Edition 5.0 Jan. 2000

Fujitsu PLL Frequency Synthesizer

Evaluation Tool (Version 5.0)

User's Manual

FUJITSU LIMITED

CONTENTS CHAPTER 1 : HARDWARE DESCRIPTION

- 1.1. INTRODUCTION
- **1.2. HARDWARE SETUP**
- **1.3. INTERFACE BOARD DESCRIPTION**
- 1.4. INTERFACE BOARD LAYOUT

CHAPTER 2 : SOFTWARE DESCRIPTION

- 2.1.Windows 95 VERSION
 2.1.1.STANDARD SYSNTHESIZER(except for MB15E/FxxSL series)
 2.1.1.I.INTRODUCTION
 2.1.1.2. USED ENVERNOMENT
 2.1.1.3. CONTENTS
 2.1.1.4. SET UP
 2.1.1.5. HOW TO USE THE PROGRAM
 2.1.1.5.1. STARTING THE PROGRAM
 2.1.1.5.2. SETTING THE TEST CONDITIONS
 2.1.2.5.3. MEASUREMENT
 2.1.2.5.4. OTHERS

 2.1.2.STANDARD SYSNTHESIZER(MB15E/FxxSL series)
 - 2.1.2.STANDARD SYSNTHESIZER(MB15E/FxxSL serie 2.1.2.1. INTRODUCTION 2.1.2.2. USED ENVERNOMENT 2.1.2.3. CONTENTS 2.1.2.4. SET UP
 - 2.1.2.5. HOW TO USE THE PROGRAM

CHAPTER 3 : EVALUATION BOARD DESCRIPTION

- 3.1. OVERVIEW
- 3.2. EVALUATION BOARD DESCRIPTION
 - 3.2.1.MB1500EB01 3.2.2.MB1500EB01B 3.2.3.MB1500EB02 3.2.4.MB1500EB11 3.2.5.MB1500EB12
 - 3.2.6.MB1500EB13
 - 3.2.7.MB1500EB13B
 - 3.2.8.MB1500EB14
 - 3.2.9.MB1500EB16
 - 3.2.10.MB1500EB16B

CHAPTER 1. HARDWARE DESCRIPTION

1.1. INTRODUCTION

This evaluation tool is designed to demonstrate the operation of the FUJITSU MB15xx series PLL frequency synthesizers. It will allow the user to investigate the operation capability of the IC and modify the loop parameters.

1.2. HARDWARE SETUP

This programming tool enables you to control FUJITSU PLL frequency synthesizers via a personal computer. The personal computer is connected to the interface board via a parallel port. The programming software installed generates signals to the interface board. Then, the signals are converted into control signals and sent to an IC on the evaluation board.

1.3. INTERFACE BOARD DESCRIPTION

Connectors

The personal computer and the interface board is connected with a cable. The connector should have 25-pin[connector for the personal computer's printer port and 36-pin connector for the interface port.

Trigger Switch

Logical level of the trigger signal can be switched by the trigger switch.

/Q : Active high	Q : Active Low
Trigger —	Trigger

BNC Connector

This connector should be connected to a time interval analyzer. A trigger signal is output through this connector.

Delay Control Switch

The delay time between the trigger signal and the last LE signal outputs can be adjusted by the delay control switch. Turning the white screw part, the delay time can be adjusted in the range from 5µs to 600µs.

Data Output Pin

Connect one side of the three wire (white, blue and yellow) connector to the data output pins on the interface board. The other side is connected to the data input pins on the evaluation board.

Power Source Pin

Connect two wire (red and black) connector to the power source pins, and the other side to ground and Vcc respectively. (Vcc = 3V to 5V (needs to be as same as supply voltage for the IC))

Ground

Connect to ground.

1.4.INTERFACE BOARD LAYOUT

CHAPTER 2. SOFTWARE DESCRIPTION

2.1. Windows95 VERSION

2.1.1. STANDARD SYNTHESIZERS (except for MB15E/FxxSL series)

2.1.1.1. INTRODUCTION

This program is designed to demonstrate the operation of the Fujitsu PLL frequency synthesizers. It will allow the user to investigate the operation capability of the IC and modify the loop parameters.

