
AN07-00200-03E

F2MC-8FX Family

8-BIT MICROCONTROLLER

MB95F136JBS

bits pot yellow

LIN board

User’s Manual

AN07-00200-03E

 2

Revision History

Date Revision

October.24.2008 Revision 1.0: Initial release

May 13, 2009 Revision 1.1:TSUZUKI DENSAN’s Logo mark was changed.

April 23,2010 Revision 1.2:

Change in company name of FUJITSU MICROELECTORONICS

[New] FUJITSU SEMICONDUCTOR LIMITED

 (left blank)

AN07-00200-03E

 3

Note
- The contents of this document are subject to change without notice. Customers are advised to consult

with FUJITSU sales representatives before ordering.

- The information, such as descriptions of function and application circuit examples, in this document are

presented solely for the purpose of reference to show examples of operations and uses of Fujitsu

semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based

on such information. When you develop equipment incorporating the device based on such information,

you must assume any responsibility arising out of such use of the information. Fujitsu assumes no

liability for any damages whatsoever arising out of the use of the information.

- Any information in this document, including descriptions of function and schematic diagrams, shall not

be construed as license of the use or exercise of any intellectual property right, such as patent right or

copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any

third-party’s intellectual property right or other right by using such information. Fujitsu assumes no

liability for any infringement of the intellectual property rights or other rights of third parties which

would result from the use of information contained herein.

- The products described in this document are designed, developed and manufactured as contemplated for

general use, including without limitation, ordinary industrial use, general office use, personal use, and

household use, but are not designed, developed and manufactured as contemplated (1) for use

accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious

effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss

(i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport

control, medical life support system, missile launch control in weapon system), or (2) for use requiring

extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages

arising in connection with above-mentioned uses of the products.

- Any semiconductor devices have an inherent chance of failure. You must protect against injury, fire,

damage or loss from such failures by incorporating safety design measures into your facility and

equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal

operating conditions.

- If any products described in this document represent goods or technologies subject to certain restrictions

on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by

Japanese government will be required for export of those products from Japan.

- The company names and brand names herein are the trademarks or registered trademarks of their

respective owners.

Copyright© 2010 FUJITSU SEMICONDUCTOR LIMITED all rights reserved

AN07-00200-03E

 4

Table of Contents

Revision History ..2

Note ..3

Introduction .. 10

Contact .. 11

Suppliers of the parts/materials ... 12

1 Setting up the starter kit .. 13

1.1 Setting up the PC .. 21

1.1.1 Downloading the software ... 22

1.1.2 Installing the integrated development environment SOFTUNE (bits pot yellow

dedicated version) .. 22

1.1.3 Installing the PC Writer FUJITSU FLASH USB Programmer (bits pot yellow dedicated

version) ... 27

1.1.4 Connecting it to the PC and installing the USB driver .. 30

1.1.5 Configuring the starter kit .. 33

2 Running the Program ... 35

2.1 Executing in single chip mode ... 36

2.1.1 Building a project ... 36

2.1.2 Writing the program into the microcontroller .. 40

2.2 Debugging by using Monitor Debugger .. 43

2.2.1 Activating SOFTUNE and configuring the debug settings .. 43

2.2.2 Writing the monitor program into the microcontroller .. 53

2.2.3 Loading the target file ... 56

2.2.4 Running the debugger ... 57

3 Operation of the sample Programs ... 60

3.1 bits pot yellow single-unit operation ... 61

3.2 LIN communication operation (LIN communication operation with the bits pot white) .. 63

4 Try to operate the bits pot yellow (single-unit) ... 65

4.1 Overview of single-unit operation .. 65

4.1.1 Turning ON LEDs using switch operations ... 65

4.1.2 Controlling the buzzer using the volume switch... 69

4.1.3 LED displays using temperature sensor operations .. 73

4.2 Understanding and running the program in single-unit operation 74

5 Try to use LIN communication ... 79

5.1 What is LIN? .. 79

AN07-00200-03E

 5

5.2 LIN specifications .. 82

5.2.1 Lin frame configuration ... 82

5.3 LIN communication flow .. 85

5.4 Communication between master and slave if an error occurs .. 87

5.5 LIN communication by using microcontroller ... 88

5.6 Understanding and overview of the program for LIN communication 92

5.6.1 LIN communication configuration.. 92

5.6.2 Sample programs sequence .. 97

6 Appendix .. 109

6.1 Sample program folder/file configuration ... 109

AN07-00200-03E

 6

List of Figures

Figure 1-1 External view of a starter kit ... 14

Figure 1-2 System connection diagram (single-unit operation) .. 17

Figure 1-3 System connection diagram (when performing LIN communication) 18

Figure 1-4 SOFTUNE setup confirmation .. 22

Figure 1-5 Starting SOFTUNE setup ... 22

Figure 1-6 SOFTUNE setup confirmation .. 23

Figure 1-7 SOFTUNE setup/License agreement ... 23

Figure 1-8 SOFTUNE setup/Version information ... 24

Figure 1-9 SOFTUNE setup/Selecting the destination of installation 24

Figure 1-10 SOFTUNE setup/Selecting the components ... 25

Figure 1-11 SOFTUNE setup/Confirming the installation settings 25

Figure 1-12 SOFTUNE setup/Completion ... 26

Figure 1-13 PC writer/Installation dialog ... 27

Figure 1-14 PC Writer/Setup type.. 28

Figure 1-15 Finished PC writer/Ready to install ... 28

Figure 1-16 Completing the PC Writer installation ... 29

Figure 1-17 Installing BGM Adapter (MB2146-09) .. 30

Figure 1-18 Selecting the search locations ... 31

Figure 1-19 Hardware installation ... 31

Figure 1-20 Completing the BGM Adapter (MB2146-09) installation 32

Figure 1-21 MODE selection .. 33

Figure 1-22 Connection between the PC and the starter kit .. 34

Figure 2-1 SOFTUNE Workbench start window ... 36

Figure 2-2 Opening a workspace ... 37

Figure 2-3 Selecting a workspace .. 37

Figure 2-4 Setting the active project .. 38

Figure 2-5 Changing the active project .. 38

Figure 2-6 Building a project .. 39

Figure 2-7 Completing the build.. 39

Figure 2-8 Opening the file to write ... 40

Figure 2-9 Selecting the file to write .. 41

Figure 2-10 Writing the program ... 41

Figure 2-11 Completing the program writing.. 42

Figure 2-12 Opening a workspace ... 43

AN07-00200-03E

 7

Figure 2-13 Selecting a workspace .. 44

Figure 2-14 Building a project .. 45

Figure 2-15 Completing the build .. 45

Figure 2-16 Load module outputs .. 46

Figure 2-17 Debug settings ... 47

Figure 2-18 Changing the debug settings ... 47

Figure 2-19 Starting the debug setting wizard... 48

Figure 2-20 Selecting the debugger type .. 48

Figure 2-21 Entering password when starting debugger .. 49

Figure 2-22 Selecting the device type .. 49

Figure 2-23 Setting the primary oscillation frequency ... 50

Figure 2-24 Specifying a batch file ... 50

Figure 2-25 Configuring the target file settings... 51

Figure 2-26 Setting setup file selection .. 51

Figure 2-27 Completing the setup wizard ... 52

Figure 2-28 Completing the project settings ... 52

Figure 2-29 Opening the file to write ... 53

Figure 2-30 Selecting the file to write .. 54

Figure 2-31 Writing the program ... 55

Figure 2-32 Completing the program writing ... 55

Figure 2-33 Start debugging.. 56

Figure 2-34 Setting break points.. 57

Figure 2-35 Running the program.. 58

Figure 2-36 Stopping the program ... 58

Figure 3-1 Single-unit operation/Controls and mechanicals ... 61

Figure 3-2 LIN communication operation/Controls and mechanicals.................................... 63

Figure 4-1 Single-unit operation/Switches and LEDs .. 65

Figure 4-2 LED lighting circuit ... 66

Figure 4-3 LED ON/OFF circuit example (schematic diagram) ... 66

Figure 4-4 Connection configuration between SW2 and microcontroller pins (schematic

diagram) .. 67

Figure 4-5 Single-unit operation/Volume SW ... 69

Figure 4-6 Volume SW (variable resistor) .. 69

Figure 4-7 Circuit surrounding the voltage adjustment knob .. 70

Figure 4-8 Piezoelectricity .. 71

Figure 4-9 Principle of piezoelectric elements .. 72

AN07-00200-03E

 8

Figure 4-10 peripheral circuit diagram for temperature sensor ... 73

Figure 4-11 Single-unit operation flowcharts .. 74

Figure 4-12 Operation mode settings (when using volume switch) 75

Figure 4-13 Operation mode settings (when using the temperature sensor) 75

Figure 4-14 Main function program ... 76

Figure 4-15 SW2 interrupts (LED on/off processing) .. 77

Figure 4-16 SW3 interrupts (buzzer output processing) ... 77

Figure 4-17 A/D converter interrupts ... 78

Figure 5-1 Example of vehicle LIN applications ... 80

Figure 5-2 Main LIN network configuration .. 81

Figure 5-3 LIN communication flow ... 83

Figure 5-4 LIN frame configuration .. 83

Figure 5-5 Main LIN network configuration .. 86

Figure 5-6 Example of communication sequence between the master and slaves during normal

communication ... 86

Figure 5-7 LIN circuit .. 88

Figure 5-8 Entire LIN communication control registers... 89

Figure 5-9 LIN communication flowchart (main routine) .. 97

Figure 5-10 LIN communication flowchart (interrupt routine: UART reception interrupts) 98

Figure 5-11 LIN communication flowchart (interrupt routine: input capture interrupts) 98

Figure 5-12 Operations points of interrupt processes... 99

Figure 5-13 Synch break interrupt control .. 100

Figure 5-14 Input capture operation in the synch field... 101

Figure 5-15 Input capture (ICU) interrupt controls .. 102

Figure 5-16 LIN-UART receive interrupt control .. 103

Figure 5-17 Receive determination processing ... 104

Figure 5-18 Timeout detection processing .. 105

Figure 5-19 Data send processing .. 106

Figure 5-20 Data reception processing ... 107

Figure 5-21 Submain processing ... 108

AN07-00200-03E

 9

List of Tables

Table 1-1 Component list .. 13

Table 1-2 Description of the respective parts of a starter kit ... 15

Table 1-3 MB95F136JBS pin assignment .. 19

Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals 62

Table 3-2 LIN communication/Descriptions of the controls and mechanicals 64

Table 5-1 Description of the entire LIN communication control registers and setting values .. 90

Table 5-2 LIN communication conditions of the sample program .. 92

Table 5-3 LIN message IDs in the sample program ... 92

Table 6-1 Sample program folder/file configuration .. 109

AN07-00200-03E

 10

Introduction

Thank you very much for purchasing the bits pot yellow (referred to as this starter kit or the starter

kit hereafter).

This starter kit is a beginner’s kit intended for those who wish to start learning microcontrollers and

on-board network processors. The kit is designed so that the beginners who ask “What is a

microcontroller?”, “How does it work?” and “How does it control a network?” can easily learn what

it is.

The kit includes flash microcontroller development tools, so if you have slight understanding about

the C language, you can rewrite a program to let the microcontroller perform in various ways. Even

if you do not know of programming, you may be able to enjoy learning a microcontroller with a

study-aid book about the C language.

This starter kit can also serve as an introductory training tool for electronic circuit practice or future

embedded software development in a class of a college or high school of technology or training for

freshman engineers of a manufacturer.

AN07-00200-03E

 11

Contact

Please ask the following e-mail address for the technical question.

Please confirm HP for the latest information and FAQ of bits pot.

Zip code: 105-8420 2-5-3 Nishi-Shinbashi, Minatoku, Tokyo

E-mail: pd-bitspot@tsuzuki-densan.co.jp

bits pot URL: http://www.tsuzuki-densan.co.jp/bitspot/

mailto:pd-bitspot@tsuzuki-densan.co.jp
http://www.tsuzuki-densan.co.jp/bitspot/

AN07-00200-03E

 12

Suppliers of the parts/materials

 Capacitors 22pF : GCM1552C1H220JZ02

 220pF : GCM1552C1H221JA01

 0.1μF : GCM188R11E104KA42

 10μF : GCM32ER71E106KA42

 Ceramic Resonator 4MHz : CSTCR4M00G55B

 6MHz : CSTCR6M00G55B

Buzzer : PKLCS1212E40A1

 NTC Thermistor : NTCG164BH103JT1

 Ferrite Beads : MPZ2012S300AT

AN07-00200-03E

 13

1 Setting up the starter kit

 Before using this starter kit, be sure to check the components listed in Table 1-1 are fully supplied.

