection acquire() throws DataAccessException;

I/ Get a connection back fromjOOQ

voi d rel ease(Connection connection) throws DataAccessExcepti on;

}

Note that acquire() should always return the same Connection until this connection is returned via
release()

4.2.3. Custom data

In advanced use cases of integrating your application with jJOOQ, you may want to put custom data into
your Configuration, which you can then access from your...

- Custom Executelisteners
- Custom QueryParts

Here is an example of how to use the custom data APIl. Let's assume that you have written an
Executelistener, that prevents INSERT statements, when a given flag is set to true:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 33/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DefaultConnectionProvider.html
http://download.oracle.com/javase/8/docs/apijavax/sql/DataSource.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DataSourceConnectionProvider.html

The jOOQ User Manual 4.2.4. Custom Executelisteners

/1 1 nplement an Executeli stener
public class NolnsertListener extends Defaul t ExecuteListener {

@verride
public void start(ExecuteContext ctx) {

/1l This listener is active only, when your customflag is set to true
i f (Bool ean. TRUE. equal s(ctx. confi guration().data("com exanpl e. ny-nanespace. no-inserts"))) {

/1 1f active, fail this execution, if an I NSERT statenent is being executed

if (ctx.query() instanceof Insert) {
throw new Dat aAccessException("No | NSERT statenments al | oned");
}

See the manual's section about Executelisteners to learn more about how to implement an
ExecuteListener.

Now, the above listener can be added to your Configuration, but you will also need to pass the flag to
the Configuration, in order for the listener to work:

I/ Create your Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(dialect);

I/ Set a new execute |listener provider onto the configuration:
configuration. set (new Def aul t Execut eLi st ener Provi der (new Nol nsertListener()));

// Use any String literal to identify your custom data
configuration. data("com exanpl e. ny- nanmespace. no-i nserts", true);
/1l Try to execute an | NSERT statenent
try {
DSL. usi ng(confi gurati on)

.insertlnto(AUTHOR, AUTHOR | D, AUTHOR. LAST_NAVE)

.values(1, "Owell")

.execute();

/1l You shouldn't get here
Assert.fail();
}

/1 Your NolnsertListener should be throw ng this exception here:
catch (DataAccessException expected) {

Assert.assert Equal s("No | NSERT statenents al |l owed", expected. get Message());
}

Using the data() methods, you can store and retrieve custom data in your Configurations.

4.2.4. Custom Executelisteners

Executelisteners are a useful tool to...

- implement custom logging
- apply triggers written in Java
- collect query execution statistics

- integrate with the JOOQ Console

Executelisteners are hooked into your Configuration by returning them from an
org.joog.ExecuteListenerProvider:

/1l Create your Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(dialect);

/'l Hook your listener providers into the configuration:

configuration. set (
new Def aul t Execut eLi st ener Provi der (new MyFirstListener()),
new Def aul t Execut eLi st ener Provi der (new Per f or nencelLoggi ngLi st ener()),
new Def aul t Execut eLi st ener Provi der (new Nol nsertLi stener())

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 34 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/ExecuteListenerProvider.html

The jOOQ User Manual 4.2.5. Custom Settings

See the manual's section about Executelisteners to see examples of such listener implementations.

4.2.5. Custom Settings

The jOOQ Configuration allows for some optional configuration elements to be used by advanced users.
The org.joog.conf.Settings class is a JAXB-annotated type, that can be provided to a Configuration in
several ways:

- In the DSLContext constructor (DSL.using()). This will override default settings below

- inthe orgjoog.impl.DefaultConfiguration constructor. This will override default settings below
- From a location specified by a JVM parameter: -Dorg.joog.settings

- From the classpath at /joog-settings.xml

- From the settings defaults, as specified in http://www.joog.org/xsd/joog-runtime-3.0.0.xsd

Example

For example, if you want to indicate to jOOQ, that it should inline all bind variables, and execute static
java.sgl.Statement instead of binding its variables to java.sgl.PreparedStatement, you can do so by
creating the following DSLContext:

Settings settings = new Settings();
settings. set St at enent Type(St at ement Type. STATI C_STATEMENT) ;
DSLCont ext create = DSL.using(connection, dialect, settings);

Subsequent sections of the manual contain some more in-depth explanations about these settings:

- Runtime schema and table mapping
- Execute CRUD with optimistic locking enabled
- Enabling DEBUG logging of all executed SQL

Please refer to the jOOQ runtime configuration XSD for more details:
http://www.joog.org/xsd/joog-runtime-3.0.0.xsd

4.2.6. Runtime schema and table mapping

Mapping your DEV schema to a productive environment

You may wish to design your database in a way that you have several instances of your schema. This
is useful when you want to cleanly separate data belonging to several customers / organisation units /
branches / users and put each of those entities' data in a separate database or schema.

In our AUTHOR example this would mean that you provide a book reference database to several
companies, such as My Book World and Books R Us. In that case, you'll probably have a schema setup
like this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 35/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/conf/Settings.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DefaultConfiguration.html
http://www.jooq.org/xsd/jooq-runtime-3.0.0.xsd
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://www.jooq.org/xsd/jooq-runtime-3.0.0.xsd

The jOOQ User Manual 4.2.6. Runtime schema and table mapping

- DEV: Your development schema. This will be the schema that you base code generation upon,
with jOOQ

- MY_BOOK_WORLD: The schema instance for My Book World

- BOOKS_R_US: The schema instance for Books R Us

Mapping DEV to MY_BOOK_WORLD with jOOQ

When a user from My Book World logs in, you want them to access the MY_BOOK_WORLD schema
using classes generated from DEV. This can be achieved with the org.joog.conf.RenderMapping class,
that you can equip your Configuration's settings with. Take the following example:

Settings settings = new Settings()
.wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema(). wit hl nput (" DEV")
. Wit hQut put (" MY_BOOK_WORLD")));

/1 Add the settings to the DSLContext
DSLCont ext create = DSL.using(connection, SQLDi al ect. ORACLE, settings);

/1 Run queries with the "mapped" Configuration
create. sel ect Fron{ AUTHOR) . f et ch() ;

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * FROM MY_BOCK_WORLD. AUTHOR

Even if AUTHOR was generated from DEV.

Mapping several schemata

Your development database may not be restricted to hold only one DEV schema. You may also have
a LOG schema and a MASTER schema. Let's say the MASTER schema is shared among all customers,
but each customer has their own LOG schema instance. Then you can enhance your RenderMapping
like this (e.g. using an XML configuration file):

<settings xm ns="http://ww.jooq.org/xsd/joog-runtimne-3.0.0.xsd">
<r ender Mappi ng>
<schemat a>
<schema>
<i nput >DEV</ i nput >
<out put >MY_BOOK_WORLD</ out put >
</ schena>
<schema>
<i nput >LOG</ i nput >
<out put >MY_BOOK_WORLD_LOG</ out put >
</ schena>
</ schemat a>
</ render Mappi ng>
</ settings>

Note, you can load the above XML file like this:
Settings settings = JAXB.unnarshal (new File("joog-runtinme.xm "), Settings.class);

This will map generated classes from DEV to MY_BOOK_WORLD, from LOG to MY_BOOK_WORLD_LOG,
but leave the MASTER schema alone. Whenever you want to change your mapping configuration, you
will have to create a new Configuration.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 36 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/conf/RenderMapping.html

The jOOQ User Manual 4.3.SQL Statements

Using a default schema

If you wish not to render any schema name at all, use the following Settings property for this:

Settings settings = new Settings()
.wi t hRender Schena(f al se) ;

/1l Add the settings to the Configuration
DSLCont ext create = DSL.using(connection, SQLDi al ect. ORACLE, settings);

/1l Run queries that omt rendering schema nanes
create. sel ect Fron{ AUTHOR) . fetch() ;

Mapping of tables

Not only schemata can be mapped, but also tables. If you are not the owner of the database
your application connects to, you might need to install your schema with some sort of prefix to
every table. In our examples, this might mean that you will have to map DEV.AUTHOR to something
MY_BOOK_WORLD.MY_APP__AUTHOR, where MY_APP__is a prefix applied to all of your tables. This can
be achieved by creating the following mapping:

Settings settings = new Settings()
.wi t hRender Mappi ng(new Render Mappi ng()
.wi t hSchemat a(
new MappedSchema() . wi t hl nput (" DEV")
. Wi t hQut put (" MY_BOOK_WORLD")
.wi t hTabl es(
new MappedTabl e() . wi t hl nput (" AUTHOR")

. Wit hQut put ("MY_APP__AUTHOR'))));

/1 Add the settings to the Configuration
DSLCont ext create = DSL.using(connection, SQLDi al ect. ORACLE, settings);

/1 Run queries with the "mapped" configuration
create. sel ect Fron{ AUTHOR) . f et ch() ;

The query executed with a Configuration equipped with the above mapping will in fact produce this
SQL statement:

SELECT * FROM MY_BOCK_WORLD. MY_APP__AUTHOR

Table mapping and schema mapping can be applied independently, by specifying several
MappedSchema entries in the above configuration. jJOOQ will process them in order of appearance and
map at first match. Note that you can always omit a MappedSchema's output value, in case of which,
only the table mapping is applied. If you omit a MappedSchema's input value, the table mapping is
applied to all schemata!

Hard-wiring mappings at code-generation time

Note that the manual's section about code generation schema mapping explains how you can hard-
wire your schema mappings at code generation time

4 3. SQL Statements

jOOQ currently supports 6 types of SQL statements. All of these statements are constructed from a
DSLContext instance with an optional JDBC Connection or DataSource. If supplied with a Connection or
DataSource, they can be executed. Depending on the query type, executed queries can return results.
© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 37 /174

The jOOQ User Manual 4.3.1.j00Q's DSL and model API

4.3.1.]00Q's DSL and model API

jOOQ ships with its own DSL (or Domain Specific Language) that emulates SQL in Java. This means,
that you can write SQL statements almost as if Java natively supported it, just like .NET's C# does with
LINQ to SQL.

Here is an example to illustrate what that means:

- Select all books by authors born after 1920, Resul t <Record> result =
- naned "Paul 0" from a catal ogue: create.sel ect()
SELECT * . fron{ AUTHOR. as("a"))
FROM aut hor a .join(BOXK. as("b")).on(a.!D.equal (b. AUTHOR | D))
JO N book b ON a.id = b.author_id . wher e(a. YEAR_OF_BI RTH. gr eat er Than(1920)
WHERE a. year_of _birth > 1920 .and(a. FI RST_NAME. equal (" Paul 0")))
AND a. first_nane = ' Paul o' .orderBy(b. TITLE)
ORDER BY b.title .fetch();

We'll see how the aliasing works later in the section about aliased tables

JO0Q as an internal domain specific language in Java (a.k.a. the DSL API)

Many other frameworks have similar APIs with similar feature sets. Yet, what makes jOOQ special is its
informal BNF notation modelling a unified SQL dialect suitable for many vendor-specific dialects, and
implementing that BNF notation as a hierarchy of interfaces in Java. This concept is extremely powerful,
when using jOOQ in modern IDEs with syntax completion. Not only can you code much faster, your
SQL code will be compile-checked to a certain extent. An example of a DSL query equivalent to the
previous one is given here:

DSLCont ext create = DSL.using(connection, dialect);

Resul t<?> result = create. sel ect()
. f r om(AUTHOR)
.j 0i n(BOOK) . on(BOOK. AUTHOR | D. equal (AUTHOR. | D))
.fetch();

Unlike other, simpler frameworks that use "fluent APIs" or "method chaining", jOOQ's BNF-based
interface hierarchy will not allow bad query syntax. The following will not compile, for instance:

DSLCont ext create = DSL. using(connection, dialect);
Resul t<?> result = create.select()
. j 0i n(BOOK) . on(BOOK. AUTHOR | D. equal (AUTHOR. | D))
/] AMAAN Mjoin" is not possible here
. from(AUTHOR)
.fetch();

Resul t<?> result = create.select()
. from(AUTHOR)
. j oi n(BOOK)
.fetch();
/| ANAAN ton" is mssing here

Resul t<?> result = create. sel ect (rowNunber())

11 ANANAANAN tgyer ()" is missing here
. from(AUTHOR)
.fetch();
Resul t<?> result = create.select()
. from(AUTHOR)
. wher e(AUTHOR. | D. i n(sel ect (BOOK. TI TLE) . f r on{ BOOK)))
// ANNANNNNANANNNNNNNN
// AUTHOR ID is of type Field<Integer> but subselect returns Recordl<String>
.fetch();
Resul t<?> result = create.select()
. from(AUTHOR)
. wher e(AUTHOR. | D. i n(sel ect (BOOK. AUTHOR | D, BOOK. I D). f r om(BOXK)))
// ANNANNNNANNANNNNNANNANNNNNNANNNNNNN
// AUTHOR ID is of degree 1 but subsel ect returns Record2<Integer, |nteger>
.fetch();

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 38/174

http://en.wikipedia.org/wiki/Domain-specific_language
http://msdn.microsoft.com/en-us/library/bb425822.aspx
http://en.wikipedia.org/wiki/Fluent_interface
http://en.wikipedia.org/wiki/Method_chaining

The jOOQ User Manual 4.3.2. The SELECT statement

History of SQL building and incremental query building (a.k.a. the model
API)

Historically, JOOQ started out as an object-oriented SQL builder library like any other. This meant that
all queries and their syntactic components were modeled as so-called QueryParts, which delegate SOL
rendering and variable binding to child components. This part of the APl will be referred to as the
model API (or non-DSL API), which is still maintained and used internally by jJOOQ for incremental query
building. An example of incremental query building is given here:

DSLCont ext create = DSL.using(connection, dialect);
Sel ect Query<Record> query = create. sel ect Query();
query. addFr on{ AUTHOR) ;
/1 Join books only under certain circunstances
if (join) {
query. addJoi n(BOOK, BOOK. AUTHOR | D. equal (AUTHOR. I D)) ;

Resul t<?> result = query.fetch();

This query is equivalent to the one shown before using the DSL syntax. In fact, internally, the DSL AP
constructs precisely this SelectQuery object. Note, that you can always access the SelectQuery object
to switch between DSL and model APIs:

DSLCont ext create = DSL.using(connection, dialect);
Sel ect Fi nal St ep<?> sel ect = create. sel ect().fron AUTHOR);

// Add the JO N clause on the internal QueryChject representation

Sel ect Query<?> query = sel ect. get Query();
query. addJoi n(BOOK, BOOK. AUTHOR | D. equal (AUTHOR. I D)) ;

Mutability

Note, that for historic reasons, the DSL APl mixes mutable and immutable behaviour with respect to
the internal representation of the QueryPart being constructed. While creating conditional expressions,
column expressions (such as functions) assumes immutable behaviour, creating SQL statements does
not. In other words, the following can be said:

/1 Conditional expressions (inmmutable)

R L R
Condition a BOOK. TI TLE. equal (" 1984");
Condition b BOOK. TI TLE. equal (" Ani nal Farnt');

/1 The follow ng can be said
a = a.or(b); // or() does not nodify a
a.or(b) !'=a.or(b); // or() always creates new objects

/] Statements (nutable)

R R T

Sel ect FronBt ep<?> s1 = select();

Sel ect Joi nSt ep<?> s2 = sl.fron{BOX);
Sel ect Joi nSt ep<?> s3 = sl.fron{ AUTHOR) ;

/1 The follow ng can be said

sl == s2; // The internal object is always the sane
s2 == s3; // The internal object is always the sane

On the other hand, beware that you can always extract and modify bind values from any QueryPart.

4.3.2. The SELECT statement

When you don't just perform CRUD (i.e. SELECT * FROM your_table WHERE ID = ?), you're usually

generating new record types using custom projections. With jOOQ, this is as intuitive, as if using SQL
© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 39/174

The jOOQ User Manual 4.3.2.1. The SELECT clause

directly. A more or less complete example of the "standard" SQL syntax, plus some extensions, is
provided by a query like this:

SELECT from a complex table expression

- get all authors' first and |ast nanes, and the nunber /1 And with jOOQ ..
- of books they've witten in German, if they have witten

- nore than five books in German in the |ast three years

- (from 2011), and sort those authors by |ast nanes

- limting results to the second and third row, | ocking

- the rows for a subsequent update... whew DSLCont ext create = DSL.using(connection, dialect);
SELECT AUTHOR. FI RST_NAME, AUTHOR LAST_NAME, COUNT(*) create. sel ect (AUTHOR FI RST_NAME, AUTHOR. LAST_NAME, count ())
FROM AUTHOR . f ron{ AUTHOR)
JO N BOOK ON AUTHOR. | D = BOOK. AUTHOR_I D .j 0i n(BOOK) . on(BOOK. AUTHOR_I D. equal (AUTHOR. | D))
WHERE BOOK. LANGUAGE = ' DE' . wher e(BOOK. LANGUAGE. equal (" DE"))
AND BOOK. PUBLI SHED > ' 2008-01-01' . and(BOOK. PUBLI SHED. gr eat er Than("2008- 01-01"))
GROUP BY AUTHOR FI RST_NAME, AUTHOR. LAST_NAVE . groupBy (AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)
HAVI NG COUNT(*) > 5 . havi ng(count (). great er Than(5))
ORDER BY AUTHOR. LAST_NAMVE ASC NULLS FI RST . or der By(AUTHOR. LAST_NAME. asc() . nul | sFirst())
LIMT 2 imit(2)
OFFSET 1 .of fset (1)
FOR UPDATE .forUpdate();

Details about the various clauses of this query will be provided in subsequent sections.

SELECT from single tables

A very similar, but limited APl is available, if you want to select from single tables in order to retrieve
TableRecords or even UpdatableRecords. The decision, which type of select to create is already made
at the very first step, when you create the SELECT statement with the DSL or DSLContext types:

public <R extends Record> Sel ect Wier eSt ep<R> sel ect Fr on(Tabl e<R> t abl e) ;

As you can see, there is no way to further restrict/project the selected fields. This just selects all known
TableFields in the supplied Table, and it also binds <R extends Record> to your Table's associated
Record. An example of such a Query would then be:

BookRecord book = create. sel ect Fr om(BOOK)
. wher e(BOOK. LANGUAGE. equal (" DE"))
. or der By(BOOK. Tl TLE)
.fetchAny();

The "reduced" SELECT APl is limited in the way that it skips DSL access to any of these clauses:

- The SELECT clause
- The JOIN clause

In most parts of this manual, it is assumed that you do not use the "reduced" SELECT API. For more
information about the simple SELECT API, see the manual's section about fetching strongly or weakly

typed records.

4.3.2.7. The SELECT clause

The SELECT clause lets you project your own record types, referencing table fields, functions, arithmetic
expressions, etc. The DSL type provides several methods for expressing a SELECT clause:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 40 /174

The jOOQ User Manual 4.3.2.1. The SELECT clause

- The SELECT cl ause /1 Provide a varargs Fields list to the SELECT cl ause:
SELECT BOOK. | D, BOX. TI TLE Sel ect <?> s1 = create. sel ect (BOOK. | D, BOXK. TITLE);
SELECT BOOK. | D, TRI M BOOK. Tl TLE) Sel ect<?> s2 = create. sel ect (BOOK. I D, trinm{BOOK. TITLE));

Some commonly used projections can be easily created using convenience methods:

- Sinple SELECTs /1 Select comonly used val ues

SELECT COUNT(*) Sel ect <?> select1l = create.sel ectCount();
SELECT 0 -- Not a bind variable Sel ect <?> sel ect2 = create. sel ect Zero();
SELECT 1 -- Not a bind variable Sel ect <?> sel ect2 = create. sel ectOne();

See more details about functions and expressions in the manual's section about Column expressions

The SELECT DISTINCT clause

The DISTINCT keyword can be included in the method name, constructing a SELECT clause

SELECT DI STI NCT BOXK. Tl TLE Sel ect <?> sel ect1l = create. sel ect Di stinct(BOXK. Tl TLE) ;

SELECT *

jOOQ does not explicitly support the asterisk operator in projections. However, you can omit the
projection as in these examples:

/1l Explicitly selects all colums available from BOK
create.sel ect().fronBOX);

/1l Explicitly selects all colums available from BOOK and AUTHOR
create.select().fron(BOOXK, AUTHOR);
create. sel ect().fron{BOOK). crossJoi n(AUTHOR) ;

// Renders a SELECT * statenment, as columms are unknown to j COQ
create.select().fron(tabl eByNane("BOX"));

Typesafe projections with degree up to 22

Since jOOQ 3.0, records and row value expressions up to degree 22 are now generically typesafe. This is
reflected by an overloaded SELECT (and SELECT DISTINCT) APl in both DSL and DSLContext. An extract
from the DSL type:

/1 Non-typesafe sel ect nethods:
public static SelectSel ect St ep<Record> sel ect (Col | ecti on<? extends Fiel d<?>> fields);
public static Sel ectSel ect Step<Record> sel ect (Field<?>... fields);

/1 Typesafe sel ect nmethods:
public static <T1> Sel ect Sel ect St ep<Recor d1<T1>> sel ect (Fi el d<T1> fiel dl);
public static <T1, T2> Sel ect Sel ect St ep<Recor d2<T1, T2>> sel ect (Fi el d<T1> fiel dl, Field<T2> field2);

public static <T1, T2, T3> Sel ect Sel ect St ep<Record3<T1, T2, T3>> sel ect(Field<T1> fieldl, Field<T2> field2, Field<T3> field3);
...

Since the generic R type is bound to some Record[N], the associated T type information can be used in
various other contexts, e.g. the IN predicate. Such a SELECT statement can be assigned typesafely:

Sel ect <Record2<I nteger, String>> sl

create. sel ect (BOOK. | D, BOOXK. TI TLE) ;
Sel ect <Record2<I nteger, String>> s2

create.sel ect (BOOK. I D, trim BOXK. TITLE));

For more information about typesafe record types with degree up to 22, see the manual's section about
Record1 to Record2?2.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 41 /174

The jOOQ User Manual 4.3.2.2. The FROM clause

4.3.2.2. The FROM clause

The SQL FROM clause allows for specifying any number of table expressions to select data from. The
following are examples of how to form normal FROM clauses:

SELECT 1 FROM BOOK create. sel ect One() . fron(BOX);
SELECT 1 FROM BOOK, AUTHOR create. sel ect One().fron(BOOK, AUTHOR);
SELECT 1 FROM BOOK "b", AUTHOR "a" create.sel ectOne().fron(BOOK as("b"), AUTHOR as("a"));

Read more about aliasing in the manual's section about aliased tables.

More advanced table expressions

Apart from simple tables, you can pass any arbitrary table expression to the jJOOQ FROM clause. This
may include unnested cursors in Oracle:

SELECT * create.select()
FROM TABLE(DBVMS_XPLAN. DI SPLAY_CURSOR(nul |, null, " ALLSTATS)); . fron(tabl e(DbmsXpl an. di spl ayCursor (null, null,
" ALLSTATS"));

Note, in order to access the DbmsXplan package, you can use the code generator to generate Oracle's
SYS schema.

Selecting FROM DUAL with jJO0Q

In many SQL dialects, FROM is a mandatory clause, in some it isn't. JOOQ allows you to omit the FROM
clause, returning just one record. An example:

SELECT 1 FROM DUAL DSL. usi ng(SQLDi al ect . ORACLE) . sel ect One() . get SQL();
SELECT 1 DSL. usi ng(SQLDi al ect . POSTGRES) . sel ect One() . get SQL() ;

Read more about dual or dummy tables in the manual's section about the DUAL table. The following
are examples of how to form normal FROM clauses:

4.3.2.3. The JOIN clause

jOOQ supports many different types of standard SQL JOIN operations:

- [INNER]JOIN

- LEFT [OUTER]JJOIN

- RIGHT [OUTER] JOIN

- FULL OUTER JOIN

- CROSS JOIN

- NATURAL JOIN

- NATURAL LEFT [OUTER]JOIN
- NATURAL RIGHT [OUTER]JOIN

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 42 /174

The jOOQ User Manual 4.3.2.3. The JOIN clause

All of these JOIN methods can be called on org.joog.Table types, or directly after the FROM clause for
convenience. The following example joins AUTHOR and BOOK

DSLCont ext create = DSL.using(connection, dialect);

/1l Call "join" directly on the AUTHOR tabl e
Resul t<?> result = create. sel ect()
. from(AUTHOR. j oi n(BOOK)
. on(BOOK. AUTHOR | D. equal (AUTHOR. I D)))
.fetch();

// Call "join" on the type returned by "front
Resul t<?> result = create. sel ect()

. from(AUTHOR)

. j oi n(BOOK)

. on(BOOK. AUTHOR I D. equal (AUTHOR. | D))
.fetch();

The two syntaxes will produce the same SQL statement. However, calling "join" on org.jooq.Table objects
allows for more powerful, nested JOIN expressions (if you can handle the parentheses):

SELECT * /1 Nest joins and provide JON conditions only at the end
FROM AUTHOR create.select()
LEFT QUTER JO N (. from(AUTHOR
BOOK JO N BOOK_TO _BOOK_STORE .l ef t Qut er Joi n(BOOK
ON BOOK_TO_BOOK_STORE. BOOK_| D = BOXK. | D .j 0i n(BOOK_TO_BOOK_STORE)
) . on(BOOK_TO_BOOK_STORE. BOOK_| D. equal (BOOK. 1 D)))
ON BOOK. AUTHOR | D = AUTHCOR. | D . on(BOOK. AUTHOR I D. equal (AUTHOR 1 D))) ;

- See the section about conditional expressions to learn more about the many ways to create
org.joog.Condition objects in jOOQ.

- See the section about table expressions to learn about the various ways of referencing
org.joog.Table objects in jOOQ

JOIN ON KEY, convenience provided by jOOQ

Surprisingly, the SQL standard does not allow to formally JOIN on well-known foreign key relationship
information. Naturally, when you join BOOK to AUTHOR, you will want to do that based on the
BOOK.AUTHOR_ID foreign key to AUTHOR.ID primary key relation. Not being able to do this in SQL leads
to a lot of repetitive code, re-writing the same JOIN predicate again and again - especially, when your
foreign keys contain more than one column. With jOOQ, when you use code generation, you can use
foreign key constraint information in JOIN expressions as such:

SELECT * create.select()
FROM AUTHOR . f r o AUTHOR)
JO N BOOK ON BOOK. AUTHOR | D = AUTHOR. | D .j oi n(BOOXK) . onKey() ;

In case of ambiguity, you can also supply field references for your foreign keys, or the generated foreign
key reference to the onKey() method.

Note that formal support for the Sybase JOIN ON KEY syntax is on the roadmap.

The JOIN USING syntax

Most often, you will provide jOOQ with JOIN conditions in the JOIN .. ON clause. SQL supports a different
means of specifying how two tables are to be joined. This is the JOIN .. USING clause. Instead of a
condition, you supply a set of fields whose names are common to both tables to the left and right
of a JOIN operation. This can be useful when your database schema has a high degree of relational
normalisation. An example:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 43 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Condition.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html
http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/Database_normalization

The jOOQ User Manual 4.3.2.4. The WHERE clause

- Assunming that both tables contain AUTHOR ID col umms /'l join(...).using(...)
SELECT * create.sel ect()
FROM AUTHOR . f ron{ AUTHOR)
JO N BOOK USI NG (AUTHOR_I D) .j 0i n(BOOK) . usi ng(AUTHOR AUTHOR I D) ;

In schemas with high degrees of normalisation, you may also choose to use NATURAL JOIN, which takes
no JOIN arguments as it joins using all fields that are common to the table expressions to the left and
to the right of the JOIN operator. An example:

- Assuning that both tables contain AUTHOR | D col unms /1 natural Join(...)
SELECT * create.select()
FROM AUTHOR . f r o AUTHOR)
NATURAL JO N BOOK . nat ural Joi n(BOXK) ;

Oracle's partitioned OUTER JOIN

Oracle SQL ships with a special syntax available for OUTER JOIN clauses. According to the Oracle
documentation about partitioned outer joins this can be used to fill gaps for simplified analytical
calculations. jOOQ only supports putting the PARTITION BY clause to the right of the OUTER JOIN
clause. The following example will create at least one record per AUTHOR and per existing value in
BOOK.PUBLISHED_IN, regardless if an AUTHOR has actually published a book in that year.

SELECT * create. sel ect ()

FROM AUTHOR . fr on{ AUTHCR)

LEFT QUTER JO N BOCK .1 ef t Qut er Joi n(BOOK)

PARTI TI ON BY (PUBLI SHED_| N) _partitionBy(BOOK. PUBLI SHED_I N)

ON BOCK. AUTHOR | D = AUTHOR. | D . on(BOOK. AUTHOR | D. equal (AUTHOR. 1 D)) ;

4.3.2.4. The WHERE clause

The WHERE clause can be used for JOIN or filter predicates, in order to restrict the data returned by the
table expressions supplied to the previously specified from clause and join clause. Here is an example:

SELECT * create.select()

FROM BOOK . f r on(BOOK)

WHERE AUTHOR ID = 1 . wher e(BOOK. AUTHOR_| D. equal (1))
AND TITLE = ' 1984 . and(BOOK. TI TLE. equal ("1984"));

The above syntax is convenience provided by jOOQ, allowing you to connect the org.joog.Condition
supplied in the WHERE clause with another condition using an AND operator. You can of course also
create a more complex condition and supply that to the WHERE clause directly (observe the different
placing of parentheses). The results will be the same:

SELECT * create.select()

FROM BOOK . f rom(BOOK)

WHERE AUTHOR ID = 1 . wher e(BOOK. AUTHOR | D. equal (1) . and(
AND TI TLE = ' 1984' BOOK. TI TLE. equal ("1984")));

You will find more information about creating conditional expressions later in the manual.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 44 /174

http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_10002.htm#i2196190
http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_10002.htm#i2196190
http://www.jooq.org/javadoc/3.0.x/org/jooq/Condition.html

The jOOQ User Manual 4.3.2.5. The CONNECT BY clause

4.3.2.5. The CONNECT BY clause

The Oracle database knows a very succinct syntax for creating hierarchical queries: the CONNECT BY
clause, which is fully supported by jOOQ, including all related functions and pseudo-columns. A more
or less formal definition of this clause is given here:

SELECT ..
FROM . .
VWHERE . .
CONNECT BY [NOCYCLE] condition [AND condition, ...] [START WTH condition]
- GROUP BY ..
- ORDER [SIBLINGS] BY ..

An example for an iterative query, iterating through values between 1 and 5 is this:

SELECT LEVEL Il Get a table with elenents 1, 2, 3, 4, 5
FROM DUAL create.sel ect(level())
CONNECT BY LEVEL <= 5 .connect By(l evel ().l essOrEqual (5));

Here's a more complex example where you can recursively fetch directories in your database, and
concatenate them to a path:

SELECT .sel ect (

SUBSTR(SYS_CONNECT_BY_PATH(DI RECTORY. NAME, “ /'), 2) sysConnect ByPat h(DI RECTORY. NAVE, “/"). substring(2))
FROM DI RECTORY . fron(DI RECTCRY)
CONNECT BY . connect By(

PRI OR DI RECTORY. | D = DI RECTORY. PARENT_| D pri or (DI RECTORY. | D). equal (DI RECTORY. PARENT_I D))
START W TH DI RECTORY. PARENT_I D IS NULL .start Wt h(DI RECTORY. PARENT_I D. i sNul | ())
ORDER BY 1 .orderBy(1);

The output might then look like this

s +
| substring |
s +
| C

| C:/eclipse

| C:/ eclipse/ dropi ns

|
|
| C:/eclipsel/configuration |
|
| C:/eclipseleclipse. exe |

|...21 record(s) truncated...

Some of the supported functions and pseudo-columns are these (available from the DSL):

- LEVEL

- CONNECT_BY_IS_CYCLE
- CONNECT_BY_IS_LEAF

- CONNECT_BY_ROOT

- SYS_CONNECT_BY_PATH
- PRIOR

Note that this syntax s also supported in the CUBRID database and might be emulated in other dialects
supporting common table expressions in the future.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 45/174

The jOOQ User Manual 4.3.2.6. The GROUP BY clause

ORDER SIBLINGS

The Oracle database allows for specifying a SIBLINGS keyword in the ORDER BY clause. Instead of
ordering the overall result, this will only order siblings among each other, keeping the hierarchy intact.
An example is given here:

SELECT DI RECTORY. NAMVE . sel ect (DI RECTORY. NAME)
FROM DI RECTORY . fron(DI RECTCRY)
CONNECT BY . connect By(
PRI OR DI RECTORY. | D = DI RECTORY. PARENT_I D prior (DI RECTORY. | D) . equal (DI RECTORY. PARENT_I D))
START W TH DI RECTORY. PARENT_I D IS NULL .start Wt h(DI RECTORY. PARENT_I D.i sNul | ())
ORDER SI BLI NGS BY 1 .orderSi bl i ngsBy(1);

4.3.2.6. The GROUP BY clause

GROUP BY can be used to create unigue groups of data, to form aggregations, to remove duplicates
and for other reasons. It will transform your previously defined set of table expressions, and return
only one record per unique group as specified in this clause. For instance, you can group books by
BOOK.AUTHOR_ID:

SELECT AUTHOR | D, COUNT(*) create. sel ect (BOOK. AUTHOR | D, count())
FROM BOOK . f rom(BOOK)
GROUP BY AUTHOR | D . groupBy(BOOK. AUTHOR | D) ;

The above example counts all books per author.

Note, as defined in the SQL standard, when grouping, you may no longer project any columns that are
not a formal part of the GROUP BY clause, or aggregate functions.

MySQL's deviation from the SQL standard

MySQL has a peculiar way of not adhering to this standard behaviour. This is documented in the MySQL
manual. In short, with MySQL, you can also project any other field that is not part of the GROUP BY
clause. The projected values will just be arbitrary values from within the group. You cannot rely on any
ordering. For example:

SELECT AUTHOR ID, TITLE create. sel ect (BOOK. AUTHOR | D, BOXK. TI TLE)
FROM BOOK . f r om(BOOK)
GROUP BY AUTHOR I D . groupBy(AUTHOR | D) ;

This will return an arbitrary title per author. jJOOQ supports this syntax, as JOOQ is not doing any checks
internally, about the consistence of tables/fields/functions that you provide it.

Empty GROUP BY clauses

jOOQ supports empty GROUP BY () clause as well. This will result in SELECT statements that return only
one record.

SELECT COUNT(*) create. sel ect Count ()
FROM BOOK . from(BOOK)
GROUP BY () . groupBy();

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 46 /174

http://dev.mysql.com/doc/refman/5.6/en/group-by-hidden-columns.html
http://dev.mysql.com/doc/refman/5.6/en/group-by-hidden-columns.html

The jOOQ User Manual 4.3.2.7. The HAVING clause

ROLLUP(), CUBE() and GROUPING SETS()

Some databases support the SQL standard grouping functions and some extensions thereof. See the
manual's section about grouping functions for more details.

4.3.2.7. The HAVING clause

The HAVING clause is commonly used to further restrict data resulting from a previously issued GROUP
BY clause. An example, selecting only those authors that have written at least two books:

SELECT AUTHOR | D, COUNT(*) create. sel ect (BOOK. AUTHOR I D, count (*))
FROM BOOK . f rom(BOOK)

GROUP BY AUTHOR | D . gr oupBy(AUTHOR | D)

HAVI NG COUNT(*) >= 2 . havi ng(count (). greater O Equal (2));

According to the SQL standard, you may omit the GROUP BY clause and still issue a HAVING clause. This
will implicitly GROUP BY (). jJOOQ also supports this syntax. The following example selects one record,
only if there are at least 4 books in the books table:

SELECT COUNT(*) create. sel ect(count(*))
FROM BOOK . f rom(BOOK)
HAVI NG COUNT(*) >= 4 . havi ng(count (). greaterOrEqual (4));

4.3.2.8. The ORDER BY clause

Databases are allowed to return data in any arbitrary order, unless you explicitly declare that order in
the ORDER BY clause. In jOOQ, this is straight-forward:

SELECT AUTHCR I D, TITLE create. sel ect (BOOK. AUTHOR | D, BOOK. Tl TLE)
FROM BOOK . r on(BOCK)
ORDER BY AUTHCR I D ASC, TITLE DESC . or der By(BOOK. AUTHOR_I D. asc(), BOOK. TI TLE. desc());

Any jOOQ column expression (or field) can be transformed into an org.jooqg.SortField by calling the asc()
and desc() methods.

Ordering by field index

The SQL standard allows for specifying integer literals (literals, not bind values!) to reference column
indexes from the projection (SELECT clause). This may be useful if you do not want to repeat a lengthy
expression, by which you want to order - although most databases also allow for referencing aliased
column references in the ORDER BY clause. An example of this is given here:

SELECT AUTHOR I D, TITLE create. sel ect (BOOK. AUTHOR | D, BOOK. Tl TLE)
FROM BOOK . f r on(BOOK)
ORDER BY 1 ASC, 2 DESC .orderBy(one().asc(), inline(2).desc());

Note, how one() is used as a convenience short-cut for inline(1)

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 47 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/SortField.html

The jOOQ User Manual 4.3.2.8. The ORDER BY clause

Ordering and NULLS

A few databases support the SQL standard "null ordering" clause in sort specification lists, to define
whether NULL values should come first or last in an ordered result.

SELECT create. sel ect(
AUTHOR. FI RST_NANE, AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAVE AUTHOR. LAST_NAME)
FROM AUTHOR . f ron{ AUTHOR)
ORDER BY LAST_NAME ASC, . or der By(AUTHOR. LAST_NAME. asc(),
FI RST_NAME ASC NULLS LAST AUTHOR. FI RST_NAME. asc(). nul | sLast());

If your database doesn't support this syntax, JOOQ emulates it using a CASE expression as follows

SELECT
AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME
FROM AUTHOR
ORDER BY LAST_NAME ASC,
CASE WHEN FI RST_NAME | S NULL
THEN 1 ELSE 0 END ASC,
FI RST_NAME ASC

Ordering using CASE expressions

Using CASE expressions in SQL ORDER BY clauses is a common pattern, if you want to introduce
some sort indirection / sort mapping into your queries. As with SQL, you can add any type of column
expression into your ORDER BY clause. For instance, if you have two favourite books that you always
want to appear on top, you could write:

SELECT * create. sel ect ()

FROM BOOK . f r om(BOOK)

ORDER BY CASE TI TLE . order By(decode() . val ue(BOXK. Tl TLE)
WHEN ' 1984' THEN O .when("1984", 0)
WHEN * Ani nal Farmi THEN 1 .when("Ani mal Farni, 1)
ELSE 2 END ASC .otherw se(2).asc());

But writing these things can become quite verbose. jOOQ supports a convenient syntax for specifying
sort mappings. The same query can be written in jJOOQ as such:

create.select()
. f r om(BOOK)
. order By(BOOK. TI TLE. sort Asc("1984", "Aninmal Farni));

More complex sort indirections can be provided using a Map:

create.select()
. f r om(BOOK)
. order By(BOOK. Tl TLE. sort (new HashMap<String, Integer>() {{
put ("1984", 1);
put ("Ani nal Farni, 13);
put (" The j OOQ book", 10);
)

Of course, you can combine this feature with the previously discussed NULLS FIRST / NULLS LAST
feature. So, if in fact these two books are the ones you like least, you can put all NULLS FIRST (all the
other books):

create. select()
. f rom(BOOK)
.order By(BOOK. TI TLE. sort Asc("1984", "Animal Farni).nullsFirst());

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 48 /174

The jOOQ User Manual 4.3.2.9. The LIMIT .. OFFSET clause

jO0Q's understanding of SELECT .. ORDER BY

The SQL standard defines that a "query expression" can be ordered, and that query expressions can
contain UNION, INTERSECT and EXCEPT clauses, whose subqueries cannot be ordered. While this is
defined as such in the SQL standard, many databases allowing for the non-standard LIMIT clause in
one way or another, do not adhere to this part of the SQL standard. Hence, jOOQ allows for ordering all
SELECT statements, regardless whether they are constructed as a part of a UNION or not. Corner-cases
are handled internally by jOOQ, by introducing synthetic subselects to adhere to the correct syntax,
where this is needed.

Oracle's ORDER SIBLINGS BY clause

jOOQ also supports Oracle's SIBLINGS keyword to be used with ORDER BY clauses for hierarchical
queries using CONNECT BY

4.3.2.9. The LIMIT .. OFFSET clause

While being extremely useful for every application that does paging, or just to limit result sets to
reasonable sizes, this clause is not yet part of any SQL standard (up until SQL:2008). Hence, there exist a
variety of possible implementations in various SQL dialects, concerning this limit clause. JOOQ chose to
implement the LIMIT .. OFFSET clause as understood and supported by MySQL, H2, HSQLDB, Postgres,
and SQLite. Here is an example of how to apply limits with jOOQ:

create.select().fromBOOK).limt(1).offset(2);

This will limit the result to 1 books starting with the 2nd book (starting at offset 0!). limit() is supported
in all dialects, offset() in all but Sybase ASE, which has no reasonable means to emulate it. This is how
jOOQ trivially emulates the above query in various SQL dialects with native OFFSET pagination support:

-- MySQL, H2, HSQLDB, Postgres, and SQLite
SELECT * FROM BOOK LIMT 1 OFFSET 2

-- CUBRID supports a MySQL variant of the LIMT .. OFFSET cl ause
SELECT * FROMBOXK LIMT 2, 1

-- Derby, SQL Server 2012, Oracle 12c (syntax not yet supported by jOOQ, the SQL: 2008 standard
SELECT * FROM BOOK OFFSET 2 ROWS FETCH NEXT 1 ROAS ONLY

- Ingres (al nbst the SQL: 2008 standard)
SELECT * FROM BOOK OFFSET 2 FETCH FI RST 1 ROWS ONLY

- Firebird
SELECT * FROM BOOK ROAS 2 TO 3

-- Sybase SQL Anywhere
SELECT TOP 1 ROAS START AT 3 * FROM BOOK

- DB2 (al nbst the SQL: 2008 standard, w thout OFFSET)
SELECT * FROM BOOK FETCH FI RST 1 ROAS ONLY

-- Sybase ASE, SQL Server 2008 (w thout OFFSET)
SELECT TOP 1 * FROM BOOK

Things get a little more tricky in those databases that have no native idiom for OFFSET pagination (actual
qgueries may vary):

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 49 /174

The jOOQ User Manual 4.3.2.10. The FOR UPDATE clause

-~ DB2 (with OFFSET), SQL Server 2008 (with OFFSET)
SELECT * FROM (

SELECT BOOK. *,

ROW NUVBER() OVER (ORDER BY I D ASC) AS RN

FROM BOOK
) AS X
VHERE RN > 1
AND RN <= 3

-~ DB2 (with OFFSET), SQL Server 2008 (with OFFSET)
SELECT * FROM (
SELECT DI STINCT BOOK. | D, BOOK. TI TLE
DENSE_RANK() OVER (ORDER BY I D ASC, TITLE ASC) AS RN
FROM BOCK
) AS X
VHERE RN > 1
AND RN <= 3

- Oacle 11g and |ess
SELECT *
FROM (
SELECT b.*, ROMUM RN
FROM (
SELECT *
FROM BOOK
ORDER BY I D ASC
) b
VWHERE ROMNUM <= 3

)
VHERE RN > 1

As you can see, jOOQ will take care of the incredibly painful ROW_NUMBER() OVER() (or ROWNUM for
Oracle) filtering in subselects for you, you'll just have to write limit(1).offset(2) in any dialect.