2.1.1.2. USED ENVERNOMENT

OS: Windows95

2.1.1.3. CONTENTS

FiPLL.exe : Execution file to evaluate PLL series.

fjPLL.ini : Initialization file

fjpll.vxd : Virtual device driver

Applied device

MB15E03, MB15E03L, MB15E05, MB15E05L, MB15E06, MB15E07, MB15E07L, MB1516A, MB1517A, MB15A01, MB15A02, MB15A16, MB15A17, MB15F02, MB15F02L, MB15F03, MB15F03L, MB15F04. MB15F05, MB15F05L, MB15B03, MB15U10, MB1551, MB15C03, MB15C03, MB15U32

(The device file has to be housed in the directory "LIB" that locates under the same directory as FjPLL.exe does. Do not change a name of the directory "LIB".)

Only the device file for MB15U10, name its suffix as DT2.

Name suffix for other device files as DT1.

2.1.1.4. SET UP

This programming tool consists of an interface board, a RF evaluation board and programming software.

1.Connect a parallel cable from the interface board to a printer port of a personal computer.

2.Connect the data input wire (three-wire; blue, yellow and white) from the interface board to

the Data, Clock and LE pins on the evaluation board. (Refer to CHAPTER 1.)

3.Insert the floppy disk into the floppy disk drive on the personal computer.

4. Change a disk drive from the current drive to the floppy disk drive.

2.1.1.5. HOW TO USE THE PROGRAM

2.1.1.5.1. STARTING THE PROGRAM

Double clicking the FjPLL.exe on the windows explorer, and run the program. When you run the program using a floppy disk, please release a protector of the floppy disk. If a write protect is valid, the following message is appeared and the program does not run.

2.1.1.5.2. SETTING THE TEST CONDITIONS

The following window is opened on executing the FjPLL.exe.

1. Clicking exit program button, this program is quit.

2. Click the parallel port button and select a used port.

As is indicated below, you can select only valid parallel port.

Parallel port	×
-Select parallel port	OK
port address	Cancel
LPT1 378 - 37A	
C LPT2	
C LPT3	

3. Select the device file and then click the button "OPEN".

The below shown parameter setting dialog window is opened. An usable parameter is different by the device file. Set each parameter.

FjPLL (Single/Dual)		han an a
FUJITSU PLL	Frequency Synt	hesizer Evaluation Tool ver.3.3
PEL parameters		
		MHz
Erequency Range 🛃 from	MHz	
to	MHz	M = 8 V N =
Channel Spacing 🚽	kHz	A =
	_	Set bits R =
Current Channel # 🔤 🛛 🕛		MHz
Allocated Channel # U	to	
		Output Current Ch Data Output Next Ch Data
-PLL Frequency Hopping mode		
Hopping 🚽 from Ch# 🛛 0		MHz Number of Repeat 4
to Ch# 0		MHz
		Hopping Enable
		Quit
		<u></u>

Only for a programmable parameter, **H**button becomes valid. Click each value. **H**button and input data. If any of the parameter is not filled in, you can not go to the next step.

FjPLL dialog Parameter setting					
OSC Frequency input	: ALT + O				
Frequency Range input	ALT + F				
	I he value in the column "From" must be a positive number and less than that in the column "To".				
Channel Spacing input	: ALT + S * Input a positive value.				
Current Channel input	: ALT + C * Input an integer(0 or more)				
Hopping Channel input	ALT + H				
	and less than the value in the column "To CH#".				
Number of repeat input	* Input an integer(1 or more)				

Note : As regards "Frequency Range" value,

in the case that the display of data and real data differ, please confirm the value. The value be inputed in conformity with the calculation "[(MxN)+A] x fr(channel spacing)".

2.1.1.5.3. MEASUREMENT

After test conditions are entered, the measurement can be done by sending the serial data to the testing sample via the interface board.

Hopping enable progress -- ALT + E

Hopping is repeated at designated time by "Number of repeat"

It can be cancelled using a space key.

Hopping Repeat	×
45%	
Press "SPACE" key to Cancel	Cancel

Click the button "Output current Ch Data", then the value of the present channel is automatically calculated and output through the port. Click the button "Output Next Ch Data", then the value of the next channel is automatically calculated and output through the port.