 Before connecting this starter kit, you need to install software in your PC. You can download the

software required for the starter kit from our web site.

bits pot URL: http://www.tsuzuki-densan.co.jp/bitspot/

Table 1-1 Component list

No. Article Qty. Specifications Remarks

1 bits pot yellow

LIN board

1 Board mounted with microcontrollers made by

Fujitsu Semiconductor;

F
2
MC-8FX series MB95F136JBS and

F
2
MC-8LX series MB89P585B

See Figure 1-1

2 USB cable

1 USB (A to miniB) Accessory

3 LIN cable

1 2-pin cable Accessory

4 PC 1 On which Windows XP normally runs and

USB2.0 ports are supported

Prepare the PC by

yourself.

http://www.tsuzuki-densan.co.jp/bitspot/

AN07-00200-03E

 14

Figure 1-1 External view of a starter kit

1. Target device

18. Extension pins

3. Mode SW

4. Reset SW
5. Test SW 6. Temperature sensor 7. LED lamps

8. Volume switch

9. Buzzer

2. USB

communication

microcontroller

10. Power LED lamp

11. USB connector 12. LIN connector

13. Regulator 14. LIN transceiver IC

16. Oscillator for USB

communication

microcontroller

17. Target device oscillator

19. Jumper pin

20. Extension power

(5V)

21. Extension GND

15. Reset IC

22. LIN transceiver IC

Extension power (12V)

AN07-00200-03E

 15

“Table 1-2 Description of the respective parts of a starter kit” provides descriptions of the respective

onboard parts.

Table 1-2 Description of the respective parts of a starter kit

No. Name Specifications Function

1 Target device MB95F136JBS Main microcontroller (MB95F136JBS).

2
USB communication

microcontroller
MB89P585B

Microcontroller for USB communications to connect

the main microcontroller (MB95F136JBS) and the host

PC.

3 Mode SW Slide switch
Switch for selection of operation mode of the main

microcontroller (MB95F136JBS).

4 Reset SW Push switch Switch to reset the starter kit.

5 Test SW Push switch x 2
Push switches for testing, connected to the

general-purpose I/O port.

6 Temperature sensor NTCG164BH103
NTC thermistor made by TDK.

Temperature sensor connected to the A/D converter.

7 LED lamps LED (red) x 3 LED lamps connected to the general-purpose I/O port.

8 Volume SW Volume switch Volume switch connected to the A/D converter input.

9 Buzzer PKLCS1212E40A1

External-drive electric sounder made by Murata

Manufacturing.

Connected to the PPG timer output port.

10
Power supply LED

lamp
LED (green) x 1 LED lamp for the starter kit power supply.

11 USB connector mini-B
USB connector for connection with the PC to write or

to debug a program.

12 LIN connector 2-pin connector

Connector for LIN communication.

Connect this connector to the LIN connector on the bits

pot white.

13 Regulator LP3874EMP-3.3 Regulator IC (3.3V).

14 LIN transceiver IC TJA1020T Transceiver IC used for LIN communication.

15 Reset IC M51957BFP Reset IC.

16

Oscillator for USB

communications

microcontroller

CSTCR6M00G55B

(6MHz)

Ceralock made by Murata Manufacturing.

Oscillator for the USB communication microcontroller.

17 Target device oscillator CSTCR4M00G55B Ceralock made by Murata Manufacturing.

AN07-00200-03E

 16

(4MHz) Oscillator for the main microcontroller.

18 Extension pins -
Extension pins of the main microcontroller.

For details, see the circuit diagram.

19 Jumper pin (JP1) -

Jumper pin for switching the power supply to the LIN

transceiver IC.

1-2 Power supply from USB bus power (5V).

2-3 Power supply from external power source (CN5)

(12V)

The default is 1-2.

20 Extension power (5V) - Extension 5V power terminal.

21 Extension GND - Extension GND terminal.

22

Extension power supply

(12V) for LIN

transceiver IC

-

Extension power supply pin for the LIN transceiver IC.

This is used to supply external power (12V).

When in use, it is necessary to set the jumper pin (JP1)

to 2-3.

AN07-00200-03E

 17

The system configuration during LIN communication operations, which are enabled by connecting

the separate bits pot white to “Figure 1-3 System connection diagram (when performing LIN

communication)”, which shows the system configuration during single starter kit operations, is

shown in “Figure 1-2 System connection diagram (single-unit operation)”.

Figure 1-2 System connection diagram (single-unit operation)

Connect the PC and starter kit by using the USB cable included in the kit.

The starter kit power is supplied by the USB (USB bus power)

[Note]

Connect the USB to the PC directly. Do not connect the USB via a USB hub or an extension unit

such as a docking station.

Use the USB cable included in the kit for the

connection.

(The power is supplied by the USB bus power.)

Note: Prepare the PC by yourself.

AN07-00200-03E

 18

Figure 1-3 System connection diagram (when performing LIN communication)

Connect the PC, the starter kit, and bits pot white using the enclosed USB cables.

The power for the bits pot white is also supplied by the USB in the same way as for the starter kit.

(USB bus power)

[Note]

Connect the USB to the PC directly. Do not connect the USB via a USB hub or an extension unit

such as a docking station.

Note: Prepare the PC by yourself.

LIN connector (accessory)

AN07-00200-03E

 19

“Table 1-3 MB95F136JBS pin assignment” shows the pin assignment for the microcontroller

MB95F136JBS.

Table 1-3 MB95F136JBS pin assignment

Pin No. Function Connected to Remarks

1 P16 LED6 L output = On

2 PF0 ‐

3 PF1 ‐

4 MOD SW1 ‐

5 X0 Q1 4MHz oscillator

6 X1 Q1 4MHz oscillator

7 VSS GND_EARTH

8 VCC 5V

9 C C

10 PG1 ‐

11 PG2 ‐

12 RST RESET

13 AVCC 5V

14 AVSS GND_EARTH

15 P00/INT00/AN00/PPG00 BUZZER

16 P01/INT01/AN01/PPG01 VR
Power supply voltage

division 0 to 100%

17 P02/INT02/AN02/SCK LIN TRANSCEIVER

18 P03/INT03/AN03/SOT LIN TRANSCEIVER

19 NC ‐

20 P04/INT04/AN04/SIN LIN TRANSCEIVER

21 P05/INT05/AN05/TO00 SW2 SW pressed = L

22 P06/INT06/AN06/TO01 SW3 SW pressed = L

23 P07/INT07/AN07 THERMISTOR

24 P10/UI0
USB-UART conversion

(MB89P585B)

Use when writing to flash

or during monitor

debugging

25 P11/UO0
USB-UART conversion

(MB89P585B)

Use when writing to flash

or during monitor

debugging

26 NC -

AN07-00200-03E

 20

27 P12/UCK0/EC0
USB-UART conversion

(MB89P585B)

Use when writing to flash

or during monitor

debugging

28 P13/TRG0/ADTG PULL-DOWN

29 P14/PPG0 LED4 L output = On

30 P15 LED5 L output = On

AN07-00200-03E

 21

1.1 Setting up the PC

Install the software required to operate this starter kit into the PC.

To set up the PC, use the following procedures.

① Downloading the software

② Installing the integrated development environment SOFTUNE (bits pot dedicated

version)

③ Installing the PC Writer FUJITSU FLASH USB Programmer (bits pot yellow

dedicated version)

④ Connecting it to the PC and installing the USB driver

⑤ Configuring the starter kit settings

AN07-00200-03E

 22

1.1.1 Downloading the software

Download and decompress the file from the following website.

bits pot URL: http://www.tsuzuki-densan.co.jp/bitspot/

1.1.2 Installing the integrated development environment SOFTUNE (bits pot yellow

dedicated version)

 Note

If SOFTUNE V3 of the product version has been installed, first uninstall it, and then install the

bits pot yellow dedicated version.

Install the integrated development environment SOFTUNE. Unzip the following file in the folder

you decompressed in “1.1.1 Downloading the software”.

¥softwares¥SOFTUNE¥ ProPack_Rev300016-BV_8FX.zip

Double-click “Setup.exe” in the decompressed folder. The dialog shown in “Figure 1-4 SOFTUNE

setup confirmation” will be displayed. Click the “OK” button.

Figure 1-4 SOFTUNE setup confirmation

The setup wizard shown in “Figure 1-5 Starting SOFTUNE setup” will be displayed. Click “Next”.

Figure 1-5 Starting SOFTUNE setup

http://www.tsuzuki-densan.co.jp/bitspot/

AN07-00200-03E

 23

The dialog shown in “Figure 1-6 SOFTUNE setup confirmation” will be displayed. Click the “Next”

button.

Figure 1-6 SOFTUNE setup confirmation

The dialog shown in “Figure 1-7 SOFTUNE setup/License agreement” will be displayed. Read the

license agreement thoroughly, and then click the “Yes” button.

Figure 1-7 SOFTUNE setup/License agreement

AN07-00200-03E

 24

The dialog shown in “Figure 1-8 SOFTUNE setup/Version information” will be displayed. Click the

“Next” button.

Figure 1-8 SOFTUNE setup/Version information

The dialog to select the installation path will be displayed as shown in “Figure 1-9 SOFTUNE

setup/Selecting the destination of installation”. select the default folder or desired folder and then

click the “Next” button.

Figure 1-9 SOFTUNE setup/Selecting the destination of installation

AN07-00200-03E

 25

The dialog to select the components will be displayed as shown in “Figure 1-10 SOFTUNE

setup/Selecting the components”. Leaving the default settings as they are, click the “Next” button.

Figure 1-10 SOFTUNE setup/Selecting the components

The dialog to check the installation settings is displayed as shown in “Figure 1-11 SOFTUNE

setup/Confirming the installation settings”. Click the “Next” button. The installation begins.

Figure 1-11 SOFTUNE setup/Confirming the installation settings

AN07-00200-03E

 26

When the dialog shown in “Figure 1-12 SOFTUNE setup/Completion” appears to tell the

completion of installation; Click the “Finish” button.

Figure 1-12 SOFTUNE setup/Completion

AN07-00200-03E

 27

1.1.3 Installing the PC Writer FUJITSU FLASH USB Programmer (bits pot yellow

dedicated version)

Start Installing the PC writer. Select the following file in the folder you decompressed in “1.1.1

Downloading the software”.

¥ softwares¥ USB PROGRAMMER¥ BGM_MB95F136JBS_setup.exe

Double-click “BGM_MB95F136JBS_setup.exe”. The dialog shown in “Figure 1-13 PC

writer/Installation dialog” will be displayed, and the installation starts. Click the “Next” button.

Figure 1-13 PC writer/Installation dialog

AN07-00200-03E

 28

The dialog shown in “Figure 1-14 PC Writer/Setup type” will be displayed. Select “complete”, and

then click the “Next” button.

Figure 1-14 PC Writer/Setup type

The dialog shown in “Figure 1-15 Finished PC writer/Ready to install” will be displayed. Click the

“Install” button.

Figure 1-15 Finished PC writer/Ready to install

AN07-00200-03E

 29

After the installation complete, the dialog shown in “Figure 1-16 Completing the PC Writer

installation” appears to tell the completion of installation; Click “Finish”.

Figure 1-16 Completing the PC Writer installation

This completes the PC writer installation.

AN07-00200-03E

 30

1.1.4 Connecting it to the PC and installing the USB driver

Connect the starter kit to the PC, and install the USB drivers.

First, connect the USB port on the PC and the USB port on the starter kit using the enclosed USB

cable. Whereupon, the “BGM Adapter (MB2146-09)” installation dialog is displayed as shown in

“Figure 1-17 Installing BGM Adapter (MB2146-09)”. Select “Install from a list or specific location”,

and click the “Next” button.

Figure 1-17 Installing BGM Adapter (MB2146-09)

AN07-00200-03E

 31

To search for the installation file as shown in “Figure 1-18 Selecting the search locations”, check the

“Search for the best driver in these locations” and ”Include this location in the search”. Further, click

the “Browse” button, and select the Drivers folder in the SOFTUNE, which has already been

installed, and then click the “Next” button.

Figure 1-18 Selecting the search locations

A warning message will be displayed as shown in “Figure 1-19 Hardware installation”, ignore and

click the “Continue Anyway” button.

Figure 1-19 Hardware installation

AN07-00200-03E

 32

When the driver installation is complete, the dialog shown in “Figure 1-20 Completing the BGM

Adapter (MB2146-09) installation” will be displayed. Click the “Finish” button.

