Compilation Systems Volume 1 (Tools)

(= concurrent 0890459-050
cgg"p’gglﬁsmw April 1999

Copyright 1999 by Concurrent Computer Corporation. All rights reserved. This publication or any part thereof is
intended for use with Concurrent Computer Corporation products by Concurrent Computer Corporation personnel,
customers, and end-users. It may not be reproduced in any form without the written permission of the publisher.

The information contained in this document is believed to be correct at the time of publication. It is subject to change
without notice. Concurrent Computer Corporation makes no warranties, expressed or implied, concerning the
information contained in this document.

To report an error or comment on a specific portion of the manual, photocopy the page in question and mark the
correction or comment on the copy. Mail the copy (and any additional comments) to Concurrent Computer Corpora-
tion, 2101 W. Cypress Creek Road, Ft. Lauderdale, FL 33309-1892. Mark the entattgtion: Publications
Department.” This publication may not be reproduced for any other reason in any form without written permission
of the publisher.

This document is based on copyrighted documentation from Novell, Inc. and is reproduced with permission.
Acknowledgment: This manual contains material contributed by 88open Consortium, Ltd.

In this document, the term 601 is used as an abbreviation for the phrase “PowerPC 601 RISC microprocessor.” The
terms 603, 604, 620, and 640 are used similarly.

Escala is a trademark of Bull Information Systems.

IBM, RS/6000, PowerPC, PowerPC 601, PowerPC 603, PowerPC 604, PowerPC 620, POWER, and POWER?2 are trademarks of International
Business Machines Corporation.

PowerUX is a trademark of Concurrent Computer Corporation.

PowerMAX OS is a trademark of Concurrent Computer Corporation.

UNIX is a registered trademark of the Open Group.

Other products mentioned in this document are trademarks, registered trademarks or trade names of the
manufacturers or marketers of the products with which the marks or names are associated.

Printed in U. S. A.

Revision History: Level: Effective With:
Original Release -- October 1994 000 PowerUX 1.0
Previous Release -- March 1997 040 PowerMAX OS 4.1

Current Release -- April 1999 050 PowerMAX OS 4.3

Preface

Scope of Manuals

The Compilation Systems Manual set is composed of two manGalsipilation Systems
Volume 1 (Toolspnd Compilation Systems Volume 2 (ConcepfE)e Compilation
Systems Volume 1 (Tools)anual describes the features and use of several software
development environment tools, analysis tools, and project-control tool<Caimgpilation
Systems Volume 2 (Conceptsanual describes the concepts behind compilation systems
including environments, performance analysis, and formats.

Information in this manual applies to the Power®®latforms described in the
Concurrent Computer Corporation Product Catalog

Structure of Manuals

A brief description of the parts, chapters, and appendixes irCdvapilation Systems
Volume 1 (Toolsinanual follows:

Part 1 discusses software development environment tools.
Chapter 1 introduces compilation system tools and concepts.
Chapter 2 describes the assembly language, and it discusses the assesnbler,

Chapter 3 summarizes the instructions, condition codes, operands, and registers
associated with the PowerPC.

Chapter 4 covers the link editdd . It also discusses dynamic linking, plus the
creation and use of shared objects.

Chapter 5 describes the macro processdr,
Chapter 6 presents the lexical analyZex, .
Chapter 7 presents the compiler-compilgrcc .
Part 2 describes analysis tools.
Chapter 8 provides an introduction to the other chapters in this part.
Chapter 9 presents the C code browsscope .
Chapter 10 discusses the C code chedkr, .

Chapter 11 discusses performance analysis and use ahtigze andreport
utilities.

Part 3 presents project-control tools.

Compilation Systems Volume 1 (Tools)

Chapter 12 provides an introduction to the other chapters in this part.
Chapter 13 presents timeake utility.
Chapter 14 covers theecs source code control system.

A brief description of the parts, chapters, and appendixes irCdvapilation Systems
Volume 2 (Conceptshanual follows:

Part 4 discusses environments.
Chapter 15 provides an introduction to the other chapters in this part.
Chapter 16 provides an overview of commonly-used system libraries.

Chapter 17 discusses the IEEE floating-point operations used on supporting hard-
ware platforms.

Chapter 18 describes interfaces between C and Fortran routines on supporting hard-
ware platforms.

Part 5 describes performance analysis concepts.
Chapter 19 provides an introduction to the other chapters in this part.

Chapter 20 provides a tutorial on program optimization, focusing on the
optimizations performed by the Concurrent compilers.

Part 6 covers formats.
Chapter 21 provides an introduction to the other chapters in this part.
Chapter 22 describes the executable and linking format, ELF.
Chapter 23 discusses text description information, tdesc.

Chapter 24 describes the debugging information format, DWARF. It is primarily a
reprint of the DWARF specification from UNIX International.

Chapter 25 covers the libdwarf library that provides access to DWARF debugging
and line number information. It is primarily a reprint of a document from UNIX
International.

Syntax Notation

The following notation is used throughout this guide:

italic Books, reference cards, and items that the user must specify
appear intalic type. Special terms and comments in code may
also appear iitalic.

list bold User input appears itist bold type and must be entered
exactly as shown. Names of directories, files, commands, options
and man page references also appeéisinbold type.

Preface

list Operating system and program output such as prompts and
messages and listings of files and programs appeadist in type.
Keywords also appear iist type.

emphasis Words or phrases that require extra emphasis use empfpsis
window Keyboard sequences and window features such as push buttons,
radio buttons, menu items, labels, and titles appeaviimdow
type.
[Brackets enclose command options and arguments that are

optional. You do not type the brackets if you choose to specify
such option or arguments.

{ Braces enclose mutually exclusive choices separated by the pipe
() character, where one choice must be selected. You do not type
the braces or the pipe character with the choice.

An ellipsis follows an item that can be repeated.

The window images in this manual come from a Motif environment. If you are using
another environment, your windows may differ slightly from those presented here.

Referenced Publications

The following publications are referenced in this document:

0890240 hf77 Fortran Reference Manual
0890288 HAPSE Reference Manual
0890395 NightView User’s Guide
0890398 NightTrace Manual

0891019 Concurrent C Reference Manual

The vendor publications referenced in this manual may be viewed on the respective’s
companies WWW site.

Compilation Systems Volume 1 (Tools)

vi

Part1 Software Development Environments

Chapter 1

Introduction to SDEs

Introduction
Programming Languages
Compilation Systems Concepts
Concurrent Computer Corporation Compilation Systems
ObjectFiles i
Stack Frames,
Static and Dynamic Linking

Floating-Point Arithmetic

Chapter 2 Assembler and Assembly Language

Introduction.
Assembler Operation...................
Usingthe Assembler
Assembler Invocation
CharacterSet.........................
Source Statements
Null Statements
Alphanumeric Labels
Numeric (Local) Labels
Comments.............cciiiiien...
Identifiers.

Predefined Symbols
User-Defined Symbols
Constants
Integer Constants

Floating-Point Constants

CharacterConstants
Expressions
Expression Operators
Operator Precedence.
ExpressionTypes
ExpressionValues.
Assembler Directives

Location Counter Control

Section Switching.
Data Initialization.
Symbol Definitions.
ELF Symbol Attributes.
Miscellaneous Operations
Summary of Directives Mnemonics

Contents

Contents

Vii

Compilation Systems Volume 1 (Tools)

EXample 2-20
Position-Independent Code 2-21

Assembly Syntax 2-21

EXample 2-22

Chapter 3 PowerPC Instruction Set Summary

PowerPC INStrUCtion Set 3-2
Condition Codes.ot 3-25
Trap Operand 3-26
Operand Abbreviations 3-26
Special-Purpose Registers 3-28
Time Base ReQISterS. 3-31
Implementation-Specific and Optional Instructions 3-31

Chapter 4 Link Editor and Linking

Chapter 5 m4 Macro Processor

viii

INtrOdUCHION . . . oo 4-1
Usingthe Link Editor. 4-1
Basics Of LINKING oo 4-8
Default Arrangement 4-9
Linking with Standard Libraries. 4-10
Creating and Linking with Archive and Shared Object Libraries 4-11
Specifying Directories to Be Searched by the Link Editor. 4-13
Specifying Directories to Be Searched by the Dynamic Linker............. 4-15
Checking for Run-Time Compatibility. 4-16
Dynamic Linking Programming Interface 4-17
Implementation. e 4-17
Guidelines for Building Shared Objects. 4-18
Multiply-Defined Symbols 4-22
Mapfiles 4-23
Using the Mapfile Option e 4-24
Mapfile Structure and Syntax 4-24
Segment Declarations. 4-25
Mapping Directiveso 4-27
Extended Mapping Directives i 4-28
Size-Symbol Declarations i 4-28
Mapping Example 4-29
Mapfile Option Defaults. o i 4-30
Internal Map Structure 4-31
Error MeSSages. . ..ottt 4-34
Quick-Reference GUIde i e 4-35
INtrOdUCTION . . . oo 5-1
M4 MACIOS . . ottt e e 5-2
Defining MacroSot 5-2
QUOLING . . oot 5-3
AU NS, . . oo e 5-5
Arithmetic BUilt-INS 5-7
File Inclusion 5-7
DIVEISIONS . . ettt 5-8

System Command.

Conditionals

String Manipulation
Printing...............

Chapter 6 Lexical Analysis with lex

Introduction

Conte

Generating a Lexical Analyzer Programt

Writing lex Source.
The Fundamentals of lex
Regular Expressions
Operators.........

Actions
Advanced lex Usage. . ..

Rules........

Some Special Features

lex Routines.
Definitions.
Start Conditions. . . .
User Routines
Using lex withyacc
Miscellaneous

Summary of Source Format. .

Chapter 7 Parsing with yacc

Introduction
Basic Specifications.

Actions
Lexical Analysis........
Parser Operation
Ambiguity and Conflicts

Precedence..............

The yacc Environment.

Error Handling.

Hints for Preparing Specifications.

InputStyle

Left Recursion

Lexical Tie-Ins

Reserved Words
Advanced Topics

Simulating error and acceptin Actions i .
Accessing Values in EnclosingRules. o
Support for Arbitrary Value Typeso

yacc Input Syntax.
Examples................

1. A Simple Example

2. An Advanced Example

nts

5-8
5-8

5-10

6-1

6-3
6-3

6-4
6-6
6-7
6-8
6-10
6-12
6-13
6-14
6-15
6-17
6-18

7-1
7-3

7-5

7-7

7-12
7-16
7-20
7-22
7-23
7-24
7-24
7-25
7-26
7-26
7-26
7-26
7-27
7-29
7-30
7-30
7-33

Compilation Systems Volume 1 (Tools)

Part 2 Analysis

Chapter 8 Introduction to Analysis

Introduction

.. 8-1
Chapter 9 Browsing Through Your Code with cscope
INtrOdUCHION . . . oo 9-1
HOW €SCOPe WOTKS . . . oo 9-1
HOW 10 USE CSCOPE. . . o ot ittt e e e e e e e 9-1
Step 1: SetUpthe Environment i 9-2
Step 2: INVOKE CSCOPE . . o v it ittt et e e e e e 9-2
Step 3: Locatethe Code. 9-3
Step4: Editthe Code. 9-9
Command Line Optionst 9-10
Using Viewpaths 9-13
Stacking cscopeand EditorCalls 9-14
EXamples. 9-14
Changing a Constant to a Preprocessor Symbol 9-14
Adding an Argumenttoa Function. 9-17
Changing the Value ofa Variable 9-18
Technical TIPS . .. oo 9-18
Unknown Terminal TYpe.ot 9-18
Command Line Syntax for EAitors. 9-18
Chapter 10 Analyzing Your Code with lint
Introductionto lint. e 10-1
Options and DIreCtivesot 10-1
lintand the Compiler e 10-2
Message FOrmats e 10-2
What lINt DOBS oo 10-2
Consistency Checks 10-2
Portability Checks. 10-3
SUSPICIOUS CONSEIIUCES . . . oo e e e e 10-5
USA0E . o ottt i e 10-6
lintLibraries 10-7
Nt FIterS . 10-8
Options and Directives Listed. 10-8
lint-specific MeSSages oo 10-12
argument unusedin function. 10-13
array subscript cannotbe >value:value. 10-13
array subscript cannot be negative:value oL 10-13
assignment causes implicit narrowing conversion 10-14
assignment of negative constant to unsignedtype 10-14
assignment operator ?=? found where ?==? was expected 10-14
bitwise operation on signed value nonportable. 10-15
constant in conditional context. i 10-16
constantoperand to Op: 212 10-16
constant truncated by assignment 10-16
conversion of pointerloses bits. 10-17
conversion to larger integral type may sign-extend incorrectly 10-17

Contents

declarationunused inblock. 10-18
declared global, could be static i 10-18
equality operator ?=="? found where ?=? was expected. 10-18
evaluation order undefined: name 10-19
fallthrough on case statement. 10-19
function argument (number) declared inconsistently.................... 10-20
function argument (number) used inconsistently 10-20
function argument type inconsistent with format. 10-21
function called with variable number of arguments. 10-21
function declared with variable number ofarguments. 10-22
function falls off bottom without returningvalue 10-23
function mustreturnint main() 10-23
function returns pointer to [automatic/parameter] L. 10-24
function returns value thatis alwaysignored. 10-24
function returns value that is sometimesignored. 10-25
function value is used, butnonereturned. 10-25
logical expression always false: 0p 2&&? 10-26
logical expression always true: op 2[|?o oot 10-26
malformed format string. 10-27
may be indistinguishable due to truncationorcase 10-27
name declared but neverused ordefined L. 10-27
name defined butneverused 10-28
name multiply defined 10-28
name used butnotdefined 10-28
nonportable bit-field type. 10-29
nonportable characterconstant. 10-29
only 0 or 2 parameters allowed: main() 10-29
pointer cast may result in improper alignment. 10-30
pointer casts may be troublesome. i 10-30
precedence confusion possible; parenthesize............. 10-31
precision lost in bit-field assignment oL 10-31
setbutnotusedinfunction. 10-32
statementhas noconsequent:else 10-32
statementhas noconsequent: if i 10-32
statementhasnulleffect. 10-33
statementnotreached. 10-33
Static UNUSEd.o 10-34
suspicious comparison of char with value: op ?0p?.......... 10-34
suspicious comparison of unsigned with value: op?20p? 10-35
too few argumentsforformat. 10-35
too many arguments forformat 10-36
value type declared inconsistently i 10-36
value type used inconsistently 10-37
variable may be used beforeset:name.......... 10-37
variable unused infunction. 10-37

Chapter 11 Performance Analysis

INtrOdUCTION . . . e 11-1

ANAlYZE . . . 11-1
INformation. e 11-1
StAlISHICS . . o oot 11-3
Profiling . ..o 11-3

Xi

Compilation Systems Volume 1 (Tools)

Part 3 Project Control

Chapter 12

USBI0E . .ot 11-4
Assumptions and Constraints e 11-9
1] 00] 11-9
USA0E . o ittt 11-10
Assumptions and Constraints. 11-12

Introduction to Project Control

INErOdUCTION . . . e e e e e 12-1

Chapter 13 Managing File Interactions with make

INtrOdUCHION . . . o e e 13-1
BasiC Featureso 13-2
Parallel make. 13-5
Description Files and Substitutions 13-6
COMIMENES . . . et e e e e e e 13-6
Continuation LINESottt e e 13-6
Macro Definitions. 13-6
General FOrmM ... e 13-6
Dependency Information e 13-7
Executable Commands e 13-7
Extensions of $*, $@, and $<. oo 13-8
Output Translations. 13-8
Recursive Makefiles 13-8
Suffixes and Transformation Rules. 13-9
Implicit Rules 13-9
Archive Libraries e 13-11
Source Code Control System File Names.o ... 13-13
The NUll SUFfiX. e e e e 13-13
Included Files 13-14
SCCS MakKefiles e 13-14
Dynamic Dependency Parameters i, 13-14
Viewpaths (VPATH)o 13-15
Command USageottt e e 13-16
Themake Command.t e 13-16
EnvironmentVariables 13-18
Suggestions and Warningso 13-19
Internal RUIES e 13-19

Chapter 14 Tracking Versions with SCCS

xii

INtrOdUCTION . . . oo 14-1

BasSiC USa0eot 14-1
Terminologyo 14-1
Creating an SCCS Filewithadmin. o ... 14-2
Retrievinga Filewithget 14-2
Recording Changes withdelta 14-3
More ON get. 14-4
The helpCommand. e 14-5

Contents

Delta Numbering 14-5
SCCS Command CoNVENLIONS.ttt et e et e 14-7
xfilesand zfiles. e 14-8
ErrOr MESSagesS . . o . it ittt 14-8
SCCS COMMANAS . .ottt e e e e 14-8
ThegetCommand 14-9
IDKEYWOIdSo 14-10
Retrieval of Different\Versions 14-10
ToUpdate SOUICEo i e 14-12
Undoingaget-eo 14-13
Additional get Options 14-13
Concurrent Edits of DifferentSID 14-13
ConcurrentEditsof Same SID e 14-15
Key letters that Affect Output. 14-16
ThedeltaCommand e e 14-17
TheadminCommand. e e 14-19
Creation of SCCSFiles i e 14-19
Inserting Commentary for the Initial Delta. 14-20
Initialization and Modification of SCCS File Parameters. 14-20
TheprsCommand 14-21
Thesact Command.t e e 14-23
ThehelpCommand e 14-23
ThermdelCommand e 14-23
ThecdcCommand e e 14-24
ThewhatCommand e e 14-24
ThescesdiffCommand. 14-25
ThecombCommand i 14-25
ThevalCommand e 14-26
SCCS FIlES. ..t 14-26
ProteCtion . .. 14-26
Formatting 14-27
AUItINg . ..o 14-28

Index

Part4 Environments

Chapter 15 Introduction to Environments

INErOdUCTION . .« . . e e e e e 15-1

Chapter 16 Run-Time Libraries

INtrOUCHION . . .o e 16-1
System Libraries. 16-1
CLibrary 16-1
Alternate C Libraryo 16-2

Math Library 16-2
Alternate Math Library 16-2

ELF Library. ... 16-3

xii

Compilation Systems Volume 1 (Tools)

Xiv

DWARF Library 16-3
General-Purpose Library 16-3
Including FunctionsandData. 16-3
Including Declarations 16-4
Listing of FUNCLiONS o 16-4
Input/Output Control. e 16-4
File and /O Control and ACCESSottt 16-5
Fileand /O Status.o 16-6
DIrECIONIES . . o it 16-7
File Systems. 16-7
General INput. 16-8
General QULPULot e 16-9
Terminal I/O. 16-10
STREAMS . 16-11
Pipesand FIFOS. 16-12
DBVICES . ottt 16-12
Special Files 16-12
File Systems Table File 16-13
File Systems Mount Table File. it 16-14
Password File. 16-14
Shadow Password File. 16-15
Group File . ..o 16-15
User and Accounting Information Files 16-16
ELF Files . o 16-17
DWARF Debugging Information., 16-18
Shared ObjectS.o 16-22
Temporary Files. 16-22
Stringsand Characters i 16-22
String Manipulation. 16-23
Wide String Manipulation 16-24
Character Testo 16-25
Wide Character TeSt.ot 16-26
Character Translation. e 16-26
Multibyte and Wide Characters. 16-27
Regular Expression and Pattern Matching 16-27
M eMIOTY . . o e 16-28
Memory Manipulation. 16-28
Memory Allocation 16-29
Memory Control 16-30
Shared Memory 16-30
Data StrUCIUIESt e e 16-31
TableS. . 16-31
Hash Tables e 16-31
File Trees . ..o 16-32
Binary Trees. . .. oot 16-32
Message QUEBUESttt e e e 16-32
QUEBUEBS . . i e e 16-33
SeMAPNOrES .« o e 16-33
Date and Time.o 16-33
GeneralDateand TimMe i e 16-34
Interval TIMer 16-35
POSIX TIMer . .o 16-35
Internationalization 16-35
LOCalES. . ot 16-36

Contents

Message Catalogso oottt 16-36
Mathematicand NUmMeriC. i i e 16-36
THQONOMELIIC. . o ot 16-37
BeSSel ... 16-37
Hyperbolic. 16-38
Miscellaneous Mathematic Functions. 16-38
NUMENC CONVEISION . . .ot e e e e e 16-39
Other Arithmetic e 16-41
Floating-Point Environment i 16-41
Pseudo-Random Number Generation Functions. 16-42
PrOgrams. . .. e 16-44
FlOW. .. e 16-44
Profile . ..o 16-44
Parameters. 16-45
PrOCESSES. .\ttt e 16-45
CONtrOl. . .o 16-46
SIgNalS . . . 16-47
User-Level Interrupts. 16-49
Lightweight Processes.ot e 16-49
SBCUNY . .« ottt 16-50
Access Control ListS 16-51
AUditing. . .. 16-51
LeVElS .. 16-51
Other SECUNtYo e e 16-52
Encryption and Decryption 16-52
System Environment 16-53
Loadable KernelModules. i 16-53
Other System Environment. i 16-53

Chapter 17 Floating-Point Operations

INtrOdUCHION . . .o e 17-1
IEEE ArithmetiC o 17-1
Data Typesand Formatso 17-2
Single-Precision 17-2
Double-Precision. 17-2
Language Mappingsot e 17-3
Normalized Numbers 17-3
Denormalized NUmbers 17-3
Maximum and Minimum Representable Floating-Point Values 17-4
Special-Case Values 17-4
NaNs and Infinities. 17-5
Rounding Control. 17-6
Floating-Point EXCEPLioNS oot 17-6
Exceptions, Status Bits, and Control Bits., 17-7
Exception Handling 17-9
Single-Precision Floating-Point Operations 17-9
Single-Precision FUNCLIONS. e 17-11
Double-Extended-Precision. 17-11
IEEE ReqUIrementso e 17-11
Conversion of Floating-Point Formatsto Integer. 17-11
Square ROOL 17-12

Compares and Unordered Condition

XV

Compilation Systems Volume 1 (Tools)

NaNs and Infinities in Input/Output it 17-12
Chapter 18 Inter-Language Interfacing
INtrOdUCHION . . . oo 18-1
Subroutine Linkage 18-1
The Stack Frame 18-1
Parameters. 18-2
Return Values 18-3
Prologueand Epilogue 18-3
Register Usaget 18-4
External Names 18-5
Data TYPES . . .t 18-5
SCalar TYPES . ottt 18-5
SHUCIUIES . ..o e 18-6
Common BIoCKS 18-6
Part5 Program Optimization
Chapter 19 Introduction to Program Optimization
INtrOdUCHION . . . oo 19-1
Chapter 20 Program Optimization
Introduction to Compiler Technology. - i 20-1
Compiler Optimization OptioNS. 20-2
Setting the Compiler Optimization Level. 20-2
Controlling Compiler Optimizations i, 20-3
Giving Hints to Compiler Optimizations (C++only)..................... 20-8
Obtaining Optimization Messagesottt 20-10
Classes of Optimizations it 20-10
Branch Optimizations. 20-10
Straightening Blocks 20-11
Folding Conditional Testso e 20-11
Eliminating Unreachable Code 20-11
Inserting Zero Trip TeStS . . . oo oottt e 20-11
Duplicating Partially-Constant Conditional Branches. 20-12
Variable Optimizations e 20-12
Dead Code Elimination 20-13
Copy Propagation 20-14
Separate Lifetimes. 20-15
Copy Variables. 20-15
Expression Optimizations. 20-16
Algebraic Simplification 20-16
Address Mode Determinationt 20-17
Common Subexpression Elimination 20-17
Code MOLION . ..ot 20-17
Loop Optimizations 20-18
Loops with Multiple Entry Points 20-19
Strength Reduction 20-20
TestReplacement. 20-21

Contents

Duplicating LOOp EXit TeStS oot v i 20-21
Loop Unrolling and Software Pipelining 20-22
Register Allocation. 20-24
Instruction Scheduling 20-24
Post-Linker Optimization 20-25
Inline Expansion of Subprograms (Adaonly) 20-26
Optimization of Constraints (Adaonly)........... 20-27
Inline Expansion of Subprograms (C++only) 20-29
Precise Alias Analysis (C++0nly) i 20-30
Programming Techniques e 20-30
CodiNg TIPS - v oot i e e 20-31
Identifying Performance Problems. 20-32
Debugging Optimized Code. -t 20-32
Understanding Optimization’s Effects on Debugging 20-33
Examining Your Program. 20-34

Part 6 Formats

Chapter 21 Introduction to Formats

INtrOUCHION . . .o e 21-1
Chapter 22 Executable and Linking Format (ELF)

INtrOdUCHION . . .o e 22-1
File Format 22-1
Data Representation 22-2

Program LinKingo 22-3
ELF Header o 22-3

ELF Identification. 22-6
ELFHeaderFlags 22-9
Section Header o 22-9
Special SECHiONS. oo 22-15
Vendor SECHiONo 22-18
String Table 22-22
Symbol Table 22-23
SymbolValues. 22-26
Relocation.o 22-27
Relocation TYpeS. . ..o v 22-28
Program EXeCULION 22-35
Program Header 22-35
Base AdAress.o 22-38
Segment PermissSions i 22-39
Segment CoNtentsS 22-40
NOte SECHONo 22-41
Program Loadingo 22-42
Program Interpreter 22-45
Dynamic Linker 22-46
Dynamic SECHiONo 22-47
Shared Object Dependencies.t 22-52
Link Mapo 22-53
Global Offset Table. 22-54

XVii

Compilation Systems Volume 1 (Tools)

Function AddreSses oottt 22-57
Procedure Linkage Table. i 22-58
Hash Table. 22-59
Initialization and Termination Functions. 22-60
Symbolic Debugging Information. 22-61
Chapter 23 tdesc Information
INtrodUCHioN 23-1
tdesC ChUNKS o 23-2
tdesc in Executable Programs and Shared Objects 23-10
EXamples 23-13

Chapter 24 DWARF Debugging Information Format

INtrOdUCTION . . . oo e 24-1
PUrpose and SCOPE oot e 24-2
OVBIVIBW . . ot ettt e e e 24-2
Vendor Extensibility 24-3
ChangesfromVersion 1 e 24-3

General DesCriptiono 24-4
The Debugging Information Entry. i L. 24-4
ARHDULE TYPES . o oo 24-5
Relationship of Debugging Information Entries.. 24-7
Location DesCriptions.ttt 24-7

Location EXPressions. oot e 24-8
Register Name Operators. vttt e 24-8
Addressing Operations e 24-8
Literal Encodings oot 24-9
Register Based Addressing. 24-10
Stack Operations.t 24-10
Arithmetic and Logical Operations 24-11
Control Flow Operations i 24-13
Special Operations 24-13
Sample Stack Operations. i 24-13
Example Location EXpressions i 24-14
Location LiStSot 24-15
Typesof Declarations 24-16
Accessibility of Declarations 24-16
Visibility of Declarations 24-16
Virtuality of Declarations 24-17
Artificial Entries 24-17
Target-Specific Addressing Information. 24-17
Non-Defining Declarations. i 24-18
Declaration Coordinatesttt 24-19
Identifier Names 24-19

Program Scope ENntries. 24-19
Compilation Unit ENtriest e 24-20
Module ENtries e 24-22
Subroutine and Entry PointEntries 24-23

General Subroutine and Entry Point Information 24-23
Subroutine and Entry Point Return Types. oo, 24-23
Subroutine and Entry Point Locations. 24-24

Xviii

Contents

Declarations Owned by Subroutines and Entry Points. 24-24
Low-Level Information. 24-24
Types Thrown by Exceptions 24-25
Function Template Instantiations 24-26
Inline Subroutines 24-26
Abstract Instances 24-27
Concrete Inlined Instances. i 24-27
Out-of-Line Instances of Inline Subroutines 24-28
Lexical BIoCK ENtries e 24-29
Label ENtries.o 24-29
With Statement Entries. 24-30
Try and Catch Block Entries e 24-30
Data Object and Object List Entries 24-31
Data ObjeCt ENtries.o 24-31
Common BIOCK ENtrieso e 24-33
Imported Declaration Entries 24-33
Namelist ENtries oo 24-33
TYPE ENtrieS . . . 24-34
Base Type ENtries. oo 24-34
Type Modifier Entries.o 24-35
Typedef Entries. 24-36
Array Type ENtriesot 24-36
Structure, Union, and Class Type Entries. 24-37
General Structure Description. 24-38
Derived Classes and Structures.t 24-38
Friends. 24-39
Structure Data Member Entries. 24-39
Structure Member Function Entries oL 24-41
Class Template Instantiations 24-41
Variant Entries. 24-42
Enumeration Type ENntrieso 24-43
Subroutine Type Entrieso 24-44
String Type ENtries.o 24-44
Set ENtrieS. . o o 24-45
Subrange Type ENntrieso 24-45
Pointer to Member Type Entries. 24-46
File Type ENtries.o 24-47
Other Debugging Information. 24-47
Accelerated ACCESS. . ..ottt 24-47
Lookup by Name. 24-48
LoOKUP by ADAressSot 24-48
Line Number Information. 24-49
DefinitioNs. 24-49
State Machine Registers i 24-50
Statement Program Instructions 24-51
The Statement Program Prologue 24-51
The Statement Program.t 24-53
Special Opcodes.o 24-53
Standard Opcodes 24-54
Extended Opcodes 24-55
Macro Information 24-56
Macinfo TYPES. . ..ot 24-57
Define and Undefine Entries i 24-57
Start File Entries. 24-57

XiX

Compilation Systems Volume 1 (Tools)

EndFile Entries 24-58
Vendor Extension Entries 24-58
Base Source ENtries.o 24-58
Macinfo Entries for Command Line Options 24-58
General Rulesand Restrictions o 24-58
Call Frame Information 24-59
Structure of Call Frame Information............. 24-60
Call Frame INStructions 24-62
Call Frame InstructionUsagec i, 24-64
Data Representation. 24-64
Vendor Extensibility 24-64
Reserved Error Values. 24-65
Executable Objects and Shared Objects 24-65
File Constraints.o 24-65
Format of Debugging Information L. 24-65
Compilation UnitHeader. i 24-66
Debugging Information Entry. 24-66
Abbreviation Tables. 24-67
Attribute Encodings. 24-67
Variable Length Data 24-71
Location DesCriptionSs.ot 24-74
Location EXPressSions. oot e 24-74
Location LiStSo 24-77
Base Type ENcodingso oottt e 24-77
Accessibility Codes. 24-78
Visibility Codes. 24-78
Virtuality Codes 24-79
SOUICE LANQUAGES o oottt e e e e e e e e e 24-79
Address Class ENCOdiNgS oottt e 24-79
Identifier Case. 24-80
Calling Convention Encodingsottt 24-80
INNE COUES . . .o 24-80
Array Orderingot 24-81
Discriminant ListS.o 24-81
Name Lookup Table. i 24-81
Address Range Table i 24-82
Line Number Information. 24-82
Macro Information 24-83
Call Frame Information 24-83
DependencCies 24-84
Future DIreCtionS oot e 24-85
Appendix 1 -- Current Attributes by Tag Value 24-85
Appendix 2 -- Organization of Debugging Information................. 24-96
Appendix 3 -- Statement Program Examples 24-99
Appendix 4 -- Encoding and decoding variable lengthdata.
24-100
Appendix 5 -- Call Frame Information Examples
24-102

Chapter 25 DWARF Access Library (libdwarf)

Introduction
PUrpose and SCOPEottt e 25-1

Illustrations

Screens

Contents

Definitions 25-2
OVBIVIBW .ottt e 25-2
Type Definitions 25-2
General DesCription 25-2
Scalar TYPES . o ot 25-3
Aggregate TYPeS . . .ottt 25-3
Location Record 25-4
Location Description. 25-4
Element List o 25-4
Subscript Bounds Information oL 25-5
DataBIOCK.o 25-5
OPAQUE TYPES . . ottt e et et e 25-5
Error Handling.o 25-6
Memory Management 25-8
Read-only Properties 25-8
Storage Deallocation 25-8
Functional Interface. 25-9
Initialization Operations. 25-9
Debugging Information Entry Delivery Operations...... 25-10
Debugging Information Entry Query Operations 25-12
Array Subscript Query Operations. 25-15
Type Information Query Operations 25-16
Attribute FOrm QUENIES. e e 25-16
Line Number Operationst e 25-18
Global Name Space Operationsottt 25-20
Utility Operations.t e 25-20
Appendix1--libdwarf.h. 25-22
Figure 4-1. User-Defined Mapfile i i .. 4-29
Figure 4-2. Default Mapfile 4-30
Figure 4-3. Simple Map Structure 4-32
Figure 6-1. Creation and Use of a Lexical Analyzer withlex 6-3
Figure 13-1. Summary of Default Transformation Path 13-10
Figure 14-1. Evolutionofan SCCSFile 14-5
Figure 14-2. Tree Structure with BranchDeltas 14-6
Figure 14-3. Extended Branching Concept i, 14-7
Figure 22-1. Data Encoding ELFDATA2LSB 22-8
Figure 22-2. Data Encoding ELFDATA2MSB 22-8
Figure 22-3. Relocatable Fields i 22-29
Figure 23-1. The PartsofaBodyofCode 23-1
Screen 9-1. Thecscope MenuofTasks 9-3
Screen 9-2. Requesting a Searchfora TextString.......... 9-4
Screen 9-3. cscope Lists Lines Containing the Text String 9-5
Screen 9-4. Examining a Line of Code Found by cscope. 9-6
Screen 9-5. Requesting a List of Functions That Call alloctest()............... 9-7
Screen 9-6. cscope Lists Functions That Call alloctest() 9-7
Screen 9-7. cscope Lists Functions That Call mymalloc().................... 9-8
Screen 9-8. Viewing dispinit() inthe Editor. 9-9

XXi

Compilation Systems Volume 1 (Tools)

Tables

Screen 9-9. Using cscopeto Fixthe Problem. 9-10
Screen 9-10. Changinga TextStringoo i 9-14
Screen 9-11. cscope Prompts for LinestoBe Changed 9-15
Screen 9-12. Marking LinestoBe Changed. 9-16
Screen 9-13. cscope Displays Changed Linesof Text 9-16
Screen 9-14. Escaping from cscopetothe Shell. 9-17
Screen 11-1. Sample Outputfromanalyze 11-2
Screen 13-1. make Internal Rules. 13-20
Table 1-1. Compilersand Utilities 1-4
Table 2-1. Available Directives 2-19
Table 3-1. PowerPC Instruction Set 3-2
Table 3-2. Condition Codes (CC)o ittt e 3-25
Table 3-3. Trap Operand (TO)ot i 3-26
Table 3-4. Operand Abbreviations 3-26
Table 3-5. Special-Purpose Registers i 3-28
Table 3-6. Time Base RegiSterst 3-31
Table 3-7. Implementation-Specific and Optional Instructions 3-31
Table 6-1. 1eX Operatorsttt e 6-6
Table 9-1. Menu Manipulation Commandscoiiieieana... 9-3
Table 9-2. Commands for Use after Initial Search 9-5
Table 9-3. Commands for Selecting Linesto BeChanged 9-15
Table 14-1. Determination of New SID i, 14-14
Table 16-1. File and I/0 Control and Access Functions 16-5
Table 16-2. File and I/O Status Functionso .. 16-6
Table 16-3. Directories FUNCLIONS 16-7
Table 16-4. File Systems FUNCLIONS it e 16-7
Table 16-5. General Input Functions i 16-8
Table 16-6. General Output FUNCtions i, 16-9
Table 16-7. Terminal IO FuNnctions 16-10
Table 16-8. STREAMS FUNCHIONSot 16-11
Table 16-9. Pipesand FIFOsFunctions it .. 16-12
Table 16-10. Devices Control Functions, 16-12
Table 16-11. File Systems Table File Functions 16-13
Table 16-12. File Systems Mount Table File Functions 16-14
Table 16-13. Password File Functions 16-14
Table 16-14. Shadow Password File Functions 16-15
Table 16-15. Group File Functions 16-15
Table 16-16. User and Accounting Information Files 16-16
Table 16-17. ELF FileS FUNCLIONS e e 16-17
Table 16-18. DWARF Debugging Information Functions. 16-18
Table 16-19. Shared Objects Functions 16-22
Table 16-20. Temporary Files e 16-22
Table 16-21. String Manipulation Functions 16-23
Table 16-22. Wide String Manipulation Functions 16-24
Table 16-23. Character TeStFUNCLONS e 16-25
Table 16-24. Wide Character Test FUNCtionsccoveiine.... 16-26
Table 16-25. Character Translation Functions 16-26
Table 16-26. Multibyte and Wide Characters Functions 16-27
Table 16-27. Regular Expression and Pattern Matching Functions 16-27
Table 16-28. Memory Manipulation Functions 16-28

Table 16-29.
Table 16-30.
Table 16-31.
Table 16-32.
Table 16-33.
Table 16-34.
Table 16-35.
Table 16-36.
Table 16-37.
Table 16-38.
Table 16-39.
Table 16-40.
Table 16-41.
Table 16-42.
Table 16-43.
Table 16-44.
Table 16-45.
Table 16-46.
Table 16-47.
Table 16-48.
Table 16-49.
Table 16-50.
Table 16-51.
Table 16-52.
Table 16-53.
Table 16-54.
Table 16-55.
Table 16-56.
Table 16-57.
Table 16-58.
Table 16-59.
Table 16-60.
Table 16-61.
Table 16-62.
Table 16-63.
Table 16-64.
Table 16-65.

Table 18-1.
Table 18-2.
Table 18-3.
Table 18-4.
Table 18-5.
Table 18-6.
Table 18-7.
Table 22-1.
Table 22-2.
Table 22-3.
Table 22-4.
Table 22-5.
Table 22-6.
Table 22-7.
Table 22-8.
Table 22-9.
Table 22-10

Contents

Memory Allocation Functions 16-29
Memory Control Functions 16-30
Shared Memory Control Functions 16-30
Tables Functions 16-31
Hash Tables Functions i ... 16-31
File Trees Functions 16-32
Binary TreesFunctions i 16-32
Message Queues FUNCtionsc.. it 16-32
Queues FUNCLIONS e 16-33
Semaphores Functions i 16-33
General Date and Time Functions 16-34
Interval Timer Functions 16-35
POSIX Timer FUNCLIONS i 16-35
Locales Functions i 16-36
Message Catalogs Functions 16-36
Trigonometric Functions i 16-37
Bessel FUNCHIONS o 16-37
Hyperbolic Functions 16-38
Miscellaneous Mathematical Functions 16-38
Numeric Conversion Functions, 16-39
Other Arithmetic Functions. i, 16-41
Floating-Point Environment Functions 16-41
Pseudo-Random Number Generation Functions 16-42
Flow Functions 16-44
Profile Functions 16-44
Parameters Functions i 16-45
Control Functions 16-46
Signals FUNCtions 16-47
User-Level Interrupts Functions 16-49
Lightweight Processes Functions 16-49
Access Control Lists Functions 16-51
Auditing Functions 16-51
Levels Functions 16-51
Other Security Functions 16-52
Encryption and Decryption Functions 16-52
Loadable Kernel Modules Functions. 16-53
Other System Environment Functions 16-53
Stack Frame 18-2
Where Parameters Are Passed 18-2
General Registers 18-4
Floating-point Registers i 18-4
Special Registers 18-5
C o Scalar TYPES ..ottt 18-5
Fortran Scalar Types oot 18-6
ObjectFile Format. 22-2
32-Bit Data TYPES . . oot it 22-3
e_ident[] Identification Indexes 22-6
PowerUX Identification,e_ident. 22-9
Processor-Specific Flags,e flags 22-9
Special Section Indexes 22-10
Section Types, sh_type 22-12
Section Header Table Entry: Index 0. 22-14
Section Attribute Flags, sh_flags. 22-14
. sh_link and sh_info Interpretation. 22-15

XXiii

Compilation Systems Volume 1 (Tools)

XXiv

Table 22-11.
Table 22-12.
Table 22-13.
Table 22-14.
Table 22-15.
Table 22-16.
Table 22-17.
Table 22-18.
Table 22-19.
Table 22-20.
Table 22-21.