Side-note: If you're interested in understanding why we chose ROWNUM for Oracle, please refer to this
very interesting benchmark, comparing the different approaches of doing pagination in Oracle: http://
www.inf.unideb.hu/~gabora/pagination/results.html.

SQL Server's ORDER BY, TOP and subqueries

As can be seen in the above example, writing correct SQL can be quite tricky, depending on the SQL
dialect. For instance, with SQL Server, you cannot have an ORDER BY clause in a subquery, unless you
also have a TOP clause. This is illustrated by the fact that jOOQ renders a TOP 100 PERCENT clause for
you. The same applies to the fact that ROW_NUMBER() OVER() needs an ORDER BY windowing clause,
even if you don't provide one to the jOOQ query. By default, JOOQ adds ordering by the first column
of your projection.

4.3.2.10. The FOR UPDATE clause

For inter-process synchronisation and other reasons, you may choose to use the SELECT .. FOR UPDATE
clause to indicate to the database, that a set of cells or records should be locked by a given transaction
for subsequent updates. With jOOQ, this can be achieved as such:

SELECT * create.select()

FROM BOOK . f rom(BOOK)

WHERE ID = 3 . wher e(BOXK. | D. equal (3))
FOR UPDATE .forUpdate();

The above example will produce a record-lock, locking the whole record for updates. Some databases
also support cell-locks using FOR UPDATE OF ..

SELECT * create. sel ect ()

FROM BOOK . f r om(BOOK)

WHERE ID = 3 . wher e(BOOK. | D. equal (3))
FOR UPDATE OF TITLE . for Updat e() . of (BOOK. TI TLE) ;

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 50/ 174

http://www.inf.unideb.hu/~gabora/pagination/results.html
http://www.inf.unideb.hu/~gabora/pagination/results.html

The jOOQ User Manual 4.3.2.10. The FOR UPDATE clause

Oracle goes a bit further and also allows to specify the actual locking behaviour. It features these
additional clauses, which are all supported by jOOQ:

- FOR UPDATE NOWAIT: This is the default behaviour. If the lock cannot be acquired, the query
fails immediately

- FOR UPDATE WAIT n: Try to wait for [n] seconds for the lock acquisition. The query will fail only
afterwards

- FOR UPDATE SKIP LOCKED: This peculiar syntax will skip all locked records. This is particularly
useful when implementing queue tables with multiple consumers

With jOOQ, you can use those Oracle extensions as such:

create. sel ect().fronBOOK).where(BOXK. | D. equal (3)).forUpdate().nowait();
create. sel ect().fronBOOK).where(BOXK. | D. equal (3)).forUpdate().wait(5);
create. sel ect().fron(BOOK).where(BOXK. | D. equal (3)).forUpdate().skipLocked();

FOR UPDATE in CUBRID and SQL Server

The SQL standard specifies a FOR UPDATE clause to be applicable for cursors. Most databases interpret
this as being applicable for all SELECT statements. An exception to this rule are the CUBRID and SQL
Server databases, that do not allow for any FOR UPDATE clause in a regular SQL SELECT statement.
jOOQ emulates the FOR UPDATE behaviour, by locking record by record with JDBC. JDBC allows for
specifying the flags TYPE_SCROLL_SENSITIVE, CONCUR_UPDATABLE for any statement, and then using
ResultSet.updateXXX() methods to produce a cell-lock / row-lock. Here's a simplified example in JDBC:

try (
PreparedSt at ement stnt = connecti on. prepar eSt at enent (
"SELECT * FROM author WHERE id IN (3, 4, 5)",
Resul t Set . TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_UPDATABLE) ;
Resul tSet rs = stnt.executeQuery()
) {
while (rs.next()) {

/1 UPDATE the primary key for row|ocks, or any other colums for cell-Iocks
rs. updateCbject (1, rs.getOhject(1));
rs. updat eRow() ;

// Do nore stuff with this record
}
}

The main drawback of this approach is the fact that the database has to maintain a scrollable cursor,
whose records are locked one by one. This can cause a major risk of deadlocks or race conditions if
the JDBC driver can recover from the unsuccessful locking, if two Java threads execute the following
statements:

-- thread 1
SELECT * FROM aut hor ORDER BY id ASC;

-- thread 2
SELECT * FROM aut hor ORDER BY id DESC;

So use this technique with care, possibly only ever locking single rows!

Pessimistic (shared) locking with the FOR SHARE clause

Some databases (MySQL, Postgres) also allow to issue a non-exclusive lock explicitly using a FOR SHARE
clause. This is also supported by jOOQ

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 51 /174

The jOOQ User Manual 4.3.2.117. UNION, INTERSECTION and EXCEPT

Optimistic locking in jJOOQ

Note, that jJOOQ also supports optimistic locking, if you're doing simple CRUD. This is documented in
the section's manual about optimistic locking.

4.3.2.11. UNION, INTERSECTION and EXCEPT

SQL allows to perform set operations as understood in standard set theory on result sets. These
operations include unions, intersections, subtractions. For two subselects to be combinable by such a
set operator, each subselect must return a table expression of the same degree and type.

UNION and UNION ALL

These operators combine two results into one. While UNION removes all duplicate records resulting
from this combination, UNION ALL leaves subselect results as they are. Typically, you should prefer
UNION ALL over UNION, if you don't really need to remove duplicates. The following example shows
how to use such a UNION operation in jOOQ.

SELECT * FROM BOOK WHERE ID = 3 create. sel ect Fron(BOOK) . wher e(BOOK. | D. equal (3))
UNI ON ALL .uni onAl | (
SELECT * FROM BOOK WHERE ID = 5 creat e. sel ect Fr on(BOOK) . wher e(BOOK. | D. equal (5)));

INTERSECT [ALL] and EXCEPT [ALL]

INTERSECT is the operation that produces only those values that are returned by both subselects.
EXCEPT is the operation that returns only those values that are returned exclusively in the first subselect.
Both operators will remove duplicates from their results. The SQL standard allows to specify the ALL
keyword for both of these operators as well, but this is hardly supported in any database. jJOOQ does
not support INTERSECT ALL, EXEPT ALL operations either.

jO0Q's set operators and how they're different from standard SQL

As previously mentioned in the manual's section about the ORDER BY clause, jJOOQ has slightly changed
the semantics of these set operators. While in SQL, a subselect may not contain any ORDER BY clause
or LIMIT clause (unless you wrap the subselect into a nested SELECT), jOOQ allows you to do so. In
order to select both the youngest and the oldest author from the database, you can issue the following
statement with jOOQ (rendered to the MySQL dialect):

(SELECT * FROM AUTHOR create. sel ect Fr on(AUTHOR)

ORDER BY DATE_OF BIRTH ASC LIM T 1) . or der By (AUTHOR. DATE_OF_BI RTH. asc()).linit(1)
UNI ON . uni on(
(SELECT * FROM AUTHOR create. sel ect Fr on(AUTHOR)
ORDER BY DATE_OF BIRTH DESC LIMT 1) . or der By(AUTHOR. DATE_OF_BI RTH. desc()).limt(1));

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 52 /174

The jOOQ User Manual 4.3.2.12. Oracle-style hints

Projection typesafety for degrees between 1 and 22

Two subselects that are combined by a set operator are required to be of the same degree and, in most
databases, also of the same type. JOOQ 3.0's introduction of Typesafe Record[N] types helps compile-
checking these constraints:

I/ Sonme sanpl e SELECT statenents

Sel ect <Record2<lnteger, String>> sl = select(BOOK. ID, BOOXK. TITLE). fron{BOX);

Sel ect <Recor d1<I nt eger >> s2 = selectOne();

Sel ect <Record2<I nteger, |nteger>> s3 = select(one(), zero());

Sel ect <Record2<I nteger, String>> s4 = select(one(), inline("abc"));

/'l Let's try to conbine them

sl.union(s2); // Doesn't conpile because of a degree mi smatch. Expected: Record2<...>, got: Recordl<...>
sl.union(s3); // Doesn't conpile because of a type m smatch. Expected: <Integer, String> got: <Integer, |nteger>
sl.union(s4); // OK The two Record[N] types match

4.3.2.12. Oracle-style hints

If you are closely coupling your application to an Oracle (or CUBRID) database, you might need to be
able to pass hints of the form /*+HINT*/ with your SQL statements to the Oracle database. For example:

SELECT /*+ALL_ROWS*/ FI RST_NAME, LAST_NAMVE
FROM AUTHOR

This can be done in jOOQ using the .hint() clause in your SELECT statement:

create. sel ect (AUTHOR. FI RST_NAME, AUTHOR. LAST_NANE)
.hint("/*+ALL_RONS*/ ")
. from AUTHOR) ;

Note that you can pass any string in the .hint() clause. If you use that clause, the passed string will always
be put in between the SELECT [DISTINCT] keywords and the actual projection list. This can be useful in
other databases too, such as MySQL, for instance:

SELECT SQL_CALC FOUND_ROWS fiel d1, field2 create.select(fieldl, field2)
FROM t abl el . hi nt (" SQL_CALC_FOUND_ROAS")
.fron(tabl el)

4.3.2.13. Lexical and logical SELECT clause order

SQL has a lexical and a logical order of SELECT clauses. The lexical order of SELECT clauses is inspired
by the English language. As SQL statements are commands for the database, it is natural to express a
statement in an imperative tense, such as "SELECT this and that!".

Logical SELECT clause order

The logical order of SELECT clauses, however, does not correspond to the syntax. In fact, the logical
order is this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 53/174

The jOOQ User Manual 4.3.2.13. Lexical and logical SELECT clause order

- The FROM clause: First, all data sources are defined and joined

- The WHERE clause: Then, data is filtered as early as possible

- The CONNECT BY clause: Then, data is traversed iteratively or recursively, to produce new tuples

- The GROUP BY clause: Then, data is reduced to groups, possibly producing new tuples if
grouping functions like ROLLUP(), CUBE(), GROUPING SETS() are used

- The HAVING clause: Then, data is filtered again

- The SELECT clause: Only now, the projection is evaluated. In case of a SELECT DISTINCT
statement, data is further reduced to remove duplicates

- The UNION clause: Optionally, the above is repeated for several UNION-connected subqueries.
Unless this is @ UNION ALL clause, data is further reduced to remove duplicates

- The ORDER BY clause: Now, all remaining tuples are ordered

- The LIMIT clause: Then, a paging view is created for the ordered tuples

- The FOR UPDATE clause: Finally, pessimistic locking is applied

The SQL Server documentation also explains this, with slightly different clauses:

- FROM

- ON

- JOIN

- WHERE

- GROUP BY
-~ WITH CUBE or WITH ROLLUP
- HAVING

- SELECT

-~ DISTINCT
- ORDERBY
- TOP

As can be seen, databases have to logically reorder a SQL statement in order to determine the best
execution plan.

Alternative syntaxes: LINQ, SLICK

Some "higher-level" abstractions, such as C#'s LINQ or Scala's SLICK try to inverse the lexical order of
SELECT clauses to what appears to be closer to the logical order. The obvious advantage of moving
the SELECT clause to the end is the fact that the projection type, which is the record type returned by
the SELECT statement can be re-used more easily in the target environment of the internal domain
specific language.

A LINQ example:

/1 LINQ to-SQL | ooks sonmewhat simlar to SQU
Il AS cl ause /1l FROM cl ause
From p I'n db. Products

/1 WHERE cl ause
Where p. UnitslnStock <= p. ReorderLevel AndAl so Not p.Discontinued

/1 SELECT cl ause
Select p

A SLICK example:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 54 /174

http://msdn.microsoft.com/en-us/library/ms189499.aspx

The jOOQ User Manual 4.3.3. The INSERT statement

I/ "for" is the "entry-point" to the DSL
val q = for {

/'l FROM cl ause WHERE cl ause
c <- Coffees if c.suplD === 101

/| SELECT cl ause and projection to a tuple
} yield (c.name, c.price)

While this looks like a good idea at first, it only complicates translation to more advanced SQL statements
while impairing readability for those users that are used to writing SQL. jOOQ is designed to look just
like SQL. This is specifically true for SLICK, which not only changed the SELECT clause order, but also
heavily "integrated" SQL clauses with the Scala language.

For these reasons, the jJOOQ DSL APl is modelled in SQL's lexical order.

4.3.3. The INSERT statement

The INSERT statement is used to insert new records into a database table. Records can either be
supplied using a VALUES() constructor, or a SELECT statement. jOOQ supports both types of INSERT
statements. An example of an INSERT statement using a VALUES() constructor is given here:

I NSERT | NTO AUTHOR create.insertl|nto(AUTHOR,
(1D, FI RST_NAME, LAST_NAME) AUTHOR. | D, AUTHOR. FI RST_NAME, AUTHOR. LAST_NAVE)
VALUES (100, 'Hermann', 'Hesse'); .val ues(100, "Hernmann", "Hesse");

Note that for explicit degrees up to 22, the VALUES() constructor provides additional typesafety. The
following example illustrates this:

I nsert Val uesSt ep3<Aut hor Record, Integer, String, String> step =
create.insertlnto(AUTHOR, AUTHOR. | D, AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME) ;
step.values("A*, "B", "C');
/| "~ Doesn't conpile, the expected type is |nteger

INSERT multiple rows with the VALUES() constructor

The SQL standard specifies that multiple rows can be supplied to the VALUES() constructor in an INSERT
statement. Here's an example of a multi-record INSERT

I NSERT | NTO AUTHOR create.insertl|nto(AUTHOR

(1D, FIRST_NAME, LAST_NAME) AUTHOR. | D, AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME)
VALUES (100, 'Hermann', 'Hesse'), .val ues(100, "Hermann", "Hesse")
(101, "Alfred, 'Doblin'); .values(101, "Alfred", "Doblin");

jOOQ tries to stay close to actual SQL. In detail, however, Java's expressiveness is limited. That's why the
values() clause is repeated for every record in multi-record inserts.

Some RDBMS do not support inserting several records in a single statement. In those cases, jOOQ
emulates multi-record INSERTs using the following SQL:

I NSERT | NTO AUTHOR create.insertl|nto(AUTHOR

(1D, FI RST_NAME, LAST_NAME) AUTHOR. | D, AUTHOR. FI RST_NAME, AUTHOR. LAST_NAVE)
SELECT 100, 'Hermann', 'Hesse' FROM DUAL UNI ON ALL .val ues(100, "Hermann", "Hesse")
SELECT 101, 'Alfred', 'Doblin' FROV DUAL; .val ues(101, "Alfred", "Doblin");

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 55/174

The jOOQ User Manual 4.3.3. The INSERT statement

INSERT using jJOOQ's alternative syntax

MySQL (and some other RDBMS) allow for using a non-SQL-standard, UPDATE-like syntax for INSERT
statements. This is also supported in jJOOQ, should you prefer that syntax. The above INSERT statement
can also be expressed as follows:

create.insertlnto(AUTHOR)
. set (AUTHOR. | D, 100)
. set (AUTHOR. FI RST_NAME, "Her mann")
. set (AUTHOR. LAST_NAME, "Hesse")
. newRecor d()
. set (AUTHOR. | D, 101)
. set (AUTHOR. FI RST_NAME, "Alfred")
. set (AUTHOR LAST_NAVE, "Doblin");

As you can see, this syntax is a bit more verbose, but also more readable, as every field can be matched
with its value. Internally, the two syntaxes are strictly equivalent.

MySQL's INSERT .. ON DUPLICATE KEY UPDATE

The MySQL database supports a very convenient way to INSERT or UPDATE a record. This is a non-
standard extension to the SQL syntax, which is supported by jOOQ and emulated in other RDBMS,
where this is possible (i.e. if they support the SQL standard MERGE statement). Here is an example how
to use the ON DUPLICATE KEY UPDATE clause:

/1 Add a new author called "Koontz" with ID 3.
/1 1f that IDis already present, update the author's nane
create.insertlnto(AUTHOR, AUTHOR | D, AUTHOR. LAST_NAME)

.val ues(3, "Koontz")

.onDupl i cat eKeyUpdat e()

. set (AUTHOR. LAST_NAME, "Koontz");

The synthetic ON DUPLICATE KEY IGNORE clause

The MySQL database also supports an INSERT IGNORE INTO clause. This is supported by jOOQ using
the more convenient SQL syntax variant of ON DUPLICATE KEY IGNORE, which can be equally emulated
in other databases using a MERGE statement:

/1 Add a new author called "Koontz" with ID 3.
/1 If that IDis already present, ignore the |NSERT statenent
create.insertlnto(AUTHOR, AUTHOR | D, AUTHOR. LAST_NANE)

.val ues(3, "Koontz")

.onDupl i cat eKeyl gnore();

Postgres's INSERT .. RETURNING

The Postgres database has native support for an INSERT .. RETURNING clause. This is a very powerful
concept that is emulated for all other dialects using JDBC's getGeneratedKeys() method. Take this
example:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 56 /174

http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html#getGeneratedKeys()

The jOOQ User Manual 4.3.4. The UPDATE statement

/1 Add another author, with a generated ID

Recor d<?> record =

create.insertlnto(AUTHOR, AUTHOR FI RST_NAME, AUTHOR. LAST_NAME)
.val ues("Charlotte", "Roche")
. returni ng(AUTHOR. | D)
.fetchOne();

System out. println(record. getVal ue(AUTHOR I D)) ;

I/ For some RDBMS, this also works when inserting several values
/1 The follow ng should return a 2x2 table
Resul t<?> result =
create.insertlnto(AUTHOR, AUTHOR FI RST_NAME, AUTHOR. LAST_NAME)
.val ues("Johann Wl fgang", "von Coethe")
.val ues("Friedrich", "Schiller")
/1 You can request any field. Also trigger-generated val ues
.returni ng(AUTHOR. | D, AUTHOR. CREATI ON_DATE)
.fetch();

Some databases have poor support for returning generated keys after INSERTs. In those cases, jOOQ
might need to issue another SELECT statement in order to fetch an @@identity value. Be aware, that
this can lead to race-conditions in those databases that cannot properly return generated ID values.
For more information, please consider the jOOQ Javadoc for the returning() clause.

The INSERT SELECT statement

In some occasions, you may prefer the INSERT SELECT syntax, for instance, when you copy records
from one table to another:

create.insertlnto(AUTHOR ARCHI VE)
.sel ect (create. sel ect Fr on{ AUTHOR) . wher e(AUTHOR. DECEASED. i sTrue()));

4.3.4. The UPDATE statement

The UPDATE statement is used to modify one or several pre-existing records in a database table.
UPDATE statements are only possible on single tables. Support for multi-table updates will be
implemented in the near future. An example update query is given here:

UPDATE AUTHOR creat e. updat e(AUTHOR)
SET FIRST_NAME = ' Hermann', . set (AUTHOR. FI RST_NAME, " Her mann")
LAST_NAME = ' Hesse' . set (AUTHOR. LAST_NAME, "Hesse")
WHERE I D = 3; . wher e(AUTHOR. | D. equal (3));

Most databases allow for using scalar subselects in UPDATE statements in one way or another. jOOQ
models this through a set(Field<T>, Select<? extends Record1<T>>) method in the UPDATE DSL API:

UPDATE AUTHOR creat e. updat e(AUTHOR)
SET FI RST_NAME = (. set (AUTHOR. FI RST_NAME,
SELECT FI RST_NAVME sel ect (PERSON. FI RST_NAME)
FROM PERSON . f r o PERSQN)
WHERE PERSON. | D = AUTHCR. | D . wher e(PERSON. | D. equal (AUTHCR. | D))
))
WHERE I D = 3; . wher e(AUTHOR. | D. equal (3));

Using row value expressions in an UPDATE statement

jOOQ supports formal row value expressions in various contexts, among which the UPDATE statement.
Only one row value expression can be updated at a time. Here's an example:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 57 /174

The jOOQ User Manual 4.3.5. The DELETE statement

UPDATE AUTHOR creat e. updat e(AUTHOR)
SET (FI RST_NAME, LAST_NAME) = . set (row(AUTHOR. FI RST_NAME, AUTHOR LAST_NAME) ,
(' Hermann', ' Hesse') row(" Her man", "Hesse"))
WHERE I D = 3; . wher e(AUTHOR. | D. equal (3));

This can be particularly useful when using subselects:

UPDATE AUTHOR creat e. updat e(AUTHOR)
SET (FI RST_NAME, LAST_NAME) = (. set (row(AUTHOR. FI RST_NAME, AUTHOR LAST_NAME) ,
SELECT PERSON. FI RST_NAME, PERSON. LAST_NAVE sel ect (PERSON. FI RST_NAME, PERSON. LAST_NAME)
FROM PERSON . f r om(PERSON)
WHERE PERSON. | D = AUTHOR. | D . wher e(PERSON. | D. equal (AUTHOR. | D))
))
WHERE I D = 3; . wher e(AUTHOR. | D. equal (3));

The above row value expressions usages are completely typesafe.

UPDATE .. RETURNING

The Firebird and Postgres databases support a RETURNING clause on their UPDATE statements, similar
as the RETURNING clause in INSERT statements. This is useful to fetch trigger-generated values in one
g0. An example is given here:

- Fetch a trigger-generated val ue String title = create. updat e(BOOK)
UPDATE BOOK .set (BOOK. TI TLE, "Aninal Farni)
SET TITLE = ' Ani mal Farni . wher e(BOOXK. | D. equal (5))
WHERE ID = 5 . returni ng(BOOK. Tl TLE)
RETURNI NG TI TLE .fetchOne() . get Val ue(BOOK. Tl TLE) ;

The UPDATE .. RETURNING clause is currently not emulated for other databases. Future versions might
execute an additional SELECT statement to fetch results.

4.3.5. The DELETE statement

The DELETE statement removes records from a database table. DELETE statements are only possible
on single tables. Support for multi-table deletes will be implemented in the near future. An example
delete query is given here:

DELETE AUTHOR create. del et e(AUTHOR)
WHERE | D = 100; . wher e(AUTHOR. | D. equal (100));

4.3.6. The MERGE statement

The MERGE statement is one of the most advanced standardised SQL constructs, which is supported
by DB2, HSQLDB, Oracle, SQL Server and Sybase (MySQL has the similar INSERT .. ON DUPLICATE KEY
UPDATE construct)

The point of the standard MERGE statement is to take a TARGET table, and merge (INSERT, UPDATE)
data from a SOURCE table into it. DB2, Oracle, SQL Server and Sybase also allow for DELETING some
data and for adding many additional clauses. With jOOQ 3.0.1, only Oracle's MERGE extensions are
supported. Here is an example:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 58 /174

The jOOQ User Manual 4.3.7. The TRUNCATE statement

-- Check if there is already an author called 'Hitchcock' creat e. ner gel nt o(AUTHOR)

- If there is, renane himto John. If there isn't add him .using(create().selectOne())
MERCE | NTO AUTHOR . on(AUTHOR. LAST_NAME. equal (" Hi t chcock"))
USI NG (SELECT 1 FROM DUAL) . whenMat chedThenUpdat e()
ON (LAST_NAME = ' Hitchcock') . set (AUTHOR FI RST_NAME, "John")
WHEN MATCHED THEN UPDATE SET FI RST_NAME = ' John' . whenNot Mat chedThenl nser t (AUTHOR. LAST_NAME)
WHEN NOT MATCHED THEN | NSERT (LAST_NAME) VALUES (' Hitchcock') .val ues("Hitchcock");

MERGE Statement (H2-specific syntax)

The H2 database ships with a somewhat less powerful but a little more intuitive syntax for its own
version of the MERGE statement. An example more or less equivalent to the previous one can be seen
here:

-- Check if there is already an author called 'Hitchcock' create. ner gel nt o(AUTHOR,
- If there is, renane himto John. If there isn't add him AUTHOR. FI RST_NAME,
AUTHOR. LAST_NAME)
MERGE | NTO AUTHOR (FI RST_NAME, LAST_NAME) . key(AUTHOR. LAST_NANE)
KEY (LAST_NANE) .val ues("John", "Hitchcock")
VALUES (' John', 'Hitchcock') .execute();

This syntax can be fully emulated by jOOQ for all other databases that support the SQL standard MERGE
statement. For more information about the H2 MERGE syntax, see the documentation here:
http://www.h2database.com/html/grammar.html#merge

Typesafety of VALUES() for degrees up to 22

Much like the INSERT statement, the MERGE statement's VALUES() clause provides typesafety for
degrees up to 22, in both the standard syntax variant as well as the H2 variant.

4.3.7. The TRUNCATE statement

The TRUNCATE statement is the only DDL statement supported by jOOQ so far. It is popular in many
databases when you want to bypass constraints for table truncation. Databases may behave differently,
when a truncated table is referenced by other tables. For instance, they may fail if records from a
truncated table are referenced, even with ON DELETE CASCADE clauses in place. Please, consider your
database manual to learn more about its TRUNCATE implementation.

The TRUNCATE syntax is trivial:

TRUNCATE TABLE AUTHOR; create. truncat e(AUTHOR) . execute() ;

TRUNCATE is not supported by Ingres and SQLite. jJOOQ will execute a DELETE FROM AUTHOR
statement instead.

4.4. Table expressions

The following sections explain the various types of table expressions supported by jOOQ

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 59 /174

http://www.h2database.com/html/grammar.html#merge

The jOOQ User Manual 4.4.1. Generated Tables

4.4.7. Generated Tables

Most of the times, when thinking about a table expression you're probably thinking about an actual
table in your database schema. If you're using jJOOQ's code generator, you will have all tables from your
database schema available to you as type safe Java objects. You can then use these tables in SQL FROM
clauses, JOIN clauses or in other SQL statements, just like any other table expression. An example is
given here:

SELECT * create.select()

FROM AUTHOR - - Tabl e expressi on AUTHOR .fron{ AUTHOR) // Tabl e expressi on AUTHOR
JO N BOOK -- Table expression BOXK . j oi n(BOOK) /1 Tabl e expression BOXK
ON (AUTHOR. I D = BOOK. AUTHOR_I D) . on(AUTHOR | D. equal (BOOK. AUTHOR 1 D)) ;

The above example shows how AUTHOR and BOOK tables are joined in a SELECT statement. It also
shows how you can access table columns by dereferencing the relevant Java attributes of their tables.

See the manual's section about generated tables for more information about what is really generated
by the code generator

4.4.2. Allased Tables

The strength of jOOQ's code generator becomes more obvious when you perform table aliasing and
dereference fields from generated aliased tables. This can best be shown by example:

- Select all books by authors born after 1920, /1 Declare your aliases before using themin SQL:
- naned "Paul 0" from a catal ogue: Author a = AUTHOR as("a");
Book b = BOOXK. as("b");

I/ Use aliased tables in your statenment

SELECT * create.select()
FROM aut hor a .fron(a)
JO N book b ON a.id = b.author_id .join(b).on(a.lD.equal (b. AUTHOR I D))
WHERE a.year_of _birth > 1920 . wher e(a. YEAR_OF_BI RTH. gr eat er Than(1920)
AND a. first_name = ' Paul o' .and(a. FI RST_NAME. equal (" Paul 0")))
ORDER BY b.title .orderBy(b. TITLE);

As you can see in the above example, calling as() on generated tables returns an object of the same
type as the table. This means that the resulting object can be used to dereference fields from the
aliased table. This is quite powerful in terms of having your Java compiler check the syntax of your SQL
statements. If you remove a column from a table, dereferencing that column from that table alias will
cause compilation errors.

Dereferencing columns from other table expressions

Only few table expressions provide the SQL syntax typesafety as shown above, where generated tables
are used. Most tables, however, expose their fields through field() methods:

/1 "Type-unsafe" aliased table:
Tabl e<?> a = AUTHOR as("a");

Il Get fields froma:

Field<?>id = a.field("ID");
Fiel d<?> firstNane = a.field("Fl RST_NAME");

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 60 /174

The jOOQ User Manual 4.4.3. Joined tables

Derived column lists

The SQL standard specifies how a table can be renamed / aliased in one go along with its columns.
It references the term "derived column list" for the following syntax (as supported by Postgres, for
instance):

SELECT t.a, t.b
FROM (

SELECT 1, 2
) t(a, b)

This feature is useful in various use-cases where column names are not known in advance (but the
table's degree isl). An example for this are unnested tables, or the VALUES() table constructor:

- Unnested tables
SELECT t.a, t.b
FROM unnest (nmy_tabl e_function()) t(a, b)

- VALUES() constructor
SELECT t.a, t.b
FROM VALUES(1, 2),(3, 4) t(a, b)

Only few databases really support such a syntax, but fortunately, jOOQ can emulate it easily using
UNION ALL and an empty dummy record specifying the new column names. The two statements are
equivalent:

- Using derived colum lists
SELECT t.a, t.b
FROM (
SELECT 1, 2
) t(a, b)

- Using UNION ALL and a dummy record
SELECT t.a, t.b
FROM (
SELECT null a, null b FROM DUAL WHERE 1 = 0
UNI ON ALL
SELECT 1, 2 FROM DUAL
) t

In jOOQ, you would simply specify a varargs list of column aliases as such:

/'l Unnested tabl es
create. sel ect (). fron(unnest(nyTabl eFunction()).as("t", "a", "b"));

/1 VALUES() constructor
create. sel ect().fronval ues(
row(1, 2),
row 3, 4)
).as("t", "a", "b"));

4.4.3. Joined tables

The JOIN operators that can be used in SQL SELECT statements are the most powerful and best
supported means of creating new table expressions in SQL. Informally, the following can be said:

A(col A1, ..., colAn) "join" B(colBl, ..., colBm "produces" C(col Al, ..., colAn, colBl, ..., col Bm

SQL and relational algebra distinguish between at least the following JOIN types (upper-case: SQL, lower-
case: relational algebra):

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 61/174

The jOOQ User Manual 4.4.4, The VALUES() table constructor

- CROSSJOIN or cartesian product: The basic JOIN in SQL, producing a relational cross product,
combining every record of table A with every record of table B. Note that cartesian products can
also be produced by listing comma-separated table expressions in the FROM clause of a SELECT
statement

- NATURAL JOIN: The basic JOIN in relational algebra, yet a rarely used JOIN in databases with
everyday degree of normalisation. This JOIN type unconditionally equi-joins two tables by all
columns with the same name (requiring foreign keys and primary keys to share the same name).
Note that the JOIN columns will only figure once in the resulting table expression.

- INNER JOIN or equi-join: This JOIN operation performs a cartesian product (CROSS JOIN)
with a filtering predicate being applied to the resulting table expression. Most often, a equal
comparison predicate comparing foreign keys and primary keys will be applied as a filter, but any
other predicate will work, too.

- OUTER JOIN: This JOIN operation performs a cartesian product (CROSS JOIN) with a filtering
predicate being applied to the resulting table expression. Most often, a equal comparison
predicate comparing foreign keys and primary keys will be applied as a filter, but any other
predicate will work, too. Unlike the INNER JOIN, an OUTER JOIN will add "empty records" to the
left (table A) or right (table B) or both tables, in case the conditional expression fails to produce
a.

- semi-join: In SQL, this JOIN operation can only be expressed implicitly using IN predicates or
EXISTS predicates. The table expression resulting from a semi-join will only contain the left-hand
side table A

- anti-join: In SQL, this JOIN operation can only be expressed implicitly using NOT IN predicates or
NOT EXISTS predicates. The table expression resulting from a semi-join will only contain the left-
hand side table A

- division: This JOIN operation is hard to express at all, in SQL. See the manual's chapter about
relational division for details on how jOOQ emulates this operation.

jOOQ supports all of these JOIN types (except semi-join and anti-join) directly on any table expression:

// jOOQ s relational division convenience syntax
Di vi deByOnSt ep di vi deBy(Tabl e<?> tabl e)

/1 Various overloaded | NNER JO Ns

Tabl eOnSt ep j oi n(Tabl eLi ke<?>)

Tabl eOnSt ep joi n(String)

Tabl eOnStep join(String, Object...)
Tabl eOnStep join(String, QueryPart...)

// Various overloaded OQUTER JO Ns (supporting Oracle's partitioned QUTER JO N)
I/ Overloading is simlar to that of INNER JON

Tabl ePartitionByStep | eftQuterJoin(Tabl eLi ke<?>)

Tabl ePartitionByStep rightQuterJoi n(Tabl eLi ke<?>)

/'l Various overloaded FULL OUTER JO Ns
Tabl eOnSt ep ful | Qut erJoi n(Tabl eLi ke<?>)

/1 Various overl|oaded CROSS JO Ns
Tabl e<Recor d> crossJoi n(Tabl eLi ke<?>)

/1 Various overl| oaded NATURAL JO Ns
Tabl e<Recor d> nat ural Joi n(Tabl eLi ke<?>)

Tabl e<Recor d> nat ural Lef t Qut er Joi n(Tabl eLi ke<?>)
Tabl e<Recor d> nat ur al Ri ght Qut er Joi n(Tabl eLi ke<?>)

Note that most of JOOQ's JOIN operations give way to a similar DSL API hierarchy as previously seen in
the manual's section about the JOIN clause

4.4.4. The VALUES() table constructor

Some databases allow for expressing in-memory temporary tables using a VALUES() constructor. This
constructor usually works the same way as the VALUES() clause known from the INSERT statement or

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 62 /174

The jOOQ User Manual 4.4.5. Nested SELECTs

from the MERGE statement. With jOOQ, you can also use the VALUES() table constructor, to create
tables that can be used in a SELECT statement's FROM clause:

SELECT a, b create.sel ect()
FROM VALUES(1, 'a'), .from(val ues(row(1, "a"),
(& ") i@ b) row(2, "b")).as("t", "a", "b"));

Note, that it is usually quite useful to provide column aliases ("derived column lists") along with the table
alias for the VALUES() constructor.

The above statement is emulated by jOOQ for those databases that do not support the VALUES()
constructor, natively (actual emulations may vary):

- If derived columm expressions are supported:
SELECT a, b
FROM (
SELECT 1, 'a' FROVI DUAL UNI ON ALL
SELECT 2, 'b' FROM DUAL
) t(a, b)
- If derived columm expressions are not supported:
SELECT a, b
FROM (

- An enpty dummy record is added to provide colum names for the enmul ated derived col unm expression
SELECT NULL a, NULL b FROM DUAL WHERE 1 = O UNION ALL

- Then, the actual VALUES() constructor is enul ated

SELECT 1, ta FROVI DUAL UNI ON ALL
SELECT 2, ‘b FROVI DUAL
)t

4.4.5 Nested SELECTSs

A SELECT statement can appear almost anywhere a table expression can. Such a "nested SELECT" is
often called a "derived table". Apart from many convenience methods accepting org.jooqg.Select objects
directly, a SELECT statement can always be transformed into a org.joog.Table object using the asTable()
method.

Example: Scalar subquery

SELECT * create. sel ect ()
FROM BOOK . f r om(BOOK)
WHERE BOOK. AUTHOR I D = (. wher e(BOOK. AUTHOR | D. equal (create
SELECT I D . sel ect (AUTHOR. | D)
FROM AUTHOR . f r o AUTHOR)
WHERE LAST_NAME = 'Orwel ') . wher e(AUTHOR. LAST_NAME. equal ("Orwel 1"))));

Example: Derived table

SELECT nested.* FROM (Tabl e<Recor d> nested =
SELECT AUTHOR | D, count (*) books create. sel ect (BOOK. AUTHOR I D, count (). as("books"))
FROM BOOK . from(BOOK)
GROUP BY AUTHOR | D . groupBy(BOOK. AUTHOR | D) . asTabl e(" nested") ;
) nested
ORDER BY nest ed. books DESC create. sel ect(nested.fields())

. fron(nest ed)
.orderBy(nested. fiel d("books"));

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 63 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Select.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html

The jOOQ User Manual 4.4.6. The Oracle 11g PIVOT clause

Example: Correlated subquery

SELECT LAST_NAME, (/1 The type of books cannot be inferred fromthe Sel ect<?>
SELECT COUNT(*) Fi el d<Cbj ect > books =
FROM BOOK create. sel ect Count ()
WHERE BOOK. AUTHOR | D = AUTHOR. | D) books . f r on{ BOOK)
FROM AUTHOR . wher e(BOOK. AUTHOR I D. equal (AUTHOR 1 D))
ORDER BY books DESC . asFi el d("books");
create. sel ect (AUTHOR | D, books)
. f ron{ AUTHOR)

. order By(books, AUTHOR ID));

4.4.6. The Oracle 11g PIVOT clause

If you are closely coupling your application to an Oracle database, you can take advantage of some
Oracle-specific features, such as the PIVOT clause, used for statistical analyses. The formal syntax
definition is as follows:

- SELECT ..
FROM t abl e PI VOT (aggregateFunction [, aggregateFunction] FOR columm IN (expression [, expression]))
WHERE . .

The PIVOT clause is available from the org.joog.Table type, as pivoting is done directly on a table.
Currently, only Oracle's PIVOT clause is supported. Support for SQL Server's slightly different PIVOT
clause will be added later. Also, JOOQ may emulate PIVOT for other dialects in the future.

4.4.7.)00Q's relational division syntax

There is one operation in relational algebra that is not given a lot of attention, because it is rarely used
in real-world applications. It is the relational division, the opposite operation of the cross product (or,
relational multiplication). The following is an approximate definition of a relational division:

Assune the following cross join / cartesian product
C=AxB

hen it can be said that
=C=+B
=C =+

T
A
B = A

With jOOQ, you can simplify using relational divisions by using the following syntax:

C. di videBy(B).on(C.1D.equal (B.C_ID)).returning(C. TEXT)

The above roughly translates to

SELECT DI STINCT C. TEXT FROM C "cl1"
WHERE NOT EXI STS (
SELECT 1 FROM B
WHERE NOT EXI STS (
SELECT 1 FROM C "c2"
WHERE "c2". TEXT = "cl". TEXT
AND "c2".1D = B.C_ID
)
)

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 64 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html

The jOOQ User Manual 4.4.8. Array and cursor unnesting

Or in plain text: Find those TEXT values in C whose ID's correspond to all ID's in B. Note that from the
above SQL statement, it is immediately clear that proper indexing is of the essence. Be sure to have
indexes on all columns referenced from the on(...) and returning(...) clauses.

For more information about relational division and some nice, real-life examples, see

- http://en.wikipedia.org/wiki/Relational algebra#Division
- http://www.simple-talk.com/sal/t-sgl-programming/divided-we-stand-the-sgl-of-relational-
division/

4.4.8. Array and cursor unnesting

The SQL standard specifies how SQL databases should implement ARRAY and TABLE types, as well as
CURSOR types. Put simply, a CURSOR is a pointer to any materialised table expression. Depending on
the cursor's features, this table expression can be scrolled through in both directions, records can be
locked, updated, removed, inserted, etc. Often, CURSOR types contain s, whereas ARRAY and TABLE
types contain simple scalar values, although that is not a requirement

ARRAY types in SQL are similar to Java's array types. They contain a "component type" or "element type"
and a "dimension". This sort of ARRAY type is implemented in H2, HSQLDB and Postgres and supported
by jOOQ as such. Oracle uses strongly-typed arrays, which means that an ARRAY type (VARRAY or TABLE
type) has a name and possibly a maximum capacity associated with it.

Unnesting array and cursor types

The real power of these types become more obvious when you fetch them from stored procedures
to unnest them as table expressions and use them in your FROM clause. An example is given here,
where Oracle's DBMS_XPLAN package is used to fetch a cursor containing data about the most recent
execution plan:

SELECT * create.select()
FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSOR(nul |, null, " ALLSTATS)); . fron(tabl e(DbmsXpl an. di spl ayCursor (null, null,
" ALLSTATS"));

Note, in order to access the DbmsXplan package, you can use the code generator to generate Oracle's
SYS schema.

4.49. The DUAL table

The SQL standard specifies that the FROM clause is optional in a SELECT statement. However, according
to the standard, you may then no longer use some other clauses, such as the WHERE clause. In the real
world, there exist three types of databases:

- The ones that always require a FROM clause (as required by the SQL standard)

- The ones that never require a FROM clause (and still allow a WHERE clause)

- The ones that require a FROM clause only with a WHERE clause, GROUP BY clause, or HAVING
clause

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 657174

http://en.wikipedia.org/wiki/Relational_algebra#Division
http://www.simple-talk.com/sql/t-sql-programming/divided-we-stand-the-sql-of-relational-division/
http://www.simple-talk.com/sql/t-sql-programming/divided-we-stand-the-sql-of-relational-division/

The jOOQ User Manual 4.5. Column expressions

With jOOQ, you don't have to worry about the above distinction of SQL dialects. JOOQ never requires
a FROM clause, but renders the necessary "DUAL" table, if needed. The following program shows how
jOOQ renders "DUAL" tables

SELECT 1 DSL. usi ng(SQLDi al ect . ASE).sel ect One().get SQL();
SELECT 1 FROM "db_root" DSL. usi ng(SQLDi al ect. CUBRID). sel ect One(). get SQL();
SELECT 1 FROM "SYSI BM'. " DUAL" DSL. usi ng(SQLDi al ect . DB2).sel ect One().get SQL();
SELECT 1 FROM "SYSI BM'. " SYSDUMW1" DSL. usi ng(SQLDi al ect . DERBY).sel ectOne().get SQL();
SELECT 1 FROM " RDB$DATABASE" DSL. usi ng(SQLDi al ect. FI REBI RD) . sel ect One() . get SQL() ;
SELECT 1 FROM dual DSL. usi ng(SQLDi al ect . H2).sel ect One().get SQL();
SELECT 1 FROM "I NFORVATI ON_SCHEMA" . " SYSTEM USERS" DSL. usi ng(SQLDi al ect. HSQLDB). sel ect One() . get SQL() ;
SELECT 1 FROM (select 1 as dual) as dual DSL. usi ng(SQLDi al ect. | NGRES). sel ect One(). get SQL();
SELECT 1 FROM dual DSL. usi ng(SQLDi al ect. MYSQL).selectOne().get SQL();
SELECT 1 FROM dual DSL. usi ng(SQLDi al ect. ORACLE). sel ect One(). get SQL();
SELECT 1 DSL. usi ng(SQLDi al ect. POSTGRES) . sel ect One() . get SQL() ;
SELECT 1 DSL. usi ng(SQLDi al ect. SQLITE). sel ect One(). get SQL();
SELECT 1 DSL. usi ng(SQLDi al ect . SQLSERVER) . sel ect One() . get SQL() ;
SELECT 1 FROM [SYS] . [DUMWY] DSL. usi ng(SQLDi al ect. SYBASE). sel ect One(). get SQL();

Note, that some databases (H2, MySQL) can normally do without "DUAL". However, there exist some
corner-cases with complex nested SELECT statements, where this will cause syntax errors (or parser
bugs). To stay on the safe side, jJOOQ will always render "dual" in those dialects.

4.5. Column expressions

Column expressions can be used in various SQL clauses in order to refer to one or several columns.
This chapter explains how to form various types of column expressions with jOOQ. A particular type of
column expression is given in the section about tuples or row value expressions, where an expression
may have a degree of more than one.