Figure 1-20 Completing the BGM Adapter (MB2146-09) installation

AN07-00200-03E

 33

1.1.5 Configuring the starter kit

After the USB driver installation is completed, configure the Mode switches on the starter kit, and

then connect it to the PC.

If the starter kit and the PC are connected by USB (i.e., power is being supplied), disconnect the

USB temporarily to turn the power OFF. Next, set the starter kit “MODE” selector to “PROG”, as

shown in “Figure 1-21 MODE selection”.

Figure 1-21 MODE selection

MODE Selector Operation mode

PROG Flash memory serial write mode:

→Used to write a program into the microcontroller.

RUN Single chip mode:

→Used to run the program written into it.

Make sure that the MODE selector is set to “PROG”.

Then, connect it to the PC.

Set the MODE selector to

“PROG”.

AN07-00200-03E

 34

After setting the MODE selector, connect the USB port on the PC and the USB port on the starter kit

using the USB cable included in the kit. Be sure to connect the PC and starter kit directly, without

using a USB hub.

Figure 1-22 Connection between the PC and the starter kit

The power of the starter kit is supplied via USB. (USB bus power)

[Note]

When connecting the PC and starter kit, if the driver installation dialog is displayed, it is possible

that the USB driver has not been installed correctly. Return to “1.1.4 Connecting it to the PC and

installing the USB driver”, and reinstall the driver.

Connect to the USB port on the PC.

For information about port locations and so forth, refer to the manual of the PC.

Connect using the USB cable

included in the kit.

USB port

AN07-00200-03E

 35

2 Running the Program

To run a program with the starter kit, take either of the following procedures.

① Executing in single chip mode See P.36

② Debugging by using Monitor Debugger See P.43

AN07-00200-03E

 36

2.1 Executing in single chip mode

In single chip mode, take the following procedures.

① Building a project

② Writing the program into the microcontroller

2.1.1 Building a project

Preparation

Decompress the following file in advance within the folder you decompressed in “1.1.1

Downloading the software”.

¥ sample program¥ bitspot_yellow_SampleProgram.zip

Activate SOFTUINE (dedicated bits pot version).

In Windows, click the “Start” → “All Programs (P)”, “Softune V3”, → “FFMC-8L Family Softune

Workbench” to activate SOFTUNE as shown in “Figure 2-1 SOFTUNE Workbench start window”.

Figure 2-1 SOFTUNE Workbench start window

AN07-00200-03E

 37

Click “File” → “Open Workspace” from the SOFTUNE menu as shown in “Figure 2-2 Opening a

workspace”. The workspace opens.

Figure 2-2 Opening a workspace

As shown in “Figure 2-3 Selecting a workspace”, the dialog that allows you to select a workspace is

displayed. Select the folder containing the sample program for single chip, select the workspace

“bitspot_yellow_SampleProgram.wsp”, and then click “Open”.

¥bitspot_yellow_SampleProgram¥bitspot_yellow_SampleProgram_single-chip¥bitspot_yellow_Sam

pleProgram.wsp

Figure 2-3 Selecting a workspace

AN07-00200-03E

 38

As workspace opens, set it as the active project. In this sample program, there are two pre-built

projects “single_operation.prj” and “LIN_communication.prj”. Set the project to be built to “Set as

Active Project” as projects are built per project basis. In this section, as single-unit operation is

described, check that “single_operation” is set to the active project, as shown in “Figure 2-4 Setting

the active project”.

Figure 2-4 Setting the active project

To set the project for LIN communication as the active project, select the project for LIN

communication and right-click on it, as shown in “Figure 2-5 Changing the active project”. The

sub-menu is displayed, so select “Set Active Project”. The project name will be displayed in bold,

and the build for that project will be enabled.

Figure 2-5 Changing the active project

AN07-00200-03E

 39

Click “Project” → “Build” from the menu as shown in “Figure 2-6 Building a project”, to build the

project.

Figure 2-6 Building a project

The message pane at the bottom of the windows shows the message as shown in “Figure 2-7

Completing the build” to notify you that the build has been completed successfully.

Figure 2-7 Completing the build

AN07-00200-03E

 40

2.1.2 Writing the program into the microcontroller

Preparation

To write the program, it is necessary to set the Mode SW on the starter kit to “PROG” in advance.

Turn OFF the starter kit, switch the mode setting to “PROG”, and then turn ON the power supply to

the starter kit again.

From the Windows start menu, click “All Programs” → “FUJITSU USB PROGRAMMER” →

“MB95F136JBS” to activate the PC writer.

To select the file to be written as shown in “Figure 2-8 Opening the file to write”, click the “Open”

button.

Figure 2-8 Opening the file to write

Click

AN07-00200-03E

 41

The dialog to select the file to which to write will be displayed as shown in “Figure 2-9 Selecting the

file to write”, select the file built in “2.1.1 Building a project”, and click “Open”.

¥bitspot_yellow_SampleProgram¥bitspot_yellow_SampleProgram_single-chip¥single_operation

¥Debug¥ABS¥ single_operation.mhx

If you built a LIN communication project in “Figure 2-6 Building a project”, select the following file,

and click “Open”.

¥bitspot_yellow_SampleProgram¥bitspot_yellow_SampleProgram_single-chip¥LIN_communicatio

n¥Debug¥ABS¥LIN_communication.mhx

Figure 2-9 Selecting the file to write

Click the “Full Operation” button as shown in “Figure 2-10 Writing the program” to start writing the

program. The program writing begins.

Figure 2-10 Writing the program

Click

AN07-00200-03E

 42

The dialog shown in “Figure 2-11 Completing the program writing” is displayed to notify you that

the program writing has been completed. Click the “OK” button to quit the PC writer.

Figure 2-11 Completing the program writing

Switch the MODE SW on the starter kit to “RUN”, and then press the Reset button; the program

starts running.

AN07-00200-03E

 43

2.2 Debugging by using Monitor Debugger

To debug by using Monitor Debugger, take the following procedures.

① Activating SOFTUNE and configuring the debug settings

② Writing the program into the microcontroller (including monitor programs)

③ Loading the target file

④ Running the debugger

2.2.1 Activating SOFTUNE and configuring the debug settings

Preparation

Decompress the following file in the folder you decompressed in “1.1.1 Downloading the

software” in advance.

¥ sample program¥ bitspot_yellow_SampleProgram.zip

From Windows start menu, click “All Programs (P)” → “Softune V3” → “FFMC-8L Family Softune

Workbench” to activate SOFTUNE.

Click “File” → “Open workspace” from the SOFTUNE menu as shown in “Figure 2-12 Opening a

workspace” to open a workspace.

Figure 2-12 Opening a workspace

AN07-00200-03E

 44

As shown in “Figure 2-13 Selecting a workspace”, the dialog that allows you to select a workspace

is displayed. Select the folder containing the sample program for the monitor debugger, and then

select the “bitspot_yellow_SampleProgram_monitordebugger.wsp” workspace, and click “Open”.

¥bitspot_yellow_SampleProgram¥bitspot_yellow_SampleProgram_monitor-debugger¥ bitspot_yello

w_SampleProgram_monitordebugger.wsp

Figure 2-13 Selecting a workspace

The workspace opens, check that the “single_operation” project is set to the active project. To

change the active project to the project for the LIN communication, select the project for the LIN

communication as shown in “Figure 2-5 Changing the active project”, and then right-click and select

“Set as Active project” from the sub-menu.

After setting the active project, click “Project” → “Build” from the menu as shown in “Figure 2-14

Building a project”, to build it.

AN07-00200-03E

 45

Figure 2-14 Building a project

The message pane at the bottom of the screen displays the message as shown in “Figure 2-15

Completing the build” to notify you that the build has been completed successfully.

Figure 2-15 Completing the build

AN07-00200-03E

 46

Next, configure the load module output settings.

As shown in “Figure 2-16 Load module outputs”, select “Project” → “Setup Project” from the menu.

The project settings dialog opens, check that “Start load module converter” is enabled on

“Converter”. By enabling this checkbox, the load module will be output.

Figure 2-16 Load module outputs

AN07-00200-03E

 47

Next, configure the debug settings. On the same project settings dialog, open the “Debug” tab. The

debug settings dialog opens as shown in “Figure 2-17 Debug settings”.

Figure 2-17 Debug settings

Change the category from “General” to “Setup”, and select “mon_dbg” from the setup name list. In

the setup name, “mon_dbg” is entered as shown in “Figure 2-18 Changing the debug settings”. Here,

click the “Change” button to change the settings. (The setup wizard activates.)

Figure 2-18 Changing the debug settings

AN07-00200-03E

 48

The debug setup wizard is displayed as shown in “Figure 2-19 Starting the debug setting wizard”

Click the “Next” button.

Figure 2-19 Starting the debug setting wizard

Select the debugger type as shown in “Figure 2-20 Selecting the debugger type”; select “Monitor

Debugger” and then click the “Next” button.

Figure 2-20 Selecting the debugger type

AN07-00200-03E

 49

Enter the password as shown in “Figure 2-21 Entering password when starting debugger”. Keep the

default settings and then click the “Next” button.

Figure 2-21 Entering password when starting debugger

Select the device type as shown in “Figure 2-22 Selecting the device type”. Check that “USB” has

been selected in the device name, and click the “Next” button.

Figure 2-22 Selecting the device type

AN07-00200-03E

 50

Set the frequency as shown in “Figure 2-23 Setting the primary oscillation frequency”. Set to “D’4”

(4MHz frequency setting), and click the “Next” button.

Figure 2-23 Setting the primary oscillation frequency

Specify nothing to the batch file field as shown in “Figure 2-24 Specifying a batch file”; keep the

field left blank and click the “Next” button.

Figure 2-24 Specifying a batch file

AN07-00200-03E

 51

Enable the “Auto load when starting debug” checkbox as shown in “Figure 2-25 Configuring the

target file settings”, and click the “Next” button.

Figure 2-25 Configuring the target file settings

Select “Specification” for setup file selection as shown in “Figure 2-26 Setting setup file selection”,

and click the “Next” button.

Figure 2-26 Setting setup file selection

AN07-00200-03E

 52

When all the settings have been completed as shown in “Figure 2-27 Completing the setup wizard”,

click the “Finish” button.

Figure 2-27 Completing the setup wizard

When the debug settings have been completed, click the “Apply” button and then click the “OK”

button as shown in “Figure 2-28 Completing the project settings” to finish configuring the project

settings.

Figure 2-28 Completing the project settings

AN07-00200-03E

 53

2.2.2 Writing the monitor program into the microcontroller

Preparation

To write programs, it is necessary to set the MODE SW on the starter kit to “PROG” in advance.

Turn OFF the starter kit, switch the mode setting to “PROG”, and then turn ON the power supply to

the starter kit again.

To activate the PC writer and select the file to be written as shown in “Figure 2-29 Opening the file

to write”, click the “Open” button.

Figure 2-29 Opening the file to write

Click

AN07-00200-03E

 54

The dialog to select the file to which to be written is displayed as shown in “Figure 2-30 Selecting

the file to write”, so select the file built in “2.2.1 Activating SOFTUNE and configuring the debug

settings”, and click the “Open” button.

¥bitspot_yellow_SampleProgram_monitor-debugger¥single_operation¥Debug¥ABS¥single_operati

on.mhx

If you built a LIN communication project in “2.2.1 Activating SOFTUNE and configuring the

debug settings”, select the following file, and click the “Open” button.

¥bitspot_yellow_SampleProgram_monitor-debugger¥LIN_communication¥Debug¥ABS¥LIN_com

munication.mhx

Figure 2-30 Selecting the file to write

AN07-00200-03E

 55

Click the “Full Operation” button as shown in “Figure 2-31 Writing the program” to start writing.

The program writing begins.

Figure 2-31 Writing the program

The dialog shown in “Figure 2-32 Completing the program writing” is displayed to notify you of the

completion of the program writing; press the “OK” button to quit PC Writer..

Figure 2-32 Completing the program writing

After completing the program writing, turn OFF the starter kit power supply, and set the Mode SW

to “RUN” before reconnecting the power supply to the starter kit.

Click this.

AN07-00200-03E

 56

2.2.3 Loading the target file

Click “Debug” → “Start debug” from the menu as shown in “Figure 2-33 Start debugging”. When

the debug starts, the target file will be loaded automatically.

Figure 2-33 Start debugging

Once the monitor program itself is loaded to flash memory, the module can be loaded by the monitor

debugger functions subsequently, and, it is not necessary to use the PC writer.