Table 22-22. Symbol Types, ELF32_ST TYPE 22-25
Table 22-23. Symbol Table Entry: Index 0. 22-26
Table 22-24. Relocation TYPES oot e 22-32
Table 22-25. Segment Types, P_type oot 22-37
Table 22-26. Segment Flag Bits,p_flags i i . 22-39
Table 22-27. Segment Permissionst 22-39
Table 22-28. Text Segment 22-40
Table 22-29. Data Segment.t e 22-40
Table 22-30. Note Information i 22-41
Table 22-31. Example Note Segment i 22-42
Table 22-32. Executable File. 22-43
Table 22-33. Program Header Segments.o, 22-43
Table 22-34. Process Image Segmentsttt 22-44
Table 22-35. Example Shared Object Segment Addresses. 22-45
Table 22-36. Dynamic Array Tags, d_tagc. ... 22-48
Table 22-37. GOTP Binding Entry Stack Frame 22-56
Table 22-38. GOTP Binding Entry i 22-56
Table 22-39. GOTP Binding Helper. i 22-57
Table 22-40. PLT ENtry.ot e 22-59
Table 22-41. Symbol. e 22-60
Table 24-1. Tag NamMesSo 24-4
Table 24-2. Attribute Names 24-5
Table 24-3. Accessibility Codes 24-16
Table 24-4. Visibility Codes 24-16
Table 24-5. Virtuality Codes. 24-17
Table 24-6. Example Address Class Codes.ttt 24-18
Table 24-7. Language Names...ttt e 24-20
Table 24-8. Identifier Case Codes.t 24-21
Table 24-9. Inline Codes i 24-26
Table 24-10. Encoding Attribute Values 24-34
Table 24-11. Type Modifier Tagsot e 24-35
Table 24-12. Array Ordering.ottt e e e 24-37
Table 24-13. Discriminant DescriptorValues. 24-43
Table 24-14. Tag Encodings (Part1) 24-68
Table 24-15. Tag Encodings (Part2) 24-69
Table 24-16. Child Determination Encodings. 24-70
Table 24-17. Attribute Encodings (Part1) 24-70
Table 24-18. Attribute Encodings (Part2) 24-72
Table 24-19. Attribute Form Encodings i 24-73
Table 24-20. Examples of unsigned LEB128 Encodings 24-74
Table 24-21. Examples of signed LEB128 Encodings 24-75
Table 24-22. Location Operation Encodings (Part1) 24-75
Table 24-23. Location Operation Encodings (Part2) 24-76

Special Sections 22-15
Vendor Section Rounding Modes, round_mode 22-19
Vendor Section Floating-Point Exceptions Kind, fp_except_kind ... 22-19
Vendor Section Enabled Exceptions, float_exceptions 22-20
Vendor Section PowerPC Features, IBM_mode 22-20

Vendor Section Extended Double-Precision Use, float_precision. ... 22-21
Vendor Section Process Private Data Pointer Use, ppdp. used 22-21

Vendor Section FP Speculative Execution Use, fp_spec_exec 22-22
StringTable 22-22
String Table Indexes. 22-22

Symbol Binding, ELF32_ST BINDo 22-24

Contents

Table 24-24. Base Type EncodingValues 24-78
Table 24-25. Accessibility Encodings 24-78
Table 24-26. Visibility Encodings 24-78
Table 24-27. Virtuality Encodings 24-79
Table 24-28. Language Encodingsttt 24-79
Table 24-29. Identifier Case Encodingst 24-80
Table 24-30. Calling Convention Encodings o iiiiien... 24-80
Table 24-31. Inline ENcodings oottt 24-80
Table 24-32. Ordering ENncodingst 24-81
Table 24-33. Discriminant Descriptor Encodings, 24-81
Table 24-34. Standard Opcode Encodings, 24-82
Table 24-35. Extended Opcode Encodingscoiiiiiiinanan.. 24-83
Table 24-36. Macinfo Type Encodingst iinnnan.. 24-83
Table 24-37. Call Frame Instruction Encodings 24-84
Table 24-38. Current Attributesby TagValue 24-85
Table 25-1. Scalar TYPeS. . . . oot 25-3
Table 25-2. Error Indications 25-7
Table 25-3. Allocation/Deallocation Identifiers. 25-9
Table 25-4. Error COAesot 25-21

XXV

Compilation Systems Volume 1 (Tools)

XXVi

Software Development Environments

Replace with Part 1 tab

Compilation Systems Volume 1 (Tools)

Part 1 - Software Development Environments

Part 1 - Software Development Environments

Part1 Software Development Environments

Chapter 1 Introduction t0 SDES.......c.coiiiiiiiiiiiiee e 1-1
Chapter 2 Assembler and Assembly Languageccooveiviiiiiieiieeieciiecieieee, 2-1
Chapter 3 PowerPC Instruction Set SUMMArY.........coouiiiiiiiiiieiee e 3-1
Chapter 4 Link Editor and LINKiNG.........c..ueuiiiiiiiiiiiieiieee e 4-1
Chapter5 m4 MacCro PrOCESSONcooieiiieiie ettt e e e e 5-1
Chapter 6 Lexical Analysis With [€X..........ccoooiiiiiiiiiiiii e 6-1

Chapter 7 Parsing With YaccCuueiiiiiie e 7-1

Compilation Systems Volume 1 (Tools)

1
Introduction to SDEs

INtrOdUCHION . . .o e 1-1
Programming Languages.ottt 1-1
Compilation Systems CoNCePLS. . .. oo vttt e 1-2
Concurrent Computer Corporation Compilation Systems. 1-3
ObjeCt Fileso 1-5
StaCk Frameso e 1-6
Static and Dynamic Linking 1-6

Floating-Point Arithmetic 1-7

Compilation Systems Volume 1 (Tools)

Introduction to SDEs

1
Introduction to SDEs

Introduction

To create a program, you must be working in and understand some aspects of a software
development environment (SDE). goftware development environmémtludes the hard-

ware, operating system, supported object and debugging information formats, compilers
and utilities.

This part of the manual discusses some of the tools available in the software development
environment.

Chapter 2 (“Assembler and Assembly Language”) covers the instruction mnemonics and
assembler implementation for the supporting hardware platfjorms

Chapter 3 (“PowerPC Instruction Set Summary”) summarizes the instructions, condition
codes, operands, and registers associated with the PowerPC.

Chapter 4 (“Link Editor and Linking”) describes tité link editor and static and dynamic
linking of relocatable object files and libraries (including relocatable archives and shared
objects). For information about compressing common object files;jzex1)

Chapter 5 (“m4 Macro Processor”) discusses preprocessing C, RATFOR, assembly
language, and other source files with built-in and user-defindthacros. For information
about the C preprocessor, sggp(1) andacpp(l)

Chapter 6 (“Lexical Analysis with lex”) describes how to write specificationdéar to
separate (and possibly generate statistics for) components of program input.

Chapter 7 (“Parsing with yacc”) explains how to write grammar rules/émc so that it
can act upon identified components of program input.

The following sections describe compilation systems.

Programming Languages

Programming languageare used for specifying instructions and operations which are to

be performed by programs running on a computer system. Like the spoken languages that
all human beings use, each programming language has a grammar and a set of syntactic
and semantic rules.

1. See the Preface for details.

11

Compilation Systems Volume 1 (Tools)

There are hundreds of programming languages available to the computing world. Concur-
rent Computer Corporation supports a few of the most popular languages:

C See the Concurre@ Reference Manual
Fortran See thaf77 Fortran Reference Manual
Ada See theHAPSE Reference Manual

assembly language See Chapter 2 (“Assembler and Assembly Language”) in
this manual.

C, Fortran, and Ada are often referred totagh-level languagesThe source code for
programs written in these languages is fairly portable across computer systems provided
by different manufacturers. In addition, these programs can be accepted and processed by
compilers produced by different software vendors. The literary world provides an
abundance of books and references on these languages.

Assembly language is often referred to a®wa-level languageThis language provides
mnemonics and directives which usually map one-to-one with the instruction set and
resources of the computer system.

All of these languages are supported for the supporting hardware platforms.

Compilation Systems Concepts

1-2

A compilation systens a set of language processors, commands, utilities, and libraries
which can be used in the development of software programs. Compilation systems convert
source code into binary programs which can be executed on a computer. In addition, they
provide tools and facilities for debugging and analyzing program behavior and character-
istics.

At the heart of a compilation system is theenguage processotJsually, this is the
compiler A compiler is a program which accepts, as input, source code written in a high-
level language. It processes this input and produces a lower-level representation of the
source code. This new representation can be an assembly language representation of the
higher-level source code, making it necessary to run an assembler to produce a machine-
level representation of the code. Sometimes a compiler will translate the high-level
language directly into the machine-level representation. A compiler analyzes the source
code, both syntactically and semantically. A good compiler detects as many errors as it can
locate, enabling the programmer to correct them before they occur during execution of the
program. A good compiler can alsgptimizethe program. Optimization transforms the
program, allowing it to run faster and more efficiently.

Some languages are processed bynserpreter Whereas a compiler produces output that
must be further processed and then executed, an interpreter performs “on the fly”
translation and execution of the program.

Assembly language is processed by assemblerAssemblers are usually less
sophisticated than compilers and interpreters. An assembler often does nothing more than
convert the specified assembly language instructions and directives into machine instruc-
tions.

Introduction to SDEs

Compilers and assemblers are used to prodelceatable object filesEach of these files
cannot be executed individually, for they require further processingexacutable
programconsists of one or more relocatable object files. It is produced linkaeditor.

One relocatable object file may reference routines and/or data that are provided by another
relocatable object file. The link editor resolves these references.

Sometimes it is useful to maintain a library of relocatable object files. A programmer
could then include object files from the library with object files that are specific to the
program. Thidibrary of relocatable object files is also referred to asaachive and the
archive is maintained by aarchiver. When utilizing an archive, the link editor
incorporates into the program only those relocatable object files which are needed by the
program. The system on which a program is developed provides several system libraries.

Newly-written programs seldom execute correctly on the first run, requiring the
programmer to debug the programda&buggetutility is often used to facilitate the search

for problems in the code. Some debuggers operate only at the level of machine
instructions Symbolic debuggensermit debugging at the source code level.

Once a program is running correctly, it is sometimes desirable to analyze its performance
and identify bottlenecks during its executioRrofiling tools are called upon to perform
this analysis. These tools are available in various degrees of complexity.

Finally, compilation systems provide a set of tools for examining, compressing, and
performing miscellaneous functions on source code, relocatable object files, and execut-
able programs.

Concurrent Computer Corporation Compilation Systems

Concurrent Computer Corporation’s compilation systems provide all of the facilities
described above, except for interpreters. The compilers produce assembly language files.
These are assembled into relocatable object files, and the relocatable object files are
combined into an executable program.

Concurrent Computer Corporation’s compilers share a combauk endwhich is
responsible for optimization and code generation. This Common Code Generator (CCG)
technology makes it possible to easily add support for new languages and to retarget
existing compilers to new hardware platforms.

Concurrent Computer Corporation has developed its own compilers. They are not
reincarnations of compilers produced by other vendors.

Table 1-1 shows which compilers and utilities are available.

1-3

Compilation Systems Volume 1 (Tools)

Table 1-1. Compilers and Utilities

Type Name Description

C compiler cc(1) Both ANSI C and “old-style” C are accepted, as are Concurrent Com-
puter Corporation extensions to the C language.

Fortran fr7(1) The ANSI Fortran 77 language is accepted, as are Concurrent Com-

compiler puter Corporation extensions to the Fortran language.

Ada compiler ada(1) Concurrent Computer Corporation provides a complete Ada
programming support environment known as HAPSE.

C cpp(l) The C preprocessor expands macros and performs other

preprocessors acpp(l) preprocessing functions on the source code as part of the compilation.

Assembler as(1) Each system supported by Concurrent Computer Corporation uses a
“base” assembly language that is supported by other vendors of the
underlying architecture. Extensions are added to this language.

Link editor Id(1) The Concurrent link editor produces programs which can use either
static linking or dynamic linking.

Archiver ar(1) The Concurrent archiver is optimized for fast archive operations.

Post-link analyze(1) These tools are unique to Concurramalyze(1) can be used to

optimizer and perform additional optimizations on programs that have been link

profiler report(1) edited. It can also be used to obtained profiling and timing
information for executable program&port(1) provides readable
profiling data.

Profiler prof(1) This tool is the standard UNXprofiling utility. It is available but not
useful on the supporting hardware platforms.

Performance NightTrace(1) This tool is unique to and can be purchased from Concurrent Com-

analyzer puter Corporation. It allows users to analyze data and timings in user
applications and the kernel. See tiightTrace Manuafor details.

Symbolic gdb(2) This is a port of the Free Software Foundation’s GNU debugger. Con-

debugger current has added support for the Fortran language and for DWARF
symbolic debugging information.

Symbolic NightView(1) This source-level, multi-lingual, multi-process debugger is unique to

debugger and can be purchased from Concurrent Computer Corporation. See
the NightView User’s Guidéor detalils.

Symbolic ctrace(1) This utility displays source statements as they execute. It also shows

debugger variable names and values and any output from the statement.

Object adb(1) This debugger, provided on some vendors’ UNIX systems, allows a

debugger program to be debugged at the instruction level.

Compiler- yacc(1) This utility converts a context-free grammar into a set of tables for a

compiler simple automation which uses an LR(1) parsing algorithm.

Lexical lex(1) This utility generates simple code to be used in the lexical analysis of

analyzer text input.

1-4

Introduction to SDEs

Table 1-1. Compilers and Utilities (Cont.)

Type Name Description

C code lint(1) This utility examines C source for syntax errors and incompatible

checker routine interfaces.

C code cscope(l) This utility is used for browsing C source code for specified elements.

browser

C crossrefer- cxref(1) This utility builds a cross reference table from C source files.

ence generator

Name lister nm(1) This utility is used to provide a readable display of an object file’s
symbol table.

Section mcs(1) This utility adds, deletes, prints, or compresses a section, by default

manipulator the.comment section, in an ELF object file.

Dumper dump(1) This utility is used to provide a readable display of all components of
an object file.

Sizer size(1) This utility gives the byte size of selected sections of an object file.

Stripper strip(1) This utility is used to remove the symbol table from an object file.

Compressor cprs(1) This utility, available on some UNIX systems for compression of

COFF symbolic debug information in an object file, has been adapted
by Concurrent Computer Corporation to compress DWARF symbolic
debug information from ELF files.

Disassembler dis(1) This utility provides a readable display of the machine level
instructions in an object file.

pc to line pctolf(1) This utility is unigue to Concurrent Computer Corporation. For a

number and file particular program counter value within an object file, it utilizes

name translator DWARF symbolic debug information to present the file name and
line number which correspond to that address.

Macro m4(1) This utility serves as a macro processor front end for source files

preprocessor written in C and other languages.

Ordering lorder(1) This utility finds the ordering relation of object files for a library.

identifier

C flow grapher cflow(1) This utility builds a graph of external function references from C,
yacc , lex , assembler, and object files.

Topological tsort(1) This utility provides an ordered list of items, which are usually the

sorter output fromlorder(1)

Object Files

An object fileis a binary container of machine instructions and reference information.
Relocatable object files and executable programs are two kinds of object files.

1-5

Compilation Systems Volume 1 (Tools)

Stack Frames

An object file must have a well-defined format if it is to be used by the various utilities in

a compilation system. The object file format used under PowerUX i&€Rezutable and
Linking Format (ELF) This format provides object file sections, which contain the various
components of an object file, such as the machine-level instructions, relocation
information, and the symbol table. It also specifies the segments an executing program
will have in the address space.

Information about an object file that can be used by a symbolic debugger is often
embedded within the object file. ELF was designed to be independent of any particular
representation of symbolic debugging information. ThDebugging With Arbitrary
Record Format (DWARHF)as become the de facto representation for use with ELF, and it
is used under PowerUX.

During execution, a computer program utilizes a portion of its address space known as the
stack Each subroutine or procedure that is currently active utilizes a contiguous group of
words on the stack, which is that subroutinstack frame The stack frame contains such
information as the address to which the subroutine should return when it completes its
execution, the address of the stack frame corresponding to the subroutine which invoked
the current subroutine, the values of certain registers upon entry to the current subroutine,
and the values of data variables visible only to the current subroutine.

Some computer architectures provide hardware support for stack frames. Modern
architectures have made the stack frame a software concept, leaving control of stack
frames to the executable program. Compilers, then, generate code which causes each sub-
routine to create, update, and remove its own stack frame.

The absence of hardware support for stack frames would make it virtually impossible for a
debugger to produce a stack traceback, which is an identification of the invocation order of
subroutines at any point in time during execution of the program. Concurrent compilation
systems are able to support stack tracebacks through the utextodescription
information or tdesc. This information, embedded within an executable program,
describes pertinent portions of subroutines to the debugger.

Static and Dynamic Linking

1-6

Programs may be developed under PowerUX with static linking or dynamic linking. A
statically linkedprogram contains all of the code and data it will need during execution.
The link editor supplies the program with these necessary components.

A dynamically linkecprogram does not contain all of the code and data it will need during
execution. The link editor statically links a portion of the code and data into the executable
program. When the program begins executiopr@gram interpreter dynamically links

into the executing program’s process’ address space the remaining code and data needed
by the program. This additional code and data is provideghsred objectsor shared
libraries.

Introduction to SDEs

Dynamically linked programs provide greater sharing of pages of memory, and their on-
disk images are smaller than those of equivalent statically linked programs. Statically
linked programs, however, typically run faster than dynamically linked programs.

Floating-Point Arithmetic

The representation and operations of floating-point numbers varies among computer
systems. The supporting hardware platforms uses the representation and operations
specified by thdEEE Standard for Binary Floating-Point Arithmetieshich has become a

de facto standard for floating-point arithmetic.

Concurrent compilation systems support the single precision and the double precision
formats. No support is provided for the double extended precision format.

1-7

Compilation Systems Volume 1 (Tools)

1-8

Assembler and Assembly Language

INtrOdUCHION . . .o e
Assembler Operation
Using the Assembler
Assembler INVocation.
Character Set e
SOUICE SEatEMENTSo
NUll Statements o
AlphanumericLabels
Numeric (Local) Labels
COMMENTS. . . o e
ldentifilers. e
Predefined Symbols
User-Defined Symbols
CONSIANTS . . . oot
Integer CONSLANTSo
Floating-Point Constants
Character Constantst
EXPrESSIONS . . oo
EXPression OPeratorst
Operator Precedence.t
EXPression TYPeS . . oot
Expression Values.
Assembler DIreCtiVES.
Location Counter Control.t
Section SWItChing.o
Data Initialization.
Symbol Definitions.
ELF Symbol Attributes.
Miscellaneous Operationsttt
Summary of Directives MNemonNIiCS.t
Example
Position-Independent Code
Assembly Syntax
Example

Compilation Systems Volume 1 (Tools)

Assembler and Assembly Language

Introduction

Concurrent Computer Corporation’s assembler is available on supporting hardware plat-
formst. The assembler accepts instruction mnemonics appropriate to the particular under-
lying architecture. An extended set of directives, or pseudo-ops, extends the programmer’s
capability for specifying data and section control. A subset of these directives is common

to each platform.

The following sections describe the assembly statements and directives. The available
instructions and their syntax and semantics may be found in the reference manuals and
documents listed below.

Title

Chapter 3 (“PowerPC Instruction Set Summary”) of
this manual

Assembler Language Reference for IBMIX™
Version 3 for RISC System/6080

PowerPC 604 RISC Microprocessor User's Manual

PowerPC Microprocessor Family: The Programming
Environments

PowerPC User Instruction Set Architecture

Assembler Operation

Input to the assembler is a source file containing instruction mnemonics and directives.
The assembler processes this input in two passes. During the first pass, it reads each of the
instructions and directives, creates a symbol table containing information about every
symbol seen within the assembly source, and creates other internal tables describing the
instructions and directives it reads. During the second pass, the assembler creates a
relocatable object file. This object file is in ELF format. (See Chapter 22 (“Executable and
Linking Format (ELF)") for details.) Thetext section of the object file contains the
binary encodings of the assembly instructions in the source. Historically, this collection of
bits and bytes has been referred tonagchine languageThe.data and the.bss

1. See the Preface for details.

2-1

Compilation Systems Volume 1 (Tools)

sections contain the initialized and uninitialized data, respectively..3yratab section
contains information about all of the symbols present in the assembly source. The
.rela_ * sections provide relocation information to the link editor, enabling it to
combine this relocatable object file with other such files to form an executable program.

The assembler processes only one input file on each invocation. Traditionally, the name of
an input file ends with the suffixs , although any valid UNIX name is acceptable. The

-0 option can be used to specify the name of the output object file. If this option is not
used, the assembler names the output file according to the following rules:

¢ |f the name of the input file ends i3 , then the name of the output file is
the same as the name of the input file, but vathreplaced witho .

¢ |f the name of the input file does not end.m, then the name of the output
file is the same as the name of the input file, but wiadhappended.

The C, Fortran, and Ada compilers produce assembly language source file(s) as their
compiled output. They then invoke the assembler to convert the assembly source files into
relocatable object files.

Temporary files are used during assembly. If fIlidPDIR environment variable is
defined, these files are placed under this directory. If it is not defined/vida#tmp
directory is used, if it is available; otherwisénp is used. Temporary files are removed
by the assembler upon completion of assembly.

Using the Assembler

Assembler Invocation

The assembler is invoked as:
as [optiong file

The options are listed below.

-f float Use float as the floating-point mode of assembly and the object
file.
Desired Mode Acceptable Argument Values

IEEE-COMPATIBLE 3 ieeecom

IEEE-NEAREST 4 jeeenear near ieee
IEEE-ZERO 5 ieeezero zZero
IEEE-POS-INFINITY 6 ieeepos pos
IEEE-NEG-INFINITY 7 ieeeneg neg
-m Run them4macro preprocessor on the input to the assembler.

2-2

-0 obffile

Assembler and Assembly Language

Put the output of the assembly dbjfile by default. The output file
name is formed by removing the suffix, if there is one, from
the input file name and appendinga suffix.

Accept certain extensions to the Ada language.

(1) Allow a string enclosed in double quotes to appear in an
identifier, provided the first character of the identifier is not a
double quote. The characters normally allowed in an identifier
may appear in the quoted string. Additionally, the characters

S =< > , and& may appear in the quoted string.

(2) Allow multiple file directives in the source program.

Create a formatted listing on standard output. The format of the
printout is:

'line-number pc memory-layout source-fine

The 'pc field in a .data section will be followed by a*".

-QTARGET=PPC601 Mark the object module as using features unique to the PowerPC

601, and provide warnings for any assembly instructions which
are unigue to another PowerPC chip architecture.

-QTARGET=PPC603 Mark the object module as using features unique to the PowerPC

603, and provide warnings for any assembly instructions which
are unigue to another PowerPC chip architecture.

-QTARGET=PPC604 Mark the object module as using features unique to the PowerPC

604, and provide warnings for any assembly instructions which
are unique to another PowerPC chip architecture.

-QTARGET=PPC604BMark the object module as using features unique to the PowerPC

604e, and provide warnings for any assembly instructions which
are unigue to another PowerPC chip architecture.

-QTARGET=PPC620 Mark the object module as using features unique to the PowerPC

620, and provide warnings for any assembly instructions which
are unique to another PowerPC chip architecture.

-QTARGET=PPCCOMPAT

Mark the object module as using only features common to all the
PowerPC platforms, and provide warnings for any assembly
instructions which are unique to any of the platforms.

If -Qy is specified, place the version number of the assembler
being run in the object file. The defaulti®n.

Remove (unlink) the input file after assembly is completed.

Write the version number of the assembler being run on the
standard error output.

Find them4 preprocessom and/or the file of predefined macros
(d) in directorydir instead of in the customary place.

2-3

Compilation Systems Volume 1 (Tools)

Character Set

The standard ASCII characters and special two-character combinations comprise the
assembly character set. When used in identifiers and labels, letters are case-sensitive. That
is, the symbold/AL25 andval25 are distinct symbols. Letters are not case-sensitive in
instruction and directives mnemonics. Thugrd andWORIentify the same directive.

Source Statements

Null Statements

Source statements may appear on individual lines, or multiple statements may be specified
on a single line separated by thdelimiting character.

Any statement may be preceded by one or more labels.

The assembler imposes no limit on the character length of a source line.

Null statementsre empty lines or lines containing only one or more labels. Such state-
ments are ignored by the assembler.

Alphanumeric Labels

2-4

Alphanumeric labelsonsist of the following characters:
a-z, A-Z, 0-9, , ., $ % and @
These labels must not begin with a digit.

If the assemblerA option is used, labels may also contain double-quoted strings of the
preceding character set and the characters, *, /, =, <, > , and&.

Labels may be preceded by zero or more blanks. They are terminated byldach does

not become part of the label name). One or more blanks may precede the colon. The
assembler does not prefix or suffix additional underscores to the label, as some compilers
do. If aversion "03.00" or aversion "02.00" directive (discussed in “ELF
Symbol Attributes” on page 2-17) does not exist in the assembly file, the assembler
removes a leading underscore, if one exists, from label namewseifsion "03.00"

or aversion "02.00" directive does exist in the assembly file, the assembler does not
remove a leading underscore from labels. Alphanumeric labels have a maximum length of
1,024 characters. For example,

_labell: PCB.flag:

Assembler and Assembly Language

An alphanumeric label assigns the current value and type of the location counter to the
named symbol. In theext section, the location counter is the program counter in that
section. In other sections, the location counter is the address of the next data byte in that
section.

Numeric (Local) Labels

A numeric labelconsists of a digiD-9 followed by a colon. It defines a temporary
symbol of the forrmb or nf , wheren is the digit of the label and orf indicates @ack-
ward or forward reference, respectively. A numeric label assigns the current value and
type of the location counter to the temporary symbol. For example, the op8barefers

to the nearest labé: seen prior to the instruction, ar®d refers to the nearest lab&l

seen after the instruction.

For example,
6:

cmpwi crfl1,r3,13
addi r3,r3,1

bgt crfl,6f
cmpwi crfl,r3,4
bit crfl,6b

NOTE

The symbolOf may not be used as a numeric label becaifse
denotes the floating-point constaho .

Comments
A line with # in column 1 is regarded as a comment line.
C-style comments, beginning with and ending with¥/ , may appear anywhere in the
source. These comments may traverse multiple lines.
Comments to the end of the line may also be used. The delimiter for this kind of comment
is #. This delimiter can be used anywhere on the line.

|dentifiers

Identifiers consist of the following characters:

a-z, A-Z, 0-9, , ., $, %, and @

2-5

Compilation Systems Volume 1 (Tools)

Identifiers must not begin with a digit.

If the assemblerA option is used, identifiers may also contain double-quoted strings of
the preceding character set and the charaeters *, /, =, <, > , and&.

The assembler does not prefix or suffix additional underscores to the identifier, as some
compilers do. If aversion "03.00" or aversion "02.00" directive (discussed
“ELF Symbol Attributes” on page 2-17) does not exist in the assembly file, the assembler
removes a leading underscore, if one exists, from identifiersvéfraion "03.00" or
aversion "02.00" directive does exist in the assembly file, the assembler does not
remove a leading underscore from identifiers. Identifiers have a maximum length of 1024
characters. Examples of identifiers include:

@L5, _subroutine_

Each identifier (symbol) may be classified as eitipeedefinedby the assembler or
user-defined

Predefined Symbols

These symbols possess specific meanings for the assembler. They cannot be redefined by
the user, nor may they be used outside their specific contexts.

Predefinitions:

* Instruction mnemonics

* Assembler directives (see “Assembler Directives” on page 2-12)
* General register named) - r31

* Floating-point register namef - f31

* Special-purpose register namesr, Ir, ctr, dsisr, dar,
dec, sdrl, srrO, srrl, sprg0, sprgl, sprg2, sprg3,
ear, pvr, ibatOu, ibatOl, ibatlu, ibatll, ibat2u,
ibat2l, ibat3u, ibat3l, iabr

* PowerPC 601-specific special-purpose register nanmeg; rtcu,
rtcl, dec, hidl

* PowerPC 603-specific special-purpose register namesss, dcmp,
hashl, hash2, imiss, icmp, rpa

* PowerPC 604-specific special-purpose register nammescrO, pmcl,
pmc2, sia, sda

* PowerPC 620-specific special-purpose register narasg: mmcr0,
pmcl, pmc2, sia, sda, buscsr, 12cr, 12sr, fpecr

* Special-purpose register names absent from PowerPC tbp1tbl,
dbatOu, dbatOl, dbatlu, dbatll, dbat2u, dbat2l,
dbat3u, dbat3l

2-6

* Special-purpose
pir

* Special-purpose

Assembler and Assembly Language

register names absent from PowerPCh&liB: dabr,

register names absent from PowerPC 601 anth@20:

¢ Half-word specifiers:

hil6

uhil6

lo16

An instruct

(upper 16 bits of a relocatable expression, for signed operations)

(upper 16 bits of a relocatable expression, for unsigned
operations)

(lower 16 bits of a relocatable expression)

NOTE

ion which usek16 as the half-word specifier often

has a corresponding instruction which provides the upper 16 bits
of a relocatable expression. If the instruction usilnd6
performs a sign extension of the 16-bit operand, thé&rt
should be used in the corresponding instruction which provides

the upper

16 bits; otherwise;hilé should be used in the

corresponding instruction. For example:

lis rs,uhil6(x)
ori rs,rs,1016(x)
but

lis rs,hil6(x)

addi rs,rs,l016(x)

* Branch instruction operandsq, ne, gt, le, It, ge, so, un,

ns, z, nl, ng, n

If the version "03.00"

Z, nu

directive is specified in an assembly file, the assembler

requires that a leadin@be prefixed to the following predefinitions:

* General register

names

¢ Extended register names

¢ Control register names

¢ Half-word specifiers

¢ Bit-number mnemonics

¢ Match-field mnemonics

2-7

Compilation Systems Volume 1 (Tools)

User-Defined Symbols

Constants

The user may define a symbol in one of the following ways.

* As alabel. The symbol’s value is the value of the location counter where
the label is defined.

* As a constant. Thelef directive can be used to assign a 32-bit integer
value to the symbol. (Refer to “Symbol Definitions” on page 2-16.)

* As aspecial symbol. Thile directive, for example, can be used to give
the symbol a special meaning. (Refer to “Miscellaneous Operations” on
page 2-18 and “Summary of Directives Mnemonics” on page 2-19.)

Integer Constants

An integer constanis a 32-bit, two's complement number.
A decimal constantonsists of digits fron®-9 and does not possess a leading zero.
An octal constantonsists of digits fron®-7 and possesses a leading zero.

A hexadecimal constardonsists of digits fron0-9 , a-f , andA-F and possesses a
leadingOx or 0X. For example,

914, 037775, 0x23a

Floating-Point Constants

2-8

A floating-point constants a 32-bit or a 64-bit number represented in the IEEE format. It
consists of an optionally signed integer portion, a decimal point, a fraction portion, and an
exponent. The precision (single or double) of the constant ultimately depends upon the
context in which the constant is assembled.

The following conventions help the assembler disambiguate certain floating-point
constants from identifiers beginning withand a digit. A leadin@f or OF identifies a
single-precision constant while a leadiid or OD identifies a double-precision constant.
Floating-point constants may begin with one of these prefixes (making the integer portion
optional), or they must possess an integer portion.

The fraction portion may be omitted. Either the decimal point and the fraction portion or
the exponent may be omitted, but not both. The exponent consisterd followed by an
optionally signed integer. For example,

-4.3, 25.4367e-10, 0f.15

Assembler and Assembly Language

Character Constants

Expressions

A single-character constardonsists of a single quotefollowed by an ASCII character

other than backslash). The value of the constant is the ASCII code for the character.
Special meanings of characters are overridden when used in character constants. For
example,# and’; representthe constantsand; , respectively, and do not represent a
terminating’ followed by a comment.

A special character constamonsists of\ followed by another character. The special
character constants are listed below.

Constant Value Meaning

b 0x08 backspace

\t 0x09 horizontal tab

\n 0x0a newline (line feed)
\f 0x0c form feed

\r 0x0d carriage return
\? Ox3f guestion mark

\" 0x22 double quote

\ 0x27 single quote

A\l 0x5c¢ backslash

\ nnn Oonnn octal charactennn

For example;q, "\n, '015

Expressionsepresent 32-bit, two’'s complement values. They are built up from symbols,
constants, operators, and parentheses. Expressions have types, which are discussed later in
this section.

2-9

Compilation Systems Volume 1 (Tools)

Expression Operators

The following operators are available.

Class Operator Function Comment
binary + addition
- subtraction
* multiplication
/ division The integer quotient is returned, with
truncation performed on the real value
& bitwise AND
| bitwise OR
A bitwise XOR
~ bitwise NOR (a~b) is equivalent to (a OR (NOT b))
< logical left shift (a<b) is a shifted left b bits
> arithmetic right (a>b) is a shifted right b bits
shift
unary - negation

~ one’s complement

Operator Precedence

The precedences of the operators appear next.

0 highest
unary ~ + - |
* o< > |
L~ & |
binary +, - |
|

lowest

Binary operators of the same precedence are left-to-right associative. Parentheses may be
used to override the default precedences and/or associativity.

2-10

Assembler and Assembly Language

Expression Types

The type of an expression depends upon the types of the operators and the operands. The
possible expression and identifier types are:

manifest The value can be computed by the assembler at the time of its
appearance.
absolute The value can be computed by the assembler, though not

necessarily at the time of its appearance.

relocatable The value is relative to the start of a particular section. The
memory location represented by the expression is not known at
assembly time, but the relative values of two such expressions are
known if they refer to the same section.

undefined external No value is assigned to the expression. It is expected that the
values will be determined at link time. The relative values of
undefined externals are not known at assembly time.

A manifest value is also an absolute value. All absolute values are also manifest values,
except for the difference between two relocatable values.

The following rules determine the type of an expression based upon the types of the
operands.

* If both operands are of manifest type, the expression is manifest.
* If both operands are of absolute type, the expression is absolute.

* If one operand is an undefined external, the expression is an undefined
external.

* If one operand is absolute, and the other operand is relocatable, the
expression is relocatable.

* The difference of two relocatable operands is of absolute type.

* |tis not possible for one operand to be manifest while the other is absolute
or relocatable.

Expression Values

An absolute symbak defined from a constant, and its value is not affected by the link
editor.

Text data, andbss symbolsave values which indicate their displacements from the
beginning of thetext ,.data , or.bss sections, respectively. Text, data, and bss sym-
bols may change in value if the assembler output is link-edited.

At the beginning of assembly, the value of the location countés the beginning
displacement of thetext section. After the firstlata directive is seen, the value of
becomes the beginning displacement of tfeta section.

2-11

Compilation Systems Volume 1 (Tools)

Symbolswhich are declaredlobal have global visibility. Such a symbol may be
defined in the current assembly, or it may be defined externally to the current assembly. If
it is defined in the current assembly as an absolute, a text, a data, or a bss symbol, the
symbol may be used as if it were not globally visible. Its value and type may be used by
the link editor to satisfy external references to the symbol. If the symbol is not defined in
the current assembly, the link editor will regard it as an external reference to a global
definition of the symbol outside the current assembly.

Assembler Directives

Assembler directive@seudo-ops) specify location counter control, section switching,
data initialization, symbol definitions, symbolic debugging information, and
miscellaneous operations. The following notation is used:

{ directive | .directivg [operang...

directiveand.directiveare acceptable assembly mnemonics, gpetandis the kind
of operand accepted by the directive.

Location Counter Control

{align | .align } alignment

The location counter is adjusted so that its value, modulo the speaeifggtment is

zero. Bytes between the current location counter and the new (aligned) value are
filled with zeroes \0). alignmentis the base-2 logarithm of the desired alignment.
alignmentis of manifest type. For example,:

align 3 [* align the location counter to an 8-byte
boundary */

.org counter

The location counter is set wunter which must be defined and must not exceed
the current value of the location counter. Its recommended use is to set the location
counter at a known offset beyond an already-seen label. The directive should be in
the same section as the referenced label. A constmntermay be used, but the
assembler will produce a warning message. For example,

label: .long 5; .org label+30 /* change the location
counter to 30 past the label */

{zero | .space } number

numberbytes of zeroes\(Q) are assembled at the current location countember
must be non-negative. It is of manifest type. For example,

zero 24 [* assemble 24 bytes of zeroes */

2-12

Assembler and Assembly Language

Section Switching

{text | .text }

The location counter is changed to the next available value intéx¢ section.
Before the first section directive is encountered in an input file, assembly is by
default directed into thédext section.

{data | .data }
The location counter is changed to the next available value irdita section.
section identifief, attributeg[, sectiontypp

Succeeding bytes are assembled into the section natastifier. One or more flags
comprise a quoted character stringatfributesfor the section. Thattributesflags
are optional. The attributes are indicated in #ie flags entry of the section
header. The assembler permits another optional paransetetipntypewhich is
indicated in thesh_type entry in the section header. This section is created, if it
does not already exist, with the givaitributesandsectiontypelf the same section

is specified by more than orsection directive, the last value dadttributesand
sectiontypés assigned to the section.

Any combination of the following flags can be specified in #itributesstring.

w Set theSHF_WRITHElag (0x1)
X Set theSHF_ALLOlag (0x2)
a Set theSHF_EXECINSTRflag (0x4)

The assembler permits one of the following flags to be specifieskeiontypeThe
assembler requires that the given value be preceded wi@@ an

progbits The section may contain data

nobits The section contains no data

symtab The section is a symbol table

strtab The section is a string table

note The section is a comment section

vendor The section is a Concurrent Computer Corporation

vendor section

A hexadecimal integer constant may also be specifieskationtypeprovided it is
preceded byt or @ as described above.

Some of the flags do not have meaning in a PowerMAX OS environment. They are
provided for compatibility with other systems.

As an example,

2-13

Compilation Systems Volume 1 (Tools)

Data Initialization

2-14

section mysect,"a",@progbits [* specify 'mysect’ as
SHF_ALLOC and SHT_PROGBITS *

previous
This directive exchanges the current section and the previous section.

At any point in the assembly, bothcairrentsection and grevioussection are in
effect. Initially, the current section iextand the previous section is undefined. A
text , data , or section operation causes the current section to become the
previous section and the operation-specified section to become the current section.

{byte | .byte } valug, valug...

The specifiedvalugs) are assembled into consecutive 1-byte locations. Ealtle
is of manifest type and is in the range (20 28-1. For example,

byte 21, -43
ubyte expressiofy expressioh..

The specifiecexpressiofs) are assembled into consecutive 1-byte locations. Each
expressioris of absolute or relocatable type or is an undefined external. Each
expressions in the range 0 to21. For example,

ubyte 55, 0
sbyte expressiofy expressioh..

The specifiecexpressiofs) are assembled into consecutive 1-byte locations. Each
expressioris of absolute or relocatable type or is an undefined external. Each
expressions in the range -(2 to 2’-1. For example,

shyte -63,34
{vbyte | .vbyte } number, expression

The specifiedexpressioris assembled into consecutimemberbyte locations.
expressions of manifest or absolute typaumberis in the range 1-4, inclusive. If
expressiomequires more thanumberbytes, the left-most bytes are not assembled.
For example,

.vbyte 3,726

{half | .word | short | .short } valud, valug...

The assembler requires that the location counter be evenly divisible by 2 when this
directive is used. The specifiadlugs) are assembled into consecutive 2-byte
locations. Eaclvalueis of manifest type and is in the range l@z to 216-1. For
example,

Assembler and Assembly Language

half 0x56b

uhalf expressiofy expressioh..

The location counter must be evenly divisible by 2 when this directive is used. The
specifiedexpressio(s) are assembled into consecutive 2-byte locations. Each
expressioris of absolute or relocatable type or is an undefined external. Each
expressioris in the range 0 to ¥-1. For example,

uhalf 1078,457,3

shalf expressiofy expressioh..

The location counter must be evenly divisible by 2 when this directive is used. The
specifiedexpressio(s) are assembled into consecutive 1-byte locations. Each
expressioris of absolute or relocatable type or is an undefined external. Each
expressions in the range -(%r’) to 21, For example,

shalf -20345,26

uahalf valud, valud...

There is no restriction on the divisibility of the location counter when this directive
is used. The specifieealugs) are assembled into consecutive 2-byte locations. Each
valueis of absolute type and is in the rangel-?ﬁto 0to 2°-1. For example,

uahalf 7823,-40201

{word | .nt | .long } valug, valud...

The location counter must be evenly divisible by 4 when this directive is used. The
specifiedvalugs) are assembled into consecutive 4-byte locations. Ealcteis of
manifest type and is in the range tpto 23%1. For example,

word -3, 759323, 0

uaword expressiop) expressioh..

There is no restriction on the divisibility of the location counter when this directive
is used. The specifieelxpressio(s) are assembled into consecutive 4-byte locations.
Eachexpressions of absolute or relocatable type or is an undefined external. Each
expressions in the range -(%1) to 2°%1. For example,

uaword 1078,457,-108324

{float | .float } floatcons|, floatconst..

The location counter must be evenly divisible by 4 when this directive is used. The
specifiedfloatcons{s) are assembled into consecutive 4-byte locations. Each
floatconstis in the range of IEEE single-precision numbers. For example,

float 3.1415, 0.0

2-15

Compilation Systems Volume 1 (Tools)

{double | .double } floatcons|, floatconst..

The location counter must be evenly divisible by 8 when this directive is used. The
specifiedfloatcons{s) are assembled into consecutive 8-byte locations. Each
floatconstis in the range of IEEE double-precision numbers. For example,

double -1.5, 2.34e31
{ string | .ascii } string, string...

The specifiedstring(s) are assembled into consecutive locations--one character of
the string per byte. The quoted string is regarded as a C-style string. The leading and
the terminating double quotes are not assembled, and the string is not appended with
a trailing null byte {0). For example,

string “"several bytes"

.asciiz string[, string]...

The specifiedstring(s) are assembled into consecutive locations--one character of
the string per byte. The quoted string is regarded as a C-style string. The leading and
the terminating double quotes are not assembled, and the string is appended with a
trailing null byte {0). For example,

asciiz "error in format\n", "syntax error\n"

Symbol Definitions

{def | .def | set | .set } identifier, expression

The assembler requires thestpressiorbe of absolute or relocatable type. A new
symbol,identifier, is created, and its value is set to the valueegpressionFor
example,

def temp,2*4
[* create a variable 'temp’, giving it the value 8 */

{global | .globl } identifier

identifieris made externally visible. lfdentifieris defined in this assembly, its
definition may be used by the link editor to resolve external references to it. If
identifier is not defined in this assembly, the link editor must locate an external
definition to satisfy its external reference. For example,

global sub /* give 'sub’ external visibility */
{extern | .extern } identifier

identifieris regarded as being defined in another source file. For example,

extern var
/* identify 'var' as defined in another source file. */

2-16

Assembler and Assembly Language

{comm | .comm} identifier, sizd, alignmen}

identifieris made externally visible and is to be assigned to a common arsiaeof
bytes. Ifidentifieris not defined at link time, the link editor assigns it to thas
section.identifier becomes relocatablsizeis of manifest type. The optional third
argumentalignment,is of manifest type and must be a power of two. It has the
meaning aslignmentin thealign directive, above. Iklignmentis not specified,
the alignment ofdentifieris 1 or 2 whenrsizeis 1 or 2, respectively; otherwise, the
alignment is to an 8-byte boundary. For example,

comm block,20 /* define a common area 'block’ of
size 20 bytes, on an 8-byte boundary */

{bss | .bss } identifier, siz¢, alignment

identifieris made externally invisible but internally visible. Itd&zebytes long and is
assigned to thebss section.alignmentis optional and must be a power of two, if
present. Ifalignmentis missing the alignment is regarded as 1-byte. Bsitkand
alignmentare of manifest type. For example,

bss var,10,4 /* define a .bss variable 'var', size
10 bytes, on a 4-byte boundary */

local identified, identifier]...

Eachidentifier is defined in the input file and not accessible to other files. Any
default binding foridentifieris overridden by this directive. For example,

local local_var /* declare a local variable
'local_var’ */

weak identifieq, identifieq...

Eachidentifier is declared to be a weak global identifier. It is either defined
externally or defined in the input file and accessible in other files. Any default
binding foridentifieris overridden by this directive. For example,

weak _sub [* give '_sub’ weak binding */

NOTE

The assembler permits the use of at most onglatfal , local ,
andweak for each symbol in the input file.

ELF Symbol Attributes

These directives provide attributes for symbols. Refer to Chapter 22 (“Executable and
Linking Format (ELF)") for information about the symbol table.

2-17

Compilation Systems Volume 1 (Tools)

type identifier, type

identifier is declared with typdype The assembler permits one of the following
flags to be specified agpe The assembler requires that the given value be preceded

with a @

no_type no specified type

object a data object

function a function or other executable code
For example,

type abc,@object [* associate 'abc’ with a data

object */
size identifier, size

The sizesizeis associated witlidentifier. sizespecifies the size in bytes and is of
absolute type. For example,

size 6 /* indicate the identifier has size 6 */

version value

The quoted stringalueis compared with an internal assembler version string. If
valueis lexicographically greater than the internal string, the assembler produces a
fatal error message and exits.

This directive is optional. If present, it must appear first in the assembly file. The
only acceptabl@aluesare"03.00" and"02.00" ."02.00" suppresses the auto-
matic removal of a leading underscore from labels and alphanumeric labels.
Additionally, "03.00" requires thatt be prefixed to certain keywords, as
described throughout this chapter.