In the both cases, serial data and an trigger is output.

If the calculation is failed, the PLL Frequency Hopping mode can not be selected. Set parameters correctly.

2.1.1.5.4. OHTERS

When any of OSC Frequency, Frequency Range and Channel Spacing is changed, the PLL Frequency Hopping mode can not be selected. In that case, click the button "Output Current Ch Data".

There is not a function to save the set data.

Certainly house the device files in the LIB directory that locates in the same directory as FjPLL.exe.

Do not change the name of LIB directory.

Only the device file for MB15U10, name its suffix as DT2. Name suffix for other device files as DT1.

Apply DOS 8.3 type for the name of the device file.

2.1.2. STANDARD SYNTHESIZERS (MB15E/FxxSL/F7xSP series)

2.1.2.1. INTRODUCTION

This program is designed to demonstrate the operation of PLL(MB15E/FxxSL series). It will allow the user to investigate the operation capability of the IC and modify the loop parameters.

2.1.2.2. USED ENVERNOMENT

OS: Windows95

2.1.2.3. CONTENTS

FiPLL.exe : Execution file to evaluate PLL series.

MB15ExxSL series -- version. 3.4.1

MB15FxxSL,F7xSP series -- version 3.3.2

fjPLL.ini : Initialization file

fjpll.vxd : Virtual device driver

Applied device

Version 3.4.1 -- MB15E03SL, MB15E05SL, MB15E07SL,

Version 3.3.2 -- MB15F02SL, MB15F03SL, MB15F07SL, MB15F08SL

(The device file has to be housed in the directory "LIB" that locates under the same directory as FjPLL.exe does. Do not change a name of the directory "LIB".).

2.1.2.4. SET UP

This programming tool consists of an interface board, a RF evaluation board and programming software.

1.Connect a parallel cable from the interface board to a printer port of a personal computer.

2.Connect the data input wire (three-wire; blue, yellow and white) from the interface board to

the Data, Clock and LE pins on the evaluation board. (Refer to CHAPTER 1.)

3.Insert the floppy disk into the floppy disk drive on the personal computer.

4. Change a disk drive from the current drive to the floppy disk drive

2.1.2.4. HOW TO USE THE PROGRAM

It conforms to chapter 2.1.1.5.

The bit configuration differs from MB15E/Fxx and MB15E/FxxL series.

3.EVALUATION BOARD DESCRIPTION

3.1. OVERVIEW

Some synthesizers are pin compatible or similar pin assignment, so that an evaluation board is used for several PLLs. The below table shows PLL part number and corresponding evaluation board numbers.

Part No	PKG type	Eval. board No.	Part No.	PKG type	Eval. board No.
MB15Axx ser	ies	+	MB15Fxx seri	es	!
MB15A01/ A02/A03	SSOP-16	MB1500EB01	MB15F02/ F02L/F02SL	SSOP-16	MB1500EB13
MB1516A	SSOP-16	MB1500EB01		Bump Chip Carrier-16	MB1500EB13B
MB15A16	SSOP-16	MB1500EB01	MB15F03/	SSOP-16	MB1500EB13
MB1517A	SSOP-16	MB1500EB01	FU3L/FU3SL	Bump Chip Carrier-16	MB1500EB13B
MB15A17	SSOP-16	MB1500EB01	MB15F06	SSOP-16	MB1500EB13
MB15Bxx seri	ies		MB15F07SL	SSOP-16	MB1500EB13
MB15B01	SSOP-20	MB1500EB11		Bump Chip Carrier-16	MB1500EB13B
MB15B03	SSOP-16	MB1500EB13	MB15F08SL	SSOP-16	MB1500EB13
MB15B11/ B13	SSOP-20	MB1500EB11		Bump Chip Carrier-16	MB1500EB13B
MB15Exx seri	es		MB15Uxx series		
MB15E03/	SSOP-16	MB1500EB01	MB15U10	SSOP-20	MB1500EB12
E03L/E03SL	Bump Chip Carrier-16	MB1500EB01B	MB15U32	SSOP-20	MB1500EB14
MB15E05/	SSOP-16	MB1500EB01	MB15Cxxx se	ries	
E05L/E05SL	Bump Chip Carrier-16	MB1500EB01B	MB15C101	SSOP-8	MB1500EB02
MB15E06	SSOP-16	MB1500EB01		Bump Chip Carrier-16	MB1500EB02B
MB15E07/	SSOP-16	MB1500EB01	MB15C103	SSOP-8	MB1500EB02
EU/L/EU/SL	Bump Chip Carrier-16	MB1500EB01B		Bump Chip Carrier-16	MB1500EB02B
MB15F7xSP s	eries				
MB15F72SP	TSSOP-20	MB1500EB16			
F78SP	Bump Chip Carrier-20	MB1500EB16B			