Note: It may take several minutes for the monitor debugger to load.

AN07-00200-03E

 57

2.2.4 Running the debugger

As shown in “Figure 2-34 Setting break points”, you can set break points to where green round mark

is located which is shown on the left side of lines in the source file. .A maximum of only two break

points can be set.

Note that you cannot set break points while the program is running.

Figure 2-34 Setting break points

Click this to set a break point.

To cancel the break point, click this again.

attempting to set the third point, an error occurs.

AN07-00200-03E

 58

Click “Debug” → “Run” → “Go” from the menu, as shown in “Figure 2-35 Running the program”.

By this operation, the program runs and the starter kit operates.

Figure 2-35 Running the program

To stop the program, click “Debug” → “Abort” from the menu as shown in “Figure 2-36 Stopping

the program”.

Figure 2-36 Stopping the program

AN07-00200-03E

 59

2.2.4.1 If the monitor debugger cannot be controlled

It may become unable to control the monitor debugger (I.e., communications between the host

system and the target fails.), due to, such as the application program unexpected behavior. In such

cases, restart the debugger using the following procedure.

① Select “Debug (D)”, － “Abort”.(Alternatively, click the Run Stop button.)

② Click the “Abort(A)” button in the abort dialog. Note: MCU cannot be reset at this time.

This dialog may be displayed several times, but ignore it.

③ If the warning “Cannot abort” is displayed, click “OK”

④ Close the debugger and reset the target system.

⑤ Restart the debugger.

2.2.4.2 Debugger prohibitions

① Do not operate resources that use the monitor debugger (IO ports P10, P11, P12).

② Do not operate the PLLC and SYCC registers by using the debugger.

③ Do not set break points in the monitor program.

④ Do not single step thorough within API FGM_WDTON process.

2.2.4.3 Debugger limits

① The initial values for the SP register changes.

② The startup time changes after the reset cancellation.

③ Forced breaks are disabled when UART/SIO interrupts are prohibited.

④ The response time of clock 2 system products (with sub-clock inputs) is lengthened.

⑤ Code breaks are disabled during step-in operations.

⑥ Add four bytes to the stack area for the monitor program.

⑦ Make sure to combine use with the “flash security function” also.

⑧ Use the flash programmer when changing the password.

⑨ A reset occurs after an object has been loaded.

AN07-00200-03E

 60

3 Operation of the sample Programs

This section describes the operation of the sample program. The operation of the sample programs is

classified into the following two categories.

① bits pot yellow single-unit operation

② LIN communication operation (LIN communication operation with the bits pot white)

AN07-00200-03E

 61

3.1 bits pot yellow single-unit operation

Explanations of the operation and control parts as shown in “Figure 3-1 Single-unit

operation/Controls and mechanicals” are described in “Table 3-1 Single-unit operation/Descriptions

of the controls and mechanicals”.

The LEDs (red) and buzzer are controlled by SW 2, SW 3, volume switch, and temperature sensor

on the starter kit.

Figure 3-1 Single-unit operation/Controls and mechanicals

2. Reset SW

1. Mode SW

3. SW2 4. SW3 5. Temperature sensor

6. Volume SW

7. Buzzer

8. LEDs (red)

AN07-00200-03E

 62

Table 3-1 Single-unit operation/Descriptions of the controls and mechanicals

No. Name Specifications Function

1 Mode SW Control

Switches between PROG mode and RUN mode.

PROG: Write a program

RUN: Run the program

2 Reset SW Control Resets the MCU when pressed.

3 SW2 Control

Turns ON and OFF the LED when pressed. Light up

LEDs 4 to 6 in order and turn OFF when they are all

ON, each time the switch is pressed.

4 SW3 Control
Turns ON and OFF the buzzer outputs each time the

switch is pressed.

5 Temperature sensor Control

Displays the temperature sensor information on the

LED.

The ON/OFF pattern depends on the temperature.

6 Volume SW Control
Change the buzzer sound when the sound is ON.

Slide to the left to raise the tone.

7 Buzzer Mechanical
Press SW 3 to sound the buzzer. Further, operate the

volume switch to change the tone.

8 LEDs (red) Mechanical
This LED is turned ON either by pressing SW2 or by

the temperature sensor operations.

AN07-00200-03E

 63

3.2 LIN communication operation (LIN communication operation with the bits pot

white)

Explanations of the operation and control parts as shown in “Table 3-2 LIN

communication/Descriptions of the controls and mechanicals” are described in “Figure 3-2 LIN

communication operation/Controls and mechanicals”.

Perform LIN communication with bits pot white. The starter kit sends responses to the bits pot white

as a LIN slave. LED (red) and 7SEG ON signals, and buzzer outputs of the starter kit and the bits pot

white are controlled, by switch operation, and temperature sensor and volume switch operation of

each starter kit. Further, if an error occurs during LIN communication, a buzzer output is sent.

Figure 3-2 LIN communication operation/Controls and mechanicals

1. Mode SW

2. Reset SW

3. SW2 4. SW3

5. Temperature

sensor

6. Volume SW

7. Buzzer

8. LED

AN07-00200-03E

 64

Table 3-2 LIN communication/Descriptions of the controls and mechanicals

No. Name Function Description

1 Mode SW Control

Switches between PROG mode and RUN mode.

PROG: Write a program

RUN: Run the program

2 Reset SW Control Resets the MCU when pressed.

3 SW2 Control

If SW 2 is pressed when the bits pot white SW4 is set to the

left, the value on the LED currently displayed in the starter

kit is incremented, and the bits pot white LED and 7SEG

LED are also incremented.

If bits pot white SW4 is set to the right, no operation is

performed.

4 SW3 Control

If SW2 is pressed when the bits pot white SW4 is set to the

left, the value on the LED currently displayed in the starter

kit is decremented, and the bits pot white LED and 7SEG

LED are also decremented. If bits pot white SW4 is set to

the right, no operation is performed.

5 Temperature sensor Control
When bits pot white SW4 is set to the right, the temperature

of the starter kit temperature sensor is sent.

6 Volume SW Control

When bits pot white SW4 is set to the right, the information

of the starter kit Volume SW is sent.

The sound of the bits pot white buzzer output changes when

the volume switch is operated.

7 Buzzer Mechanical

Buzzer sounds are output when bits pot white SW4 is set to

the right. Further, the buzzer sound output changes

according to volume switch operations.

In addition, if an error occurs during LIN communication, a

buzzer sound is output.

8 LED (red) Mechanical

When bits pot white SW4 is set to the left, the count is

incremented or decremented by pressing starter kit SW2 and

SW3, and bits pot white SW3 and SW5.When bits pot white

SW4 is set to the right, the temperature information from the

bits pot white temperature sensor is displayed.

AN07-00200-03E

 65

4 Try to operate the bits pot yellow (single-unit)

4.1 Overview of single-unit operation

After system startup, the starter kit LEDs and buzzers are operated by the switches (SW2, SW3, and

volume switch) and temperature sensor as described below.

4.1.1 Turning ON LEDs using switch operations

General push switches and LEDs are mounted to the starter kit as shown in “Figure 4-1 Single-unit

operation/Switches and LEDs”, and connected to the microcontroller respectively.

This section explains how to turn ON and OFF the LEDs using SW2 operations.

Figure 4-1 Single-unit operation/Switches and LEDs

First, describes how to control turning ON the LEDs using the microcontroller.

The LEDs and microcontroller of the bits pot yellow are connected as shown in “Figure 4-2 LED

lighting circuit”. This is shown diagrammatically in “Figure 4-3 LED ON/OFF circuit example

(schematic diagram)”. When the LED is OFF as shown in Figure 4-3(a), pin P14 outputs are high, so

current does not flow to the LED, and the LED remains OFF. When the LED is ON as shown in

Figure 4-3(b), pin P14 outputs are low, so current flows to the LED, and the LED turns ON. The

switches of the microcontroller can be switched using the program that controls the microcontroller.

SW2

LED

AN07-00200-03E

 66

MB95F136JBS

P15

P16

P14/PPG0

30

1

29

R19: 3.3kΩLED4:SML-210LT

R20: 3.3kΩLED5:SML-210LT

R21: 3.3kΩLED6:SML-210LT

VCC5

Figure 4-2 LED lighting circuit

P14端子 P14端子

(a)LED消灯 (b)LED点灯

LED LED

点灯 消灯

Figure 4-3 LED ON/OFF circuit example (schematic diagram)

The pin P14 is controlled by the PDR1 register and the DDR register. If using the ports as outputs,

write the value to be output to the bit corresponding to the pins in the PDR1 register (0: Low, 1:

High), and write “1" to the bits corresponding to the pins in the DDR1 register.

Next, regarding switch controls, the switches on the starter kit are connected to the pin P5, which is

the external interrupt input pin, and the general I/O ports on the microcontroller. This section

explains how to detect switch operations (i.e., when the switch is pushed) on the microcontroller

using the pins as external interrupt input pins (INT5).

An overview of the SW2 connection circuit in the starter kit is shown in “Figure 4-4 Connection

configuration between SW2 and microcontroller pins (schematic diagram)”. In the starter kit, SW2 is

connected to the INT5 pin, which is the external interrupt input pin on the microcontroller. If SW2 is

not pressed (i.e., is OFF), the voltage applied to the INT5 pin on the microcontroller is VCC (5V),

which is High. Further, if SW 2 is pressed (i.e., is ON), the voltage applied to the INT5 pin is

grounded, so the INT5 (P5) pin input status is Low. Consequently, when SW2 is pushed, the

pin P14

LED
OFF

Pin P14 Pin P14

LED
ON

(a) LED OFF (b) LED ON

Microcontroller Microcontroller

AN07-00200-03E

 67

input to the INT5 pin changes from High to Low. Further, when SW2 is released, the input to the

INT5 pin changes from Low to High. If using the external interrupt function on the microcontroller,

an interrupt can be created using timing that changes the pin status. In other words, if using this

mechanism, the fact that the switch has been operated can be identified using the interrupt. Further,

SW3 can also be operated in the same way as SW2, but SW3 is connected to the INT6 pin on the

microcontroller. Consequently, when SW3 is operated, an INT6 pin external interrupt is created.

Figure 4-4 Connection configuration between SW2 and microcontroller pins (schematic diagram)

The next section explains the methods and procedures for using the INT5 pin on the microcontroller

as an external interrupt pin. If using the INT5 pin as an external interrupt, set the I/O direction to

“input” using register DDR0 on port 0 and, further, if using combined analog input pins, it is

necessary to make port input settings. Register DDR0 on port 0 is an 8-bit register for switching the

direction (input or output direction) used by the port 0 pins. If using the pins as input ports, write “0”

to the bit corresponding to DDR0.

Further, to use the external interrupt function on the microcontroller, it is necessary to set the

external interrupt register EIC00. EIC00 is a register that selects the edge polarity and controls

interrupts for the external interrupt inputs.

This section considers when SW 2 being turned ON is detected by an interrupt. When SW2 is

released, the fact that the input level of the INT5 pin changes from Low to High has already been

explained. With the external interrupt function, it is possible to detect the change in the level from

Low to High (i.e., the rising edge) of the INT5 pin by setting the external interrupt register using the

steps (1) to (5) in the procedure described below. Consequently, using this method, it is possible to

detect when SW2 is turned ON using an interrupt.

(1) Write "1” to AIDRL bit 5, and make the settings so that the P5 pin on port 0 is used as the

input port.

(2) Write “0” to DDR0 bit 5, and set SW2 to inputs.

(3) Set EIC20 bit 4 to “0”. (This prohibits INT5 interrupts.)

(4) Set EIC20 bit 5 to “1”, and bit 6 to “0”. (Set so that an external interrupt is created when

GND GND

SW2

INT5 pin

PDR0 register

Microcontroller

■SW2: OFF

SW2

Vcc

No
INT5 pin

PDR0 register

Microcontroller

Microcontroller

■SW2: ON

 Vcc

AN07-00200-03E

 68

the rising edge is detected.)

(5) Set EIC20 bit 5 to “1”. (This permits INT5 interrupts.)

AN07-00200-03E

 69

4.1.2 Controlling the buzzer using the volume switch

This section introduces processing to change the buzzer sound according to changes in the digital

signal converted from the analog signals input into the microcontroller. By Volume SW operations,

the analog signals input into the microcontroller is converted to digital using an A/D converter and

acquire them as digital signals internally. Further, the A/D converter is a function that separates and

converts analog values to digital values using standards based on certain rules. In addition, this

function is built into the microcontroller, and the conversion process is called “A/D conversion”.