Miscellaneous Operations

{fle | file } fie

The quoted strindjle is placed in the object file’'s symbol table. The leading and the
terminating double quotes are not assembled, and the string is not appended with a
trailing null byte {0). file is of length 1-255 characters, inclusive. If the assembler

-A option is used, howevefile may be of length 1-800 characters, inclusive. Only
onefile directive may be specified in an assembly file. If tihe option is used,
however, multipldile directives may be specified. For example,

file "source.c" /* place the file name ’source.c’ in
the symbol table */

ident string

string is assembled into th&omment section. It is regarded as a C-style string.
The leading and the terminating double quotes are not assembled, and the string is

2-18

Assembler and Assembly Language

appended with a trailing null bytaQ). This directive is typically used to provide
revision level tracking information. For example,

ident "revision 5.1.3" /* place the string in the
.comment section */
fp_spec_exec

This directive indicates that the assembly code contains floating-point instructions
that are executed in a speculative manner. (See the discussion of speculative
execution in Chapter 20.) Modules that speculatively execute floating-point
instructions could erroneously raise floating-point exceptions, making it necessary
to link programs with all floating-point exceptions disabled. (See the discussion of
the-Qfpexcept= option in Chapter 3.)

fp_spec_exec /* indicate that floating-point
instructions are speculatively
executed.*/

Summary of Directives Mnemonics

Table 2-1 summarizes the available directives.

Table 2-1. Available Directives

Mnemonic(s) Argument(s)

align, .align alignment

.org counter

zero, .space number

text, .text

data, .data

section identifier,attributeg[, sectiontypg
previous

byte, .byte valud,valud...

ubyte expressiofjexpressioh..
shyte expressiofjexpressioh..
vbyte, .vbyte number, expression

half, .word valud,valud...

short, .short valud,valud...

uhalf expression[,expression]...
shalf expressiofjexpressioh..
uahalf valud,valuq...

word, .int, .long valug[valuq...

2-19

Compilation Systems Volume 1 (Tools)

Example

2-20

Table 2-1. Available Directives (Cont.)

Mnemonic(s) Argument(s)

uaword expressiofjexpressioh..
float, .float floatcons}, floatconst...
double, .double floatcons}, floatconst...

string, .ascii string[,string...
.asciiz string[,string...

def, .set identifier,expression
.def, set identifier,expression
global, .globl identifier

extern, .extern identifier

comm, .comm

identifier,sizd,alignment

bss, .bss identifier,sizd,alignment
local identifier,identifie...
weak identifier,identifie...
type identifier,type

size identifier,size

version value

file, .file file

ident string

fp_spec_exec

The following C function could be assembled to the assembly source code shown below.
Assembly source that is accepted by the assembler is used in this example.

printf (" the value of i = %d \n", i);

file "example.c"

sub(i) {
if (> 0){
}
}
version "02.00"
data
align 3

Assembler and Assembly Language

lit_lab:
string "the value of i = %d\n\000"
text
align 2
global sub
sub:
type sub,@function
size sub,..sub_sub_end - sub
addi ri1,r1,-80
mflr ri3 # return address
stw r13,88(r1) ;mr rdr3
..sub_sub :
line 3
cmpwi crfl,r4,0
ble crfl,@L6
line 4
lis r3,uhil6(lit_lab)
ori r3,r3,l016(lit_lab)
bl printf
@L6:
Iwz r13,88(r1)
mtlr ri3
addi r1,r1,80
bir
..sub_sub_end:
@L12:
section .tdesc,"x"
word 0x42
word 0x1
word ..Sub_sub
word @L12
word 0x10000021
word 0x50,0x8,0xfffffff0

Position-Independent Code

Assembly Syntax

The assembly language is extended to support position-independent code, which is used in

dynamic linking. (See Chapter 4 (“Link Editor and Linking”) for information on dynamic

linking and shared object files.) The following expressions are explained, and some of
these extensions are used in the example that follows.

The assembler requi@behat

used in these expressions (egfl)got). The @is used in the explanations that follow.

2-21

Compilation Systems Volume 1 (Tools)

s@got The address of a global offset table entry for symdol

p@gotp The address of a global offset table procedure entry for the
procedure named by the symhuol

p@plt An address to which control can be transferred to invoke the
procedure named by symbpl It is either the address @for the
address of a procedure linkage table entrydor

s@rel The difference between the value of the symisoland the
addressing base for the object containing the expression. The
value of the symbos must represent an address in the object
containing the expression.

s@got_rel The difference between the address denoteds@got and the
addressing base for the object containing the expression.

p@gotp_rel The difference between the address denoteg@gotp and the
addressing base for the object containing the expression.

p@plt_rel The difference between the address denotecp@plt and the
addressing base for the object containing the expression.

s@abdiff The difference between the addressing base for the shared object
containing the expression and the value of the synsbdhe value
of the symbok must represent an address in the object containing
the expression.

The addressing baseefers to a particular virtual address
associated with the memory image of a shared object. A
position-independent function establishes the addressing base by
computing its value and preserving it in a register for use through-
out the activation of the function.

Example

The following C code serves to illustrate the difference between position-independent and
position-dependent code, at the assembly language level. Assembly source that is accepted
by the assembler is used in this example.

int global;

int *global_ptr;

sub () {
extern char * malloc();
global_ptr = (int *) malloc (20);
*global_ptr = global;

2-22

Assembler and Assembly Language

Position-Independent

Position-Dependent

sub:

base:

be:

en:

global

addi
stw
mflr
stw
local
bl

ori
mflr
add
local

lis
ori
lwzx
li
mtctr
btcrl
lis
ori
lwzx
stw
lis
ori
lwzx
Iwz
lis
ori
lwzx
Iwz
stw
Iwz
Iwz
mtir
addi
bir

sub

rl1,r1,-80
r16,64(rl)
ri3
r13,88(rl)
base
base

r16,r16,lo16(base@ abdiff)
ri3

r16,r16,r3

be

r3,uhil6(malloc@gotp_rel)
r3,r3,lo16(malloc@gotp_rel)
r4,ri6,r3

r3,1016(0x14)

r4

r4,uhil6(global_ptr@got_rel)
rd,r4,lo16(global_ptr@got_rel)
r4,rl6,r4

r3,0(r4)
r3,uhil6(global@got_rel)
r3,r3,lo16(global@got_rel)
r3,rl6,r3

r4,0(r3)
r3,uhil6(global_ptr@got_rel)
r3,r3,l016(global_ptr@got_rel)
r3,rl6,r3

r3,0(r3)

r4,0(r3)

r16,64(rl)

r13,88(rl)

ri3

r1,r1,80

sub:

be:

en:

global sub

addi ri,rl,-80
mflr ri3

stw r13,88(rl)

li r3,1016(0x14)

bl malloc

lis r4,hi16(global_ptr)
stw r3,lo16(global_ptr)(r4)
lis r4,hi16(global)

Iwz r4,lo16(gloabl)(r4)
stw r4,0(r3)

Iwz r13,88(rl)

mtlr ri3

addi r1,rl1,80

bir

2-23

Compilation Systems Volume 1 (Tools)

Position-Independent Position-Dependent
section .tdesc,"x" section .tdesc,"x"
word 0x42 word 0x42
word 0x2 word 0x1
word be@rel word be
word en@rel word en
word 0x1020021 word 0x1000021
word 0x50 word 0x50
word 0x8 word 0x8
word OxfffffffO word OxfffffffO

For executable code in a shared object to be shared among multiple processes using that
shared object, it must reference symbols and data in a position-independent manner. In the
code above, the addressing base is computed into regigter

Because each process will have its own, private copy of the global offset table for
procedures, the addressglbbal_ptr , specific to a process, can be obtained from the
process’ private copy of the table. Tigéobal_ptr @got_rel syntax directs the
assembler to produce relocation information that the link editor will use. The link editor
will establish an offset, in the global offset table, which will contain the address of
global_ptr . The value in register3 contains a byte offset from the addressing base to
this location in the table. The value ib is the address dflobal_ptr . Thus, an extra
level of indirection is needed to obtain the address of the variable. An explanation of the
use of@gotp_rel , for referencingmalloc , is similar.

Thebe@rel syntax directs the assembler and the link editor to produce a value which is
the difference between the address of the synbechnd the addressing base of the shared

object. A consumer of this information, such as a debugger, would need to dynamically
add the addressing base to this difference to determine the actual address of the symbol.

The local directives are needed to indicate that the symbols are to be regarded as
inaccessible from other files and shared objects.

2-24

3
PowerPC Instruction Set Summary

PowerPC INStruction Set 3-2
Condition COdESot e 3-25
Trap Operand.o 3-26
Operand Abbreviations 3-26
Special-Purpose Registers 3-28
Time Base ReQiSters 3-31

Implementation-Specific and Optional Instructions 3-31

Compilation Systems Volume 1 (Tools)

PowerPC Instruction Set Summary

3

PowerPC Instruction Set Summary

This chapter summarizes the instruction sets of the PowerPC 601, 602, 603, 603e, 604,

604e, 620, and 75021 microprocessors. Instructions specific to or excluded from other

members of the PowerPC family are not documented here. These processors are docu-
mented to assist porting between PowerPC implementations. These tables are based on

preliminary documentation from the chip manufacturers. The information contained is
subject to change without notice. The following special notation conventions apply to

tables in this chapter only.

In the PowerPC Mnemonic column:

Bold mnemonics

Italic mnemonics

Small mnemonics

Signify instructions defined for 64-bit implementations
only.

Signify extended mnemonics added by Concurrent Com-
puter Corporation that are not present in IBM or Motorola
documentation.

Signify IBM RS/6000 POWERY instructions that are
provided on the PowerPC 601 systems for compatibility
purposes.

In all columns except the Syntax of Operands column, the following codes that represent
variations of the instructions appear:

[o]

[]

(1
[a]
[s]

[u]

Cause the SO and OV bits to be set in the fixed-point
exception register.

For integer instructions, cause crfO to be set as though the
result were compared to zero; for floating-point instructions,
cause crfl to be set with the high order four bits of the
floating-point status and control register.

Cause link register to be set to the return address.
Cause the displacement to be taken as an absolute address.

Cause the floating-point result to be rounded to
single-precision.

Cause rA to be updated with the effective address of the
load or store.

In the Syntax of Operands column:

[operand

Signify an operand the assembler allows you to omit. This
feature is not documented in the IBM documentation, but is
a carry over from the Rios assembly language.

3-1

Compilation Systems Volume 1 (Tools)

In the Description column:

operanddefaults tovalue
Signifies the default value for an omitted operand.

(optional)

Signifies instructions defined as optional in the PowerPC

architecture definition.

(optionallnot on xxx)

(xxx only)

xxx[e]

Signifies implementations that do not include the optional

instruction.

Signifies instructions that are specific to a particular
implementation but are not part of the PowerPC architecture

definition.

Signifies both xxx and xxxe.

In the RS/6000 POWER Mnemonic column:

PowerPC Instruction Set

Table 3-1. PowerPC Instruction Set

Means the RS/6000 POWER mnemonic is spelled the same

as the PowerPC mnemonic.

PowerPC . RS/6000
Mnemonic Syntax of Operands Description POWER
Mnemonic
absfo][] IrA Absolute Valug(601 only) "
add[o][.] rT,rA,rB Add cax[o][.]
addc|o][.] rT,rA,rB Add Carrying alo][.]
adde[o][.] rT,rA,rB Add Extended ae[o][.]
addi rT,rA,SI Add Immediate cal
addic][.] rT,rA,Sl Add Immediate Carrying ai[.]
addis rT,rA,SI Add Immediate Shifted cau
addme][o][.] rT,rA Add to Minus One Extended ame[o][.]
addze[o][.] rT,rA Add to Zero Extended azefo][.]
and[.] rA,rS,rB AND "
andc[.] rA,rS,rB AND with Complement "
andi. rA,rS,Ul AND Immediate andil.

3-2

PowerPC Instruction Set Summary

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC RS/6000
) Syntax of Operands Description POWER
Mnemonic .
Mnemonic
andis. rA,rS,Ul AND Immediate Shifted andiu.
b[l][a] LI Branch "
be[l][a]* BO,BI,BD Branch Conditional "
beetr[l]* BO,BI Branch Conditional to Count Register becfl]
belr[l]* BO,BI Branch Conditional to Link Register ber(l]
betr[l] - Branch to Count Register "
Same as: bectr[l] 20,0
bdnz[l][a]* BD Branch Decrement Count Non-Zero bdn[l][a]
Same as: bc[l][a] 16,0,BD
bdnzCCll][a]* [crfA,]BD Branch Decrement Count Non-Zero on CC bdnCC
crfA defaults to crfO
Same as: bc[l][a] BO,BI,BD
bdnzCClr[l]* [crfA] Branch Decrement Count Non-Zero on CC to LR
crfA defaults to crfO
Same as: bclr[l] BO,BI,BD
bdnzf[l][a]* BI,BD Branch Decrement Count Non-Zero False
Same as: bcfl][a] 0,BI,BD
bdnzflr[l]* Bl Branch Decrement Count Non-Zero False to LR
Same as: bclr[l] 0,BI
bdnzIr[l]* - Branch Decrement Count Non-Zero to LR bdnr(l]
Same as: bclr[l] 16,0
bdnzt[l][a]* BI,BD Branch Decrement Count Non-Zero True
Same as: bcf[l][a] 8,BI,BD
bdnztlr[l]* Bl Branch Decrement Count Non-Zero True to LR
Same as: bclr[l] 8,BI
bdz[l][a]* BD Branch Decrement Count Zero "
Same as: bc[l][a] 18,0,BD
bdzCC[l][a]* [crfA,]BD Branch Decrement Count Zero on Condition Code bdzCC
crfA defaults to crfO
Same as: bc[l][a] BO,BI,BD
bdzCClr([l]* [crfA] Branch Decrement Count Non-Zero on CC to LR
crfA defaults to crfO
Same as: bclr[l] BO,BI,BD
bdzf[l][a]* BI,BD Branch Decrement Count Zero False
Same as: bcf[l][a] 2,BI,BD
bdzflr[l]* Bl Branch Decrement Count Zero False to LR

Same as: bclr[l] 2,BI

3-3

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC RS/6000
) Syntax of Operands Description POWER
Mnemonic .
Mnemonic

bdzIr[I]* - Branch Decrement Count Zero to LR bdzr[l]
Same as: bclr[l] 18,0

bdzt[l][a]* BI,BD Branch Decrement Count Zero True
Same as: bcf[l][a] 10,BI,BD

bdztlr[l]* Bl Branch Decrement Count Zero True to LR
Same as: bclr[l] 10,BI

bf[l][a]* BI,BD Branch False bbf[l][a]
Same as: bcf[l][a] 4,BI,BD

bfctr[I]* Bl Branch False to Count Register bbfc[l]
Same as: bectr[l] 4,BI

bflr[I]* Bl Branch False to Link Register bbfr(l]
Same as: bclr[l] 4,BI

bir[l] - Branch to Link Register br(l]
Same as: bclr[l] 20,0

bt[l][a]* BI,BD Branch True bbt[l][a]
Same as: bc[l][a] 12,BI,BD

btetr[l]* Bl Branch True to Count Register bbtc[l]
Same as: bectr[l] 12,BI

btlr[I]* Bl Branch True to Link Register bbtrfl]
Same as: bclr[l] 12,BI

bCCll)[a]* [crfA,]BD Branch on Condition Code "
crfA defaults to crfO
Same as: bc[l][a] BO,BI,BD

bCCectr[l]* [crfA] Branch on Condition Code to Count Register bCCc[l]
crfA defaults to crfO
Same as: bectr[l] BO,BI

bCClrl]* [crfA] Branch on Condition Code to Link Register bCCr[l]
crfA defaults to crfO
Same as: bclr[l] BO,BI

cles A Cache Line Compute SiZ€01 only) "

clrldi[.] rA,rS,n Clear Left Doubleword Immediate
Same as: rldicl[.] rA,rS,0,n

clrisdi[.] rA,rS,b,n Clear Left and Shift Doubleword Immediate
Same as rldicr[.] rA,rS,n,b-n

clrislwil.] rA,rS,b,n Clear Left and Shift Left Word Immediate

n<b<31
Same as: rlwinm[.] rA,rS,n,b-n,31-n

3-4

PowerPC Instruction Set Summary

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC RS/6000
) Syntax of Operands Description POWER
Mnemonic .
Mnemonic
clriwil.] rA,rS,n Clear Left Word Immediate
n<31
Same as: rlwinm[.] rA,rS,0,n,31
clrrdi[.] rA,rS,n Clear Right Doubleword Immediate
Same as: rldicl[.] rA,rS,0,63-n
clrrwil.] rA,rS,n Clear Right Word Immediate
n<31
Same as: rlwinm[.] rA;rS,0,0,31-n
cmp [crfT,]L,rA,IB Compare
crfT defaults to crfO
cmpd [crfT,]rA,rB Compare Doubleword
crfT defaults to crfO
Same as: cmp crfT,1,rA,rB
cmpdi [crfT,]rA,SI Compare Doubleword Immediate
crfT defaults to crfO
Same as: cmpi crfT,1,rA,SI
cmpi [crfT,]L,rA,SI Compare Immediate
crfT defaults to crfO
cmpw [crfT,]rA,rB Compare Word cmp
crfT defaults to crfO
Same as: cmp crfT,0,rA,rB
cmpwi [crfT,]rA,SI Compare Word Immediate cmpi
crfT defaults to crfO
Same as: cmpi crfT,0,rA, S|
cmpl [crfT,]L,rA,IB Compare Logical
crfT defaults to crfO
cmpld [crfT,]rA,rB Compare Logical Doubleword
crfT defaults to ctfO
Same as: cmpl crfT,1,rA,rB
cmpldi [crfT,JrA,UI Compare Logical Doubleword Immediate
crfT defaults to crfO
Same as: cmpli crfT,1,rA,Ul
cmpli [crfT,JL,rA,UI Compare Logical Immediate
crfT defaults to crfO
cmplw [crfT,]rA,rB Compare Logical Word cmpl
crfT defaults to crfO
Same as: cmpl crfT,0,rA,rB
cmplwi [crfT,JrA,UI Compare Logical Word Immediate cmpli

crfT defaults to crfO
Same as: cmpli crfT,0,rA,Ul

3-5

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC . RS/6000
Mnemonic Syntax of Operands Description POWER
Mnemonic
cntlzd[.] rA,rS Count Leading Zeros Doubleword
cntlzwl[.] rA,rS Count Leading Zeros Word cntlz[.]
crand BT,BA,BB Conditional Register AND "
crandc BT,BA,BB Conditional Register AND with Complement "
crclr BT Conditional Register Clear Bit
Same as: crxor BT,BT,BT
creqv BT,BA,BB Conditional Register Equivalent "
crmove BT,BA Conditional Register Move
Same as: cror BT,BA,BA
crnand BT,BA,BB Conditional Register NOT AND "
crnor BT,BA,BB Conditional Register NOT OR "
crnot BT,BA Conditional Register NOT
Same as: crnor BT,BA,BA
cror BT,BA,BB Conditional Register OR "
crorc BT,BA,BB Conditional Register OR with Complement "
crset BT Conditional Register Set Bit
Same as: creqv BT,BT,BT
crxor BT,BA,BB Conditional Register Exclusive OR "
dcbf rA,rB Data Cache Block Flush
dcbi rA,rB Data Cache Block Invalidate
Supervisor Level
dcbst rA,rB Data Cache Block Store
dcbt rA,rB Data Cache Block Touch
dcbtst rA,rB Data Cache Block Touch for Store
dcbz rA,rB Data Cache Block set to Zero dclz
divlo][] ITrA B Divide (601 only)
divd[o][.] rT,rA,rB Divide Doubleword
divdu[o][.] rT,rA,rB Divide Doubleword Unsigned
divs[o][.] IMrArB Divide Short(601 only)
divwl[o][.] rT,rA,rB Divide Word
divwu[o][.] rT,rA,rB Divide Word Unsigned
dozfo][] ITrA B Difference or Zerq601 only)
dozi IT,rA,SI

Difference or Zero Immediatg01 only)

3-6

PowerPC Instruction Set Summary

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC RS/6000
) Syntax of Operands Description POWER
Mnemonic .
Mnemonic
dsa - Disable Supervisor Acceg602 only)
eciwx rT,rA,rB External Control In Word Indexed (optionaljpot on
602)
ecowx rSrA,rB External Control Out Word Indexed (optionghot on
602)
eieio - Enforce In-order Execution of I/O
eqv[.] rA,rS,rB Equivalent
esa - Enable Supervisor Acce$602 only)
extldi[.] rA,rS,n,b Extract and Left Justify Doubleword Immediate
Same as: rldicr[.] rA,rS,b,n-1
extlwi[.] rA,rS,n,b Extract and Left Justify Word Immediate
Same as: rlwinm[.] rA,rS,b,0,n-1
extrdi[.] rA,rS,n,b Extract and Right Justify Doubleword Immediate
Same as: rldicl[.] rA,rS,b+n,64-n
extrwil.] rA,rS,n,b Extract and Right Justify Word Immediate
Same as: rlwinm[.] rA,rS,b+n,32-n,31
extsbl.] rA,rS Extend Sign Byte
extsh[.] rA,rS Extend Sign Halfword exts|[.]
extsw].] rA,rS Extend Sign Word
fabs].] fT,fB Floating Absolute Value "
fadd([s][.] fT,fA,fB Floating Add(double precision not on 602) fal.]
fefid[.] fT,fB Floating Convert From Integer Doubleword
fcmpo [crfT,]fA,fB Floating Compare Ordered "
crfT defaults to crfO
fcmpu [crfT,]fA,fB Floating Compare Unordered "
crfT defaults to crfO
fetid[.] fT,fB Floating Convert to Integer Doubleword
fetidz[.] fT,f1B Floating Convert to Integer Doubleword with rour
toward Zero
fetiw.] fT,fB Floating Convert to Integer Word
fctiwz[.] fT,fB Floating Convert to Integer Word with round towa
Zero
fdiv[s][.] fT,fA,fB Floating Divide(double precision not on 602) fd[.]
fmadd[s][.] fT,fA,fB,fC Floating Multiply-Add(double precision not on 602) fmal.]
fmr[.] fT,fB Floating Move Register "

3-7

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC RS/6000
: Syntax of Operands Description POWER
Mnemonic .
Mnemonic
fmsubls][.] fT,fA,fB,fC Floating Multiply-Subtrac{double precision not on fms][.]
602)
fmul[s][.] fT,fAfC Floating Multiply (double precision not on 602) fm[.]
fnabsl.] fT,fB Floating Negate Absolute Value "
fneg].] fT,fB Floating Negate "
fnmadd[s][.] fT,fA,fB,fC Floating Negate Multiply-Adddouble precision not on fnmal.]
602)
fnmsubls][.] fT,fA,fB,fC Floating Negate Multiply-Subtraddouble precision fnms][.]
not on 602)
fres[.] fT,fB Floating Reciprocal Estimate Single (optionétpt on
601)
frsp[.] fT,f1B Floating Round to Single-Precisiqdouble precision "
not on 602)
frsqrte[.] fT,fB Floating Reciprocal Square Root Estimate (option
(not on 601)
fsell.] fT,fAfC,fB Floating Select (optionalnot on 601)
fsqrt[s][.] fT,fB Floating Square Root (optiona{Not on 601, 602, fsqrt[.]
603[e], 604[e]) (RS/6000
POWER?2
only)
fsubl[s][.] fT,fA,fB Floating Subtracfdouble precision not on 602) fs[.]
icbi rA,rB Instruction Cache Block Invalidate
inslwil.] rA,rS,n,b Insert from Left Word Immediate
Same as: rlwimi[.] rA,rS,32-b,b,b+n-1
insrdi[.] rA,rS,n,b Insert from Right Doubleword Immediate
Same as: rldimi[.] rA,rS,64-b-n,b
insrwil.] rA,rS,n,b Insert from Right Word Immediate
Same as: rlwimi[.] rA,rS,32-b-n,b,b+n-1
isync - Instruction Synchronize ics
la rT,D(rA) Load Address
Same as: addi rT,rA,D
lax rT,rA,rB Load Address Indexed
Same as: add rT,rA,rB
Ibz[u] rT,D(rA) Load Byte and Zero "
Ibz[u]x rT,rA,rB Load Byte and Zero Indexed "
[d[u] rT,D(rA) Load Doubleword

3-8

PowerPC Instruction Set Summary

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC . RS/6000
Mnemonic Syntax of Operands Description POWER
Mnemonic
[d[u]x rT,rA,rB Load Doubleword Indexed
Idarx rT,rA,rB Load Doubleword And Reserve Indexed
Ifd[u] fT,D(rA) Load Floating-Point Doublénot on 602) "
Ifd[u]x fT,rA,rB Load Floating-Point Double Indexddot on 602) "
Ifs[u] fT,D(rA) Load Floating-Point Single "
Ifs[u]x fT,rA,rB Load Floating-Point Single Indexed "
lha[u] rT,D(rA) Load Halfword Algebraic "
lha[u]x rT,rA,rB Load Halfword Algebraic Indexed "
lhbrx rT,rA,rB Load Halfword Byte-Reverse Indexed "
lhz[u] rT,D(rA) Load Halfword and Zero "
lhz[u]x rT,rA,rB Load Halfword and Zero Indexed "
li rT,SI Load Immediate lil
Same as: addi rT,0,SI
lis rT,SI Load Immediate Shifted liu
Same as: addis rT,0,SlI
Imw rT,D(rA) Load Multiple Word Im
Ischx(] ITrA B Load String And Compare Byte Index€601 only) "
Iswi rT,rA,NB Load String Word Immediaténot on 602) Isi
Iswx rT,rA,rB Load String Word Indexe¢hot on 602) Isx
Iwa rT,D(rA) Load Word Algebraic
Iwarx rT,rA,rB Load Word And Reserved Indexed
Iwax rT,rA,rB Load Word Algebraic Indexed
Iwbrx rT,rA,rB Load Word Byte-Reverse Indexed lbrx
Iwz[u] rT,D(rA) Load Word and Zero [u]
Iwz[u]x rT,rA,rB Load Word and Zero Indexed [u]x
maskg[.] rAIS,1B Mask Generaté601 only) "
maskir[.] rAIS,1B Mask Insert From Regist¢601 only) "
mcrf crfT,crfA Move Condition Register Field "
mcrfs crfT,BFA Move to Condition Register Field from FPSCR "
mcrxr crfT Move to Condition Register Field from XER "
mfasr rT Move From Address Space Register

Supervisor Level
Same as: mfspr rT,280

3-9

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

RS/6000
Syntax of Operands Description POWER
Mnemonic

PowerPC
Mnemonic

mfbatl rT,n Move From Block Address Translation Lower(601
only)
Supervisor Level
Same as: mfspr rT,529+2n

mfbatu rT,n Move From Block Address Translation Upper(®01
only)
Supervisor Level
Same as: mfsprrT,528+2n

mfbuscr rT Move From Bus Control & Status Regist@20 only)
Supervisor Level
Same as: mfspr rT,1016

mfcr rT Move From Condition Register

mfctr rT Move From Count Register
Same as: mfspr rT,9

mfdabr rT Move From Data Address Breakpoint Regis{é01,
604[e], 620 only)
Supervisor Level
Same as: mfspr rT,1013

mfdar rT Move From Data Address Register
Supervisor Level
Same as: mfspr rT,19

mfdbatl rT,n Move From Data Block Address Translation Lower
(not on 601)
Supervisor Level
Same as: mfspr rT,537+2n

mfdbatu rT,n Move From Data Block Address Translation Uppe!
(not on 601)
Supervisor Level
Same as: mfspr rT,536+2n

mfdcmp rT Move From Data TLB Comparg02, 603[e] only)
Supervisor Level
Same as: mfspr rT,977

mfdec rT Move From Decrementer
Supervisor Level
Same as: mfspr rT,22

mfdmiss rT Move From Data TLB Miss Addre9$02, 603[e] only)
Supervisor Level
Same as: mfspr,976

mfdsisr rT Move From Data Storage Interrupt Status Register
Supervisor Level
Same as: mfspr rT,18

3-10

PowerPC Instruction Set Summary

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands

RS/6000
POWER
Mnemonic

Description

mfear

mfesasrr

mffpecr

mffs[.]
mfhashl

mfhash?2

mfhidO

mfhidl

mfiabr

mfibatl

mfibatu

mfibr

T

T

T

T

T

T

T

T

rT,n

rT,n

T

Move From External Access Register (option@dt on
602)

Supervisor Level

Same as: mfspr rT,282

Move From Enable Supervisor Access Save and Res
Register(602 only)

Supervisor Level

Same as: mfspr rT,987

Move From Floating-Point Exception Cause Regis
(optional)(not on 601, 602, 603[e], 604[e])
Supervisor Level

Same as: mfspr rT,1022

Move From FPSCR "

Move From Primary Hash Addre$602, 603[e] only)
Supervisor Level
Same as: mfspr rT, 978

Move From Secondary Hash Addrg§92, 603[e] only)
Supervisor Level
Same as: mfspr rT, 979

Move From Hardware Implementation Dependen
(601, 602, 603[e], 604[e], 620 only)

Supervisor Level

Same as: mfspr rT,1008

Move From Hardware Implementation Dependen
(601, 602, 603e, 604e only)

Supervisor Level

Same as: mfspr rT,1009

Move From Instruction Address Breakpoint Regis’
(601, 602, 603[e], 604[e], 620 only)

Supervisor Level

Same as: mfspr rT,1010

Move From Instruction Block Address Translatic
Lower n(not on 601)

Supervisor Level

Same as: mfspr rT,529+2n

Move From Instruction Block Address Translatic
Upper n(not on 601)

Supervisor Level

Same as: mfspr rT,528+2n

Move From Interrupt Base Regist@02 only)
Supervisor Level
Same as: mfspr rT,986

3-11

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands

Description

RS/6000
POWER

Mnemonic

mficmp

mfictc

mfimiss

mfl2cr

mfl2sr

mflr

mflt

mfmmcrO

mfmmcrOrd

mfmmcrl

mfmq

mfmsr

mfpir

T

T

T

T

T

T

T

T

T

rT

T

T

T

Move From Instruction TLB Comparé02, 603[e]
only)

Supervisor Level

Same as: mfspr rT,981

Move From Instruction Cache-Throttling Control Reg
ter (750 only)

Supervisor Level

Same as: mfspr rT,1019

Move From Instruction TLB Miss Addreg$02, 603]e]
only)

Supervisor Level

Same as: mfspr rT,980

Move From L2 Control Registg620 only)
Supervisor Level
Same as: mfspr rT,1017

Move From L2 Status Registé820 only)
Supervisor Level
Same as: mfspr rT,1018

Move From Link Register
Same as: mfspr rT,8

Move From Integer Tag Registé802 only)
Supervisor Level
Same as: mfspr rT,1022

Move From Mask Registdi604[e], 620 only)
Supervisor Level
Same as: mfspr rT,952

Move From Mask Register/Read Or(§20 only)
Supervisor Level
Same as: mfspr rT,779

Move From Mask Register (604e only)
Supervisor Level
Same as: mfspr rT,956

Move From Multiply-Quotient Registg601 only)
Same as: mfspr rT,0

Move From Machine State Register
Supervisor Level

Move From Processor ID Register (option601,
604[e], 620 only)

Supervisor Level

Same as: mfspr rT,1023

3-12

PowerPC Instruction Set Summary

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands

Description

RS/6000
POWER

Mnemonic

mfpmcl

mfpmclrd

mfpmc2

mfpmc2rd

mfpmc3

mfpmc4

mfpvr

mfrpa

mfrtcl

mfrtcu

mfsda

mfsdrl

mfsebr

T

T

T

T

T

T

T

T

T

T

T

T

T

Move From Performance Monitor Counter(604[e],
620 only)

Supervisor Level

Same as: mfspr rT,953

Move From Performance Monitor Counter 1/Read O
(620 only)
Same as: mfspr rT,771

Move From Performance Monitor Counter(04[e],
620 only)

Supervisor Level

Same as: mfspr rT,954

Move From Performance Monitor Counter 2/Read O
(620 only)
Same as: mfspr 1,772

Move From Performance Monitor Countef&04e only)
Supervisor Level
Same as: mfspr rT,957

Move From Performance Monitor Countef@04e only)
Supervisor Level
Same as: mfspr rT,958

Move From Processor Version Register
Supervisor Level
Same as: mfspr rT,287

Move From Required Physical Addreé802, 603[e]
only)

Supervisor Level

Same as: mfspr rT,982

Move From Real Time Clock Lowd601 only)
Same as: mfspr rT,5

Move From Real Time Clock Uppdg601 only)
Same as: mfspr rT,4

Move From Sampled Data Address Regigt4[e], 620
only)

Supervisor Level

Same as: mfspr rT,959

Move From Storage Description Register 1
Supervisor Level
Same as: mfspr rT,25

Move From Special Execute Base Regig&02 only)
Supervisor Level
Same as: mfspr rT,990

3-13

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC RS/6000
) Syntax of Operands Description POWER
Mnemonic .
Mnemonic
mfser rT Move From Special Execute Regist&02 only)
Supervisor Level
Same as: mfspr rT,991
mfsia rT Move From Sampled Instruction Address Regis
(604[e], 620 only)
Supervisor Level
Same as: mfspr rT,955
mfsp rT Move From Single-Precision Tag Regis{é02 only)
Supervisor Level
Same as: mfspr rT,1021
mfspr rT,SPR Move From Special Purpose Register "
Supervisor Level if SPR[0]==1
mfsprg rT,n Move From Special Purpose Register General n
Supervisor Level
Same as: mfspr rT,272+n
mfsr rT,SR Move From Segment Register "
Supervisor Level
mfsrin rT,rB Move From Segment Register Indirect mfsri
Supervisor Level
mfsrrO rT Move From Save/Restore Register 0
Supervisor Level
Same as: mfspr rT,26
mfsrrl rT Move From Save/Restore Register 1
Supervisor Level
Same as: mfspr rT,27
mftb rT,TBR Move From Time Base (loweinhot on 601)

Note that 64-bit implementations get all 64 bits with tt
one instruction
Same as: mftb rT,268

mftbl rT Move From Time Base Lowdnot on 601,64-bit)
Same as: mftb rT,268

mftbu rT Move From Time Base Uppénot on 601,64-bit)
Same as: mftb rT,269

mftcr rT Move From Time Control Regist¢602 only)
Supervisor Level
Same as: mfspr rT,984

mfthrm1 rT Move From Thermal 1750 only)
Supervisor Level
Same as : mfspr rT, 1020

3-14

PowerPC Instruction Set Summary

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands

Description

RS/6000
POWER

Mnemonic

mfthrm2

mfthrm3

mfummcrO

mfummcrl

mfupmcl

mfupmc2

mfupmc3

mfupmc4

mfusia

mfxer

mrl[.]

mtasr

mtbatl

mtbatu

T

T

T

T

T

T

T

T

T

T

rT,rA

rS

n,rS

n,rS

Move From Thermal 1750 only)
Supervisor Level
Same as : mfspr rT,1021

Move From Thermal 1750 only)
Supervisor Level
Same as : mfspr rT,1022

Move From User Mask Register(@50 only)
Same as: mfspr rT,936

Move From User Mask Register(Z50 only)
Same as: mfspr rT, 940

Move From User Performance Monitor Counte¢760

only)
Same as: mfspr rT, 937

Move From User Performance Monitor Counte¢750

only)
Same as: mfspr rT, 938

Move From User Performance Monitor Counte¢70

only)
Same as: mfspr 1T, 941

Move From User Performance Monitor Counte¢70

only)
Same as: mfspr rT, 942

Move From User Sampled Instruction Address Regis
(750 only)
Same as: mfspr rT, 939

Move From Fixed-Point Exception Register
Same as: mfsprrT,1

Move Register
Same as: or[.] rT,rArA

Move To Address Space Register
Supervisor Level
Same as: mtspr 280,rS

Move To Block Address Translation Lower(601 only)
Supervisor Level
Same as: mtspr 529+2n,rS

Move To Block Address Translation Uppe(®01 only)
Supervisor Level
Same as: mtspr 528+2n,rS

3-15

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC
Mnemonic

Syntax of Operands

Description

RS/6000
POWER
Mnemonic

mtbuscr

mtcr

mtcrf

mtctr

mtdabr

mtdar

mtdbatl

mtdbatu

mtdec

mtdsisr

mtear

mtesasrr

mtfpecr

mtfsbO[.]

rS

rS

FXM,rS
rS

rS

rS

n,rS

n,rS

rS

rS

rS

rS

rS

BT

Move To Bus Control & Status Registé820 only)
Supervisor Level
Same as: mtspr 1016,rS

Move To Condition Register
Same as: mtcrf Oxff,rS

Move To Condition Register Fields

Move To Count Register
Same as: mtspr 9,rS

Move To Data Address Breakpoint Regist
(601,604[€],620 only)

Supervisor Level

Same as: mtspr 1013,rS

Move To Data Address Register
Supervisor Level
Same as: mtspr 19,rS

Move To Data Block Address Translation LoweKmot
on 601)

Supervisor Level

Same as: mtspr 537+2n,rS

Move To Data Block Address Translation Uppe(not
on 601)

Supervisor Level

Same as: mtspr 536+2n,rS

Move To Decrementer
Supervisor Level
Same as: mtspr 22,rS

Move To Data Storage Interrupt Status Register
Supervisor Level
Same as: mtspr 18,rS

Move To External Access Register (optional)
Supervisor Level
Same as: mtspr 282,rS

Move To Enable Supervisor Access Save and Res
Register(602 only)

Supervisor Level

Same as: mtspr 987, rS

Move To Floating-Point Exception Cause Regis
(optional)(not on 601, 602, 603[e], 604[e])
Supervisor Level

Same as: mtspr 1022,rS

Move To FPSRC Bita 0 "

3-16

PowerPC Instruction Set Summary

Table 3-1. PowerPC Instruction Set (Cont.)