Using column expressions in jJOOQ

jOOQ allows you to freely create arbitrary column expressions using a fluent expression construction
API. Many expressions can be formed as functions from DSL methods, other expressions can be formed
based on a pre-existing column expression. For example:

/1l A regular table columm expression
Fi el d<String> fieldl = BOOK. Tl TLE;

/1 A function created fromthe DSL using "prefix" notation
Fiel d<String> fiel d2 = trinm BOOXK. Tl TLE);

/1 The same function created froma pre-existing Field using "postfix" notation
Fiel d<String> fiel d3 = BOOK. TI TLE. trin();

/1 Nore conplex function with advanced DSL syntax
Fiel d<String> field4 = |istAgg(BOX. Tl TLE)

.wi t hi nGroupOr der By(BOOK. | D. asc())
.over().partitionBy(AUTHOR. | D);

In general, it is up to you whether you want to use the "prefix" notation or the "postfix" notation to
Create new column expressions based on existing ones. The "SQL way" would be to use the "prefix
notation", with functions created from the DSL. The "Java way" or "object-oriented way" would be to use
the "postfix" notation with functions created from org.jooqg.Field objects. Both ways ultimately create
the same query part, though.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 66 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html

The jOOQ User Manual 4.5.1. Table columns

4.5.7. Table columns

Table columns are the most simple implementations of a column expression. They are mainly produced
by jOOQ's code generator and can be dereferenced from the generated tables. This manual is full of
examples involving table columns. Another example is given in this query:

SELECT BOOK. | D, BOXX. TI TLE create. sel ect (BOOK. | D, BOOK. Tl TLE)
FROM BOOK . f r on(BOOK)

WHERE BOOK. TI TLE LI KE ' %6QL% .wher e(BOOK. TI TLE. | i ke(" %BQL%))
ORDER BY BOOK. TI TLE . order By(BOOK. Tl TLE) ;

Table columns implement a more specific interface called org.joog.TableField, which is parameterised
with its associated <R extends Record> record type.

See the manual's section about generated tables for more information about what is really generated
by the code generator

4.5.2. Allased columns

Just like tables, columns can be renamed using aliases. Here is an example:

SELECT FIRST_NAME || ' ' || LAST_NAME author, COUNT(*) books
FROM AUTHOR
JO N BOOK ON AUTHCR. | D = AUTHOR | D
GROUP BY FI RST_NAME, LAST_NAME;

Here is how it's done with jOOQ:

Record record = create. sel ect (
concat (AUTHOR. FI RST_NAME, val (" "), AUTHOR LAST_NAME). as("author"),
count (). as("books"))
. from(AUTHOR)
. j 0i n(BOOK) . on(AUTHOR. | D. equal (BOOK. AUTHOR | D))
. groupBy(AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME) . f et chAny() ;

When you alias Fields like above, you can access those Fields' values using the alias name:

Systemout. println("Author : " + record. getVal ue("author"));
Systemout. println("Books : " + record. getVal ue("books"));

4.5.3. Cast expressions

jOOQ's source code generator tries to find the most accurate type mapping between your vendor-
specific data types and a matching Java type. For instance, most VARCHAR, CHAR, CLOB types will
map to String. Most BINARY, BYTEA, BLOB types will map to byte[]. NUMERIC types will default to
java.math.BigDecimal, but can also be any of java.math.Biginteger, java.lang.Long, java.lang.Integer,
java.lang.Short, java.lang.Byte, java.lang.Double, java.lang.Float.

Sometimes, this automatic mapping might not be what you needed, or jJOOQ cannot know the type of
a field. In those cases you would write SQL type CAST like this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 67 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/TableField.html
http://download.oracle.com/javase/8/docs/apijava/math/BigDecimal.html
http://download.oracle.com/javase/8/docs/apijava/math/BigInteger.html
http://download.oracle.com/javase/8/docs/apijava/lang/Long.html
http://download.oracle.com/javase/8/docs/apijava/lang/Integer.html
http://download.oracle.com/javase/8/docs/apijava/lang/Short.html
http://download.oracle.com/javase/8/docs/apijava/lang/Byte.html
http://download.oracle.com/javase/8/docs/apijava/lang/Double.html
http://download.oracle.com/javase/8/docs/apijava/lang/Float.html

The jOOQ User Manual

- Let's say, your Postgres columm LAST_NAME was VARCHAR(30)
- Then you could do this:
SELECT CAST(AUTHOR. LAST_NAME AS TEXT) FROM DUAL

in jOOQ, you can write something like that:

create. sel ect (TAut hor. LAST_NAME. cast (Post gr esDat aType. TEXT)) ;

4.5.4. Arithmetic expressions

The same thing can be achieved by casting a Field directly to String.class, as TEXT is the default data

type in Postgres to map to Java's String

create. sel ect (TAut hor. LAST_NAME. cast (String. cl ass));

The complete CAST APl in org.joog.Field consists of these three methods:

public interface Field<T> {

I/l Cast this field to the type of another field
<Z> Fi el d<Z> cast (Fi el d<z> field);

/l Cast this field to a given DataType
<Z> Fi el d<Z> cast (Dat aType<Z> type);

// Cast this field to the default DataType for a given O ass

<Z> Fi el d<Z> cast (Cl ass<? extends Z> type);

}

// And additional convenience nmethods in the DSL:
public class DSL {
<T> Fi el d<T> cast (bj ect object, Field<T> field);
<T> Fi el d<T> cast (Obj ect object, DataType<T> type);
<T> Fi el d<T> cast (Obj ect object, Cl ass<? extends T> type);
<T> Fi el d<T> cast Nul | (Fi el d<T> field);
<T> Fi el d<T> cast Nul | (Dat aType<T> type);
<T> Fi el d<T> cast Nul | (Cl ass<? extends T> type);

4.5.4. Arithmetic expressions

Numeric arithmetic expressions

Your database can do the math for you. Arithmetic operations are implemented just like numeric
functions, with similar limitations as far as type restrictions are concerned. You can use any of these

operators:

In order to express a SQL query like this one:

SELECT ((1 + 2) * (5 - 3) / 2) %10 FROM DUAL

You can write something like this in jOOQ:

create. sel ect(val (1).add(2).nul (val (5).sub(3)).div(2).nod(10);

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 68 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html

The jOOQ User Manual 4.5.5. String concatenation

Datetime arithmetic expressions
jOOQ also supports the Oracle-style syntax for adding days to a Field<? extends java.util.Date>

SELECT SYSDATE + 3 FROM DUAL; create. sel ect(currentTi nestanp().add(3));

For more advanced datetime arithmetic, use the DSL's timestampDiff() and dateDiff() functions, as well
as jOOQ's built-in SQL standard INTERVAL data type support:

- INTERVAL YEAR TO MONTH: org.jooq.types.YearToMonth
- INTERVAL DAY TO SECOND: org.jooqg.types.DayToSecond

4.5.5. String concatenation

The SQL standard defines the concatenation operator to be an infix operator, similar to the ones we've
seen in the chapter about arithmetic expressions. This operator looks like this: | |. Some other dialects
do not support this operator, but expect a concat() function, instead. jOOQ renders the right operator /
function, depending on your SQL dialect:

SELECT 'A" || 'B || 'C FROV DUAL
-- O in WSQL: /1 For all RDBMS, including MySQL:
SELECT concat(* A, 'B, 'C) FROM DUAL create. sel ect(concat ("A", "B", "C"));

4.5.6. General functions

There are a variety of general functions supported by jOOQ As discussed in the chapter about SQL
dialects functions are mostly emulated in your database, in case they are not natively supported.

This is a list of general functions supported by jOOQ's DSL:

- COALESCE: Get the first non-null value in a list of arguments.

- NULLIF: Return NULL if both arguments are equal, or the first argument, otherwise.
- NVL: Get the first non-null value among two arguments.

- NVL2: Get the second argument if the first is null, or the third argument, otherwise.

Please refer to the DSL Javadoc for more details.

4.5.7. Numeric functions

Math can be done efficiently in the database before returning results to your Java application. In addition
to the arithmetic expressions discussed previously, JOOQ also supports a variety of numeric functions.
As discussed in the chapter about SQL dialects numeric functions (as any function type) are mostly
emulated in your database, in case they are not natively supported.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 69 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/types/YearToMonth.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/DayToSecond.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html

The jOOQ User Manual 4.5.8. Bitwise functions

This is a list of numeric functions supported by jOOQ's DSL:

- ABS: Get the absolute value of a value.

- ACOS: Get the arc cosine of a value.

- ASIN: Get the arc sine of a value.

- ATAN: Get the arc tangent of a value.

- ATAN2: Get the atan2 function of two values.

- CEIL: Get the smalles integer value larger than a given numeric value.

- (COS: Get the cosine of a value.

- COSH: Get the hyperbolic cosine of a value.

- COT: Get the cotangent of a value.

- COTH: Get the hyperbolic cotangent of a value.

- DEG: Transform radians into degrees.

- EXP: Calculate eMvalue.

- FLOOR: Get the largest integer value smaller than a given numeric value.

- GREATEST: Finds the greatest among all argument values (can also be used with non-numeric
values).

- LEAST: Finds the least among all argument values (can also be used with non-numeric values).

- LN: Get the natural logarithm of a value.

- LOG: Get the logarithm of a value given a base.

- POWER: Calculate value®exponent.

- RAD: Transform degrees into radians.

- RAND: Get a random number.

- ROUND: Rounds a value to the nearest integer.

- SIGN: Get the sign of a value (-1, 0, 1).

- SIN: Get the sine of a value.

- SINH: Get the hyperbolic sine of a value.

- SQRT: Calculate the square root of a value.

- TAN: Get the tangent of a value.

- TANH: Get the hyperbolic tangent of a value.

- TRUNC: Truncate the decimals off a given value.

Please refer to the DSL Javadoc for more details.

4.5.8. Bitwise functions

Interestingly, bitwise functions and bitwise arithmetic is not very popular among SQL databases. Most
databases only support a few bitwise operations, while others ship with the full set of operators. jOOQ's
APl includes most bitwise operations as listed below. In order to avoid ambiguities with conditional
operators, all bitwise functions are prefixed with "bit"

- BIT_COUNT: Count the number of bits set to 1 in a number

- BIT_AND: Set only those bits that are set in two numbers

- BIT_OR: Set all bits that are set in at least one number

- BIT_NAND: Set only those Dbits that are set in two numbers, and inverse the result
- BIT_NOR: Set all bits that are set in at least one number, and inverse the result

- BIT_NOT: Inverse the bits in a number

- BIT_XOR: Set all bits that are set in at exactly one number

- BIT_XNOR: Set all bits that are set in at exactly one number, and inverse the result
- SHL: Shift bits to the left

- SHR: Shift bits to the right

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 70 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html

The jOOQ User Manual 4.5.9. String functions

Some background about bitwise operation emulation

As stated before, not all databases support all of these bitwise operations. [OOQ emulates them
wherever this is possible. More details can be seen in this blog post:
http://blog.jooq.org/2011/10/30/the-comprehensive-sql-bitwise-operations-compatibility-list/

4.5.9. String functions

String formatting can be done efficiently in the database before returning results to your Java
application. As discussed in the chapter about SQL dialects string functions (as any function type) are
mostly emulated in your database, in case they are not natively supported.

This is a list of numeric functions supported by jOOQ's DSL:

- ASCIl: Get the ASCII code of a character.

- BIT_LENGTH: Get the length of a string in bits.

- CHAR_LENGTH: Get the length of a string in characters.
- CONCAT: Concatenate several strings.

- ESCAPE: Escape a string for use with the LIKE predicate.
- LENGTH: Get the length of a string.

- LOWER: Get a string in lower case letters.

- LPAD: Pad a string on the left side.

- LTRIM: Trim a string on the left side.

- OCTET_LENGTH: Get the length of a string in octets.

- POSITION: Find a string within another string.

- REPEAT: Repeat a string a given number of times.

- REPLACE: Replace a string within another string.

- RPAD: Pad a string on the right side.

- RTRIM: Trim a string on the right side.

- SUBSTRING: Get a substring of a string.

- TRIM: Trim a string on both sides.

- UPPER: Get a string in upper case letters.

Please refer to the DSL Javadoc for more details.

Regular expressions, REGEXP, REGEXP_LIKE, etc.

Various databases have some means of searching through columns using regular expressions if the LIKE
predicate does not provide sufficient pattern matching power. While there are many different functions
and operators in the various databases, jOOQ settled for the SQL:2008 standard REGEX_LIKE operator.
Being an operator (and not a function), you should use the corresponding method on org.joog.Field:

create. sel ect Fr om(BOOK) . wher e(TI TLE. | i keRegex("". *SQL. *$")) ;

Note that the SQL standard specifies that patterns should follow the XQuery standards. In the real
world, the POSIX regular expression standard is the most used one, some use Java regular expressions,
and only a few ones use Perl regular expressions. jOOQ does not make any assumptions about
regular expression syntax. For cross-database compatibility, please read the relevant database manuals
carefully, to learn about the appropriate syntax. Please refer to the DSL Javadoc for more details.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 71 /174

http://blog.jooq.org/2011/10/30/the-comprehensive-sql-bitwise-operations-compatibility-list/
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html

The jOOQ User Manual 4.5.10. Date and time functions

4.5.10. Date and time functions

This is a list of date and time functions supported by jOOQ's DSL:

- CURRENT_DATE: Get current date as a DATE object.

- CURRENT_TIME: Get current time as a TIME object.

- CURRENT_TIMESTAMP: Get current date as a TIMESTAMP object.

- DATE_ADD: Add a number of days or an interval to a date.

- DATE_DIFF: Get the difference in days between two dates.

- TIMESTAMP_ADD: Add a number of days or an interval to a timestamp.

- TIMESTAMP_DIFF: Get the difference as an INTERVAL DAY TO SECOND between two dates.

Intervals in jOOQ

jO0Q fills a gap opened by JDBC, which neglects an important SQL data type as defined by the SQL
standards: INTERVAL types. See the manual's section about INTERVAL data types for more details.

4.5.11. System functions

This is a list of system functions supported by jJOOQ's DSL:

- CURRENT_USER: Get current user.

4.5.12. Aggregate functions

Aggregate functions work just like functions, even if they have a slightly different semantics. Here are
some example aggregate functions from the DSL:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 72 /174

The jOOQ User Manual

/'l Every-day, SQL standard aggregate functions

Aggr egat eFunct i on<I nt eger > count();

Aggr egat eFunct i on<I nt eger > count (Fi el d<?> field);
Aggr egat eFunct i on<T> max (Field<T> field);
Aggr egat eFuncti on<T> mn (Field<T> field);

Aggr egat eFunct i on<Bi gDeci mal > sum (Fi el d<? extends Number> field);
Aggr egat eFunct i on<Bi gDeci mal > avg (Fi el d<? extends Number> field);

// DI STINCT keyword in aggregate functions

Aggr egat eFunct i on<I nt eger > count Di stinct(Field<?> field);
Aggr egat eFunct i on<T> maxDi stinct (Field<T> field);
Aggr egat eFunct i on<T> mnDistinct (Field<T> field);

Aggr egat eFunct i on<Bi gDeci mal > sunDi stinct (Field<? extends Number> field);
Aggr egat eFunct i on<Bi gDeci mal > avgDi stinct (Field<? extends Number> field);

/1l String aggregate functions
Aggr egat eFuncti on<String> groupConcat

(Field<?> field);

Aggr egat eFunct i on<Stri ng> groupConcat Di stinct (Fi el d<?> field);
O der edAggr egat eFuncti on<Stri ng> |i st Agg(Fi el d<?> field);
O der edAggr egat eFuncti on<String> |istAgg(Fiel d<?> field, String separator);

I/ Statistical functions

Aggr egat eFunct i on<Bi gDeci mal > nedi an (Fi el d<? extends
Aggr egat eFunct i on<Bi gDeci mal > st ddevPop (Fi el d<? extends
Aggr egat eFunct i on<Bi gDeci mal > st ddevSanp(Fi el d<? extends
Aggr egat eFunct i on<Bi gDeci mal > var Pop (Fi el d<? extends
Aggr egat eFunct i on<Bi gDeci mal > varSanp (Fi el d<? extends

I/ Linear regression functions

Aggr egat eFunct i on<Bi gDeci mal > regr AvgXx (Field<?
Aggr egat eFunct i on<Bi gDeci mal > regr AvgY (Field<?
Aggr egat eFunct i on<Bi gDeci mal > r egr Count (Field<?
Aggr egat eFunct i on<Bi gDeci mal > regr | ntercept (Fi el d<?
Aggr egat eFunct i on<Bi gDeci mal > regr R2 (Field<?
Aggr egat eFunct i on<Bi gDeci mal > regr Sl ope (Field<?
Aggr egat eFunct i on<Bi gDeci mal > regr SXX (Field<?
Aggr egat eFunct i on<Bi gDeci mal > r egr SXY (Field<?
Aggr egat eFunct i on<Bi gDeci mal > regr SYY (Field<?

Here's an example, counting the number of books any author has written:

SELECT AUTHOR_I D, COUNT(*)
FROM BOOK
GROUP BY AUTHOR | D

ext ends
ext ends
ext ends
ext ends
ext ends
ext ends
ext ends
ext ends
ext ends

Nunber >
Nunber >
Nunber >
Nunber >
Nunber >
Nunber >
Nunber >
Nunber >
Nunber >

Nunber > field);
Nunber > field);
Nunmber > fiel d);
Nunber > field);
Nunber > field);

Fi el d<? extends
Fi el d<? extends
Fi el d<? extends
Fi el d<? extends
Fi el d<? extends
Fi el d<? extends
Fi el d<? extends
Fi el d<? extends
Fi el d<? extends

create. sel ect (BOOK. AUTHOR | D, count())

. f r on(BOOK)

. gr oupBy(BOOK. AUTHOR | D) ;

Nunber >
Nunber >
Nunber >
Nunber >
Nunber >
Nunber >
Nunber >
Nunber >
Nunber >

X);
X);
X);
X);
X);
X);
X);
X);
X);

4.5.12. Aggregate functions

Aggregate functions have strong limitations about when they may be used and when not. For instance,
you can use aggregate functions in scalar queries. Typically, this means you only select aggregate

functions, no regular columns or other column expressions. Another use case is to use them along with
a GROUP BY clause as seen in the previous example. Note, that jJOOQ does not check whether your
using of aggregate functions is correct according to the SQL standards, or according to your database's

behaviour.

Ordered-set aggregate functions

Oracle and some other databases support "ordered-set aggregate functions". This means you can
provide an ORDER BY clause to an aggregate function, which will be taken into consideration when
aggregating. The best example for this is Oracle's LISTAGG() (also known as GROUP_CONCAT in other
SQL dialects). The following query groups by authors and concatenates their books' titles

SELECT LI STAGE TI TLE,

W THI N GROUP (ORDER BY TI TLE)
FROM BOOK
GROUP BY AUTHOR | D

The above query might yield:

| 1984, Aninmal Farm |
| OAl quimsta, Brida |

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

create. sel ect (i stAgg(BOXK. TI TLE, "
. W t hi nGr oupOr der By(BOOK. Tl TLE))

. r om(BOOK)

. gr oupBy(BOOK. AUTHOR | D)

")

Page 73 /174

The jOOQ User Manual 4.5.13. Window functions

FIRST and LAST: Oracle's "ranked" aggregate functions

Oracle allows for restricting aggregate functions using the KEEP() clause, which is supported by jOOQ.
In Oracle, some aggregate functions (MIN, MAX, SUM, AVG, COUNT, VARIANCE, or STDDEV) can be
restricted by this clause, hence org.joog.AggregateFunction also allows for specifying it. Here are a
couple of examples using this clause:

SUM BOOK. AMOUNT_SOLD) sun(BOOK. AMOUNT_SOLD)
KEEP(DENSE_RANK FI RST ORDER BY BOOK. AUTHOR | D) . keepDenseRankFi r st Or der By(BOOK. AUTHOR | D)

User-defined aggregate functions

jOOQ also supports using your own user-defined aggregate functions. See the manual's section about
user-defined aggregate functions for more details.

Window functions / analytical functions

In those databases that support window functions, jOOQ's orgjooqg.AggregateFunction can be
transformed into a window function / analytical function by calling over() on it. See the manual's section
about window functions for more details.

4.5.13. Window functions

Most major RDBMS support the concept of window functions. jOOQ knows of implementations in DB2,
Oracle, Postgres, SQL Server, and Sybase SQL Anywhere, and supports most of their specific syntaxes.
Note, that H2 and HSQLDB have implemented ROW_NUMBER() functions, without true windowing
support.

As previously discussed, any org.joog.AggregateFunction can be transformed into a window function
using the over() method. See the chapter about aggregate functions for details. In addition to those,
there are also some more window functions supported by jOOQ, as declared in the DSL:

/1 Ranking functions
W ndowOver St ep<I nt eger > rowNunber () ;
W ndowOver St ep<I nt eger > rank();
W ndowOver St ep<I nt eger > denseRank() ;
W ndowOver St ep<Bi gDeci mal > per cent Rank() ;

// W ndow ng functions

<T> W ndow gnoreNul | sStep<T> firstVal ue(Fiel d<T> field);

<T> W ndowl gnor eNul | sSt ep<T> | ast Val ue(Fi el d<T> fi el d)

<T> W ndowl gnor eNul | sSt ep<T> | ead(Fi el d<T> field);

<T> W ndowl gnor eNul | sSt ep<T> | ead(Fiel d<T> field, int offset);

<T> W ndowl gnor eNul | sSt ep<T> | ead(Fiel d<T> field, int offset, T defaultValue);

<T> W ndowl gnor eNul | sSt ep<T> | ead(Fiel d<T> field, int offset, Field<T> defaultValue);
<T> W ndowl gnor eNul | sSt ep<T> | ag(Fi el d<T> field);

<T> W ndowl gnor eNul | sSt ep<T> lag(Field<T> field, int offset);

<T> W ndowl gnor eNul | sSt ep<T> | ag(Field<T> field, int offset, T defaultValue);

<T> W ndowl gnor eNul | sSt ep<T> | ag(Field<T> field, int offset, Field<T> defaultValue);

/1 Statistical functions

W ndowOver St ep<Bi gDeci mal > cuneDi st ();
W ndowOver St ep<I nt eger > ntile(int nunber);

SQL distinguishes between various window function types (e.g. "ranking functions"). Depending on the
function, SQL expects mandatory PARTITION BY or ORDER BY clauses within the OVER() clause. jJOOQ
does not enforce those rules for two reasons:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 74 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html

The jOOQ User Manual 4.5.13. Window functions

- Your JDBC driver or database already checks SQL syntax semantics
- Not all databases behave correctly according to the SQL standard

If possible, however, jOOQ tries to render missing clauses for you, if a given SQL dialect is more
restrictive.

Some examples

Here are some simple examples of window functions with jOOQ:

- Sanpl e uses of ROW NUMBER() /1 Sanpl e uses of rowNunber ()

ROW NUMBER() OVER() rowNunber (). over ()

ROW NUMBER() OVER(PARTI TI ON BY 1) rowNunber (). over (). partitionByOne()

ROW NUMBER() OVER(ORDER BY BOCK. | D) rowNunber (). over (). partitionBy(BOOK. AUTHOR | D)

ROW NUMBER() OVER(PARTI TI ON BY BOOK. AUTHOR | D ORDER BY BOCK. | D) rowNunber (). over (). partitionBy(BOOK. AUTHOR | D). or der By(BOOK. | D)
- Sanpl e uses of FIRST_VALUE /1 Sanpl e uses of firstValue()

FI RST_VALUE(BOXK. | D) OVER() firstVal ue(BOX. I D). over ()

FI RST_VALUE(BOOK. | D | GNORE NULLS) OVER() firstVal ue(BOOK. ID).ignoreNulls().over()

FI RST_VALUE(BOOK. | D RESPECT NULLS) OVER() firstVal ue(BOOK. I D). respectNulls().over()

An advanced window function example

Window functions can be used for things like calculating a "running total". The following example
fetches transactions and the running total for every transaction going back to the beginning of the
transaction table (ordered by booked_at). Window functions are accessible from the previously seen
org.joog.AggregatefFunction type using the over() method:

SELECT booked_at, anount, create. sel ect (t. BOOKED_AT, t.AMOUNT,

SUM anmpunt) OVER (PARTITION BY 1 sun(t. AMOUNT) . over (). partitionByOne()
ORDER BY booked_at . order By(t.BOOKED_AT)
ROAS BETWEEN UNBOUNDED PRECEDI NG . rowsBet weenUnboundedPr ecedi ng()
AND CURRENT ROW AS total .andCurrent Row().as("total ")
FROM transacti ons . fron{ TRANSACTI ONS. as("t"));

Window functions created from ordered-set aggregate functions

In the previous chapter about aggregate functions, we have seen the concept of "ordered-set aggregate
functions", such as Oracle's LISTAGG(). These functions have a window function / analytical function
variant, as well. For example:

SELECT LISTAGH TITLE, ', ') create.sel ect (listAgg(BOXK. TITLE, ", ")

W THI N GROUP (ORDER BY TI TLE) . Wi t hi nGroupOr der By (BOOK. Tl TLE)

OVER (PARTI TI ON BY BOCK. AUTHOR_| D) .over (). partitionBy(BOOK. AUTHOR | D))
FROM BOOK . f r on(BOOK)

Window functions created from Oracle's FIRST and LAST aggregate
functions

In the previous chapter about aggregate functions, we have seen the concept of "FIRST and LAST
aggregate functions". These functions have a window function / analytical function variant, as well. For
example:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 75/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html

The jOOQ User Manual 4.5.14. Grouping functions

SUM BOOK. AMOUNT_SOLD) sum BOOK. AMOUNT_SOLD)
KEEP(DENSE_RANK FI RST ORDER BY BOOK. AUTHOR | D) . keepDenseRankFi r st Or der By (BOOK. AUTHOR | D)
OVER(PARTI TI ON BY 1) .over().partitionByOne()

Window functions created from user-defined aggregate functions

User-defined aggregate functions also implement org.joog.AggregatefFunction, hence they can also
be transformed into window functions using over(). This is supported by Oracle in particular. See the
manual's section about user-defined aggregate functions for more details.

4.5.14. Grouping functions

ROLLUP() explained in SQL

The SQL standard defines special functions that can be used in the GROUP BY clause: the grouping
functions. These functions can be used to generate several groupings in a single clause. This can best
be explained in SQL. Let's take ROLLUP() for instance:

- ROLLUP() with one argunent -- The sane query using UNI ON ALL:
SELECT AUTHOR_I D, COUNT(*) SELECT AUTHOR | D, COUNT(*) FROM BOOK GROUP BY (AUTHOR | D)
FROM BOOK UNI ON ALL
GROUP BY ROLLUP(AUTHCR | D) SELECT NULL, COUNT(*) FROM BOOK GROUP BY ()
ORDER BY 1 NULLS LAST
- ROLLUP() with two argunents -- The sane query using UNI ON ALL:
SELECT AUTHOR_I D, PUBLI SHED_I N, COUNT(*) SELECT AUTHOR | D, PUBLI SHED_I N, COUNT(*)
FROM BOOK FROM BOOK GROUP BY (AUTHOR I D, PUBLI SHED_I N)
GROUP BY ROLLUP(AUTHOR | D, PUBLI SHED_ | N) UNI ON ALL

SELECT AUTHOR | D, NULL, COUNT(*)
FROM BOOK GROUP BY (AUTHOR | D)
UNI ON ALL
SELECT NULL, NULL, COUNT(*)
FROM BOOK GROUP BY ()
ORDER BY 1 NULLS LAST, 2 NULLS LAST

In English, the ROLLUP() grouping function provides N+1 groupings, when N is the number of arguments
to the ROLLUP() function. Each grouping has an additional group field from the ROLLUP() argument
field list. The results of the second query might look something like this:

fecooooocoon decoooccoooooos fcocoocooo +
| AUTHOR ID | PUBLISHED IN | COUNT(*) |
fecooooocoon decosocooooooos fecocoocooo +
| | 1945 |
1948

- GROUP BY (AUTHOR I D, PUBLI SHED I N)
| | GROUP BY (AUTHOR I D, PUBLI SHED I N)
| NULL | GROUP BY (AUTHOR | D)
| 1988 | GROUP BY (AUTHOR I D, PUBLI SHED I N)
| 1990 | GROUP BY (AUTHOR I D, PUBLI SHED I N)
| | GROUP BY (AUTHOR | D)

| |

- GROUP BY ()

NULL
NULL

AANDDDD

CUBE() explained in SQL

CUBE() is different from ROLLUP() in the way that it doesn't just create N+1 groupings, it creates all 2N
possible combinations between all group fields in the CUBE() function argument list. Let's re-consider
our second query from before:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 76 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html

The jOOQ User Manual

- CUBE() with two argunents
SELECT AUTHOR | D, PUBLI SHED_I N, COUNT(*)
FROVI BOOK
GROUP BY CUBE(AUTHOR | D, PUBLI SHED | N)

The results would then hold:

fmcccoccccos fmcccoccccosocs fmcccccccco +
| AUTHOR ID | PUBLISHED IN | COUNT(*) |

fmcccoccccos fmcccoccccosocs fmcccccccco +

| NULL | NULL | 2| < GROWP
| NULL | 1945 | 1| < GROUP
| NULL | 1948 | 1| < GROUP
| NULL | 1988 | 1| < GROUP
| NULL | 1990 | 1| < GROUP
| 1| NULL | 2| < GROWP
| 1| 1945 | 1| < GROUP
| 1| 1948 | 1| < GROUP
| 2 | NULL | 2| < GROWP
| 2 | 1988 | 1| < GROUP
| 2 | 1990 | 1| < GROUP
fmcccoccccos fmcccoccccosocs fmcccccccco +

GROUPING SETS()

4.5.14. Grouping functions

- The same query using UNI ON ALL:
SELECT AUTHOR I D, PUBLI SHED I N, COUNT(*)
FROM BOOK GROUP BY (AUTHOR_ I D, PUBLI SHED | N)
UNI ON ALL
SELECT AUTHOR I D, NULL, COUNT(*)
FROM BOOK GROUP BY (AUTHOR | D)
UNI ON ALL
SELECT NULL, PUBLISHED I N, COUNT(*)
FROM BOOK GROUP BY (PUBLI SHED_I N)
UNI ON ALL
SELECT NULL, NULL, COUNT(*)
FROM BOOK GROUP BY ()
ORDER BY 1 NULLS FIRST, 2 NULLS FI RST

BY ()

BY (PUBLI SHED | N)

BY (PUBLI SHED | N)

BY (PUBLI SHED | N)

BY (PUBLI SHED | N)

BY (AUTHOR | D)

BY (AUTHOR I D, PUBLI SHED_|
BY (AUTHOR I D, PUBLI SHED_|
BY (AUTHOR | D)

BY (AUTHOR I D, PUBLI SHED_|
BY (AUTHOR I D, PUBLISHED_|

22 =22

GROUPING SETS() are the generalised way to create multiple groupings. From our previous examples

- ROLLUP(AUTHOR_ID, PUBLISHED_IN) corresponds to GROUPING SETS((AUTHOR_ID,

PUBLISHED_IN), (AUTHOR_ID), ()

- CUBE(AUTHOR_ID, PUBLISHED_IN) corresponds to GROUPING SETS((AUTHOR_ID,
PUBLISHED_IN), (AUTHOR_ID), (PUBLISHED_IN), ())

This is nicely explained in the SQL Server manual pages about GROUPING SETS() and other grouping

functions:

http://msdn.microsoft.com/en-us/library/bb510427(v=sqgl.105)

j00Q's support for ROLLUP(), CUBE(), GROUPING SETS()

jOOQ fully supports all of these

functions, as well as the utility functions GROUPING() and

GROUPING_ID(), used for identifying the grouping set ID of a record. The DSL API thus includes:

// The various grouping function constructors
GoupField rollup(Field<?> .. fields);

G oupFi el d cube(Field<?>... fields);

G oupFi el d groupi ngSet s(Fi el d<?>... fields);
GroupFi el d groupi ngSet s(Fi el d<?>[]... fields);

G oupFi el d groupi ngSets(Col | ection<? extends Field<?>>... fields);

/1 The utility functions generating |Ds per GROUPI NG SET

Fi el d<I nt eger > groupi ng(Fi el d<?>);
Fi el d<I nt eger > groupi ngl d(Fi el d<?>...);

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 77 /174

http://msdn.microsoft.com/en-us/library/bb510427(v=sql.105)

The jOOQ User Manual 4.5.15. User-defined functions

MySQL's and CUBRID's WITH ROLLUP syntax

MySQL and CUBRID don't know any grouping functions, but they support a WITH ROLLUP clause, that
is equivalent to simple ROLLUP() grouping functions. jJOOQ emulates ROLLUP() in MySQL and CUBRID,
by rendering this WITH ROLLUP clause. The following two statements mean the same:

-- Statenent 1. SQ. standard -- Statement 1: MySQL

GROUP BY ROLLUP(A, B, O GROUP BY A, B, C WTH ROLLUP
-- Statenent 2: SQ. standard -- Statement 2: MySQL
GROUP BY A, ROLLUP(B, O -- This is not supported in My/SQL

4.5.15. User-defined functions

Some databases support user-defined functions, which can be embedded in any SQL statement, if
you're using jOOQ's code generator. Let's say you have the following simple function in Oracle SQL:

CREATE OR REPLACE FUNCTI ON echo (1 NPUT NUMBER)
RETURN NUMBER
1S
BEG N
RETURN | NPUT;
END echo;

The above function will be made available from a generated Routines class. You can use it like any other
column expression:

SELECT echo(1) FROM DUAL WHERE echo(2) = 2 create. sel ect (echo(1)).where(echo(2).equal (2));

Note that user-defined functions returning CURSOR or ARRAY data types can also be used wherever
table expressions can be used, if they are unnested

4.5.16. User-defined aggregate functions

Some databases support user-defined aggregate functions, which can then be used along with GROUP
BY clauses or as window functions. An example for such a database is Oracle. With Oracle, you can
define the following OBJECT type (the example was taken from the Oracle 11g documentation):

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 78 /174

http://docs.oracle.com/cd/B28359_01/appdev.111/b28425/ext_agg_ref.htm

The jOOQ User Manual 4.5.17. The CASE expression

CREATE TYPE U_SECOND_MAX AS OBJECT
(
MAX NUMBER, -- highest value seen so far
SECMAX NUMBER, -- second hi ghest val ue seen so far
STATI C FUNCTI ON ODCI Aggr egat el ni tialize(sctx I N OUT U SECOND_MAX) RETURN NUVBER,
MEMBER FUNCTI ON ODCI Aggregat el terate(sel f |N OUT U SECOND _MAX, value |IN NUVBER) RETURN NUMBER,
MEMBER FUNCTI ON ODCI Aggr egat eTer mi nat e(sel f | N U SECOND_MAX, returnValue OUT NUMBER, flags | N NUVBER) RETURN NUMVBER,
MEMBER FUNCTI ON ODCI Aggr egat eMerge(sel f I N OUT U _SECOND_MAX, ctx2 | N U SECOND_MAX) RETURN NUMBER
)

CREATE OR REPLACE TYPE BODY U _SECOND_MAX |'S
STATI C FUNCTI ON ODCl Aggregatel nitialize(sctx I N OQUT U _SECOND_MAX)
RETURN NUMBER | S
BEG N
SCTX : = U_SECOND_MAX(0, 0);
RETURN ODCI Const . Success;
END;

MEMBER FUNCTI ON ODCI Aggregat el terate(sel f I N OUT U SECOND _MAX, value |N NUVBER) RETURN NUMBER | S
BEG N
| F VALUE > SELF. MAX THEN
SELF. SECVAX : = SELF. MAX;
SELF. MAX : = VALUE;
ELSI F VALUE > SELF. SECMAX THEN
SELF. SECVAX : = VALUE;
END | F;
RETURN ODCI Const . Success;
END;

MEMBER FUNCTI ON ODCI Aggr egat eTer mi nat e(sel f | N U SECOND_MAX, returnVal ue OUT NUMBER, flags | N NUVBER) RETURN NUMBER | S
BEG N

RETURNVALUE : = SELF. SECMAX;

RETURN ODCI Const . Success;
END;

MEMBER FUNCTI ON ODCI Aggr egat eMerge(sel f I N OUT U SECOND_MAX, ctx2 | N U SECOND_MAX) RETURN NUMBER | S
BEG N
I F CTX2. MAX > SELF. MAX THEN
I F CTX2. SECMAX > SELF. SECMAX THEN
SELF. SECVAX : = CTX2. SECVAX;
ELSE
SELF. SECVAX : = SELF. MAX;
END | F;
SELF. MAX : = CTX2. VAX;
ELSI F CTX2. MAX > SELF. SECMAX THEN
SELF. SECVAX : = CTX2. MAX;
END | F;
RETURN ODCI Const . Success;
END;
END;

The above OBJECT type is then available to function declarations as such:

CREATE FUNCTI ON SECOND_MAX (i nput NUVBER) RETURN NUMBER
PARALLEL_ENABLE AGGREGATE USI NG U_SECOND_MAX;

Using the generated aggregate function

jOOQ's code generator will detect such aggregate functions and generate them differently from regular
user-defined functions. They implement the org.jooq.AggregatefFunction type, as mentioned in the
manual's section about aggregate functions. Here's how you can use the SECOND_MAX() aggregate
function with jOOQ:

- Get the second-latest publishing date by author /1 Routines.secondMax() can be static-inported
SELECT SECOND_NAX(PUBLI SHED_I N) create. sel ect (secondMax(BOOK. PUBLI SHED_I N))
FROM BOOK . f r om(BOOK)

GROUP BY AUTHOR_ I D . gr oupBy (BOOK. AUTHOR | D)

4.5.17. The CASE expression

The CASE expression is part of the standard SQL syntax. While some RDBMS also offer an IF expression,
or a DECODE function, you can always rely on the two types of CASE syntax:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 79 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/AggregateFunction.html

The jOOQ User Manual 4.5.18. Sequences and serials

CASE WHEN AUTHOR. FI RST_NA|

ME = ' Paul o' THEN 'brazilian' DSL. decode()
WHEN AUTHOR. FI RST_NANVE

' George' THEN 'english’ . when(AUTHOR. FI RST_NAME. equal (" Paul 0"), "brazilian")
ELSE ' unknown' . when(AUTHOR. FI RST_NAME. equal (" George"), "english")
END . ot herw se("unknown");
- R Il OR
CASE AUTHOR. FI RST_NAME WHEN ' Paul o' THEN ' brazilian' DSL. decode() . val ue(AUTHOR. Fl RST_NANE)
WHEN ' George' THEN ' english’ .when("Paul 0", "brazilian")
ELSE ' unknown' .when(" CGeorge", "english")
END . ot herw se("unknown");

InjOOQ, both syntaxes are supported (The second one is emulated in Derby, which only knows the first
one). Unfortunately, both case and else are reserved words in Java. jJOOQ chose to use decode() from
the Oracle DECODE function, and otherwise(), which means the same as else.

A CASE expression can be used anywhere where you can place a column expression (or Field). For
instance, you can SELECT the above expression, if you're selecting from AUTHOR:

SELECT AUTHOR FIRST_NAVE, [... CASE EXPR ...] AS nationality
FROM AUTHOR

The Oracle DECODE() function

Oracle knows a more succinct, but maybe less readable DECODE() function with a variable number of
arguments. This function roughly does the same as the second case expression syntax. jOOQ supports
the DECODE() function and emulates it using CASE expressions in all dialects other than Oracle:

- Oacle:
DECODE(FI RST_NAME, ‘' Paul o', ‘brazilian',
‘George', 'english',

‘unknown') ;
- Oher SQL dialects /'l Use the Oracle-style DECODE() function with jOOQ
CASE AUTHOR. FI RST_NAME WHEN ' Paul o' THEN ' brazilian' /'l Note, that you will not be able to rely on type-safety
WHEN ' George' THEN 'english’ DSL. decode(AUTHOR. FI RST_NANE,
ELSE ' unknown' "Paul 0", "brazilian",
END "George", "english",
"unknown") ;

CASE clauses in an ORDER BY clause

Sort indirection is often implemented with a CASE clause of a SELECT's ORDER BY clause. See the
manual's section about the ORDER BY clause for more details.

4.5.18. Sequences and serials

Sequences implement the org.joog.Sequence interface, providing essentially this functionality:

I/l Get a field for the CURRVAL sequence property
Fi el d<T> currval ();

I/l Get a field for the NEXTVAL sequence property
Fi el d<T> nextval ();

So if you have a sequence like this in Oracle:

CREATE SEQUENCE s_aut hor _i d

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 80/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Sequence.html

The jOOQ User Manual 4.5.19. Tuples or row value expressions

You can then use your generated sequence object directly in a SQL statement as such:

/1l Reference the sequence in a SELECT statenent:
Bi gl nteger next|ID = create. sel ect(s).fetchOne(S_AUTHOR | D. nextval ());

I/ Reference the sequence in an | NSERT statenent:

create.insertlnto(AUTHOR, AUTHOR | D, AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME)
.val ues(S_AUTHOR I D. nextval (), val ("WIliant), val("Shakespeare"));

- For more information about generated sequences, refer to the manual's section about
generated sequences

- For more information about executing standalone calls to sequences, refer to the manual's
section about sequence execution

4.5.19. Tuples or row value expressions

According to the SQL standard, row value expressions can have a degree of more than one. This is
commonly used in the INSERT statement, where the VALUES row value constructor allows for providing
a row value expression as a source for INSERT data. Row value expressions can appear in various other
places, though. They are supported by jOOQ as records / rows. jJOOQ's DSL allows for the construction
of type-safe records up to the degree of 22. Higher-degree Rows are supported as well, but without
any type-safety. Row types are modelled as follows:

/1 The DSL provides overloaded row val ue expression constructor nethods:

public static <T1> Rowl<T1> row(T1 t1) { .}
public static <T1, T2> Row2<T1, T2> row(T1 t1, T2 t2) { ...}
public static <T1, T2, T3> Row3<T1, T2, T3> row(T1 t1, T2 t2, T3 t3) { ...}
public static <T1, T2, T3, T4> Row4d<Tl, T2, T3, T4> rowm(T1l t1, T2 t2, T3 t3, T4 t4) { .}

/Il [... idemfor Rows, Row6, Row7, ..., Row22]

/| Degrees of nore than 22 are supported without type-safety
public static RowN row(Qbject... values) { ... }

Using row value expressions in predicates

Row value expressions are incompatible with most other QueryParts, but they can be used as a basis
for constructing various conditional expressions, such as:

- comparison predicates
- NULL predicates
- BETWEEN predicates

- IN predicates
- OVERLAPS predicate (for degree 2 row value expressions only)

See the relevant sections for more details about how to use row value expressions in predicates.

Using row value expressions in UPDATE statements

The UPDATE statement also supports a variant where row value expressions are updated, rather than
single columns. See the relevant section for more details

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 81/174

The jOOQ User Manual 4.6. Conditional expressions

Higher-degree row value expressions

jOOQ chose to explicitly support degrees up to 22 to match Scala's typesafe tuple, function and product
support. Unlike Scala, however, jOOQ also supports higher degrees without the additional typesafety.