In the starter kit, the voltage values applied to the analog pins for A/D conversion can be controlled

using the volume switch, which is built into the starter kit. Analog signals are input to the

microcontroller using this knob. Analog signals that have been entered are processed by the

microcontroller after being converted to digital signals by the A/D converter.

Figure 4-5 Single-unit operation/Volume SW

An A/D converter with 8-bit resolution (10-bit resolution can also be used) is built into the main

microcontroller in the starter kit.8-bit resolution is the name given to the ability to deblock and

convert analog values to digital values in 2
8
 (i.e., 256) steps.1-bit voltage accuracy (at 5V) during

8-bit resolution is described below.

 1-bit voltage accuracy (at 5V)

 With 8-bit resolution 5V/256 = Approx. 0.01953V

This explanation concerns the volume switch mechanism, but the symbol for a variable resistor is

used in “Figure 4-6 Volume SW (variable resistor)”. In truth, the volume switch is really a variable

resistor.

Figure 4-6 Volume SW (variable resistor)

Volume SW to adjust applied

voltage

AN07-00200-03E

 70

MB95F136JBS

AN01

VCC5

GND

可変抵抗

(ボリュームSW)
16

Figure 4-7 Circuit surrounding the voltage adjustment knob

In the starter kit, the circuit is configured as shown in “Figure 4-7 Circuit surrounding the voltage

adjustment knob”, and adjusting this volume switch changes the value of the voltage applied, and

applies this voltage to the pins that perform the A/D conversion. The applied voltage can be digitally

converted in 256 steps, and handled as internal signals. In this sample program, the size of the

applied voltage is obtained using an A/D converter, and the buzzer sound changes according to this

value.

Variable resistance

(Volume switch)

AN07-00200-03E

 71

Next, here explains how to output buzzer sounds.

An element called a piezoelectric element is used in the buzzer. Piezoelectric elements are elements

that use the piezoelectric effect, and which use materials that create a voltage when shock or pressure

are applied (piezoelectricity) or, conversely, which use materials with properties that create a

distortion in the crystal configuration when a voltage is applied (reverse piezoelectricity).As shown

in “Figure 4-8 Piezoelectricity”, piezoelectric elements have the property of expanding when a

voltage is applied in the direction of polarization (the direction of the green arrows) and contracting

when a voltage is applied in the opposite direction to polarization (the opposite direction from the

green arrows).

++++++++++

++++++++++

++++++++++++++++

++++++++++++++++

膨張 収縮

Figure 4-8 Piezoelectricity

Consequently, as shown in “Figure 4-9 Principle of piezoelectric elements”, when an AC voltage is

applied, the crystals repeatedly expand and contract each time the direction of the voltage alternates.

By changing the frequency of the AC voltage, the speed of the crystal contraction and expansion also

changes. If this property is used skillfully, the crystal can be vibrated at various frequencies. If the

vibration energy of the crystal is sufficiently great, it can also vibrate the air to create sound. This is

the principle used in the piezoelectric buzzer.

Expansion Contraction

AN07-00200-03E

 72

++++++++++

++++++++++

++++++++++++++++

++++++++++++++++

膨張

収縮

Figure 4-9 Principle of piezoelectric elements

In this way, a sound can be created by applying a voltage that changes in AC voltage or pulse voltage

to the piezoelectric buzzer. Here, the method outputs a pulse wave using the PPG timer that is built

into the microcontroller. PPG is an initialize for Programmable Pulse Generator, and as the name

implies, pulse outputs of various widths are obtained from the microcontroller by using programs.

Basically, pulse outputs using the PPG timer are enabled by setting the cycle, H width, and

operations clock. In reality, in addition to this pulse information, the PPG pin output enable settings

and PPG operations enable settings are also required.

Expansion

Contraction

AN07-00200-03E

 73

4.1.3 LED displays using temperature sensor operations

This section explains how to display temperature information on the LED using the temperature

sensor, which is mounted to the starter kit. A temperature sensor is a sensor for detecting changes in

temperature. Put simply, it is a thermometer for measuring the temperature. Although there are

various methods of measuring the temperature, the temperature sensor mounted to the starter kit is

called a thermistor. A thermistor is a resistor that uses the temperature characteristics of

semiconductors, and is a temperature sensor in which the resistance value changes according to the

temperature

The circuit surrounding the temperature sensor on the starter kit is shown in “Figure 4-10 peripheral

circuit diagram for temperature sensor”. As explained in the section on the volume switch, with this

circuit also, if the resistance value of the temperature sensor changes, the input voltage of the A/D

converter in the microcontroller changes.

MB95F136JBS

AN07

端子

R=10kΩ

VCC5

GNDGND

温度センサ

Figure 4-10 peripheral circuit diagram for temperature sensor

Next, about the LED display, is basically the same as turning ON/OFF the LED. Here, The LED is

turned ON in multiple patterns according to the digital values acquired from the temperature sensor.

AN07 pin

Temperature sensor

AN07-00200-03E

 74

4.2 Understanding and running the program in single-unit operation

This section explains sample programs as programs that practically turn on/of the LED using switch

operations and that control the buzzer using the A/D converter operations.

Start

Initialize

(Port and interrupt levels)

Initialize AD computer

Infinite loop

Initialize external interrupt

Clear external interrupt request

flag

LED4, LED5, and LED6 ON/

OFF

End external interrupt

processing

Start external interrupt

processing

Start external interrupt

processing

Clear external interrupt request

flag

PPG start/stop

PPG output authorized

End external interrupt

processing

Start AD conversion

interrupt

Clear interrupt request flag

Use volume SW

Cycle setting

false true

Duty setting

Acquire A/D value

from temperature

sensor

End AD conversion

interrupt

LED temperature

display

Acquire A/D value

from slide volume

Figure 4-11 Single-unit operation flowcharts

Press SW2

Press SW3

AN07-00200-03E

 75

The flowcharts for the sample programs are shown in “Figure 4-11 Single-unit operation flowcharts”.

First, the ports, interrupt levels, external interrupts, and A/D converter are initialized. Thereafter, the

program enters a loop. Here, when SW2 is pressed, an external interrupt is created, and the LED

on/of processing is performed. Further, when SW3 is pressed, the buzzer is output. Here, the buzzer

sound can be changed by operating the Volume SW.

So, let us look at an actual program.

Check the following folder for the sample program. The folder contains several files. First, open

“main.c”.

¥bitpot_yellow_SampleProgram_single-chip¥single_operation¥source

Check around the line 37 as shown in “Figure 4-12 Operation mode settings (when using volume

switch)” to select the operation mode. #define is set, so that whether to use the temperature sensor,

and the enable/disable settings can be configured. To use the Volume SW for inputs to the A/D

converter, configure the settings as shown in Figure 4-14, and to use the temperature sensor,

configure the settings as shown in Figure 4-15.

In this explanation, the temperature sensor is not used, but use of the volume switch is enabled.

Figure 4-12 Operation mode settings (when using volume switch)

Figure 4-13 Operation mode settings (when using the temperature sensor)

Note: The operation mode settings must be configured not only for main.c, but also for ADC.c and

ext_int.c.

/* Temperature sensor use (1), or unused (0) */

#define TEMP_SENSOR_USE (0)

/* Temperature measurement permission, non-permission */

#define TEMP_MEASURE_ON (0)

#define TEMP_MEASURE_OFF (1)

/* Temperature sensor use (1), or unused (0) */

#define TEMP_SENSOR_USE (1)

/* Temperature measurement permission, non-permission */

#define TEMP_MEASURE_ON (1)

#define TEMP_MEASURE_OFF (0)

Temperature sensor disabled

Volume SW enabled

Temperature sensor not used

Temperature sensor used

Temperature sensor enabled

 Volume switch disabled

AN07-00200-03E

 76

As shown in “Figure 4-14 Main function program”, the main functions are around line 165. “Port

initialization”, “A/D converter initialization”, and “external interrupt initialization” are contained

herein.

Figure 4-14 Main function program

void main()

{

 sysInitialize();

 adInitialize();

 initial_external_int();

 __set_il(3);

 __EI();

 while(1);

}

Port initialization

AD converter initialization

External interrupt initialization

Infinite loop

AN07-00200-03E

 77

Next, an interrupt is created when SW2 is pushed. The external interrupt function _interrupt void

Ext_int1_5 in ext_int.c will be called as shown in “Figure 4-15 SW2 interrupts (LED on/off

processing)”.Here, the LED display is turned on/off, due to the output settings for the port connected

to the LED, or due to the switch being pressed several times, is shown.

Figure 4-15 SW2 interrupts (LED on/off processing)

An interrupt is also created if SW3 is pressed, and the external interrupt function __interrupt void

Ext_int2_6 in ext_int.c is called as shown in “Figure 4-16 SW3 interrupts (buzzer output

processing)”.This is where the PPG timer output settings are made, and timer start/stop process is

performed.

Figure 4-16 SW3 interrupts (buzzer output processing)

_interrupt void Ext_int1_5(void)

{

 IO_EIC20.bit.EIR1 = 0;

 if (TEMP_MEASURE_OFF){

 IO_DDR1.bit.P14 = 1;

IO_DDR1.bit.P15 = 1;

 IO_DDR1.bit.P16 = 1;

 SW_count++;

 if(SW_count > 3){

 SW_count = 0;

 }

 IO_PDR1.byte = LED_pat[SW_count];

 }

 else if(TEMP_MEASURE_ON){

 (Omitted)

 }

}

When using Volume SW

Using temperature sensor

Port output setting

LED ON processing

__interrupt void Ext_int2_6(void)

{

 IO_EIC30.bit.EIR0 = 0;

 IO_PC00.byte = 0x0E;

 IO_PPGS.byte = ~IO_PPGS.byte;

}

PPG timer output setting

PPG timer start/stop

AN07-00200-03E

 78

The A/D conversion is started in the A/D converter initialization function. Thereafter, when the A/D

conversion is finished, an A/D converter interrupt is created as shown in “Figure 4-17 A/D converter

interrupts”. Here, the A/D conversion values are acquired from the Volume SW or temperature

sensor. If using the SW, the PPG timer cycle and duty changes are implemented using the A/D

conversion values that have been acquired, to change the sound of the buzzer. If using the

temperature sensor, the temperature is displayed according to the A/D conversion values acquired.

Figure 4-17 A/D converter interrupts

__interrupt void ad_int(void)

{

 IO_ADC1.bit.ADI = 0;

 ad = ~IO_ADD.byte.ADDL;

 if (TEMP_MEASURE_OFF){

 if(ad < 51){

 IO_PPS00 = 0xFA;

 IO_PDS00 = 0x7D;

 }

 else if(ad < 102){

 (Omitted)

 }

 else if (TEMP_MEASURE_ON){

 if(ad < 66)

 {

 IO_PDR1.bit.P14 = 0;

 IO_PDR1.bit.P15 = 1;

 IO_PDR1.bit.P16 = 0;

 }

 (Omitted)

 }

 IO_ADC1.bit.AD = 1;

}

Acquire A/D conversion value

If using Volume SW

Change interval

If using temperature sensor

Change LED display

Start A/D conversion

AN07-00200-03E

 79

5 Try to use LIN communication

Communication is to send/receive information. There are, in fact, various communications formats,

such as transmission by people talking, letters written in script, and electronic communications, etc.

Among these, there are various plans for communications using electricity. This chapter explains

communications in a standard called LIN.

5.1 What is LIN?

LIN is an acronym for Local Interconnect Network, and is a type of communications protocol for

vehicle-mounted LAN. The LIN consortium was proposed in 1999 with the objective of enabling a

less expensive configuration than CAN, which is the most widespread control system

vehicle-mounted LAN. Thereafter, after several version upgrades, LIN2.0, which has added

diagnostic and other functions, was launched in 2003. Further, in 2006, the version was upgraded to

LIN2.1.

This section explains LIN applications. Concomitant with multi-function vehicles, the existence of a

network in vehicles also became indispensable. Currently, vehicle-mounted LANs are broadly

divided into two classifications: control systems, which are concerned with motoring and the vehicle

body, and information systems, which connect devices such as the satellite navigation system and

audio, and so different LANs are used depending on the application. In particular, vehicle body

devices such as electric mirrors and power windows, which are classified as body systems, do not

require such fast or detailed control. Consequently, they are also inexpensive. This is where LIN is

used.

http://en.wikipedia.org/wiki/Global_Navigation_Satellite_System

AN07-00200-03E

 80

Figure 5-1 Example of vehicle LIN applications

Rear

 Rear window heater

 Rear wiper

 Rear blinkers

Seats

 Power seat and motor control

 Passenger detection

 Heater

 Switch control

Accessories

 Wipers

 Back mirror

 Switch control

AC

 Motor control

 Rear panel

Doors

 Switch control

 Power windows

 Mirror control

Doors

 Switch control

 Power windows

 Mirror control

AN07-00200-03E

 81

The characteristics of LIN used in the way described above, are collated and introduced in the

following five points.