RS/6000
Syntax of Operands Description POWER
Mnemonic

PowerPC
Mnemonic

mtfsbl][.] BT Move To FPSRC Bita 1 "
mtfsfl.] FLM,fB Move To FPSCR Fields "
mtfsfi[.] BFT,U Move To FPSCR Field Immediate "

mthidO rs Move To Hardware Implementation Dependent01,
602, 603[e], 604[e], 620 only)
Supervisor Level
Same as: mtspr 1008,rS

mthidl rs Move to Hardware Implementation Dependent6D1,
602, 603e, 604e only)
Supervisor Level
Same as: mtspr 1009,rS

mtiabr rs Move To Instruction Address Breakpoint Regis(é01,
602, 603[e], 604[e], 620 only)
Supervisor Level
Same as: mtspr 1010,rS

mtibatl n,rS Move To Instruction Block Address Translation Lower
(not on 601)
Supervisor Level
Same as: mtspr 529+2n,rS

mtibatu n,rsS Move to Instruction Block Address Translation Uppel
(not on 601)
Supervisor Level
Same as: mtspr 528+2n,rS

mtibr rs Move To Interrupt Base Registé802 only)
Supervisor Level
Same as: mtspr 986,rS

mtictc rs Move To Instruction Cache-Throttling Control Regist
(750 only)

mtl2sr rs Move To L2 Status Regist¢620 only)
Supervisor Level
Same as: mtspr 1018,rS

mtlr rs Move To Link Register
Same as: mtspr 8,rS

mtlt rs Move To Integer Tag Regist¢602 only)
Supervisor Level
Same as: mfspr 1022,rS

mtmmcr0 rs Move To Mask Register (604[e], 620 only)
Supervisor Level
Same as: mtspr 952,rS

3-17

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

RS/6000
Syntax of Operands Description POWER
Mnemonic

PowerPC
Mnemonic

mtmmcrl rs Move To Mask Register {604e only)
Supervisor Level
Same as: mtspr 956,rS

mtmg rs Move To Multiply Quotient Registef601 only) "
Same as: mtspr 0,rS

mtmsr rs Move To Machine State Register
Supervisor Level

mtpir rs Move To Processor ID Register (optionéhiot on 602,
603[e])
Supervisor Level
Same as: mtspr 1023,rS

mtpmcl rs Move To Performance Monitor Counter(®04[e], 620
only)
Supervisor Level
Same as: mtspr 953,rS

mtpmc2 rs Move To Performance Monitor Counter(804[e], 620
only)
Supervisor Level
Same as: mtspr 954,rS

mtpmc3 rs Move To Performance Monitor Counter(804e only)
Supervisor Level
Same as: mtspr 957,rS

mtpmc4 rs Move To Performance Monitor Counter(@04e only)
Supervisor Level
Same as: mtspr 958,rS

mtrpa rs Move To Required Physical Addre@02, 603[e] only)
Supervisor Level
Same as:mtspr 982,rS

mtrtcl rs Move To Real Time Clock Lowef601 only) "
Same as: mtspr 21,rS

mtrtcu rS Move To Real Time Clock Uppdi601 only) "
Same as: mtspr 20,rS

mtsda rs Move To Sampled Data Address Regis(éd4[e], 620
only)

Supervisor Level
Same as: mtspr 959,rS

mtsdrl rs Move to Storage Description Register 1
Supervisor Level
Same as: mtspr 25,rS

3-18

PowerPC Instruction Set Summary

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC RS/6000
) Syntax of Operands Description POWER
Mnemonic .
Mnemonic
mtsebr rs Move To Special Execute Base Regist@d2 only)
Supervisor Level
Same as: mtspr 990,rS
mtser rs Move To Special Execute Regist@02 only)
Supervisor Level
Same as: mtspr 991,rS
mtsia rs Move To Sampled Instruction Address Regiqig04[e],
620 only)
Supervisor Level
Same as: mtspr 955,rS
mtsp rs Move To Single-Precision Tag Regist&02 only)
Supervisor Level
Same as: mtspr 1021,rS
mtspr SPR,rS Move To Special Purpose Register "
Supervisor Level if SPR[0]==1
mtsprg n,rsS Move to Special Purpose Register General n
Supervisor Level
Same as: mtspr 272+n,rS
mtsr SR,rS Move To Segment Register "
Supervisor Level
mtsrd SR,IS Move Doubleword To Segment Register
Supervisor Level
mtsrdin or rS,rB Move Doubleword To Segment Register Indirect
mtsrind Supervisor Level
mtsrin rS,rB Move To Segment Register Indirect mtsri
Supervisor Level
mtsrrO rs Move to Save/Restore Register 0
Supervisor Level
Same as: mtspr 26,rS
mtsrrl rs Move to Save/Restore Register 1
Supervisor Level
Same as: mtspr 27,rS
mttb rs Move to Time Base (lower{not on 601)
Supervisor Level
Same as: mtspr 284,rS
mttbl rs Move to Time Base Lowefnot on 601,64-bit)

Supervisor Level
Same as: mtspr 284,rS

3-19

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC RS/6000
: Syntax of Operands Description POWER
Mnemonic .
Mnemonic
mttbu rS Move to Time Base Uppdnot on 601,64-bit)
Supervisor Level
Same as: mtspr 285,rS
mttcr rs Move To Time Control Registg602 only)
Supervisor Level
Same as: mtspr 984,rS
mtthrm1 rs Move To Thermal 1750 only)
Supervisor Level
Same as: mtspr 1020,rS
mtthrm2 rs Move To Thermal 1750 only)
Supervisor Level
Same as: mtspr 1021,rS
mtthrm3 rs Move To Thermal 1750 only)
Supervisor Level
Same as: mtspr 1022,rS
mtxer rS Move To Fixed-Point Exception Register
Same as: mtspr 1,rS
mulfo][.] ITrA B Multiply (601 only) "
mulhd][.] rT,rA,rB Multiply High Doubleword
mulhdul.] rT,rA,rB Multiply High Doubleword Unsigned
mulhwl.] rT,rA,rB Multiply High Word
mulhwul.] rT,rA,rB Multiply High Word Unsigned
mulld[o][.] rT,rA,rB Multiply Low Doubleword
mulli rT,rA,Sl Multiply Low Immediate muli
mullw([o][.] rT,rA,rB Multiply Low Word muls[o][.]
nabsio][.] ImrA Negative Absolute Valués01 only) "
nandl[.] rA,rS,rB Not AND "
neg[o][.] rT,rA Negate "
nop - No Operation "
Same as: ori r0,r0,0
no-op - No Operation nop
Same as: ori r0,r0,0
not[.] rA,rS NOT
Same as: nor[.] rA,rS,rS
norl[.] rA,rS,rB Not OR "
or[.] rA,rS,rB OR "

3-20

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC Instruction Set Summary

PowerPC RS/6000
) Syntax of Operands Description POWER
Mnemonic .
Mnemonic
orcl.] rA,rS,rB OR with Complement "
ori rA,rS,Ul OR Immediate oril
oris rA,rS,Ul OR Immediate Shifted oriu
rfi - Return From Interrupt "
Supervisor Level
ridcl[.] rA,rS,rB,MB Rotate Left Doubleword then Clear Left
rider[.] rA,rS,rB,ME Rotate Left Doubleword then Clear Right
ridic].] rA,rS,SH,MB Rotate Left Doubleword Immediate then Clear
ridicl[.] rA,rS,SH,MB Rotate Left Doubleword Immediate then Clear Left
ridicr[.] rA,rS,SH,ME Rotate Left Doubleword Immediate then Clear Right
ridimil.] rA,rS,SH,MB Rotate Left Doubleword Immediate then Mask Insert
rimil.] rA1S,rB,MB[,ME] Rotate Left Then Mask Insef601 only) "
riwimif.] rA,rS,SH,MB[,ME] Rotate Left Word Immediate then Mask Insert rlimi[.]
If ME is omitted, MB is the mask rather than the begi
ning bit of the mask
riwinm[.] rA,rS,SH,MB[,ME] Rotate Left Word Immediate then AND with Mask rlinm[.]
If ME is omitted, MB is the mask rather than the
beginning bit of the mask
riwnm[.] rA,rS,rB,MB[,ME] Rotate Left Word then AND with Mask rinml[.]
If ME is omitted, MB is the mask rather than the
beginning bit of the mask
rotld[.] rA,rS,rB Rotate Left Doubleword
Same as: rldcl rA,rS,rB,0
rotldi[.] rA,rS,n Rotate Left Doubleword Immediate
Same as rldicl rA,rS,n,0
rotiwl.] rA,rS,rB Rotate Left Word
Same as: rlwnm[.] rA,rS,rB,0,31
rotiwi[.] rA,rS,n Rotate Left Word Immediate
Same as: rlwinm[.] rA,rS,n,0,31
rotrdi[.] rA,rS,n Rotate Right Doubleword Immediate
Same as: rldicl rA,rS,64-n,0
rotrwil.] rA,rS,n Rotate Right Word Immediate
Same as: rlwinm[.] rA,rS,32-n,0,31
rrib[.] rAIS,1B Rotate Right And Insert Bi(601 only) "
sc - System Call svca

3-21

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC . RS/6000
Mnemonic Syntax of Operands Description POWER
Mnemonic
slbia - SLB Invalidate All (optional)
Supervisor Level
slbie rB SLB Invalidate Entry (optional)
Supervisor Level
slbiex rB SLB Invalidate Entry by Index (optiona(jpot on 620)
Supervisor Level
sld[.] rA,rS,rB Shift Left Doubleword
sldi[.] rA,rS,n Shift Left Doubleword Immediate
Same as rldicl rS,rS,n,63-n
sle[] rAIS,1B Shift Left Extended601 only) "
sleq[] rAIS,1B Shift Left Extended with MQ601 only) "
sligl.] rAIS,SH Shift Left Immediate with MQ(601 only) "
slligl] rAIS,SH Shift Left Long Immediate with M@601 only) "
slig[.] rAIS,1B Shift Left Long with MQ (601 only) "
slq[.] rA1S,1B Shift Left with MQ (601 only) "
slwl[.] rA,rS,rB Shift Left Word sl[.]
slwil.] rA,rS,n Shift Left Word Immediate sli[.]
Same as: rlwinm[.] rA,rS,n,0,31-n
srad[.] rA,rS,rB Shift Right Algebraic Doubleword
sradi[.] rA,rS,SH Shift Right Algebraic Doubleword Immediate
sraiq[.] rAIS,SH Shift Right Algebraic Immediate With M@601 only) "
sraq[] rAIS,1B Shift Right Algebraic With MQ(601 only) "
srawl[.] rA,rS,rB Shift Right Algebraic Word sral.]
srawil.] rA,rS,SH Shift Right Algebraic Word Immediate srail.]
srd[.] rA,rS,rB Shift Right Doubleword
srdi[.] rA,rS,n Shift Right Doubleword Immediate
Same as: rldicl rS,rS,64-n,n
sre[] rAIS,1B Shift Right Extended601 only) "
srea[] rAIS,1B Shift Right Extended Algebrai(601 only) "
sreq[] rAIS,1B Shift Right Extended With M601 only) "
sriql.] rAIS,SH Shift Right Immediate With MQ601 only) "
srliq[.] rAIS,SH Shift Right Long Immediate With M@601 only) "
srlql] rAIS,1B Shift Right Long With MQ(601 only) "
srq[] rA,rS,1B "

Shift Right With MQ (601 only)

3-22

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC Instruction Set Summary

PowerPC . RS/6000
Mnemonic Syntax of Operands Description POWER
Mnemonic
srw[.] rA,rS,rB Shift Right Word sr[.]
srwil.] rA,rS,n Shift Right Word Immediate sri[.]
Same as: rlwinm rA,rS,32-n,n,31
stb[u] rS,D(A) Store Byte "
stb[u]x rSrA,rB Store Byte Indexed "
std[u] rS,D(A) Store Doubleword
std[u]x rSrA,rB Store Doubleword Indexed
stdcx. rSrA,rB Store Doubleword Conditional Indexed
stfd[u] fS,D(rA) Store Floating-Point Doubl@ot on 602) "
stfd[u]x fSrA,rB Store Floating-Point Double Indexédot on 602) "
stfiwx fSrA,rB Store Floating-Point as Integer Word Indexed (Optior
(not on 601)
stfs[u] fS,D(rA) Store Floating-Point Single "
stfs[u]x fSrA,rB Store Floating-Point Single Indexed "
sth[u] rS,D(A) Store Halfword "
sth[u]x rSrA,rB Store Halfword Indexed "
sthbrx rSrA,rB Store Halfword Byte-Reverse Indexed "
stmw rS,D(A) Store Multiple Word stm
stswi rSrA,NB Store String Word Immediat@ot on 602) stsi
stswx rSrA,rB Store String Word Indexethot on 602) stsx
stw[u] rS,D(A) Store Word st[u]
stwlu]x rSrA,rB Store Word Indexed st[u]x
stwbrx rSrA,rB Store Word Byte-Reverse Indexed stbrx
stwcx. rSrA,rB Store Word Conditional Indexed
sub[o][.] rT,rA,rB Subtract
Same as: subf rT,rB,rA
subc[o][.] rT,rA,rB Subtract Carrying
Same as: subfc rT,rB,rA
subf[o][.] rT,rA,rB Subtract From
subfc[o][.] rT,rA,rB Subtract From Carrying sflo][.]
subfe[o][.] rT,rA,rB Subtract From Extended sfe[o][.]
subfic rT,rA,Sl Subtract From Immediate Carrying sfi
subfme[o][.] rT,rA Subtract From Minus One Extended sfmel[o][.]

3-23

Compilation Systems Volume 1 (Tools)

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC RS/6000
: Syntax of Operands Description POWER
Mnemonic .
Mnemonic
subfze[o][.] rT,rA Subtract From Zero Extended sfze[0][.]
subi rT,rA,SI Subtract Immediate
Same as: addi IT,rA,-Sl
subicl.] rT,rA,Sl Subtract Immediate Carrying
Same as: addic[.] rT,rA,-SI
subis rT,rA,SI Subtract Immediate Shifted
Same as: addis rT,rA,-SI
sync - Synchronize dcs
td TO,rA,rB Trap Double
tdi TO,rA,SI Trap Double Immediate
tdTO rA,rB Trap Double If Condition
Same as: td TO,rA,rB
tdTOi rA,Sl Trap Double Immediate If Condition
Same as: tdi TO,rA,SI
tibia - TLB Invalidate All (optional) 6ot on 601, 602, 603][e],
604[e], 620
Supervisor Level
tibie rB TLB Invalidate Entry (optional) tibi
Supervisor Level
tibiex rB TLB Invalidate Entry by Index (optional)npot on 601,
602, 603[e], 604[e], 620
Supervisor Level
tibld rB TLB Load Data Entry(602, 603[e] only)
Supervisor Level
tibli rB TLB Load Instruction Entry(602, 603[e] only)
Supervisor Level
tibsync - TLB Synchronize (optionaljnot on 601)
Supervisor Level
trap - Trap Unconditionally
Same as: tw 31,0,0
tw TO,rA,rB Trap Word t
twi TO,rA,SI Trap Word Immediate ti
twTO rA,rB Trap Word If Condition tTO
Same as: tw TO,rA,rB
twTOi rA,Sl Trap Word Immediate If Condition tTOi

Same as: twi TO,rA,SlI

3-24

PowerPC Instruction Set Summary

Table 3-1. PowerPC Instruction Set (Cont.)

PowerPC RS/6000
) Syntax of Operands Description POWER
Mnemonic .
Mnemonic
xor[.] rA,rS,rB XOR "
Xori rA,rS,Ul XOR Immediate xoril
XOris rA,rS,Ul XOR Immediate Shifted Xoriu

* A '+ or *-’ can be appended to conditional branches to indicate predicted branch taken

or predicted branch not taken, respectively. A lower order bit of BO being zero means the
default prediction; a one means reverse the default prediction. The defaults are: forward
branches are predicted not taken, backwards branches are predicted taken, and jumps
through link or count register are predicted not taken.

Condition Codes

Table 3-2. Condition Codes (CC)

CcC Meaning BO Bl CcC Meaning BO Bl
eq equal 8 bdnzCC 2+4*CRF | ne not equal 0 bdnzCC 2+4*CRF
10 bdzCC 2 bdzCC
12 bCC 4 bCC
ot greater than See eq 1+4*CRF | le less than or See ne 1+4*CRF
equal
ng not greater See ne 1+4*CRF
than
It less than See eq 0+4*CRF | ge greater than or See ne 0+4*CRF
equal
nl notlessthan See ne 0+4*CRF
SO summary See eq 3+4*CRF | ns not summary See ne 3+4*CRF
overflow overflow
un unordered See eq 3+4*CRF | nu not unordered See ne 3+4*CRF
z zero See eq See eq nz not zero See ne See ne

For example, the following two instructions are equivalent:

beqg crf2,L1
bc 12,10,L1

3-25

Compilation Systems Volume 1 (Tools)

Trap Operand

In the following table, * means unsigned comparison.

Table 3-3. Trap Operand (TO)

TO Meaning Operand | TO Meaning Operand
eq equal 4 ne not equal 24

ge greater than or equal 12 lge logical greater than or equal (*) 5

ot greater than 8 Igt logical greater than (*) 1

le less than or equal 20 lle logical less than or equal (*) 6

It less than 16 It logical less than (*) 2

ng not greater than 20 Ing logical not greater than (*) 6

nl not less than 12 Inl logical not less than (*) 5

For example, the following two instructions are equivalent:

tweq r3,r4

tw 4,r3,r4

Operand Abbreviations

3-26

Table 3-4. Operand Abbreviations

Abbre-
viation

Description

BA
BB
BD
BFT
BFA
Bl
BO
BT
crfT
crfA

bit number in CR: 0-31

bit number in CR: 0-31

14-bit branch displacement: label
FPSCR field number, target: 0-7

FPSCR field number, source: 0-7

bit number in CR: 0-31

conditional branch options: 0-31

bit number in CR or FPSCR, target: 0-31
condition register field target: crfO-crf7
condition register field source: crfO-crf7

16-bit offset: -32768-32767

PowerPC Instruction Set Summary

Table 3-4. Operand Abbreviations (Cont.)

Abbre- Description

viation

FLM mask of FPSCR fields: 1-255

fA floating-point register: f0-f31

B floating-point register: f0-f31

fC floating-point register: f0-f31

fS floating-point register: f0-f31

fT floating-point register, target: f0-f31
FXM mask of CR fields: 1-255

L precision of fixed-point compare: 0-1
LI 24-bit displacement: label

MB bit number of first bit of mask: 0-31
ME bit number of last bit of mask: 0-31
NB byte count: 0-31 (0 means 32)

rA general register (If italic, then rA=0 means zero): r0-r31
rB general register: r0-r31

rs general register: r0-r31

rT general register, target: r0-r31

SH shift amount: 0-31

Sl signed 16-bit integer: -32768-32767
SPR special purpose register: 0-1023
SR segment register: 0-15

TBR time base register: 268-269

TO trap conditions: 0-31

U immediate value: 0-15

ul unsigned 16-bit integer: 0-65535

3-27

Compilation Systems Volume 1 (Tools)

Special-Purpose Registers

3-28

Table 3-5. Special-Purpose Registers

Number Name Description
0 MQ Multiply-Quotient Registe(601 only)
1 XER Fixed-Point Exception Register
4 RTCU Real Time Clock Upper (read only$01 only)
5 RTCL Real Time Clock Lower (read onl{$01 only)
6 DEC Decremente(601 only)
This is identical to Special Register 22.
8 LR Link Register
9 CTR Count Register
18 DSISR Data Storage Interrupt Status Register
19 DAR Data Address Register
20 RTCU Real Time Clock Upper (write only()601 only)
21 RTCL Real Time Clock Lower (write only{601 only)
22 DEC Decrementer
25 SDR1 Storage Description Register 1
26 SRRO Save/Restore Register 0
27 SRR1 Save/Restore Register 1
272 SPRGO Special Purpose Register General 0
273 SPRG1 Special Purpose Register General 1
274 SPRG2 Special Purpose Register General 2
275 SPRG3 Special Purpose Register General 3
280 ASR Address Space Registfg20 only)
282 EAR External Access Register (optionéhjot on 602)
284 TBL Time Base Lower (dest onlyhot on 601)
285 TBU Time Base Upper (dest onlyhot on 601,64-bit)
287 PVR Processor Version Register (src only)
528 IBATOU Instruction Block Address Translation 0 Upper
529 IBATOL Instruction Block Address Translation O Lower
530 IBAT1U Instruction Block Address Translation 1 Upper
531 IBAT1L Instruction Block Address Translation 1 Lower
532 IBAT2U Instruction Block Address Translation 2 Upper
533 IBAT2L Instruction Block Address Translation 2 Lower

PowerPC Instruction Set Summary

Table 3-5. Special-Purpose Registers (Cont.)

Number Name Description
534 IBAT3U Instruction Block Address Translation 3 Upper
535 IBAT3L Instruction Block Address Translation 3 Lower
536 DBATOU Data Block Address Translation 0 Upp@iot on 601)
537 DBATOL Data Block Address Translation O Lowgrot on 601)
538 DBAT1U Data Block Address Translation 1 Uppgrot on 601)
539 DBAT1L Data Block Address Translation 1 Lowgrot on 601)
540 DBAT2U Data Block Address Translation 2 Uppgrot on 601)
541 DBAT2L Data Block Address Translation 2 Lowgrot on 601)
542 DBAT3U Data Block Address Translation 3 Uppgrot on 601)
543 DBAT3L Data Block Address Translation 4 Lowgrot on 601)
771 PMC1/RD Performance Monitor Counter 1/Read O(820 only)
772 PMC2/RD Performance Monitor Counter 2/Read O(820 only)
779 MMCRO/RD Mask Register/Read Onl20 only)
936 UMMCRO User Mask Register 0750 only)
937 UPMC1 Performance Monitor Counter(Z50 only)
938 UPMC2 Performance Monitor Counter(Z50 only)
939 USIA Sampled Instruction Address Regis(@60 only)
940 UMMCR1 Mask Register 1750 only)
941 UPMC3 Performance Monitor Counter(350 only)
942 UPMC4 Performance Monitor Counter(@50 only)
952 MMCRO Mask Register {604[e], 620, 750 only)
953 PMC1 Performance Monitor Counter(804[e], 620, 750 only)
954 PMC2 Performance Monitor Counter(804[e], 620, 750 only)
955 SIA Sampled Instruction Address Regis{@&04[e], 620, 750

only)

956 MMCR1 Mask Register 1604e, 750 only)
957 PMC3 Performance Monitor Counter(804e, 750 only)
958 PMC4 Performance Monitor Counter(&04e, 750 only)
959 SDA Sampled Data Address Regis{é04[e], 620 only)
976 DMISS Data TLB Miss Address (src only02, 603[e] only)
977 DCMP Data TLB Compare (src onlyp02, 603[e] only)
978 HASH1 Primary Hash Address (src onl$02, 603[e] only)
979 HASH2 Secondary Hash Address (src on{gp2, 603[e] only)

3-29

Compilation Systems Volume 1 (Tools)

Table 3-5. Special-Purpose Registers (Cont.)

Number Name Description
980 IMISS Instruction TLB Miss Address (src only$02, 603[e] only)
981 ICMP Instruction TLB Compare (src only{502, 603[e] only)
982 RPA Required Physical Addre$602, 603[e] only)
984 TCR Timer Control Registe(602 only)
986 IBR Interrupt Base Regist¢602 only)
987 ESASRR ESA Save/Restore Regist@02 only)
990 SEBR Special Execute Base Regis{602 on ly)
991 SER Special Execute Registé802 only)
1008 HIDO Hardware Implementation Dependent{®01, 603[e],
604[e], 620, 750 only)
1009 HID1 Hardware Implementation Dependen{d01, 602, 603e,
604e, 750 only)
1010 IABR Instruction Address Breakpoint Regis{@&01, 602, 603[e],
604[e], 620, 750 only)
1013 DABR Data Address Breakpoint Registé01, 604[e], 620, 750
only)
1016 BUSCSR Bus Control & Status Regist¢620 only)
1017 L2CR L2 Control Registe(620, 750 only)
1018 L2SR L2 Status Registeg620 only)
1019 ICTC Instruction Cache-Throttling Control Regis{@50 only)
1020 THRM1 Thermal 1(750 only)
1021 SP Single-Precision Tag Registé802 only)
1021 THRMZ2 Thermal 2(750 only)
1022 LT Integer Tag Registg602 only)
1022 THRM3 Thermal 3(750 only)
1022 FPECR Floating-Point Exception Cause Register (optiorfab)t on
601, 602, 603[e], 604[e])
1023 PIR Processor ID Register (optionghot on 602, 603[e], 750)

3-30

PowerPC Instruction Set Summary

Time Base Registers

Table 3-6. Time Base Registers

Number Name Description
268 TBL Time Basg(not on 601)
269 TBU Time Base Uppe(not on 601,64-bit)

Implementation-Specific and Optional Instructions

Table 3-7. Implementation-Specific and Optional Instructions

Mnemonic 601 602 603[e] 604[e] 620 750

abs[o][] 0
cles 0
clrisdi[.]

clrldi[.]

clrrdi[.]

cmpd

cmpdi

cmpld

cmpldi

cntlzd[.]

divio][] 0
divd[o][.]
divdu[o][.]

divsfo][]

A A A I N

doz[o][.]
dozi

dsa O
eciwx

€cowx

esa u
extldi[.]

extrdi[.]

3-31

Compilation Systems Volume 1 (Tools)

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e] 604[e] 620 750

extswl.]
fadd[.] 0 0 0
fcfid[.]
fctid[.]
fetidz[.]
fdiv[.]
fmadd[.]
fmsubl.]
fmul[.]
fnmadd[.]
fnmsubl.]
fres[.] O
frsp[.]
frsqrte[.]
fsell.]
fsqrt[s][.]
fsubl.] O O O
insrdi[.]
[d[u]
Id[u][x]
Idarx
Ifd[u]
Ifd[u]x

Iscbx[.]

O O o o o o o
O oo oo0oo0oo0oood
O oo oo0oo0oo0oood
O oo oo0oo0oo0oood

o o0 00000000000 00000 oo oo g

Iswi

O o o o o

Iswx

lwa

O o o o

lwax

maskgl.]
maskir[.]
mfasr O
mfbatl

mfbatu

3-32

PowerPC Instruction Set Summary

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e]

604[e] 620 750

mfbuscr

mfdabr O
mfdbatl

mfdbatu

mfdcmp

O o o o

mfdmiss

O o o o o

mfear
mfesasrr
mffpecr
mfhash1l
mfhash2
mfhid0
mfhidl
mfiabr
mfibatl
mfibatu
mfibr O
mficmp
mfimiss
mfl2cr
mfl2sr
mflt O
mfmmcrO
mfmmcrOrd
mfmmcrl

mfmg

mfpir O
mfpmcl

mfpmclrd

mfpmc2

mfpmc2rd

mfpmc3

mfpmc4

O o oo oo o
(o2
o
w
D

O o o o

O
O o o o o

604e O

O o o o o

604e
604e

3-33

Compilation Systems Volume 1 (Tools)

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e] 604[e] 620 750

mfrpa O O

mfrtcl

mfrtcu

mfsda O O

mfsebr

mfser

mfsia O O O
mfsp
mftb
mftbl
mftbu

O o o o o

mftcr
mtasr u
mtbatl

mtbatu

mtbuscr

mtdabr O
mtdbatl

mtdbatu

O o o o
O o o o o
O o o o

mtear u

mtesasrr u
mtfpecr

mthid0 O
mthidl

O

mtiabr

mtibatl

O O
O O
O O
O o o o o

mtibatu

O o o o o o

mtibr
mtl2cr
mtl2sr
mtlt O

mtmmcrO O O

mtmmcrl 604e

3-34

PowerPC Instruction Set Summary

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic

601

602

603[e]

604[e] 620 750

mtmq
mtpir
mtpmcl
mtpmc2
mtpmc3
mtpmc4
mtrpa
mtrtcl

mtrtcu

mtsda
mtsebr
mtser
mtsia
mtsp
mtsrd

mtsrdin or
mtsrind

mttb
mttbl
mttbu
mttcr
mulfo][.]
mulhd][.]
mulhdul.]
mulld[o][.]
nabso][.]
ridcl[.]
rider[.]
ridic].]
ridicl[.]
ridicr[.]
ridimi[.]

rimil.]

g
g

O o o o

O o o o

O o o o o o

3-35

Compilation Systems Volume 1 (Tools)

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e] 604[e] 620 750

rotld[.]
rotldi[.]
rotrdi[.]
rribl.] 0
slbia
slbie
slbiex
sld[.]
sldi[.]
sle[]
sleqf]
sliql.]
sllig[]

sliql.]

O o o o o o

slq[.]
srad[.]
sradi[.]
sraiq[.]
sraq[]
srd[.]
srdi[.]
srel.]
sreal]
sreq[]
sriql]
srliq[.]

sriq[.]

O o oo oo o

srq[]
std[u]
std[u]x
stdcx.
stfd[u]
stfd[u]x O

O o o o o

3-36

PowerPC Instruction Set Summary

Table 3-7. Implementation-Specific and Optional Instructions (Cont.)

Mnemonic 601 602 603[e] 604[e] 620 750

stfiwx O O O
stswi O O O
stswx g g g
td

tdi

tdTO

tdTOi

tlbia

tibie u u u u u u
tibiex

tibld

tibli

tibsync O O O O O

O o oo oo o

The Concurrent C compiler provides a number of intrinsic functions to access PowerPC
instructions that are not normally generated by C code. See the Concurrent C Reference
Manual for details on enabling intrinsics. The following table gives pseudo-prototypes and
short descriptions of the provided intrinsics.

The user might infer the existence of some additional intrinsics. However, these intrinsics
are not guaranteed to behave as expected and should not be used.

The compiler will generate warnings for any intrinsic inconsistent with the
Qtarget= architectureoption.

Table 3-8. Compiler Intrinsics

Intrinsic Description

FRT=(double) __ compose_double (Generate a double-precision

int uw,int Iw) floating-point constant given
the bit patterns of the two
words

FRT=(float) __ compose_float (int w) Generate a single-precision

floating-point constant given
the bit pattern of the word

__get fpscr (double *RA) Do anmffs and storeitin a
memory location pointed to by
RA without modifying any
floating point registers

RT=(unsigned int) __get_ thread_reg () Get value of the thread register

3-37

Compilation Systems Volume 1 (Tools)

3-38

Table 3-8. Compiler Intrinsics (Cont.)

Intrinsic Description
RT=(unsigned int) __inst_clcs (int RA) clecs RA
RA=(int) __inst_cntlzw (int RS) cntlzw RA,RS
__inst_dcbf (void *RA,int RB) dcbf RA,RB
__inst_dcbi (void *RA,int RB) dcbi RARB
__inst_dcbst (void *RA,int RB) dcbst RA,RB
__inst_dcbt (void *RA,int RB) dcbt RA,RB
__inst_dcbtst (void *RAint RB) dcbtst RA,RB
__inst_dcbz (void *RA,int RB) dcbz RARB
__inst_dsa (void) dsa

RT=(int) __inst_eciwx (int *RA,int RB)
__inst_ecowx (int RS,int *RA,int RB)
__inst_eieio (void)

__inst_esa (void)

FRT=(float) __inst_fres (double FRB)

FRT=(double) _ inst_frsqrte (
double FRB)

FRT=(double) _ inst fsel (double FRA,

double FRC, double FRB)
__inst_icbi (void *RAint RB)
__inst_isync (void)

RT=(short) __inst lhbrx (short *RA,
int RB)

RT=(int) __inst lwarx (int *RA,int RB)
RT=(int) __inst Iwbrx (int *RA,int RB)
RT=(int) __inst maskg (int RA,int RB)

RT=(int) __inst_maskir (int RT,int RA,
int RB)

FRT=(double) _ inst mffs (void)
RT=(int) __inst mfmsr (void)

RT=(int) __inst_ mfspr (int spr)

RT=(int) __inst_ mfsr (int sr)

eciwx RT,RA,RB
ecowx RS,RARB
eieio

esa

fres FRT,FRB

frsqrte FRT,FRB

fsel FRT,FRA,FRC,FRB

ichi RA,RB
isync

Ihbrx RT,RA,RB

lwarx RT,RA,RB
lwbrx RT,RA,RB
maskg RT,RA,RB
maskir RT,RA,RB

mffs FRT
mfmsr RT

mfspr RT,spr

spr must be an integer
constant. Extended mnemonics
are generated for appropriate
register numbers.

mfsr RT,sr
sr must be an integer constant

Table 3-8. Compiler Intrinsics (Cont.)

PowerPC Instruction Set Summary

Intrinsic Description
RT=(int) __inst_mfsrin (void *RB) mfsrin RT,RB
RT=(int) __inst_mftbl (void) mftb RT,268
RT=(int) __inst mftou (void) mftb RT,269
__inst_mtfsb0 (int bit) mtfsb0 bit

__inst_mtfsbl (int bit)

__inst_mtfsf (int mask,double FRB)

__inst_mtfsfi (int n,unsigned u)

__inst_mtmsr (int RS)

__inst_mtspr (int spr,int RS)

__inst_mtsr (int sr,int RS)

__inst_mtsrin (int RS,void *RB)

__inst_ nop ()
__inst_rfi 0
_inst. sc ()

__inst_sthbrx (short RS,void *RA,
int RB)

__inst_stwbrx (int RS,void *RA,
int RB)

RT=(int) __inst_stwcx_ (int RS,
void *RA,int RB)

__inst_sync (void)
__inst_tlbia (void)
__inst_tlbie (void *RB)
__inst_tlbld (void *RB)
__inst_tlbli (void *RB)

bit must be an integer
constant

mtfsbl bit
bit must be an integer
constant

mtfsf mask,FRB
mask must be an integer
constant

mtfsfi n,u
n andu must be integer
constants

mtmsr RS

mtspr spr,RS

spr must be an integer
constant. Extended mnemonics
are generated for appropriate
register numbers.

mtsr sr,RS
sr must be an integer constant

mtsrin RS,RB
ori r0,r0,0
rfi

sc

sthbrx RS,RA,RB

stwbrx RS,RA,RB

stwex. RS,RA,RB
mfcr RT
riwinm RT,RT,3,31,31

sync
tibia

tibie RB
tibld RB
ribli RB

3-39

Compilation Systems Volume 1 (Tools)

3-40

Table 3-8. Compiler Intrinsics (Cont.)

Intrinsic

Description

__inst_tlbsync (void)
__inst_tw (int to,int RA, int RB)
__inst_twi (int to,int RA,int si)

RT=(unsigned int)
__ref_double_first_half (double FA)

RT=(unsigned int)
__ref_double_second_half (double FA)

RT=(unsigned int)
__ref _float_as_uint (float FA)

RT=(unsigned_int) _rot (

unsigned int RA,int RB)
__set fpscr (double *RA)

__set thread_reg (unsigned int RA)

RT=(int) abs(int RA)

FT=(float or double)
fabs ((float or double)FB)

FT=(double) pow(double FA, double FB)

FT=(float) = powf (float FA, float FB)
FT=(double) sqgrt (double FB)

FT=(single) sqrtf (single FB)

tibsync
tw to,RA,RB
twi to,RA,si

Obtain the bit pattern of the
first word of a double-precision
floating-point value as an
integer

Obtain the bit pattern of the
second word of a
double-precision float-
ing-point value as an integer

Obtain the bit pattern of a
single-precision floating-point
value as an integer

Rotate RA by RB bits

Do a mtfsf Oxff from a
memory location pointed to by
RA without modifying any
floating point registers.

Set the thread register to a
value

abs RT,RA
Generate an functionally
equivalent code sequence on

implementations without an
abs instruction.

fabs FT,RB

Generate code to raise to a
power

Sngle-precision version gfow
fsqrt FT,FB
Generate function call for

implementations without an
fsqrt instruction.

fsqrts FT,FB
Generate function call for

implementations without an
fsgrts instruction.

4
Link Editor and Linking

INtrOdUCHION . . .o e 4-1
Using the Link Editor 4-1
Basics of LINKING.o oo 4-8
Default Arrangement 4-9
Linking with Standard Libraries. L. 4-10
Creating and Linking with Archive and Shared Object Libraries 4-11
Specifying Directories to Be Searched by the Link Editor 4-13
Specifying Directories to Be Searched by the Dynamic Linker. 4-15
Checking for Run-Time Compatibility. 4-16
Dynamic Linking Programming Interface 4-17
Implementation. 4-17
Guidelines for Building Shared Objects. 4-18

Multiply-Defined Symbols. 4-22
Mapfiles 4-23

Using the Mapfile Option 4-24

Mapfile Structure and Syntax 4-24
Segment Declarations i 4-25

Mapping Directives 4-27

Extended Mapping Directives i 4-28
Size-Symbol Declarations i 4-28

Mapping Example 4-29

Mapfile Option Defaults 4-30

Internal Map Structure 4-31

Error MeSSages. . .. oo vt 4-34

Quick-Reference GUIdeo e 4-35

Compilation Systems Volume 1 (Tools)

Introduction

Using the Link

Link Editor and Linking

4
Link Editor and Linking

Linkingis the process of combining object files to produce an executable or another object
file. Linking may be done statically or dynamically.

Theld command is the static linker, often referred to aslthk editor. The inputs tdd

are relocatable object files produced by a compiler, by the assembler, or by a previous
invocation of the link editor. The link editor combines these object files to form either a
relocatable or an absolute (in other words, executable) object file.

There is no system command which performs dynamic linking. Dynamic linking is
performed by user code during the execution of a program.

The link editor supports a command language that allows you to contrdd th@ocess

with great flexibility and precision. Most users, however, do not require the degree of flex-
ibility provided by the command language. In fact, it is usually best to allow the link editor
to produce its own layout and perform its own allocation of program resources. The
detailed command language supports the ability to:

¢ Specify the memory configuration of the program
¢ Combine object file sections in particular fashions
¢ Bind the files to specific addresses or portions of memory

¢ Define or redefine global symbols at link edit time

Editor

The link editor is invoked as follows.
Id [optiong files

Files passed to the link editor are object files, libraries containing object files, or text
source files containingd directives. The link editor uses the “magic number” (the first
two bytes of the file) to determine the file type.

The following options are recognized Hiy .

-a In static mode only, produce an executable object file; give errors
for undefined references. This is the default behavior for static
mode.-a may not be used with the option.

4-1

Compilation Systems Volume 1 (Tools)

-b

-dfyln }
-e epsym
-h name
- x

-m

-0 outfile
-r

-S

4-2

In dynamic mode only, when creating an executable, do not do
special processing for relocations that reference symbols in shared
objects. Without theb option, the link editor will create special
position-independent relocations for references to functions
defined in shared objects and will arrange for data objects defined
in shared objects to be copied into the memory image of the
executable by the dynamic linker at run time. With the option,

the output code may be more efficient, but it will be less sharable.

When -dy , the default (ifSTATIC_LINK is not set) is specified,
use dynamic linking; wherdn is specified, use static linking.

Set the default entry point address for the output file to be that of
the symbolepsym

In dynamic mode only, when building a shared object, record
namein the object’s dynamic sectiomamewill be recorded in
executables that are linked with this object rather than the object’s
system file name. Accordingljpamewill be used by the dynamic
linker as the name of the shared object to search for at run time.

Search alibrarjyib xso orlib xa.lib xso andlib xa are

the conventional names for shared object and archive libraries,
respectively. In dynamic mode, unless tiBstatic ~ option isin
effect,|d searches each directory specified in the library search
path for a filelib x.so orlib x.a . The directory search stops at
the first directory containing eitheld chooses the file ending in
.so if -I x expands to two files whose names are of the form
lib xso andlib xa .Ifnolib xso isfound, thedd accepts

lib x.a . In static mode, or when théBstatic option is in
effect,Id selects only the file ending i . A library is searched
when its name is encountered, so the placementl ofis
significant. By default, libraries are located/lib , /usr/lib ,
and/usr/ccsl/lib

Produce a map or listing of the input/output sections on the
standard output.

Produce an output object file by the naméfile. The name of the
default object file isa.out .

Combine relocatable object files to produce one relocatable object
file. Id will not complain about unresolved references. This
option cannot be used in dynamic mode or wigh. Relocation
entries are retained in the output file so that it can become an input
file in a subsequerd run.

Strip symbolic information from the output file. Debug and line
information and their associated relocation entries will be
removed. Except for relocatable files or shared objects, the
symbol table and string table sections will also be removed from
the output object file. Relocation entries will not be saved when
this option is used.

-Uu symname

-zdefs

-z{lowzeroes|lowzeros

-znodefs

-ztext

-Bbind_now

-B{dynamic|static

Link Editor and Linking

Turn off the warning about multiply-defined symbols that are not
the same size.

Entersymnames an undefined symbol in the symbol table. This
is useful for loading entirely from an archive library, since initially
the symbol table is empty and an unresolved reference is needed
to force the loading of the first routine. The placement of this
option on the command line is significant; it must be placed
before the library that will define the symbol.

Same asV.

Do not preserve local symbols with tyd®@TT_NOTYPE This
option saves some space in the output file.

Produce a pseudo-cross reference listing on the standard output.
Each file and archive library is examined, and all external symbols
are listed along with the names of the object files which define
and/or reference the symbols. An executable output file is not
produced.

Force a fatal error if any undefined symbols remain at the end of
the link. This is the default when building an executable. It is also

useful when building a shared object to assure that the object is
self-contained, that is, that all its symbolic references are resolved
internally.

}

Support dereferencing of null pointers. The link editor creates a
segment at addresses 0 (inclusive) through 0x1000 (exclusive),
consisting entirely of read-only zeroes.

Allow undefined symbols. This is the default when building a
shared object. It may be used when building an executable in
dynamic mode and linking with a shared object that has
unresolved references in routines not used by that executable. This
option should be used with caution.

In dynamic mode only, force a fatal error if any relocations against
non-writable, allocatable sections remain.

In dynamic mode only, this option addsDA _BIND_NOWentry

to thedynamicsection of the output file. This entry instructs the
dynamic linker to process all relocations for the object containing
this entry before transferring control to the program. The presence
of DT_BIND_NOWakes precedence over a directive to use lazy
binding for this object when specified through the environment or
via dlopen .

}

Options governing library inclusionBdynamic is valid in
dynamic mode only. These options may be specified any number
of times on the command line as toggles: if HBstatic option

is given, no shared objects will be accepted uBilynamic is
seen. See also thk option.

4-3

Compilation Systems Volume 1 (Tools)

4-4

-Bexport[=

-Bhide[=

-Bsortbss

-Bsymbolic[=

list]: filenamé

list]: filenamé

list is a comma-separated sequence of symbol nafiilesame
contains a list of symbol names, one symbol name per line. Lines
beginning with a # character and blank lines are ignored.

Normally, when building a shared objefd, makes all global and
weak names defined in the shared object visible outside the object
itself (exported). When building an executable, it makes visible
only those names used by the shared objects with which the
executable is linked. All other names are hidden. This behavior
can be modified withBhide and-Bexport

When building a shared objectBexport is the default. All
global and weak definitions are exporteBexport with a set of
symbol names instructd to hide all global and weak definitions,
except those in the specified seBhide means to hide all global
and weak definitions-Bhide with a set of symbol names means
to export all global and weak definitions, except for those in the
set of names.

When building an executableBhide is the default. Only those
names referenced by the shared objects with which the executable
is linked are exported-Bhide with a set of symbol names
instructsld to export all global and weak definitions, except those

in the specified set. Names inBhide list that are referenced by
the shared objects with which the executable is linked, are
ignored, that is, they are exporte@expor t means to export all
global and weak definitionsBexport with a set of symbol
names means to hide all global and weak definitions except those
in the set of names and those referenced by the shared objects with
which the executable is linked.

If -Bhide and Bexport are used together, one of the options
must contain a set of symbol names and the other must not. In this
case, the option without the symbol set is ignored. Neither
-Bhide nor-Bexport may be used withdn .

All uninitialized global variables within a module will be assigned
contiguous addresses.

list|: filenamé

list is a comma-separated sequence of symbol nafiilesame
contains a list of symbol names, one symbol name per line. Lines
beginning with a # character and blank lines are ignored.

When building a shared object, if a definition for a named symbol
exists, bind all references to the named symbol to that definition.
If no list of symbols is provided, bind all references to symbols to
definitions that are availabléd will issue warnings for undefined
symbols unlessz defs overrides.

Normally, references to global symbols within shared objects are
not bound until run time, even if definitions are available, so that

-l name

-L path

-M mapfile

-O args

-QAda

-QABI

-Qanalyze patch_size

-QBSS

-Q{ dynamic|static

-Qfper=value

Link Editor and Linking

definitions of the same symbol in an executable or other shared
objects can override the object’'s own definition.

In dynamic mode only, produce a shared object. Undefined
symbols are allowed unless tke defs option is specified.

When building an executable, usameas the path name of the
interpreter to be written into the program header. The default in
static mode is no interpreter; in dynamic mode, the default is the
name of the dynamic linkefusr/lib/libc.so.1 . Either
case may be overridden by . exec will load this interpreter
when it loadsa.out and will pass control to the interpreter rather
than toa.out directly.

Add pathto the library search directorielsl searches for libraries
first in any directories specified with. options, then in the
standard directories. This option is effective only if it precedes the
-l option on the command line.

Read mapfile as a text file of directives tdd . Because these
directives change the shape of the output file createld hyuse of
this option is strongly discouraged.

Invoke theanalyze(1) tool to perform a static performance
analysis, to produce an optimized program, or to produce a
profiling program. Ifargsbegins with a hyphen, the system
analyze(1) toolis used, anérgsis passed to it. largsdoes

not begin with a hyphen, then the first field is considered to be the
name of an alternativanalyze(1) tool, and the remainder of
argsis passed to it.

Issue a warning if a user object file contains a global definition or
reference oferrno . Also, set the EF_PPC_ADAflag in the
program’s ELF header.

Suppress the output of pointer arrays to tdesc information.

= size

Set the amount of patch space reserved é#oalyze(l)
profiling to size By default, the reserved size of the patch space is
ten times the size of the programtext section. This option is
used to change the amount reserved.

Force undefined externals with a positive size into thes
section, even when the option is used.

}

Same asB {dynamic|static }

Set appropriate fields in the vendor section so that the
floating-point control registerfgscr) is initialized, on program
start-up, tovalue. By default, thefpscr specifies the
round-to-nearest floating-point rounding mode and the enabling
of the floating-point reserved operand, divide-by-zero, and over-
flow exceptions. Use of this option effects an override of the
default setting ofpscr at program start up.

4-5

Compilation Systems Volume 1 (Tools)

4-6

-Qfpexcept =value

-QG
-QGOTP_TO_GOT

-QLD_RUN_PATHSile

-Qload= file

-Qmult_archive

-Qno_vendor_reloc

-Qnotdesc

-Qsearch_order

-Qsmall_memory

Set appropriate fields in the vendor section so that the machine
state register (msr) is initialized, on program start-up, to indicate
the kind of floating-point exceptions that can be takesluecan
beimprecise (floating-point exceptions are imprecise and
non-recoverable)recise (floating-point exceptions are pre-
cise and recoverable), disabled (floating-point exceptions do
not occur). The default mode isiprecise.

If any input module contains floating-point code that is executed
speculatively (see chapter 20), the executable program should be
link edited with the-Qfpexcept=disabled option. Without

this option, floating-point exceptions could be raised erroneously.

Same asG.