4.6. Conditional expressions

Conditions or conditional expressions are widely used in SQL and in the jJOOQ API. They can be used in

- The CASE expression

- The JOIN clause (or JOIN .. ON clause, to be precise) of a SELECT statement, UPDATE statement,
DELETE statement

- The WHERE clause of a SELECT statement, UPDATE statement, DELETE statement

- The CONNECT BY clause of a SELECT statement

- The HAVING clause of a SELECT statement

- The MERGE statement's ON clause

Boolean types in SQL

Before SQL:1999, boolean types did not really exist in SQL. They were modelled by 0 and 1 numeric/
char values. With SQL:1999, true booleans were introduced and are now supported by most databases.
In short, these are possible boolean values:

- 1 or TRUE
- 0 or FALSE
- NULL or UNKNOWN

It is important to know that SQL differs from many other languages in the way it interprets the NULL
boolean value. Most importantly, the following facts are to be remembered:

- [ANY] = NULL yields NULL (not FALSE)
- [ANY] I= NULL yields NULL (not TRUE)
- NULL = NULL yields NULL (not TRUE)

- NULL != NULL yields NULL (not FALSE)

For simplified NULL handling, please refer to the section about the DISTINCT predicate.

Note that JOOQ does not model these values as actual column expression compatible.

4.6.1. Condition building

With jOOQ, most conditional expressions are built from column expressions, calling various methods
on them. For instance, to build a comparison predicate, you can write the following expression:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 82 /174

The jOOQ User Manual 4.6.2. AND, OR, NOT boolean operators

TITLE = 'Animal Farm BOCOK. TI TLE. equal (" Ani mal Farni')
TITLE !'= " Ani mal Farm BOOK. TI TLE. not Equal (" Ani mal Far ni')

Create conditions from the DSL

There are a few types of conditions, that can be created statically from the DSL. These are:

- plain SQL conditions, that allow you to phrase your own SQL string conditional expression
- The EXISTS predicate, a standalone predicate that creates a conditional expression
- Constant TRUE and FALSE conditional expressions

Connect conditions using boolean operators

Conditions can also be connected using boolean operators as will be discussed in a subsequent
chapter.

4.6.2. AND, OR, NOT boolean operators

In SQL, as in most other languages, conditional expressions can be connected using the AND and OR
binary operators, as well as the NOT unary operator, to form new conditional expressions. In jOOQ,
this is modelled as such:

- A sinple conditional expression /'l A sinple bool ean connection
TITLE = ' Aninmal Farmi OR TITLE = ' 1984’ BOOK. TI TLE. equal (" Ani mal Farnt'). or (BOOK. TI TLE. equal ("1984"))
- A nore conpl ex conditional expression /1 A nore conpl ex conditional expression
(TITLE = " Animal Farmi OR TITLE = ' 1984') BOOK. TI TLE. equal (" Ani mal Farnt') . or (BOOK. TI TLE. equal ("1984"))
AND NOT (AUTHOR LAST_NAME = "Orwel | ") . andNot (AUTHOR. LAST_NAME. equal ("Orwel | "))

The above example shows that the number of parentheses in Java can quickly explode. Proper
indentation may become crucial in making such code readable. In order to understand how jOOQ
composes combined conditional expressions, let's assign component expressions first:

Condition a = BOOK. TI TLE. equal (" Ani nal Farni);
Condi tion b = BOOK. TI TLE. equal ("1984");
Condi tion ¢ = AUTHOR LAST_NAME. equal ("Orwel | ");

Condi tion conbi nedl
Condi tion conbi ned2

a.or(b); /'l These OR-connected conditions forma new condition, wapped in parentheses
conbi nedl. andNot (c); // The left-hand side of the AND NOT () operator is already wapped in parentheses

The Condition API

Here are all boolean operators on the org.joog.Condition interface:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 83/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Condition.html

The jOOQ User Manual

and(Condi ti on)

and(String)

and(String, Object...)
and(String, QueryPart...)
andExi st s(Sel ect <?>)
andNot (Condi ti on)

Il
Il
Il
Il
Il
Il

Conbi ne condi tions
Conbi ne condi tions
Conbi ne condi tions
Conbi ne condi tions
Conbi ne condi tions
Conbi ne condi tions

andNot Exi st s(Sel ect <?>) /| Conbi ne conditions
or (Condi ti on) /1 Conbi ne conditions
or(String) /| Conbi ne conditions

or(String, Chject...)
or(String, QueryPart...)
or Exi st s(Sel ect <?>)

or Not (Condi ti on)

or Not Exi st s(Sel ect <?>)

Il
Il
Il
Il
Il

Conbi ne condi tions
Conbi ne condi tions
Conbi ne condi tions
Conbi ne condi tions
Conbi ne condi tions

with AND

wi th AND. Conveni ence for adding
wi th AND. Conveni ence for adding
wi th AND. Conveni ence for adding
wi th AND. Conveni ence for adding
wi th AND. Conveni ence for adding
wi th AND. Conveni ence for adding
with OR

with OR Convenience for adding
with OR Convenience for adding
with OR Convenience for adding
with OR Convenience for adding
with OR Convenience for adding
with OR Convenience for adding

4.6.3. Comparison predicate

plain SQL to the right-hand side

plain SQL to the right-hand side

plain SQL to the right-hand side

an exists predicate to the rhs

an inverted condition to the rhs

an inverted exists predicate to the rhs

plain SQL to the right-hand side

plain SQL to the right-hand side

plain SQL to the right-hand side

an exists predicate to the rhs

an inverted condition to the rhs

an inverted exists predicate to the rhs

not ()

/1l Invert a condition

(synonym for DSL. not (Condi tion)

4.6.3. Comparison predicate

In SQL, comparison predicates are formed using common comparison operators:

= to test for equality

<> or |= to test for non-equality

> to test for being strictly greater
>= 1o test for being greater or equal

< to test for being strictly less

<= to test for being less or equal

Unfortunately, Java does not support operator overloading, hence these operators are also

implemented as methods in jOOQ, like

org.jooq.Field interface are these:

| essOr Equal (Sel ect <? ext ends Recor d1<T>>);

great er Than(Sel ect <? extends Record1<T>>);

eq or equal (T);

eq or equal (Fiel d<T>);

eq or equal (Sel ect<? extends Recordl<T>>);

ne or not Equal (T);

ne or not Equal (Fi el d<T>);

ne or not Equal (Sel ect <? extends Record1<T>>);
It or lessThan(T);

I't or |essThan(Field<T>);

It or |essThan(Sel ect<? extends Recordl<T>>);
le or lessOrEqual (T);

le or | essOr Equal (Fiel d<T>);

le or

gt or greaterThan(T);

gt or greaterThan(Fiel d<T>);

gt or

ge or greaterO Equal (T);

ge or greaterO Equal (Fiel d<T>);

ge or

/1l = (sone bind val ue)
/'l = (sone columm expression)
/'l = (sone scalar SELECT statenent)

/'l <> (sone bind val ue)

/'l <> (sone col unm expression)

/| <> (sone scal ar SELECT statenent)
/'l < (sone bind val ue)

/1 < (sonme columm expression)

/'l < (sone scalar SELECT statenent)
/'l <= (sone bind val ue)

/] <= (sone col unmm expression)

/| <= (sone scal ar SELECT statenent)
/'l > (sone bind val ue)

/1 > (sonme columm expression)

/'l > (sone scalar SELECT statenent)
/'l >= (sone bind val ue)

/1 >= (sonme col unm expression)

great er O Equal (Sel ect <? extends Recordl<T>>); // >= (sone scal ar SELECT statenent)

any other SQL syntax elements. The relevant parts of the

Note that every operator is represented by two methods. A verbose one (such as equal()) and a two-
character one (such as eq()). Both methods are the same. You may choose either one, depending on
your taste. The manual will always use the more verbose one.

jO0Q's convenience methods using comparison operators

In addition to the above, jJOOQ provides a few convenience methods for common operations performed
on strings using comparison predicates:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 84 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html

The jOOQ User Manual 4.6.4. Comparison predicate (degree > 1)

- case insensitivity /| case insensitivity
LOVER(TITLE) = LOVMER(' animal farni) BOOK. TI TLE. equal | gnor eCase("ani nal farni)
LOAER(TI TLE) <> LOAER(' ani nal farm) BOCOK. TI TLE. not Equal | gnor eCase("ani mal farni')

4.6.4. Comparison predicate (degree > 1)

All variants of the comparison predicate that we've seen in the previous chapter also work for row value
expressions. If your database does not support row value expression comparison predicates, jOOQ
emulates them the way they are defined in the SQL standard:

- Row val ue expressions (equal) -- Equival ent factored-out predicates (equal)
(A B = (XY (A=X) AND (B =Y)
(A B O = (X Y 2 (A=X AND (B =Y) AND (C = 2)
- greater than -- greater than
(A B) > (XY (A>X)
OR ((A=X) AND (B >1Y))
(A B O > (X Y, 2 (A > X)

OR ((A =X AND (B >Y))
OR ((A=X AND (B =Y) AND (C > 2))

-- greater or equal -- greater or equal
(A B >= (X V) (A>X)
OR ((A=X) AND (B >1Y))
OR ((A=X) AND (B=1Y))
(A B O >=(X Y, 2 (A >X)
R ((A=X) AND (B >1Y))
OR ((A=X) AND (B =Y) AND (C > 2))
OR ((A=X) AND (B =Y) AND (C = 2))
- Inverse conparisons -- For sinplicity, these predicates are shown in terns
- of their negated counter parts
(A B <> (X V) NOT((A B) = (X Y))
(A B < (XY NOT((A, B) >= (X Y))
(A B <= (XY NOT((A B) > (X Y))

jOOQ supports all of the above row value expression comparison predicates, both with column
expression lists and scalar subselects at the right-hand side:

-- Wth regul ar colum expressions /1 Col utmm expr essi ons
(BOOK. AUTHOR I D, BOOK. TITLE) = (1, 'Animal Farm) r ow(BOOK. AUTHOR | D, BOOK. TI TLE). equal (1, "Ani mal Farnt);
- Wth scal ar subsel ects /] Subsel ects
(BOOK. AUTHOR_I D, BOCK. TITLE) = (r ow(BOOK. AUTHOR | D, BOOK. TI TLE) . equal (
SELECT PERSON.ID, ' Animal Farm sel ect (PERSON. I D, val ("Ani mal Farnt))
FROV PERSON . f r on(PERSON)
VHERE PERSON. ID = 1 . wher e(PERSON. | D. equal (1))

))i

4.6.5. Quantified comparison predicate

If the right-hand side of a comparison predicate turns out to be a non-scalar table subquery, you can
wrap that subqguery in a quantifier, such as ALL, ANY, or SOME. Note that the SQL standard defines ANY
and SOME to be equivalent. jOOQ settled for the more intuitive ANY and doesn't support SOME. Here
are some examples, supported by jOOQ:

TITLE = ANY(' Ani mal Farni, '1982') BOOK. TI TLE. equal (any("Ani mal Farni, "1982"));
PUBLI SHED_I N > ALL(1920, 1940) BOOK. PUBLI SHED | N. gr eat er Than(al | (1920, 1940));

For the example, the right-hand side of the quantified comparison predicates were filled with argument
lists. But it is easy to imagine that the source of values results from a subselect.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 85/174

The jOOQ User Manual 4.6.6. NULL predicate

ANY and the IN predicate

It is interesting to note that the SQL standard defines the IN predicate in terms of the ANY-quantified
predicate. The following two expressions are equivalent:

[ROW VALUE EXPRESSI ON] | N [I N PREDI CATE VALUE] [ROW VALUE EXPRESSI ON] = ANY [I N PREDI CATE VALUE]

Typically, the IN predicate is more readable than the quantified comparison predicate.

4.6.6. NULL predicate

In SQL, you cannot compare NULL with any value using comparison predicates, as the result would
yield NULL again, which is neither TRUE nor FALSE (see also the manual's section about conditional
expressions). In order to test a column expression for NULL, use the NULL predicate as such:

TITLE I'S NULL BOOK. TI TLE. i sNul | ()
TITLE I'S NOT NULL BOOK. TI TLE. i sNot Nul | ()

4.6.7. NULL predicate (degree > 1)

The SQL NULL predicate also works well for row value expressions, although it has some subtle,
counter-intuitive features when it comes to inversing predicates with the NOT() operator! Here are some
examples:

-- Row val ue expressions -- Equival ent factored-out predicates
(A B) IS NULL (A1S NULL) AND (B IS NULL)
(A, B) IS NOT NULL (A 1S NOT NULL) AND (B I'S NOT NULL)

- Inverse of the above -- Inverse

NOT((A, B) 1S NULL) (A1S NOT NULL) OR (B IS NOT NULL)
NOT((A, B) 1S NOT NULL) (A1S NULL) OR (B IS NULL)

The SQL standard contains a nice truth table for the above rules:

B B e e S +
| Expression | RISNULL | RIS NOT NULL | NOT RIS NULL | NOT R 1S NOT NULL |
B B e e S +
degree 1: null	true	false	false	true
degree 1: not null	false	true	true	false
degree > 1: all null	true	false	false	true
degree > 1: sone null	false	false	true	true
degree > 1: none null	false	true	true	false
B B e e S +

In jOOQ, you would simply use the isNull() and isNotNull() methods on row value expressions. Again,
as with the row value expression comparison predicate, the row value expression NULL predicate is
emulated by jOOQ, if your database does not natively support it:

row(BOK. | D, BOOK. TI TLE). i sNul | ();
row(BOK. | D, BOCK. TI TLE) . i sNot Nul | ();

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 86 /174

The jOOQ User Manual 4.6.8. DISTINCT predicate

4.6.8. DISTINCT predicate

Some databases support the DISTINCT predicate, which serves as a convenient, NULL-safe comparison
predicate. With the DISTINCT predicate, the following truth table can be assumed:

- [ANY] IS DISTINCT FROM NULL yields TRUE
- [ANY] IS NOT DISTINCT FROM NULL yields FALSE
- NULL IS DISTINCT FROM NULL yields FALSE
- NULL IS NOT DISTINCT FROM NULL yields TRUE

For instance, you can compare two fields for distinctness, ignoring the fact that any of the two could be
NULL, which would lead to funny results. This is supported by jOOQ as such:

TITLE I'S DI STINCT FROM SUB_TI TLE BOOK. TI TLE. i sDi st i nct Fr om(BOOK. SUB_TI TLE)
TITLE I'S NOT DI STINCT FROM SUB_TI TLE BOCK. TI TLE. i sNot Di st i nct Fr om(BOOK. SUB_TI TLE)

If your database does not natively support the DISTINCT predicate, jJOOQ emulates it with an equivalent
CASE expression, modelling the above truth table:

-~ [A] I'S DISTINCT FROM [B] -~ [A] I'S NOT DI STINCT FROM [B]

CASE WHEN [A] 1S NULL AND [B] IS NULL THEN FALSE CASE WHEN [A] IS NULL AND [B] IS NULL THEN TRUE
VHEN [A] 1S NULL AND [B] IS NOT NULL THEN TRUE VHEN [A] IS NULL AND [B] IS NOT NULL THEN FALSE
WHEN [A] IS NOT NULL AND [B] IS NULL THEN TRUE VHEN [A] IS NOT NULL AND [B] IS NULL THEN FALSE
VHEN [A] =) THEN FALSE VHEN [A] = [B] THEN TRUE
ELSE TRUE ELSE FALSE

END END

4.6.9. BETWEEN predicate

The BETWEEN predicate can be seen as syntactic sugar for a pair of comparison predicates. According
to the SQL standard, the following two predicates are equivalent:

[A] BETVEEN [B] AND [C] [A] >= [B] AND [A] <= [C]

Note the inclusiveness of range boundaries in the definition of the BETWEEN predicate. Intuitively, this
is supported in jOOQ as such:

PUBLI SHED I N BETVEEN 1920 AND 1940 BOOK. PUBLI SHED_I N. bet ween(1920) . and(1940)
PUBLI SHED | N NOT BETWEEN 1920 AND 1940 BOOK. PUBLI SHED_I N. not Bet ween(1920) . and(1940)

BETWEEN SYMMETRIC

The SQL standard defines the SYMMETRIC keyword to be used along with BETWEEN to indicate that you
do not care which bound of the range is larger than the other. A database system should simply swap
range bounds, in case the first bound is greater than the second one. jOOQ supports this keyword as
well, emulating it if necessary.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 87 /174

The jOOQ User Manual 4.6.10. BETWEEN predicate (degree > 1)

PUBLI SHED_I N BETVEEN SYMVETRI C 1940 AND 1920 BOOK. PUBLI SHED_I N. bet weenSymmet ri ¢(1940) . and(1920)
PUBLI SHED | N NOT BETWEEN SYMVETRI C 1940 AND 1920 BOOK. PUBLI SHED_I N. not Bet weenSymmet ri ¢(1940) . and(1920)

The emulation is done trivially:

[A] BETWEEN SYMVETRIC [B] AND [C] ([A] BETVEEN [B] AND [C]) OR ([A] BETWEEN [C] AND [B])

4.6.10. BETWEEN predicate (degree > 1)

The SQL BETWEEN predicate also works well for row value expressions. Much like the BETWEEN
predicate for degree 1, it is defined in terms of a pair of regular comparison predicates:

[A] BETVEEN [B] AND [C] [A] >=[B] AND [A] <= [(]
[A] BETVEEN SYMVETRIC [B] AND [C] ([Al >= [B] AND [A] <= [C) OR ([A] >= [C] AND [A] <= [B])

The above can be factored out according to the rules listed in the manual's section about row value
expression comparison predicates.

jOOQ supports the BETWEEN [SYMMETRIC] predicate and emulates it in all SQL dialects where
necessary. An example is given here:

row(BOOK. | D, BOOK. TI TLE) . between(1, "A").and(10, "Z");

4.6.11. LIKE predicate

LIKE predicates are popular for simple wildcard-enabled pattern matching. Supported wildcards in all
SQL databases are:

- _: (single-character wildcard)
- %: (multi-character wildcard)

With jOOQ, the LIKE predicate can be created from any column expression as such:

TITLE LI KE ' %abc% BOOK. TI TLE. | i ke(" %abc%')
TITLE NOT LI KE ' %abc% BOOK. TI TLE. not Li ke(" %abc%)

Escaping operands with the LIKE predicate

Often, your pattern may contain any of the wildcard characters "_" and "%", in case of which you may

want to escape them. JOOQ does not automatically escape patterns in like() and notLike() methods.
Instead, you can explicitly define an escape character as such:

TI TLE LI KE ' %he !% Si gn Book% ESCAPE '!"’ BOOK. TI TLE. | i ke("%lhe ! % Si gn Book%, '!')
TITLE NOT LIKE '9%he !% Si gn Book% ESCAPE '!"’ BOOK. TI TLE. not Li ke(" % he ! 9% Si gn Book%, '!")

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 88 /174

The jOOQ User Manual 4.6.12. IN predicate

In the above predicate expressions, the exclamation mark character is passed as the escape character
to escape wildcard characters "I_" and "%", as well as to escape the escape character itself: "II"

Please refer to your database manual for more details about escaping patterns with the LIKE predicate.

jO0Q's convenience methods using the LIKE predicate

In addition to the above, jJOOQ provides a few convenience methods for common operations performed

on strings using the LIKE predicate. Typical operations are "contains predicates”, "starts with predicates”,
"ends with predicates", etc. Here is the full convenience APl wrapping LIKE predicates:

- case insensitivity /'l case insensitivity
LOAER(TI TLE) LI KE LONER(' %abc%) BOOK. TI TLE. | i kel gnor eCase(" %abc%')
LOAER(TI TLE) NOT LI KE LOVER(' %abc%) BOOK. TI TLE. not Li kel gnor eCase(" %abc%')
- contains and sinmilar methods /1 contains and simlar nethods
TITLE LIKE "% || "abc' || '% BOOK. TI TLE. cont ai ns("abc")
TITLE LIKE "abc' || '% BOOK. TI TLE. start sWt h("abc")
TITLE LIKE "% || 'abc’ BOOK. TI TLE. endsW t h("abc")

Note, that JOOQ escapes % and _ characters in value in some of the above predicate implementations.
For simplicity, this has been omitted in this manual.

4.6.12. IN predicate

In SQL, apart from comparing a value against several values, the IN predicate can be used to create
semi-joins or anti-joins. jJOOQ knows the following methods on the org.joog.Field interface, to construct
such IN predicates:

i n(Col | ecti on<T>) I/ Construct an IN predicate froma collection of bind val ues
in(T...) I/ Construct an IN predicate from bind val ues

in(Field<?>...) /1l Construct an IN predicate from col uim expressi ons

i n(Sel ect<? extends Recordl<T>>) I/ Construct an IN predicate from a subsel ect

not | n(Col | ecti on<T>) /1l Construct a NOT IN predicate froma collection of bind val ues
notIn(T...) /1 Construct a NOT IN predicate from bind val ues

not I n(Field<?>...) // Construct a NOT IN predicate from col uim expressions

not | n(Sel ect <? extends Recordl<T>>) // Construct a NOT IN predicate froma subsel ect

A sample IN predicate might look like this:

TITLE IN (" Aninal Farm, '1984') BOOK. TI TLE. i n(" Ani mal Farni, "1984")
TITLE NOT IN (" Aninal Farm, '1984') BOOK. TI TLE. not I n(" Ani mal Farni, "1984")

NOT IN and NULL values

Beware that you should probably not have any NULL values in the right hand side of a NOT IN predicate,
as the whole expression would evaluate to NULL, which is rarely desired. This can be shown informally
using the following reasoning:

- The follow ng conditional expressions are formally or informally equival ent
A NOT IN (B, O

A= ANY(B, O

A!l=BANDA!=C

- Substitute C for NULL, you'll get

A NOT IN (B, NULL) -- Substitute C for NULL
A!=B AND A != NULL -- Fromthe above rul es
A !'= B AND NULL -- [ANY] != NULL yields NULL
NULL -- [ANY] AND NULL yields NULL

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 89/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html

The jOOQ User Manual 4.6.13. IN predicate (degree > 1)

A good way to prevent this from happening is to use the EXISTS predicate for anti-joins, which is NULL-
value insensitive. See the manual's section about conditional expressions to see a boolean truth table.

4.6.13. IN predicate (degree > 1)

The SQL IN predicate also works well for row value expressions. Much like the IN predicate for degree
1, itis defined in terms of a quantified comparison predicate. The two expressions are equivalent:

R IN [IN predicate val ue] R = ANY [I N predicate val ue]

jOOQ supports the IN predicate. Emulation of the IN predicate where row value expressions aren't well
supported is currently only available for IN predicates that do not take a subselect as an IN predicate
value. An example is given here:

row(BOK. | D, BOOK. TITLE).in(row(1, "A"), row(2, "B'));

4.6.14. EXISTS predicate

Slightly less intuitive, yet more powerful than the previously discussed IN predicate is the EXISTS
predicate, that can be used to form semi-joins or anti-joins. With jOOQ, the EXISTS predicate can be
formed in various ways:

- From the DSL, using static methods. This is probably the most used case

- From a conditional expression using convenience methods attached to boolean operators

- From a SELECT statement using convenience methods attached to the where clause, and from
other clauses

An example of an EXISTS predicate can be seen here:

EXI STS (SELECT 1 FROM BOOK exi sts(create. sel ect One() . f r onm(BOOK)

WHERE AUTHOR I D = 3) . wher e(BOOK. AUTHOR | D. equal (3)));
NOT EXI STS (SELECT 1 FROM BOOK not Exi st s(create. sel ect One() . f r on(BOOK)
WHERE AUTHOR I D = 3) . wher e(BOOK. AUTHOR | D. equal (3)));

Note that in SQL, the projection of a subselect in an EXISTS predicate is irrelevant. To help you write
queries like the above, you can use jOOQ's selectZero() or selectOne() DSL methods

Performance of IN vs. EXISTS

In theory, the two types of predicates can perform equally well. If your database system ships with
a sophisticated cost-based optimiser, it will be able to transform one predicate into the other, if you
have all necessary constraints set (e.g. referential constraints, not null constraints). However, in reality,
performance between the two might differ substantially. An interesting blog post investigating this topic
on the MySQL database can be seen here:
http://blog.jooq.org/2012/07/27/not-in-vs-not-exists-vs-left-join-is-null-mysql/

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 90 /174

http://blog.jooq.org/2012/07/27/not-in-vs-not-exists-vs-left-join-is-null-mysql/

The jOOQ User Manual 4.6.15. OVERLAPS predicate

4.6.15. OVERLAPS predicate

When comparing dates, the SQL standard allows for using a special OVERLAPS predicate, which checks
whether two date ranges overlap each other. The following can be said:

-- This yields true
(DATE ' 2010- 01-01', DATE '2010-01-03') OVERLAPS (DATE ' 2010-01-02' DATE '2010-01-04')

- INTERVAL data types are al so supported. This is equivalent to the above

(DATE ' 2010-01-01', CAST('+2 00:00: 00" AS | NTERVAL DAY TO SECOND)) OVERLAPS
(DATE ' 2010-01-02', CAST('+2 00:00: 00" AS | NTERVAL DAY TO SECOND))

The OVERLAPS predicate in jOOQ

jOOQ supports the OVERLAPS predicate on row value expressions of degree 2. The following methods
are contained in org.joog.Row2:

Condi tion overlaps(Tl t1, T2 t2);
Condi tion overlaps(Fiel d<T1> t1, Field<T2> t2);
Condi tion overl aps(Row2<T1, T2> row);

This allows for expressing the above predicates as such:

/'l The date range tuples version
row(Dat e. val ueOf (* 2010-01-01'), Date.val uedf (' 2010-01-03")). overl| aps(Date. val uedf (' 2010-01-02'), Date.val ueX (' 2010-01-04"))

/1 The | NTERVAL tuples version
row(Dat e. val ueOf (* 2010-01-01'), new DayToSecond(2)).overl aps(Date. val ue (*2010-01-02'), new DayToSecond(2))

jO0Q's extensions to the standard

Unlike the standard (or any database implementing the standard), JOOQ also supports the OVERLAPS
predicate for comparing arbitrary row vlaue expressions of degree 2. For instance, (1, 3) OVERLAPS (2,
4) will yield true in jJOOQ. This is emulated as such

-- This predicate
(A, B) OVERLAPS (C, D)

- can be emul ated as such
(C <= B) AND (A <= D

4.7. Plain SQL

A DSL is a nice thing to have, it feels "fluent" and "natural”, especially if it models a well-known language,
such as SQL. But a DSL is always expressed in a host language (Java in this case), which was not made
for exactly the same purposes as its hosted DSL. If it were, then jOOQ would be implemented on a
compiler-level, similar to LINQ in .NET. But it's not, and so, the DSL is limited by language constraints
of its host language. We have seen many functionalities where the DSL becomes a bit verbose. This
can be especially true for:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 91 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Row2.html

The jOOQ User Manual 4.7. Plain SQL

- aliasing
- nested selects
- arithmetic expressions

- casting

You'll probably find other examples. If verbosity scares you off, don't worry. The verbose use-cases for
jOOQ are rather rare, and when they come up, you do have an option. Just write SQL the way you're
used to!

jOOQ allows you to embed SQL as a String into any supported statement in these contexts:

- Plain SQL as a conditional expression
- Plain SQL as a column expression

- Plain SQL as a function

- Plain SQL as a table expression

- Plain SQL as a guery

The DSL plain SQL API

Plain SQL API methods are usually overloaded in three ways. Let's look at the condition query part
constructor:

/1l Construct a condition w thout bind val ues
/| Exanple: condition("a = b")
Condi tion condition(String sql);

/1l Construct a condition with bind val ues

/'l Exanple: condition("a = ?", 1);

Condi tion condition(String sql, Object... bindings);

/1 Construct a condition taking other jOOQ object argunents

/| Exanple: condition("a = {0}", val(1));
Condi tion condition(String sql, QueryPart... parts);

Please refer to the org.jooq.impl.DSL Javadoc for more details. The following is a more complete listing
of plain SQL construction methods from the DSL:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 92 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html

The jOOQ User Manual

/1 A condition

Condi tion condition(String sql);
Condi tion condition(String sql, Object... bindings);
Condi tion condition(String sql, QueryPart... part

/1 Afield with an unknown data type
Fi el d<Obj ect> field(String sql);

Fi el d<Obj ect> field(String
Fi el d<Obj ect> field(String

S

sql, Object... bindings);
sql, QueryPart... part

I/l Afield with a known data type

<T> Field<T> field(Stri
<T> Field<T> field(Stri
<T> Field<T> field(Stri
<T> Field<T> field(Stri
<T> Field<T> field(Stri
<T> Field<T> field(Stri

ng
ng
ng
ng
ng
ng

sql,
sql ,
sql,
sql,
sql ,
sql,

Cl ass<T> type);
Cl ass<T> type, bj

S

ect... bindings);

Cl ass<T> type, QueryPart... parts);

Dat aType<T> type);
Dat aType<T> type,
Dat aType<T> type,

/1 Afield with a known nane (properly escaped)
Fi el d<Obj ect> fiel dByName(String... fieldName);

<T> Fiel d<T> fiel dByName(C ass<T> type, String...
<T> Fi el d<T> fi el dByNane(DataType<T> type,

/1 A function

<T> Fi el d<T> function(String nane, Cl ass<T> type,

Il Atable

Tabl e<?> table(String sql);

Tabl e<?> table(String sql,
Tabl e<?> table(String sql,

Obj ect. .. bindings);
QueryPart... parts);

/1 Atable with a known nane (properly escaped)
Tabl e<Record> tabl eByNane(String... fieldNane);

/1 A query without results (update, insert, etc)

Query query(String sql)
Query query(String sql,
Query query(String sql,

Il A query with results

Obj ect. .. bindings);
QueryPart... parts);

Resul t Quer y<Record> resul t Query(String sql);

Resul t Quer y<Record> resul t Query(String sql,
Resul t Quer y<Record> resul t Query(String sql,

Il A query with results

Resul t <Record> fetch(String sql);
Resul t <Record> fetch(String sql, Ooject... bindings);
Resul t <Record> fetch(String sql, QueryPart... parts);

Obj ect. .. bindings);
QueryPart... parts);

fiel dName);

String... fieldNane)

Fiel d<?>... argunents);
<T> Fi el d<T> function(String name, DataType<T> type, Field<?> .. argunments);

Obj ect. .. bindings);
QueryPart... parts);

This is the same as resultQuery(...).fetch();

4.7. Plain SQL

Apart from the general factory methods, plain SQL is also available in various other contexts. For
instance, when adding a .where("a = b") clause to a query. Hence, there exist several convenience
methods where plain SQL can be inserted usefully. This is an example displaying all various use-cases
in one single query:

/1l You can use your table aliases in plain SQL fields
produce syntactically correct SQL
create. field("a. LAST_NAME");

/1 As long as that will

Fi el d<?> LAST_NAMVE =

/1l You can alias your p
Fi el d<?> COUNT1 =

lain SQ fields
create.field("count(*) x");

/1 1f you know a reasonabl e Java type for your field, you
/1l can also provide jOOQ with that type
Fi el d<Integer> COUNT2 = create.field("count(*) y", Integer.class);

// Use plain SQL as select fields
create. sel ect (LAST_NAME, COUNT1, COUNT2)

I/ Use plain SQL as aliased tables (be aware of syntax!)

.from("author a")
.join("book b")

/1l Use plain SQL for conditions both in JON and WHERE cl auses

.on("a.id = b.author_id")

// Bind a variable in pl

ain SQU

.where("b.title !'=?", "Brida")

/1l Use plain SQL again as fields in GROUP BY and ORDER BY cl auses

. gr oupBy (LAST_NAME)
. order By (LAST_NAME) ;

Important things to note about plain SQL!

There are some important things to keep in mind when using plain SQL:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 93 /174

The jOOQ User Manual 4.8. Bind values and parameters

- jOOQ doesn't know what you're doing. You're on your own again!

- You have to provide something that will be syntactically correct. If it's not, then jOOQ won't know.
Only your JDBC driver or your RDBMS will detect the syntax error.

- You have to provide consistency when you use variable binding. The number of ? must match
the number of variables

- Your SQL is inserted into jOOQ queries without further checks. Hence, jOOQ can't prevent SQL
injection.

4 8. Bind values and parameters

Bind values are used in SQL / JDBC for various reasons. Among the most obvious ones are:

- Protection against SQL injection. Instead of inlining values possibly originating from user input,
you bind those values to your prepared statement and let the JDBC driver / database take care
of handling security aspects.

- Increased speed. Advanced databases such as Oracle can keep execution plans of similar
queries in a dedicated cache to prevent hard-parsing your query again and again. In many cases,
the actual value of a bind variable does not influence the execution plan, hence it can be reused.
Preparing a statement will thus be faster

- OnaJDBC level, you can also reuse the SQL string and prepared statement object instead of
constructing it again, as you can bind new values to the prepared statement. jJOOQ currently
does not cache prepared statements, internally.

The following sections explain how you can introduce bind values in jOOQ, and how you can control
the way they are rendered and bound to SQL.

4.8.1. Indexed parameters

JDBC only knows indexed bind values. A typical example for using bind values with JDBC is this:

try (PreparedStatenment stnt = connection. prepareStatenent ("SELECT * FROM BOOK WHERE ID = ? AND TITLE = ?")) {
/1 bind values to the above statenment for appropriate indexes
stnt.setInt(1, 5);

stnt.setString(2, "Aninmal Farnt);
stnt. executeQuery();

With dynamic SQL, keeping track of the number of question marks and their corresponding index may
turn out to be hard. JOOQ abstracts this and lets you provide the bind value right where it is needed.
A trivial example is this:

create. sel ect (). from BOOK). where(BOXK. | D. equal (5)).and(BOOXK. Tl TLE. equal ("Ani mal Farnt));
/1 This notation is in fact a short formfor the equivalent:
create. sel ect (). fron(BOOK). where(BOX. I D. equal (val (5))).and(BOOK. TI TLE. equal (val ("Ani mal Farnt)));

Note the using of DSL.val() to explicitly create an indexed bind value. You don't have to worry about that
index. When the query is rendered, each bind value will render a question mark. When the query binds
its variables, each bind value will generate the appropriate bind value index.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 94 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html#val(java.lang.Object)

The jOOQ User Manual 4.8.2. Named parameters

Extract bind values from a query

Should you decide to run the above query outside of JOOQ), using your own java.sgl.PreparedStatement,
you can do so as follows:

Sel ect <?> sel ect = create. sel ect().fromBOXK).where(BOX. I D. equal (5)).and(BOOK. TI TLE. equal (" Ani mal Farni'));
/1 Render the SQL statenent:

String sql = select.getSQ();

assert Equal s(" SELECT * FROM BOOK WHERE ID = ? AND TITLE = ?", sql);

/'l Get the bind val ues:

Li st <Cbj ect > val ues = sel ect. get Bi ndVal ues();

assert Equal s(2, val ues.size());

assert Equal s(5, val ues.get(0));
assert Equal s("Ani mal Farnf, val ues.get(1));

You can also extract specific bind values by index from a query, if you wish to modify their underlying
value after creating a query. This can be achieved as such:

Sel ect <?> sel ect = create.select().fron{BOOXK).where(BOX.|D. equal (5)).and(BOX. Tl TLE. equal ("Ani mal Farni));
Par ank?> param = sel ect. get Paran("2");

/1 You could now nodify the Query's underlying bind val ue:
if ("Aninmal Farni.equal s(param getValue())) {

par am set Converted("1984");
}

For more details about jOOQ's internals, see the manual's section about QueryParts.

4.8.2. Named parameters

Some SQL access abstractions that are built on top of JDBC, or some that bypass JDBC may support
named parameters. jOOQ allows you to give names to your parameters as well, although those names
are not rendered to SQL strings by default. Here is an example of how to create named parameters
using the org.joog.Param type:

/] Create a query with a naned paraneter. You can then use that nane for accessing the paranmeter again
Query queryl = create.sel ect().fron{ AUTHOR) . wher e(LAST_NAME. equal (paran{"| ast Name", "Poe")));
Par ank?> paraml = query. get Paran("| ast Name") ;

/Il O, keep a reference to the typed paraneter in order not to | ose the <T> type information:
Par anxStri ng> paran? = paran("l ast Nane", "Poe");
Query query2 = create.sel ect().fron{ AUTHOR) . wher e(LAST_NAME. equal (paran®));

/'l You can now change the bind value directly on the Param reference:
par an2. set Val ue("Orwel | ") ;

The org.joog.Query interface also allows for setting new bind values directly, without accessing the
Param type:

Query queryl = create. sel ect().from AUTHOR) . wher e(LAST_NAME. equal (" Poe"));
queryl. bind(1, "Owell");

/'l O, with named paraneters

Query query2 = create. sel ect().fronm AUTHOR) . wher e(LAST_NAME. equal (paran{"| ast Nane", "Poe")));
query?2. bi nd("l ast Nane", "Orwell");

In order to actually render named parameter names in generated SQL, use the
DSLContext.renderNamedParams() method:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 95/174

http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Param.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Query.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/DSLContext.html#renderNamedParams(org.jooq.QueryPart)

The jOOQ User Manual 4.8.3. Inlined parameters

creat e. render NamedPar ans(-- The naned bind variable can be rendered
create.select()
. f r on{ AUTHOR) SELECT *
. wher e(LAST_NAME. equal (FROM AUTHOR
param("| ast Nane", "Poe")))); WHERE LAST_NAME = : | ast Nane

4.8.3. Inlined parameters

Sometimes, you may wish to avoid rendering bind variables while still using custom values in SQL.jOOQ
refers to that as "inlined" bind values. When bind values are inlined, they render the actual value in SQL
rather than a JDBC question mark. Bind value inlining can be achieved in two ways:

- By using the Settings and setting the org.joog.conf.StatementType to STATIC_STATEMENT. This
will inline all bind values for SQL statements rendered from such a Configuration.

- By using DSL.inline() methods.

In both cases, your inlined bind values will be properly escaped to avoid SQL syntax errors and SQL
injection. Some examples:

/'l Use dedicated calls to inline() in order to specify
/'l single bind values to be rendered as inline val ues
L R TR
create. sel ect()

. from(AUTHOR)

. wher e(LAST_NAME. equal (i nline("Poe")));

/1 O render the whole query with inlined val ues
L R TR

Settings settings = new Settings()
. Wi thSt at enent Type(St at enent Type. STATI C_STATEMENT) ;

/1 Add the settings to the Configuration
DSLCont ext create = DSL. using(connection, SQLDi al ect. ORACLE, settings);

/1 Run queries that omit rendering schema names
create. sel ect()

. from(AUTHOR)
. wher e(LAST_NAME. equal (" Poe"));

4.8.4. SQL injection and plain SQL QueryParts

Special care needs to be taken when using plain SQL QueryParts. While jJOOQ's API allows you to specify
bind values for use with plain SQL, you're not forced to do that. For instance, both of the following
queries will lead to the same, valid result:

I/ This query will use bind values, internally.
create. fetch("SELECT * FROM BOOK WHERE ID = ? AND TITLE = ?", 5, "Animal Farni);

/1l This query will not use bind values, internally.
create. fetch("SELECT * FROM BOOK WHERE ID = 5 AND TITLE = ' Aninal Farm");

All methods in the JOOQ API that allow for plain (unescaped, untreated) SQL contain a warning message
in their relevant Javadoc, to remind you of the risk of SQL injection in what is otherwise a SQL-injection-
safe API.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 96 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/conf/StatementType.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html#inline(java.lang.Object)

The jOOQ User Manual 4.9. QueryParts

4.9. QueryParts

A org.joog.Query and all its contained objects is a org.joog.QueryPart. QueryParts essentially provide
this functionality:

- they can render SQL using the toSQL(RenderContext) method
- they can bind variables using the bind(BindContext) method

Both of these methods are contained in jOOQ's internal API's org.joog.QueryPartinternal, which is
internally implemented by every QueryPart.

The following sections explain some more details about SQL rendering and variable binding, as well as
other implementation details about QueryParts in general.

4.9.1. SQL rendering

Every org.joog.QueryPart must implement the toSQL(RenderContext) method to render its SQL string
to a org.joog.RenderContext. This RenderContext has two purposes:

- It provides some information about the "state" of SQL rendering.
- It provides a common API for constructing SQL strings on the context's internal
java.lang.StringBuilder

An overview of the org.joog.RenderContext APl is given here:

/'l These nethods are useful for generating unique aliases within a RenderContext (and thus within a Query)
String peekAlias();
String nextAlias();

/'l These nethods return rendered SQL
String render();
String render(QueryPart part);

/'l These nethods allow for fluent appending of SQL to the RenderContext's internal StringBuilder
Render Cont ext keyword(String keyword);

Render Context literal (String literal);

Render Cont ext sql (String sql);

Render Cont ext sql (char sql);

Render Cont ext sql (int sql);

Render Cont ext sql (QueryPart part);

/'l These nethods allow for controlling formatting of SQ., if the relevant Setting is active
Render Cont ext f or mat NewLi ne();

Render Cont ext f or mat Separator();

Render Cont ext fornatlndentStart();

Render Cont ext formatlndentStart(int indent);

Render Cont ext format | ndent LockStart();

Render Cont ext f ornat | ndent End() ;

Render Cont ext f ormat | ndent End(int indent);

Render Cont ext f ormat | ndent LockEnd() ;

/'l These nmethods control the RenderContext's internal state

bool ean inline();

Render Cont ext inline(bool ean inline);

bool ean qualify();

Render Cont ext qual i fy(bool ean qualify);

bool ean namedPar ans() ;

Render Cont ext nanedPar ans(bool ean render NanedPar ans) ;
Cast Mode cast Mode();

Render Cont ext cast Mode(Cast Mode node) ;

Bool ean cast();

Render Cont ext cast ModeSonme(SQLDi al ect... dialects);

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 97 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Query.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPart.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPartInternal.html#toSQL(org.jooq.RenderContext)
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPartInternal.html#bind(org.jooq.BindContext)
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPartInternal.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPart.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPartInternal.html#toSQL(org.jooq.RenderContext)
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html
http://download.oracle.com/javase/8/docs/apijava/lang/StringBuilder.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html

The jOOQ User Manual 4.9.2. Pretty printing SQL

The following additional methods are inherited from a common org.joog.Context, which is shared
among org.joog.RenderContext and org.jooq.BindContext:

/'l These methods indicate whether fields or tables are being declared (MY_TABLE AS MY_ALI AS) or referenced (MY_ALIAS)
bool ean decl areFi el ds();

Cont ext decl ar eFi el ds(bool ean decl ar eFi el ds) ;

bool ean decl areTabl es();

Cont ext decl ar eTabl es(bool ean decl areTabl es) ;

/'l These nethods indicate whether a top-level query is being rendered, or a subquery

bool ean subquery();

Cont ext subquery(bool ean subquery);

/'l These nethods provide the bind value indices within the scope of the whole Context (and thus of the whole Query)

int nextlndex();
int peeklndex();

An example of rendering SQL

A simple example can be provided by checking out jOOQ's internal representation of a (simplified)
CompareCondition. It is used for any org.joog.Condition comparing two fields as for example the
AUTHOR.ID = BOOK.AUTHOR_ID condition here:

L]

ROM AUTHCR

JO N BOOK ON AUTHCR. | D = BOOK. AUTHOR | D
L]

This is how jOOQ renders such a condition (simplified example):

@verride
public final void toSQ.(RenderContext context) {
/1 The ConpareCondition del egates rendering of the Fields to the Fields
/'l thensel ves and connects themusing the Condition's conparator operator:
context.sql (fieldl)
-sgl (" ")
.sql (conparator.toSQ.())
-sgl (" ")
.sql (field2);

See the manual's sections about custom QueryParts and plain SOL QueryParts to learn about how to
write your own query parts in order to extend jOOQ.