1. Single master communication

LIN has two types of communication nodes. One is the “master” (sender).This controls the start

of all communications. The other is the slave (recipient).The slave responds to commands sent

by the master. LIN communication must start from the master, and cannot be started by a slave.

Further, the LIN communication mode designated as the master is pre-determined. This format

is called a “single master format”.

2. A maximum of 15 slave nodes can be connected using bus wiring.

The LIN network configuration (topology) is a bus. With single master LINs, the slaves

communicate only when they receive commands from the master, so there is no conflict of

signals in the bus. A maximum of 15 slave nodes can be connected to one master.

Figure 5-2 Main LIN network configuration

3. Wiring is completed using a single wire

The on-board ECUs are connected to the LIN network via transceiver ICs (electronic

components that send and receive data), and each ECU is connected on the bus from the master

Communications can be

started from the master

Communications cannot be

started from the slave!!

Slave1 Slave2 Slave3 Slave15
(Mirror) (Door Lock) (Windows)

Up to 15 slaves max. Can be connected

 Transceiver IC (Electronic component for sending and

receiving data)

(Door)
Master

AN07-00200-03E

 82

to a slave. An ordinary single metal wire is used as the bus cable. CAN combines two opposing

metal wires to make one twisted pair cable. FlexRay uses two twisted pair cables. Consequently,

LIN has the advantage of using a single cable for numerous network wires, unlike CAN and

FlexRay, which use twisted pair cables.

The communications distance is 40m max. LIN can be used in combination with CAN, and in

such cases, CAN is most frequently used as the core network, and LIN is used as the branch

network.

4. The baud rate is 20kbps max.

The baud rate according to LIN specifications is within the range 1 to 20kbps. Practically, the

baud rate of LINs used as LANs depends on the individual vehicle manufacturer’s system

specifications, but generally one of the following is used: 2,400kbps, 9,600kbps, or 19,200kbps.

5. Communications errors are detected only, and subsequent processing depends on the

application

With LIN, communications errors are detected based on information as to whether transmitting

and receiving has been performed successfully. Processing after an error has been detected,

however, is not specified. Here, LIN error processing can be customized according to the

application. CAN and FlexRay management of the communications status depends on the

counter value, which is called the error counter, is featured by the specifications, but in LIN, if

an error occurs, simple error processing is possible, in which LIN merely waits for the next

command.

5.2 LIN specifications

This section explains briefly the LIN specifications.

For detailed specifications, access the LIN consortium website (http://www.lin-subbus.org/), and

register your name and e-mail address to get a specifications.

5.2.1 Lin frame configuration

This section explains frames, which is the basic unit of LIN communication.

LIN frames are configured using “headers” and “responses”. As shown in “Figure 5-3 LIN

communication flow”, the basic communications flow is a procedure in which the master sends

headers to the slaves, and the slaves implement processing according to the contents of the

headers received, and then send a response to the master.

http://www.lin-subbus.org/

AN07-00200-03E

 83

Master Slave

Header

BreakSync byte

Response

Identifier

Data Check sum

Figure 5-3 LIN communication flow

Further, headers are configured using three fields: Break, Sync byte, and ID field (Identifier), and

responses are configured using two fields: Data field and Checksum field.

Checksum FieldData FieldID FieldSync ByteBreak

ID DATA1 DATAN Check Sum

Header Response

：Start bit(“L”)

：Stop bit(“H”)

：Interval

：Response space

：Break delimiter

：Inter-frame space

Figure 5-4 LIN frame configuration

AN07-00200-03E

 84

1. Break

Break, which are in the header fields, are variable-length fields that indicate the start of a

new frame. They comprise 13 to 16 “0” bits (fixed value zero) min. The general frame

length is 13 bits.

2. Sync Byte

Sync byte, which follow on from breaks, are 10-bit fixed-length fields that synchronize the

master and the slaves. Sync byte configurations comprise 1 starter bit (“0”), 8 data bits, and

1 stop bit (“1”).The 8-bit data bit has the fixed value “0x55” (which is expressed as

“0x01010101” in binary).If the slave receives the 0x55 in the synch byte send by the master

normally, the master and slave are synchronized.

3. ID field

The “ID field”, which is the final header field and comes after the synchronous byte, is a

10-bit fixed-length field that specifies the frame type and objective. ID fields have values

from “0” to “63” (6 bits).This ID field is also used by the master to specify individual slaves.

Slaves judge what type of frame has been sent and if it was intended for them according to

the ID field sent by the master, and send responses to the master accordingly. Further, the ID

field has a 2-bit parity bit following the “0” to “63” (6 bits).This is bracketed by a 1-bit

starter bit and 1-bit stop bit in the same way as the synchronous byte, so overall the field is

10 bits in length.

4. Data field

The “data”, which is in the response header, is a variable-length field that literally transfers

data. The data in the number of bytes that has been predetermined (1 to 8 bytes) is sent. As

there is a 1-bit start bit and 1-bit stop bit bracketing the 1-byte data in the same way as the

header synchronous byte, 1 byte of data is configured from 10 bits. Consequently, the total

data field length is “number of bytes x 10 bites”.

5. Checksum field

The “checksum”, which follows the data, is a 10-bit fixed-length field for checking data. The

data recipient checks whether there is an error in the data by comparing the data received

with the checksum. The checksum field length is also 10 bits: a start bit and a stop bit added

to the 8-bit checksum in the same way as the synchronous byte.

AN07-00200-03E

 85

5.3 LIN communication flow

In general LIN communication, one master communicates with numerous slaves. LINs, which adopt

a bus topology, connect the master and all the slaves using a single wire, so header electrical signals

sent by the master are transmitted by the wire to all the slaves. The slaves check the frame ID, and if

the header is addressed to them, sent a response to the master according to the content received. If

the header received is addressed to another slave, it is ignored. In this way, 1-to-1 communication

between the master and each slave is achieved.

This section explains the actual trading of communications. Currently, functions are allocated to

each of the slaves from 1 to 15.The master first communicates with slave 1 and turns the motor ((1)

in Figure 5-5 Main LIN network configuration and Figure 5-6 Example of communication sequence

between the master and slaves during normal communication), and next acquires sensor information

by communicating with slave 3. ((2) in “Figure 5-5 Main LIN network configuration” and Figure 5-6

Example of communication sequence between the master and slaves during normal communication.)

Thereafter, the motor is turned by communications with slave 2 ((3) in Figure 5-5 Main LIN network

configuration and Figure 5 6 Communications sequence between master and slave during normal

communications).The master acquires sensor information from slave 3 again ((4) in Figure 5-5 Main

LIN network configuration and Figure 5 6 Communications sequence between master and slave

during normal communications), and finally turns ON the lamp by communicating with slave 15 ((5)

in Figure 5-5 Main LIN network configuration and Figure 5 6 Communications sequence between

master and slave during normal communications).In this chain of communications, communications

between the master and slaves 2 and 3 are contiguous, and the master processes the motor turning by

communicating with slave 2 using sensor information acquired by communicating with slave 3 first.

In this way, during actual communications the master and multiple slaves repeatedly communicate

on a 1-to-1 basis.

AN07-00200-03E

 86

Figure 5-5 Main LIN network configuration

Figure 5-6 Example of communication sequence between the master and slaves during normal

communication

Master

Slave 1 Slave 2 Slave 3
Slave 15

:Transceiver IC (electronic component for

sending and receiving data)

Motor Motor

Sensor

Motor

operation

Acquiring

sensor

information

Acquiring

sensor

information

Lamp

ON

Slave 3

Slave 15

Slave 2

Slave 1

Master

All communications

start from the master

Motor

operation

Motor

operation

AN07-00200-03E

 87

5.4 Communication between master and slave if an error occurs

LIN error processing is not determined by the protocols, and so depends on the application.

Consequently, during design, it is necessary to consider the error detection methods and the process

after the error has been processed. As this is not determined by the protocols in the LIN

specifications either, however, examples of system design if an error occurs are introduced in the

chapter “Status Management”. In the examples introduced, errors are managed by slaves reporting

their own status to the master. This mechanism is described below.

The basic master operation is merely to send the header to the next slave when communications with

the current slave have ended. On the other hand, the slave operation is to perform error checking

when a header is received and when a response is sent. Checksums and other checks are

implemented during reception. When sending, checks are performed by comparing the sent data and

the bus data that performs the monitoring. In this way, the slave identifies its own status, and inserts

the results into the response that is sent to the master. The master identifies the slave status from the

response, and if there is a nonconformance, initializes the slave. In this way, the error status is

completely cleared.

AN07-00200-03E

 88

5.5 LIN communication by using microcontroller

This section explains practical LIN communication using microcontrollers.

In the starter kit, the microcontroller and LIN transceiver IC (TJA1020T) are connected as shown in

“Figure 5-7 LIN circuit”.In the microcontroller, SOT sends, SIN receives, and SCK is the port that

controls the transceiver IC. Sending and receiving signals flow on the bus via the LIN transceiver IC.

1 2 3

VCC5

CN5
EXT PWR

GND

U1:

MB95F136JBS

INH

TXD

D RXD

NSLP

NWAKE

BAT

LIN

U4:

 TJA1020T

SIN

SOT

SCK GND

GND

GND

C8:

0.1uF

4

1

2

8 7

3

6

5
C9:

220pF

R10:

5.1kΩ

CN4

18

20

17

VCC5

R8:

1kΩ

LED1:

SML-210MT

GND

TR1:

DTA144E

VCC5

R9:

1kΩ LED2:

SML-210MT

GND

TR2:

DTA144E

JP1

LIN

GND

Figure 5-7 LIN circuit

AN07-00200-03E

 89

The registers used for entire LIN communication control on the microcontroller are as described in

“Figure 5-8 Entire LIN communication control registers”. Registers named “res” cannot be used as

they are reserved bits.

The description of each register, and the setting values in the sample programs, are described in

“Table 5-1 Description of the entire LIN communication control registers and setting values”. For

more information of the registers, refer to the microcontroller hardware manual.

LIN-UART serial control register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

SCR PEN P SBL CL AD CRE RXE TXE

LIN-UART serial mode register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

SMR MD1 MD0 OTO EXT REST UPCL SCKE SOE

LIN-UART serial status register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

SSR PE ORE FRE RDRF TDRE BDS RIE TIE

LIN-UART data receiving register / data send register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

RDR/TDR

LIN-UART expanded status control register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

ESCR LBIE LBD LBL1 LBL0 SOPE SIOP CCO SCES

LIN-UART expanded communications control register

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

ECCR res LBR MS SCDE SSM res RBI TBI

LIN-UART baud rate generator register 1

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

BGR1 ‐

LIN-UART baud rate generator register 0

 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

BGR0

Figure 5-8 Entire LIN communication control registers

AN07-00200-03E

 90

Table 5-1 Description of the entire LIN communication control registers and setting values

Register name Set value (contents) Explanation

SCR_PEN 0 (no parity) Parity authorization bit

SCR_P 0 (even parity) Parity selection bit

SCR_SBL 0 (1 bit) Stop bit length selection bit

SCR_CL 1 (8 bit) Data length selection bit

SCR_AD 0 (data frame) Address / data format selection bit

SCR_CRE 1 (clear flag) Clear reception error flag bit

SCR_RXE 0 (Receive prohibited) Receive prohibition enable bit

SCR_TXE 1 (Transmit enabled) Transmit enable bit

SMR_MD1 1 (mode 3)
Operation mode selection bit

SMR_MD0 1 (asynchronous LIN mode)

SMR_OTO 0 (use external clock) 1-to-1 external input enable bit

SMR_EXT 0 (use baud rate generator) External serial clock source selection bit

SMR_REST 0 Reload counter restart bit

SMR_UPCL
1 (LIN-UART reset) Programmable clear bit

(LIN-UART software reset)

SMR_SCKE
0 (general I/O port or LIN-UART clock input

pin)
Serial clock output enable bit

SMR_SOE 1 (LIN-UART serial data output pin) Serial data output enable bit

SSR_BDS
0 (LSB first (transfer from least significant

bit))
Transfer direction selection bit

SSR_RIE 1 (Receive interrupt enable) Receive interrupt request enable

SSR_TIE 0 (Transmit interrupt prohibited) Transmit interrupt request enable

ESCR_LBIE
0 (LIN synch break detection interrupt

prohibited)

LIN synch break detection interrupt enable

bit

ESCR_LBD 0 (LIN synch break detection flag clear) LIN synch break detection flag bit

ESCR_LBL1 0
LIN synch break length selection bit

ESCR_LBL0 0 (13 bits)

ESCR_SOPE 0 (serial output pin access prohibited) Serial output pin direct access enable bit

ESCR_SIOP 0 Serial I/O pin direct access enable bit

ESCR_CC0 0 Continuous clock output enable bit

ESCR_SCES 0 Sampling clock edge selection bit

AN07-00200-03E

 91

ECCR_LBR 0 (LIN synch break not created) LIN synch break creation bit

ECCR_MS 0 Serial clock send/receive selection bit

ECCR_SCDE 0 Serial clock delay enable bit

ECCR_SSM 0 Start / stop bit mode enable bit

BGR_BGR1 0x16 (when set to 9600bps) Baud rate generator 1

BGR_BGR0 0x66 (when set to 9600bps) Baud rate generator 0

AN07-00200-03E

 92

5.6 Understanding and overview of the program for LIN communication

This section explains sample programs as programs that actually perform LIN communication. In

bits pot LIN communication, the starter kit operates as a LIN slave, and bits pot white operates as the

master.