Implicitly convert GOTP relocation to GOT relocation during link
editing. This permits the static linking of files that have been built
to be link edited into shared objects. For improved performance,
however, these object files should be rebuilt without the com-
pile-time -ZPIC option

Accept fromfile a list of library search directories for the dynamic
linker. The list is specified as it would be for th® RUN_PATH
environment variable. This option overrides use of the
environment variable and is useful when the list is too long for the
environment variable. See the discussion of library search
directories later in this section.

Accept a list of input object files, shared objects, and archives
from file. This is useful when the list would be too long for tide
invocation line.

Perform multiple passes over the list of archive libraries to satisfy
unresolved symbol references. Each pass examines the archive
libraries in the order in which they appear on the invocation line.
Without this option, only one pass is made over the list of archive
libraries.

Do not output relocation information in the vendor section of the
object file for use by theanalyze(1) tool. By default, this
relocation information is output. This option cannot be used with
the-O option.

Suppress the production of tdesc information.

When performing multiple passes over the list of archive libraries
to satisfy unresolved symbol references, do not search for
unresolved references detected in the current pass until the next
pass. This option implies th€@mult_archive option.

By default, the link editor allocates the data space of the program
beginning at address segment 3, allowing programs to use up to
several address segments of memory for their data space. With

Link Editor and Linking

this option, the link editor allocates the data space only in address
segment 2.

-Qstandard_fortran_common
By default, the link editor checks for and properly handles certain
nonstandard Fortran common block constructs, but at the expense
of increased link time. Use of this option reduces link time, but it
presumes that all Fortran common blocks are strictly standard
conforming. Unexpected results could be obtained if this option is
used and nonstandard Fortran common block extensions are

present.
-Qsymbolic Same asBsymbolic
-Qwarn_mult_init Warns if a Fortran common block is multiply initialized. If a

particular byte in the common block is multiply initialized, the last
initialized value of the byte is selected. Without this option, no
warning is produced, and all initialization values of the byte are
ORed together.

-Q{yln } Same asd {y|n}.

Y Output a message giving information about the versioridof
being used.

-X Do not look in alternate search paths for libraries. An error

message will be generated if the libraries cannot be located in the
specified search path(s).

-YP, dirlist Change the default directories used for finding librarédist is a
colon-separated path list.

The environment variableD_LIBRARY_PATHmay be used to
specify library search directories. In the most general case, it will
contain two directory lists separated by a semicolon:

dirlist1;dirlist2
If Id is called with any number of occurrences-bf, as in
ld .. -Lpathl.. -Lpathn ...
then the search path ordering is
dirlistl pathl. .. pathn dirlist2 LIBPATH

LD_LIBRARY_PATHis also used to specify library search directories to the dynamic
linker at run time. That is, iED_LIBRARY_PATHexists in the environment, the dynamic
linker will search the directories named in it, before its default directory, for shared
objects to be linked with the program at execution.

The environment variableD_RUN_PATHcontaining a directory list, may also be used to
specify library search directories to the dynamic linker. If present and not null, it is passed
to the dynamic linker byd via data stored in the output object file.

4-7

Compilation Systems Volume 1 (Tools)

Basics of Linking

4-8

If any argument tdd is a library, it is searched exactly once (by default) at the point it is
encountered in the argument list. The library may be either a relocatable archive or a
shared object. For aarchive library, only those routines defining an unresolved external
reference are loaded. The archive library symbol table [=€d)]is searched
sequentially with as many passes as are necessary to resolve external references that can
be satisfied by library members. Thus, the ordering of members in the library is
functionally unimportant, unless there exist multiple library members defining the same
external symbol. Ashared objectonsists of a single entity all of whose references must

be resolved within the executable being built or within other shared objects with which it

is linked.

NOTE

Because we try to cover the widest possible audience in this
section, it may provide more background than many users will
need to link their programs with a C language library. If you are
interested only in the how-to, and are comfortable with a purely
formal presentation that scants motivation and background alike,
you may want to skip to “Quick-Reference Guide” on page 4-35.

Link editing refers to the process in which a symbol referenced in one module of your
program is connected with its definition in another--for example, the process by which the
symbolprintf() in an example source filkeello.c is connected with its definition in

the standard C library.

The link editor uses two models of linking, static or dynamic, as governed bydthe
option or by the presence of tiBTATIC_LINK environment variable. If this environment
variable is not set, then dynamic linking is the model used, unless overridden bgrthe
option. If this environment variable is set, then static linking is the model used, unless
overridden by thedy option.

Whichever link editing model you choose, static or dynamic, the link editor will search
each module of your program, including any libraries you have used, for definitions of
undefined external symbols in the other modules. If it does not find a definition for a
symbol, the link editor will report an error by default, and fail to create an executable
program. (Multiply-defined symbols are treated differently, however, under each
approach. For details, see “Multiply-Defined Symbols” on page 4-22.) The principal
difference between static and dynamic linking lies in what happens after this search is
completed:

¢ Under static linking, copies of the archive library object files that satisfy
still unresolved external references in your program are incorporated in
your executable at link time. External references in your program are
connected with their definitions--assigned addresses in memory--when the
executable is created.

¢ Under dynamic linking, the contents of a shared object are mapped into the
virtual address space of your process at run time. External references in

Link Editor and Linking

your program are connected with their definitions when the program is
executed.

In this section, we’ll examine the link editing process in detail. We'll start with the default
arrangement, and with the basics of linking your program with the standard libraries
supplied by the C compilation system. Later, we’ll discuss the implementation of the
dynamic linking mechanism, and look at some coding guidelines and maintenance tips for
shared library development. Throughout the discussion, we’ll consider the reasons why
you might prefer dynamic to static linking. These are, briefly:

* Dynamically linked programs save disk storage and system process mem-
ory by sharing library code at run time.

¢ Dynamically linked code can be fixed or enhanced without having to relink
applications that depend on it.

Default Arrangement

We stated earlier that the defaalt command line
cc filel.c file2.c file3.c

would create object files corresponding to each of your source files, and link them with
each other to create an executable program. These object files are called relocatable object
files because they contain references to symbols that have not yet been connected with
their definitions--have not yet been assigned addresses in memory.

We also suggested that this command line would arrange for the standard C library
functions that you have called in your program to be linked with your executable
automatically. The standard C library is, in this default arrangement, a shared object called
libc.so , which means that the functions you have called will be linked with your
program at run time. (There are some exceptions. A number of C library functions have
been left out ofibc.so by design. If you use one of these functions in your program,
the code for the function will be incorporated in your executable at link time. That is, the
function will still be automatically linked with your program, only statically rather than
dynamically.) The standard C library contains the system calls described in Section 2 man
pages, and the C language functions described in Section 3, Subsections 3C and 3S man
pages.

Now let’s look at the formal basis for this arrangement:

1. By convention, shared objects, or dynamically linked libraries, are
designated by the prefi¥b and the suffixso ; archives, or statically
linked libraries, are designated by the prefilx and the suffix.a.
libc.so , then, is the shared object version of the standard C library;
libc.a isthe archive version.

2. These conventions are recognized, in turn, by 4heoption to thecc
command. That is,

cc filel.c file2.c file3.c -l X

directs the link editor to search the shared objéct x.so or the archive library
lib x.a . Thecc command automatically passés to the link editor.

4-9

Compilation Systems Volume 1 (Tools)

3. By default, the link editor chooses the shared object implementation of a
library, lib x.so , in preference to the archive library implementation,
lib x.a ,inthe same directory.

4. By default, the link editor searches for libraries in the standard places on
the system,/usr/lib and/lib , in that order.

Adding it up, we can say, more exactly than before, that the defauttommand line will
direct the link editor to searckusr/lib/libc.so rather than its archive library
counterpart. We'll look at each of the items that make up the default in more detail below.

libc.so is, with one exception, the only shared object library supplied by the C
compilation system. (The exceptidihdl.so , is used with the programming interface

to the dynamic linking mechanism described later. Other shared object libraries are
supplied with the operating system, and usually are kept in the standard places.) In the
next subsection, we’ll show you how to link your program with the archive version of
libc to avoid the dynamic linking default. Of course, you can link your program with
libraries that perform other tasks as well. Finally, you can create your own shared objects
and archive libraries. We’ll show you the mechanics of doing that below.

The default arrangement, then, is this: tttecommand creates and then links relocatable
object files to generate an executable program, then arranges for the executable to be
linked with the shared C library at run time. If you are satisfied with this arrangement, you
need make no other provision for link editing on #tee command line.

Linking with Standard Libraries

4-10

libc.so is a single object file that contains the code for every function in the shared C
library. When you call a function in that library, and dynamically link your program with
it, the entire contents dfbc.so are mapped into the virtual address space of your
process at run time.

Archive libraries are configured differently. Each function, or small group of related
functions (typically, the related functions that you will sometimes find on the same manual
page), is stored in its own object file. These object files are then collected in archives that
are searched by the link editor when you specify the necessary options am the
command line. The link editor makes available to your program only the object files in
these archives that contain a function you have called in your program. You create a shared
object library by specifying theZlink=so option to the compiler:

As notedibc.a is the archive version of the standard C library. Teeeommand will
automatically direct the link editor to seartibc.a if you turn off the dynamic linking
default with the-Zlink=static option:

cc -Zlink=static filel.c file2.c file3.c

Copies of the object files itibc.a that resolve still unresolved external references in
your program will be incorporated in your executable at link time.

If you need to point the link editor to standard libraries that are not searched automatically,
you specify thel option explicitly on thecccommand line. As we have seeh,x directs
the link editor to search the shared objébt x.so or the archive libranjib x.a . So if

Link Editor and Linking

your program calls the functiosin() , for example, in the standard math librditym
the command

cc filel.c file2.c file3.c -Im

will direct the link editor to search falusr/lib/libm.so , and if it does not find it,
Nlib/libm.a , to satisfy references ®in() in your program. Because the compilation
system supplies shared object versions onljikaf andlibdl , the above command
will direct the link editor to searchibm.a unless you have installed a shared object
version oflibm in the standard place. Note that because we did not turn off the dynamic
linking default with the-Zlink=static option, the above command will direct the link
editor to searclibc.so rather tharlibc.a . You would use the same command with
the -Zlink=static option to link your program statically withbm.a andlibc.a

The contents ofibm are described in Chapter 16 (“Run-Time Libraries”).

Note, finally, that because the link editor searches an archive library only to resolve
undefined external references it has previously seen, the placement-bf tion on the
cc command line is important. That is, the command

cc -Zlink=static filel.c -Im file2.c file3.c

will direct the link editor to searcibm.a only for definitions that satisfy still
unresolved external referencesfilel.c . As arule, then, it's best to pult at the end
of the command line.

Creating and Linking with Archive and Shared Object Libraries

In this subsection we describe the basic mechanisms by which archives and shared objects
are built. The idea is to give you some sense of where these libraries come from, as a basis
for understanding how they are implemented and linked with your programs. Of course, if
you are developing a library, you will need to know the material in this subsection. Even if
you are not, it should prove a useful introduction to the subsequent discussion.

The following commands

cc -c functionl.c function2.c function3.c
ar -r libfoo.a functionl.o function2.0 function3.o

will create an archive libranjibfoo.a , that consists of the named object files. (Check
thear(l) manual page for details of usage.) When you useltheption to link your
program withlibfoo.a

cc -L dir filel.c file2.c file3.c -Ifoo

the link editor will incorporate in your executable only the object files in this archive that
contain a function you have called in your program. Note, again, that because we did not
turn off the dynamic linking default with theZlink=static option, the above
command will direct the link editor to seartihc.so as well adibfoo.a . We’ll look

at the directory search option--represented in the above command lisie biy--in the

next subsection. For now it's enough to note that you use it to point the link editor to the
directory in which your library is stored.

4-11

Compilation Systems Volume 1 (Tools)

4-12

As mentioned earlier, you create a shared object library by specifyingAlirk=so
option to the compiler:

cc -Zlink=so -o libfoo.so functionl.o function2.0 \
function3.0

That command will create the shared objiafoo.so consisting of the object code for

the functions contained in the named files. (We are deferring for the moment a discussion
of a compiler option;ZPIC , that you should use in creating a shared object. For that
discussion, see “Implementation” on page 4-17.) When you us¢ thaption to link your
program withlibfoo.so

cc -L dir filel.c file2.c file3.c -Ifoo

the link editor will record in your executable the name of the shared object and a small
amount of bookkeeping information for use by the system at run time. Another component
of the system--the dynamic linker--does the actual linking.

A number of things are worth pointing out here. First, because shared object code is not
copied into your executable object file at link time, a dynamically linked executable
normally will use less disk space than a statically linked executable. For the same reason,
shared object code can be changed without breaking executables that depend on it. In
other words, even if the shared C library were enhanced in the future, you would not have
to relink programs that depended on it (as long as the enhancements were compatible with
your code; see “Checking for Run-Time Compatibility” on page 4-16). The dynamic
linker would simply use the definitions in the new version of the library to resolve external
references in your executables at run time.

Second, we specified the name of the shared object that we wanted to be created under the
-Zlink=so option. Of course, you don't have to do it the way we did. The following
command, for example, will create a shared object cadledt

cc -Zlink=so functionl.o function2.0 function3.o
You can then rename the shared object:
mv a.out libfoo.so

As noted, you use thBb prefix and the.so suffix because they are conventions
recognized byl , just as ardib and.a for archive libraries. So while it is legitimate to
create a shared object that does not follow the naming convention, and to link it with your
program

cc -Zlink=so -0 sharedob functionl.o function2.0 \
function3.0
cc filel.c file2.c file3.c / path/'sharedob

we recommend against it. Not only will you have to enter a path name arctltemmand
line every time you ussharedob in a program, that path name will be hard-coded in
your executables. The reason why you want to avoid this is related to our next point.

We said that the command line

cc -L dir filel.c file2.c file3.c -Ifoo

Link Editor and Linking

would direct the link editor to record in your executable the name of the shared object with
which it is to be linked at run time. Note: thrameof the shared object, not its path name.
What this means is that when you use theoption to link your program with a shared
object library, not only must the link editor be told which directory to search for that
library, so must the dynamic linker (unless the directory is the standard place, which the
dynamic linker searches by default). We'll show you how to point the dynamic linker to
directories in the subsection “Specifying Directories to Be Searched by the Dynamic
Linker” on page 4-15. What we want to stress here is that as long as the path name of a
shared object is not hard-coded in your executable, you can move the shared object to a
different directory without breaking your program. That's the main reason why you
should avoid using path names of shared objects om¢heommand line. Those path
names will be hard-coded in your executable. They won't be if youwluse

Finally, thecc -Zlink=so ~ command will not only create a shared object, it will accept a
shared object or archive library as input. In other words, when you cliééte.so
you can link it with a library you have already created, dédpgharedob.so

cc -Zlink=so -o libfoo.so -L dir functionl.o function2.o\
function3.0 -Isharedob

That command will arrange fdibsharedob.so to be linked withlibfoo.so when,

at run time libfoo.so is linked with your program. Note that here you will have to
point the dynamic linker to the directories in which bolibfoo.so and
libsharedob.so are stored.

Specifying Directories to Be Searched by the Link Editor

In the previous subsection we created the archive libiefgo.a and the shared object
libfoo.so . For the sake of discussion, we’ll now say that both these libraries are stored
in the directoryhome/mylibs . We'll also assume that you are creating your executable

in a different directory. In fact, these assumptions are not academic. They reflect the way
most programmers organize their work on the PowerUX system.

The first thing you must do if you want to link your program with either of these libraries
is point the link editor to théhome/mylibs directory by specifying its path name with
the-L option:

cc -L /home/mylibs filel.c file2.c file3.c -ifoo

The-L option directs the link editor to search for the libraries named witHirst in the
specified directory, then in the standard places. In this case, having found the directory
/home/mylibs , the link editor will searchibfoo.so rather tharlibfoo.a . As we

saw earlier, when the link editor encounters otherwise identically named shared object and
archive libraries in the same directory, it searches the library withgbe suffix by
default. For the same reason, it will seatitit.so here rather thatibc.a . Note that

you must specifyL if you want the link editor to search for libraries in your current
directory. You can use a period)(to represent the current directory.

To direct the link editor to searclibfoo.a , you can turn off the dynamic linking
default:

cc -Zlink=static -L /home/mylibs filel.c file2.c \
file3.c -Ifoo

4-13

Compilation Systems Volume 1 (Tools)

4-14

Under-Zlink=static , the link editor will not accept shared objects as input. It will
searchibfoo.a rather tharibfoo.so , andlibc.a rather tharibc.so

To link your program statically withibfoo.a and dynamically witHibc.so , you
can do either of two things. First, you can moliefoo.a to a different
directory-/fhome/archives , for example--then specifshome/archives with the
-L option:

cc -L /homel/archives -L /home/mylibs filel.c file2.c \
file3.c -Ifoo

As long as the link editor encounters th®me/archives directory before it encoun-
ters the/lhome/mylibs directory, it will searcHibfoo.a rather tharlibfoo.so

That is, when otherwise identically namexd and.a libraries exist in your directories,
the link editor will search the first one it finds. The same thing is true, by the way, for
identically named libraries of either type. If you have different versionighfdo.a in

your directories, the link editor will search the first one it finds.

A better alternative might be to lealibfoo.a where you had it in the first place and
use the-Zlibs=static and-Zlibs=dynamic options to turn dynamic linking off
and on. The following command will link your program statically wiitafoo.a and
dynamically withlibc.so

cc -L /home/mylibs filel.c file2.c file3.c \
-Zlibs=static -Ifoo -Zlibs=dynamic

When you specifyQstatic , the link editor will not accept a shared object as input until
you specify-Qdynamic . In other words, you can use these options as toggles--any
number of times--on thec command line:

cc -L /home/mylibs filel.c file2.c -Zlibs=static -lfoo \
file3.c -Zlibs=dynamic -Isharedob

That command will direct the link editor to search

* First, libfoo.a to resolve still unresolved external references in
filel.c andfile2.c ;

¢ Second]ibsharedob.so to resolve still unresolved external references
in all three files and idibfoo.a ;

¢ Last,libc.so to resolve still unresolved external references in all three
files and the preceding libraries.

Files, including libraries, are searched for definitions in the order they are listed an the
command line. The standard C library is always searched last.

You can add to the list of directories to be searched by the link editor by using the
environment variabléD_LIBRARY_PATH LD_LIBRARY_PATHmust be a list of
colon-separated directory names; an optional second list is separated from the first by a
semicolon:

LD_LIBRARY_PATHHir: dir/; dir: dir;export LD_LIBRARY_PATH

The directories specified before the semicolon are searched, in order, before the directo-
ries specified withL ; the directories specified after the semicolon are searched, in order,
after the directories specified witl. . Note that you can useD_LIBRARY_PATHIn

Link Editor and Linking

place of-L altogether. In that case the link editor will search for libraries named avith

first in the directories specified before the semicolon, next in the directories specified after
the semicolon, and last in the standard places. You should use absolute path names when
you set this environment variable.

NOTE

As we explain in the next subsectionD LIBRARY_PATHis
also used by the dynamic linker. That isliD LIBRARY_PATH
exists in your environment, the dynamic linker will search the
directories named in it for shared objects to be linked with your
program at execution. In usind_LIBRARY_PATHwith the link
editor or the dynamic linker, then, you should keep in mind that
any directories you give to one you are also giving to the other.

Specifying Directories to Be Searched by the Dynamic Linker

Earlier we said that when you use the option, you must point the dynamic linker to the
directories of the shared objects that are to be linked with your program at execution. The
environment variableD_RUN_PATHets you do that at link time. To seD_RUN_PATH

list the absolute path names of the directories you want searched in the order you want
them searched. Separate path names with a colon. Since we are concerned only with the
directory/home/mylibs here, the following will do:

LD_RUN_PATH=/home/mylibs;export LD_RUN_PATH
Now the command
cc -0 prog -L /home/mylibs filel.c file2.c file3.c -Ifoo

will direct the dynamic linker to search fdibfoo.so in /hnome/mylibs when you
execute your program:

prog

The dynamic linker searches the standard place by default, after the directories you have
assigned td.D_RUN_PATHNote that as far as the dynamic linker is concerned, the
standard place for libraries fssr/lib . Any executable versions of libraries supplied

by the compilation system are kept/umsr/lib

The environment variableD_LIBRARY_PATHIets you do the same thing at run time.
Suppose you have movéithfoo.so to /home/sharedobs . It is too late to replace
/home/mylibs with /home/sharedobs in LD_RUN_PATHat least without link
editing your program again. You can, however, assign the new directory to
LD_LIBRARY_PATH as follows:

LD_LIBRARY_PATH=/home/sharedobs;export LD_LIBRARY_PATH

Now when you execute your program

prog

4-15

Compilation Systems Volume 1 (Tools)

the dynamic linker will search fdibfoo.so firstin /home/mylibs and, not finding

it there, in/home/sharedobs . That is, the directory assigned k& RUN_PATHSs
searched before the directory assigned fo LIBRARY_PATH The important point is

that because the path namelibfoo.so is not hard-coded iprog , you can direct the
dynamic linker to search a different directory when you execute your program. In other
words, you can move a shared object without breaking your application.

You can set.D_LIBRARY_PATHwithout first having setD_RUN_PATHThe main
difference between them is that once you have udedRUN_PATHor an application,

the dynamic linker will search the specified directories every time the application is
executed (unless you have relinked the application in a different environment). In contrast,
you can assign different directoriest® |LIBRARY_PATHeach time you execute the
application.LD_LIBRARY_PATHdirects the dynamic linker to search the assigned
directories before it searches the standard place. Directories, including those in the
optional second list, are searched in the order listed. See the previous subsection for the
syntax.

Note, finally, that when linking a set-user or set-group ID program, the dynamic linker
will ignore any directories specified HyD_LIBRARY_PATHthat are not “trusted.”
Trusted directories are built into the dynamic linker and cannot be modified by the
application. Currently, the only trusted directoryusr/lib

Checking for Run-Time Compatibility

4-16

Suppose you have been supplied with an updated version of a shared object. You have
already compiled your program with the previous version; the link editor has checked it
for undefined symbols, found none, and created an executable. According to everything
we have said, you should not have to link your program again. The dynamic linker will
simply use the definitions in the new version of the shared object to satisfy unresolved
external references in the executable.

Suppose further that this is a database update program that takes several days to run. You
want to be sure that your program does not fail in a critical section because a symbol that
was defined by the previous version of the shared object is no longer defined by the new
version. In other words, you want the information that the link editor gives you--that your
executable is compatible with the shared library--without having to link edit it again.

There are two ways you can check for run-time compatibility. The comnhdahd)
(“list dynamic dependencies”) directs the dynamic linker to print the path names of the
shared objects on which your program depends:

Idd prog

When you specify thed option toldd(1) , the dynamic linker prints a diagnostic
message for each unresolved data reference it would encoumpergifvere executed.
When you specify ther option, it prints a diagnostic message for each unresolved data or
function reference it would encountergfog were executed. You can do the same thing
when you execute your program. Whereas the dynamic linker resolves data references
immediately at run time, it normally delays resolving function references until a function

is invoked for the first time. Normally, then, the lack of a definition for a function will not

be apparent until the function is invoked. By setting the environment variable
LD_BIND_NOW

Dynamic Linking

Implementation

Link Editor and Linking

LD_BIND_NOW=1:export LD_BIND_NOW

before you execute your program, you direct the dynamic linker to resolve all references
immediately. In that way, you can learn before executiomain() begins that the
functions invoked by your process actually are defined.

Programming Interface

You can use a programming interface to the dynamic linking mechanism to attach a shared
object to the address space of your process during execution, look up the address of a
function in the library, call that function, and then detach the library when it is no longer
needed. The routines for this are storedibdl.so . Subsection 3X man pages describe

its contents.

We have already described, in various contexts in this section, the basic implementation of
the static and dynamic linking mechanisms:

* When you use an archive library function, a copy of the object file that
contains the function is incorporated in your executable at link time.
External references to the function are assigned virtual addresses when the
executable is created.

* When you use a shared library function, the entire contents of the library
are mapped into the virtual address space of your process at run time.
External references to the function are assigned virtual addresses when you
execute the program. The link editor records in your executable only the
name of the shared object and a small amount of bookkeeping information
for use by the dynamic linker at run time.

We'll take a closer look at how dynamic linking is implemented in a moment. First let’s
consider the one or two cases in which you might not want to use it. Earlier we said that
because shared object code is not copied into your executable object file at link time, a
dynamically linked executable normally will use less disk space than a statically linked
executable. If your program calls only a few small library functions, however, the book-
keeping information to be used by the dynamic linker may take up more space in your
executable than the code for those functions. You can ussite€l) command to
determine the difference.

In a similar way, using a shared object may occasionally add to the memory requirements
of a process. Although a shared object’s text is shared by all processes that use it, its data
typically are not (at least its writable data; see the subsection “Guidelines for Building
Shared Objects” on page 4-18 for the distinction). Every process that uses a shared object
usually gets a private copy of its entire data segment, regardless of how many of the data
are needed. If an application uses only a small portion of a shared library’s text and data,
executing the application might require more memory with a shared object than without
one. It would be unwise, for example, to use the standard C shared object library to access
only strcmp() . Although sharingstrcmp() saves space on your disk and memory on

4-17

Compilation Systems Volume 1 (Tools)

the system, the memory cost to your process of having a private copy of the C library’s
data segment would make the archive versiostaimp() the more appropriate choice.

Now let's consider dynamic linking in a bit more detail. First, each process that uses a
shared object references a single copy of its code in memory. That means that when other
users on your system call a function in a shared object library, the entire contents of that
library are mapped into the virtual address space of their processes as well. If they have
called the same function as you, external references to the function in their programs will,
in all likelihood, be assigned different virtual addresses. That is, because the function may
be loaded at a different virtual address for each process that uses it, the system cannot
calculate absolute addresses in memory until run time.

Second, the memory management scheme underlying dynamic linking shares memory
among processes at the granularity of a page. Memory pages can be shared as long as they
are not modified at run time. If a process writes to a shared page in the course of relocating

a reference to a shared object, it gets a private copy of that page and loses the benefits of
code sharing (although without affecting other users of the page).

Third, to create programs that require the least possible amount of page modification at
run time, the compiler generates position-independent code undeZH€ option.
Whereas executable code normally must be tied to a fixed address in memory,
position-independent code can be loaded anywhere in the address space of a process.
Because the code is not tied to specific addresses, it will execute correctly--without page
modification--at a different address in each process that uses it. As we have indicated, you
should specifyZPIC when you create a shared object:

cc -ZPIC -Zlink=so -o libfoo.so functionl.c function2.c\
function3.c

Relocatable references in your object code will be moved from its text segment to tables in
the data segment. See Chapter 22 (“Executable and Linking Format (ELF)") in this

manual for the details. In the next subsection we’ll look at some basic guidelines for

building shared objects. For now, we’ll sum up the reasons why you might want to use
one:

* Because library code is not copied into the executables that use it, they
require less disk space.

* Because library code is shared at run time, the dynamic memory needs of
systems are reduced.

* Because symbol resolution is put off until run time, shared objects can be
updated without having to relink applications that depend on them.

* Aslong as its path name is not hard-coded in an executable, a shared object
can be moved to a different directory without breaking an application.

Guidelines for Building Shared Objects

4-18

This subsection gives coding guidelines and maintenance tips for shared library
development. Before getting down to specifics, we should emphasize that if you plan to
develop a commercial shared library, you ought to consider providing a compatible
archive as well. As we have noted, some users may not find a shared library appropriate

Link Editor and Linking

for their applications. Others may want their applications to run on PowerUX system
releases without shared object support. Shared object code is completely compatible with
archive library code. In other words, you can use the same source files to build archive and
shared object versions of a library.

Let’s look at some performance issues first. There are two things you want to do to
enhance shared library performance:

Minimize the Library’s Data Segment

As noted, only a shared object’s text segment is shared by all processes that use it; its data
segment typically is not. Every process that uses a shared object usually gets a private
memory copy of its entire data segment, regardless of how many of the data are needed.
You can cut down the size of the data segment a number of ways:

* Try to use automatic (stack) variables. Don’'t use permanent storage if
automatic variables will work.

¢ Use functional interfaces rather than global variables. Generally speaking,
that will make library interfaces and code easier to maintain. Moreover,
defining functional interfaces often eliminates global variables entirely,
which in turn eliminates global “copy” data. The ANSI C function
strerror(3C) illustrates these points.

In previous implementations, system error messages were made available to applications
only through two global variables:

extern int sys_nerr;
extern char *sys_errlist[];

That is,sys_errlist[X] gives a character string for the erngrif X is a non-negative

value less thasys_nerr . Now if the current list of messages were made available to
applications only through a lookup table in an archive library, applications that used the
table obviously would not be able to access new messages as they were added to the
system unless they were relinked with the library. In other words, errors might occur for
which these applications could not produce meaningful diagnostics. Something similar
happens when you use a global lookup table in a shared library.

First, the compilation system sets aside memory for the table in the address space of each
executable that uses it, even though it does not know yet where the table will be loaded.
After the table is loaded, the dynamic linker copies it into the space that has been set aside.
Each process that uses the table, then, gets a private copy of the library’s data segment,
including the table, and an additional copy of the table in its own data segment. Moreover,
each process pays a performance penalty for the overhead of copying the table at run time.
Finally, because the space for the table is allocated when the executable is built, the
application will not have enough room to hold any new messages you might want to add in
the future. A functional interface overcomes these difficultatgerror() might be
implemented as follows:

static const char *msg[] = {
"Error 0",
"Not owner",
“No such file or directory",

4-19

Compilation Systems Volume 1 (Tools)

4-20

char * strerror(int err)

{
if (err < 0 || err >= sizeof(msg)/sizeof(msg[0]))
return O;
return (char *)msg[err];
}

The message array is static, so no application space is allocated to hold a separate copy.
Because no application copy exists, the dynamic linker does not waste time moving the
table. New messages can be added, because only the library knows how many messages
exist. Finally, note the use of the type qualifieonst to identify data as read-only.
Whereas writable data are stored in a shared object’s data segment, read-only data are
stored in its text segment. For more oonst , see the Concurrer@ Reference Manual

In a similar way, you should try to allocate buffers dynamically--at run time--instead of
defining them at link time. That will save memory because only the processes that need
the buffers will get them. It will also allow the size of the buffers to change from one
release of the library to the next without affecting compatibility. Example:

char * buffer()

{
static char *buf = O;
if (buf = = 0)
{
if ((buf = malloc(BUFSIZE)) = = 0)
return O;
}
return buf;
}

Exclude functions that use large amounts of global data--that is, if you cannot rewrite them
in the ways described in the foregoing items. If an infrequently used routine defines a
great deal of static data, it probably does not belong in a shared library.

Make the library self-contained. If a shared object imports definitions from another shared
object, each process that uses it will get a private copy not only of its data segment, but of
the data segment of the shared object from which the definitions were imported. In cases
of conflict, this guideline should probably take precedence over the preceding one.

Minimize Paging Activity

Although processes that use shared libraries will not write to shared pages, they still may
incur page faults. To the extent they do, their performance will degrade. You can minimize
paging activity in the following ways:

* Organize to improve locality of reference. First, exclude infrequently used
routines on which the library itself does not depend. Traditianalt
files contain all the code they need at run time. So if a process calls a
function, it may already be in memory because of its proximity to other text
in the process. If the function is in a shared library, however, the
surrounding library code may be unrelated to the calling process. Only

Link Editor and Linking

rarely, for example, will any single executable use everything in the shared
C library. If a shared library has unrelated functions, and if unrelated
processes make random calls to those functions, locality of reference may
be decreased, leading to more paging activity. The point is that functions
used by only a fewa.out files do not save much disk space by being in a
shared library, and can degrade performance.

Second, try to improve locality of reference by grouping dynamically
related functions. If every call ttuncA() generates calls thuncB()
andfuncC() , try to putthem in the same pagdlow(1) generates this
kind of static dependency information. Combine it with profiling to see
what things actually are called, as opposed to what things might be called.

¢ Align for paging. Try to arrange the shared library’'s object files so that
frequently used functions do not unnecessarily cross page boundaries.
First, determine where the page boundaries fall. The page size is 4K. You
can use theam(1) command to determine how symbol values relate to
page boundaries. After grouping related functions, break them up into
page-sized chunks. Although some object files and functions are larger
than a page, many are not. Then use the less frequently called functions as
glue between the chunks. Because the glue between pages is referenced
less frequently than the page contents, the probability of a page fault is
decreased. You can put frequently used, unrelated functions together
because they will probably be called randomly enough to keep the pages in
memory.

¢ Avoid hardware thrashing. You get better performance by arranging the
typical process to avoid cache entry conflicts. If a heavily used library had
both its text and its data segments mapped to the same cache entry, the
performance penalty would be particularly severe. Every library instruction
would bring the text segment information into the cache. Instructions that
referenced data would flush the entry to load the data segment. Of course,
the next instruction would reference text and flush the cache entry again.

Now let’s look at some maintenance issues. We have already seen how allocating buffers
dynamically can ease the job of library maintenance. As a general rule, you want to be
sure that updated versions of a shared object are compatible with its previous versions so
that users will not have to recompile their applications. At the very least, you should avoid
changing the names of library symbols from one release to the next. All the same, there
may be instances in which you need to release a library version that is incompatible with
its predecessor. On the one hand, you will want to maintain the older version for
dynamically linked executables that depend on it. On the other hand, you will want newly
created executables to be linked with the updated version. Moreover, you will probably
want both versions to be stored in the same directory. In this situation, you could give the
new release a different name, rewrite your documentation, and so forth. A better
alternative would be to plan for the contingency in the very first instance by using the fol-
lowing sequence of commands when you create the original version of the shared object:

cc -ZPIC -Zlink=so -h libfoo.1 -o libfoo.1 functionl.c \
function2.c function3.c
In libfoo.1 libfoo.so

In the first commandh stores the name given to itbfoo.1 , in the shared object
itself. You then use the UNIX system commalndl) to create a link between the name

4-21

Compilation Systems Volume 1 (Tools)

libfoo.1 and the naméibfoo.so . The latter, of course, is the name the link editor
will look for when users of your library specify

cc -L dir filel.c file2.c file3.c -Ifoo

In this case, however, the link editor will record in the user’s executable the name you gave
to-h ,libfoo.1 |, rather than the nanlibfoo.so . That means that when you release a
subsequent, incompatible version of the librdityffoo.2 , executables that depend on
libfoo.1 will continue to be linked with it at run time. As we saw earlier, the dynamic
linker uses the shared object name that is stored in the executable to satisfy unresolved
external references at run time.

You use the same sequence of commands when you difgfate?2

cc -ZPIC -Zlink=so -h libfoo.2 -o libfoo.2 functionl.c \
function2.c function4.c
In libfoo.2 libfoo.so

Now when users specify
cc -L dir filel.c file2.c file3.c -Ifoo

The namdibfoo.2 will be stored in their executables, and their programs will be
linked with the new library version at run time.

Multiply-Defined Symbols

4-22

Multiply-defined symbols--except for different-sized initialized data objects--are not
reported as errors under dynamic linking. To put that more formally, the link editor will
not report an error for multiple definitions of a function or a same-sized data object when
each such definition resides within a different shared object or within a dynamically linked
executable and different shared objects. The dynamic linker will use the definition in
whichever object occurs first on thee command line. You can, however, specify
-Qsymbolic when you create a shared object

cc -ZPIC -Zlink=so -Zsymbolic -0 libfoo.so functionl.c \
function2.c function3.c

to insure that the dynamic linker will use the shared object’s definition of one of its own
symbols, rather than a definition of the same symbol in an executable or another library.

In contrast, multiply-defined symbols are generally reported as errors under static linking.
We say “generally” because definitions of so-called weak symbols can be hidden from the
link editor by a definition of a global symbol. That is, if a defined global symbol exists, the
appearance of a weak symbol with the same name will not cause an error.

To illustrate this, let's look at our own implementation of the standard C library. This
library provides services that users are allowed to redefine and replace. At the same time,
however, ANSI C defines standard services that must be present on the system and cannot
be replaced in a strictly conforming prografmread() , for example, is an ANSI C
library function; the system functioread() is not. So a conforming program may
redefineread() and still usefread() in a predictable way.

Link Editor and Linking

The problem with this is thatead() underlies thdread() implementation in the
standard C library. A program that redefinesad() could “confuse” thefread()
implementation. To guard against this, ANSI C states that an implementation cannot use a
name that is not reserved to it. That's why we usead() --note the leading under-
score--to implemerfread() in the standard C library.

Now suppose that a program you have written caded() . If your program is going to
work, a definition forread() does exist in the C library. It is identical to the definition
for _read() and contained in the same object file.

Suppose further that another program you have written redefgze) , as it has every
right to do under ANSI C; this same program caflsad() . Because you get our
definitions of both read() andread() when you usdread() , we would expect the
link editor to report the multiply-defined symbmdad() as an error, and fail to create an
executable program. To prevent that, we used#tragma directive in our source code
for the library as follows:

#pragma weak read = _read

Because ouread() is defined as a weak symbol, your own definitionredd() will
override the definition in the standard C library. You can useffpragma directive in the
same way in your own library code.

There’s a second use for weak symbols that you ought to know about:
#pragma weak read

tells the link editor not to complain if it does not find a definition for the weak symbol
read. References to the symbol use the symbol value if defihve@dherwise. The link
editor does not extract archive members to resolve undefined weak symbols. The
mechanism is intended to be used primarily with functions. Although it will work for most
data objects, it should not be used with uninitialized global data (“common” symbols) or
with shared library data objects that are exported to executables.

Mapfiles

The link editor (d) automatically and intelligently maps input sections from object files
(.o files) to output segments in executable filesout files). Themapfile option to
theld command allows you to change the default mapping provided by the link editor.

In particular, themapfile option allows you to:

* Declare segments and specify values for segment attributes such as
segment type, permissions, addresses, length, and alignment

¢ Control mapping of input sections to segments by specifying the attribute
values necessary in a section to map to a specific segment (the attributes
are section name, section type, and permissions) and by specifying which
object file(s) the input sections should be taken from, if necessary

¢ Declare a global-absolute symbol that is assigned a value equal to the size
of a specified segment (by the link editor) and that can be referenced from
object files

4-23

Compilation Systems Volume 1 (Tools)

NOTE

The major purpose of thmapfile option is to allow users of
ifiles (an option previously available o that used link
editor command language directives) to convert to mapfiles. All
other facilities previously available fdfiles , other than those
mentioned above, are not available with thapfile option.

When using thenapfile option, be aware that you can easily
createa.out files that do not execute. Therefore, the use of the
mapfile option is strongly discouragedd knows how to
produce a correa.out without the use of thenapfile option.
Themapfile option is intended for system programming use,
not application programming use.

This subsection describes the structure and syntax of a mapfile and the use-bff the
option to theld command.

Using the Mapfile Option

To use themapfile option, you must:

1. Enter mapfile directives into a file (this is your “mapfile”)
2. Enter the following option on thiel command line:
-M mapfile

mapfileis the file name of the file you produced in step 1. If tmapfileis not in
your current directory, you must include the full path name; no default search path
exists. (See thil(1) for information on operation of thel command.)

Mapfile Structure and Syntax

4-24

You can enter three types of directives into a mapfile:

* Segment declarations
* Mapping directives
* Size-symbol declarations

Each directive can span more than one line and can have any amount of white space
(including new-lines) as long as it is followed by a semicolon. You can éh{gero) or

more directives in a mapfile. (Entering 0 directives caudedo ignore the mapfile and

use its own defaults.) Typically, segment declarations are followed by mapping directives,
i.e., you would declare a segment and then define the criteria by which a section becomes
part of that segment. If you enter a mapping directive or size-symbol declaration without
first declaring the segment to which you are mapping (except for built-in segments,
explained later), the segment is given default attributes as explained below. This segment
is then anmplicitly declared segment

Segment Declarations

Link Editor and Linking

Size-symbol declarations can appear anywhere in a mapfile.

The following sections describe each directive type. For all syntax discussions, the

following apply:

¢ All entries in “constant width”, all colons, semicolons, equal signs, and at
(@ signs are typed in literally.

¢ All entries in italics are “substitutables.”
e { .. ¥ means “zero or more.”

e { .. ¥ means “one or more.”

e [...] means “optional.”

¢ section_nameand segment_namdsllow the same rules as C identifiers
where a period.() is treated as a letter (e.ghss is a legal name).

¢ section_namessegment_namedile_names and symbol_namesre case
sensitive; everything else is not case sensitive.

* Spaces (or new-lines) may appear anywhere except before a number or in
the middle of a name or value.

¢ Comments beginning wit#¥ and ending at a new-line may appear any-
where that a space may appear.

A segment declaration creates a new segment iathgt or changes the attribute values

of an existing segment. (An existing segment is one that you previously defined or one of

the three built-in segments described below.)
A segment declaration has the following syntax:
segment_name { segment_attribute_valife

For eachsegment_nameou can specify any number ségment_attribute_valués any

order, each separated by a space. (Only one attribute value is allowed for each segment

attribute.) The segment attributes and their valid values are as follows:

“'segment_type

LOAD

NOTE
“segment_flags

?[RIWIX]
“virtual_address

Vnumber
“ physical_addres%

Pnumber
“length”

Lnumber
“alignments’

Anumber

There are three built-in segments with the following default attribute values:

4-25

Compilation Systems Volume 1 (Tools)

e text (LOAD ?RX no virtual _address physical_address or length
specified alignmentvalues set to defaults per CPU type)

¢ data (LOAD ?RWX no virtual_address physical_addressor length
specified alignmentvalues set to defaults per CPU type)

* note (NOTH

Id behaves as if these segments had been declared before your mapfile is read in. See
“Mapfile Option Defaults” on page 4-30 for more information.

Note the following when entering segment declarations:

* A numbercan be hexadecimal, decimal, or octal, following the same rules
as in the C language.

* No space is allowed between theP, L, or Aand thenumber
* Thesegment_typealue can be eithdrOADor NOTE
* Thesegment_typealue defaults ta OAD

* The segment_flagwvalues areR for readable Wfor writable, andX for
executable. No spaces are allowed between the question mark and the
individual flags that make up theegment_flaggalue.

* Thesegment_flagsalue for aLOADsegment defaults BWX

* NOTEsegments cannot by assigned any segment attribute value other than
asegment_type

¢ Implicitly declared segments default tsegment_typevalue LOAD
segment_flagsalue RWXa defaultvirtual_addressphysical_addressand
alignmentvalue, and have niengthlimit.

Id calculates the addresses and length of the current segment based on the
previous segment’s attribute values. Also, even though implicitly declared
segments default to “no length limit,” any machine memory limitations still

apply.

* LOAD segments can have an explicitly specifigtual_addressvalue
and/orphysical_addresgalue, as well as a maximum segmémtgthvalue.