4.9.2. Pretty printing SQL

As mentioned in the previous chapter about SQL rendering, there are some elements in the
org.joog.RenderContext that are used for formatting / pretty-printing rendered SQL. In order to obtain
pretty-printed SQL, just use the following custom settings:

/'l Create a DSLContext that will render "formatted" SQU
DSLCont ext pretty = DSL.using(dialect, new Settings().w thRender Formatted(true));

And then, use the above DSLContext to render pretty-printed SQL:

String sql = pretty. sel ect(sel ect
AUTHOR. LAST_NAME, count ().as("c")) "TEST". " AUTHOR'. " LAST_NAME',
. f r om(BOOK) count(*) "c"
. j 0i n(AUTHOR) from " TEST". " BOOXK"
. on(BOOK. AUTHOR | D. equal (AUTHOR. | D)) join "TEST"." AUTHOR'
. wher e(BOOK. TI TLE. not Equal (" 1984")) on "TEST"."BOOK"."AUTHOR | D' = "TEST"."AUTHOR'."I D"
. gr oupBy (AUTHOR. LAST_NAVE) where "TEST"."BOOK"."TI TLE" <> '1984'
. havi ng(count (). equal (2)) group by "TEST"."AUTHOR'."LAST_NAME"
.get SQL(); havi ng count(*) = 2

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 98 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Context.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/BindContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Condition.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html

The jOOQ User Manual 4.9.3. Variable binding

The section about Executelisteners shows an example of how such pretty printing can be used to log
readable SQL to the stdout.

4.9.3. Variable binding

Every org.joog.QueryPart must implement the bind(BindContext) method. This BindContext has two
purposes:

- It provides some information about the "state" of the variable binding in process.
- lItprovides a common API for binding values to the context's internal java.sgl.PreparedStatement

An overview of the org.joog.RenderContext APl is given here:

/1 This nmethod provides access to the PreparedStatenment to which bind values are bound
Prepar edSt at enent statenent ();

I/ These nethods provide conveni ence to del egate variabl e binding

Bi ndCont ext bi nd(QueryPart part) throws DataAccessException;

Bi ndCont ext bi nd(Col | ecti on<? extends QueryPart> parts) throws DataAccessException;
Bi ndCont ext bi nd(QueryPart[] parts) throws DataAccessException;

/1 These nethods performthe actual variable binding

Bi ndCont ext bi ndVal ue(Qbj ect val ue, Cl ass<?> type) throws DataAccessException;
Bi ndCont ext bi ndVal ues(Cbj ect... val ues) throws DataAccessException;

Some additional methods are inherited from a common org.joog.Context, which is shared among
org.joog.RenderContext and org.jooq.BindContext. Details are documented in the previous chapter

about SQL rendering

An example of binding values to SQL

A simple example can be provided by checking out jOOQ's internal representation of a (simplified)
CompareCondition. It is used for any org.joog.Condition comparing two fields as for example the
AUTHOR.ID = BOOK.AUTHOR_ID condition here:

== flooo]
WHERE AUTHOR. I D = ?
== flooo]

This is how jOOQ binds values on such a condition:

@verride

public final void bind(Bi ndContext context) throws DataAccessException {
/'l The ConpareCondition itself does not bind any variables.
/1 But the two fields involved in the condition mght do so...
cont ext. bi nd(fieldl).bind(field2);

}

See the manual's sections about custom QueryParts and plain SOL QueryParts to learn about how to
write your own query parts in order to extend jOOQ.

4.9.4. Extend JOOQ with custom types

If a SQL clause is too complex to express with jOOQ, you can extend either one of the following types
for use directly in a jJOOQ query:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 99 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPart.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPartInternal.html#bind(org.jooq.BindContext)
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Context.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RenderContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/BindContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Condition.html

The jOOQ User Manual 4.9.5. Plain SQL QueryParts

public abstract class CustonFiel d<T> extends AbstractFiel d<T> {}

public abstract class CustonCondition extends AbstractCondition {}

public abstract class CustonTabl e<R extends Tabl eRecor d<R>> extends Tabl el npl <R> {}

public abstract class CustonRecord<R extends Tabl eRecor d<R>> extends Tabl eRecordl npl <R> {}

These classes are declared public and covered by jOOQ's integration tests. When you extend these
classes, you will have to provide your own implementations for the QueryParts' toSQL() and bind()
methods, as discussed before:

/1 This nmethod nust produce valid SQL. |If your QueryPart contains other parts, you may del egate SQL generation to them
/1l in the correct order, passing the render context.

Il

/1 1f context.inline() is true, you nust inline all bind variables

/1 1f context.inline() is false, you nust generate ? for your bind variables

public void toSQL(Render Cont ext context);

/1 This nmethod nust bind all bind variables to a PreparedStatenent. |f your QueryPart contains other QueryParts, $
/1 you nay del egate variable binding to themin the correct order, passing the bind context.
Il

// Every QueryPart must ensure, that it starts binding its variables at context.nextlndex().
public void bi nd(Bi ndCont ext context) throws DataAccessException;

The above contract may be a bit tricky to understand at first. The best thing is to check out jOOQ
source code and have a look at a couple of QueryParts, to see how it's done. Here's an example
org.joog.impl.CustomField showing how to create a field multiplying another field by 2

/'l Create an anonynous CustonfField, initialised with BOOK. ID argunents

final Field<Integer> |Dx2 = new CustonFi el d<I nt eger >(BOOK. | D. get Nane(), BOOK. |D. get DataType()) {
@verride
public void toSQ.(Render Context context) {

/1 Ininline node, render the nultiplication directly
if (context.inline()) {

context.sql (BOOK.I1D).sql (" * 2");
}

// In non-inline node, render a bind val ue
el se {
context.sql (BOOK. I D).sql (" * ?");

}
}
@verride
public void bind(Bi ndContext context) {
try {
/1 Manual Iy bind the val ue 2
context.statenent().setlnt(context.nextlndex(), 2);
/1 Alternatively, you could also wite:
/'l context.bind(DSL.val (2));
}
catch (SQLException e) {
t hrow new Dat aAccessException("Bind error", e);
}
}

I

/1 Use the above field in a SQL statenent:
create. sel ect (1 Dx2). fron{BOX);

4.9.5. Plain SQL QueryParts

If you don't need the integration of rather complex QueryParts into JOOQ, then you might be safer using
simple Plain SQL functionality, where you can provide jOOQ with a simple String representation of your
embedded SQL. Plain SQL methods in jOOQ's API come in two flavours.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 100/ 174

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/CustomField.html

The jOOQ User Manual 4.9.6. Serializability

- method(String, Object...): This is a method that accepts a SQL string and a list of bind values that
are to be bound to the variables contained in the SQL string

- method(String, QueryPart...): This is @ method that accepts a SQL string and a list of QueryParts
that are "injected" at the position of their respective placeholders in the SQL string

The above distinction is best explained using an example:

// Plain SQL using bind values. The value 5 is bound to the first variable, "Aninmal Farnf to the second vari abl e:
create. sel ect Fron(BOOK) . where("BOOK. ID = ? AND TITLE = ?", 5, "Animal Farnf);

/1 Plain SQL using placehol ders (counting from zero).

/1l The QueryPart "id" is substituted for the placehol der {0}, the QueryPart "title" for {1}
Fi el d<Integer> id = val (5);

Field<String> title = val ("Animal Farni);

create. sel ect Fron(BOOK) . where("BOOK. ID = {0} AND TITLE = {1}", id, title);

The above technique allows for creating rather complex SQL clauses that are currently not supported
by jOOQ, without extending any of the custom QueryParts as indicated in the previous chapter.

4.9.6. Serializability

The only transient, non-serializable element in any jOOQ object is the Configuration's underlying
java.sgl.Connection. When you want to execute queries after de-serialisation, or when you want to
store/refresh/delete Updatable Records, you may have to "re-attach" them to a Configuration

/| Deserialise a SELECT st at enent
bj ectlnputStreamin = new ObjectlnputStrean(...);
Sel ect <?> sel ect = (Sel ect<?>) in.readOhject();

/1 This will throw a DetachedExcepti on:
sel ect. execute();

// In order to execute the above select, attach it first

DSLCont ext create = DSL. using(connection, SQLDi al ect. ORACLE);
create. attach(sel ect);

Automatically attaching QueryParts

Another way of attaching QueryParts automatically, or rather providing them with a new
java.sgl.Connection at will, is to hook into the Execute Listener support. More details about this can be
found in the manual's chapter about Executelisteners

4.10. SQL building In Scala

jOOQ-Scala is a maven module used for leveraging some advanced Scala features for those users that
wish to use jOOQ with Scala.

Using Scala's implicit defs to allow for operator overloading

The most obvious Scala feature to use in JOOQ are implicit defs for implicit conversions in order to
enhance the org.joog.Field type with SQL-esque operators.

The following depicts a trait which wraps all fields:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 101 /174

http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Field.html

The jOOQ User Manual

| **

* A Scal a-esque representation of {@ink org.jooq.Field},
* operators for conmon jOOQ operations to arbitrary fields

*/

trait SAnyField[T] extends Field[T] {

/1l String operations
A L

def || (value : String)
def ||(value : Field[_])

/| Conparison predicates
N e

def ===(value : T)
def ===(value : Field[T])

def !==(value : T)
def !==(value : Field[T])

def <>(value : T)
def <>(value : Field[T])

def >(value : T)
def >(value : Field[T])

def >=(value : T)
def >=(value : Field[T])

def <(value : T)
def <(value : Field[T])

def <=(value : T)
def <=(value : Field[T])

def <=>(value : T)
def <=>(value : Field[T])

Field[String]
Field[String]

Condi tion
Condi tion

Condi tion
Condi tion

Condi tion
Condi tion

Condi tion
Condi tion

Condi tion
Condi tion

Condi tion
Condi tion

Condi tion
Condi tion

Condi tion
Condi tion

addi ng over| oaded

The following depicts a trait which wraps numeric fields:

[**

* A Scal a-esque representation of {@ink org.joog.Field},
* operators for common j OOQ operations to nuneric fields

*/

trait SNunmberField[T <:

An example query using such overloaded operators would then look like this:

/1l Arithnetic operations
TR

def unary_-

def +(value : Nunber)
def +(value : Field[_ <

def -(value : Nunber)
def -(value : Field[_ <

def *(value : Nunber)
def *(value : Field[_ <

def /(value : Nunber)
def /(value : Field[_ <

def 9% val ue : Nunber)
def %value : Field[_ <

// Bitw se operations
R

def unary_~

def &(value : T)
def &(value : Field[T])

def |(value : T)
def |(value : Field[T])

def ~(value : T)
def ~(value : Field[T])

def <<(value : T)
def <<(value : Field[T])

def >>(value : T)
def >>(value : Field[T])

Nuber])
Nuber])
Nuber])
Nuber])

Number])

Nunber] extends SAnyField[T] {

Field[T]

Field[T]
Field[T]

Fiel df
Fiel df

Fiel df
Fiel df

Fiel df
Fiel df

Fiel df
Fiel df

g gg gg 2"

Field[T]

Field[T]
Field[T]

Fiel df
Fiel df

Fiel df
Fiel df

Fiel df
Fiel df

Fiel df
Fiel df

g gg gg 2"

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

addi ng over| oaded

4.10. SQL building in Scala

Page 102/174

The jOOQ User Manual 4.10. SQL building in Scala

sel ect (
BOOK. | D * BOOK. AUTHOR | D,
BOOK. I D + BOOK. AUTHOR ID * 3 + 4,
BOOK. TITLE || " abc" || " xy")
from BOOK
leftQuterJoin (
sel ect (x.1D, x.YEAR OF Bl RTH)
from x
limt 1
asTabl e x. get Nane()
)
on BOOK. AUTHOR ID === x.ID
where (BOXK. ID <> 2)

or (BOK. TITLEin ("O Alquinista", "Brida"))
fetch

Scala 2.10 Macros

This feature is still being experimented with. With Scala Macros, it might be possible to inline a true SQL
dialect into the Scala syntax, backed by the jOOQ API. Stay tuned!

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 103 /174

The jOOQ User Manual 5. SQL execution

5. SQL execution

In a previous section of the manual, we've seen how jOOQ can be used to build SQL that can be executed
with any APl including JDBC or ... JOOQ. This section of the manual deals with various means of actually
executing SQL with jOOQ.

SQL execution with JDBC

JDBC calls executable objects "java.sgl.Statement". It distinguishes between three types of statements:

- java.sgl.Statement, or "static statement": This statement type is used for any arbitrary type of
SQL statement. It is particularly useful with inlined parameters

- java.sgl.PreparedStatement: This statement type is used for any arbitrary type of SQL statement.
It is particularly useful with indexed parameters (note that JDBC does not support named
parameters)

- java.sgl.CallableStatement: This statement type is used for SQL statements that are "called"
rather than "executed". In particular, this includes calls to stored procedures. Callable
statements can register OUT parameters

Today, the JDBC API may look weird to users being used to object-oriented design. While statements
hide a lot of SQL dialect-specific implementation details quite well, they assume a lot of knowledge
about the internal state of a statement. For instance, you can use the PreparedStatement.addBatch()
method, to add a the prepared statement being created to an "internal list" of batch statements. Instead
of returning a new type, this method forces user to reflect on the prepared statement's internal state
or "'mode".

j00Q is wrapping JDBC

These things are abstracted away by JOOQ, which exposes such concepts in a more object-oriented way.
For more details about jJOOQ's batch query execution, see the manual's section about batch execution.

The following sections of this manual will show how jOOQ is wrapping JDBC for SQL execution

5.1. Comparison between jJOOQ and JDBC

Similarities with JDBC

Even if there are two general types of Query, there are a lot of similarities between JDBC and jOOQ.
Just to name a few:

- Both APIs return the number of affected records in non-result queries. JDBC:
Statement.executeUpdate(), jJOOQ: Query.execute()

- Both APIs return a scrollable result set type from result queries. JDBC: java.sgl.ResultSet, jOOQ:
org.joog.Result

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 104 /174

http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://download.oracle.com/javase/8/docs/apijava/sql/CallableStatement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html#addBatch()
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html#executeUpdate(java.lang.String)
http://www.jooq.org/javadoc/3.0.x/org/jooq/Query.html#execute()
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html

The jOOQ User Manual 5.2. Query vs. ResultQuery

Differences to JDBC

Some of the most important differences between JDBC and jOOQ are listed here:

- Queryvs. ResultQuery: JDBC does not formally distinguish between queries that can return
results, and queries that cannot. The same API is used for both. This greatly reduces the
possibility for fetching convenience methods

- Exception handling: While SQL uses the checked java.sgl.SQLException, jJOOQ wraps all
exceptions in an unchecked org.joog.exception.DataAccessException

- org.joog.Result: Unlike its JDBC counter-part, this type implements java.util.List and is fully
loaded into Java memory, freeing resources as early as possible. Just like statements, this means
that users don't have to deal with a "weird" internal result set state.

- orgjoog.Cursor: If you want more fine-grained control over how many records are fetched into
memory at once, you can still do that using jOOQ's lazy fetching feature

- Statement type: jOOQ does not formally distinguish between static statements and prepared
statements. By default, all statements are prepared statements in jOOQ, internally. Executing a
statement as a static statement can be done simply using a custom settings flag

- Closing Statements: JDBC keeps open resources even if they are already consumed. With
JDBC, there is a lot of verbosity around safely closing resources. In jJOOQ, resources are closed
after consumption, by default. If you want to keep them open after consumption, you have to
explicitly say so.

5.2. Query vs. ResultQuery

Unlike JDBC, jOOQ has a lot of knowledge about a SQL query's structure and internals (see the manual's
section about SQL building). Hence, jOOQ distinguishes between these two fundamental types of
queries. While every org.joog.Query can be executed, only org.joog.ResultQuery can return results (see
the manual's section about fetching to learn more about fetching results). With plain SQL, the distinction
can be made clear most easily:

I/l Create a Query object and execute it:

Query query = create. query("DELETE FROM BOXX") ;

query. execute();

I/ Create a ResultQuery object and execute it, fetching results:

Resul t Quer y<Record> resul t Query = create.result Query("SELECT * FROM BOXX");
Resul t <Record> resul t Query. fetch();

5.3. Fetching

Fetching is something that has been completely neglegted by JDBC and also by various other database
abstraction libraries. Fetching is much more than just looping or listing records or mapped objects.
There are so many ways you may want to fetch data from a database, it should be considered a first-
class feature of any database abstraction API. Just to name a few, here are some of jOOQ's fetching
modes:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 105/174

http://download.oracle.com/javase/8/docs/apijava/sql/SQLException.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/exception/DataAccessException.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/util/List.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Cursor.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Query.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html

The jOOQ User Manual 5.3. Fetching

- Untyped vs. typed fetching: Sometimes you care about the returned type of your records,
sometimes (with arbitrary projections) you don't.

- Fetching arrays, maps, or lists: Instead of letting you transform your result sets into any more
suitable data type, a library should do that work for you.

- Fetching through handler callbacks: This is an entirely different fetching paradigm. With Java 8's
lambda expressions, this will become even more powerful.

- Fetching through mapper callbacks: This is an entirely different fetching paradigm. With Java 8's
lambda expressions, this will become even more powerful.

- Fetching custom POJOs: This is what made Hibernate and JPA so strong. Automatic mapping of
tables to custom POJOs.

- Lazyvs. eager fetching: It should be easy to distinguish these two fetch modes.

- Fetching many results: Some databases allow for returning many result sets from a single query.
JDBC can handle this but it's very verbose. A list of results should be returned instead.

- Fetching data asynchronously: Some queries take too long to execute to wait for their results.
You should be able to spawn query execution in a separate process.

Convenience and how ResultQuery, Result, and Record share API

The term "fetch" is always reused in jOOQ when you can fetch data from the database. An
org.joog.ResultQuery provides many overloaded means of fetching data:

Various modes of fetching

These modes of fetching are also documented in subsequent sections of the manual

/1 The "standard" fetch
Resul t<R> fetch();

I/ The "standard" fetch when you know your query returns only one record
R fetchOne();

I/ The "standard" fetch when you only want to fetch the first record
R fetchAny();

Il Create a "lazy" Cursor, that keeps an open underlying JDBC Resul t Set

Cursor <R> fetchlLazy();

Cursor<R> fetchLazy(int fetchSize);

// Create a java.util.concurrent.Future, to handl e asynchronous execution of the ResultQuery
Fut ureResul t <R> fetchLater();

Fut ur eResul t <R> f et chLat er (Execut or Servi ce executor);

Il Fetch several results at once
Li st <Resul t <Recor d>> f et chMany();

Il Fetch records into a custom cal | back
<H ext ends RecordHandl er<R>> H fetchlnto(H handl er);

/1 Map records using a custom cal | back
<E> Li st <E> fetch(RecordMapper<? super R, E> mapper);

I/ Execute a ResultQuery with jOOQ but return a JDBC ResultSet, not a jOOQ object
Resul t Set fetchResul tSet();

Fetch convenience

These means of fetching are also available from org.joog.Result and org.joog.Record APIs

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 106 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html

The jOOQ User Manual

/'l These methods are convenience for fetching only a single field,

/'l possibly converting results to another type

<T> Li st<T> fetch(Fiel d<T> field);

<T> Li st<T> fetch(Fiel d<?> field, Cass<? extends T> type);

<T, U> List<U> fetch(Field<T> field, Converter<? super T, U> converter);
List<?> fetch(int fieldlndex);

<T> Li st<T> fetch(int fieldlndex, C ass<? extends T> type);

<> List<U> fetch(int fieldlndex, Converter<?, U> converter);
List<?> fetch(String fiel dName);

<T> Li st<T> fetch(String fiel dName, Cl ass<? extends T> type);

<U> Li st<U> fetch(String fiel dName, Converter<?, U> converter);

/1l These nethods are conveni ence for fetching only a single field, possibly converting results to another type

Il Instead of returning lists, these return arrays

<T> T[] fetchArray(Fiel d<T> field);

<T> T[] fetchArray(Field<?> field, C ass<? extends T> type);

<T, & U] fetchArray(Fiel d<T> field, Converter<? super T, U> converter);
Ohbject[] fetchArray(int fieldlndex);

<T> T[] fetchArray(int fieldlndex, C ass<? extends T> type);

<> U] fetchArray(int fieldlndex, Converter<?, U> converter);
Object[] fetchArray(String fiel dName);

<T> T[] fetchArray(String fiel dName, Cl ass<? extends T> type);

<> U] fetchArray(String fiel dNane, Converter<?, U> converter);

I/ These nethods are convenience for fetching only a single field froma single record,
/|l possibly converting results to another type

<T> T fetchOne(Fiel d<T> field);
<T> T fetchOne(Fiel d<?> field, C ass<? extends T> type);
<T, LU fetchOne(Fiel d<T> field, Converter<? super T, U> converter);

Obj ect fetchOne(int fieldlndex);

<T> T fetchOne(int fieldl ndex, C ass<? extends T> type);
<U> U fetchOne(int fieldl ndex, Converter<?, U> converter);
Obj ect fetchOne(String fiel dNane);

<T> T fetchOne(String fiel dNane, Cl ass<? extends T> type);
<U> U fetchOne(String fiel dNane, Converter<?, U> converter);

Fetch transformations

5.3.1. Record vs. TableRecord

These means of fetching are also available from org.joog.Result and org.joog.Record APIs

// Transform your Records into arrays, Results into nmatrices
Object[][] fetchArrays();
Obj ect[] fetchOneArray();

/1 Reduce your Result object into naps

<K> Map<K, R> fetchMap(Fi el d<k> key);
<K, V> Map<K, V> fetchMap(Fi el d<k> key, Fiel d<V> val ue);
<K, E> Map<K, E> fetchMap(Fi el d<k> key, C ass<E> val ue);

Map<Record, R> fetchMap(Fiel d<?>[] key);
<E> Map<Record, E> fetchMap(Fiel d<?>[] key, C ass<E> val ue);

/1 Transform your Result object into naps
Li st <Map<String, Object>> fetchMaps();

Map<String, Object> fetchOneMap();
// Transform your Result object into groups
<K> Map<K, Result<R>> fetchG oups(Fi el d<k> key);
<K, V> Map<K, List<V>> fetchG oups(Fi el d<k> key, Fiel d<V> val ue);
<K, E> Map<K, List<E>> fetchG oups(Fi el d<k> key, C ass<E> val ue);

Map<Record, Resul t<R>> fetchG oups(Fiel d<?>[] key);
<E> Map<Record, List<E>> fetchG oups(Field<?>[] key, C ass<E> value);

/1 Transform your Records into custom PQICs
<E> Li st<E> fetchlnto(Cl ass<? extends E> type);

I/ Transform your records into another table type
<Z extends Record> Resul t<Z> fetchlnto(Tabl e<Z> table);

Note, that apart from the fetchLazy() methods, all fetch() methods will immediately close underlying

JDBC result sets.

5.3.1. Record vs. TableRecord

jOOQ understands that SQL is much more expressive than Java, when it comes to the declarative typing
of table expressions. As a declarative language, SQL allows for creating ad-hoc row value expressions
(records with indexed columns, or tuples) and records (records with named columns). In Java, this is

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 107 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html#fetchLazy()

The jOOQ User Manual 5.3.2. Record1 to Record22

not possible to the same extent. Yet, still, sometimes you wish to use strongly typed records, when you
know that you're selecting only from a single table

Fetching strongly or weakly typed records

When fetching data only from a single table, the table expression's type is known to jOOQ if you use
jOOQ's code generator to generate TableRecords for your database tables. In order to fetch such
strongly typed records, you will have to use the simple select API:

/1l Use the selectFron{) nethod:
BookRecord book = create. sel ect Fron{ BOOK) . wher e(BOOK. | D. equal (1)) . fetchOne();

Il Typesafe field access is now possible:

Systemout.printin("Title : " + book.getTitle());
System out. println("Published in: " + book.getPublishedin());

When you use the DSLContext.selectFrom() method, jOOQ will return the record type supplied with the
argument table. Beware though, that you will no longer be able to use any clause that modifies the type
of your table expression. This includes:

- The SELECT clause
- The JOIN clause

5.3.2. RecordT1 to Record?2?

jO0Q's row value expression (or tuple) support has been explained earlier in this manual. It is useful for
constructing row value expressions where they can be used in SQL. The same typesafety is also applied
to records for degrees up to 22. To express this fact, org.joog.Record is extended by org.joog.Record
to org.joog.Record22. Apart from the fact that these extensions of the R type can be used throughout
the JOOQ DSL, they also provide a useful API. Here is org.joog.Record?, for instance:

public interface Record2<T1l, T2> extends Record {

/'l Access fields and val ues as row val ue expressions
Row2<T1, T2> fiel dsRow();

Row2<T1, T2> val uesRow();

/'l Access fields by index

Fiel d<T1> fiel d1();

Fi el d<T2> fiel d2();

/'l Access val ues by index

T1 val uel();
T2 val ue2();

Higher-degree records

jOOQ chose to explicitly support degrees up to 22 to match Scala's typesafe tuple, function and product
support. Unlike Scala, however, jOOQ also supports higher degrees without the additional typesafety.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 108 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/DSLContext.html#selectFrom(org.jooq.Table)
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record1.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record22.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record2.html

The jOOQ User Manual 5.3.3. Arrays, Maps and Lists

5.3.3. Arrays, Maps and Lists

By default, JOOQ returns an org.joog.Result object, which is essentially a java.util.List of org.joog.Record.
Often, you will find yourself wanting to transform this result object into a type that corresponds more to
your specific needs. Or you just want to list all values of one specific column. Here are some examples
to illustrate those use cases:

/'l Fetching only book titles (the two calls are equivalent):

List<String> titlesl = create.select().fron(BOX).fetch().getVal ues(BOX Tl TLE);
List<String> titles2 = create.sel ect().from BOX). fetch(BOXK. TITLE);

String[] titles3 = create.sel ect().fromBOX). fetchArray(BOOXK. Tl TLE);

/'l Fetching only book IDs, converted to Long

Li st<Long> idsl = create.select().fron(BOX).fetch().getVal ues(BOX. ID, Long.class);
Li st<Long> i ds2 = create.select().fron(BOX).fetch(BOXK.ID, Long.class);

Long[] ids3 = create.select().fron(BOX).fetchArray(BOOXK.|D, Long.class);

/| Fetching book IDs and mapping each ID to their records or titles

Map<I nt eger, BookRecord> mapl = create. sel ect Fron{ BOOK) . fetch().intoMap(BOXK. |D);

Map<I nt eger, BookRecord> map2 = create. sel ect Fr on{ BOXK) . f et chMap(BOK. | D) ;

Map<I nt eger, String> map3 = create. sel ect Fron(BOOK) . f et ch(). i nt oMap(BOOK. | D, BOOK. Tl TLE) ;
Map<I nteger, String> nmap4 = create. sel ect Fron(BOXK) . f et chMap(BOOK. | D, BOOK. Tl TLE) ;

/1l Group by AUTHOR ID and list all books witten by any author:

Map<I nt eger, Resul t <BookRecord>> groupl = create. sel ect Fron{ BOXK). fetch().intoG oups(BOOK. AUTHOR | D) ;

Map<I nt eger, Resul t <BookRecord>> group2 = create. sel ect Fron{ BOXK) . f et chG oups(BOOK. AUTHOR | D) ;

Map<I nt eger, List<String>> group3 = create. sel ect Fron{ BOOK) . f et ch(). i nt oG oups(BOOK. AUTHOR | D, BOOK. Tl TLE) ;
Map<I nt eger, List<String>> group4 = create. sel ect Fron{ BOOK) . f et chGr oups(BOOK. AUTHOR | D, BOOK. Tl TLE) ;

Note that most of these convenience methods are available both through org.joog.ResultQuery and
org.joog.Result, some are even available through org.joog.Record as well.

5.3.4. RecordHandler

In a more functional operating mode, you might want to write callbacks that receive records from
your select statement results in order to do some processing. This is @ common data access pattern
in Spring's JdbcTemplate, and it is also available in jJOOQ. With jOOQ, you can implement your own
org.joog.RecordHandler classes and plug them into jOOQ's org.joog.ResultQuery:

/1 Wite callbacks to receive records fromselect statements
create. sel ect Fr on(BOOK)
. order By (BOXK. | D)
.fetch()
.into(new RecordHandl er <BookRecord>() {
@verride
public void next(BookRecord book) {
Util.doThi ngsW t hBook(book) ;
}

b)s

/1 O nore concisely
create. sel ect Fr on(BOOK)
. or der By(BOOK. | D)
.fetchl nto(new Recor dHandl er <BookRecord>() {...});

/1 O even nore concisely with Java 8's | anbda expressions:
create. sel ect Fr on(BOOK)

. order By(BOOXK. | D)

.fetchlnto(book -> { Util.doThi ngsWthBook(book); };);

See also the manual's section about the RecordMapper, which provides similar features

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 109/ 174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/util/List.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RecordHandler.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html

The jOOQ User Manual 5.3.5. RecordMapper

5.3.5. RecordMapper

In a more functional operating mode, you might want to write callbacks that map records from your
select statement results in order to do some processing. This is a common data access pattern in
Spring's JdbcTemplate, and it is also available in jJOOQ. With jOOQ, you can implement your own
org.joog.RecordMapper classes and plug them into jJOOQ's org.joog.ResultQuery:

/1 Wite callbacks to receive records fromsel ect statements
List<Integer> ids =
create. sel ect Fr on(BOOK)
. or der By(BOOK. | D)
.fetch()
. map(new Recor dVapper <BookRecord, |nteger>() {
@verride
public Integer map(BookRecord book) {
return book.getld();
}
IR

/'l O nore concisely
create. sel ect Fr on{ BOOK)
. or der By(BOOK. | D)
. fetch(new RecordVapper <BookRecord, Integer>() {...});

/1 O even nore concisely with Java 8's | anbda expressions:
create. sel ect Fr on{ BOOK)

. or der By(BOOK. | D)

. fetch(book -> book.getld());

See also the manual's section about the RecordHandler, which provides similar features

5.3.6. POJOs

Fetching data in records is fine as long as your application is not really layered, or as long as you're
still writing code in the DAO layer. But if you have a more advanced application architecture, you may
not want to allow for jOOQ artefacts to leak into other layers. You may choose to write POJOs (Plain
Old Java Objects) as your primary DTOs (Data Transfer Objects), without any dependencies on jOOQ's
org.joog.Record types, which may even potentially hold a reference to a Configuration, and thus a JDBC
java.sgl.Connection. Like Hibernate/JPA, jOOQ allows you to operate with POJOs. Unlike Hibernate/JPA,
jOOQ does not "attach" those POJOs or create proxies with any magic in them.

If you're using jOOQ's code generator, you can configure it to generate POJOs for you, but you're not
required to use those generated POJOs. You can use your own.

Using JPA-annotated POJOs

jO0Q tries to find JPA annotations on your POJO types. If it finds any, they are used as the primary source
for mapping meta-information. Only the javax.persistence.Column annotation is used and understood
by jOOQ. An example:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 110/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/RecordMapper.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://download.oracle.com/javase/8/docs/apijavax/persistence/Column.html

The jOOQ User Manual 5.3.6. POJOs

/'l A JPA-annot ated PQJO cl ass
public class MyBook {

@col umm(nane = "1 D")

public int nyld;

@ol um(nanme = "TI TLE")
public String nyTitle;
}

I/ The various "into()" nethods allow for fetching records into your custom PQJCs:
MyBook myBook = create.sel ect().from BOX).fetchAny().into(MBook.class);
Li st <MyBook> nyBooks = create.sel ect().fron(BOX).fetch().into(MBook.class);

Li st <MyBook> nyBooks = create. sel ect().fron{BOX).fetchlnto(MBook.cl ass);

Just as with any other JPA implementation, you can put the javax.persistence.Column annotation on

any class member, including attributes, setters and getters. Please refer to the Record.into() Javadoc
for more details.

Using simple POJOs

If JOOQ does not find any JPA-annotations, columns are mapped to the "best-matching" constructor,
attribute or setter. An example illustrates this:

/1 A "nutable" PQIO cl ass
public class MyBookl {
public int id;
public String title;

// The various "into()" nethods allow for fetching records into your custom PQJCs:
MyBook1 nyBook create.sel ect().fron(BOX).fetchAny().into(MBookl.class);
Li st <MyBook1> nyBooks create.select().fronmBOX).fetch().into(MBookl.class);

Li st <MyBook1> nyBooks create.select().fron(BOX).fetchlnto(MBookl. class);

Please refer to the Record.into() Javadoc for more details.

Using "immutable” POJOs

If jOOQ does not find any default constructor, columns are mapped to the "best-matching" constructor.
This allows for using "immutable" POJOs with jOOQ. An example illustrates this:

/1 An "immutabl e PQIO cl ass

public class MyBook2 {
public final int id;
public final String title;

public MyBook2(int id, String title) {
this.id =id;
this.title = title;

}

}

/1 Wth "immutabl e" PQIO cl asses, there nust be an exact natch between projected fields and avail abl e constructors:
MyBook2 myBook = create. sel ect (BOOK. | D, BOOK. TI TLE). f ron{ BOXK) . f et chAny() . i nt o(M/Book2. cl ass) ;

Li st <MyBook2> nyBooks = create. sel ect (BOOK. | D, BOOK. TI TLE). fron{ BOOXK) . f etch().i nt o(M/Book2. cl ass);

Li st <MyBook2> nyBooks = create. sel ect (BOOK. | D, BOOK. TI TLE). f r on{ BOXK) . f et chl nt o(MyBook2. cl ass) ;

/1 An "imutable" PQJO class with a java. beans. ConstructorProperties annotation
public class MyBook3 {

public final String title;

public final int id;

@onstructorProperties({ "title", "id"})
public MyBook2(String title, int id) {
this.title = title;
this.id = id;
}
}

/1 Wth annotated "immutabl e" PQIO cl asses, there doesn't need to be an exact match between fields and constructor argunents.
/1 In the bel ow cases, only BOK.IDis really set onto the PQJO, BOOK. TI TLE renains null and BOOK. AUTHOR ID is ignored
MyBook3 myBook = create. sel ect (BOOK. | D, BOOK. AUTHOR I D). f ron{ BOOK) . f et chAny() . i nt o(M/Book3. cl ass) ;

Li st <MyBook3> nyBooks = create. sel ect (BOOK. | D, BOOK. AUTHOR | D). fron(BOOK) . f et ch(). i nt o(M/Book3. cl ass);

Li st <MyBook3> nyBooks = create. sel ect (BOOK. | D, BOOK. AUTHOR | D). f r om(BOOK) . f et chl nt o(MyBook3. cl ass) ;

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 111 /174

http://download.oracle.com/javase/8/docs/apijavax/persistence/Column.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html#into(java.lang.Class)
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html#into(java.lang.Class)

The jOOQ User Manual 5.3.6. POJOs

Please refer to the Record.into() Javadoc for more details.

Using proxyable types

jOOQ also allows for fetching data into abstract classes or interfaces, or in other words, "proxyable"
types. This means that jOOQ will return a java.utiL.HashMap wrapped in a java.lang.reflect.Proxy
implementing your custom type. An example of this is given here:

/'l A "proxyabl e" type
public interface M/Book3 {
int getld();
void setld(int id);

String getTitle();
void setTitle(String title);
}
I/ The various "into()" nethods allow for fetching records into your custom PQICs:
MyBook3 nyBook create. sel ect (BOOK. | D, BOOK. TI TLE) . f r on{ BOOK) . f et chAny() . i nt o(M/Book3. cl ass) ;

Li st <MyBook3> nyBooks = create. sel ect (BOOK. | D, BOOK. TI TLE). f ronm(BOOXK) . f et ch() . i nt o(M/Book3. cl ass) ;
Li st <MyBook3> nyBooks = create. sel ect (BOOK. | D, BOOK. TI TLE). from(BOXK). f et chl nt o(M/Book3. cl ass) ;

Please refer to the Record.into() Javadoc for more details.

Loading POJOs back into Records to store them

The above examples show how to fetch data into your own custom POJOs / DTOs. When you have
modified the data contained in POJOs, you probably want to store those modifications back to the
database. An example of this is given here:

/1 A "nmutable" PQIO cl ass
public class MyBook {
public int id;
public String title;

/1l Create a new PQJO instance
MyBook nyBook = new MyBook();
nyBook.id = 10;

nyBook.title = "Animal Farnf;

/1l Load a j OOQ generated BookRecord from your PQIO
BookRecord book = create. newRecor d(BOOK, myBook);

// Insert it (inplicitly)
book. store();

/1l Insert it (explicitly)
create. execut el nsert (book) ;

// or update it (ID = 10)
creat e. execut eUpdat e(book) ;

Note: Because of your manual setting of ID = 10, jJOOQ's store() method will asume that you want to
insert a new record. See the manual's section about CRUD with UpdatableRecords for more details
on this.

Interaction with DAOs

If you're using jOOQ's code generator, you can configure it to generate DAOs for you. Those DAOs
operate on generated POJOs. An example of using such a DAO is given here:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 112/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html#into(java.lang.Class)
http://download.oracle.com/javase/8/docs/apijava/util/HashMap.html
http://download.oracle.com/javase/8/docs/apijava/lang/reflect/Proxy.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html#into(java.lang.Class)

The jOOQ User Manual 5.3.7. Lazy fetching

/1 Initialise a Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(SQ.Di al ect. ORACLE);

// Initialise the DAOw th the Configuration
BookDao bookDao = new BookDao(configuration);

/'l Start using the DAO
Book book = bookDao. findByl d(5);

/1l Modify and update the PQIO
book. set Title("1984");

book. set Publ i shedl n(1948) ;
bookDao. updat e(book) ;

Il Delete it again
bookDao. del et e(book) ;

More complex data structures

jOOQ currently doesn't support more complex data structures, the way Hibernate/JPA attempt to map
relational data onto POJOs. While future developments in this direction are not excluded, jOOQ claims
that generic mapping strategies lead to an enormous additional complexity that only serves very few
use cases. You are likely to find a solution using any of jOOQ's various fetching modes, with only little
boiler-plate code on the client side.

5.3.7. Lazy fetching

Unlike JDBC's java.sgl.ResultSet, jOOQ's org.joog.Result does not represent an open database cursor
with various fetch modes and scroll modes, that needs to be closed after usage. jOOQ's results are
simple in-memory Java java.util.List objects, containing all of the result values. If your result sets are
large, or if you have a lot of network latency, you may wish to fetch records one-by-one, or in small
chunks. jOOQ supports a org.joog.Cursor type for that purpose. In order to obtain such a reference,
use the ResultQuery.fetchlazy() method. An example is given here:

/1l Obtain a Cursor reference:
Cur sor <BookRecord> cursor = null;

try {
cursor = create. sel ect Fron{ BOOXK). f et chLazy();

/1 Cursor has sinilar nmethods as Iterator<R>
whil e (cursor. hasNext()) {
BookRecord book = cursor.fetchOne();
Util.doThi ngsW t hBook(book) ;

}
I/l Close the cursor and the cursor's underlying JDBC Resul t Set
finally {

if (cursor !'= null) {
cursor.close();

As a org.joog.Cursor holds an internal reference to an open java.sgl.ResultSet, it may need to be closed
atthe end of iteration. If a cursor is completely scrolled through, it will conveniently close the underlying
ResultSet. However, you should not rely on that.

Cursors ship with all the other fetch features

Like org.joog.ResultQuery or org.joog.Result, orgjooqg.Cursor gives access to all of the other fetch
features that we've seen so far, i.e.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 113/174

http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/util/List.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Cursor.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html#fetchLazy()
http://www.jooq.org/javadoc/3.0.x/org/jooq/Cursor.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Cursor.html

The jOOQ User Manual 5.3.8. Many fetching

- Strongly or weakly typed records: Cursors are also typed with the <R> type, allowing to fetch
custom, generated org.joog.TableRecord or plain org.joog.Record types.

- RecordHandler callbacks: You can use your own org.joog.RecordHandler callbacks to receive
lazily fetched records.

- RecordMapper callbacks: You can use your own org.joog.RecordMapper callbacks to map lazily
fetched records.

- POJOs: You can fetch data into your own custom POJO types.

5.3.8. Many fetching

Many databases support returning several result sets, or cursors, from single queries. An example for
this is Sybase ASE's sp_help command:

> sp_hel p " aut hor'

Fomm e e Homm - Fomm e o n L B T +
| Nane | Onner | Obj ect _t ype| Obj ect _st atus| Create_dat e |
Fomm e e Homm - Fomm e o n L B T +
| author|dbo |user table | -- none -- |Sep 22 2011 11:20PM
Fomm e e Homm - Fomm e o n L B T +
L Hommmmm Hommm o - L T Homm - +
| Col um_name | Type |Length|Prec|Scale|... |
L Hommmmm Hommm o - L T Homm - +
lid |int | 4] NULL| NULL| (o]]
| first_name | var char | 50| NULL| NULL| 1|
| I ast _nane | var char | 50| NULL| NULL| (o]
| date_of _birth|date | A4 NULL| NULL| 1|
| year _of _birth|int | A4 NULL| NULL| 1|
L Hommmmm Hommm o - L T Homm - +

The correct (and verbose) way to do this with JDBC is as follows:

Resul tSet rs = statenent.executeQuery();

/'l Repeat until there are no nore result sets

for (;5) {

/] Enpty the current result set
while (rs.next()) {

/1l [.. do something with it ..]
}

/Il CGet the next result set, if available
if (statement.getMreResults()) {
rs = statenent.get Resul t Set ();
}
el se {
br eak;
}
}

I/l Be sure that all result sets are closed

stat ement . get Mor eResul t s(St at ement . CLOSE_ALL_RESULTS) ;
statenent . cl ose();

As previously discussed in the chapter about differences between JOOQ and JDBC, jOOQ does not rely
on an internal state of any JDBC object, which is "externalised" by Javadoc. Instead, it has a straight-
forward API allowing you to do the above in a one-liner:

Il Get some information about the author table, its colums, keys, indexes, etc
Li st <Resul t <Record>> results = create.fetchMany("sp_help "author'");

Using generics, the resulting structure is immediately clear.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 114 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/TableRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RecordHandler.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/RecordMapper.html

The jOOQ User Manual 5.3.9. Later fetching

5.3.9. Later fetching

Using Java 8 CompletableFutures

Java 8 has introduced the new java.util.concurrent.CompletableFuture type, which allows for functional
composition of asynchronous execution units. When applying this to SQL and jOOQ, you might be
writing code as follows:

// Initiate an asynchronous call chain
Conpl et abl eFut ure

/1 This |anbda will supply an int value indicating the nunmber of inserted rows
. suppl yAsync(() ->
DSL. usi ng(confi guration)
.insertlnto(AUTHOR, AUTHOR | D, AUTHOR LAST_NAME)
.val ues(3, "Hitchcock")
. execute()

)

/1 This will supply an AuthorRecord value for the newy inserted author
. handl eAsync((rows, throwable) ->
DSL. usi ng(confi guration)
. f et chOne(AUTHOR, AUTHOR. I D. eq(3))
)

/1l This should supply an int value indicating the number of rows,
/1 but in fact it'll throw a constraint violation exception
. handl eAsync((record, throwable) -> {

record. changed(true);

return record.insert();

19)

/1 This will supply an int value indicating the nunber of deleted rows
. handl eAsync((rows, throwable) ->
DSL. usi ng(confi guration)

. del et e(AUTHOR)

. wher e(AUTHOR. | D. eq(3))

. execute()
)
.join();

The above example will execute four actions one after the other, but asynchronously in the JDK's default
or common java.util.concurrent.ForkJoinPool.