5.6.1 LIN communication configuration

The LIN communication conditions for the sample program are described in “Table 5-2 LIN

communication conditions”.

Table 5-2 LIN communication conditions of the sample program

Condition Setting value

Baud rate 2400 / 9600 (default value) / 19200bps

Peripheral clock frequency 16MHz

Synch break length 13 bits (Receive is fixed to detect 11-bits)

Data length 8 bits

Data bit format LSB first

Data byte count 8 bytes

Next, this section explains message IDs using LIN communication as described in “Table 5-3 LIN

message IDs in the sample program”.

Table 5-3 LIN message IDs in the sample program

ID Description
Communication

direction

0x00
Temperature measurement command / temperature

display command
white → yellow

0x01 Temperature sensor information
white → yellow

white ← yellow

0x02
Buzzer output command / volume value

measurement command
white → yellow

0x03 Volume (VR) information
white → yellow

white ← yellow

0x04 LED ON change command: count up / count down white → yellow

0x05 LED value
white → yellow

white ← yellow

AN07-00200-03E

 93

The details of each ID are explained below.

1. ID: 0x00

byte 0
Temperature measurement

command

byte 1
A/D value (temperature

sensor information)

byte 2 Reserved

byte 3 Reserved

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

Field name Setting value Remarks

Temperature measurement

command
0x55: Start; 0x0F: Stop

If bits pot white SW4 is set to the right, temperature

information is acquired from the temperature sensor on

the starter kit by receiving 0x55. If bits pot white SW4

is set to the left, no operation is performed.

A/D value (temperature

sensor information)
0 to 255

This is temperature sensor information from the bits pot

white.

The temperature is displayed on the starter kit using

this A/D value.

2. ID: 0x01

byte 0 Reserved

byte 1 Reserved

byte 2
A/D value (temperature

sensor information)

byte 3 Reserved

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

AN07-00200-03E

 94

Field name Set value Remarks

A/D value

(Temperature sensor

information)

0 to 255

This is the starter kit response to the ID 0x00

temperature measurement command. Temperature

sensor information is sent as A/D values, and displayed

on the bits pot white 7SEG LED.

3. ID: 0x02

byte 0
Volume value acquire

command

byte 1 A/D value (VR information)

byte 2 Reserved

byte 3 Reserved

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

Field name Set value Remarks

Volume value acquire

command
0x55: Start; 0x0F: Stop

If bits pot white SW4 is set to the right, volume

information is acquired from the starter kit by

receiving 0x55, and the buzzer sound is output. If bits

pot white SW4 is set to the left, the buzzer sound is not

output.

A/D value (VR

information)
0 to 255

This is the bits pot white volume information. The

starter kit outputs the buzzer sound according to the

A/D value received.

AN07-00200-03E

 95

4. ID: 0x03

byte 0 Reserved

byte 1 Reserved

byte 2 A/D value (VR information)

byte 3 Reserved

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

Field name Setting value Remarks

A/D value (VR

information)
0 to 255

This is the response to the ID 0x02 volume value

measurement command. The volume information is

sent as A/D values.

5. ID: 0x04

byte 0 LED on/off change command

byte 1 Reserved

byte 2 Reserved

byte 3 LED value

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

Field name Setting value Remarks

LED on/off change

command
0x55: Start; 0x0F: Stop

This is the LED on/off change command from bits pot

white. If bits pot white SW4 is set to the left, 0x55 is

received, and if the LED value is not 0xFF, the received

LED value is displayed on the starter kit LED.

LED value 0 to 7 (otherwise 0xFF)
This is the value of the LED displayed on bits pot white.

when 0xFF is received, the data is invalid.

AN07-00200-03E

 96

6. ID: 0x05

byte 0 Reserved

byte 1 Reserved

byte 2 Reserved

byte 3 LED value

byte 4 Reserved

byte 5 Reserved

byte 6 Reserved

byte 7 Reserved

Field name Set value Remarks

LED value 0 to 7 This is the value of the LED displayed on the starter kit.

AN07-00200-03E

 97

5.6.2 Sample programs sequence

The LIN communication flowcharts for the sample programs are shown in “Figure 5-9 LIN

communication flowchart (main routine)” and “Figure 5-10 LIN communication flowchart (interrupt

routine: UART reception interrupts)”.First, initialize the microcontroller, LIN-UART, and timer.

Next, implement LIN bus connection processing as a LIN slave. Thereafter, the program enters a

loop. Within the loop, monitor whether the data being sent and received can be completed in a fixed

cycle, and when the data has finished being received, implement processing according to the ID.

Synch break detection, ID reception, and data sending and receiving to operate as a LIN slave is

processed using LIN-UART reception interrupts. Further, the baud rate is adjusted within the input

capture interrupts as described in “Figure 5-11 LIN communication flowchart (interrupt routine:

input capture interrupts)".

START

Initialize

microcontroller

Initialize LIN-

UART

Infinite loop

Initialize timer

Process LIN bus

connection

Figure 5-9 LIN communication flowchart (main routine)

AN07-00200-03E

 98

Start UART reception

interrupt processing

Synch break

detected?

ICU interrupt

authorized

End UART reception

interrupt processing

FRT timer

operation
Reception ID?

Data send

processing

Check sum reception

processing

Yes

No

ID reception

processing

Data reception

processing

Yes

No

Check sum send

processing

Create UART reception

interrupt

Figure 5-10 LIN communication flowchart (interrupt routine: UART reception interrupts)

Start ICU interrupt
processing

End ICU interrupt processing

Processing to obtain ICU

timer value 1

Processing to obtain ICU

timer value 2

Baud rate adjustment

processing

Create input capture (ICU)

interrupt

Figure 5-11 LIN communication flowchart (interrupt routine: input capture interrupts)

AN07-00200-03E

 99

The next section explains the sample programs, but the sample programs contain parts in which LIN

communication with bits pot white are not used. To make these parts expandable, programs

commensurate with LIN use are included. Not all operations, however, are checked. Be careful when

using.

The operations points of the sample program in the LIN protocol during LIN communication are

shown below. The sample software operates as a LIN slave through multiple interrupt processes, as

shown in “

Figure 5-12 Operations points of interrupt processes”. Look at the processing of the sample software

in the LIN frame fields.

Checksum FieldData FieldID FieldSync ByteSync Break

ID DT DT Check Sum

HEADER

Data reception interrupt

RESPONSE

Data reception interrupt

Sync break interrupt

Input capture interrupt

Data reception interrupt

Data reception interrupt

Figure 5-12 Operations points of interrupt processes

① Sync break

In sync breaks, the sync break signals (13 to16-bit Low signals) are received from bits pot

white (the master), and when the bus reaches “0” in the 11-bit time or greater, a sync break

interrupt is created. When a sync break interrupt is detected, the sync break interrupt

prohibition settings and input capture interrupts are authorized, and the system migrates to

waiting for the synch field to start.

AN07-00200-03E

 100

Figure 5-13 Synch break interrupt control

② Sync Byte

LIN slaves measure the baud rate using input capture in the sync Byte and perform

compensation after a synch break has been detected. In the sample software, 8/16-bit

complex timers are used as the input capture, and are set to both edges and free run mode. In

free run mode, when an edge is detected, the counter value is sent to the data register, and the

interrupt flag changes to "1”, so the counter is not cleared, and the count operations continue

as is.

When the input capture interrupts are set to enabled and both edge detection, when an edge is

detected, an input capture interrupt is created. The timer value at both edges and the number

of overflows are measured, and the baud rate calculated and adjusted using interrupts at 8.

__interrupt void _LinUartRx(void)

{

 if ((ssr & 0xE0) != 0) {

 (Omitted)

 } else if (ESCR_LBD == SET) {

 ESCR_LBD = CLEAR;

 (Omitted)

 vSetLinFreerunTimersCompare(hTHEADER_MAX_IND);

 ucLinStatus = LIN_WAIT_SYNCH_FIELD_START;

 (Omitted)

T00CR1_IE = SET;

}

←Synch break detection

←Clear synch break detection flag

←Complex timer (FRT)

value set
 State transition:

Wait synch field start

Input capture interrupt enabled

Error check

AN07-00200-03E

 101

0 1 2 3 4 5 6 7

Synch field

START

BIT

STOP

BIT
DATA = 0x55

1回目 5回目

8Tbit

2Tbit 2Tbit 2Tbit 2Tbit

FFH

uiICUTime1
・・・・

uiICUTime2

TII0入力
(LSYN)

Figure 5-14 Input capture operation in the synch field

1st 5th

TII0 input

(LSYN)

AN07-00200-03E

 102

Figure 5-15 Input capture (ICU) interrupt controls

__interrupt void _LinICU (void)

{

 (Omitted)

 if (T00CR1_IR == SET) {

(Omitted)

if (ucLinStatus == LIN_WAIT_SYNCH_FIELD_START){

 uiICUTime1 = T00DR;

 (Omitted)

 ucLinStatus = LIN_WAIT_SYNCH_FIELD_END;

else if(ucLinStatus == LIN_WAIT_SYNCH_FIELD_END){

 (Omitted)

 uiICUTime2= T00DR;

 /* adjust Baud Rate */

 (Omitted)

 vEnableLinUartReception();

 ucLinStatus = LIN_ID_RECEPTION;

 }

(Omitted)

}else if(T00CR1_IF == SET){

(Omitted)

 }

}

Check edge detection interrupt

Synch field start wait

 Acquire timer value

State transition:

synch field end wait

 Acquire timer value

Baud rate adjustment processing

LIN-UART interrupt authorized

State transition: ID received

 Acquire number of overflows

Check whether there is an overflow interrupt

AN07-00200-03E

 103

③ ID field

ID reception processing is performed in the LIN-UART interrupt function

_LinUART(void).When an interrupt is created, if no error is created and the cause of the

interrupt isn’t a synch break interrupt, reception processing is performed.

Figure 5-16 LIN-UART receive interrupt control

Processing is divided into ID reception, data sending, data reception, and wakeup sending according

the status in the reception judgment processing function l_ifc_rx(l_ifc_handle rx_data) as shown in

“Figure 5-17 Receive determination processing”.In normal sequences, to migrate the status during

the second input capture interrupt process to ID FIELD reception waiting, ID reception processing is

performed. In ID reception processing, the ID that has been acquired is judged to be either a send ID

or reception ID and parity check performed, and if it is a send ID, the status is migrated to send

preparation status, and the data to be sent is copied to the buffer. If the ID is a reception ID, the

status is migrated to data reception wait status, and a response (data) is received from the master.