* If a segment has aegment_flagsalue of ? with nothing following, the
value defaults to not readable, not writable and not executable.

* The alignmentvalue is used in calculating the virtual address of the
beginning of the segment. This alignment only affects the segment for
which it is specified; other segments still have the default alignment unless
their alignments are also changed.

¢ |f any of thevirtual_addressphysical_addres®r lengthattribute values are
not setld calculates these values as it builds ¢heut .

¢ If an alignmentvalue is not specified for a segment, it is set to the built-in
default. (The default differs from one CPU to another and may even differ
between kernel versions. You should check the appropriate documentation
for these numbers).

4-26

Link Editor and Linking

¢ If both avirtual addressand analignmentvalue are specified for a seg-
ment, thevirtual_addressalue takes priority.

¢ |f a virtual_addressralue is specified for a segment, the alignment field in
the program header contains the defalijnmentvalue.

NOTE

If a virtual_addreswalue is specified, the segment is placed at that
virtual address. For the PowerUX system kernel, this creates a
correct result. For files that start véxec() , this method creates

an incorreca.out file because the segments do not have correct
offsets relative to their page boundaries.

Mapping Directives

A mapping directive telldd how to map input sections to segments. Basically, you hame
the segment that you are mapping to and indicate what the attributes of a section must be
in order to map into the named segment. The seseafion_attribute_valuahat a section

must have to map into a specific segment is called the entrance criteria for that segment. In
order to be placed in a specified segment ofdhmut , a section must meet the entrance
criteria for a segment exactly.

A mapping directive has the following syntax:
segment_name { section_attribute_valje [: { file_namé+];

For asegment_nameou specify any number afection_attribute_valueis any order,

each separated by a space. (At most one section attribute value is allowed for each section
attribute.) You can also specify that the section must come from a ceotdite(s) via the
file_namesubstitutable. The section attributes and their valid values are as follows:

“ section_nameé
any valid section name
“ section_typg
$PROGBITS
$SYMTAB
$STRTAB
$REL
$RELA
$NOTE
$NOBITS
“section_flags

?[MAIIWIITX]
Note the following when entering mapping directives:

* You must choose at most orgection_typdrom the section_typedisted
above. Thesection_typedisted above are built-in types. For more
information onsection_typessee Chapter 22 (“Executable and Linking
Format (ELF)").

* The section_flagsvalues areA for allocatable,Wfor writable, or X for
executable. If an individual flag is preceded by an exclamation miaxk (

4-27

Compilation Systems Volume 1 (Tools)

the link editor checks to make sure that the flag is not set. No spaces are
allowed between the question mark, exclamation point(s), and the
individual flags that make up theection_flagwvalue.

¢ file_name may be any legal file name and can be of the form
archive_name(component_name)g.,/lib/libc.a (printfto). A
file name may be of the formfile_name(see next bullet item). Note that
Id does not check the syntax of file names.

¢ If a file_nameis of the form*file_name Id simulates a basename (see
basename(1)) on the file name from the command line and uses that to
match against the mapfifde_name In other words, thdile_namefrom the
mapfile only needs to match the last part of the file name from the
command line. (See “Mapping Example” on page 4-29.)

¢ If you use the-l option on thecc or ld command line, and the library
after the-l option is in the current directory, you must precede the library
with ./ (or the entire path name) in the mapfile in order to create a match.

* More than one directive line may appear for a particular output segment,
e.g., the following set of directives is legal:

S1 : $PROGBITS;
S1 : $NOBITS;

Entering more than one mapping directive line for a segment is the only way to
specify multiple values of a section attribute.

* A section can match more than one entrance criteria. In this case, the first
segment encountered in the mapfile with that entrance criteria is used, e.qg.,
if a mapfile reads:

S1 : $PROGBITS;
S2 : $PROGBITS;

the $SPROGBITSsections are mapped to segm&iit

Extended Mapping Directives

PowerUX mapfiles support an extension to the set of mapping directives described above.
These extensions permit the definition or redefinition of variables within a section. These
extended directives are output by tsiemdefine(1) utility.

Size-Symbol Declarations

Size-symbol declarations let you define a new global-absolute symbol that represents the
size, in bytes, of the specified segment. This symbol can be referenced in your object files.
A size-symbol declaration has the following syntax:

segment_name® symbol_name symbol _name

can be any legal C identifier, although tlie command does not check the syntax of the
symbol_name

4-28

Link Editor and Linking

Mapping Example

Figure 4-1 is an example of a user-defined mapfile. The numbers on the left are included
in the example for tutorial purposes. Only the information to the right of the numbers
would actually appear in the mapfile.

1. elephant: .bss : peanuts.o *popcorn.o;

N

monkey : $PROGBITS ?AX;
monkey : .bss;
4. monkey = LOAD V0x80000000 L0x40000;

w

5. donkey : .bss;
6. donkey = ?RX A0x1000;

7. text = V0x80008000;

Figure 4-1. User-Defined Mapfile

Four separate segments are manipulated in this example. The implicitly declared segment
elephant (line 1) receives all of thebss sections from the filepeanuts.o and
popcorn.o . Note thatpopcorn.o matches anypopcorn.o file that may have been
entered on th&d command line; the file need not be in the current directory. On the other
hand, if/var/tmp/peanuts.o were entered on thiel command line, it would not
matchpeanuts.o because it is not preceded by a

The implicitly declared segmemhonkey (line 2) receives all sections that are both
$PROGBITSand allocatable-executableAX), as well as all sections (not already in the
segmentlephant) with the namebss (line 3). The.bss sections entering the
monkey segment need not bBBPROGBITSor allocatable-executable because the
section_typeand section_flagsvalues were entered on a separate line from the
section_namealue. (Anandrelationship exists between attributes on the same line as
illustrated by$PROGBITSand?AX on line 2. Anor relationship exists between attributes
for the same segment that span more than one line as illustratfBRYGBITS ?AXon

line 2 or.bss on line 3.) Themonkey segment is implicitly declared in line 2 with
segment_typ&alue LOAD segment_flagyalue RWX and novirtual_address
physical_addresdengthor alignmentvalues specified (defaults are used). In line 4 the
segment_typealue ofmonkey is set toLOAD(since thesegment_typattribute value does
not change, no warning is issuedjrtual_addresssalue toOx80000000 and maximum
lengthvalue toOx4000 (since thdengthattribute value changed, a warning is issued).

Line 5 implicitly declares thelonkey segment. The entrance criteria is designed to route
all .bss sections to this segment. Actually, no sections fall into this segment because the
entrance criteria fomonkey in line 3 capture all of these sections. In line 6, the
segment_flagsalue is set t&?RXand thealignmentvalue is set t®x1000 (since both of
these attribute values changed, a warning is issued).

Line 7 sets thevirtual_addressvalue of thetext segment t®x80008000 (no warning
is issued here).

4-29

Compilation Systems Volume 1 (Tools)

The example user-defined mapfile in Figure 4-1 is designed to cause warnings for
illustration purposes. If you wanted to change the order of the directives to avoid
warnings, the example would appear as follows:

elephant : .bss : peanuts.o *popcorn.o;
monkey = LOAD V0x80000000 L0x4000;
monkey : $PROGBITS ?AX;

monkey : .bss;

donkey = ?RX A0x1000;

donkey : .bss;

text = V0x80008000;

Noowbd AR

This order eliminates all warnings.

Mapfile Option Defaults

Theld command has three built-in segmentisx¢ , data , andnote) with default
segment_attribute_valuasid corresponding default mapping directives as described under
“Segment Declarations” on page 4-25. Even thoughltheeommand does not use an
actual “mapfile” to store the defaults, the model of a “default mapfile” helps to illustrate
what happens when thé command encounters your mapfile.

Figure 4-2 shows how a mapfile would appear for thecommand defaults. Thiel
command begins execution behaving as if the mapfile in Figure 4-2 has already been read
in. Thenld reads your mapfile and either augments or makes changes to the defaults.

NOTE
Theinterp segment, which precedes all others, and the
dynamic segment, which follows thdata segment, are not

shown in Figure 4-2 and Figure 4-3 because you cannot manipu-
late them.

text = LOAD ?RX
text : $SPROGBITS ?AIW

data = LOAD ?RW
data : $PROGBITS ?AW
data : $SNOBITS ?2AW

note = NOTE
note : SNOTE

Figure 4-2. Default Mapfile

As each segment declaration in your mapfile is read in, it is compared to the existing list of
segment declarations as follows:

4-30

Internal Map Structure

Link Editor and Linking

1. If the segment does not already exist in the mapfile, but another with the
samesegment_typealue exists, the segment is added before all of the
existing segments of the sarsegment_type

2. If none of the segments in the existing mapfile has the ssegment type
value as the segment just read in, then the segment is added by
segment_typealue to maintain the following order:

1. INTERP
2. LOAD

3. DYNAMIC
4. NOTE

3. If the segment is ofsegment typd OAD and you have defined a
virtual_addressvalue for thisLOADable segment, the segment is placed
before anyL OADable segments without a defingdtual_addressvalue or
with a highervirtual_addressvalue, but after any segments with a
virtual_addresssalue that is lower.

As each mapping directive in your mapfile is read in, the directive is added after any other
mapping directives that you already specified for the same segment but before the default
mapping directives for that segment.

One of the most important data structureslth is the map structure. A default map
structure, corresponding to the model default mapfile mentioned above, is uddd by
when the command is executed. Then, if the mapfile option is udegarses the mapfile
to augment and/or override certain values in the default map structure.

A typical (although somewhat simplified) map structure is illustrated in Figure 4-3. The
“Entrance Criteria” boxes correspond to the information in the default mapping directives
and the “Segment Attribute Descriptors” boxes correspond to the information in the
default segment declarations. The “Output Section Descriptors” boxes give the detailed
attributes of the sections that fall under each segment. The sections themselves are in
circles.

4-31

Compilation Systems Volume 1 (Tools)

Entrance $PROGBITS $PROGBITS $NOBITS

Criteria 2AIW > 2AW — 2AW I

$NOTE

—

NO MATCH -
appended to end
of a.out

Segment text data
Attribute LOAD

Descriptors 2RX ?2RWX

S

.data
$PROGBITS
?2AWX

v

Output .datal
Section $PROGBITS
Descriptors 2AWX

\

.data2
$PROGBITS
?2AWX

Y

.bss

$NOBITS -
?AWX

.bss
from
rover.o

Figure 4-3. Simple Map Structure

> LOAD -

note
NOTE

.datal

from

rover.o

Sections
Placed in
Segments

Id performs the following steps when mapping sections to segments:

1. When a section is read ifld checks the list of Entrance Criteria looking
for a match. (All specified criteria must match):

* In Figure 4-3, for a section to fall into thext
a section_typevalue of PROGBITSand have aection_flagwvalue
of 2AIW. It need not have the nameext
specified in the Entrance Criteria. The section may be edhar!X
(in the section_flagsvalue) since nothing was specified for the
execute bit in the Entrance Criteria.

segment it must have

since no name is

¢ If no Entrance Criteria match is found, the section is placed at the
end of thea.out file after all other segments. (No program header
entry is created for this information. See Chapter 22 (“Executable
and Linking Format (ELF)") for information on program headers.)

4-32

Link Editor and Linking

2. When the section falls into a segmddt, checks the list of existing Output
Section Descriptors in that segment as follows:

¢ If the section attribute values match those of an existing Output
Section Descriptor exactly, the section is placed at the end of the list
of sections associated with that Output Section Descriptor.

* For instance, a section with section_namevalue of .datal , a
section_typevalue of SPROGBITS and asection_flagsralue of
?AWXfalls into the second Entrance Criteria box in Figure 4-3,
placing it in thedata segment. The section matches the second Out-
put Section Descriptor box exactlydatal , $PROGBITS ?2AWX
and is added to the end of the list associated with that box. The
.datal sections fronfido.o, rover.o , andsam.o illustrate
this point.

¢ If no matching Output Section Descriptor is found, but other Output
Section Descriptors of the sansection_typexist, a new Output
Section Descriptor is created with the same attribute values as the
section and that section is associated with the new Output Section
Descriptor. The Output Section Descriptor (and the section) are
placed after the last Output Section Descriptor of the same
section_typeThe.data2 section in Figure 4-3 was placed in this
manner.

¢ If no other Output Section Descriptors of the indicassttion_type
exist, a new Output Section Descriptor is created and the section is
placed so as to maintain the followisgction_typ@rder:

$DYNAMIC
$PROGBITS
$SYMTAB
$STRTAB
$RELA
$REL
$HASH
$NOTE
$NOBITS

The.bss section in Figure 4-3 illustrates this point.

NOTE

If the input section has a user-definedction_typevalue (i.e.,
betweenSHT_LOUSERand SHT_HIUSER see Chapter 22
(“Executable and Linking Format (ELF)")) it is treated as a
$PROGBITSsection. Note that no method exists for naming this
section_typeralue in the mapfile, but these sections can be
redirected using the other attribute value specifications
(section_flagssection_namjn the entrance criteria.

3. If a segment contains no sections after all of the command line object files
and libraries have been read in, no program header entry is produced for
that segment.

4-33

Compilation Systems Volume 1 (Tools)

NOTE

Input sections of typ&dSYMTAB, $STRTAB, $REL and
$RELA are used internally bid . Directives that refer to these
section_typesan only map output sections producedltly to
segments.

Error Messages
When using the mapfile optiofd can return the following types of error messages:

Warnings Do not stop execution of the link editor nor prevent the link
editor from producing a viabla.out .

Fatal Errors Stop execution of the link editor at the point at which the
fatal error occurred.

Eitherwarning: orfatal: appears at the beginning of each error message. Error mes-
sages are not numbered. The following conditions produce warnings:

* A physical_addressr avirtual_addressvalue or aengthvalue appears for
any segment other thanl®ADsegment (the directive is ignored)

* A second declaration line exists for the same segment that changes an
attribute value(s) (the second declaration overrides the original)

¢ An attribute value(s) gegment_typand/or segment_flaggor text and
data ; segment_typéor note) was changed for one of the built-in
segments

* An attribute value(s) gegment_type segment_flags length and/or
alignmenj was changed for a segment created by an implicit declaration

The following conditions produce fatal errors:

¢ Specifying more than onéaJ option on the command line
¢ Specifying both ther and the-M option on the same command line
* A mapfile cannot be opened or read

* A syntax error is found in the mapfile

NOTE

Id does not return an error if ile_name section_namge
segment_namer symbol_nameoes not conform to the rules in
“Mapfile Structure and Syntax” on page 4-24 unless this condi-
tion produces a syntax error. For instance, if a name begins with a
special character and this name is at the beginning of a directive
line,Id returns an error. If the name issaction_naméappearing
within the directive)ld does not return an error.

4-34

Link Editor and Linking

* More than one segment_type segment flags virtual_address
physical_addresdength or alignmentvalue appears on a single declaration
line

* You attempt to manipulate either thaterp segment ordynamic
segment in a mapfile

NOTE

Theinterp anddynamic segments are special built-in
segments that you cannot change in any way.

* A segment grows larger than the size specified by yleagth attribute
value

* A user-definedvirtual_addressvalue causes a segment to overlap the
previous segment

* More than onesection_namesection_typgor section_flagsralue appears
on a single directive line

¢ Aflag and its complement (e.gA and!A) appear on a single directive line

Quick-Reference Guide

1. By convention, shared objects, or dynamically linked libraries, are
designated by the prefikb and the suffix.so ; archives, or statically
linked libraries, are designated by the prefiz and the suffix.a.
libc.so , then, is the shared object version of the standard C library;
libc.a isthe archive version.

2. These conventions are recognized, in turn, by 4heoption to thecc
command. That is;l x directs the link editor to search the shared object
lib x.so orthe archive libranfib x.a . Thecc command automatically
passesic to the link editor. In other words, the compilation system
arranges for the standard C library to be linked with your program
transparently.

3. By default, the link editor chooses the shared object implementation of a
library, lib x.so , in preference to the archive library implementation,
lib x.a ,inthe same directory.

4. By default, the link editor searches for libraries in the standard places on
your system/ust/lib and/lib , inthat order.

In this arrangement, then, C programs are dynamically linked wWilib.so
automatically:

cc filel.c file2.c file3.c

To link your program statically wittibc.a , turn off the dynamic linking default with
the -Zlink=static option:

4-35

Compilation Systems Volume 1 (Tools)

4-36

cc -Zlink=static filel.c file2.c file3.c

Specify the-l option explicitly to link your program with any other library. If the library
is in the standard place, the command

cc filel.c file2.c file3.c - X

will direct the link editor to search fdib x.so , thenlib xa inthe standard place. Note

that the compilation system supplies shared object versions origaf andlibdl

(Other shared object libraries are supplied with the operating system, and usually are kept
in the standard places.) Note too that as a rule it's best to placat the end of the
command line.

If the library is not in the standard place, specify the path of the directory in which it is
stored with theL option

cc -L dir filel.c file2.c file3.c -Ix
or the environment variableD LIBRARY_PATH

LD_LIBRARY_PATH<dir;export LD_LIBRARY_PATH
cc filel.c file2.c file3.c -Ix

If the library is a shared object and is not in the standard place, you must also specify the
path of the directory in which it is stored with either the environment variable
LD_RUN_PATHAt link time, or the environment variableD LIBRARY_PATHat run

time:

LD_RUN_PATHgdir;export LD_RUN_PATH
LD_LIBRARY_PATH=dir;export LD_LIBRARY_PATH

It's best to use an absolute path when you set these environment variables. Note that
LD_LIBRARY_PATHis read both at link time and at run time.

To direct the link editor to seardib x.a wherelib x.so exists in the same directory,
turn off the dynamic linking default with theZlink=static option:

cc -Zlink=static -L dir filel.c file2.c file3.c -Ix

That command will direct the link editor to searlibhc.a aswell aslib x.a . To link
your program statically withlib x.a and dynamically withlibc.so , use the
-Zlibs=static and-Zlibs=dynamic options to turn dynamic linking off and on:

cc -L dir filel.c file2.c file3.c -Zlibs=static -Ix \
-Zlibs=dynamic

Files, including libraries, are searched for definitions in the order they are listed @no the
command line. The standard C library is always.

5
m4 Macro Processor

INtrOdUCTION . . . 5-1

MA MaACIOS . . .ttt e e e 5-2
Defining Macros.o 5-2
QUOLING . ot 5-3
ATQUMEBNES . . e 5-5
Arithmetic Built-Ins 5-7
File InClusion e 5-7
DIVEISIONS . . o ot e 5-8
System Command. 5-8
Conditionals 5-8
String Manipulation 5-9

PrINtING . . oo 5-10

Compilation Systems Volume 1 (Tools)

5
m4 Macro Processor

Introduction

m4is a general purpose macro processor that can be used to preprocess C and assembly
language programs, among other things. Besides the straightforward replacement of one
string of text by anothem4lets you perform

* Integer arithmetic
* File inclusion
¢ Conditional macro expansion

¢ String and substring manipulation

You can use built-in macros to perform these tasks or define your own macros. Built-in
and user-defined macros work exactly the same way except that some of the built-in
macros have side effects on the state of the process. A list of built-in macros appears on
them4(1) page.

The basic operation ah4is to read every legal token (string of ASCII letters and digits
and possibly supplementary characters) and determine if the token is the name of a macro.
The name of the macro is replaced by its defining text, and the resulting string is pushed
back onto the input to be rescanned. Macros may be called with arguments. The arguments
are collected and substituted into the right places in the defining text before the defining
text is rescanned.

Macro calls have the general form
nam€ argl, arg?2, ..., argn)

If a macro name is not immediately followed by a left parenthesis, it is assumed to have no
arguments. Leading unquoted blanks, tabs, and new-lines are ignored while collecting
arguments. Left and right single quotes are used to quote strings. The value of a quoted
string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the macro
definition, the trailing arguments are taken to be null. Macro evaluation proceeds normally
during the collection of the arguments, and any commas or right parentheses that appear in
the value of a nested call are as effective as those in the original input text. After argument
collection, the value of the macro is pushed back onto the input stream and rescanned.

You invokem4with a command of the form

m4 file file file

5-1

Compilation Systems Volume 1 (Tools)

m4 Macros

Defining Macros

5-2

Each argument file is processed in order. If there are no arguments or if an argument is a
hyphen, the standard input is read. If you are eventually going to compila4toaitput,
you could use a command something like this:

m4 filel.m4 > filel.c

You can use theD option to define a macro on the4 command line. Suppose you have
two similar versions of a program. You might have a singléinput file capable of
generating the two output files. For examfliel.m4 could contain lines such as

if(VER, 1, do_something
if(VER, 2, do_somethinpg

(makefiles are discussed in Chapter 13 (“Managing File Interactions with make”).)
Your makefile for the program might look like this:

filel.1.c : filel.m4
m4 -DVER=1 filel.m4 > filel.1.c

filel.2.c : filel.m4
m4 -DVER=2 filel.m4 > filel.2.c

You can use theU option to “undefine’VER If filel.m4 contains

if(VER, 1, do_somethinpg
if(VER, 2, do_somethinpg
ifndef(VER, do_something

then yourmakefile would contain

file0.0.c : filel.m4
m4 -UVER filel.m4 > filel.0.c

filel.1.c : filel.m4
m4 -DVER=1 filel.m4 > filel.1.c

filel.2.c : filel.m4
m4 -DVER=2 filel.m4 > filel.2.c

The primary built-inm4macro isdefine() , which is used to define new macros. The
following input

Quoting

m4 Macro Processo

define(name, stujf

causes the stringameto be defined astuff All subsequent occurrences dmewill be
replaced bystuff. The defined string must contain only ASCII alphanumeric or printable
supplementary characters and must begin with a letter or printable supplementary
character (underscore counts as a letter). The defining string is any text that contains
balanced parentheses; it may stretch over multiple lines. As a typical example

define(N, 100)
if (i > N)

definesNto be100 and uses the “symbolic consta{in a laterif statement. As noted,

the left parenthesis must immediately follow the walefine to signal thatdefine()

has arguments. If the macro name is not immediately followed by a left parenthesis, it is
assumed to have no arguments. In the previous example, khisna macro with no
arguments.

A macro name is only recognized as such if it appears surrounded by characters which
cannot be used in a macro name. In the following example

define(N, 100)

it (NNN > 100)
the variableNNNs unrelated to the defined madxteven though the variable contails.
m4dexpands macro names into their defining text as soon as possible.

define(N, 100)
define(M, N)

definesMto be100 because the strinlyis immediately replaced b}00 as the arguments
of define(M, N) are collected. To put this another wayNfis redefined Mkeeps the
value100.

There are two ways to avoid this behavior. The first, which is specific to the situation
described here, is to interchange the order of the definitions:

define(M, N)
define(N, 100)

Now Mis defined to be the strinly, so when the value d¥lis requested later, the result
will always be the value o at that time (because the M will be replacedMwhich will
be replaced by 100).

The more general solution is to delay the expansion of the argumendsfiok() by
guoting them. Any text surrounded by left and right single quotes is not expanded
immediately, but has the quotes stripped off as the arguments are collected. The value of
the quoted string is the string stripped of the quotes.

5-3

Compilation Systems Volume 1 (Tools)

5-4

define(N, 100)
define(M, ‘N’)

definesMas the strind\, not100.

The general rule is thah4 always strips off one level of single quotes whenever it
evaluates something. This is true even outside of macros. If the deditte is to appear
in the output, the word must be quoted in the input:

‘define’ = 1;

It's usually best to quote the arguments of a macro to assure that what you are assigning to
the macro name actually gets assigned. To redefintor example, you delay its
evaluation by quoting:

define(N, 100)

define(N’, 200)
Otherwise

define(N, 100)

define(N, 200)

the Nin the second definition is immediately replaced1§0. The effect is the same as
saying

define(100, 200)

Note that this statement will be ignored bytbecause only things that look like names
can be defined.

If left and right single quotes are not convenient for some reason, the quote characters can
be changed with the built-in macohangequote()

changequote([,)

In this example the macro makes the “quote” characters the left and right brackets instead
of the left and right single quotes. The quote symbols can be up to five characters long.
The original characters can be restored by usimangequote() without arguments:

changequote
undefine() removes the definition of a macro or built-in:
undefine(‘N’)

Here the macro removes the definition Nf Be sure to quote the argument to
undefine() . Built-ins can be removed withndefine() as well:

undefine(‘define’)
Note that once a built-in is removed or redefined, its original definition cannot be reused.

Macros can be renamed wittefn() . Suppose you want the built-gefine() to be
calledXYZ() . You specify

Arguments

m4 Macro Processo

define(XYZ, defn(‘define’))
undefine(‘define’)

After this, XYZ() takes on the original meaning défine()
XYZ(A, 100)
definesAto be100.

The built-in ifdef() provides a way to determine if a macro is currently defined.
Depending on the system, a definition appropriate for the particular machine can be made
as follows:

ifdef('pdpll’, ‘define(wordsize,16)")
ifdef('u3b’, ‘define(wordsize,32)")

The ifdef() macro permits three arguments. If the first argument is defined, the value
of ifdef() is the second argument. If the first argument is not defined, the value of
ifdef() is the third argument:

ifdef(‘unix’, on UNIX, not on UNIX)

If there is no third argument, the value ifdef() is null.

The previous sections focused on the simplest form of macro processing — replacing one
string with another (fixed) string. Macros can also be defined so that different invocations
have different results. In the replacement text for a macro (the second argument of its
define()), any occurrence ofn is replaced by th@th argument when the macro is
actually used. The mactump() , defined as

define(bump, $1 = $1 + 1)
is equivalentto« = x + 1 for bump(x) .

A macro can have as many arguments as you want, but only the first nine are accessible
individually, $1 through$9. $0 refers to the macro name itself. Arguments that are not
supplied are replaced by null strings, so a macro can be defined that simply concatenates
its arguments:

define(cat, $1$2$3$4$5$6$7$8%$9)

cat(x, y, z) is equivalent taxyz . Arguments$4 through$9 are null because no
corresponding arguments were provided.

Leading unquoted blanks, tabs, or new-lines that occur during argument collection are
discarded. All other white space is retained, so

define(a, b ¢

definesa to beb c.

5-5

Compilation Systems Volume 1 (Tools)

Arguments are separated by commas. A comma “protected” by parentheses does not
terminate an argument:

define(a, (b,c))

has two arguments, and(b,c) . You can specify a comma or parenthesis as an argument
by quoting it.

$* is replaced by a list of the arguments given to the macro in a subsequent invocation.
The listed arguments are separated by commas.

define(a, 1)
define(b, 2)
define(star, ‘$*)
star(a, b)
gives the result,2 .
star(‘a’, ‘b’)

gives the same result because strips the quotes froma andb as it collects the
arguments o$tar() , then expanda andb when it evaluatestar()

$@is identical to$* except that each argument in the subsequent invocation is quoted.
define(a, 1)
define(b, 2)
define(at, ‘$@")
at(‘a’, 'b")

gives the result,b because the quotes are put back on the arguments aiifen is
evaluated.

$# is replaced by the number of arguments in the subsequent invocation.

define(sharp, ‘$#)
sharp(1, 2, 3)

gives the resul8,
sharp()

gives the result, and
sharp

gives the resul0.

The built-in shift() returns all but its first argument. The other arguments are quoted
and pushed back onto the input with commas in between. The simplest case

shift(1, 2, 3)

gives2,3 . As with $@ you can delay the expansion of the arguments by quoting them, so

5-6

m4 Macro Processo

define(a, 100)
define(b, 200)

shift(a’, ‘b’)
gives the resulb because the quotes are put back on the arguments sHik() is
evaluated.

Arithmetic Built-Ins

File Inclusion

m4 provides three built-in macros for doing integer arithmeincr() increments its
numeric argument by decr() decrements by 1. To handle the common programming
situation in which a variable is to be defined as “one more than N” you would use

define(N, 100)
define(N1, ‘incr(N))

N1is defined as one more than the current valubdl.of

The more general mechanism for arithmetic is a built-in caffeal() , which is capable
of arbitrary arithmetic on integers. Its operators in decreasing order of precedence are

+ - (unary)

*%

* | %

+ -

== = < <= > >=
|~

&

| A

&&

Parentheses may be used to group operations where needed. All the operands of an
expression given teval() must ultimately be numeric. The numeric value of a true
relation (likel > 0)is 1, and false is 0. The precisioné@val() is 32 bits on the UNIX
operating system.

As a simple example, you can defiMto be2**N+1 with
define(M, ‘eval(2**N+1)")
Then the sequence

define(N, 3)
M(2)

gives9 as the result.

A new file can be included in the input at any time with the built-in maaaiude()

5-7

Compilation Systems Volume 1 (Tools)

Diversions

include(filenam§

inserts the contents dilenamein place of the macro and its argument. The value of
include() (its replacement text) is the contents of the file. If needed, the contents can
be captured in definitions and so on.

A fatal error occurs if the file named imclude() cannot be accessed. To get some
control over this situation, the alternate fosmnclude() (“silent include”) can be used.
This built-in says nothing and continues if the file named cannot be accessed.

m4output can be diverted to temporary files during processing, and the collected material
can be output on commandn4maintains nine of these diversions, numbered 1 through 9.

If the built-in macrodivert(n) is used, all subsequent output is put onto the end of a
temporary file referred to as. Diverting to this file is stopped by thdivert() or
divert(0) macros, which resume the normal output process.

Diverted text is normally output at the end of processing in numerical order. Diversions
can be brought back at any time by appending the new diversion to the current diversion.
Output diverted to a stream other than 0 through 9 is discarded. The buifidinert()

brings back all diversions in numerical ordendivert() with arguments brings back

the selected diversions in the order given. “Undiverting” discards the diverted text (as does
diverting) into a diversion whose number is not between 0 and 9, inclusive.

The value ofundivert() is notthe diverted text. Furthermore, the diverted material is
notrescanned for macros. The built-divnum() returns the number of the currently
active diversion. The current output stream is 0 during normal processing.

System Command

Conditionals

5-8

Any program can be run by using tegscmd() built-in:
syscmd(date)

invokes the UNIX operating systegate command. Normallysyscmd() would be
used to create a file for a subsequiemude()

To make it easy to name files uniquely, the builtrraketemp() replaces a string of
XXXXXin the argument with the process ID of the current process.

Arbitrary conditional testing is performed with the built-fielse() . In its simplest
form

ifelse(a,b,c, g

m4 Macro Processo

compares the two stringsandb. If aandb are identicaljfelse() returns the string.
Otherwise, stringl is returned. Thus, a macro calledmpare() can be defined as one
that compares two strings and retuyes or no, respectively, if they are the same or
different:

define(compare, ‘ifelse($1, $2, yes, no))

Note the quotes, which prevent evaluatiorifefse() from occurring too early. If the
final argument is omitted, the result is null, so

ifelse(a,b,qg
is cif a matches, and null otherwise.

ifelse() can actually have any number of arguments and provides a limited form of
multi-way decision capability. In the input

ifelse(a,b,c,d, e f Y

if the stringa matches the string, the result isc. Otherwise, ifd is the same as, the
result isf. Otherwise, the result ig.

String Manipulation

Thelen() macro returns the length of the string (humber of characters) in its argument.
len(abcdef)

is 6, and
len((a,b))

is5.

Thesubstr() macro can be used to produce substrings of strings. If you type
substr(s, i, n)

it will return the substring o that starts at théh position (origin 0) and i® characters
long. If nis omitted, the rest of the string is returned. If you type

substr(‘now is the time’,1)

it will return the following string:
now is the time

If i or nare out of range, a blank line is returned. For example, if you type
substr(‘now is the time’,-1)

or

substr(‘now is the time’,1,39)

5-9

Compilation Systems Volume 1 (Tools)

Printing

5-10

you will get a blank line.

Theindex(sl ,s2) macro returns the index (position)si where the string2 occurs,
-1 if it does not occur. As witlsubstr() , the origin for strings is 0.

translit() performs character transliteration and has the general form
translit(s, f, 9

which modifiess by replacing any character inby the corresponding charactertn
Using input

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digitd.idfshorter thaif, characters that do not
have an entry i are deleted. As a limiting casetifs not present at all, characters frdm
are deleted frons.

translit(s, aeiou)
would delete vowels froms.

The macrodnl() deletes all characters that follow it up to and including the next
new-line. It is useful mainly for throwing away empty lines that otherwise would clutter up
m4output. Using input

define(N, 100)
define(M, 200)
define(L, 300)

results in a new-line at the end of each line that is not part of the definition. The new-line
is copied into the output where it may not be wanted. When youdadiy to each of
these lines, the new-lines will disappear. Another method of achieving the same resultis to
input

divert(-1)
define(...)

divert

The built-inerrprint() writes its arguments out on the standard error file. An example
would be

errprint(‘fatal error’)

dumpdef() is a debugging aid that dumps the current names and definitions of items
specified as arguments. If no arguments are given, then all current names and definitions
are printed.

Lexical Analysis with lex

Introduction

Generating a Lexical Analyzer Program

Writing lex Source

The Fundamentals oflexRules
Regular Expressions

OPEIAIOIS . . .t
Actions

Advanced lex Usage

Some Special Features
lex Routines

DefiNitioNS.

Start ConditioNns.

USEr ROULINESo e e e e e e

Using lexwithyacc
Miscellaneous

Summary of Source Format

6

Compilation Systems Volume 1 (Tools)

6
Lexical Analysis with lex

Introduction

lex is a software tool that lets you solve a wide class of problems drawn from text
processing, code enciphering, compiler writing, and other areas. In text processing, you
might check the spelling of words for errors; in code enciphering, you might translate
certain patterns of characters into others; and in compiler writing, you might determine
what the tokens are in the program to be compiled. The task common to all these problems
is lexical analysis: recognizing different strings of characters that satisfy certain
characteristics. Hence the nateg .

You don't have to uskex to handle problems of this kind. You could write programs in a
standard language like C to handle them, too. In fact, Wdrat does is produce such C
programs.lex is therefore called a program generator.) Wleat offers you, once you
acquire a facility with it, is typically a faster, easier way to create programs that perform
these tasks. Its weakness is that it often produces C programs that are longer than
necessary for the task at hand and that execute more slowly than they otherwise might. In
many applications this is a minor consideration, and the advantages of lesing
considerably outweigh it.

lex can also be used to collect statistical data on features of an input text, such as
character count, word length, number of occurrences of a word, and so forth. In the
remaining sections of this chapter, we will see

* How to generate a lexical analyzer program
* How to writelex source
* How to translate source

* How to uselex with yacc

Generating a Lexical Analyzer Program

lex generates a C language scanner from a source specification that you write to solve the
problem at hand. This specification consists of a list of rules indicating sequences of
characters — expressions — to be searched for in an input text, and the actions to take
when an expression is found. We'll show you how to writexa specification in “Writing

lex Source” on page 6-3.

The C source code for the lexical analyzer is generated when you enter

6-1

Compilation Systems Volume 1 (Tools)

6-2

lex lex.l

wherelex.I s the file containing youtex specification. (The namkex.l s the
favored convention, but you may use whatever name you want. Keep in mind, though, that
the.l suffix is a convention recognized by other UNIX system tools, in particular,
make.) The source code is written to an output file called.yy.c by default. That file
contains the definition of a function calleg/lex() that returns 1 whenever an
expression you have specified is found in the input text, 0 when end of file is encountered.
Each call toyylex() parses one token. Wheyylex() is called again, it picks up
where it left off.

Note that runnindex on a specification that is spread across several files
lex lex1.l lex2.I lex3.l

produces onéex.yy.c . Invokinglex withthe-t option causes it to write its output to
stdout rather tharlex.yy.c , so that it can be redirected:

lex -t lex. > lex.c
Options tolex must appear between the command name and the file name argument.

The lexical analyzer code storedlex.yy.c (or the.c file to which it was redirected)

must be compiled to generate the executable object program, or scanner, that performs the
lexical analysis of an input text. THex library,libl.a , supplies a defauthain() that

calls the functioryylex() , so you need not supply your ownain() . The library is
accessed by specifyirdpl ~ with the-l option tocc:

cc lex.yy.c -l

Alternatively, you may want to write your own driver. The following is similar to the
library version:

extern int yylex();

int yywrap()
{

}

return(l);

main()

{
while (yylex())

}

We'll take a closer look at the functigrywrap() in “lex Routines” on page 6-10. For
now it's enough to note that when your driver file is compiled viéthyy.c

cc lex.yy.c driver.c

its main() will call yylex() atrun time exactly as if theex library had been loaded.
The resulting executable reasislin and writes its output tetdout . Figure 6-1 shows
howlex works.

Lexical Analysis with lex

lex lexical
source | lex [P analé/zer
code

'

C
compiler

'

input lexical output:

text | analyzer | —pp| tokens,
program text, etc.

Figure 6-1. Creation and Use of a Lexical Analyzer with lex

Writing lex Source

lex source consists of at most three sections: definitions, rules, and user-defined routines.
The rules section is mandatory. Sections for definitions and user routines are optional, but
if present, must appear in the indicated order:

definitions
%%

rules

%%

user routines

The Fundamentals of lex Rules

The mandatory rules section opens with the delim¥@blf a routines section follows,
another%%lelimiter ends the rules section. Th&@elimiters must be entered at the
beginning of a line, without leading blanks. If there is no second delimiter, the rules
section is presumed to continue to the end of the program. Lines in the rules section that
begin with white space and that appear before the first rule are copied to the beginning of
the functionyylex() , immediately after the first brace. You might use this feature to
declare local variables forylex()

Each rule consists of a specification of the pattern sought and the action(s) to take on
finding it. The specification of the pattern must be entered at the beginning of a line. The
scanner writes input that does not match a pattern directly to the output file. So the
simplest lexical analyzer program is just the beginning rules delinit@slt writes out the

entire input to the output with no changes at all.

6-3

Compilation Systems Volume 1 (Tools)

Regular Expressions

Operators

6-4

You specify the patterns you are interested in with a notation called a regular expression.
A regular expression is formed by stringing together characters with or without operators.
The simplest regular expressions are strings of text characters with no operators at all:

apple
orange
pluto

These three regular expressions match any occurrences of those character strings in an
input text. If you want to have the scanner remove every occurrengenfie from the
input text, you could specify the rule

orange ;

Because you specified a null action on the right with the semicolon, the scanner does
nothing but print out the original input text with every occurrence of this regular
expression removed, that is, without any occurrence of the sbriaigge at all.

Unlike orange above, most of the expressions that we want to search for cannot be
specified so easily. The expression itself might simply be too long. More commonly, the
class of desired expressions is too large; it may, in fact, be infinite. Thanks to the use of
operators — summarized in Table 6-1 below — we can form regular expressions to
signify any expression of a certain class. Fheperator, for instance, means one or more
occurrences of the preceding expression, Theeans 0 or 1 occurrence(s) of the
preceding expression (which is equivalent, of course, to saying that the preceding
expression is optional), anfdmeans 0 or more occurrences of the preceding expression.
(It may at first seem odd to speak of 0 occurrences of an expression and to need an
operator to capture the idea, but it is often quite helpful. We will see an example in a
moment.) San+is a regular expression that matches any stringsof

mmm
m
mmmmm

and7* is a regular expression that matches any string of zero or ifre

77
7rrT7

777
The empty third line matches because it ha¥ran it at all.

The| operator indicates alternation, so tredtjcd matches eitheab or cd. The
operators{} specify repetition, so tha{1,5} looks for 1 to 5 occurrences .
Brackets]] , indicate any one character from the string of characters specified between
the brackets. Thugdgka] matches a singld, g, k, ora. Note that the characters
between brackets must be adjacent, without spaces or punctuatiofr.opiggator, when it
appears as the first character after the left bracket, indicates all characters in the standard
set except those specified between the brackets. (Noté tfat, and” may serve other

Lexical Analysis with lex

purposes as well; see below.) Ranges within a standard alphabetic or numericforder (
throughZz, a throughz, 0 through9) are specified with a hyphefa-z] , for instance,
indicates any lowercase letter. Somewhat more interestingly,

[A-Za-z0-9*&#]

is a regular expression that matches any letter (whether upper or lowercase), any digit, an
asterisk, an ampersand, or a sharp character. Given the input text

$$$$?? ?2?2?2?211*E$ $SEEPS&+====r—# ((

the lexical analyzer with the previous specification in one of its rules will recoghie

r, and#, perform on each recognition whatever action the rule specifies (we have not
indicated an action here), and print out the rest of the text as it stands. If you want to
include the hyphen character in the class, it should appear as the first or last character in
the bracketsf-A-Z] or[A-Z-]

The operators become especially powerful in combination. For example, the regular
expression to recognize an identifier in many programming languages is

[a-zA-Z][0-9a-zA-Z]*

An identifier in these languages is defined to be a letter followed by zero or more letters or
digits, and that is just what the regular expression says. The first pair of brackets matches
any letter. The second, if it were not followed by awould match any digit or letter. The

two pairs of brackets with their enclosed characters would then match any letter followed
by a digit or a letter. But with thé&, the example matches any letter followed by any
number of letters or digits. In particular, it would recognize the following as identifiers:

e

not
idenTIFIER
pH
EngineNo99
R2D2

Note that it would not recognize the following as identifiers:

not_idenTIFIER
5times
$hello

becausaot_idenTIFIER has an embedded underscdséimes starts with a digit,
not a letter; ancbhello starts with a special character.

A potential problem with operator characters is how we can specify them as characters to
look for in a search pattern. The last example, for instance, will not recognize text with a

in it. lex solves the problem in one of two ways: an operator character preceded by a
backslash, or characters (except backslash) enclosed in double quotation marks, are taken
literally, that is, as part of the text to be searched for. To use the backslash method to
recognize, say, & followed by any number of digits, we can use the pattern

\[1-9]*

6-5

Compilation Systems Volume 1 (Tools)

Actions

6-6

To recognize A itself, we need two backslashds:. Similarly, “x*x” matchesc*x ,
and'y* z“ matcheg/”z . Otherlex operators are noted as they arise in the discussion
below.lex recognizes all the C language escape sequences.

Table 6-1. lex Operators

Expression Description
\ x X, if xis alex operator
“xy’ Xy, even ifx ory arelex operators (except)
[xy] xXory
[x-7 XY, orz
™ X any character but

any character but new-line

AX x at the beginning of a line

<y>X xwhenlex is in start conditiory

x$ x at the end of a line

X? optionalx

X* 0,1, 2,...instances of

x+ 1,2,3,...instances of

x{m, n} mthroughn occurrences of

x¥ yy eitherxxoryy

X | the action orxis the action for the next rule
(x) X

X'y x but only if followed byy

{xx the translation okx from the definitions section

Once the scanner recognizes a string matching the regular expression at the start of a rule,
it looks to the right of the rule for the action to be performed. You supply the actions.
Kinds of actions include recording the token type found and its value, if any; replacing one
token with another; and counting the number of instances of a token or token type. You
write these actions as program fragments in C. An action may consist of as many state-
ments as are needed for the job at hand. You may want to change the text in some way or
simply print a message noting that the text has been found. So, to recognize the expression
Amelia Earhart and to note such recognition, the rule

"Amelia Earhart" printf("found Amelia");

would do. And to replace in a text lengthy medical terms with their equivalent acronyms,
arule such as

Electroencephalogram printf("EEG");

Lexical Analysis with lex

would be called for. To count the lines in a text, we need to recognize the ends of lines and
increment a line counter. As we have notexk uses the standard C escape sequences,
including\n for new-line. So, to count lines we might have

\n lineno++;

wherelineno , like other C variables, is declared in the definitions section that we
discuss later.