For more information, please refer to the java.util.concurrent.CompletableFuture Javadoc and official
documentation.

Using deprecated API

Some queries take very long to execute, yet they are not crucial for the continuation of the main
program. For instance, you could be generating a complicated report in a Swing application, and
while this report is being calculated in your database, you want to display a background progress bar,
allowing the user to pursue some other work. This can be achived simply with jOOQ, by creating a
org.jooq.FutureResult, a type that extends java.util.concurrent.Future. An example is given here:

/1 Spawn off this query in a separate process:
Fut ur eResul t <BookRecord> future = create. sel ect Fron{ BOOK).where(... conplex predicates ...).fetchLater();

/1 This exanple actively waits for the result to be done
while (!future.isDone()) {

progressBar.increment (1);

Thr ead. sl eep(50);
}

/1 The result should be ready, now
Resul t <BookRecord> result = future.get();

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 115/174

http://download.oracle.com/javase/8/docs/apijava/util/concurrent/CompletableFuture.html
http://download.oracle.com/javase/8/docs/apijava/util/concurrent/ForkJoinPool.html
http://download.oracle.com/javase/8/docs/apijava/util/concurrent/CompletableFuture.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/FutureResult.html
http://download.oracle.com/javase/8/docs/apijava/util/concurrent/Future.html

The jOOQ User Manual 5.3.10. ResultSet fetching

Note, that instead of letting jJOOQ spawn a new thread, you can also provide jOOQ with your own
Java.util.concurrent.ExecutorService:

// Spawn off this query in a separate process:
ExecutorService service = // [...]
Fut ur eResul t <BookRecord> future = create. sel ect Fron{ BOOK).where(... conplex predicates ...).fetchLater(service);

5.3.10. ResultSet fetching

When interacting with legacy applications, you may prefer to have jOOQ return a java.sgl.ResultSet,
rather than jOOQ's own org.joog.Result types. This can be done simply, in two ways:

// jOOQ s Cursor type exposes the underlying ResultSet:
Resul t Set rsl = create. sel ect Fron{ BOOK) . fetchLazy().resultSet();

// But you can also directly access that ResultSet from ResultQuery:
Resul t Set rs2 = create. sel ect Fron(BOOK) . f et chResul t Set () ;

// Don't forget to close these, though!

rsil.close();
rs2.close();

Transform JOOQ's Result into a JDBC ResultSet

Instead of operating on a JDBC ResultSet holding an open resource from your database, you can also
let JOOQ's org.jooqg.Result wrap itself in a java.sgl.ResultSet. The advantage of this is that the so-created
ResultSet has no open connection to the database. It is a completely in-memory ResultSet:

/1 Transforma jOOQ Result into a Result Set
Resul t <BookRecord> result = create. sel ect Fronm(BOX).fetch();
ResultSet rs = result.intoResultSet();

The inverse: Fetch data from a legacy ResultSet using jJOOQ

The inverse of the above is possible too. Maybe, a legacy part of your application produces JDBC
Java.sgl.ResultSet, and you want to turn them into a org.joog.Result:

// Transforma JDBC ResultSet into a j OOQ Resul t
Resul t Set rs = connection. createStatenment (). executeQuery("SELECT * FROM BOXK") ;

/1l As a Result:
Resul t <Record> result = create.fetch(rs);

/1l As a Cursor
Cur sor <Record> cursor = create.fetchLazy(rs);

You can also tighten the interaction with jJOOQ's data type system and data type conversion features,
by passing the record type to the above fetch methods:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 116 /174

http://download.oracle.com/javase/8/docs/apijava/util/concurrent/ExecutorService.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html

The jOOQ User Manual

/|l Pass an array of types:

Resul t <Record> result = create.fetch (rs,
Cursor<Record> result = create.fetchLazy(rs,

/|l Pass an array of data types:
Resul t <Record> resul t
Cur sor <Record> resul t

I/ Pass an array of fields:

Resul t <Record> result = create.fetch (rs,
Cursor<Record> result = create.fetchlLazy(rs,

create.fetch (rs,
create. fetchLazy(rs,

Integer.class, String.class);
Integer.class, String.class);

SQLDat aType. | NTEGER, SQLDat aType. VARCHAR) ;
SQLDat aType. | NTEGER, SQLDat aType. VARCHAR) ;

BOXK. I D, BOOK. TI TLE);
BOX. I D, BOOK. TI TLE);

5.3.11. Data type conversion

If supplied, the additional information is used to override the information obtained from the ResultSet's
java.sqgl.ResultSetMetaData information.

5.3.11. Data type conversion

Apart from a few extra features (user-defined types), JOOQ only supports basic types as supported by

the JDBC API. In your application, you may choose to transform these data types into your own ones,
without writing too much boiler-plate code. This can be done using jOOQ's org.joog.Converter types.
A converter essentially allows for two-way conversion between two Java data types <T> and <U>. By
convention, the <T> type corresponds to the type in your database whereas the >U> type corresponds
to your own user type. The Converter APl is given here:

public interface Converter<T, U> extends Serializable {

[**

* Convert a database object to a user object

o
/
U fron(T dat abaseObj ect);

[**

* Convert a user object to a database object

o
/
T to(U user Obj ect);

/**
* The dat abase type
o
/
Cl ass<T> froniType();
/**
* The user type
*/
Cl ass<U> toType();

Such a converter can be used in many parts of the JOOQ API. Some examples have been illustrated in
the manual's section about fetching.

A Converter for GregorianCalendar

Here is a some more elaborate example involving a Converter for java.util.GregorianCalendar:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 117/174

http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSetMetaData.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Converter.html
http://download.oracle.com/javase/8/docs/apijava/util/GregorianCalendar.html

The jOOQ User Manual

/1l You nay prefer Java Cal endars over JDBC Ti nestanps
public class Cal endar Converter inplenments Converter<Ti nestanp, G egorianCal endar> {

@verride

public G egorianCal endar fron(Tinestanp databaseCbject) {
Gregori anCal endar cal endar = (G egorianCal endar) Cal endar. getlnstance();
cal endar. setTinelnM | | i s(dat abaseCbj ect. get Time());
return cal endar;

}

@verride

public Timestanp to(G egorianCal endar userCbject) {
return new Ti mestanp(user Obj ect. get Time().getTine());

}

@verride

public Cl ass<Ti nestanp> fronifype() {
return Ti nestanp. cl ass;

}

@verride

public C ass<G egorianCal endar> toType() {
return G egorianCal endar. cl ass;

}

}

/1 Now you can fetch cal endar values fromjOOQ s API:

5.3.12. Interning data

Li st <G egori anCal endar > datesl = create. sel ect Fron(BOXK) . f et ch() . get Val ues(BOOK. PUBLI SHI NG _DATE, new Cal endar Converter());
Li st <Gregori anCal endar > dates2 = create. sel ect Fr on(BOXK) . f et ch(BOOK. PUBLI SHI NG_DATE, new Cal endar Converter());

Enum Converters

jOOQ ships with a built-in default org.joog.impl.EnumConverter, that you can use to map VARCHAR
values to enum literals or NUMBER values to enum ordinals (both modes are supported). Let's say, you

want to map a YES / NO / MAYBE column to a custom Enum:

/| Define your Enum
public enum YNM {

YES, NO, MNAYBE
}

/| Define your converter
public class YNMConverter extends EnunConverter<String, YNW {
public YNMConverter () {
super (String.class, YNMclass);

}

// And you're all set for converting records to your custom Enum
for (BookRecord book : create.sel ect Fron{BOXK).fetch()) {
switch (book. getVal ue(BOOK. | _LI KE, new YNMConverter())) {

case YES: Systemout.println("l like this book : " + book.getTitle(
case NO Systemout.printIn("l didn't |ike this book : " + book.getTitle(
case MAYBE: Systemout.println("l'mnot sure about this book : " + book.getTitle(

Using Converters in generated source code

)); break;
)); break;
)

br eak;

jOOQ also allows for generated source code to reference your own custom converters, in order to
permanently replace a table column's <T> type by your own, custom <U> type. See the manual's section

about custom data types for details.

5.3.12. Interning data

SQL result tables are not optimal in terms of used memory as they are not designed to represent
hierarchical data as produced by JOIN operations. Specifically, FOREIGN KEY values may repeat

themselves unnecessarily:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 118/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/EnumConverter.html

The jOOQ User Manual 5.4. Static statements vs. Prepared Statements

| Aninal Farm |
O Alquimsta |

+
|

+

| 1| 1984 |
|

|

| Bri da |
+

Now, if you have millions of records with only few distinct values for AUTHOR_ID, you may not want to
hold references to distinct (but equal) java.lang.Integer objects. This is specifically true for IDs of type
java.util.UUID or string representations thereof. jOOQ allows you to "intern" those values:

/1l Interning data after fetching
Resul t<?> r1 = create. sel ect (BOOK. | D, BOOK. AUTHOR | D, BOOK. Tl TLE)
. f r om(BOOK)
.j 0i N(AUTHOR) . on(BOOK. AUTHOR_I D. eq(AUTHOR. | D))
.fetch()
.intern(BOOK. AUTHOR | D) ;

/1 Interning data while fetching
Resul t<?> r1 = create. sel ect (BOOK. | D, BOOK. AUTHOR | D, BOOK. Tl TLE)
. f r om(BOOK)
.j 0i N(AUTHOR) . on(BOOK. AUTHOR_I D. eq(AUTHOR. | D))
. i ntern(BOOK. AUTHOR | D)
.fetch();

You can specify as many fields as you want for interning. The above has the following effect:

- Ifthe interned Field is of type java.lang.String, then String.intern() is called upon each string
- Ifthe interned Field is of any other type, then the call is ignored

Future versions of jOOQ will implement interning of data for non-String data types by collecting values
in java.util.Set, removing duplicate instances.

Note, that jJOOQ will not use interned data for identity comparisons: string1 == string2. Interning is used
only to reduce the memory footprint of org.joog.Result objects.

5.4. Static statements vs. Prepared Statements

With JDBC, you have full control over your SQL statements. You can decide yourself, if you want
to execute a static java.sgl.Statement without bind values, or a java.sgl.PreparedStatement with (or
without) bind values. But you have to decide early, which way to go. And you'll have to prevent SQL
injection and syntax errors manually, when inlining your bind variables.

With jOOQ, this is easier. As a matter of fact, it is plain simple. With jJOOQ), you can just set a flag in
your Configuration's Settings, and all queries produced by that configuration will be executed as static
statements, with all bind values inlined. An example is given here:

/1 This DSLContext executes PreparedStatenents
DSLCont ext prepare = DSL.using(connection, SQLDi al ect.ORACLE);

/1 This DSLContext executes static Statements
DSLCont ext inlined = DSL.using(connection, SQ.Di al ect. ORACLE,
new
Settings().withStatenment Type(Statenment Type. STATI C_STATEMENT)) ;
- These statements are rendered by the two factories:
SELECT ? FROM DUAL WHERE ? = ? prepare. sel ect(val (1)).where(val (1).equal (1)).fetch();
SELECT 1 FROM DUAL WHERE 1 = 1 inlined.select(val (1)).where(val (1).equal (1)).fetch();

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 119/174

http://download.oracle.com/javase/8/docs/apijava/lang/Integer.html
http://download.oracle.com/javase/8/docs/apijava/util/UUID.html
http://download.oracle.com/javase/8/docs/apijava/lang/String.html
http://download.oracle.com/javase/8/docs/apijava/lang/String.html#intern()
http://download.oracle.com/javase/8/docs/apijava/util/Set.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html

The jOOQ User Manual 5.5. Reusing a Query's PreparedStatement

Reasons for choosing one or the other

Not all databases are equal. Some databases show improved performance if you use
java.sgl.PreparedStatement, as the database will then be able to re-use execution plans for identical
SQL statements, regardless of actual bind values. This heavily improves the time it takes for soft-parsing
a SQL statement. In other situations, assuming that bind values are irrelevant for SQL execution plans
may be a bad idea, as you might run into "bind value peeking" issues. You may be better off spending
the extra cost for a new hard-parse of your SQL statement and instead having the database fine-tune
the new plan to the concrete bind values.

Whichever aproach is more optimal for you cannot be decided by jOOQ. In most cases, prepared
statements are probably better. But you always have the option of forcing jJOOQ to render inlined bind
values.

Inlining bind values on a per-bind-value basis

Note that you don't have to inline all your bind values at once. If you know that a bind value is not really
a variable and should be inlined explicitly, you can do so by using DSL.inline(), as documented in the
manual's section about inlined parameters

5.5. Reusing a Query's PreparedStatement

As previously discussed in the chapter about differences between jOOQ and JDBC, reusing
PreparedStatements is handled a bit differently in jJOOQ from how it is handled in JDBC

Keeping open PreparedStatements with JDBC

With JDBC, you can easily reuse a java.sgl.PreparedStatement by not closing it between subsequent
executions. An example is given here:

/| Execute the statenent
try (PreparedStatenment stnt = connection. prepareStatenment ("SELECT 1 FROM DUAL")) {

/1l Fetch a first ResultSet

try (ResultSet rsl = stnt.executeQuery()) { ... }

/1 Wthout closing the statement, execute it again to fetch another Result Set
try (ResultSet rs2 = stnt.executeQuery()) { ... }

The above technique can be quite useful when you want to reuse expensive database resources. This
can be the case when your statement is executed very frequently and your database would take non-
negligible time to soft-parse the prepared statement and generate a new statement / cursor resource.

Keeping open PreparedStatements with JOOQ

This is also modeled in jOOQ. However, the difference to JDBC is that closing a statement is the default
action, whereas keeping it open has to be configured explicitly. This is better than JDBC, because the
default action should be the one that is used most often. Keeping open statements is rarely done in
average applications. Here's an example of how to keep open PreparedStatements with jOOQ:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 120/174

http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DSL.html#inline(Object)
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html

The jOOQ User Manual 5.6. Using JDBC batch operations

I/l Create a query which is configured to keep its underlying PreparedStatenent open
Resul t Quer y<Record> query = create. sel ect One(). keepStatenent (true);

/|l Execute the query twi ce, against the sane underlying PreparedStatenent:
try {
Resul t <Record> result1
Resul t <Record> resul t2

query.fetch(); // This will lazily create a new PreparedSt at ement
query.fetch(); // This will reuse the previous PreparedStatenent

}
// ... but now, you nust not forget to close the query
finally {
query. close();
}

The above example shows how a query can be executed twice against the same underlying
PreparedStatement. Unlike in other execution scenarios, you must not forget to close this query now

5.6. Using JDBC batch operations

With JDBC, you can easily execute several statements at once using the addBatch() method. Essentially,
there are two modes in JDBC

- Execute several queries without bind values
- Execute one query several times with bind values

Using JDBC
In code, this looks like the following snippet:

/1 1. several queries

try (Statenent stnt = connection.createStatenment()) {
stnt. addBat ch(" I NSERT | NTO aut hor (id, first_name, |ast_name) VALUES (1, 'Erich', 'Gammm')");
stnt.addBat ch(" I NSERT | NTO aut hor (id, first_nanme, |ast_nanme) VALUES (2, 'Richard', 'Helnm)");
stnt. addBat ch("I NSERT | NTO aut hor (id, first_name, |ast_name) VALUES (3, 'Ralph', 'Johnson')");
stnt. addBat ch(" I NSERT | NTO aut hor (id, first_name, |ast_name) VALUES (4, 'John', "Missides')");
int[] result = stnt.executeBatch();

}

/'l 2. a single query
Il e
try (PreparedStatenment stnt = connection. prepareStatenment ("I NSERT | NTO aut hor (id, first_name, |ast_name) VALUES (?, 2, ?)")) {
stnt.setInt(1, 1);
stnt.setString(2, "Erich");
stnt.setString(3, "Gamma");
stnt. addBat ch();

stnt.setInt(1, 2);
stnt.setString(2, "Richard");
stnt.setString(3, "Helnt);
stnt. addBat ch();

stnt.setInt(1, 3);
stnt.setString(2, "Ralph");
stnt.setString(3, "Johnson");
stnt. addBat ch();
stnt.setInt(1, 4);
stnt.setString(2, "John");
stnt.setString(3, "Vissides");
stnt. addBat ch();

int[] result = stnt.executeBatch();

Using jOOQ

jOOQ supports executing queries in batch mode as follows:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 121 /174

The jOOQ User Manual 5.7. Sequence execution

/1 1. several queries
R

create. bat ch(
create.insertlnto(AUTHOR, |D, FIRST_NAME, LAST_NAME).values(1l, "Erich" , "Gama"),
create.insertlnto(AUTHOR, | D, FIRST_NAME, LAST_NAME).values(2, "Richard", "Helnt),
create.insertlnto(AUTHOR, | D, FIRST_NAME, LAST_NAME).val ues(3, "Ralph" , "Johnson"),
create.insertlnto(AUTHOR, |D, FIRST_NAME, LAST_NAME).val ues(4, "John" , "Mlissides"))
. execute();

/1 2. a single query

A L
create. batch(create.insertlnto(AUTHOR, |D, FIRST_NAMVE, LAST NAME).values((Integer) null, null, null))
. bi nd(1, "Erich" , " Ganmm")
. bi nd(2 , "Richard" , "Helnt)
. bi nd(3, "Ral ph" , "Johnson")
. bi nd(4 , "John" , "Missides")
.execute();

When creating a batch execution with a single query and multiple bind values, you will still have to
provide jOOQ with dummy bind values for the original query. In the above example, these are set to
null. For subsequent calls to bind(), there will be no type safety provided by jOOQ.

5.7. Sequence execution

Most databases support sequences of some sort, to provide you with unigue values to be used for
primary keys and other enumerations. If you're using jOOQ's code generator, it will generate a sequence
object per sequence for you. There are two ways of using such a sequence object:

Standalone calls to sequences

Instead of actually phrasing a select statement, you can also use the DSLContext's convenience
methods:

/1l Fetch the next value from a sequence
Bi gl nteger next|D = create. nextval (S_AUTHOR | D);

/|l Fetch the current value from a sequence
Bi gl nteger currlD = create. currval (S_AUTHOR I D);

Inlining sequence references in SQL

You can inline sequence references in jOOQ SQL statements. The following are examples of how to
do that:

/'l Reference the sequence in a SELECT statenent:
Bi gl nteger nextlD = create.sel ect(s).fetchOne(S_AUTHOR | D. nextval ());

/'l Reference the sequence in an | NSERT statenent:

create.insertlnto(AUTHOR, AUTHOR. | D, AUTHOR. FI RST_NAME, AUTHOR. LAST_NAME)
.val ues(S_AUTHOR | D. nextval (), val ("WIliant), val("Shakespeare"));

For more info about inlining sequence references in SQL statements, please refer to the manual's
section about sequences and serials.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 122/174

The jOOQ User Manual 5.8. Stored procedures and functions

5.8. Stored procedures and functions

Many RDBMS support the concept of "routines", usually calling them procedures and/or functions.
These concepts have been around in programming languages for a while, also outside of databases.
Famous languages distinguishing procedures from functions are:

- Ada

- BASIC
- Pascal
- etc...

The general distinction between (stored) procedures and (stored) functions can be summarised like this:

Procedures

- Are called using JDBC CallableStatement
- Have no return value
- Usually support OUT parameters

Functions

- Can be used in SQL statements
- Have a return value
- Usually don't support OUT parameters

Exceptions to these rules

- DB2,H2, and HSQLDB don't allow for JDBC escape syntax when calling functions. Functions must
be used in a SELECT statement

- H2 only knows functions (without OUT parameters)

- Oracle functions may have OUT parameters

- Oracle knows functions that must not be used in SQL statements for transactional reasons

- Postgres only knows functions (with all features combined). OUT parameters can also be
interpreted as return values, which is quite elegant/surprising, depending on your taste

- The Sybase jconn3 JDBC driver doesn't handle null values correctly when using the JDBC escape
syntax on functions

In general, it can be said that the field of routines (procedures / functions) is far from being standardised
in modern RDBMS even if the SQL:2008 standard specifies things quite well. Every database has
its ways and JDBC only provides little abstraction over the great variety of procedures / functions
implementations, especially when advanced data types such as cursors / UDT's / arrays are involved.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 123 /174

The jOOQ User Manual 5.8.1. Oracle Packages

To simplify things a little bit, JOOQ handles both procedures and functions the same way, using a more
general org.joog.Routine type.

Using jJOOQ for standalone calls to stored procedures and functions

If you're using jJOOQ's code generator, it will generate org.joog.Routine objects for you. Let's consider
the following example:

- Check whether there is an author in AUTHOR by that name and get his ID
CREATE OR REPLACE PROCEDURE aut hor _exi sts (author_name VARCHAR2, result OUT NUMBER, id OUT NUMBER);

The generated artefacts can then be used as follows:

/1 NMake an explicit call to the generated procedure object:
Aut hor Exi sts procedure = new Aut hor Exi sts();

// Al INand IN QUT paraneters generate setters
pr ocedur e. set Aut hor Nane(" Paul 0") ;
procedur e. execut e(confi guration);

// Al OUT and IN OUT paraneters generate getters

assert Equal s(new Bi gDeci mal ("1"), procedure.getResult());
assert Equal s(new Bi gDeci mal ("2"), procedure.getld();

But you can also call the procedure using a generated convenience method in a global Routines class:

/'l The generated Routines class contains static nethods for every procedure.
/'l Results are also returned in a generated object, holding getters for every OUT or IN QUT paraneter.
Aut hor Exi sts procedure = Routines. aut hor Exi sts(configuration, "Paulo");

/1 Al OJT and IN OQUT paraneters generate getters

assert Equal s(new Bi gDeci nal ("1"), procedure.getResult());
assert Equal s(new Bi gDeci nmal ("2"), procedure.getld();

For more details about code generation for procedures, see the manual's section about procedures
and code generation.

Inlining stored function references in SQL

Unlike procedures, functions can be inlined in SQL statements to generate column expressions or table
expressions, if you're using unnesting operators. Assume you have a function like this:

- Check whether there is an author in AUTHOR by that name and get his ID
CREATE OR REPLACE FUNCTI ON aut hor _exi sts (author_name VARCHAR2) RETURN NUMBER;

The generated artefacts can then be used as follows:

- This is the rendered SQL /1 Use the static-inported method from Routi nes:
bool ean exists =
SELECT AUTHOR EXI STS(' Paul o') FROM DUAL create. sel ect (aut hor Exi st s("Paul 0")).fetchOne(0, bool ean. cl ass);

For more info about inlining stored function references in SQL statements, please refer to the manual's
section about user-defined functions.

5.8.1. Oracle Packages

Oracle uses the concept of a PACKAGE to group several procedures/functions into a sort of namespace.
The SQL 92 standard talks about "modules", to represent this concept, even if this is rarely implemented
© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 124 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Routine.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Routine.html
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

The jOOQ User Manual 5.8.2. Oracle member procedures

as such. This is reflected in jJOOQ by the use of Java sub-packages in the source code generation
destination package. Every Oracle package will be reflected by

- AJava package holding classes for formal Java representations of the procedure/function in that
package
- AJava class holding convenience methods to facilitate calling those procedures/functions

Apart from this, the generated source code looks exactly like the one for standalone procedures/
functions.

For more details about code generation for procedures and packages see the manual's section about
procedures and code generation.

5.8.2. Oracle member procedures

Oracle UDTs can have object-oriented structures including member functions and procedures. With
Oracle, you can do things like this:

CREATE OR REPLACE TYPE u_aut hor _type AS OBJECT (
id NUVBER(7),
first_name VARCHAR2(50),
| ast _name VARCHAR2(50),

MEMBER PROCEDURE LOAD,
MEMBER FUNCTI ON counBOOKs RETURN NUVBER

- The type body is onitted for the exanple

These member functions and procedures can simply be mapped to Java methods:

/'l Create an enpty, attached UDT record from the DSLContext
UAut hor Type aut hor = create. newRecor d(U_AUTHOR_TYPE) ;

/1 Set the author ID and |oad the record using the LOAD procedure
aut hor.set1d(1);

aut hor . | oad() ;

/'l The record is now updated with the LOAD i npl enentation's content

assert Not Nul | (aut hor . get Fi rst Name());
assert Not Nul | (aut hor . get Last Nane()) ;

For more details about code generation for UDTs see the manual's section about user-defined types
and code generation.

5.9. Exporting to XML, CSV, JSON, HTML, Text

If you are using jOOQ for scripting purposes or in a slim, unlayered application server, you might be
interested in using jJOOQ's exporting functionality (see also the importing functionality). You can export
any Result<Record> into the formats discussed in the subsequent chapters of the manual

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 125/174

The jOOQ User Manual 5.9.1. Exporting XML

5.9.1. Exporting XML

/|l Fetch books and format them as XM
String xm = create. sel ect From(BOOXK) . f et ch(). f or mat XM() ;

The above query will result in an XML document looking like the following one:

<result xnlns="http://ww.jooq. org/xsd/jooq-export-2.6.0.xsd">
<fields>
<field nane="ID" type="|NTEGER'/ >
<field nane="AUTHOR | D' type="|NTEGER'/ >
<field nane="TI TLE" type="VARCHAR'/>
</fields>
<records>
<record>
<val ue fiel d="ID">1</val ue>
<val ue fiel d="AUTHOR | D' >1</val ue>
<val ue fiel d="TITLE">1984</ val ue>
</record>
<record>
<val ue fiel d="ID">2</val ue>
<val ue fiel d="AUTHOR | D' >1</val ue>
<val ue fiel d="TI TLE">Ani mal Farnx/val ue>
</record>
</records>
</resul t>

The same result as an org.w3c.dom.Document can be obtained using the Result.intoXML() method:

/'l Fetch books and format them as XM
Docunment xm = create. sel ect Fron{BOOXK) . fetch().intoXV.();

See the XSD schema definition here, for a formal definition of the XML export format:
http://www.joog.org/xsd/joog-export-2.6.0.xsd

5.9.2. Exporting CSV

/|l Fetch books and format themas CSV
String csv = create. sel ect From(BOOK) . f et ch(). f or mat CSV() ;

The above query will result in a CSV document looking like the following one:

I D, AUTHOR | D, TI TLE
1,1,1984
2,1, Ani mal Farm

In addition to the standard behaviour, you can also specify a separator character, as well as a special
string to represent NULL values (which cannot be represented in standard CSV):

/'l Use ";" as the separator character
String csv = create. sel ect Fron{BOOXK).fetch().formatCSV(';");

/'l Specify "{null}" as a representation for NULL val ues
String csv = create. sel ect Fron{ BOXK).fetch().formatCSV(';"', “{null}")

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 126/174

http://download.oracle.com/javase/8/docs/apiorg/w3c/dom/Document.html
http://www.jooq.org/xsd/jooq-export-2.6.0.xsd

The jOOQ User Manual

5.9.3. Exporting JSON

/'l Fetch books and format them as JSON
String json = create. sel ect Fron(BOOK). fetch(). formatJSON();

The above query will result in a JSON document looking like the following one:

{"fields":[{"name":"field-1","type": "type-1"},
{"name":"field-2","type": "type-2"},

{"name": "fiel d-n", "type": "type-n"}],
"records":[[val ue-1-1,value-1-2,..., val ue-1-n],
[val ue-2-1,val ue-2-2, ..., val ue-2-n]]}

Note: This format has changed in jOOQ 2.6.0

5.9.4. Exporting HTML

/1l Fetch books and format them as HTM.
String html = create. sel ect From(BOXK) . fetch().fornmat HTM.() ;

The above query will result in an HTML document looking like the following one

<t abl e>
<t head>
<tr>
<t h>I D</ t h>
<t h>AUTHOR | D</ t h>
<t h>TI TLE</ t h>
</tr>
</t head>
<t body>
<tr>
<td>1</td>
<td>1</td>
<t d>1984</t d>
</tr>
<tr>
<td>2</td>
<td>1</td>
<t d>Ani mal Farnx/td>
</tr>
</ t body>
</tabl e>

5.9.5. Exporting Text

/'l Fetch books and format them as text
String text = create.sel ect Fron(BOOK).fetch().fornat();

The above query will result in a text document looking like the following one

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

5.9.3. Exporting JSON

Page 127/174

The jOOQ User Manual 5.10. Importing data

B B +
| 1D AUTHOR | D| TI TLE |
B B +
|1 1| 1984 |
| 2| 1| Ani mal Farni
B B +

A simple text representation can also be obtained by calling toString() on a Result object. See also the
manual's section about DEBUG logging

5.10. Importing data

If you are using jOOQ for scripting purposes or in a slim, unlayered application server, you might be
interested in using JOOQ's importing functionality (see also exporting functionality). You can import data
directly into a table from the formats described in the subsequent sections of this manual.

5.10.1. Importing CSV

The below CSV data represents two author records that may have been exported previously, by jJOOQ's
exporting functionality, and then modified in Microsoft Excel or any other spreadsheet tool:

I D, AUTHOR | D, TI TLE <-- Note the CSV header. By default, the first line is ignored
1,1,1984
2,1, Animal Farm

With jOOQ, you can load this data using various parameters from the loader API. A simple load may
look like this:

DSLCont ext create = DSL. using(connection, dialect);

/'l Load data into the AUTHOR table from an input stream
/1 holding the CSV data. (watch out for encoding!)
creat e. | oadl nt o(AUTHOR)

.1 oadCSV(i nput st ream)

.fields(1D, AUTHOR ID, TITLE)

.execute();

Here are various other examples:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 128 /174

The jOOQ User Manual

/1l 1gnore the AUTHOR I D colum fromthe CSV file when inserting

create. | oadl nt o(AUTHOR)
. | 0adCSV(i nput st ream)
.fields(ID, null, TITLE)
. execute();

/1 Specify behaviour for duplicate records.
create. | oadl nt o(AUTHOR)

/1l choose any of these nethods
.onDupl i cat eKeyUpdat e()

.onDupl i cat eKeyl gnore()

.onDupl i cateKeyError() // the default

. | oadCSV(i nput st ream)
.fields(ID, null, TITLE)
.execute();

/'l Specify behaviour when errors occur.
create. | oadl nt o(AUTHOR)

/'l choose any of these nethods
.onErrorlgnore()
.onErrorAbort() // the default

. | oadCSV(i nput st ream)
.fields(ID, null, TITLE)
.execute();

/1l Specify transactional behaviour where this is possible
/1l (e.g. not in container-nanaged transactions)
create. | oadl nt o(AUTHOR)

/1l choose any of these nethods
.commi t Each()

.commi t Af ter (10)

.comm tAll ()

.commi t None() // the default

. | oadCSV(i nput st ream
.fields(ID, null, TITLE)
.execute();

5.10.2. Importing XML

Any of the above configuration methods can be combined to achieve the type of load you need. Please
refer to the API's Javadoc to learn about more details. Errors that occur during the load are reported

by the execute method's result:

Loader <Aut hor > | oader = /* .. */ .execute();

/1 The nunber of processed rows
int processed = | oader. processed();

/1 The nunber of stored rows (INSERT or UPDATE)
int stored = | oader.stored();

I/ The nunber of ignored rows (due to errors, or duplicate rule)

int ignored = | oader.ignored();

I/ The errors that may have occurred during |oading
Li st<Loader Error> errors = | oader.errors();
LoaderError error = errors.get(0);

/1 The exception that caused the error
Dat aAccessExcepti on exception = error.exception();

/1 The row that caused the error
int rowl ndex = error.row ndex();
String[] row = error.row();

I/ The query that caused the error
Query query = error.query();

5.10.2. Importing XML

This is not yet supported

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 129/174

The jOOQ User Manual 5.11. CRUD with UpdatableRecords

5.17. CRUD with UpdatableRecords

Your database application probably consists of 50% - 80% CRUD, whereas only the remaining 20% -
50% of querying is actual querying. Most often, you will operate on records of tables without using any
advanced relational concepts. This is called CRUD for

- Create (INSERT)

- Read (SELECT)

- Update (UPDATE)
- Delete (DELETE)

CRUD always uses the same patterns, regardless of the nature of underlying tables. This again, leads to
a lot of boilerplate code, if you have to issue your statements yourself. Like Hibernate / JPA and other
ORMs, jOOQ facilitates CRUD using a specific APl involving org.jooq.UpdatableRecord types.

Primary keys and updatability

In normalised databases, every table has a primary key by which a tuple/record within that table can be
uniquely identified. In simple cases, this is a (possibly auto-generated) number called ID. But in many
cases, primary keys include several non-numeric columns. An important feature of such keys is the fact
that in most databases, they are enforced using an index that allows for very fast random access to the
table. A typical way to access / modify / delete a book is this:

- Inserting uses a previously generated key value or generates it afresh
I NSERT | NTO BOOK (I D, TITLE) VALUES (5, 'Animal Farm);

-- Other operations can use a previously generated key val ue
SELECT * FROM BOOK WHERE I D = 5;

UPDATE BOOK SET TITLE = ' 1984' WHERE ID = 5;
DELETE FROM BOOK WHERE I D = 5;

Normalised databases assume that a primary key is unique "forever", i.e. that a key, once inserted into
a table, will never be changed or re-inserted after deletion. In order to use jOOQ's CRUD operations
correctly, you should design your database accordingly.

5.11.7. Simple CRUD

If you're using jOOQ's code generator, it will generate org.joog.UpdatableRecord implementations for
every table that has a primary key. When fetching such a record form the database, these records are
"attached" to the Configuration that created them. This means that they hold an internal reference to
the same database connection that was used to fetch them. This connection is used internally by any
of the following methods of the UpdatableRecord:

Il Refresh a record fromthe database.
void refresh() throws DataAccessException;

/Il Store (insert or update) a record to the database.
int store() throws DataAccessException;

Il Delete a record fromthe database
int delete() throws DataAccessException;

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 130/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/UpdatableRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UpdatableRecord.html

The jOOQ User Manual 5.11.1. Simple CRUD

See the manual's section about serializability for some more insight on "attached" objects.

Storing

Storing a record will perform an INSERT statement or an UPDATE statement. In general, new records are
always inserted, whereas records loaded from the database are always updated. This is best visualised
in code:

/Il Create a new record
BookRecord bookl = create. newRecor d(BOXK) ;

/'l Insert the record: INSERT | NTO BOOK (TITLE) VALUES ('1984');

bookl.setTitle("1984");
book1.store();

/1 Update the record: UPDATE BOOK SET PUBLI SHED_IN = 1984 WHERE I D = [id]
book1. set Publ i shedl n(1948) ;
book1l. store();

// Get the (possibly) auto-generated ID fromthe record
Integer id = bookl.getld();

/'l Get another instance of the same book
BookRecord book2 = create.fetchOne(BOOK, BOXK.ID.equal (id));

/'l Update the record: UPDATE BOOK SET TITLE = 'Animal Farmi WHERE ID = [id]

book2. setTitle("Animal Farni);
book2. store();

Some remarks about storing:

- jOOQ sets only modified values in INSERT statements or UPDATE statements. This allows for
default values to be applied to inserted records, as specified in CREATE TABLE DDL statements.

- When store() performs an INSERT statement, jJOOQ attempts to load any generated keys from
the database back into the record. For more details, see the manual's section about IDENTITY
values.

- When loading records from POJOs, jOOQ will assume the record is a new record. It will hence
attempt to INSERT it.

- When you activate optimistic locking, storing a record may fail, if the underlying database record
has been changed in the mean time.

Deleting

Deleting a record will remove it from the database. Here's how you delete records:

/] Get a previously inserted book
BookRecord book = create.fetchOne(BOOK, BOX.ID.equal (5));

/1l Delete the book
book. del ete();

Refreshing

Refreshing a record from the database means that jJOOQ will issue a SELECT statement to refresh all
record values that are not the primary key. This is particularly useful when you use jOOQ's optimistic
locking feature, in case a modified record is "stale" and cannot be stored to the database, because the
underlying database record has changed in the mean time.

In order to perform a refresh, use the following Java code:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 131/174

The jOOQ User Manual 5.11.2. Records' internal flags

/|l Fetch an updatable record fromthe database
BookRecord book = create. fetchOne(BOOK, BOXK.ID.equal (5));

!/l Refresh the record
book. refresh();

CRUD and SELECT statements

CRUD operations can be combined with regular querying, if you select records from single database
tables, as explained in the manual's section about SELECT statements. For this, you will need to use the
selectFrom() method from the DSLContext:

Il Loop over records returned froma SELECT statenent
for (BookRecord book : create.fetch(BOOK, BOOK. PUBLI SHED | N. equal (1948))) {

I/ Perform actions on BookRecords dependi ng on some conditions
if ("Owell".equal s(book. fetchParent (Keys. FK_BOOK_AUTHCR) . get Last Nane())) {
book. del ete();

}
}

5.11.2. Records' internal flags

All of jOOQ's Record types and subtypes maintain an internal state for every column value. This state
is composed of three elements:

- Thevalue itself

- The"original" value, i.e. the value as it was originally fetched from the database or null, if the
record was never in the database

- The "changed" flag, indicating if the value was ever changed through the Record API.

The purpose of the above information is for JOOQ's CRUD operations to know, which values need to be
stored to the database, and which values have been left untouched.

5.11.3. IDENTITY values

Many databases support the concept of IDENTITY values, or SEQUENCE-generated key values. This is
reflected by JDBC's getGeneratedKeys() method. JOOQ abstracts using this method as many databases
and JDBC drivers behave differently with respect to generated keys. Let's assume the following SQL
Server BOOK table:

CREATE TABLE book (
I'D INTEGER | DENTI TY(1,1) NOT NULL,

[

CONSTRAI NT pk_book PRI MARY KEY (i d)
)

If you're using jOOQ's code generator, the above table will generate a org.joog.UpdatableRecord with
an IDENTITY column. This information is used by jOOQ internally, to update IDs after calling store():

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 132/174

http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html#getGeneratedKeys()
http://www.jooq.org/javadoc/3.0.x/org/jooq/UpdatableRecord.html

The jOOQ User Manual 5.11.4. Navigation methods

BookRecord book = create. newRecor d(BOXK) ;
book. set Title("1984");
book. store();

I/ The generated ID value is fetched after the above | NSERT statenent
System out . print| n(book. getld());

Database compatibility

DB2, Derby, HSQLDB, Ingres

These SQL dialects implement the standard very neatly.

id I NTEGER GENERATED BY DEFAULT AS | DENTI TY
id | NTEGER GENERATED BY DEFAULT AS | DENTITY (START W TH 1)

H2, MySQL, Postgres, SQL Server, Sybase ASE, Sybase SQL Anywhere
These SQL dialects implement identites, but the DDL syntax doesn't follow the standard

-- H2 minicks MSQL's and SQL Server's syntax
I D I NTEGER | DENTI TY(1, 1)
I D | NTEGER AUTO_| NCREMENT
- MySQL and SQLite
I D I NTEGER NOT NULL AUTO_| NCREVENT

- Postgres serials inplicitly create a sequence

- Postgres also allows for selecting from custom sequences
- That way, sequences can be shared anong tables

id SERIAL NOT NULL

- SQL Server

I D I NTEGER | DENTI TY(1, 1) NOT NULL
- Sybase ASE

id I NTEGER | DENTI TY NOT NULL

- Sybase SQL Anywhere

id I NTEGER NOT NULL | DENTITY

Oracle

Oracle does not know any identity columns at all. Instead, you will have to use a trigger and update the
ID column yourself, using a custom sequence. Something along these lines:

CREATE OR REPLACE TRI GGER ny_tri gger
BEFORE | NSERT
ON ny_table
REFERENCI NG NEW AS new
FOR EACH ROW
BEG N
SELECT ny_sequence. next val
I NTO : new.id
FROM dual ;
END ny_trigger;

Note, that this approach can be employed in most databases supporting sequences and triggers! It is
a lot more flexible than standard identities

5.11.4. Navigation methods

org.joog.TableRecord and org.joog.UpdatableRecord contain foreign key navigation methods. These
navigation methods allow for "navigating" inbound or outbound foreign key references by executing an
appropriate query. An example is given here:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 133/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/TableRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UpdatableRecord.html

The jOOQ User Manual 5.11.5. Non-updatable records

CREATE TABLE book (BookRecord book = create.fetch(BOOK, BOX. ID.equal(5));
AUTHOR | D NUMBER(7) NOT NULL,
/1 Find the author of a book (static inported from Keys)
= Mlaaoll Aut hor Record aut hor = book. f et chPar ent (FK_BOOK_AUTHCR) ;

FOREI GN KEY (AUTHOR | D) REFERENCES aut hor (| D) /1 Find other books by that author
) Resul t <BookRecor d> books = aut hor. f et chChi | dr en(FK_BOOK_AUTHOR) ;

Note that, unlike in Hibernate, jOOQ's navigation methods will always lazy-fetch relevant records,
without caching any results. In other words, every time you run such a fetch method, a new query will
be issued.

These fetch methods only work on "attached" records. See the manual's section about serializability for
some more insight on "attached" objects.

5.11.5. Non-updatable records

Tables without a PRIMARY KEY are considered non-updatable by jOOQ, as jOOQ has no way of uniquely
identifying such a record within the database. If you're using jJOOQ's code generator, such tables will
generate org.joog.TableRecord classes, instead of org.joog.UpdatableRecord classes. When you fetch
typed records from such a table, the returned records will not allow for calling any of the store(), refresh(),
delete() methods.

Note, that some databases use internal rowid or object-id values to identify such records. jJOOQ does
not support these vendor-specific record meta-data.

5.11.6. Optimistic locking

jOOQ allows you to perform CRUD operations using optimistic locking. You can immediately take
advantage of this feature by activating the relevant executeWithOptimisticLocking Setting. Without any
further knowledge of the underlying data semantics, this will have the following impact on store() and
delete() methods:

- INSERT statements are not affected by this Setting flag

- Prior to UPDATE or DELETE statements, JOOQ will run a SELECT .. FOR UPDATE statement,
pessimistically locking the record for the subsequent UPDATE / DELETE

- The data fetched with the previous SELECT will be compared against the data in the record being
stored or deleted

- An org.joog.exception.DataChangedException is thrown if the record had been modified in the
mean time

- The record is successfully stored / deleted, if the record had not been modified in the mean
time.