Table 1 P/No of s	vnthesizers and	corresponding	Evaluation board
	yntheoleero ana	ooncoponding	

There are some components attached on a board. They are used for every synthesizers in common, and not so much influence to loop characteristics (except for low pass filter components.) Accordingly, additional components such as VCO, a reference oscillator, optimized loop filter etc. should be properly arranged by customers according to application.

3.2. EVALUATION BOARD DESCRIPTION 3.2.1 MB1500EB01

3.2.2 MB1500EB01B

3.2.3 MB1500EB02

3.2.4 MB1500EB11

Table.4 Components list on the evaluation board

No.	Symbol	Value	No.	Symbol	Value
1	C1	1000pF			
2	C2	1000pF			
3	C3	0.1µF			
4	C4	0.1µF			
5	C5	0.1µF			
6	C6	0.1µF			
7	C7	1000pF			

3.2.5 MB1500EB12

Table.5 Components list on the evaluation board

No.	Symbol	Value	No.	Symbol	Value
1	C1	0.1µF	11	R2	2.2kΩ
2	C2	0.1µF	12	R3	51Ω
3	C3	0.1µF	13	R4	51Ω
4	C4	1000pF	14	R5	51Ω
5	C5	1000pF	15	R6	2.2kΩ
6	C6	0.1µF	16	R7	62kΩ
7	C7	1000pF	17	R8	15kΩ
8	C8	0.1µF	18	R9	12kΩ
9	C9	0.1µF	19	R10	5.1kΩ
10	R1	2.2kΩ			

PLL Evaluation tool (ver5.0)

3.2.6 MB1500EB13

Table.6 Components list on the evaluation board

No.	Symbol	Value	No.	Symbol	Value
1	C1	1000pF	13	R1	51Ω
2	C2	1000pF	14	R2	51Ω
3	C3	0.1µF	15	R3	18Ω
4	C4	0.1µF	16	R4	18Ω
5	C5	1000pF	17	R5	18Ω
6	C6	0.1µF	18	R6	51Ω
7	C7	0.1µF	19	R7	18Ω
8	C8	1000pF	20	R8	18Ω
9	C'1	10µF	21	R9	18Ω
10	C'2	10µF			
11	C'3	10µF			
12	C'4	10µF			

3.2.7 MB1500EB13B

Table.7Components list on the evaluation board

No.	Symbol	Value	No.	Symbol	Value
1	C1	1000pF	13	R1	51Ω
2	C2	1000pF	14	R2	51Ω
3	C3	0.1µF	15	R3	18Ω
4	C4	0.1µF	16	R4	18Ω
5	C5	1000pF	17	R5	18Ω
6	C6	0.1µF	18	R6	51Ω
7	C7	0.1µF	19	R7	18Ω
8	C8	1000pF	20	R8	18Ω
9	C'1	10µF	21	R9	18Ω
10	C'2	10µF			
11	C'3	10µF			
12	C'4	10µF			