Input is ignored when the C language null statemeéstspecified. So the rule
[\\n] ;

causes blanks, tabs, and new-lines to be ignored. Note that the alternation operaror
also be used to indicate that the action for a rule is the action for the next rule. The previ-
ous example could have been written:

\t [
\n ;

with the same result.

The scanner stores text that matches an expression in a character arrayytabédl

You can print or manipulate the contents of this array as you like. In liact,provides a
macro calledeCHQhat is equivalent terintf("%s", yytext) . We'll see an example
of its use in “Start Conditions” on page 6-13.

Sometimes your action may consist of a long C statement, or two or more C statements,
and you wish to write it on several lines. To inforex that the action is for one rule

only, simply enclose the C code in braces. For example, to count the total number of all
digit strings in an input text, print the running total of the number of digit strings, and print
out each one as soon as it is found, ylax code might be

\+?[1-9]+ { digstrngcount++;
printf("%d",digstrngcount);
printf("%s", yytext); }

This specification matches digit strings whether they are preceded by a plus sign or not,
because th@ indicates that the preceding plus sign is optional. In addition, it will catch
negative digit strings because that portion following the minus sign will match the
specification. “Advanced lex Usage” explains how to distinguish negative from positive
integers.

Advanced lex Usage

lex provides a suite of features that let you process input text riddled with quite
complicated patterns. These include rules that decide what specification is relevant when
more than one seems so at first; functions that transform one matching pattern into
another; and the use of definitions and subroutines. Before considering these features, you
may want to affirm your understanding thus far by examining an example that draws
together several of the points already covered:

6-7

Compilation Systems Volume 1 (Tools)

(o)

-[0-9]+ printf("negative integer");

\+?[0-9]+ printf("positive integer");

-0.[0-9]+ printf("negative fraction, no whole number part");

rail[\t]+road printf("railroad is one word");

crook printf("Here's a crook");

function subprogcount++;

Gla-zA-Z]* { printf("'may have a G word here:%s", yytext);
Gstringcount++; }

- /

The first three rules recognize negative integers, positive integers, and negative fractions
between 0 and -1. The use of the terminatinmy each specification ensures that one or
more digits compose the number in question. Each of the next three rules recognizes a
specific pattern. The specification foailroad matches cases where one or more
blanks intervene between the two syllables of the word. In the caseslmfad and

crook , we could have simply printed a synonym rather than the messages stated. The
rule recognizing a function simply increments a counter. The last rule illustrates several
points:

* The braces specify an action sequence that extends over several lines.

* Its action uses théex array yytext[] , which stores the recognized
character string.

* |ts specification uses theto indicate that zero or more letters may follow
theG

Some Special Features

6-8

Besides storing the matched input texyiiext[] , the scanner automatically counts the
number of characters in a match and stores it in the varigeng . You may use this
variable to refer to any specific character just placed in the arytgxt]] . Remember
that C language array indexes start with 0, so to print out the third digit (if there is one) in
a just recognized integer, you might enter

[1-9]+ {if (yyleng > 2)
printf("%c", yytext[2]); }

lex follows a number of high-level rules to resolve ambiguities that may arise from the
set of rules that you write. In the following lexical analyzer example, the “reserved word”
end could match the second rule as well as the eighth, the one for identifiers:

Lexical Analysis with lex

/begin

end

while

if

package

reverse

loop
[a-zA-Z][a-zA-Z0-9]*

[0-9]+

\+

return(BEGIN);
return(END);
return(WHILE);
return(IF);
return(PACKAGE);
return(REVERSE);
return(LOOP);
{ tokval = put_in_tabl();
return(IDENTIFIER); }
{ tokval = put_in_tabl();
return(INTEGER); }
{ tokval = PLUS;

~

return(ARITHOP); }

\- { tokval = MINUS;
return(ARITHOP); }

> { tokval = GREATER;
return(RELOP); }

>= { tokval = GREATEREQL;
return(RELOP); }

N)

lex follows the rule that, where there is a match with two or more rules in a specification,
the first rule is the one whose action will be executed. By placing the rulerfdrand the

other reserved words before the rule for identifiers, we ensure that our reserved words will
be duly recognized.

Another potential problem arises from cases where one pattern you are searching for is the
prefix of another. For instance, the last two rules in the lexical analyzer example above are
designed to recognizeand>=. If the text has the string= at one point, you might worry

that the lexical analyzer would stop as soon as it recognized tttearacter and execute

the rule for>, rather than read the next character and execute the ruke fex follows

the rule that it matches the longest character string possible and executes the rule for that.
Here the scanner would recognize thee and act accordingly. As a further example, the
rule would enable you to distinguishfrom ++ in a C program.

Still another potential problem exists when the analyzer must read characters beyond the
string you are seeking because you cannot be sure that you've in fact found it until you've

read the additional characters. These cases reveal the importance of trailing context. The
classic example here is ti¥Ostatement in Fortran. In the statement

DO 50 k =1, 20, 1

we cannot be sure that the first 1 is the initial value of the inklextil we read the first
comma. Until then, we might have the assignment statement

DO50k = 1

(Remember that Fortran ignores all blanks.) The way to handle this is to use the/slash,
which signifies that what follows is trailing context, something not to be stored in
yytext[] , because itis not part of the pattern itself. So the rule to recognize the Fortran
DOstatement could be

DO/([J*[0-9]+[J*[a-zA-Z0-9]+=[a-zA-Z0-9]+,) {
printf("found DQO");
}

6-9

Compilation Systems Volume 1 (Tools)

lex Routines

6-10

Different versions of Fortran have limits on the size of identifiers, here the index name. To
simplify the example, the rule accepts an index name of any length. See “Start Conditions”
on page 6-13 for a discussion lek s similar handling of prior context.

lex uses theb symbol as an operator to mark a special trailing context — the end of a
line. An example would be a rule to ignore all blanks and tabs at the end of a line:

[\]+$;
which could also be written:
[M]+An ;

On the other hand, if you want to match a pattern only when it starts a line or a file, you
can use thé operator. Suppose a text-formatting program requires that you not start a
line with a blank. You might want to check input to the program with some such rule as

N printf("error: remove leading blank");

Note the difference in meaning when theoperator appears inside the left bracket, as
described in “Operators” on page 6-4.

Some of your action statements themselves may require your reading another character,
putting one back to be read again a moment later, or writing a character on an output
device.lex supplies three macros to handle these taskmpyt() , unput(c) , and
output(c) , respectively. One way to ignore all characters between two special
characters, say between a pair of double quotation marks, would beitgpus@ , thus:

\" while (input() !'= ");

Upon finding the first double quotation mark, the scanner will simply continue reading all
subsequent characters so long as none is a double quotation mark, and not look for a match
again until it finds a second double quotation mark. (See the further examples of
input() andunput(c) usage in “User Routines” on page 6-14.)

By default, these routines are provided as macro definitions. To handle special I/O needs,
such as writing to several files, you may use standard 1/O routines in C to rewrite the
functions. Note, however, that they must be modified consistently. In particular, the char-
acter set used must be consistent in all routines, and a value of 0 returmeglulbf)

must mean end of file. The relationship betweeput() andunput(c) must be
maintained or théex lookahead will not work.

If you do provide your owrinput() , output(c) , orunput(c) , you will have to
write a#undef input and so on in your definitions section first:

#undef input
#undef output

#define input() . . . etc.
more declarations

Lexical Analysis with lex

Your new routines will replace the standard ones. See “Definitions” on page 6-12 for fur-
ther details.

A lex library routine that you may sometimes want to redefingyiwrap() , which is

called whenever the scanner reaches end of filgywfrap() returns 1, the scanner con-
tinues with normal wrapup on end of input. Occasionally, however, you may want to
arrange for more input to arrive from a new source. In that case, redgfimap() to

return 0 whenever further processing is required. The deysultap() always returns 1.

Note that it is not possible to write a normal rule that recognizes end of file; the only
access to that condition is througlwrap() . Unless a private version afiput() is
supplied, a file containing nulls cannot be handled because a value of 0 returned by
input() is taken to be end of file.

There are a number ¢éx routines that let you handle sequences of characters to be
processed in more than one way. These inclyygteore() , yyless(n) , andREJECT

Recall that the text that matches a given specification is stored in theyatext[] . In
general, once the action is performed for the specification, the charactgyteit]]

are overwritten with succeeding characters in the input stream to form the next match. The
functionyymore() , by contrast, ensures that the succeeding characters recognized are
appended to those alreadyygtext[]] . This lets you do one thing and then another,
when one string of characters is significant and a longer one including the first is
significant as well. Consider a language that defines a string as a set of characters between
double quotation marks and specifies that to include a double quotation mark in a string it
must be preceded by a backslash. The regular expression matching that is somewhat
confusing, so it might be preferable to write:

v
if (yytextlyyleng-1] == "\")
yymore();
else
. . . normal processing
}
When faced with the strintabc” def” | the scanner will first match the characters

“abc, whereupon the call tgymore() will cause the next part of the stririgef to be
tacked on the end. The double quotation mark terminating the string should be picked up
in the code labeled “normal processing.”

The functionyyless(n) lets you specify the number of matched characters on which an
action is to be performed: only the firatcharacters of the expression are retained in
yytext[] . Subsequent processing resumes atrithe+ 1 character. Suppose you are
again in the code deciphering business and the idea is to work with only half the characters
in a sequence that ends with a certain one, say upper or loweZcdses code you want
might be

[a-yA-Y]+[ZZ] { vyyless(yyleng/2);
process first half of string. . . }

Finally, the functiorREJECTlets you more easily process strings of characters even when
they overlap or contain one another as p&REJECTdoes this by immediately jumping to
the next rule and its specification without changing the contentg/text[] . If you

want to count the number of occurrences both of the regular exprességmdragon and

of its subexpressiodragon in an input text, the following will do:

6-11

Compilation Systems Volume 1 (Tools)

Definitions

6-12

snapdragon {countflowers++; REJECT;}
dragon countmonsters++;

As an example of one pattern overlapping another, the following counts the number of
occurrences of the expressioo@median anddiana , even where the input text has
sequences such asmediana.

comedian {comiccount++; REJECT;}
diana princesscount++;

Note that the actions here may be considerably more complicated than simply
incrementing a counter. In all cases, you declare the counters and other necessary variables
in the definitions section commencing tlex specification.

Thelex definitions section may contain any of several classes of items. The most critical

are external definitions, preprocessor statements#likelude , and abbreviations.

Recall that for validex source this section is optional, but in most cases some of these
items are necessary. Preprocessor statements and C source code should appear between a
line of the form%{ and one of the forn®}. All lines between these delimiters —
including those that begin with white space — are copietkioyy.c immediately

before the definition ofylex() . (Lines in the definition section that are not enclosed by

the delimiters are copied to the same place provided they begin with white space.) The
definitions section is where you would normally place C definitions of objects accessed by
actions in the rules section or by routines with external linkage.

One example occurs in usingx with yacc , which generates parsers that call a lexical
analyzer. In this context, you should include the fji¢ab.h , which may contain
#define s for token names:

%{

#include "y.tab.h"
extern int tokval;
int lineno;

%%}

After the %} that ends you#include 's and declarations, you place your abbreviations

for regular expressions to be used in the rules section. The abbreviation appears on the left
of the line and, separated by one or more spaces, its definition or translation appears on the
right. When you later use abbreviations in your rules, be sure to enclose them within
braces. Abbreviations avoid needless repetition in writing your specifications and make
them easier to read.

As an example, reconsider thex source reviewed at the beginning of this section on
advancedex usage. The use of definitions simplifies our later reference to digits, letters,
and blanks. This is especially true if the specifications appear several times:

Start Conditions

Lexical Analysis with lex

(> A

L [a-zA-Z]

B [g+

%%

-{D}+ printf("negative integer");

\+?{D}+ printf("positive integer");

-0.{D}+ printf("negative fraction");

G{L}* printf("may have a G word here");
rail{B}road printf("railroad is one word");

crook printf("criminal”);

NS J

Some problems require for their solution a greater sensitivity to prior context than is
afforded by the® operator alone. You may want different rules to be applied to an
expression depending on a prior context that is more complex than the end of a line or the
start of a file. In this situation you could set a flag to mark the change in context that is the
condition for the application of a rule, then write code to test the flag. Alternatively, you
could define folex the different “start conditions” under which it is to apply each rule.

Consider this problem: copy the input to the output, except change themamit to the
word first on every line that begins with the lettar changemagic to second on
every line that begins with; changemagic tothird on every line that begins witb.
Here is how the problem might be handled with a flag. Recall E@HOs alex macro
equivalent taprintf(“%s”, yytext)

- A

i
%%

Na {flag = 'a’; ECHO;}
b {flag = 'b; ECHO;}
¢ {flag = 'c¢'; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)

{
case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c: printf("third"); break;
default: ECHO; break;

}

N J

To handle the same problem with start conditions, each start condition must be introduced
to lex in the definitions section with a line reading

%Start namel name2 . .

where the conditions may be named in any order. The v&att may be abbreviated to
Sors. The conditions are referenced at the head of a rule witibrackets. So

<nameZXexpression

6-13

Compilation Systems Volume 1 (Tools)

User Routines

6-14

is a rule that is only recognized when the scanner is in start conditiorel. To enter a
start condition, execute the action statement

BEGIN namel
which changes the start conditionnamel To resume the normal state
BEGIN 0;

resets the initial condition of the scanner. A rule may be active in several start conditions.
That s,

<namel name2 name%
is a valid prefix. Any rule not beginning with the> prefix operators is always active.

The example can be written with start conditions as follows:

@tart AA BB CC \

%%

"a {ECHO; BEGIN AA}
"b {ECHO; BEGIN BB}
¢ {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
<AA>magic printf(“first");
<BB>magic printf("second");
<CC>magic printf("third");

o)

You may want to use your own routineslax for much the same reason that you do soin
other programming languages. Action code that is to be used for several rules can be
written once and called when needed. As with definitions, this can simplify the writing
and reading of programs. The functipnt_in_tabl() , to be discussed in “Using lex

with yacc” on page 6-15, is a good candidate for the user routines sectioteaf a
specification.

Another reason to place a routine in this section is to highlight some code of interest or to
simplify the rules section, even if the code is to be used for one rule only. As an example,
consider the following routine to ignore comments in a language like C where comments
occur betweert and*/ :

Lexical Analysis with lex

(o N

static skipcmnts();

9%}

%%

[skipcmnts();

. /* rest of rules */
%%

static

skipcmnts()

for(;;)
while (input() = ")

" (input() 1= ')

unput(yytext[yyleng-1])
else return;

}
}

NS J

There are three points of interest in this example. First,uhput(c) macro (putting
back the last character read) is necessary to avoid missing thé fihtle comment ends
with a**/ . In this case, eventually having read athe scanner finds that the next
character is not the terminél and must read some more. Second, the expression
yytext[yyleng-1] picks out that last character read. Third, this routine assumes that
the comments are not nested, which is indeed the case with the C language.

Using lex with yacc

If you work on a compiler project or develop a program to check the validity of an input
language, you may want to use the UNIX system tamlc (see Chapter 7 (“Parsing with
yacc")).yacc generates parsers, programs that analyze input to insure that it is
syntactically correctlex often forms a fruitful union withyacc in the compiler
development context. Whether or not you plan to lexe with yacc , be sure to read this
section because it covers information of interest tdeadl programmers.

As noted, a program uses thex -generated scanner by repeatedly calling the function
yylex() . This name is used becausgacc -generated parser calls its lexical analyzer
with this very name. To uskex to create the lexical analyzer for a compiler, you want to
end eacHex action with the statemeneturn token wheretokenis a defined term
whose value is an integer. The integer value of the token returned indicates to the parser
what the lexical analyzer has found. The parser, cajiggiarse() by yacc , then
resumes control and makes another call to the lexical analyzer when it needs another
token.

In a compiler, the different values of the token indicate what, if any, reserved word of the
language has been found or whether an identifier, constant, arithmetic operator, or
relational operator has been found. In the latter cases, the analyzer must also specify the
exact value of the token: what the identifier is, whether the constant is9say388,
whether the operator is or *, and whether the relational operato=i®r >. Consider the

6-15

Compilation Systems Volume 1 (Tools)

following portion oflex source (discussed in another context earlier) for a scanner that
recognizes tokens in a “C-like” language:

begin

end

while

if

package

reverse

loop
[a-zA-Z][a-zA-Z0-9]*

[0-9]+

\+

return(BEGIN);
return(END);
return(WHILE);
return(IF);
return(PACKAGE);
return(REVERSE);
return(LOOP);
{ tokval = put_in_tabl();
return(IDENTIFIER); }
{ tokval = put_in_tabl();
return(INTEGER); }
{ tokval = PLUS;

~

6-16

return(ARITHOP); }

\- { tokval = MINUS;
return(ARITHOP); }

> { tokval = GREATER;
return(RELOP); }

>= { tokval = GREATEREQL;
return(RELOP); }

- /

Despite appearances, the tokens returned, and the values assigolegito , are indeed
integers. Good programming style dictates that we use informative terms sB&HGAN,

END WHILE and so forth to signify the integers the parser understands, rather than use
the integers themselves. You establish the association by ésiefine statements in

your parser calling routine in C. For example,

#define BEGIN 1
#define END 2

#define PLUS 7

If the need arises to change the integer for some token type, you then change the
#define statement in the parser rather than hunt through the entire program changing
every occurrence of the particular integer. In usyagc to generate your parser, insert

the statement

#include "y.tab.h"

in the definitions section of youex source. The filg/.tab.h , which is created when
yacc is invoked with thed option, providestdefine statements that associate token
names such aBEGIN, ENDQ and so on with the integers of significance to the generated
parser.

To indicate the reserved words in the example, the returned integer values suffice. For the
other token types, the integer value of the token type is stored in the programmer-defined
variabletokval . This variable, whose definition was an example in the definitions
section, is globally defined so that the parser as well as the lexical analyzer can access it.
yacc provides the variablgylval for the same purpose.

Note that the example shows two ways to assign a valuekeal . First, a function
put_in_tabl() places the name and type of the identifier or constant in a symbol table
so that the compiler can refer to it in this or a later stage of the compilation process. More

Miscellaneous

Lexical Analysis with lex

to the present poinput_in_tabl() assigns a type value tokval so that the parser
can use the information immediately to determine the syntactic correctness of the input
text. The functiorput_in_tabl() would be a routine that the compiler writer might

place in the user routines section of the parser. Second, in the last few actions of the
exampletokval is assigned a specific integer indicating which arithmetic or relational
operator the scanner recognized. If the varidll&JS for instance, is associated with the
integer 7 by means of thiédefine statement above, then whenr-as recognized, the
action assigns ttokval the value 7, which indicates the The scanner indicates the
general class of operator by the value it returns to the parser (that is, the integer signified
by ARITHOPor RELOB.

In usinglex with yacc , either may be run first. The command
yacc -d grammar.y

generates a parser in the fifetab.c . As noted, thed option creates the file
y.tab.h , which contains thetdefine statements that associate fecc -assigned
integer token values with the user-defined token names. Now you can iteokevith
the command

lex lex.|
then compile and link the output files with the command
cc lex.yy.c y.tab.c -ly -l

Note that theyacc library is loaded (vialy) before thdex library (via-ll) to ensure
that the suppliednain() will call the yacc parser.

Recognition of expressions in an input text is performed by a deterministic finite
automaton generated Ibgx . The-v option prints out for you a small set of statistics
describing the finite automaton. (For a detailed account of finite automata and their
importance forlex , see the Aho, Sethi, and Ullman tex@ompilers: Principles,
Techniques, and Toglé&ddison-Wesley, 1986.)

lex uses atable to represent its finite automaton. The maximum number of states that the
finite automaton allows is set by default to 500. If ydex source has alarge number of
rules or the rules are very complex, this default value may be too small. You can enlarge
the value by placing another entry in the definitions section of y@ur source as follows:

%n 700

This entry telldex to make the table large enough to handle as many as 700 states. (The
-v option will indicate how large a humber you should choose.) If you have need to
increase the maximum number of state transitions beyond 2000, the designated parameter
is a, thus:

%a 2800

6-17

Compilation Systems Volume 1 (Tools)

Summary of Source Format

* The general form of é&&x source file is

definitions
%%

rules

%%

user routines

* The definitions section contains any combination of
- definitions of abbreviations in the form
name space translation
- included code in the form

%
C code
%}

- start conditions in the form
Start namel name2 . .
- changes to internal array sizes in the form

% nnn
wherennnis a decimal integer representing an array size xandlects the

parameter as follows:

p positions

states

=)

e tree nodes

a transitions
k packed character classes
0 output array size

* Lines in the rules section have the form

expression action
where the action may be continued on succeeding lines by using braces to delimit it.

* Thelex operator characters are
"A\Nr-2. 08 <>+

* Importantlex variables, functions, and macros are

6-18

yytext[]
yyleng
yylex()
yywrap()
yymore()
yyless(n)
REJECT
ECHO
input()
unput(c¢)
output(c¢)

array ofchar
int

function
function
function
function
macro
macro
macro
macro

macro

Lexical Analysis with lex

6-19

Compilation Systems Volume 1 (Tools)

6-20

7
Parsing with yacc

INtrOdUCHION . . .o e 7-1
Basic Specifications. 7-3
ACHIONS . o 7-5
Lexical Analysiso 7-7
Parser Operation 7-9
Ambiguity and Conflicts 7-12
PrecedenCe. 7-16
Error Handling.o 7-20
The yacc Environment. 7-22
Hints for Preparing Specifications. 7-23
INpUt Style .o 7-24
Left RECUISIONo e 7-24
Lexical Tie-INSo 7-25
Reserved WOrdSo 7-26
Advanced TOPICSot 7-26
Simulating error and acceptin Actions 7-26
Accessing Values in EnclosingRules. oo 7-26
Support for Arbitrary Value Typeso 7-27
YacC INPUE SYNtaX.o 7-29
EXampIes . . . o 7-30
LLASImMple EXampleo 7-30

2. AnAdvanced Example. 7-33

Compilation Systems Volume 1 (Tools)

7
Parsing with yacc

Introduction

yacc provides a general tool for imposing structure on the input to a computer program.
When you usgacc , you prepare a specification that includes

* A set of rules to describe the elements of the input;
* Code to be invoked when a rule is recognized,;

¢ Either a definition or declaration of a low-level scanner to examine the
input.

yacc then turns the specification into a C language function that examines the input
stream. This function, calledparser, works by calling the low-level scanner. The scanner,
called alexical analyzerpicks up items from the input stream. The selected items are
known astokens Tokens are compared to the input construct rules, caltachmar rules
When one of the rules is recognized, the code you have supplied for the rule is invoked.
This code is called aaction Actions are fragments of C language code. They can return
values and make use of values returned by other actions.

The heart of thggacc specification is the collection of grammar rules. Each rule describes
a construct and gives it a name. For example, one grammar rule might be

date : month_name day °,” year ;

wheredate , month_name, day, andyear represent constructs of interest;
presumablymonth_name, day, andyear are defined in greater detail elsewhere. In the
example, the comma is enclosed in single quotes. This means that the comma is to appear
literally in the input. The colon and semicolon merely serve as punctuation in the rule and
have no significance in evaluating the input. With proper definitions, the input

July 4, 1776
might be matched by the rule.

The lexical analyzer is an important part of the parsing function. This user-supplied
routine reads the input stream, recognizes the lower-level constructs, and communicates
these as tokens to the parser. The lexical analyzer recognizes constructs of the input stream
as terminal symbols; the parser recognizes constructs as non-terminal symbols. To avoid
confusion, we will refer to terminal symbols txkens

There is considerable leeway in deciding whether to recognize constructs using the lexical
analyzer or grammar rules. For example, the rules

7-1

Compilation Systems Volume 1 (Tools)

7-2

month_name : 'J' 'a' 'n' ;
month_name : 'F' 'e' 'b' ;

month_name : 'D' 'e' 'c' ;

might be used in the above example. While the lexical analyzer only needs to recognize
individual letters, such low-level rules tend to waste time and space, and may complicate
the specification beyond the ability ghcc to deal with it. Usually, the lexical analyzer
recognizes the month names and returns an indication timain#_name is seen. In this
casemonth_name is a token and the detailed rules are not needed.

Literal characters such as a comma must also be passed through the lexical analyzer and
are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the above example the
rule

date : month /' day /' year ;
allowing

71411776
as a synonym for

July 4, 1776

on input. In most cases, this new rule could be slipped into a working system with minimal
effort and little danger of disrupting existing input.

The input being read may not conform to the specifications. With a left-to-right scan, input
errors are detected as early as is theoretically possible. Thus, not only is the chance of
reading and computing with bad input data substantially reduced, but the bad data usually
can be found quickly. Error handling, provided as part of the input specifications, permits
the reentry of bad data or the continuation of the input process after skipping over the bad
data.

In some casegjacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self-contradictory, or they may require a more power-
ful recognition mechanism than that availableygme . The former cases represent design
errors; the latter cases often can be corrected by making the lexical analyzer more power-
ful or by rewriting some of the grammar rules. Whilacc cannot handle all possible
specifications, its power compares favorably with similar systems. Moreover, the
constructs that are difficult foyacc to handle are also frequently difficult for human
beings to handle. Some users have reported that the discipline of formulatinyaedid
specifications for their input revealed errors of conception or design early in program
development.

The remainder of this chapter describes the following subjects:
* Basic process of preparingyacc specification
* Parser operation
¢ Handling ambiguities

¢ Handling operator precedences in arithmetic expressions

Parsing with yacc

¢ Error detection and recovery

* The operating environment and special features of the parngmrs
produces

* Suggestions to improve the style and efficiency of the specifications

* Advanced topics

In addition, there are two examples and a summary ofétee input syntax.

Basic Specifications

Names refer to either tokens or non-terminal symbgésc requires token names to be
declared as such. While the lexical analyzer may be included as part of the specification
file, it is perhaps more in keeping with modular design to keep it as a separate file. Like
the lexical analyzer, other subroutines may be included as well. Thus, every specification
file theoretically consists of three sections: the declarations, (grammar) rules, and subrou-
tines. The sections are separated by double percent Sigbthle percent sign is generally
used inyacc specifications as an escape character).

A full specification file looks like

declarations
%%

rules

%%
subroutines

when all sections are used. THeclarationsandsubroutinessections are optional. The
smallest validyacc specification might be

%%
S:;

Blanks, tabs, and new-lines are ignored, but they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is valid. They
are enclosed ift and*/ , as in the C language.

The rules section is made up of one or more grammar rules. A grammar rule has the form
A : BODY ;

whereA represents a non-terminal symbol, aB@DY represents a sequence of zero or
more names and literals. The colon and the semicologare punctuation.

Names may be of any length and may be made up of letters, periods, underscores, and
digits although a digit may not be the first character of a name. Upper case and lower case
letters are distinct. The names used in the body of a grammar rule may represent tokens or
non-terminal symbols.

A literal consists of a character enclosed in single quotes. As in the C language, the back-
slash is an escape character within litergysiccc recognizes all the C language escape

7-3

Compilation Systems Volume 1 (Tools)

7-4

sequences. For a number of technical reasons, the null character should never be used in
grammar rules.

If there are several grammar rules with the same left-hand side, the vertical bar can be used
to avoid rewriting the left-hand side. In addition, the semicolon at the end of a rule is
dropped before a vertical bar. Thus the grammar rules

A : B C D ;
A . E F ;
A G :

can be given tyacc as

A : B C D
| E F
| G

by using the vertical bar. It is not necessary that all grammar rules with the same left side
appear together in the grammar rules section although it makes the input more readable
and easier to change.

If a non-terminal symbol matches the empty string, this can be indicated by
epsilon : ;

The blank space following the colon is understoodybgc to be a non-terminal symbol
namedepsilon

Names representing tokens must be declared. This is most simply done by writing
%token namel name2 name3

and so on in the declarations section. Every name not defined in the declarations section is
assumed to represent a non-terminal symbol. Every non-terminal symbol must appear on
the left side of at least one rule.

Of all the non-terminal symbols, the start symbol has particular importance. By default,

the symbol is taken to be the left-hand side of the first grammar rule in the rules section. It
is possible and desirable to declare the start symbol explicitly in the declarations section
using theYostart keyword:

Y%start symbol

The end of the input to the parser is signaled by a special token, called the end-marker. The
end-marker is represented by either a zero or a negative number. If the tokens up to but not
including the end-marker form a construct that matches the start symbol, the parser func-
tion returns to its caller after the end-marker is seen and accepts the input. If the
end-marker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the end-marker when
appropriate. Usually the end-marker represents some reasonably obvious 1/O status, such
as end of file or end of record.

Actions

Parsing with yacc

With each grammar rule, you can associate actions to be performed when the rule is
recognized. Actions may return values and may obtain the values returned by previous
actions. Moreover, the lexical analyzer can return values for tokens if desired.

An action is an arbitrary C language statement and as such can do input and output, call
subroutines, and alter arrays and variables. An action is specified by one or more state-
ments enclosed ifiand . For example,

A (" B Y
hello(1, "abc");
}
and
XXX 1 YYY Zz2zZ
{
(void) printf("a message\n");
flag = 25;
}

are grammar rules with actions.

The$ symbol is used to facilitate communication between the actions and the parser, The
pseudo-variabl§$ represents the value returned by the complete action. For example, the
action

{ $$ =1, }
returns the value of one; in fact, that's all it does.

To obtain the values returned by previous actions and the lexical analyzer, the action can
use the pseudo-variabléd, $2, . . . $n These refer to the values returned by
components 1 through of the right side of a rule, with the components being numbered
from left to right. If the rule is

A : B C D ;
then$2 has the value returned Iy and$3 the value returned b. The rule
expr ' expr Y ;

provides a common example. One would expect the value returned by this rule to be the
value of theexpr within the parentheses. Since the first component of the action is the
literal left parenthesis, the desired logical result can be indicated by

expr ' expr

{
}

By default, the value of a rule is the value of the first element i$it)(Thus, grammar
rules of the form

$$ = 82 ;

7-5

Compilation Systems Volume 1 (Tools)

7-6

A : B ;

frequently need not have an explicit action. In previous examples, all the actions came at
the end of rules. Sometimes, it is desirable to get control before a rule is fully parsed.
yacc permits an action to be written in the middle of a rule as well as at the end. This
action is assumed to return a value accessible through the fismalchanism by the
actions to the right of it. In turn, it may access the values returned by the symbols to its
left. Thus, in the rule below the effect is to seto 1 andy to the value returned bg:

A : B
{
$$ = 1,
}
C
{
X = $2;
y = $3;
}

Actions that do not terminate a rule are handledybgc by manufacturing a new non-
terminal symbol name and a new rule matching this name to the empty string. The interior
action is the action triggered by recognizing this added ryéec treats the above
example as if it had been written

$ACT @ /* empty */
{
$$ = 1L
}
A B S$ACT C
{
X = $2;
y = $3;
}

where$ACT is an empty action.

In many applications, output is not done directly by the actions. A data structure, such as a
parse tree, is constructed in memory and transformations are applied to it before output is
generated. Parse trees are particularly easy to construct given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node
written so that the call

node(L, nl, n2)

creates a node with labkland descendantsl andn2 and returns the index of the newly
created node. Then a parse tree can be built by supplying actions such as

expr : expr '+ expr

$$ = node('+, $1, $3);

Lexical Analysis

Parsing with yacc

in the specification.

You may define other variables to be used by the actions. Declarations and definitions can
appear in the declarations section encloseéofnand%}. These declarations and
definitions have global scope, so they are known to the action statements and can be made
known to the lexical analyzer. For example:

%{ int variable = 0; %}

could be placed in the declarations section makiagable accessible to all of the
actions. You should avoid names beginning wjth because thgacc parser uses only

such names. Note, too, that in the examples shown thus far all the values are integers. A
discussion of values of other types is found in “Advanced Topics” on page 7-26. Finally,
note that in the following case

%{
int i;
printf("%}");
%}

yacc will start copying afte®{and stop copying when it encounters the fi¥&} the one
in printf() . In contrast, it would cop$s{ in printf() if it encountered it there.

You must supply a lexical analyzer to read the input stream and communicate tokens (with
values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex() . The function returns an integer, the token number, representing the kind of

token read. If there is a value associated with that token, it should be assigned to the
external variablgylval

The parser and the lexical analyzer must agree on these token numbers in order for
communication between them to take place. The numbers may be chogandyor the

user. In either case, th&efine mechanism of C language is used to allow the lexical
analyzer to return these numbers symbolically. For example, suppose that the token name
DIGIT has been defined in the declarations section ofydiec specification file. The
relevant portion of the lexical analyzer might look like the screen shown below to return
the appropriate token.

7-7

Compilation Systems Volume 1 (Tools)

7-8

G yylex() \

{
extern int yylval,
int c;

¢ = getchar();

switch (c)
case 0"
case '1"
case '9"

yylval = ¢ - '0}
return (DIGIT);

}

- /

The intent is to return a token numberBFGIT and a value equal to the numerical value
of the digit. You put the lexical analyzer code in the subroutines section and the
declaration foDIGIT in the declarations section. Alternatively, you can put the lexical
analyzer code in a separately compiled file, provided

* You invoke yacc with the -d option, which generates a file called
y.tab.h that containgtdefine statements for the tokens, and

* You#include y.tab.h inthe separately compiled lexical analyzer.

This mechanism leads to clear, easily modified lexical analyzers. The only pitfall to avoid
is using any token names in the grammar that are reserved or significant in C language or
the parser. For example, the use of token naihesr while will almost certainly cause
severe difficulties when the lexical analyzer is compiled. The token namroe is
reserved for error handling and should not be used naively.

In the default situation, token numbers are chosegdnc . The default token number for
a literal character is the numerical value of the character in the local character set. Other
names are assigned token numbers starting at 257.

If you prefer to assign the token numbers, the first appearance of the token name or literal
in the declarations section must be followed immediately by a nonnegative integer. This
integer is taken to be the token number of the name or literal. Names and literals not
defined this way are assigned default definitionsyagc . The potential for duplication
exists here. Care must be taken to make sure that all token numbers are distinct.

For historical reasons, the end-marker must have token number 0 or be negative. You can-
not redefine this token number. Thus, all lexical analyzers should be prepared to return 0
or a negative number as a token upon reaching the end of their input.

As noted in Chapter 6 (“Lexical Analysis with lex"), lexical analyzers producettky

are designed to work in close harmony withcc parsers. The specifications for these
lexical analyzers use regular expressions instead of grammar lekescan be used to
produce quite complicated lexical analyzers, but there remain some languages that do not
fit any theoretical framework and whose lexical analyzers must be crafted by hand.

Parsing with yacc
Parser Operation

yacc turns the specification file into a C language procedure, which parses the input
according to the specification given. The algorithm used to go from the specification to the
parser is complex and will not be discussed here. The parser itself, though, is relatively
simple and understanding its usage will make treatment of error recovery and ambiguities
easier.

The parser produced lyacc consists of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input token, calléabtteshead token

The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels. Initially, the machine is in state 0 (the stack
contains only state 0) and no lookahead token has been read.

The machine has only four actions availalgbift , reduce , accept , anderror . A
step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a look-ahead token
to choose the action to be taken. If it needs one and does not have one, it
callsyylex() to obtain the next token.

2. Using the current state and the lookahead token if needed, the parser
decides on its next action and carries it out. This may result in states being
pushed onto the stack or popped off of the stack and in the lookahead token
being processed or left alone.

Theshift action is the most common action the parser takes. Wheneshéfta action
is taken, there is always a lookahead token. For example, in state 56 there may be an
action

IF shift 34

which says, in state 56, if the lookahead toketFis the current state (56) is pushed down
on the stack, and state 34 becomes the current state (on the top of the stack). The
lookahead token is cleared.

Thereduce action keeps the stack from growing without bounagluce actions are
appropriate when the parser has seen the right-hand side of a grammar rule and is prepared
to announce that it has seen an instance of the rule replacing the right-hand side by the
left-hand side. It may be necessary to consult the lookahead token to decide whether or not
to reduce. In fact, the default action (represented pig often areduce action.

reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, and this leads to some confusion. The action

reduce 18
refers to grammar rule 18, while the action
IF shift 34
refers to state 34.

Suppose the rule

7-9

Compilation Systems Volume 1 (Tools)

7-10

A x vy z

is being reduced. Theeduce action depends on the left-hand symb&irf this case) and

the number of symbols on the right-hand side (three in this case). To reduce, first pop off
the top three states from the stack. (In general, the number of states popped equals the
number of symbols on the right side of the rule.) In effect, these states were the ones put
on the stack while recognizing, y, andz and no longer serve any useful purpose. After
popping these states, a state is uncovered, which was the state the parser was in before
beginning to process the rule. Using this uncovered state and the symbol on the left side of
the rule, perform what is in effect a shift &£ A new state is obtained, pushed onto the
stack, and parsing continues. There are significant differences between the processing of
the left-hand symbol and an ordinary shift of a token, however, so this action is called a
goto action. In particular, the lookahead token is cleared by a shift but is not affected by a
goto . In any case, the uncovered state contains an entry such as

A goto 20
causing state 20 to be pushed onto the stack and become the current state.

In effect, thereduce action turns back the clock in the parse, popping the states off the
stack to go back to the state where the right-hand side of the rule was first seen. The
parser then behaves as if it had seen the left side at that time. If the right-hand side of the
rule is empty, no states are popped off the stacks. The uncovered state is in fact the current
state.

Thereduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is
adjusted. In addition to the stack holding the states, another stack running in parallel with
it holds the values returned from the lexical analyzer and the actions. W4tgft a takes

place, the external variabig/lval is copied onto the value stack. After the return from
the user code, the reduction is carried out. Whengbit® action is done, the external
variableyyval is copied onto the value stack. The pseudo-variales$2, and so on

refer to the value stack.

The other two parser actions are conceptually much simpleratbept action indicates

that the entire input has been seen and that it matches the specification. This action
appears only when the lookahead token is the end-marker and indicates that the parser has
successfully done its job. Therror action, on the other hand, represents a place where
the parser can no longer continue parsing according to the specification. The input tokens
it has seen (together with the lookahead token) cannot be followed by anything that would
result in a valid input. The parser reports an error and attempts to recover the situation and
resume parsing. The error recovery (as opposed to the detection of error) will be discussed
later.

Consider

%token DING DONG DELL

%%

rhyme : sound place
sound : DING DONG
place : DELL

Parsing with yacc

as ayacc specification. Wheryacc is invoked with thev (verbose) option, a file called
y.output is produced with a human-readable description of the parsery Dugput

file corresponding to the above grammar (with some statistics stripped off the end)
follows.

(e o)

$accept : _rhyme $end

DING shift 3
error

rhyme goto 1
sound goto 2

state 1
$accept rhyme_$end

$end accept
error

state 2
rhyme sound_place

DELL shift 5
error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
error

state 4
rhyme sound place_ 1)

reduce 1

state 5
place : DELL_ 3)

reduce 3

state 6
sound : DING DONG_ (2)

reduce 2

N J

The actions for each state are specified and there is a description of the parsing rules being
processed in each state. Theharacter is used to indicate what has been seen and what is
yet to come in each rule. The following input

DING DONG DELL

can be used to track the operations of the parser. Initially, the current state is state 0. The
parser needs to refer to the input in order to decide between the actions available in state 0,
so the first tokenDING, is read and becomes the lookahead token. The action in state 0 on
DINGis shift 3 , state 3 is pushed onto the stack, and the lookahead token is cleared.
State 3 becomes the current state. The next tokEDNGis read and becomes the
lookahead token. The action in state 3 on the toR€&NGs shift 6 , state 6 is pushed

onto the stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In state 6,
without even consulting the lookahead, the parser reduces by

7-11

Compilation Systems Volume 1 (Tools)

sound DING DONG

which is rule 2. Two states, 6 and 3, are popped off the stack, uncovering state 0.
Consulting the description of state 0 (looking fogeto onsound),

sound goto 2
is obtained. State 2 is pushed onto the stack and becomes the current state.

In state 2, the next toke@MELL, must be read. The actionskift 5 , so state 5 is pushed

onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In state
5, the only action is to reduce by rule 3. This has one symbol on the right-hand side, so one
state, 5, is popped off, and state 2 is uncovered.ddte in state 2 orplace (the left

side of rule 3) is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state 0, theredg®® onrhyme causing the parser to enter
state 1. In state 1, the input is read and the end-marker is obtained indicat®erialy in
they.output file. The action in state 1 (when the end-marker is seen) successfully ends
the parse.

You might want to consider how the parser works when confronted with such incorrect
strings adDING DONG DONBING DONGDING DONG DELL DELland so on. A

few minutes spent with this and other simple examples is repaid when problems arise in
more complicated contexts.

Ambiguity and Conflicts

7-12

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

expr : expr expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is
to put two other expressions together with a minus sign between them. Unfortunately, this
grammar rule does not completely specify the way that all complex inputs should be
structured. For example, if the input is

expr - expr - expr
the rule allows this input to be structured as either
(expr - expr) - expr
or as
expr - (expr - expr)
The first is called left association, the second right association.
yacc detects such ambiguities when it is attempting to build the parser. Given the input

eXpr - expr - expr

Parsing with yacc

consider the problem that confronts the parser. When the parser has read theesgxrond
the input seen

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by
applying this rule. After applying the rule, the input is reduceetpr (the left side of the
rule). The parser would then read the final part of the input

- expr
and again reduce. The effect of this is to take the left associative interpretation.
Alternatively, if the parser sees
expr - expr
it could defer the immediate application of the rule and continue reading the input until
expr - expr - expr

is seen. It could then apply the rule to the rightmost three symbols, reducing them to
expr , which results in

expr - expr

being left. Now the rule can be reduced once more. The effect is to take the right
associative interpretation. Thus, having read

expr - expr

the parser can do one of two valid things, shift or reduce. It has no way of deciding
between them. This is calledshift -reduce conflict. It may also happen that the
parser has a choice of two valid reductions. This is calleedace -reduce conflict.

Note that there are never askift -shift conflicts.