The above changes to jOOQ's behaviour are transparent to the API, the only thing you need to do for
it to be activated is to set the Settings flag. Here is an example illustrating optimistic locking:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 134 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/TableRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UpdatableRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/exception/DataChangedException.html

The jOOQ User Manual 5.11.6. Optimistic locking

/'l Properly configure the DSLContext
DSLCont ext optim stic = DSLCont ext.using(connection, SQLDi al ect. ORACLE,
new Settings().w thExecuteW thOptim sticLocking(true));

/'l Fetch a book two tines
BookRecord bookl = optimistic.fetch(BOXK, BOXK. ID.equal(5));
BookRecord book2 = optimstic.fetch(BOXK, BOXK. ID.equal (5));

// Change the title and store this book. The underlying database record has not been nodified, it can be safely updated.
book1.setTitle("Animal Farni);

book1l. store();

/1 Book2 still references the original TITLE value, but the database holds a new val ue from bookl.store().

// This store() will thus fail:

book2. set Title("1984");
book2. store();

Optimised optimistic locking using TIMESTAMP fields

If you're using jOOQ's code generator, you can take indicate TIMESTAMP or UPDATE COUNTER fields
for every generated table in the code generation configuration. Let's say we have this table:

CREATE TABLE book (

- This colum indicates when each book record was nodified for the last tine
MODI FI ED TI MESTAVP NOT NULL,
|

The MODIFIED column will contain a timestamp indicating the last modification timestamp for any
book in the BOOK table. If you're using jOOQ and it's store() methods on UpdatableRecords, jOOQ will
then generate this TIMESTAMP value for you, automatically. However, instead of running an additional
SELECT .. FOR UPDATE statement prior to an UPDATE or DELETE statement, jOOQ adds a WHERE-clause
to the UPDATE or DELETE statement, checking for TIMESTAMP's integrity. This can be best illustrated
with an example:

/'l Properly configure the DSLContext
DSLCont ext optim stic = DSL.using(connection, SQLD al ect. ORACLE,
new Settings().w thExecuteWthOptim sticlLocking(true));

/'l Fetch a book two tines
BookRecord bookl = optimstic.fetch(BOXK, BOX. ID.equal(5));
BookRecord book2 = optimstic.fetch(BOXK, BOX. ID.equal (5));

/'l Change the title and store this book. The MODI FlI ED val ue has not been changed since the book was fetched.
/1 1t can be safely updated

bookl.set Titl e("Animal Farnt);

book1. store();

/'l Book2 still references the original MODI FIED val ue, but the database hol ds a new val ue from bookl.store().
/Il This store() will thus fail:

book2. set Titl e("1984");
book2. store();

As before, without the added TIMESTAMP column, optimistic locking is transparent to the API.

Optimised optimistic locking using VERSION fields

Instead of using TIMESTAMPs, you may also use numeric VERSION fields, containing version numbers
that are incremented by JOOQ upon store() calls.

Note, for explicit pessimistic locking, please consider the manual's section about the FOR UPDATE
clause. For more details about how to configure TIMESTAMP or VERSION fields, consider the manual's
section about advanced code generator configuration.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 135/174

The jOOQ User Manual 5.11.7. Batch execution

5.11.7. Batch execution

When inserting, updating, deleting a lot of records, you may wish to profit from JDBC batch operations,
which can be performed by jOOQ. These are available through jOOQ's DSLContext as shown in the
following example:

/'l Fetch a bunch of books
Resul t <BookRecor d> books = create. f et ch(BOXK) ;

/1 Modify the above books, and add sone new ones:
nodi f y(books) ;
addMor e(books) ;

// Batch-update and/or insert all of the above books
creat e. bat chSt or e(books) ;

Internally, JOOQ will render all the required SQL statements and execute them as a regular |DBC batch
execution.

5.12. DAOs

If you're using jOOQ's code generator, you can configure it to generate POJOs and DAQOs for you.
jOOQ then generates one DAO per UpdatableRecord, i.e. per table with a single-column primary key.
Generated DAOs implement a common jOOQ type called org.jooq.DAQ. This type contains the following
methods:

I/l <R> corresponds to the DAO s related table

Il <P> corresponds to the DAO s rel ated generated PQIO type

I/ <T> corresponds to the DAO's related table's primary key type.

// Note that nulti-columm primary keys are not yet supported by DAGCs
public interface DAO<R extends Tabl eRecord<R>, P, T> {

/1 These nethods allow for inserting PQICs

voi d insert(P object) throws DataAccessException;

void insert(P... objects) throws DataAccessException;

voi d insert(Collection<P> objects) throws DataAccessException;

I/ These nethods allow for updating PQIOs based on their prinmary key
voi d update(P object) throws DataAccessException;

voi d update(P... objects) throws DataAccessException;

voi d updat e(Col | ecti on<P> obj ects) throws DataAccessException;

/1 These nethods allow for deleting PQIOs based on their prinmary key

voi d del ete(P... objects) throws DataAccessException;
voi d del ete(Col | ecti on<P> obj ects) throws DataAccessException;
voi d del eteByld(T... ids) throws DataAccessException;

voi d del eteByl d(Col | ecti on<T> ids) throws DataAccessException;

/1 These nethods all ow for checking record existence
bool ean exi sts(P object) throws DataAccessException;
bool ean exi stsByld(T id) throws DataAccessException;
long count () throws DataAccessException;

I/ These nmethods allow for retrieving PQJCs by prinary key or by sone other field
Li st<P> findAl |l () throws DataAccessException;

P findByld(T id) throws DataAccessException;

<Z> List<P> fetch(Field<z> field, Z .. values) throws DataAccessException;

<Z> P fetchOne(Field<z> field, Z value) throws DataAccessException;

I/ These nethods provi de DAO neta-infornation

Tabl e<R> get Tabl e() ;
Cl ass<P> get Type();

Besides these base methods, generated DAO classes implement various useful fetch methods. An
incomplete example is given here, for the BOOK table:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 136/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/DAO.html

The jOOQ User Manual 5.13. Exception handling

/1 An exanpl e generated BookDao cl ass
public class BookDao extends DAQO npl <BookRecord, Book, I|nteger> {

// Columms with primary / unique keys produce fetchOne() nethods
public Book fetchOneByld(Integer value) { ... }

/1 O her colums produce fetch() nethods, returning several records

public List<Book> fetchByAuthorld(Integer... values) { ... }
public List<Book> fetchByTitle(String... values) { ... }

Note that you can further subtype those pre-generated DAO classes, to add more useful DAO methods
to them. Using such a DAQ is simple:

// Initialise an Configuration
Configuration configuration = new Defaul t Configuration().set(connection).set(SQ.Di al ect. ORACLE);

// Initialise the DAOw th the Configuration
BookDao bookDao = new BookDao(confi guration);

/]l Start using the DAO
Book book = bookDao. findByl d(5);

/1 Modify and update the PQIO
book. set Ti tl e("1984");

book. set Publ i shedl n(1948) ;
bookDao. updat e(book) ;

I/l Delete it again
bookDao. del et e(book) ;

5.13. Exception handling

Checked vs. unchecked exceptions

This is an eternal and religious debate. Pros and cons have been discussed time and again, and it still
is a matter of taste, today. In this case, JOOQ clearly takes a side. j[OOQ's exception strategy is simple:

- All "system exceptions" are unchecked. If in the middle of a transaction involving business logic,
there is no way that you can recover sensibly from a lost database connection, or a constraint
violation that indicates a bug in your understanding of your database model.

- All "business exceptions" are checked. Business exceptions are true exceptions that you should
handle (e.g. not enough funds to complete a transaction).

With jJOOQ, it's simple. All of JOOQ's exceptions are "system exceptions", hence they are all unchecked.

jO0Q's DataAccessException

jOOQ uses its own orgjoog.exception.DataAccessException to wrap any underlying
Java.sgl.SQLException that might have occurred. Note that all methods in jJOOQ that may cause such a
DataAccessException document this both in the Javadoc as well as in their method signature.

DataAccessException is subtyped several times as follows:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 137 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/exception/DataAccessException.html
http://download.oracle.com/javase/8/docs/apijava/sql/SQLException.html

The jOOQ User Manual 5.14. Executelisteners

- DataAccessException: General exception usually originating from a java.sgl.SQLException

- DataChangedException: An exception indicating that the database's underlying record has been
changed in the mean time (see optimistic locking)

- DataTypeException: Something went wrong during type conversion

- DetachedException: A SQL statement was executed on a "detached" UpdatableRecord or a
"detached" SQL statement.

- InvalidResultException: An operation was performed expecting only one result, but several
results were returned.

- MappingException: Something went wrong when loading a record from a POJO or when
mapping a record into a POJO

Override JOOQ's exception handling

The following section about execute listeners documents means of overriding jOOQ's exception
handling, if you wish to deal separately with some types of constraint violations, or if you raise business
errors from your database, etc.

5.14. Executelisteners

The Executor class lets you specify a list of org.joog.Executelistener instances. The Executelistener
is essentially an event listener for Query, Routine, or ResultSet render, prepare, bind, execute, fetch
steps. It is a base type for loggers, debuggers, profilers, data collectors, triggers, etc. Advanced
ExecuteListeners can also provide custom implementations of Connection, PreparedStatement and
ResultSet to jOOQ in apropriate methods.

For convenience and better backwards-compatibility, consider extending
org.joog.impl.DefaultExecutelistener instead of implementing this interface.

Here is a sample implementation of an ExecuteListener, that is simply counting the number of queries
per type that are being executed using jOOQ:

package com exanpl e;

/1 Extending Defaul t ExecuteListener, which provides enpty inplenentations for all nethods...
public class StatisticsListener extends Defaul t ExecutelListener {
public static Map<ExecuteType, |nteger> STATI STICS = new HashMap<Execut eType, |nteger>();

/1l Count "start" events for every type of query executed by jOOQ
@verride
public void start(ExecuteContext ctx) {
synchroni zed (STATI STICS) {
I nteger count = STATI STICS. get (ctx.type());

if (count == null) {

count = 0;

STATI STI CS. put (ctx. type(), count + 1);

Now, configure jOOQ's runtime to load your listener

/'l Create a configuration with an appropriate |istener provider:
Configuration configuration = new Defaul t Configuration().set(connection).set(dialect);
configuration. set (new Defaul t Execut eLi stener Provi der (new StatisticsListener()));

/'l Create a DSLContext fromthe above configuration
DSLCont ext create = DSL. using(configuration);

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 138/174

http://download.oracle.com/javase/8/docs/apijava/sql/SQLException.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/ExecuteListener.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/impl/DefaultExecuteListener.html

The jOOQ User Manual 5.15. Database meta data

And log results any time with a snippet like this:

| 0g. i nf o(" STATI STI CS") ;
log.info("---------- e

for (ExecuteType type : ExecuteType.values()) {
log.info(type.nane(), StatisticsListener.STATI STICS. get (type) + " executions");

This may result in the following log output:

15:16: 52,982 | NFO - TEST STATI STI CS
15:16: 52,982 INFO - -----cocmomnn--

15:16: 52,983 | NFO - READ : 919 executions
15:16: 52,983 |INFO - WRITE : 117 executions
15:16: 52,983 | NFO - DDL : 2 executions
15:16: 52,983 | NFO - BATCH : 4 executions
15:16: 52,983 | NFO - ROUTI NE : 21 executions
15:16: 52,983 | NFO - OTHER : 30 executions

Please read the Executelistener Javadoc for more details

Writing a custom ExecuteListener for logging

The following depicts an example of a custom ExecuteListener, which pretty-prints all queries being
executed by jOOQ to stdout:

i nport org.jooq. DSLCont ext ;

i nport org.jooq. Execut eCont ext ;

inport org.joog.conf.Settings;

inport org.jooq.inpl.Defaul t Executelistener;
inport org.jooq.tools.StringUils;

public class PrettyPrinter extends Defaul t ExecutelListener {

[xx
* Hook into the query execution lifecycle before executing queries
i
@verride
public void executeStart(ExecuteContext ctx) {

/] Create a new DSLContext for |ogging rendering purposes
/'l This DSLContext doesn't need a connection, only the SQDi al ect. ..
DSLCont ext create = DSL. using(ctx.configuration().dialect(),

/Il ... and the flag for pretty-printing
new Settings().w thRender Formatted(true));

/1 If we're executing a query
if (ctx.query() !'=null) {
Systemout. println(create.renderlnlined(ctx.query()));

}
/1 If we're executing a routine
else if (ctx.routine() !=null) {

Systemout. println(create.renderlnlined(ctx.routine()));
}
/1 If we're executing anything else (e.g. plain SQ)
else if (!StringUtils.isBlank(ctx.sql())) {

Systemout . println(ctx.sql());
}

See also the manual's sections about logging and the JOOQ Console for more sample implementations
of actual Executelisteners.

5.15. Database meta data

Since jOOQ 3.0, a simple wrapping APl has been added to wrap JDBC's rather awkward
Java.sgl.DatabaseMetaData. This API is still experimental, as the calls to the underlying JDBC type are
not always available for all SQL dialects.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 139/174

http://www.jooq.org/javadoc/3.0.x/org/jooq/ExecuteListener.html
http://download.oracle.com/javase/8/docs/apijava/sql/DatabaseMetaData.html

The jOOQ User Manual

5.16. Logging

5.16. Logging

jOOQ logs all SQL queries and fetched result sets to its internal DEBUG logger, which is implemented
as an execute listener. By default, execute logging is activated in the JOOQ Settings. In order to see any
DEBUG log output, put either log4j or slf4j on jOOQ's classpath along with their respective configuration.

A sample log4j configuration can be seen here:

<?xm version="1.0" encodi ng="UTF-8"?>
<l og4j : confi guration>
<appender nane="stdout" class="org. apache. | og4j. Consol eAppender ">
<l ayout class="org. apache. | og4j. PatternLayout">
<par am nane="Conver si onPattern" val ue="%m" />
</ | ayout >
</ appender >

<root >
<priority val ue="debug" />
<appender -ref ref="stdout" />
</root >
</ | og4j : confi gurati on>

With the above configuration, let's fetch some data with jOOQ

// Using H2, this tine
create. sel ect (BOOK. | D, BOOK. TI TLE) . f r on{ BOOK) . or der By(BOOK. I D). limit (1, 2).fetch();

The above query may result in the following log output:

Executing query : select "BOXK'."ID', "BOOK"."TITLE" from"BOOK" order by "BOX"'."ID' asc, limt ? offset ?
-> with bind val ues : select "BOXK'."ID', "BOOK"."TITLE" from"BOOK" order by "BOX"'."ID' asc, limt 2 offset 1
Query execut ed : Total: 1.439nms
Fetched resul t e +

: | IDTITLE |

I e +

o 2| Ani mal Farm |
o 3| O Al qui mi st al
I e +
Fi ni shi ng : Total: 4.814ns, +3.375ns

Essentially, JOOQ will log

- The SQL statement as rendered to the prepared statement

- The SQL statement with inlined bind values (for improved debugging)

- The query execution time

- Thefirst 5 records of the result. This is formatted using jOOQ's text export
- The total execution + fetching time

If you wish to use your own logger (e.g. avoiding printing out sensitive data), you can deactivate jJOOQ's

logger using your custom settings and implement your own execute listener logger.

5.17. Performance considerations

Many users may have switched from higher-level abstractions such as Hibernate to jOOQ, because
of Hibernate's difficult-to-manage performance, when it comes to large database schemas and
complex second-level caching strategies. However, jOOQ itself is not a lightweight database abstraction
framework, and it comes with its own overhead. Please be sure to consider the following points:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 140/174

The jOOQ User Manual 5.17. Performance considerations

- It takes some time to construct jJOOQ queries. If you can reuse the same queries, you might
cache them. Beware of thread-safety issues, though, as jJOOQ's Configuration is not necessarily
threadsafe, and queries are "attached" to their creating DSLContext

- It takes some time to render SQL strings. Internally, JOOQ reuses the same
java.lang.StringBuilder for the complete query, but some rendering elements may take
their time. You could, of course, cache SQL generated by jOOQ and prepare your own
java.sgl.PreparedStatement objects

- It takes some time to bind values to prepared statements. jJOOQ does not keep any open
prepared statements, internally. Use a sophisticated connection pool, that will cache prepared
statements and inject them into jOOQ through the standard JDBC API

- It takes some time to fetch results. By default, jJOOQ will always fetch the complete
java.sgl.ResultSet into memory. Use lazy fetching to prevent that, and scroll over an open
underlying database cursor

Optimise wisely

Don't be put off by the above paragraphs. You should optimise wisely, i.e. only in places where you really
need very high throughput to your database. JOOQ's overhead compared to plain JDBC is typically less
than Tms per query.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 141 /174

http://download.oracle.com/javase/8/docs/apijava/lang/StringBuilder.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html

The jOOQ User Manual 6. Code generation

6. Code generation

While optional, source code generation is one of JOOQ's main assets if you wish to increase developer
productivity. JOOQ's code generator takes your database schema and reverse-engineers it into a set of
Java classes modelling tables, records, sequences, POJOs, DAOs, stored procedures, user-defined types
and many more.

The essential ideas behind source code generation are these:

- Increased IDE support: Type your Java code directly against your database schema, with all type
information available

- Type-safety: When your database schema changes, your generated code will change as well.
Removing columns will lead to compilation errors, which you can detect early.

The following chapters will show how to configure the code generator and how to generate various
artefacts.

6.1. Configuration and setup of the generator

There are three binaries available with jOOQ, to be downloaded from http://www.joog.org/download
or from Maven central:

- joog-3.0.1.jar
The main library that you will include in your application to run jOOQ
- joog-meta-3.0.1.jar
The utility that you will include in your build to navigate your database schema for code
generation. This can be used as a schema crawler as well.
- joog-codegen-3.0.1.jar
The utility that you will include in your build to generate your database schema

Configure jJOOQ's code generator

You need to tell jJOOQ some things about your database connection. Here's an example of how to do
it for an Oracle database

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 142 /174

http://www.jooq.org/download

The jOOQ User Manual 6.1. Configuration and setup of the generator

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<confi guration>
<!-- Configure the database connection here -->
<j dbc>
<driver>oracle.jdbc. Oracl eDriver</driver>
<url >j dbc: oracl e:thin: @your jdbc connection paraneters]</url>
<user >[your dat abase user]</user>
<passwor d>[your database password] </ passwor d>

<!-- You can al so pass user/password and other JDBC properties in the optional properties tag: -->
<properties>
<pr opert y><key>user </ key><val ue>[db- user] </ val ue></ property>
<pr oper t y><key>passwor d</ key><val ue>[db- passwor d] </ val ue></ property>
</ properties>
</ j dbc>

<gener at or >
<dat abase>
<!-- The database dial ect fromjoog-neta. Available dialects are
naned org.util.[database].[database] Dat abase. Known val ues are:

org.jooq.util.ase. ASEDat abase (to be used with Sybase ASE)
org.jooq.util.cubrid. CUBRI DDat abase

org.jooq.util.db2. DB2Dat abase

org.jooq.util.derby. DerbyDat abase

org.jooq.util.h2. H2Dat abase

org.jooq.util.hsgl db. HSQLDBDat abase
org.joog.util.ingres.|ngresDatabase
org.jooq.util.nysqgl.M/SQDatabase

org.jooq.util.oracle. O acl eDat abase
org.jooq.util.postgres. Post gresDat abase
org.jooq.util.sqglite.SQLiteDatabase
org.jooq.util.sqlserver.SQServer Dat abase
org.jooq.util.sybase. SybaseDat abase (to be used with Sybase SQL Anywhere)

You can al so provide your own org.jooq.util.Database inplenmentation

here, if your database is currently not supported or if you wish to

read the database schema froma file, such as a Hibernate .hbmxnl file -->
<name>or g. j ooq. util.oracl e. Oracl eDat abase</ name>

<l-- Al elenents that are generated fromyour schema (A Java regul ar expression.
Use the pipe to separate several expressions) Watch out for
case-sensitivity. Depending on your database, this m ght be
important! You can create case-insensitive regul ar expressions
using this syntax: (?i:expr) -->

<i ncl udes>. *</ i ncl udes>

<l-- Al elenents that are excluded fromyour schema (A Java regul ar expression.
Use the pipe to separate several expressions). Excludes natch before
includes -->

<excl udes></ excl udes>

<!-- The schema that is used locally as a source for neta information.
This coul d be your devel opnent schema or the production schenma, etc
This cannot be conmbined with the schenata el enent.

If left enpty, jOOQ will generate all available schemata. See the
nmanual s next section to |earn how to generate several schemata -->
<i nput Schema>[your database schema / owner / nane] </i nput Schema>
</ dat abase>

<gener at e>
<!-- Ceneration flags: See advanced configuration properties -->
</ gener at e>

<t arget >
<!-- The destination package of your generated classes (wthin the
destination directory) -->
<packageName>[or g. j 0ooq. your . packagenane] </ packageNane>
<!-- The destination directory of your generated classes -->
<directory>[/path/to/your/dir]</directory>
</target>

</ gener at or >
</ configuration>

There are also lots of advanced configuration parameters, which will be treated in the manual's
section about advanced code generation features Note, you can find the official XSD file for a formal
specification at:

http://www.joog.org/xsd/joog-codegen-3.0.0.xsd

Run jOOQ code generation
Code generation works by calling this class with the above property file as argument.

org.jooq.util.GenerationTool /joog-config.xm

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 143/174

http://www.jooq.org/xsd/jooq-codegen-3.0.0.xsd

The jOOQ User Manual 6.1. Configuration and setup of the generator

Be sure that these elements are located on the classpath:

- The XML configuration file
- jo0g-3.0.1 jar, joog-meta-3.0.1.jar, joog-codegen-3.0.1.jar
- TheJDBC driver you configured

A command-line example (For Windows, unix/linux/etc will be similar)

- Putthe property file, joog*.jar and the JDBC driver into a directory, e.g. C:\temp\jooq

- Goto C\temp\jooq

- Run java -cp joog-3.0.1.jar;joog-meta-3.0.1.jar;joog-codegen-3.0.1 jar;[JDBC-driver] jar;.
org.joog.util.GenerationTool /[XML file]

Note that the property file must be passed as a classpath resource

Run code generation from Eclipse

Of course, you can also run code generation from your IDE. In Eclipse, set up a project like this. Note that:

- this example uses jOOQ's log4j support by adding log4j.xml and log4j.jar to the project
classpath.

- the actual joog-3.0.1.jar, joog-meta-3.0.1 jar, joog-codegen-3.0.1.jar artefacts may contain
version numbers in the file names.

4 I,:‘,J- examnple

4 [src
|X] librarny.xml
|%] logdjxml

- = JRE Systemn Library [JavaSE-1.7]
4 =, Referenced Libraries
: u;_aT__.'a joog-codegen.jar
. w3 joog-metajar
. o8 joogjar
» (o3 logdj-1.2.16.jar
. o mysgl-connector-java-5.1.15-bin jar

Once the project is set up correctly with all required artefacts on the classpath, you can configure an
Eclipse Run Configuration for org.joog.util. GenerationTool.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 144 /174

The jOOQ User Manual 6.1. Configuration and setup of the generator

Mame: | GenerationTool My5CL Exarmnple |
Q Main . ()= Argumemﬂ = JRE\I L Classpath\l E"W Suurce\l B Envimnmenﬂ = Qummun\l A

Project:

| exarnple | | Browse... |
Main class:
| org.jooq.util.GeneraticnTool | | Search... |

[] Include system libraries when searching for a main class
[TInclude inherited mains when searching for a main class

] Stop in main

Apply | | Revert

With the XML file as an argument

Mame: | GenerationTool My5CL Example |
i . = . !
O Main (9= Arguments =i JRE\I L Classpath\l B Suurce\l B Emrlmnmenﬂ = Q::-mmc-n\l
Program arguments:
Aibrary xml
VM argurnents:
Working directory:
(@) Default: SYworkspace_locexample}
() Other:
Waorkspace... File System... Variables...
| Apply | | Revert

And the classpath set up correctly

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 145/174

The jOOQ User Manual 6.1. Configuration and setup of the generator

Mame: | GenerationT ool MySOL Example
i . = . ™
@ Main (M= Arguments (ﬁ, IRE ({"q} Classpath - &~ Source\l -} Enwronment\l = Common\l
Classpath:
4 “%; Bootstrap Entries Up
=i JRE System Library [JavaSE-1.7]
4 % User Entries Down
J
IE raxample]] Remove
[joog-codegen.ar - hexamplehlib
(g joog-metajar - \example\libh Add Projects...
[joog.jar - vexamplellib,
s logdj-1.2.16.jar - \example\lib\ Add JARs...
[rmysgl-connector-java-5.1.15-bin.jar - \exampleilibh Add External JARs...
Advanced...
Edit...
Restore Default Entries
Apply Revert

Finally, run the code generation and see your generated artefacts

4= example
4 28 src
» 4 orgjooqtest.mysgl.generatedclasses
1 orgjooq.test.mysql.generatedclasses.enums
2 orgjooq.test.mysgl.generatedclasses.routines
B org.jooq.test.mysql.generatedclasses.tables
 org.jooq.test.mysqgl.generatedclasses.tables.records

VW W W

|%] library.xml

1% logdjxml
& = JRE System Library [JavaSE-1.7]
> = Referenced Libraries

Run generation with ant

When running code generation with ant's <java/> task, you may have to set fork="true":

<!-- Run the code generation task -->

<target name="generate-test-classes">
<java fork="true" classnane="org.jooq.util.GenerationTool ">
</java>

</target>

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 146 /174

The jOOQ User Manual 6.2. Advanced generator configuration

Integrate generation with Maven

Using the official (OOQ-codegen-maven plugin, you can integrate source code generation in your Maven
build process:

<pl ugi n>

<l-- Specify the nmaven code generator plugin -->
<gr oupl d>or g. j oog</ gr oupl d>

<artifactl|d>j oog-codegen-maven</artifact|d>
<version>3. 0. 1</ ver si on>

<I'-- The plugin should hook into the generate goal -->
<executions>
<execution>
<goal s>
<goal >gener at e</ goal >
</ goal s>
</ executi on>
</ executi ons>

<!-- Manage the plugin's dependency. In this exanple, we'll use a PostgreSQ. database -->
<dependenci es>
<dependency>
<gr oupl d>post gr esql </ gr oupl d>
<artifact!ld>postgresql </artifactld>
<ver si on>8. 4- 702. j dbc4</ ver si on>
</ dependency>
</ dependenci es>

<l-- Specify the plugin configuration
The configuration format is the sane as for the standal one code generator -->
<confi guration>

<!-- JDBC connection paraneters -->

<j dbc>
<driver>org. postgresql.Driver</driver>
<ur| >j dbc: post gresql : post gres</url >
<user >post gr es</ user >
<passwor d>t est </ passwor d>

</ j dbc>

<l-- Cenerator paranmeters -->
<gener at or >
<dat abase>
<name>or g. j 00q. uti | . post gres. Post gr esDat abase</ name>
<i ncl udes>. *</ i ncl udes>
<excl udes></ excl udes>
<i nput Schema>publ i c</i nput Schenma>
</ dat abase>
<t arget >
<packageName>or g. j 0oq. uti | . maven. exanpl e</ packageNanme>
<di rect ory>t arget/ gener at ed- sour ces/ j ooq</ di r ect ory>
</target>
</ gener at or >
</ configuration>
</ pl ugi n>

Use JOOQ generated classes in your application

Be sure, both joog-3.0.1.jar and your generated package (see configuration) are located on your
classpath. Once this is done, you can execute SQL statements with your generated classes.

6.2. Advanced generator configuration

In the previous section we have seen how jOOQ's source code generator is configured and run within
a few steps. In this chapter we'll cover some advanced settings

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 147 /174

The jOOQ User Manual 6.2. Advanced generator configuration

<!-- These properties can be added directly to the generator elenment: -->
<gener at or >
<!-- The default code generator. You can override this one, to generate your own code style

Defaults to org.jooq.util.JavaCGenerator -->
<name>or g. j 00q. uti | . JavaGener at or </ nane>

<!-- The naming strategy used for class and field nanes.
You may override this with your custom naning strategy. Some exanples follow
Defaults to org.jooq.util.DefaultGeneratorStrategy -->
<strategy>
<nane>or g. j ooq. uti | . Def aul t Gener at or St r at egy</ nane>
</ strategy>
</ gener at or >

The following example shows how you can override the DefaultGeneratorStrategy to render table and
column names the way they are defined in the database, rather than switching them to camel case:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 148/174

The jOOQ User Manual

*
*
*
*
*
*
*
*
*

It is recoomended that you extend the Defaul t GeneratorStrategy. Mst of the
GeneratorStrategy APl is already declared final. You only need to override any
of the follow ng nethods, for whatever generation behaviour you'd |ike to achieve

Bewar e that npst nmethods al so receive a "Mdde" object, to tell you whether a
Tabl eDefinition is being rendered as a Table, Record, PQJO etc. Depending on
that information, you can add a suffix only for Tabl eRecords, not for Tables
/

public class AslnDatabaseStrategy extends Defaul t GeneratorStrategy {

/**
* Override this to specifiy what identifiers in Java should | ook |ike.
* This will just take the identifier as defined in the database.
*/
@verride
public String getJavaldentifier(Definition definition) {
return definition.getCQutputNane();
}

/**
* Override these to specify what a setter in Java should | ook |ike. Setters
* are used in Tabl eRecords, UDTRecords, and PQJCs. This exanple will nane
* setters "set[NAVE | N _DATABASE] "
*/
@verride
public String getJavaSetterNane(Definition definition, Mde node) {
return "set" + definition.getCQutputNane();
}

/**

* Just like setters...

*/

@verride

public String getJavaGetterNane(Definition definition, Mde node) {
return "get" + definition.getCQutputNane();

}

/**

* Override this nethod to define what a Java nethod generated from a dat abase
* Definition should look like. This is used nostly for conveni ence nethods

* when calling stored procedures and functions. This exanple shows how to

* set a prefix to a Canel Case version of your procedure

*/
@verride
public String getJavaMet hodNane(Definition definition, Mde node) {
return "call" + org.joog.tools.StringUils.toCanel Case(definition.getQutputNane());
}
/**

* Override this nethod to define how your Java classes and Java files shoul d
* be naned. This exanple applies no customsetting and uses Canel Case versions
* instead
*/
@verride
public String getJavaC assName(Definition definition, Mde node) {
return super.getJavaCl assNane(definition, node);
}

/**

* Override this nethod to re-define the package nanes of your generated

* artefacts.

*/

@verride

public String getJavaPackageName(Definition definition, Mde node) {
return super.get JavaPackageNane(definition, node);

}

/**
* Override this nethod to define how Java nenbers should be named. This is
* used for PQJCs and nethod argunents
*/
@verride
public String getJavaMenber Nane(Definition definition, Mde node) {
return definition.getCQutputNane();
}

/**
* Override this nethod to define the base class for those artefacts that
* allow for custom base classes
*/

@verride

public String getJavaC assExtends(Definition definition, Mde node) {

return Object.class. get Nane();
}

/**
* Override this nethod to define the interfaces to be inplenented by those
* artefacts that allow for custominterface inplenentation
*/
@verride
public List<String> getJavaCd assl npl enents(Definition definition, Mde node) {
return Arrays. aslList(Serializable.class.getNane(), C oneable.class.getNane());
}

/*
Override this method to define the suffix to apply to routines when

they are overl oaded.

* ok kX

Use this to resolve conpile-tine conflicts in generated source code, in
* case you make heavy use of procedure overl oadi ng

*/

@verride

public String getOverloadSuffix(Definition definition, Mde npode, String overloadl ndex) {

return "_Overl oadl ndex_" + overl oadl ndex;

}

6.2. Advanced generator configuration

The jOOQ User Manual 6.2. Advanced generator configuration

More examples can be found here:

- org.jooq.util.example.]PrefixGeneratorStrategy
- org.ijooq.util.example.JVMArgsGeneratorStrategy

joog-meta configuration
Within the <generator/> element, there are other configuration elements:

<!-- These properties can be added to the database el enent: -->
<dat abase>

<l-- Al table and view colums that are used as "version" fields for
optimstic |locking (A Java regul ar expression. Use the pipe to separate several expressions).
See Updat abl eRecord. store() and Updat abl eRecord. del ete() for details -->

<r ecor dVer si onFi el ds>REC_VERSI ON</ r ecor dVer si onFi el ds>

<!-- Al table and view colums that are used as "tinestanp" fields for
optimstic |locking (A Java regul ar expression. Use the pipe to separate several expressions).
See Updat abl eRecord. store() and Updat abl eRecord. del ete() for details -->

<recor dTi mest anpFi el ds>REC_TI MESTAMP</ r ecor dTi nest anpFi el ds>

<!-- Generate java.sql.Tinestanp fields for DATE colums. This is
particularly useful for Oracle databases.
Defaults to false -->

<dat eAsTi nmest anp>f al se</ dat eAsTi nest anp>

<!-- Generate jOOU data types for your unsigned data types, which are
not natively supported in Java.
Defaults to true -->

<unsi gnedTypes>t r ue</ unsi gnedTypes>

<!-- The schema that is used in generated source code. This will be the
production schema. Use this to override your |ocal devel opnent
schema nane for source code generation. If not specified, this
will be the same as the input-schena. -->

<out put Schena>[your dat abase schema / owner / nane] </ out put Schema>

<!-- A configuration elenment to configure several input and/or output
schemata for joog-neta, in case you're using joog-neta in a nulti-
schena envi ronment .
Thi s cannot be conbined with the above inputSchema / outputSchena -->
<schemat a>
<schema>
<i nput Schema>. . . </ i nput Schena>
<out put Schenma>. . . </ out put Schema>
</ schena>
[<schena>...</schema> ...]
</ schemat a>

<l-- A configuration elenent to configure customdata types -->
<cust onTypes>. . . </ cust oniTypes>

<!-- A configuration element to configure type overrides for generated
artefacts (e.g. in conbination with custonTypes) -->

<f orcedTypes>. .. </ forcedTypes>
</ dat abase>

Check out the some of the manual's "advanced" sections to find out more about the advanced
configuration parameters.

- Schema mapping
- Custom types

joog-codegen configuration

Also, you can add some optional advanced configuration parameters for the generator:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 150/ 174

https://github.com/jOOQ/jOOQ/blob/master/jOOQ-codegen/src/main/java/org/jooq/util/example/JPrefixGeneratorStrategy.java
https://github.com/jOOQ/jOOQ/blob/master/jOOQ-codegen/src/main/java/org/jooq/util/example/JVMArgsGeneratorStrategy.java

The jOOQ User Manual 6.2. Advanced generator configuration

<!-- These properties can be added to the generate elenent: -->
<gener at e>
<l-- Primary key / foreign key relations should be generated and used.

This is a prerequisite for various advanced features.
Defaults to true -->
<rel ati ons>true</rel ati ons>

<!-- Cenerate deprecated code for backwards conpatibility
Defaults to true -->
<depr ecat ed>t r ue</ depr ecat ed>

<!-- Cenerate instance fields in your tables, as opposed to static
fields. This sinplifies aliasing.
Defaults to true -->

<i nstanceFi el ds>true</ i nst anceFi el ds>

<l-- Cenerate the javax.annotation. Generated annotation to indicate
j OOQ version used for source code.
Defaults to true -->

<gener at edAnnot at i on>t r ue</ gener at edAnnot at i on>

<l-- Cenerate jOOQ Record classes for type-safe querying. You can
turn this off, if you don't need "active records" for CRUD
Defaults to true -->

<records>true</records>

<l-- Cenerate PQJOs in addition to Record classes for usage of the
Resul t Query. fetchl nto(C ass) API
Defaults to false -->

<poj os>f al se</ poj os>

<l-- Cenerate inmmutable PQICs for usage of the ResultQuery.fetchlnto(C ass) API
This overrides any value set in <pojos/>
Defaults to false -->

<i mut abl ePoj os>f al se</ i mut abl ePoj os>

<!-- Cenerate interfaces that will be inplenented by records and/or pojos.
You can al so use these interfaces in Record.into(Cl ass<?>) and similar
net hods, to let jOOQ return proxy objects for them
Defaults to false -->

<interfaces>fal se</interfaces>

<l-- Generate DAGCs in addition to PQJO cl asses
Defaults to false -->

<daos>f al se</ daos>

<l-- Annotate PQJOs and Records wi th JPA annotations for increased
conpatibility and better integration with JPA/H bernate, etc
Defaults to false -->

<j paAnnot at i ons>f al se</ j paAnnot ati ons>

<l-- Annotate PQJOs and Records with JSR-303 validation annotations
Defaults to false -->

<val i dat i onAnnot at i ons>f al se</val i dati onAnnot ati ons>

<l-- Allowto turn off the generation of global object references, which include
- Tables.java
- Sequences. j ava
- UDTs. j ava
Turning off the generation of the above files may be necessary for very
|l arge schemas, which exceed the ampunt of allowed constants in a class's
constant pool (64k) or, whose static initialiser would exceed 64k of
byte code
Defaults to true -->

<gl obal Obj ect Ref er ences>t r ue</ gl obal Obj ect Ref er ences>
</ gener at e>

Property interdependencies

Some of the above properties depend on other properties to work correctly. For instance, when
generating immutable pojos, pojos must be generated. jOOQ will enforce such properties even if you
tell it otherwise. Here is a list of property interdependencies:

- When daos = true, then jOOQ will set relations = true

- When daos = true, then jOOQ will set records = true

- When daos = true, then jOOQ will set pojos = true

- When immutablePojos = true, then jOOQ will set pojos = true

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 151 /174

The jOOQ User Manual 6.3. Generated global artefacts

6.3. Generated global artefacts

For increased convenience at the use-site, JOOQ generates "global" artefacts at the code generation
root location, referencing tables, routines, sequences, etc. In detail, these global artefacts include the
following:

- Keys.java: This file contains all of the required primary key, unique key, foreign key and identity
references in the form of static members of type org.joog.Key.

- Routines.java: This file contains all standalone routines (not in packages) in the form of static
factory methods for org.joog.Routine types.

- Sequences.java: This file contains all sequence objects in the form of static members of type
org.joog.Seqguence.

- Tablesjava: This file contains all table objects in the form of static member references to the
actual singleton org.joog.Table object

- UDTs,java: This file contains all UDT objects in the form of static member references to the actual

singleton org.jooq.UDT object

Referencing global artefacts

When referencing global artefacts from your client application, you would typically static import them
as such:

// Static inports for all global artefacts (if they exist)
import static com exanpl e. generated. Keys. *;

import static com exanpl e. generated. Routines. *;

import static com exanpl e. generat ed. Sequences. *;

import static com exanpl e. generated. Tabl es. *;

/1 You could then reference your artefacts as follows:
create.insertlnto(M_TABLE)

. val ues(MY_SEQUENCE. next val (), nyFunction())
/1l as a nore concise formof this:

create.insertlnto(com exanpl e. generat ed. Tabl es. M\Y_TABLE)
. val ues(com exanpl e. gener at ed. Sequences. MY_SEQUENCE. next val (), com exanpl e. gener at ed. Rout i nes. myFuncti on())

6.4. Generated tables

Every table in your database will generate a org.jooqg.Table implementation that looks like this:

public class Book extends Tabl el npl <BookRecor d> {

/'l The singleton instance
public static final Book BOOK = new Book();

/1 Generated col ums

public final Tabl eFi el d<BookRecord, I|nteger> |D = createField("ID", SQLDat aType. | NTEGER, this);
public final Tabl eFi el d<BookRecord, |nteger> AUTHOR |D = createFiel d("AUTHOR | D', SQ.DataType.|NTEGER, this);
public final Tabl eFi el d<BookRecord, String> |TLE = createField("TITLE", SQLDat aType. VARCHAR, this);

/Il Covariant aliasing nethod, returning a table of the sane type as BOOK

@verride

public Book as(java.lang.String alias) {
return new Book(alias);

}

1oL

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 152 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Key.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Routine.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Sequence.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UDT.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Table.html

The jOOQ User Manual 6.5. Generated records

Flags influencing generated tables

These flags from the code generation configuration influence generated tables:

- recordVersionFields: Relevant methods from super classes are overridden to return the
VERSION field

- recordTimestampFields: Relevant methods from super classes are overridden to return the
TIMESTAMP field

- dateAsTimestamp: This influences all relevant columns

- unsignedTypes: This influences all relevant columns

- relations: Relevant methods from super classes are overridden to provide primary key, unique
key, foreign key and identity information

- instanceFields: This flag controls the "static" keyword on table columns, as well as aliasing
convenience

- records: The generated record type is referenced from tables allowing for type-safe single-table
record fetching

Flags controlling table generation

Table generation cannot be deactivated

6.5. Generated records

Every table in your database will generate an org.joog.Record implementation that looks like this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 153 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Record.html

The jOOQ User Manual 6.6. Generated POJOs

/1 JPA annotations can be generated, optionally

@ntity

@abl e(name = "BOX", schema = "TEST")

public class BookRecord extends Updatabl eRecordl npl <BookRecor d>

/1l An interface conmobn to records and pojos can be generated, optionally
i npl enents | Book {

I/ Every columm generates a setter and a getter
@verride
public void setld(lnteger value) {
set Val ue(BOOK. | D, val ue);
}

@d
@ol umm(nane = "I D', unique = true, nullable = false, precision = 7)
@verride
public Integer getld() {
return getVal ue(BOX. I D);
}

I/l NMore setters and getters
public void setAuthorld(lnteger value) {...}
public Integer getAuthorld() {...}

/'l Conveni ence nethods for foreign key nethods
public void setAuthorld(AuthorRecord val ue) {
if (value == null) {
set Val ue(BOOK. AUTHOR I D, null);
}
clse {
set Val ue(BOOK. AUTHOR_ | D, val ue. get Val ue(AUTHOR. I D)) ;
}
}

/1 Navigation nethods
publ i ¢ Aut hor Record fetchAuthor() {

return create().sel ect Fronm({ AUTHOR) . wher e(AUTHOR. | D. equal (get Val ue(BOOK. AUTHOR I D))). f et chOne();
}

1.

Flags influencing generated records

These flags from the code generation configuration influence generated records:

- dateAsTimestamp: This influences all relevant getters and setters

- unsignedTypes: This influences all relevant getters and setters

- relations: This is needed as a prerequisite for navigation methods

- daos: Records are a pre-requisite for DAOs. If DAOs are generated, records are generated as well
- interfaces: If interfaces are generated, records will implement them

- jpaAnnotations: JPA annotations are used on generated records

Flags controlling record generation

Record generation can be deactivated using the records flag

6.6. Generated POJOs

Every table in your database will generate a POJO implementation that looks like this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 154 /174

The jOOQ User Manual

/1 JPA annotations can be generated, optionally

@ avax. persi stence. Entity

@ avax. per si st ence. Tabl e(nane = "BOOK", schema = "TEST")
public class Book inplenments java.io.Serializable

/1l An interface conmobn to records and pojos can be generated, optionally
, 1 Book {

/1 JSR-303 annotations can be generated, optionally
@t Nul |
private Integer id;

@lot Nul |
private Integer authorld;

@lot Nul |
@i ze(max = 400)
private String title;

I/ Every columm generates a getter and a setter
@d
@ol um(nane = "I D', unique = true, nullable = false, precision = 7)
@verride
public Integer getld() {
return this.id;
}

@verride

public void setld(Integer id) {
this.id =id;

}

L]

Flags influencing generated POJOs

These flags from the code generation configuration influence generated POJOs:

- dateAsTimestamp: This influences all relevant getters and setters
- unsignedTypes: This influences all relevant getters and setters
- interfaces: If interfaces are generated, POJOs will implement them

6.7. Generated Interfaces

- immutablePojos: Immutable POJOs have final members and no setters. All members must be

passed to the constructor

- daos: POJOs are a pre-requisite for DAOs. If DAOs are generated, POJOs are generated as well

- jpaAnnotations: JPA annotations are used on generated records

- validationAnnotations: JSR-303 validation annotations are used on generated records

Flags controlling POJO generation

POJO generation can be activated using the pojos flag

6.7. Generated Interfaces

Every table in your database will generate an interface that looks like this:

public interface | Book extends java.io.Serializable {
/| Every colum generates a getter and a setter
public void setld(lnteger value);
public Integer getld();

1oL

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved.