3.2.8 MB1500EB14

Table.8 Components list on the evaluation board

1C1 0.1μ F13R1 51Ω 2C2 0.1μ F14R2 18Ω 3C3 0.1μ F15R3 18Ω 4C4 $1.0n$ F16R4 18Ω 5C5 1000 pF17R5 51Ω 6C6 1.0 nF18R6 $2K\Omega$ 7C7 0.1μ F19R7 51Ω 8C8 0.1μ F20R8 18Ω 9C9 0.1μ F21R9 18Ω 10C10 0.1μ F22R10 18Ω	No.	Symbol	Value	No.	Symbol	Value
2C2 0.1μ F14R2 18Ω 3C3 0.1μ F15R3 18Ω 4C4 $1.0n$ F16R4 18Ω 5C5 $1000p$ F17R5 51Ω 6C6 $1.0n$ F18R6 $2K\Omega$ 7C7 0.1μ F19R7 51Ω 8C8 0.1μ F20R8 18Ω 9C9 0.1μ F21R9 18Ω 10C10 0.1μ F22R10 18Ω	1	C1	0.1µF	13	R1	51Ω
3C3 0.1μ F15R3 18Ω 4C41.0nF16R4 18Ω 5C51000pF17R5 51Ω 6C61.0nF18R6 $2K\Omega$ 7C7 0.1μ F19R7 51Ω 8C8 0.1μ F20R8 18Ω 9C9 0.1μ F21R9 18Ω 10C10 0.1μ F22R10 18Ω	2	C2	0.1µF	14	R2	18Ω
4C41.0nF16R418Ω5C51000pF17R551Ω6C61.0nF18R6 $2K\Omega$ 7C70.1µF19R751Ω8C80.1µF20R818Ω9C90.1µF21R918Ω10C100.1µF22R1018Ω11C111.0nF	3	C3	0.1µF	15	R3	18Ω
5C51000pF17R551Ω6C61.0nF18R6 $2K\Omega$ 7C7 0.1μ F19R7 51Ω 8C8 0.1μ F20R8 18Ω 9C9 0.1μ F21R9 18Ω 10C10 0.1μ F22R10 18Ω	4	C4	1.0nF	16	R4	18Ω
6C61.0nF18R6 $2K\Omega$ 7C70.1μF19R7 51Ω 8C80.1μF20R8 18Ω 9C90.1μF21R9 18Ω 10C100.1μF22R10 18Ω 11C111.0nF $ -$	5	C5	1000pF	17	R5	51Ω
7C7 0.1μ F19R7 51Ω 8C8 0.1μ F20R8 18Ω 9C9 0.1μ F21R9 18Ω 10C10 0.1μ F22R10 18Ω 11C11 1.0 nF	6	C6	1.0nF	18	R6	2KΩ
8 C8 0.1μF 20 R8 18Ω 9 C9 0.1μF 21 R9 18Ω 10 C10 0.1μF 22 R10 18Ω 11 C11 1.0nF	7	C7	0.1µF	19	R7	51Ω
9 C9 0.1μF 21 R9 18Ω 10 C10 0.1μF 22 R10 18Ω 11 C11 1.0nF	8	C8	0.1µF	20	R8	18Ω
10 C10 0.1μF 22 R10 18Ω 11 C11 1.0nF	9	C9	0.1µF	21	R9	18Ω
11 C11 1.0nF	10	C10	0.1µF	22	R10	18Ω
	11	C11	1.0nF			
12 C12 1000pF	12	C12	1000pF			

3.2.9 MB1500EB16

Table.9 Components list on the evaluation board

No.	Symbol	Value	No.	Symbol	Value
1	C1	1000pF	13	R1	51Ω
2	C2	1000pF	14	R2	51Ω
3	C3	10µF	15	R3	18Ω
4	C4	10µF	16	R4	18Ω
5	C5	10µF	17	R5	18Ω
6	C6	10µF	18	R6	51Ω
7	C7	1000pF	19	R7	18Ω
8	C8	1000pF	20	R8	18Ω
9	C9	1000pF	21	R9	18Ω
10	C10	10µF	22	R10	18Ω
11	C11	10µF	23	R11	18Ω
			24	R12	18Ω

3.2.10 MB1500EB16B

Table.10 Components list on the evaluation board

No.	Symbol	Value	No.	Symbol	Value
1	C1	1000pF	13	R1	51Ω
2	C2	1000pF	14	R2	51Ω
3	C3	10µF	15	R3	18Ω
4	C4	10µF	16	R4	18Ω
5	C5	10µF	17	R5	18Ω
6	C6	10µF	18	R6	51Ω
7	C7	1000pF	19	R7	18Ω
8	C8	1000pF	20	R8	18Ω
9	C9	1000pF	21	R9	18Ω
10	C10	10µF	22	R10	18Ω
11	C11	10µF	23	R11	18Ω
			24	R12	18Ω