__interrupt void _LinUART (void)

{

 (Omitted)

 if ((ssr & 0xE0) != 0) {

(Omitted)

} else if (ESCR_LBD == SET) {

(Omitted)

}else{

 l_ifc_rx(data);

}

}

Error check

 Synch break detection

 Receive processing

AN07-00200-03E

 104

Figure 5-17 Receive determination processing

void l_ifc_rx(l_ifc_handle rx_data){

 switch(ucLinStatus){

 case LIN_TRANSMIT:

(Omitted)

 case LIN_DATA_RECEPTION:

(Omitted)

 case LIN_ID_RECEPTION:

ucCurrentId.byte = rx_data;

 if(ucCurrentId.fields.parity != ucRightParity[ucCurrentId.fields.id]) {

(Omitted)

 else if(LinRxDataPtr[ucCurrentId.fields.id] != 0) {

 ucLinStatus = LIN_DATA_RECEPTION;

 (Omitted)

 vSetLinFreerunTimersCompare(ucRxCount);

 } else if (LinTxDataPtr[ucCurrentId.fields.id] != 0) {

 ucLinStatus = LIN_PRETRANSMIT;

(Omitted)

 vLinWordCopy(ucUartTxBuffer, LinTxDataPtr[ucCurrentId.fields.id], ucTxCount);

vSetLinFreerunTimersCompare(hTINFRAME_SPACE_IND);

 }

(Omitted)

 case LIN_WAKEUP_TRANSMIT:

(Omitted)

}

}

DATA FIELD send status

DATA FIELD receive status

ID FIELD reception wait status

Store received ID

Parity check

Error processing

If ID received

State transition: DATA reception

wait status

WAKEUP send status

8/16bit complex timer set

↓Copy send data to buffer

8/16bitcomplex

timer set

AN07-00200-03E

 105

④ DATA field

This section explains data sending and reception processing in the data field.

First, regarding data sending, if the ID received in the ID field is for a send ID, the

vTimeoutCheckTask function is called by the 8/16-bit complex timer (free run timer)

interrupt, as shown in “Figure 5-18 Timeout detection processing”.This function is called

when the timeout value set using the free run timer is detected, and in this case, is called the

detection of the timeout values from the header reception to the response sending (response

space).In the vTimeoutCheckTask function, processing is separated into pre-sending and

initialization processing, etc., according to the status information, and if the status is

pre-sending, the first data byte is sent.

Figure 5-18 Timeout detection processing

void vTimeoutCheckTask(void){

 (Omitted)

 if (uiIntDemandCounter == 0) {

 switch (ucLinStatus) {

 case LIN_PRETRANSMIT:

 ucLinStatus = LIN_TRANSMIT;

 ucSaveData = ucUartTxBuffer[0];

 l_ifc_tx(ucUartTxBuffer[0]);

 (Omitted)

 case LIN_UART_INITIAL:

 (Omitted)

 case LIN_ID_RECEPTION:

 (Omitted)

 case LIN_DATA_RECEPTION:

 (Omitted)

 case LIN_TRANSMIT:

 (Omitted)

 case LIN_WAIT_SYNCH_FIELD_START:

 (Omitted)

}

}

Status before sending

State transition: DATA FIELD send

status
Acquiring 1-byte send data

Data transmit processing

AN07-00200-03E

 106

When sending the first data byte, a reception interrupt is created by receiving the self-sent data.

Whereupon, the reception judgment processing function _ifc_rx(l_ifc_handle rx_data) is called in the

same way as for ID field operations, and the data is sent from the second byte onwards according to

the data field send status as shown in “Figure 5-19 Data send processing”, and the same process is

repeated. In these LIN communication, the number of data bytes is set to 8, so when the eighth data

byte has finished being sent, finally a checksum is sent, and the send processing ends.

Figure 5-19 Data send processing

void l_ifc_rx(l_ifc_handle rx_data){

 switch(ucLinStatus){

 case LIN_TRANSMIT:

if (ucTxCurrentIndex < ucTxCount){

(Omitted)

l_ifc_tx(ucUartTxBuffer[ucTxCurrentIndex]);

(Omitted)

} else if (ucTxCurrentIndex == ucTxCount){

(Omitted)

l_ifc_tx(((unsigned char)~uiTxCheckSum));

(Omitted)

}

 case LIN_DATA_RECEPTION:

 (Omitted)

 case LIN_ID_RECEPTION:

(Omitted)

 case LIN_WAKEUP_TRANSMIT:

 (Omitted)

}

}

DATA FIELD send status

If any send data is remaining

Send processing

If send data has all been sent

Check sum send processing

AN07-00200-03E

 107

The next section explains data reception processing.

If the ID acquired using ID reception processing is for reception, the status is migrated to data

reception status, and data reception from bits pot white awaited. When a data reception interrupt is

created by bits pot white sending data, reception is processed in the reception processing function

l_ifc_rx(l_ifc_handle rx_data as shown in “Figure 5-20 Data reception processing”.When data is

received as well, reception is processed using l_ifc_rx(data) each time one byte of data is received in

the same way as for the second byte onwards for data that has been sent, and when all eight bytes of

data have been received, if there is no checksum error, the reception successful flag is set, and

reception processing ends.

Figure 5-20 Data reception processing

void l_ifc_rx(l_ifc_handle rx_data){

 switch(ucLinStatus){

 case LIN_TRANSMIT:

(Omitted)

 case LIN_DATA_RECEPTION:

 if (ucRxCurrentIndex >= ucRxCount) {

if ((uiRxCheckSum + rx_data) == 0xFF) {

 (Omitted)

 flagsLinTxRx.bit.SucceedReception = SET;

 memcpy(&ucUartRxFixedBuffer[0], &ucUartRxBuffer[0], ucRxCount);

 (Omitted)

} else {

 l_flg_tst(hCHECKSUM_ERR);

 } else {

ucUartRxBuffer[ucRxCurrentIndex] = rx_data;

(Omitted)

 case LIN_ID_RECEPTION:

(Omitted)

 case LIN_WAKEUP_TRANSMIT:

 (Omitted)

}

}

DATA FIELD reception status

If all data has been received

Reception successful flag set

↑Copy received data

If there is still remaining reception data

Received data stored to buffer

If Checksum calculations are normal

If there is a check sum error

Error processing

AN07-00200-03E

 108

Finally,about the processes according to the ID received, there is a vBaseTimeTask function around

the 100
th

 line of the main routine. This function is called periodically at set cycles, and mainly

checks whether or not sending and receiving has finished. If this function is called when all data has

finished being sent (i.e., when flagsLinTxRx.bit.SucceedReception has been set), the submain

function is called as the reception completion processing as shown in “Figure 5-21 Submain

processing”, and temperature measurement processing, buzzer output processing, LED ON

processing, and sent data storage are performed.

Figure 5-21 Submain processing

void submain(void)

{

switch (ucCurrentId.fields.id){

 case 0x00

 if (ucDATA00[0] == 0x55){

 IO_ADC2.byte = 0xCB;

 IO_ADC1.byte = 0x71;

 if(ad_master < 42){

 IO_PDR1.byte = LED_pat2[1];

 (Omitted)

case 0x02

IO_ADC2.byte = 0xCB;

IO_ADC1.byte = 0x11;

IO_PC00.byte = 0x0E;

(Omitted)

case 0x04

 if ((ucDATA04[0] == 0x55)&&(ucDATA04[3] != 0xFF)){

 (Omitted)

 else if (LED_count_Flag == 1){

 (Omitted)

 ucDATA05[3] = LED_count1;

 else if (LED_count_Flag == 2){

 (Omitted)

 ucDATA05[3] = LED_count1;

default:

 break;

ID: 0x00

Start AD interrupt

(obtain temperature information)

Temperature information LED display

Start AD interrupt (obtain VR information)

Buzzer output

Received LED value ON processing

If switch 2 is pressed

If switch 3 is pressed

LED value stored after count increases

LED value stored after count decreases

AN07-00200-03E

 109

6 Appendix

6.1 Sample program folder/file configuration

The folder/file configuration of the sample program is shown in “Table 6-1 Sample program

folder/file configuration”.

Table 6-1 Sample program folder/file configuration

File/folder name
Provision of the file

Explanation
Single Monitor

bits_pot_yellow_SampleProgram／bits_pot_yellow_Sampleprogram_singlechip

／bits_pot_yellow_Sampleprogram_monitordebugger

 bitspot_yellow_SampleProgram.wsp Yes No Softune workspace file

 singlechip_operation Folder for Single-unit operation

 Debug

 ABS

 single_operarion.abs Yes Yes Sample program abs file

 single_operarion.mhx Yes Yes Sample program HEX file

 LST

 OBJ

 OPT

 emu_dbg.sup No Yes Emulator debugger file

 mon_dbg.sup No Yes Monitor debugger file

include

 _f2mc8fx.h Yes Yes Microcontroller header definition file

define.h Yes Yes Header definition file

extern.h Yes Yes External function reference file

fgm.h Yes Yes Header file for incorporated monitor

programs

mb95130.h Yes Yes Microcontroller header file

source

 fgm_cfg.asm Yes Yes Monitor operation definition file

startup.asm Yes Yes Microcontroller startup assembler file

ADC.c Yes Yes A/D converter file

autoboot.c Yes Yes Autoboot determination processing file

ext_int.c Yes Yes External interrupt processing function

 init.c Yes Yes Internal clock initialization file

 main.c Yes Yes Main source file

vector.c Yes Yes Vector table source file

fgm_cfg.h Yes Yes Monitor operation definition file

FGM.rel Yes Yes Monitor program

sample.dat Yes Yes Softune settings file

single operation.prj Yes Yes Softune project file

 LIN_communication

 Debug

 ABS

 LIN_communication.abs Yes Yes Sample program abs file

 LIN_communication.mhx Yes Yes Sample program HEX file

 LST

AN07-00200-03E

 110

 OBJ

 OPT

 emu_dbg.sup Yes Yes Emulator debugger file

mon_dbg.sup Yes Yes Monitor debugger file

 include

 _f2mc8fx.h Yes Yes Microcontroller header definition file

 define.h Yes Yes Header definition file

 define_l.h Yes Yes Header file for LIN driver definition

 extern.h Yes Yes External function reference file

 fgm.h Yes Yes Header file for incorporated monitor

programs

 lin.h Yes Yes Header file for LIN drivers

 linapi.h Yes Yes Data communications system API code

header file

 lindbcpu.h Yes Yes CPU compatible definitions header file

 lindbmsg.h Yes Yes Header file for LIN communication

definition

(baud rate settings, ID settings, single

registration, etc.)

 linhibios.h Yes Yes LIN driver high level header file

 linlobios.h Yes Yes LIN driver low level header file

 linnode.h Yes Yes Header file for definitions by LIN

communication node

 mb95130.h Yes Yes Microcontroller header file

 source

 fgm_cfg.asm Yes Yes Monitor operations definition file

 fgm_main.asm Yes Yes Monitor debugger assembler file

 startup.asm Yes Yes Microcontroller startup assembler file

 ADC.c Yes Yes A/D converter file

 autoboot.c Yes Yes Autoboot determination processing file

 ext_int.c Yes Yes External interrupt processing function

 init.c Yes Yes Internal clock initialization file

 linapi.c Yes Yes Data communications system API

source file

 linhibios.c Yes Yes Driver high level source file

(LIN protocol control)

 linlobios.c Yes Yes Driver low level source file

(CPU resource control)

 main.c Yes Yes Main source file

 vector.c Yes Yes Vector table source file

 fgm_cfg.h Yes Yes Monitor operations definition file

 FGM.rel Yes Yes Monitor program

 fsg_sample.dat Yes Yes Softune settings file

 LIN SLAVE.prj Yes Yes Softune project file

	Revision History
	Note
	Introduction
	Contact
	Suppliers of the parts/materials
	Setting up the starter kit
	Setting up the PC
	Downloading the software
	Installing the integrated development environment SOFTUNE (bits pot yellow dedicated version)
	Installing the PC Writer FUJITSU FLASH USB Programmer (bits pot yellow dedicated version)
	Connecting it to the PC and installing the USB driver
	Configuring the starter kit

	Running the Program
	Executing in single chip mode
	Building a project
	Writing the program into the microcontroller

	Debugging by using Monitor Debugger
	Activating SOFTUNE and configuring the debug settings
	Writing the monitor program into the microcontroller
	Loading the target file
	Running the debugger
	If the monitor debugger cannot be controlled
	Debugger prohibitions
	Debugger limits

	Operation of the sample Programs
	bits pot yellow single-unit operation
	LIN communication operation (LIN communication operation with the bits pot white)

	Try to operate the bits pot yellow (single-unit)
	Overview of single-unit operation
	Turning ON LEDs using switch operations
	Controlling the buzzer using the volume switch
	LED displays using temperature sensor operations

	Understanding and running the program in single-unit operation

	Try to use LIN communication
	What is LIN?
	LIN specifications
	Lin frame configuration

	LIN communication flow
	Communication between master and slave if an error occurs
	LIN communication by using microcontroller
	Understanding and overview of the program for LIN communication
	LIN communication configuration
	Sample programs sequence

	Appendix
	Sample program folder/file configuration