Page 155/ 174

The jOOQ User Manual 6.8. Generated DAOs

Flags influencing generated interfaces

These flags from the code generation configuration influence generated interfaces:

- dateAsTimestamp: This influences all relevant getters and setters
- unsignedTypes: This influences all relevant getters and setters

Flags controlling POJO generation

POJO generation can be activated using the interfaces flag

6.8. Generated DAOs

Generated DAOs

Every table in your database will generate a org.joog.DAO implementation that looks like this:

public class BookDao extends DAQ npl <BookRecord, Book, I|nteger> {

/'l Generated constructors
publ i ¢ BookDao() {
super (BOOK, Book. cl ass);

publ i ¢ BookDao(Confi guration configuration) {
super (BOOK, Book. cl ass, configuration);

I/ Every colum generates at |east one fetch nethod

public List<Book> fetchByld(Integer... values) {
return fetch(BOOK. I D, values);

}

publ i c Book fetchOneByld(Integer value) {
return fetchOne(BOOK. | D, val ue);
}

public List<Book> fetchByAuthorld(lnteger... values) {
return fetch(BOOK. AUTHOR | D, val ues);
}

T

Flags controlling DAO generation

DAO generation can be activated using the daos flag

6.9. Generated sequences

Every sequence in your database will generate a org.joog.Sequence implementation that looks like this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 156 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/DAO.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Sequence.html

The jOOQ User Manual 6.10. Generated procedures

public final class Sequences {

/1l Every sequence generates a menber
public static final Sequence<lnteger> S AUTHOR |D = new Sequencel npl <I nt eger>("S_AUTHOR | D', TEST, SQL.DataType. | NTEGER);

Flags controlling sequence generation

Sequence generation cannot be deactivated

6.10. Generated procedures

Every procedure or function (routine) in your database will generate a org.joog.Routine implementation
that looks like this:

public class AuthorExi sts extends AbstractRoutine<java.lang. Voi d> {

// Al IN, INQUT, OUT paranmeters and function return values generate a static nember
public static final Paraneter<String> AUTHOR _NAME = creat ePar anet er (" AUTHOR_NAME', SQLDat aType. VARCHAR) ;
public static final Paraneter<BigDecinal> RESULT = createParanet er (" RESULT", SQLDat aType. NUMVERI C) ;

I/ A constructor for a new "enpty" procedure call
publ i c Author Exi sts() {

super (" AUTHOR_EXI STS", TEST);

addl nPar anet er (AUTHOR_NANE) ;

addQut Par amet er (RESULT) ;
}

// Every IN and IN OUT paranmeter generates a setter
public void setAut hor Name(String val ue) {

set Val ue(AUTHOR _NAME, val ue);
}

// Every IN OUT, OUT and RETURN VALUE generates a getter
public Bi gDeci mal getResult() {

return getVal ue(RESULT) ;
}

T

Package and member procedures or functions

Procedures or functions contained in packages or UDTs are generated in a sub-package that
corresponds to the package or UDT name.

Flags controlling routine generation

Routine generation cannot be deactivated

6.11. Generated UDTs

Every UDT in your database will generate a org.jooq.UDT implementation that looks like this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 157 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Routine.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UDT.html

The jOOQ User Manual 6.12. Custom data types and type conversion

public class AddressType extends UDTI npl <Addr essTypeRecor d> {

/1 The singleton UDT instance
public static final UAddressType U ADDRESS TYPE = new UAddressType();

// Every UDT attribute generates a static nenber
public static final UDTFi el d<AddressTypeRecord, String> ZIP =

createFiel d("zIP", SQLDat aType. VARCHAR, U_ADDRESS_TYPE) ;
public static final UDTFi el d<AddressTypeRecord, String> CITY =
createFiel d("ClTY", SQLDat aType. VARCHAR, U_ADDRESS_TYPE) ;

public static final UDTFi el d<AddressTypeRecord, String> COUNTRY =
creat eFi el d(" COUNTRY", SQLDataType. VARCHAR, U _ADDRESS TYPE);

L]

Besides the org.jooq.UDT implementation, a org.joog.UDTRecord implementation is also generated

public class AddressTypeRecord extends UDTRecordl npl <Addr essTypeRecor d> {
I/ Every attribute generates a getter and a setter
public void setZip(String value) {...}
public String getZip() {...}
public void setCity(String value) {...}
public String getCity() {...}
public void setCountry(String value) {...}
public String getCountry() {...}

T

Flags controlling UDT generation

UDT generation cannot be deactivated

6.12. Custom data types and type conversion

When using a custom type in jOOQ, you need to let jOOQ know about its associated org.joog.Converter.
Ad-hoc usages of such converters has been discussed in the chapter about data type conversion. A
more common use-case, however, is to let JOOQ know about custom types at code generation time.
Use the following configuration elements to specify, that you'd like to use GregorianCalendar for all
database fields that start with DATE_OF_

<dat abase>
<!-- First, register your customtypes here -->
<cust onfTypes>
<cust omlype>
<!-- Specify the fully-qualified class nane of your customtype -->
<nane>j ava. util .G egori anCal endar </ name>

<l-- Associate that customtype with your converter. Note, a
customtype can only have one converter in jOOQ -->
<converter>com exanpl e. Cal endar Converter </ converter>
</ cust onlype>
</ cust onfTypes>

<!-- Then, associate customtypes w th database colums -->
<f orcedTypes>
<f or cedType>
<!-- Specify again he fully-qualified class nanme of your customtype -->
<nane>j ava. util . G egori anCal endar </ name>

<!-- Add a Java regul ar expression matching colums. Use the pipe to separate several expressions -->
<expressions>. *\ . DATE_OF_. *</ expr essi ons>
</ forcedType>
</ forcedTypes>
</ dat abase>

The above configuration will lead to AUTHOR.DATE_OF_BIRTH being generated like this:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 158 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/UDT.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/UDTRecord.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/Converter.html

The jOOQ User Manual 6.13. Mapping generated schemata and tables

public class TAuthor extends Tabl el npl <TAut hor Recor d> {
1]

public final Tabl eFiel d<TAut hor Record, GregorianCal endar> DATE_OF_BI RTH = 1[0
1.

This means that the bound type of <T> will be GregorianCalendar, wherever you reference
DATE_OF_BIRTH. jOOQ will use your custom converter when binding variables and when fetching data
from java.util.ResultSet:

Il Get all date of births of authors born after 1980
Li st <Gregori anCal endar> result =

create. sel ect Fr om(AUTHOR)
. wher e(AUTHOR. DATE_OF_BI RTH. gr eat er Than(new G egori anCal endar (1980, 0, 1)))

_f et ch(AUTHOR DATE_OF_BI RTH) ;

6.13. Mapping generated schemata and tables

We've seen previously in the chapter about runtime schema mapping, that schemata and tables can
be mapped at runtime to other names. But you can also hard-wire schema mapping in generated
artefacts at code generation time, e.g. when you have 5 developers with their own dedicated developer
databases, and a common integration database. In the code generation configuration, you would then

write.

<schemat a>
<schema>
<l-- Use this as the devel oper's schema: -->
<i nput Schema>LUKAS_DEV_SCHEMA</ i nput Schena>

<l-- Use this as the integration / production database: -->
<out put Schema>PROD</ out put Schena>
</ schema>
</ schenat a>

6.14. Code generation for large schemas

Databases can become very large in real-world applications. This is not a problem for jOOQ's code
generator, but it can be for the Java compiler. JOOQ generates some classes for global access. These
classes can hit two sorts of limits of the compiler / JVM:

- Methods (including static / instance initialisers) are allowed to contain only 64kb of bytecode.
- Classes are allowed to contain at most 64k of constant literals

While there exist workarounds for the above two limitations (delegating initialisations to nested classes,
inheriting constant literals from implemented interfaces), the preferred approach is either one of these:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 159 /174

http://download.oracle.com/javase/8/docs/apijava/util/ResultSet.html

The jOOQ User Manual 6.15. Code generation and version control

- Distribute your database objects in several schemas. That is probably a good idea anyway for
such large databases

- Configure jOOQ's code generator to exclude excess database objects

- Configure jOOQ's code generator to avoid generating global objects using
<globalObjectReferences/>

- Remove uncompilable classes after code generation

6.15. Code generation and version control

When using jOOQ's code generation capabilities, you will need to make a strategic decision about
whether you consider your generated code as

- Part of your code base
- Derived artefacts

In this section we'll see that both approaches have their merits and that none of them is clearly better.

Part of your code base

When you consider generated code as part of your code base, you will want to:

- Checkin generated sources in your version control system
- Use manual source code generation
- Possibly use even partial source code generation

This approach is particularly useful when your Java developers are not in full control of or do not have
full access to your database schema, or if you have many developers that work simultaneously on the
same database schema, which changes all the time. It is also useful to be able to track side-effects of
database changes, as your checked-in database schema can be considered when you want to analyse
the history of your schema.

With this approach, you can also keep track of the change of behaviour in the jOOQ code generator,
e.g. when upgrading jOOQ, or when modifying the code generation configuration.

The drawback of this approach is that it is more error-prone as the actual schema may go out of sync
with the generated schema.

Derived artefacts

When you consider generated code to be derived artefacts, you will want to:

- Checkin only the actual DDL
- Regenerate jOOQ code every time the schema changes
- Regenerate jOOQ code on every machine - including continuous integration

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 160 /174

The jOOQ User Manual 6.15. Code generation and version control

This approach is particularly useful when you have a smaller database schema that is under full control
by your Java developers, who want to profit from the increased quality of being able to regenerate all
derived artefacts in every step of your build.

The drawback of this approach is that the build may break in perfectly acceptable situations, when parts
of your database are temporarily unavailable.

Pragmatic combination

In some situations, you may want to choose a pragmatic combination, where you put only some parts
of the generated code under version control. For instance, JOOQ-meta's generated sources are put
under version control as few contributors will be able to run the jJOOQ-meta code generator against
all supported databases.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 161 /174

The jOOQ User Manual 7.Tools

7. Tools

These chapters hold some information about tools to be used with jOOQ

7.7. JDBC mocking for unit testing

When writing unit tests for your data access layer, you have probably used some generic mocking tool
offered by popular providers like Mockito, jmock, mockrunner, or even DBUnit. With jOOQ, you can take
advantage of the built-in JDBC mock API that allows you to emulate a database on the JDBC level for
precisely those SQL/JDBC use cases supported by jOOQ.

Mocking the JDBC AP]

JDBC is a very complex API. It takes a lot of time to write a useful and correct mock implementation,
implementing at least these interfaces:

- java.sgl.Connection

- java.sgl.Statement

- java.sgl.PreparedStatement
- java.sgl.CallableStatement

- java.sgl.ResultSet

- java.sgl.ResultSetMetaData

Optionally, you may even want to implement interfaces, such as java.sgl.Array, java.sql.Blob,
java.sgl.Clob, and many others. In addition to the above, you might need to find a way to simultaneously
support incompatible JDBC minor versions, such as 4.0, 4.1

Using jJOOQ's own mock AP

This work is greatly simplified, when using jOOQ's own mock API. The org.joog.tools.jdbc package
contains all the essential implementations for both JDBC 4.0 and 4.1, which are needed to mock JDBC
for jOOQ. In order to write mock tests, provide the jOOQ Configuration with a MockConnection, and
implement the MockDataProvider:

// Initialise your data provider (inplenentation further down):
MockDat aPr ovi der provider = new MyProvider();
MockConnecti on connection = new MockConnecti on(provider);

// Pass the nock connection to a j OOQ DSLCont ext :
DSLCont ext create = DSL.using(connection, SQLDi al ect. ORACLE);

/|l Execute queries transparently, with the above DSLCont ext:
Resul t <BookRecord> result = create. sel ect From(BOOXK) . wher e(BOOK. | D. equal (5)).fetch();

As you can see, the configuration setup is simple. Now, the MockDataProvider acts as your single point
of contact with JDBC / jOOQ. It unifies any of these execution modes, transparently:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 162 /174

http://code.google.com/p/mockito/
http://jmock.org/
http://mockrunner.sourceforge.net/
http://www.dbunit.org/
http://download.oracle.com/javase/8/docs/apijava/sql/Connection.html
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html
http://download.oracle.com/javase/8/docs/apijava/sql/PreparedStatement.html
http://download.oracle.com/javase/8/docs/apijava/sql/CallableStatement.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSet.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSetMetaData.html
http://download.oracle.com/javase/8/docs/apijava/sql/Array.html
http://download.oracle.com/javase/8/docs/apijava/sql/Blob.html
http://download.oracle.com/javase/8/docs/apijava/sql/Clob.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/tools/jdbc/MockConnection.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/tools/jdbc/MockDataProvider.html

The jOOQ User Manual 7.1.JDBC mocking for unit testing

- Statements without results

- Statements without results but with generated keys

- Statements with results

- Statements with several results

- Batch statements with single queries and multiple bind value sets
- Batch statements with multiple queries and no bind values

The above are the execution modes supported by jOOQ. Whether you're using any of jOOQ's various
fetching modes (e.g. pojo fetching, lazy fetching, many fetching, later fetching) is irrelevant, as those
modes are all built on top of the standard JDBC API.

Implementing MockDataProvider
Now, here's how to implement MockDataProvider:

public class MyProvider inplenents MckDataProvider {

@verride
public MockResult[] execute(MckExecuteContext ctx) throws SQLException {

/1l You might need a DSLContext to create org.jooq.Result and org.jooq. Record objects
DSLCont ext create = DSL.using(SQLDi al ect. ORACLE) ;

MockResul t[] nock = new MbckResul t[1];

I/ The execute context contains SQL string(s), bind values, and other neta-data
String sgl = ctx.sql();

/| Exceptions are propagated through the JDBC and j OOQ API s
if (sql.toUpperCase().startsWth("DROP")) {

throw new SQLException("Statenent not supported: " + sql);
}

/1l You decide, whether any given statement returns results, and how many
else if (sqgl.toUpperCase().startsWth("SELECT")) {

/1 A ways return one author record
Resul t <Aut hor Record> result = create. newResul t (AUTHOR) ;
resul t.add(create. newRecor d(AUTHOR)) ;
resul t.get(0).setVal ue(AUTHOR I D, 1);
resul t.get (0).setVal ue(AUTHOR LAST_NAME, "Orwell");
nock[0] = new MockResult (1, result);

}

/1 You can detect batch statenents easily
else if (ctx.batch()) {

...
}

return nock;

Essentially, the MockExecuteContext contains all the necessary information for you to decide, what kind
of data you should return. The MockResult wraps up two pieces of information:

- Statement.getUpdateCount(): The number of affected rows
- Statement.getResultSet(): The result set

You should return as many MockResult objects as there were query executions (in batch mode) or
results (in fetch-many mode). Instead of an awkward JDBC ResultSet, however, you can construct a
"friendlier" org.jooqg.Result with your own record types. The jOOQ mock APl will use meta data provided
with this Result in order to create the necessary JDBC java.sgl.ResultSetMetaData

See the MockDataProvider Javadoc for a list of rules that you should follow.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 163 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/tools/jdbc/MockExecuteContext.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/tools/jdbc/MockResult.html
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html#getUpdateCount
http://download.oracle.com/javase/8/docs/apijava/sql/Statement.html#getResultSet()
http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html
http://download.oracle.com/javase/8/docs/apijava/sql/ResultSetMetaData.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/tools/jdbc/MockDataProvider.html

The jOOQ User Manual 7.2.j00Q Console

7.2.100Q Console

The jOOQ Console is no longer supported or shipped with jJOOQ 3.2+. You may still use the jOOQ 3.1
Console with new versions of jJOOQ, at your own risk.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 164 /174

The jOOQ User Manual 8. Reference

8. Reference

These chapters hold some general JOOQ reference information

8.1. Supported RDBMS

A list of supported databases

Every RDMBS out there has its own little specialties. JOOQ considers those specialties as much as
possible, while trying to standardise the behaviour in JOOQ. In order to increase the quality of jOOQ,
some 70 unit tests are run for syntax and variable binding verification, as well as some 180 integration
tests with an overall of around 1200 queries for any of these databases:

- CUBRID 8.4

- DB2 9.7

- Derby 10.10

- Firebird 2.5

- H2 1.3

- HSQLDB2.2

- Ingres 10.1

- MariaDB 5.2

- MySQL5.5

- Oracle 11g

- PostgreSQL 9.0

- SQLite with Xerial JDBC driver
- SQL Azure

- SQL Server 2008 R8

- Sybase Adaptive Server Enterprise 15.5
- Sybase SQL Anywhere 12

For an up-to-date list of currently supported RDBMS, please refer to http://www.joog.org/legal/
licensing/#databases.

8.2. Data types

There is always a small mismatch between SQL data types and Java data types. This is for two reasons:

- SQL data types are insufficiently covered by the JDBC API.
- Java data types are often less expressive than SQL data types

This chapter should document the most important notes about SQL, JDBC and jOOQ data types.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 165/174

http://www.jooq.org/legal/licensing/#databases
http://www.jooq.org/legal/licensing/#databases

The jOOQ User Manual 8.2.1. BLOBs and CLOBs

8.2.1. BLOBs and CLOBs

jOOQ currently doesn't explicitly support JDBC BLOB and CLOB data types. If you use any of these data
types inyour database, JOOQ will map them to byte[] and String instead. In simple cases (small data), this
simplification is sufficient. In more sophisticated cases, you may have to bypass jOOQ, in order to deal
with these data types and their respective resources. True support for LOBs is on the roadmap, though.

8.2.2. Unsigned integer types

Some databases explicitly support unsigned integer data types. In most normal JDBC-based
applications, they would just be mapped to their signed counterparts letting bit-wise shifting and
tweaking to the user. JOOQ ships with a set of unsigned java.lang.Number implementations modelling
the following types:

- orgjoog.types.UByte: Unsigned byte, an 8-bit unsigned integer

- orgjoog.types.UShort: Unsigned short, a 16-bit unsigned integer
- orgjoog.types.Ulnteger: Unsigned int, a 32-bit unsigned integer
- orgjoog.types.ULong: Unsigned long, a 64-bit unsigned integer

Each of these wrapper types extends java.lang.Number, wrapping a higher-level integer type, internally:

- UByte wraps java.lang.Short
- UShort wraps java.lang.Integer

- Ulnteger wraps java.lang.Long
- ULong wraps java.math.Biglnteger

8.2.3. INTERVAL data types

jO0Q fills a gap opened by JDBC, which neglects an important SQL data type as defined by the SQL
standards: INTERVAL types. SQL knows two different types of intervals:

- YEAR TO MONTH: This interval type models a number of months and years
- DAY TO SECOND: This interval type models a number of days, hours, minutes, seconds and
milliseconds

Both interval types ship with a variant of subtypes, such as DAY TO HOUR, HOUR TO SECOND, etc. jOOQ
models these types as Java objects extending java.lang.Number: org.joog.types.YearToMonth (where
Number.intValue() corresponds to the absolute number of months) and org.joog.types.DayToSecond
(where Number.intValue() corresponds to the absolute number of milliseconds)

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 166 /174

http://download.oracle.com/javase/8/docs/apijava/lang/Number.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/UByte.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/UShort.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/UInteger.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/ULong.html
http://download.oracle.com/javase/8/docs/apijava/lang/Number.html
http://download.oracle.com/javase/8/docs/apijava/lang/Short.html
http://download.oracle.com/javase/8/docs/apijava/lang/Integer.html
http://download.oracle.com/javase/8/docs/apijava/lang/Long.html
http://download.oracle.com/javase/8/docs/apijava/math/BigInteger.html
http://download.oracle.com/javase/8/docs/apijava/lang/Number.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/YearToMonth.html
http://www.jooq.org/javadoc/3.0.x/org/jooq/types/DayToSecond.html

The jOOQ User Manual 8.2.4. XML data types

Interval arithmetic

In addition to the arithmetic expressions documented previously, interval arithmetic is also supported
by jOOQ. Essentially, the following operations are supported:

- DATETIME - DATETIME => INTERVAL

- DATETIME + or - INTERVAL => DATETIME
- INTERVAL + DATETIME => DATETIME

- INTERVAL + - INTERVAL => INTERVAL

- INTERVAL * or / NUMERIC => INTERVAL
- NUMERIC * INTERVAL => INTERVAL

8.2.4. XML data types

XML data types are currently not supported

8.2.5. Geospacial data types

Geospacial data types

Geospacial data types are currently not supported

8.2.6. CURSOR data types

Some databases support cursors returned from stored procedures. They are mapped to the following
jOOQ data type:

Fi el d<Resul t <Recor d>> cursor;

In fact, such a cursor will be fetched immediately by jJOOQ and wrapped in an org.jooqg.Result object.

8.2.7. ARRAY and TABLE data types

The SQL standard specifies ARRAY data types, that can be mapped to Java arrays as such:

Fi el d<Integer[]> intArray;

The above array type is supported by these SQL dialects:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 167 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/Result.html

The jOOQ User Manual 8.3.j00Q's BNF pseudo-notation

- H2
- HSQLDB
- Postgres

Oracle typed arrays

Oracle has strongly-typed arrays and table types (as opposed to the previously seen anonymously typed
arrays). These arrays are wrapped by org.joog.ArrayRecord types.

8.3.]00Q's BNF pseudo-notation

This chapter will soon contain an overview over jOOQ's APl using a pseudo BNF notation.

8.4. Quality Assurance

jOOQ is running some of your most mission-critical logic: the interface layer between your Java / Scala
application and the database. You have probably chosen jOOQ for any of the following reasons:

- Toevade JDBC's verbosity and error-proneness due to string concatenation and index-based
variable binding

- To add lots of type-safety to your inline SQL

- Toincrease productivity when writing inline SQL using your favourite IDE's autocompletion
capabilities

With jOOQ being in the core of your application, you want to be sure that you can trust jJOOQ. That is
why jOOQ is heavily unit and integration tested with a strong focus on integration tests:

Unit tests

Unit tests are performed against dummy JDBC interfaces using http://jmock.org/. These tests verify that
various org.joog.QueryPart implementations render correct SQL and bind variables correctly.

Integration tests

This is the most important part of the jJOOQ test suites. Some 1500 queries are currently run against
a standard integration test database. Both the test database and the queries are translated into every
one of the 14 supported SQL dialects to ensure that regressions are unlikely to be introduced into the
code base.

For libraries like JOOQ), integration tests are much more expressive than unit tests, as there are so many
subtle differences in SQL dialects. Simple mocks just don't give as much feedback as an actual database
instance.

jOOQ integration tests run the weirdest and most unrealistic queries. As a side-effect of these extensive
integration test suites, many corner-case bugs for JDBC drivers and/or open source databases have

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 168 /174

http://www.jooq.org/javadoc/3.0.x/org/jooq/ArrayRecord.html
http://jmock.org/
http://www.jooq.org/javadoc/3.0.x/org/jooq/QueryPart.html

The jOOQ User Manual 8.4. Quality Assurance

been discovered, feature requests submitted through jOOQ and reported mainly to CUBRID, Derby,
H2, HSQLDB.

Code generation tests

For every one of the 14 supported integration test databases, source code is generated and the tiniest
differences in generated source code can be discovered. In case of compilation errors in generated
source code, new test tables/views/columns are added to avoid regressions in this field.

API Usability tests and proofs of concept

jOOQ is used in jJOOQ-meta as a proof of concept. This includes complex queries such as the following
Postgres query

Routines ri
Routines r2

= ROUTINES. as("r1");

= ROUTI NES. as("r2");

for (Record record : create().select(
r 1. ROUTI NE_SCHENMA,
r 1. ROUTI NE_NAME,
r 1. SPECI FI C_NAME,

/1l Ignore the data type when there is at |east one out paraneter
decode()
. when(exi st s(
sel ect One()
. f r om(PARAVETERS)
. wher e(PARAMVETERS. SPECI FI C_SCHENMA. equal (r 1. SPECI FI C_SCHEMA))
. and(PARAVETERS. SPECI FI C_NAME. equal (r 1. SPECI FI C_NAME))
. and(upper (PARAVETERS. PARAVETER_MODE) . not Equal ("I N'))),
val ("void"))
.ot herw se(r1. DATA TYPE). as("data_type"),
r 1. CHARACTER_MAXI MUM_LENGTH,
r 1. NUVERI C_PRECI SI ON,
r1. NUMERI C_SCALE,
r 1. TYPE_UDT_NAME,

/1 Calculate overload index if applicable
decode() . when(
exi sts(
sel ect One()
.from(r2)
. wher e(r2. ROUTI NE_SCHEMA. i n(get | nput Schemat a()))
. and(r 2. ROUTI NE_SCHEMA. equal (r 1. ROUTI NE_SCHEMA))
.and(r2. ROUTI NE_NAME. equal (r1. ROUTI NE_NAME))
.and(r 2. SPECI FI C_NAME. not Equal (r1. SPECI FI C_NAME))),
sel ect (count ())
.from(r2)
. wher e(r2. ROUTI NE_SCHEMA. i n(get | nput Schemat a()))
. and(r2. ROUTI NE_SCHEMA. equal (r 1. ROUTI NE_SCHEMA))
.and(r2. ROUTI NE_NAME. equal (r1. ROUTI NE_NAME))
.and(r 2. SPECI FI C_NAME. | essOr Equal (r 1. SPECI FI C_NAME)) . asFi el d())
.as("overload"))
.from(ri)
. wher e(r 1. ROUTI NE_SCHEMA. i n(get | nput Schenata()))
. order By(
r 1. ROUTI NE_SCHEMA. asc(),
r1. ROUTI NE_NAME. asc())
.fetch()) {

resul t.add(new Post gresRoutineDefinition(this, record));

These rather complex queries show that the jOOQ API is fit for advanced SQL use-cases, compared to
the rather simple, often unrealistic queries in the integration test suite.

Clean API and implementation. Code is kept DRY

As a general rule of thumb throughout the jJOOQ code, everything is kept DRY. Some examples:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 169 /174

http://en.wikipedia.org/wiki/DRY

The jOOQ User Manual 8.5. Migrating to jOOQ 3.0

- Thereis only one place in the entire code base, which consumes values from a JDBC ResultSet
- Thereis only one place in the entire code base, which transforms jOOQ Records into custom
POJOs

Keeping things DRY leads to longer stack traces, but in turn, also increases the relevance of highly
reusable code-blocks. Chances that some parts of the JOOQ code base slips by integration test coverage
decrease significantly.

8.5. Migrating to JO0OQ 3.0

This section is for all users of JOOQ 2.x who wish to upgrade to the next major release. In the next sub-
sections, the most important changes are explained. Some code hints are also added to help you fix
compilation errors.

Type-safe row value expressions

Support for row value expressions has been added in jOOQ 2.6. In jOOQ 3.0, many API parts were
thoroughly (but often incompatibly) changed, in order to provide you with even more type-safety.

Here are some affected API parts:

- [N] in Row[N] has been raised from 8 to 22. This means that existing row value expressions with
degree >= 9 are now type-safe

- Subqueries returned from DSL.select(...) now implement Select<Record[N]>, not Select<Record>

- IN predicates and comparison predicates taking subselects changed incompatibly

- INSERT and MERGE statements now take typesafe VALUES() clauses

Some hints related to row value expressions:

/| SELECT statenents are now nore typesafe:

Record2<String, |nteger> record = create. sel ect (BOOK. TI TLE, BOOK.|D). from(BOOXK).where(lD.eq(1)).fetchOne();
Resul t <Record2<String, Integer>> result = create.sel ect(BOOK. TI TLE, BOOXK. | D). from BOX).fetch();

/1 But Record2 extends Record. You don't have to use the additional typesafety:

Record record = create. sel ect (BOOK. TI TLE, BOOK.|D). from(BOXK).where(lD.eq(1)).fetchOne();

Resul t<?> result = create.sel ect(BOOK. TI TLE, BOOXK.ID).fron{BOX).fetch();

SelectQuery and SelectXXXStep are now generic

In order to support type-safe row value expressions and type-safe Record[N] types, SelectQuery is now
generic: SelectQuery<R>

SimpleSelectQuery and SimpleSelectXXXStep API were removed

The duplication of the SELECT API is no longer useful, now that SelectQuery and SelectXXXStep are
generic.

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 170/174

The jOOQ User Manual 8.5. Migrating to jOOQ 3.0

Factory was split into DSL (query building) and DSLContext (query
execution)

The pre-existing Factory class has been split into two parts:

0 The DSL: This class contains only static factory methods. All QueryParts constructed from
this class are "unattached", i.e. queries that are constructed through DSL cannot be executed
immediately. This is useful for subqueries.

The DSL class corresponds to the static part of the jJOOQ 2.x Factory type

0 The DSLContext: This type holds a reference to a Configuration and can construct executable
("attached") QueryParts.

The DSLContext type corresponds to the non-static part of the jOOQ 2.x Factory /
FactoryOperations type.

The FactoryOperations interface has been renamed to DSLContext. An example:

I/ jOOQ 2.6, check if there are any books
Factory create = new Factory(connection, dialect);
create. sel ect One()

. wher eExi st s(
create. sel ect Fron(BOOK) // Reuse the factory to create subselects
).fetch(); I/ Execute the "attached" query
/1 joQ 3.0

DSLCont ext create = DSL.using(connection, dialect);
create. sel ect One()
. wher eExi st s(
sel ect Fr on{ BOOK) I/l Create a static subselect fromthe DSL
).fetch(); I/ Execute the "attached" query

Quantified comparison predicates

Field.equalAny(...) and similar methods have been removed in favour of Field.equal(any(...)). This greatly
simplified the Field API. An example:

/Il jOOQ 2.6
Condi tion condition = BOX. | D. equal Any(create. sel ect (BOXK. | D). fron{BOX));

/1 jOOQ 3.0 adds sone typesafety to conparison predicates involving quantified selects

Quanti fi edSel ect <Recor d1<I nt eger >> subsel ect = any(sel ect (BOXK. I D). fron{ BOX)) ;
Condi tion condition = BOX. | D. equal (subsel ect);

FieldProvider

The FieldProvider marker interface was removed. Its methods still exist on FieldProvider subtypes. Note,
they have changed names from getField() to field() and from getindex() to indexOf()

GroupField

GroupField has been introduced as a DSL marker interface to denote fields that can be passed to
GROUP BY clauses. This includes all orgjooq.Field types. However, fields obtained from ROLLUP),
CUBE(), and GROUPING SETS() functions no longer implement Field. Instead, they only implement
GroupField. An example:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 171 /174

The jOOQ User Manual 8.5. Migrating to jOOQ 3.0

// jOOQ 2.6

Field<?> fieldla = Factory.rollup(...); // OK

Field<?> field2a = Factory.one(); /11 K

// jOOQ 3.0

GoupField fieldlb = DSL.rol lup(...); // OK

Field<?> fieldlc = DSL.rollup(...); // Conpilation error
G oupField field2b = DSL. one(); I oK

Field<?> field2c = DSL.one(); I K

NULL predicate

Beware! Previously, Field.equal(null) was translated internally to an IS NULL predicate. This is no longer
the case. Binding Java "null" to a comparison predicate will result in a regular comparison predicate
(which never returns true). This was changed for several reasons:

- To most users, this was a surprising "feature".

- Other predicates didn't behave in such a way, e.g. the IN predicate, the BETWEEN predicate, or
the LIKE predicate.

- Variable binding behaved unpredictably, as IS NULL predicates don't bind any variables.

- The generated SQL depended on the possible combinations of bind values, which creates
unnecessary hard-parses every time a new unique SQL statement is rendered.

Here is an example how to check if a field has a given value, without applying SQL's ternary NULL logic:

String possiblyNull = null; // O else...

/Il joOQ 2.6
Condi tion conditionl = BOOK. Tl TLE. equal (possi bl yNulI');

I/l joOQ 3.0
Condi tion condition2 = BOOK. Tl TLE. equal (possi bl yNul I'). or (BOOK. TI TLE. i sNul | (). and(val (possiblyNull).isNull()));
Condi tion condition3 = BOOK. TI TLE. i sNot Di sti nct Fron(possi bl yNull);

Configuration

DSLContext, ExecuteContext, RenderContext, BindContext no longer extend Configuration for
"convenience". From jOOQ 3.0 onwards, composition is chosen over inheritance as these objects are
not really configurations. Most importantly

- DSLContext is only a DSL entry point for constructing "attached" QueryParts

- ExecuteContext has a well-defined lifecycle, tied to that of a single query execution

- RenderContext has a well-defined lifecycle, tied to that of a single rendering operation

- BindContext has a well-defined lifecycle, tied to that of a single variable binding operation

In order to resolve confusion that used to arise because of different lifecycle durations, these types are
now no longer formally connected through inheritance.

ConnectionProvider

In order to allow for simpler connection / data source management, jOOQ externalised connection
handling in @ new ConnectionProvider type. The previous two connection modes are maintained
backwards-compatibly (JDBC standalone connection mode, pooled DataSource mode). Other
connection modes can be injected using:

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 172 /174

The jOOQ User Manual 8.5. Migrating to jOOQ 3.0

public interface ConnectionProvider {

/1l Provide jOOQ with a connection
Connection acquire() throws DataAccessException;

I/ Get a connection back fromjOOQ
voi d rel ease(Connection connection) throws DataAccessException;

These are some side-effects of the above change

- Connection-related JDBC wrapper utility methods (commit, rollback, etc) have been moved to the
new DefaultConnectionProvider. They're no longer available from the DSLContext. This had been
confusing to some users who called upon these methods while operating in pool DataSource
mode.

Executelisteners

Executelisteners can no longer be configured via Settings. Instead they have to be injected into the
Configuration. This resolves many class loader issues that were encountered before. It also helps
listener implementations control their lifecycles themselves.

Data type AP|

The data type APl has been changed drastically in order to enable some new DataType-related features.
These changes include:

- [SQLDialect]DataType and SQLDataType no longer implement DataType. They're mere constant
containers
- Various minor API changes have been done.

Object renames

These objects have been moved / renamed:

- jOOU: a library used to represent unsigned integer types was moved from org.joog.util.unsigned
to org.joogq.util.types (which already contained INTERVAL data types)

Feature removals

Here are some minor features that have been removed in jJOOQ 3.0

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 173 /174

The jOOQ User Manual 8.6. Credits

- The ant task for code generation was removed, as it was not up to date at all. Code generation
through ant can be performed easily by calling jOOQ's GenerationTool through a <java> target.

- The navigation methods and "foreign key setters" are no longer generated in Record classes, as
they are useful only to few users and the generated code is very collision-prone.

- The code generation configuration no longer accepts comma-separated regular expressions.
Use the regex pipe | instead.

- The code generation configuration can no longer be loaded from .properties files. Only XML
configurations are supported.

- The master data type feature is no longer supported. This feature was unlikely to behave exactly
as users expected. It is better if users write their own code generators to generate master enum
data types from their database tables. jJOOQ's enum mapping and converter features sufficiently
cover interacting with such user-defined types.

- The DSL subtypes are no longer instanciable. As DSL now only contains static methods,
subclassing is no longer useful. There are still dialect-specific DSL types providing static methods
for dialect-specific functions. But the code-generator no longer generates a schema-specific DSL

- The concept of a "main key" is no longer supported. The code generator produces
UpdatableRecords only if the underlying table has a PRIMARY KEY. The reason for this removal
is the fact that "main keys" are not reliable enough. They were chosen arbitrarily among UNIQUE
KEYs.

- The UpdatableTable type has been removed. While adding significant complexity to the type
hierarchy, this type adds not much value over a simple Table.getPrimaryKey() |= null check.

- The USE statement support has been removed from jOOQ. Its behaviour was ill-defined, while it
didn't work the same way (or didn't work at all) in some databases.

8.6. Credits

jO0Q lives in a very challenging ecosystem. The Java to SQL interface is still one of the most important
system interfaces. Yet there are still a ot of open questions, best practices and no "true" standard has
been established. This situation gave way to a lot of tools, APIs, utilities which essentially tackle the same
problem domain as jOOQ. jOOQ has gotten great inspiration from pre-existing tools and this section
should give them some credit. Here is a list of inspirational tools in alphabetical order:

- Avajé EBean: Play! Framework's preferred ORM has a feature called asynchronous query
execution. This idea made it into jJOOQ as org.joog.ResultQuery

- Hibernate: The de-facto standard (JPA) with its useful table-to-POJO mapping features have
influenced jOOQ's org.joog.ResultQuery facilities

- JaQu: H2's own fluent API for querying databases

- JPA: The de-facto standard in the javax.persistence packages, supplied by Oracle. Its annotations
are useful to jJOOQ as well.

- OneWebSQL: A commercial SQL abstraction API with support for DAO source code generation,
which was integrated also in jJOOQ

- QueryDSL: A"LINQ-port" to Java. It has a similar fluent API, a similar code-generation facility, yet
quite a different purpose. While jOOQ is all about SQL, QueryDSL (like LINQ) is mostly about
querying.

- SLICK: A"LINQ-like" database abstraction layer for Scala. Unlike LINQ, its APl doesn't really
remind of SQL. Instead, it makes SQL look like Scala.

- Spring Data: Spring's JdbcTemplate knows RowMappers, which are reflected by jOOQ's
RecordHandler or RecordMapper

© 2009 - 2014 by Data Geekery™ GmbH. All rights reserved. Page 174 /174

http://avaje.org
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html#fetchLater()
http://www.hibernate.org
http://www.jooq.org/javadoc/3.0.x/org/jooq/ResultQuery.html#fetchInto(java.lang.Class)
http://www.h2database.com/html/jaqu.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://onewebsql.com
http://www.querydsl.com
http://slick.typesafe.com
http://www.springsource.org/features/data-access

	Preface
	Copyright, License, and Trademarks
	Getting started with jOOQ
	How to read this manual
	The sample database used in this manual
	Different use cases for jOOQ
	jOOQ as a SQL builder
	jOOQ as a SQL builder with code generation
	jOOQ as a SQL executor
	jOOQ for CRUD
	jOOQ for PROs

	Tutorials
	jOOQ in 7 easy steps
	Step 1: Preparation
	Step 2: Your database
	Step 3: Code generation
	Step 4: Connect to your database
	Step 5: Querying
	Step 6: Iterating
	Step 7: Explore!

	Using jOOQ in modern IDEs
	Using jOOQ with Spring
	A simple web application with jOOQ

	jOOQ and Scala
	jOOQ and NoSQL
	Dependencies
	Build your own
	jOOQ and backwards-compatibility

	SQL building
	The query DSL type
	DSL subclasses

	The DSLContext class
	SQL Dialect
	Connection vs. DataSource
	Custom data
	Custom ExecuteListeners
	Custom Settings
	Runtime schema and table mapping

	SQL Statements
	jOOQ's DSL and model API
	The SELECT statement
	The SELECT clause
	The FROM clause
	The JOIN clause
	The WHERE clause
	The CONNECT BY clause
	The GROUP BY clause
	The HAVING clause
	The ORDER BY clause
	The LIMIT .. OFFSET clause
	The FOR UPDATE clause
	UNION, INTERSECTION and EXCEPT
	Oracle-style hints
	Lexical and logical SELECT clause order

	The INSERT statement
	The UPDATE statement
	The DELETE statement
	The MERGE statement
	The TRUNCATE statement

	Table expressions
	Generated Tables
	Aliased Tables
	Joined tables
	The VALUES() table constructor
	Nested SELECTs
	The Oracle 11g PIVOT clause
	jOOQ's relational division syntax
	Array and cursor unnesting
	The DUAL table

	Column expressions
	Table columns
	Aliased columns
	Cast expressions
	Arithmetic expressions
	String concatenation
	General functions
	Numeric functions
	Bitwise functions
	String functions
	Date and time functions
	System functions
	Aggregate functions
	Window functions
	Grouping functions
	User-defined functions
	User-defined aggregate functions
	The CASE expression
	Sequences and serials
	Tuples or row value expressions

	Conditional expressions
	Condition building
	AND, OR, NOT boolean operators
	Comparison predicate
	Comparison predicate (degree > 1)
	Quantified comparison predicate
	NULL predicate
	NULL predicate (degree > 1)
	DISTINCT predicate
	BETWEEN predicate
	BETWEEN predicate (degree > 1)
	LIKE predicate
	IN predicate
	IN predicate (degree > 1)
	EXISTS predicate
	OVERLAPS predicate

	Plain SQL
	Bind values and parameters
	Indexed parameters
	Named parameters
	Inlined parameters
	SQL injection and plain SQL QueryParts

	QueryParts
	SQL rendering
	Pretty printing SQL
	Variable binding
	Extend jOOQ with custom types
	Plain SQL QueryParts
	Serializability

	SQL building in Scala

	SQL execution
	Comparison between jOOQ and JDBC
	Query vs. ResultQuery
	Fetching
	Record vs. TableRecord
	Record1 to Record22
	Arrays, Maps and Lists
	RecordHandler
	RecordMapper
	POJOs
	Lazy fetching
	Many fetching
	Later fetching
	ResultSet fetching
	Data type conversion
	Interning data

	Static statements vs. Prepared Statements
	Reusing a Query's PreparedStatement
	Using JDBC batch operations
	Sequence execution
	Stored procedures and functions
	Oracle Packages
	Oracle member procedures

	Exporting to XML, CSV, JSON, HTML, Text
	Exporting XML
	Exporting CSV
	Exporting JSON
	Exporting HTML
	Exporting Text

	Importing data
	Importing CSV
	Importing XML

	CRUD with UpdatableRecords
	Simple CRUD
	Records' internal flags
	IDENTITY values
	Navigation methods
	Non-updatable records
	Optimistic locking
	Batch execution

	DAOs
	Exception handling
	ExecuteListeners
	Database meta data
	Logging
	Performance considerations

	Code generation
	Configuration and setup of the generator
	Advanced generator configuration
	Generated global artefacts
	Generated tables
	Generated records
	Generated POJOs
	Generated Interfaces
	Generated DAOs
	Generated sequences
	Generated procedures
	Generated UDTs
	Custom data types and type conversion
	Mapping generated schemata and tables
	Code generation for large schemas
	Code generation and version control

	Tools
	JDBC mocking for unit testing
	jOOQ Console

	Reference
	Supported RDBMS
	Data types
	BLOBs and CLOBs
	Unsigned integer types
	INTERVAL data types
	XML data types
	Geospacial data types
	CURSOR data types
	ARRAY and TABLE data types

	jOOQ's BNF pseudo-notation
	Quality Assurance
	Migrating to jOOQ 3.0
	Credits