When there arshift -reduce orreduce -reduce conflicts,yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice. A rule
describing the choice to make in a given situation is called a disambiguating rule.

yacc invokes two default disambiguating rules:

1. Inashift -reduce conflict, the defaultis to do the shift.

2. In areduce -reduce conflict, the default is to reduce by the earlier
grammar rule (in thgacc specification).

Rule 1 implies that reductions are deferred in favor of shifts when there is a choice. Rule
2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce -reduce conflicts should be avoided when possible.

Conflicts may arise because of mistakes in input or logic or because the grammar rules
(while consistent) require a more complex parser thacc can construct. The use of

actions within rules can also cause conflicts if the action must be done before the parser
can be sure which rule is being recognized. In these cases, the application of
disambiguating rules is inappropriate and leads to an incorrect parser. For this reason,

7-13

Compilation Systems Volume 1 (Tools)

yacc always reports the number shift -reduce andreduce -reduce conflicts
resolved by rules 1 and 2 above.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat
unnatural and produces slower parsers. Tiyagc will produce parsers even in the
presence of conflicts.

As an example of the power of disambiguating rules, consider

stat IF ‘(" cond ') stat
| IF '(" cond ') stat ELSE stat

which is a fragment from a programming language involvingfanthen -else state-
ment. In these ruledf- andELSE are tokenscond is a hon-terminal symbol describing
conditional (logical) expressions, aistht is a non-terminal symbol describing state-
ments. The first rule will be called the simpfe rule and the second thg -else rule.

These two rules form an ambiguous construction because input of the form
IF (C1L) IF (C2) S1 ELSE s2

can be structured according to these rules in two ways

IF (Cl)
{
IF (C2)
s1
}
ELSE
S2
or
IF (Cl)
{
IF (C2)
s1
ELSE
S2
}

where the second interpretation is the one given in most programming languages having
this construct; eackLSE is associated with the last preceding BhSEd IF . In this
example, consider the situation where the parser has seen

IF (C1L) IF (C2) s1
and is looking at th&LSE. It can immediately reduce by the simgie rule to get
IF (C1) stat

and then read the remaining input

7-14

Parsing with yacc

ELSE S2
and reduce
IF (Cl) stat ELSE S2
by theif -else rule. This leads to the first of the above groupings of the input.
On the other hand, theELSEmay be shiftedS2 read, and then the right-hand portion of
IF (CL) IF (C2) S1 ELSE S2
can be reduced by thE -else rule to get
IF (C1) stat

which can be reduced by the simpfe rule. This leads to the second of the above
groupings of the input, which is usually the one desired.

Once again, the parser can do two valid things — therestsifa -reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which leads to the
desired grouping.

Thisshift -reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs, such as

IF (Cl1) IF (cC2) s1

have already been seen. In general, there may be many conflicts, and each one will be
associated with an input symbol and a set of previously read inputs. The previously read
inputs are characterized by the state of the parser.

The conflict messages gfacc are best understood by examining tve output. For
example, the output corresponding to the above conflict state might be

@ shift-reduce conflict (shift 45, reduce 18) on ELSE \

state 23
stat : IF (cond) stat_ (18)
stat : IF (cond) stat ELSE stat

ELSE shift 45
. reduce 18

N)

where the first line describes the conflict — giving the state and the input symbol. The
ordinary state description gives the grammar rules active in the state and the parser
actions. Recall that the underscore marks the portion of the grammar rules that has been
seen. Thus in the example, in state 23, the parser has seen input corresponding to

IF (cond) stat
and the two grammar rules shown are active at this time. The parser can do two possible

things. If the input symbol i€LSE, it is possible to shift into state 45. State 45 will have,
as part of its description, the line

7-15

Compilation Systems Volume 1 (Tools)

Precedence

7-16

stat : IF (cond) stat ELSE_stat

because th&€LSEwill have been shifted in this state. In state 23, the alternative action
(specified by.) is to be done if the input symbol is not mentioned explicitly in the actions.
In this case, if the input symbol is n&LSE, the parser reduces to

stat : IF ‘(" cond ') stat
by grammar rule 18.

Once again, notice that the numbers followislgfft commands refer to other states,
while the numbers followingeduce commands refer to grammar rule numbers. In the
y.output file, rule numbers are printed in parentheses after those rules that can be
reduced. In most states, there ise@luce action possible, anteduce is the default
command. If you encounter unexpect&uift -reduce conflicts, you will probably

want to look at thev output to decide whether the default actions are appropriate.

There is one common situation where the rules given above for resolving conflicts are not
sufficient. This is in the parsing of arithmetic expressions. Most of the commonly used
constructions for arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about left or right associativity.
It turns out that ambiguous grammars with appropriate disambiguating rules can be used
to create parsers that are faster and easier to write than parsers constructed from
unambiguous grammars. The basic notion is to write grammar rules of the form

expr : expr OP exprand
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar with
many parsing conflicts. You specify as disambiguating rules the precedence or binding
strength of all the operators and the associativity of the binary operators. This information
is sufficient to allowyacc to resolve the parsing conflicts in accordance with these rules
and construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section. This
is done by a series of lines beginning with tha&cc keywords%left , %right , or
%nonassoc , followed by a list of tokens. All of the tokens on the same line are assumed

to have the same precedence level and associativity; the lines are listed in order of
increasing precedence or binding strength. Thus

Y%left '+ '
Y%left ™ T

describes the precedence and associativity of the four arithmetic operatorg: are left
associative and have lower precedence thamd/ , which are also left associative. The
keyword %right is used to describe right associative operators. The keyword

Parsing with yacc
%nonassoc is used to describe operators, like the operdtdr in Fortran, that may not
associate with themselves. That is, because
A LT. B .LT. C
is invalid in Fortran,.LT. would be described with the keywo#nonassoc in yacc .

As an example of the behavior of these declarations, the description

@ght = \

ol =

Y%left '+

Y%left ™ T

%%

expr : expr '=' expr
expr '+ expr
expr - expr

expr "' expr
expr 'I'" expr
NAME

NS J

might be used to structure the input

a = b = c¢c*d - e - f*g
as follows

a=(b=((c*d-e-(@*g)))

in order to achieve the correct precedence of operators. When this mechanism is used,
unary operators must, in general, be given a precedence. Sometimes a unary operator and a
binary operator have the same symbolic representation but different precedences. An
example is unary and binary minus.

Unary minus may be given the same strength as multiplication, or even higher, while
binary minus has a lower strength than multiplication. The keywépiec changes the
precedence level associated with a particular grammar %eec appears immediately

after the body of the grammar rule, before the action or closing semicolon, and is followed
by a token name or literal. It causes the precedence of the grammar rule to become that of
the following token name or literal. For example, the rules

7-17

Compilation Systems Volume 1 (Tools)

7-18

Y%left ™ T

%%

expr : expr '+ expr
expr - expr
expr "' expr

expr
expr %prec '*

- /

might be used to give unary minus the same precedence as multiplication.

)
- X
=]
=
-

Atoken declared bgoleft , %right , and%nonassoc need not, but may, be declared by
%token as well.

Precedences and associativities are useghblog to resolve parsing conflicts. They give
rise to the following disambiguating rules:

1. Precedences and associativities are recorded for those tokens and literals
that have them.

2. A precedence and associativity is associated with each grammar rule. It is
the precedence and associativity of the last token or literal in the body of
the rule. If the%oprec construction is used, it overrides this default. Some
grammar rules may have no precedence and associativity associated with
them.

3. When there is aduce -reduce orshift -reduce conflict, and either
the input symbol or the grammar rule has no precedence and associativity,
then the two default disambiguating rules given in the preceding section are
used, and the conflicts are reported.

4. If there is ashift -reduce conflict and both the grammar rule and the
input character have precedence and associativity associated with them,
then the conflict is resolved in favor of the actionshift orreduce —
associated with the higher precedence. If precedences are equal, then
associativity is used. Left associative impliegluce ; right associative
impliesshift ; “nonassociating” impliegrror

Conflicts resolved by precedence are not counted in the numtshifdf -reduce and
reduce -reduce conflicts reported byacc . This means that mistakes in the
specification of precedences may disguise errors in the input grammar. It is a good idea to
be sparing with precedences and use them in a cookbook fashion until some experience
has been gained. Theoutput file is useful in deciding whether the parser is actually
doing what was intended.

To illustrate further how you might use the precedence keywords to resolve a
shift -reduce conflict, we'll look at an example similar to the one described in the
previous section. Consider the following C statement:

if (flag) if (anotherflag) x = 1;
else x = 2;

Parsing with yacc

The problem for the parser is whether thlse goes with the first or the seconfl . C
programmers will recognize that theése goes with the secondl , contrary to what the
misleading indentation suggests. The followiyarc grammar for arf -then -else
construct abstracts the problem. That is, the infggs will model the C statement
shown above.

(o)

()

#include <stdio.h>

%}

%token SIMPLE IF ELSE
%%

S : stmnt \n'
stmnt : SIMPLE

| if_stmnt

if_stmnt : IF stmnt
{ printf("simple if\n");}
| IF stmnt ELSE stmnt
{ printf("if_then_else\n");}

%%
int
yylex() {
int c;
c=getchar();
if (c==EOF) return O;
else switch(c) {
case 'i'. return IF;
case 's" return SIMPLE;
case 'e": return ELSE;
default: return c;

}
}

NS J

When the specification is passedytacc , however, we get the following message:

conflicts: 1 shift/reduce

The problem is that whegacc has readis in trying to matchiises , it has two
choices: recognizés as a statement (reduce), or read some more input (shift) and
eventually recognizeses as a statement.

One way to resolve the problem is to invent a new toREEDUCEvhose sole purpose is to
give the correct precedence for the rules:

7-19

Compilation Systems Volume 1 (Tools)

Error Handling

7-20

(o N

%{

#include <stdio.h>

%}

%token SIMPLE IF
%nonassoc REDUCE
%nonassoc ELSE
%%

S : stmnt \n'

stmnt : SIMPLE
| if_stmnt

if_stmnt : IF stmnt %prec REDUCE
{ printf("simple if");}
| IF stmnt ELSE stmnt
{ printf("if_then_else");}

%%

Since the precedence associated with the second foiinstfinnt is higher nowyacc
will try to match that rule first, and no conflict will be reported.

Actually, in this simple case, the new token is not needed:

%nonassoc |F
%nonassoc ELSE

would also work. Moreover, it is not really necessary to resolve the conflict in this way,
because, as we have segacc will shift by default in ashift -reduce conflict.
Resolving conflicts is a good idea, though, in the sense that you should not see diagnostic
messages for correct specifications.

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage,
delete or alter symbol table entries, and/or, typically, set switches to avoid generating any
further output.

It is seldom acceptable to stop all processing when an error is found. It is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of

getting the parser restarted after an error. A general class of algorithms to do this involves
discarding a number of tokens from the input string and attempting to adjust the parser so
that input can continue.

To allow the user some control over this procegs;c provides the token namerror

This name can be used in grammar rules. In effect, it suggests where errors are expected
and recovery might take place. The parser pops its stack until it enters a state where the
tokenerror is valid. It then behaves as if the tokerror were the current lookahead
token and performs the action encountered. The lookahead token is then reset to the token
that caused the error. If no special error rules have been specified, the processing halts
when an error is detected.

Parsing with yacc

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an

error is detected when the parser is already in error state, no message is given, and the
input token is quietly deleted.

As an example, a rule of the form
stat : error

means that on a syntax error the parser attempts to skip over the statement in which the
error is seen. More precisely, the parser scans ahead, looking for three tokens that might
validly follow a statement, and starts processing at the first of these. If the beginnings of
statements are not sufficiently distinctive, it may make a false start in the middle of a state-
ment and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to
reinitialize tables, reclaim symbol table space, and so forth.

Error rules such as the above are very general but difficult to control. Rules such as

stat . error ;

are somewhat easier. Here, when there is an error, the parser attempts to skip over the
statement but does so by skipping to the next semicolon. All tokens after the error and
before the next semicolon cannot be shifted and are discarded. When the semicolon is
seen, this rule will be reduced and any cleanup action associated with it performed.

Another form oferror rule arises in interactive applications where it may be desirable to
permit a line to be reentered after an error. The following example

input : error "\n

(void) printf("Reenter last line: ");

}
input
{
$$ = $4;
}

is one way to do this. There is one potential difficulty with this approach. The parser must
correctly process three input tokens before it admits that it has correctly resynchronized
after the error. If the reentered line contains an error in the first two tokens, the parser
deletes the offending tokens and gives no message. This is clearly unacceptable. For this
reason, there is a mechanism that can force the parser to believe that error recovery has
been accomplished. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example can be rewritten as

7-21

Compilation Systems Volume 1 (Tools)

input : error ‘\n

{ yyerrok;
(void) printf("Reenter last line: ");
?nput
{
$$ = $4
}

As previously mentioned, the token seen immediately afteetri symbol is the input

token at which the error was discovered. Sometimes this is inappropriate; for example, an
error recovery action might take upon itself the job of finding the correct place to resume
input. In this case, the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the actionefter were to call

some sophisticated resynchronization routine (supplied by the user) that attempted to
advance the input to the beginning of the next valid statement. After this routine is called,
the next token returned byylex() is presumably the first token in a valid statement.
The old invalid token must be discarded and ¢neor ~ state reset. A rule similar to

stat : error
{
resynch();
yyerrok ;
yyclearin;
}

could perform this.

These mechanisms are admittedly crude but do allow for a simple, fairly effective
recovery of the parser from many errors. Moreover, the user can get control to deal with
the error actions required by other portions of the program.

The yacc Environment

7-22

You create ayacc parser with the command
yacc grammar.y

wheregrammar.y is the file containing youyacc specification. (They suffix is a
convention recognized by other UNIX system commands. It is not strictly necessary.) The
output is a file of C language subroutines caliethb.c . The function produced by
yacc is calledyyparse() , and is integer-valued. When it is called, it in turn repeatedly
callsyylex() , the lexical analyzer supplied by the user (see “Lexical Analysis” on page
7-7), to obtain input tokens. Eventually, an error is detecyggparse() returns the

Parsing with yacc

value 1, and no error recovery is possible, or the lexical analyzer returns the end-marker
token and the parser accepts. In this cggparse() returns the value 0.

You must provide a certain amount of environment for this parser in order to obtain a
working program. For example, as with every C language program, a routine called
main() must be defined that eventually cajigparse() . In addition, a routine called
yyerror() is needed to print a message when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the initial
effort of usingyacc , a library has been provided with default versionsydin() and
yyerror() . Thelibraryliby ,is accessed bydy argumenttothec command. The
source codes

main()
{
return (yyparse());
}
and
include <stdio.h>
yyerror(s)
char *s;
{
(void) fprintf(stderr, "%s\n", s);
}
show the triviality of these default programs. The argumentyterror() is a string

containing an error message, usually the steyigtax error . The average application
wants to do better than this. Ordinarily, the program should keep track of the input line
number and print it along with the message when a syntax error is detected. The external
integer variableyychar contains the lookahead token number at the time the error was
detected. This may be of some interest in giving better diagnostics. Sinceaing)

routine is probably supplied by the user (to read arguments, for instancgpadbelibrary

is useful only in small projects or in the earliest stages of larger ones.

The external integer variablg/debug is normally set to O. If it is set to a nonzero value,

the parser will output a verbose description of its actions including a discussion of the
input symbols read and what the parser actions are. It is possible to set this variable by
using gdb(2).

Hints for Preparing Specifications

This part contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

7-23

Compilation Systems Volume 1 (Tools)

Input Style

Left Recursion

7-24

It is difficult to provide rules with substantial actions and still have a readable specifica-

tion file. The following are a few style hints.

1. Use all uppercase letters for token names and all lowercase letters for
non-terminal names. This is useful in debugging.

2. Put grammar rules and actions on separate lines. It makes editing easier.

3. Putall rules with the same left-hand side together. Put the left-hand side in
only once and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left-hand side and put
the semicolon on a separate line. This allows new rules to be easily added.

5. Indentrule bodies by one tab stop and action bodies by two tab stops.

6. Put complicated actions into subroutines defined in separate files.

Example 1 below is written following this style, as are the examples in this section (where
space permits). The central problem is to make the rules visible through the morass of
action code.

The algorithm used by thgacc parser encourages so called left recursive grammar rules.
Rules of the form

name : name rest of rule ;

match this algorithm. Rules such as

list item
| list ‘' item
and
seq : item
| seq item

frequently arise when writing specifications of sequences and lists. In each of these cases,
the first rule will be reduced for the first item only; and the second rule will be reduced for
the second and all succeeding items.

With right recursive rules, such as

seq : item
| item seq

Lexical Tie-Ins

Parsing with yacc

the parser is a bit bigger; and the items are seen and reduced from right to left. More seri-
ously, an internal stack in the parser is in danger of overflowing if an extremely long
sequence is read (althoughcc can process very large stacks). Thus, you should use left
recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification as

seq o I* empty ¥/
| seq item

using an empty rule. Once again, the first rule would always be reduced exactly once
before the first item was read, and then the second rule would be reduced once for each
item read. Permitting empty sequences often leads to increased generality. However,
conflicts might arise iffacc is asked to decide which empty sequence it has seen when it
hasn't seen enough to know!

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings, or names might be entered into a
symbol table in declarations but not in expressions. One way of handling these situations
is to create a global flag that is examined by the lexical analyzer and set by actions. For
example,

(o)

()
int dflag;
%}

other declarations...

%%

prog : decls stats
decls : /* empty */
dflag = 1;

| decls declaration

stats /¥ empty */
dflag = 0;

| stats statement

other rules

N J

specifies a program that consists of zero or more declarations followed by zero or more
statements. The fladflag is now 0 when reading statements and 1 when reading
declarations, except for the first token in the first statement. This token must be seen by

7-25

Compilation Systems Volume 1 (Tools)

Reserved Words

the parser before it can tell that the declaration section has ended and the statements have
begun. In many cases, this single token exception does not affect the lexical scan.

This kind of back-door approach can be elaborated to a noxious degree. Nevertheless, it
represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Some programming languages permit you to use wordsifikewhich are normally
reserved as label or variable names, provided that such use does not conflict with the valid
use of these names in the programming language. This is extremely hard to do in the
framework ofyacc . It is difficult to pass information to the lexical analyzer telling it this
instance off is a keyword and that instance is a variable. You can make a stab at it using
the mechanism described in the last subsection, but it is difficult.

Advanced Topics

This part discusses a number of advanced featurgaaf .

Simulating error and accept in Actions

The parsing actions oérror andaccept can be simulated in an action by use of
macrosYYACCEPTandYYERRORThe YYACCEPTmacro causegyparse() to return

the value O)YYERRORauses the parser to behave as if the current input symbol had been
a syntax erroryyerror() is called, and error recovery takes place. These mechanisms
can be used to simulate parsers with multiple end-markers or context sensitive syntax
checking.

Accessing Values in Enclosing Rules

7-26

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actig§rfs]lowed by a digit.

Parsing with yacc

~

sent : adj noun verb adj noun

look at the sentence ...

adj : THE
{ $$ = THE;
]|' YOUNG
{ $$ = YOUNG;
}
noun :; DOG
{ $$ = DOG;
/ CRONE

~——

if($0 == YOUNG)
(void) printf("what?\n");

$$ = CRONE;

N J

In this case, the digit may be 0 or negative. In the action following the VBRONEa

check is made that the preceding token shifted wasyYi@tNG Obviously, this is only
possible when a great deal is known about what might precede the symbolin the

input. Nevertheless, at times this mechanism prevents a great deal of trouble especially
when a few combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are intggecs.can

also support values of other types including structures. In addiyiae; keeps track of

the types and inserts appropriate union member names so that the resulting parser is
strictly type checked. Thgacc value stack is declared to baiaion of the various types

of values desired. You declare the union and associate union member names with each
token and non-terminal symbol having a value. When the value is referenced thréigh a

or $n constructionyacc will automatically insert the appropriate union name so that no
unwanted conversions take place.

There are three mechanisms used to provide for this typing. First, there is a way of
defining the union. This must be done by the user since other subroutines, notably the
lexical analyzer, must know about the union member names. Second, there is a way of
associating a union member name with tokens and non-terminals. Finally, there is a
mechanism for describing the type of those few values wlyaex cannot easily
determine the type.

To declare the union, you include

7-27

Compilation Systems Volume 1 (Tools)

7-28

%union

body of union

}

in the declaration section. This declares ylaec value stack and the external variables
yylval andyyval to have type equal to this union.yhcc was invoked with thed
option, the union declaration is copied into théab.h file asYYSTYPE

OnceYYSTYPEHs defined, the union member names must be associated with the various
terminal and non-terminal names. The construction

<name>

is used to indicate a union member name. If this follows one of the keywibtdken ,
%left , %right , and%nonassoc , the union member name is associated with the tokens
listed. Thus, saying

Y%left <optype> '+
causes any reference to values returned by these two tokens to be tagged with the union
member nameptype . Another keyword%type , is used to associate union member
names with non-terminals. Thus, one might say

%type <nodetype> expr stat

to associate the union membeodetype with the non-terminal symbolexpr and
stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly,
reference to left context values (such®g leavesyacc with no easy way of knowing the

type. In this case, a type can be imposed on the reference by inserting a union member
name betweer and> immediately after the firs§. The example below

~

rule : aaa
$<intval>$ = 3;
}
bbb

fun($<intval>2, $<other>0);

- /

shows this usage. This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Example 2 below. The facilities in this subsection are
not triggered until they are used. In particular, the us&uype will turn on these
mechanisms. When they are used, there is a fairly strict level of checking. For example,
use of$n or $$ to refer to something with no defined type is diagnosed. If these facilities
are not triggered, thgacc value stack is used to holdt s.

yacc Input Syntax

Parsing with yacc

This section has a description of thacc input syntax as gacc specification. Context
dependencies and so forth are not considered. Ironically, althgagh accepts an
LALR(1) grammar, theyacc input specification language is most naturally specified as

an LR(2) grammar; the sticky part comes when an identifier is seen in a rule immediately
following an action. If this identifier is followed by a colon, it is the start of the next rule;
otherwise, it is a continuation of the current rule, which just happens to have an action
embedded in it. As implemented, the lexical analyzer looks ahead after seeing an identifier
and decides whether the next token (skipping blanks, new-lines, comments, and so on) is a
colon. If so, it returns the toke@ IDENTIFIER . Otherwise, it return$DENTIFIER .
Literals (quoted strings) are also returnedlBENTIFIER s but never as part of
C_IDENTIFIER s.

%token
%token
%token
/*
%token
%token
%token
%token
/*

%token
%%
spec

tail

defs

def

/ /¥ grammar for the input to yacc */

/* basic entries */

IDENTIFIER /* includes identifiers and literals */
C_IDENTIFIER /* identifier (but not literal) followed by a : */
NUMBER /% [0-9]+ */
reserved words: %type=>TYPE %left=>LEFT,etc. */
LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
MARK /* the %% mark */
LCURL /* the %{ mark *
RCURL /* the %} mark */

ASCII character literals stand for themselves */

spec

defs MARK rules tail
MARK
In this action, eat up the rest of the file

| /* empty: the second MARK is optional */

/* empty */

| defs def

START IDENTIFIER

| UNION

Copy union definition to output
| LCURL
Copy C code to output file

RCURL
| rword tag nlist

~

7-29

Compilation Systems Volume 1 (Tools)

rword : TOKEN

RIGHT
NONASSOC
TYPE

tag : /* empty: union tag is optional */
| <" IDENTIFIER ">'

nlist : nmno

| nlist nmno
| nlist '}’ nmno

nmno : IDENTIFIER /* Note: literal invalid with % type */
| IDENTIFIER NUMBER /* Note: invalid with % type */

/* rule section */

rules : C_IDENTIFIER rbody prec
| rules rule

e : C_IDENTIFIER rbody prec
| ' rbody prec

rbody : /* empty */
| rbody IDENTIFIER
| rbody act

act —

Copy action translate $$ etc.

prec o [* empty ¥/
| PREC IDENTIFIER
| PREC IDENTIFIER act
| prec

Examples

1. A Simple Example

This example gives the compleyacc applications for a small desk calculator; the
calculator has 26 registers label@throughz and accepts arithmetic expressions made up
of the operators., -, *, /, %, &, | , and the assignment operators.

If an expression at the top level is an assignment, only the assignment is done; otherwise,
the expression is printed. As in the C language, an integer that begins with 0 is assumed to
be octal; otherwise, it is assumed to be decimal.

7-30

Parsing with yacc

As an example of gacc specification, the desk calculator does a reasonable job of
showing how precedence and ambiguities are used and demonstrates simple recovery. The
major oversimplifications are that the lexical analyzer is much simpler than for most appli-
cations, and the output is produced immediately line by line. Note the way that decimal
and octal integers are read in by grammar rules. This job is probably better done by the
lexical analyzer.

(o)

of
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

Y%start list

%token DIGIT LETTER

Yleft |

Yleft '&'

%left '+ '-
et

%left %
%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */
list : [* empty */

| list stat \n'

| list error "\n'

{

yyerrok;

}

stat Tooexpr

(void) printf("%d\n", $1);
| LETTER '= expr

regs[$1] = $3;

expr o '(oexpr)
$$ = $2;
}
| expr '+ expr
{
$$ = $1 + $3;
}
| expr - expr
{
$$ = $1 - $3;
{

| expr ™ expr

7-31

Compilation Systems Volume 1 (Tools)

-

number

%%

int yylex()
{

$$ = $1 * $3;
| expr 'I' expr
$$ = $1 / $3;

| exp '%' expr
$$ = $1 % $3;

| expr '&' expr

$$ = $1 & $3;
| expr '|" expr
$$ = $1 | $3;
]|’ " expr %prec UMINUS
$$ = -$2;
]|’ LETTER
$$ = reg[$1];
| number
: DIGIT
t $$ = $1; base = ($1==0) ? 8 ; 10;
]|’ number DIGIT
) $$ = base * $1 + $2;

/* beginning of subroutines section */

/* lexical analysis routine */
/* return LETTER for lowercase letter, */
/* yylval = 0 through 25 */
/* returns DIGIT for digit, yylval = O through 9 */
/* all other characters are returned immediately */
int c;
I*skip blanks*/
getchar()) == "' ")

while ((c

/* ¢ is now nonblank */
if (islower(c))

yylval = ¢ - 'a}
return (LETTER);

}

if (isdigit(c))

}
yylval = ¢ - '0}
return (DIGIT);

return (c);

7-32

Parsing with yacc

2. An Advanced Example

This section gives an example of a grammar using some of the advanced features. The
desk calculator in Example 1 is modified to provide a desk calculator that does floating
point interval arithmetic. The calculator understands floating point constants, and the
arithmetic operations, -, *, /, and unary- . It uses the registems throughz. Moreover,

it understands intervals written

(X,Y)

whereX s less than or equal td4 There are 26 interval valued variableshroughZ that
may also be used. The usage is similar to that in Example 1; assignments return no value
and print nothing while expressions print the (floating or interval) value.

This example explores a number of interesting featuregact and C. Intervals are
represented by a structure consisting of the left and right endpoint values stored as
double s. This structure is given a type namBTERVAL, by usingtypedef . The

yacc value stack can also contain floating point scalars and integers (used to index into
the arrays holding the variable values). Notice that the entire strategy depends strongly on
being able to assign structures and unions in C language. In fact, many of the actions call
functions that return structures as well.

It is also worth noting the use &fYERRORo handle error conditions — division by an
interval containing 0 and an interval presented in the wrong order. The error recovery
mechanism ofacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (for example, scalar or interval) of
intermediate expressions. Note that scalar can be automatically promoted to an interval if
the context demands an interval value. This causes a large number of conflicts when the
grammar is run througlacc \: 18 shift -reduce and 26reduce -reduce . The
problem can be seen by looking at the two input lines.

25 + (35 - 4)
and
25 + (3.5, 4)

Notice that the 2.5 is to be used in an interval value expression in the second example, but
this fact is not known until the comma is read. By this time, 2.5 is finished, and the parser
cannot go back and change its mind. More generally, it might be necessary to look ahead
an arbitrary number of tokens to decide whether to convert a scalar to an interval. This
problem is evaded by having two rules for each binary interval valued operator — one
when the left operand is a scalar and one when the left operand is an interval. In the second
case, the right operand must be an interval, so the conversion will be applied
automatically. Despite this evasion, there are still many cases where the conversion may
be applied or not, leading to the above conflicts. They are resolved by listing the rules that
yield scalars first in the specification file; in this way, the conflict will be resolved in the
direction of keeping scalar valued expressions scalar valued until they are forced to
become intervals.

This way of handling multiple types is instructive. If there were many kinds of expression
types instead of just two, the number of rules needed would increase dramatically and the
conflicts even more dramatically. Thus, it is better practice in a more normal programming

7-33

Compilation Systems Volume 1 (Tools)

language environment to keep the type information as part of the value and not as part of
the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C language library routitef() is used to do the actual
conversion from a character string to a double-precision value. If the lexical analyzer
detects an error, it responds by returning a token that is invalid in the grammar, provoking
a syntax error in the parser and thence error recovery.

@ N

9%{

#include <stdio.h>
#include <ctype.h>

typedef struct interval

double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();
double atof();

double dreg[26];
INTERVAL vreg[26];

9%}

Y%start lines

%union
int ival;
double dval;
INTERVAL vval;
}
%token <ival> DREG VREG /* indices into dreg, vreg arrays */
%token <dval> CONST /* floating point constant */
%type <dval> dexp /* expression */
%type <vval> vexp /* interval expression */

/* precedence information about the operators */

%left '+ '/-'
Yleft ™ I

%% /* beginning of rules section */

lines o [* empty */
| lines line

Iiney : dexp \n'
(void)printf("%15.8f\n", $1);

| vexp \n'

- /

7-34

Parsing with yacc

(void)printf("(%15.8f, %15.8f)\n", $1.lo, $1.hi);
DREG '=' dexp \n'
dreg[$1] = $3;
VREG '=' vexp \n'
vreg[$1] = $3;
error \n'
yyerrok;
: CONST
DREG
$$ = dreg[$1];
dexp '+ dexp
$$ = $1 + $3;
dexp '-' dexp
$$ = $1 - $3;
dexp "™ dexp
$$ = $1 * $3
dexp 'I' dexp
$$ = $1 / $3
' dexp
$$ = -$2;
‘(" dexp)
$$ = $2;

dexp

$$.hi = $$.lo = $1;

'(" dexp ', dexp)

~

7-35

Compilation Systems Volume 1 (Tools)

-

$$.lo = $2;
$$.hi = $4;
if($$.o > $$.hi)
{
(void) printf("interval out of order\n");
YYERROR,;
}
}
| VREG
{
$$ = vreg[$1];
}
| vexp '+ vexp
{
$$.hi = $1L.hi + $3.hi;
$$.lo = $1.lo + $3.lo;
}
| dexp '+ vexp
{
$$.hi = $1 + $3.hi;
$$.lo = $1 + $3.lo;
}
| vexp '-' vexp
{
$$.hi = $1.hi - $3.Io;
$$.lo = $1.lo - $3.hi;
}
| dexp '-' vexp
{
$$.hi = $1 - $3.lo;
$$.lo = $1 - $3.hj;
}
| vexp "' vexp
{
$$ = vmul($1.lo, $1.hi, $3);
}
| dexp "™ vexp
{
$$ = vmul($1, $1, $3);
}
| vexp 'I' vexp
{
if (dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3);
}
| dexp 'I' vexp
{
if (dcheck($3)) YYERROR;
$$ = vdiv($1, $1, $3);
}
| ' vexp

7-36

Parsing with yacc

/ $$.hi = -$2.o; $$.lo = -$2.hi;

}
['C vexp ')
$$ = $2;

%% /* beginning of subroutines section */
define BSZ 50 /* buffer size for floating point number */
/* lexical analysis */
int yylex()
{ register int c;
/* skip over blanks */
while ((c=getchar()) == "")
i{f (isupper(c))

yylvalival = ¢ - 'A}
return(VREG);

if (islower(c))

yylvaliival = ¢ - 'aj

return(DREG);
}

/* gobble up digits, points, exponents */
if (isdigit(c) || ¢ == ")
{

char buf[BSZ + 1], *cp = buf;
int dot = 0, exp = O;

for (;(cp - buf) < BSZ; ++cp, ¢ = getchar()
{

ep = ¢

if (isdigit(c))
continue;

if (c ==")

if (dot++ || exp)
return('.’); /* will cause
syntax error */
continue;

~

7-37

Compilation Systems Volume 1 (Tools)

-

if (c =="'e")

if (exp++)
return('e’); /* will cause
syntax error */

continue;
}
/* end of number */
break;
}
*cp = "\0%

if (cp - buf >= BSZ)
(void)printf("constant too long -- truncated\n");
else
ungetc(c, stdin); /* push back last char read *
yylval.dval = atof(buf);
return(CONST);

return(c);

INTERVAL
hilo(a, b, c, d)
double a, b, c, d;

/* returns the smallest interval containing a, b, ¢, and d
used by vmul, vdiv routines */

INTERVAL v;

if (@ > b)
{

v.hi
v.lo

else

{

v.hi
v.lo

}
it (¢ > d)
{

if (¢ > v.hi) v.hi
if (d < v.lo) v.lo

}

else

if (d > v.hi) v.hi
if (¢ < vlo) v.lo

return(v);

7-38

Parsing with yacc

4)

INTERVAL

vmul(a, b, v)
double a, b;
INTERVAL v;

return(hilo(a * v.hi, a * v.o, b * v.hi, b * v.l0));

}

dcheck(v)
INTERVAL v;

if (v.hi >= 0. && v.lo <= 0.)

(void) printf("divisor interval contains 0.\n");
return(1);

return(0);

}

INTERVAL

vdiv(a, b, v)
double a, b;
INTERVAL v;

return(hilo(a / v.hi, a / v.o, b / v.hi, b / v.lo));

}

N J

7-39

Compilation Systems Volume 1 (Tools)

7-40

2
Analysis

Replace with Part 2 tab

Compilation Systems Volume 1 (Tools)

Part 2 - Analysis

Part 2 - Analysis

Part 2 Analysis

Chapter 8 Introduction t0 ANalYSiS.......c..eueieiiiiiiii i 8-1
Chapter 9 Browsing Through Your Code with CSCOPEecueeveeeiiiiiiiiiiiieeeenn, 9-1
Chapter 10 Analyzing Your Code with lint ..., 10-1

Chapter 11 Performance ANAlYSISueeiiiiieiaiiiiiieie e 11-1

Compilation Systems Volume 1 (Tools)

8
Introduction to Analysis

INtrOdUCTION . . . o e e e e e e e e e

Compilation Systems Volume 1 (Tools)

Introduction

Introduction to Analysis

8
Introduction to Analysis

By using tools to analyze source files and executables you can:

* |Locate and correct problems
¢ Obtain statistics on usage and performance timings

* Improve program reliability and performance

Many analysis tools exist. See “Concurrent Computer Corporation Compilation Systems”
section in Chapter 1 for an extensive list of these and other utilities.

Although not discussed in this manual, the C beautiftb(l) , can assist in analysis; it
makes C source files more readable with judicious placement of spaces and indentation.
The xref(1) utility combines many cross referencing aspecteséope and
inconsistency-detecting aspectsliot for Fortran source files. See the man page for
details.

This part of the manual discusses the analysis of source files and executables.

Chapter 9 (“Browsing Through Your Code with cscope”) discusses cross referencing,
searching, and editing Ggx , andyacc source files withcscope .

Chapter 10 (“Analyzing Your Code with lint") describes usiimg on C source files to
flag inconsistent use, non-portable code, and suspicious constructs.

Chapter 11 (“Performance Analysis”) explains how to @alyze to optimize
programs or obtain performance profiles on programsr@pdrt to generate reports
from analyze 's output.

8-1

Compilation Systems Volume 1 (Tools)

8-2

Browsing Through Your Code with cscope

INtrOdUCHION . . .o e 9-1
HOW €SCOPE WOIKS ot 9-1
HOW IO USE CSCOPE . . . vttt e e e e e e e e e e e 9-1
Step 1: SetUpthe Environment. 9-2
Step 2: INVOKE CSCOPE . ..ot eeeeeeeeee 9-2
Step 3: Locatethe Code. 9-3
Step4: Editthe Code. 9-9
Command Line OptioNSt 9-10
Using Viewpaths.o 9-13
Stacking cscopeand EditorCalls. 9-14
EXamples 9-14
Changing a Constant to a Preprocessor Symbol 9-14
Adding an Argumenttoa Function. 9-17
Changing the Value ofaVariable 9-18
Technical TIPS ...t 9-18
Unknown Terminal Typeot 9-18

Command Line Syntax for Editors. 9-18

Compilation Systems Volume 1 (Tools)

Browsing Through Your Code with cscope

Introduction

Thecscope browser is an interactive program that locates specified elements of code in
C,lex , oryacc source files. It lets you search and edit your source files more efficiently
than you could with a typical editorcscope has this capability because it can identify
function calls and C language identifiers and keywords. This chapter contains a tutorial
on thecscope browser.

How cscope Works

When you invokecscope for a set of Clex , oryacc source files, it builds a symbol
cross-reference table for the functions, function calls, macros, variables, and preprocessor
symbols in those files. It then lets you query that table about the locations of symbols you
specify. First, it presents a menu and asks you to choose the type of search you would like
to have performed. You may, for instance, waatope to find all functions that call a
specified function.

Whencscope has completed this search, it prints a list. Each list entry contains the name
of the file, the number of the line, and the text of the line in whiskope has found the
specified code. In this example, the list will also include the names of the functions that
call the specified function. If you choose the latescope invokes the editor for the file

in which the line appears, with the cursor on that line. You may now view the code in
context and edit the file as you would any other file. You can then return to the menu from
the editor to request a new search.

Because of the procedure you follow there is no single set of instructions for using
cscope . For an extended example of its use, reviewdbeope session described in the
next section. It shows how you can locate a bug in a program without learning all the
code.

How to Use cscope

In the first example, an error messaget of storage , appears intermittently in the
programprog , just as the program starts up. The following series of steps shows you how
to usecscope to locate the parts of the code that are generating the message.

9-1

Compilation Systems Volume 1 (Tools)

Step 1: Set Up the Environment

cscope is a screen-oriented tool that can only be used on terminals listed in the Terminal
Information Utilities terminfo) database. Be sure you have set Ti#RMenvironment
variable to your terminal type so thescope can verify that it is listed in théerminfo
database. If you have not done so, assign a valueEfeMand export it to the shell as
follows:

TERMzerm_nameexport TERM

You may now want to assign a value to tB®ITOR environment variable. By default,
cscope invokes thevi editor. (The examples in this chapter illustrate usage.) If you
prefer not to usei , set theEDITORenvironment variable to the editor of your choice and
exportEDITOR:

EDITOR=emacs export EDITOR

Note that you may have to write an interface betwesoope and your editor. For
details, see “Command Line Syntax for Editors” on page 9-18.

If you want to usecscope only for browsing (without editing), you can set théEWER
environment variable tpg and exporiVIEWER. cscope will then invokepg instead of
Vi

An environment variable calledPATHcan be set to specify directories to be searched for
source files. See “Using Viewpaths” on page 9-13.

Step 2: Invoke cscope

9-2

By default,cscope builds a symbol cross-reference table for all thde, , andyacc
source files in the current directory, and for any included header files in the current
directory or the standard place. If all the source files for the program to be browsed are in
the current directory, and if its header files are there or in the standard place, invoke
cscope without arguments:

cscope

To browse through selected source files, invekeope with the names of those files as
arguments:

cscope filel.c file2.c file3.h
For other ways to invokecscope , see “Command Line Options” on page 9-10.

cscope builds the symbol cross-reference table the first time it is used on the source
files for the program to be browsed. By default, the table is stored in the file
cscope.out in the current directory. On a subsequent invocatastope rebuilds the
cross-reference only if a source file has been modified or the list of source files is differ-
ent. When the cross-reference is rebuilt, the data for the unchanged files are copied from
the old cross-reference, which makes rebuilding faster than the initial build and startup
time less for subsequent invocations.

Browsing Through Your Code with cscope

Step 3: Locate the Code

Now you can begin to identify the problem that is causing the error messag®f
storage to be printed. You have invokezkcope , and the cross-reference table has
been built. Theescope menu of tasks appears on the screen:

/cscope Press the ? key for help \

Find this C symbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

N J

Screen 9-1. The cscope Menu of Tasks

Press th(RETURN or Enter key to move the cursor down the screen (with wraparound
at the bottom of the display), ar@trl-p to move the cursor up; or use the up arrow and
down arrow keys if your keyboard has them. You can manipulate the menu, and perform
other tasks, with the following single-key commands:

Table 9-1. Menu Manipulation Commands

TAB move to next input field

RETURN move to next input field

Ctrl-n move to next input field

Ctrl-p move to previous input field

Ctrl-y search with the last pattern typed

Ctrl-b move to previous input field and search pattern

Ctrl-f recall next input field and search pattern

Ctrl-c toggle ignore/use letter case when searching (a seardflf& will

match, for examplefile andfile when ignoring letter case)
Ctrl-r rebuild the cross-reference

! start an interactive shell (typ@trl-d to return tocscope)

9-3

Compilation Systems Volume 1 (Tools)

Table 9-1. Menu Manipulation Commands (Cont.)

Ctrl-l redraw the screen
? display list of commands
Ctrl-d exit cscope

If the first character of the text for which you are searching matches one of these
commands, you can escape the command by entering a bacKks)dsfdre the character.

Now move the cursor to the fifth menu itefiind this text string , enter the text
out of storage , and pressthBRETURN key:

~

cscope Press the ? key for help

Find this C symbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string: out of storage
Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

- /

Screen 9-2. Requesting a Search for a Text String

NOTE

Follow the same procedure to perform any other task listed in the
menu except the sixtlChange this text string . Because
this task is slightly more complex than the others, there is a
different procedure for performing it. For a description of how to
change a text string, see “Examples” on page 9-14.

cscope searches for the specified text, finds one line that contains it, and reports its
finding as follows:

9-4

Browsing Through Your Code with cscope

cxt string: out of storage \

File Line
1 alloc.c 63 (void) fprintf(stderr, "\n%s: out of storage\n", argvO);

Find this C symbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

N J

Screen 9-3. cscope Lists Lines Containing the Text String

After cscope shows you the results of a successful search, you have several options. You
may want to change the lines or examine the code surrounding it in the editor. Or, if
cscope has found so many lines that a list of them will not fit on the screen at once, you
may want to look at the next part of the list. You can even filter out unwanted lines from
the listcscope has found. The following table shows the commands available after
cscope has found the specified text:

Table 9-2. Commands for Use after Initial Search

1-9 edit the file referenced by this line (the number you type corresponds
to an item in the list of lines printed bgscope)

space bar display next set of matching lines
+ display next set of matching lines
Ctrl-v display next set of matching lines

- display previous set of matching lines

Ctrl-e edit displayed files in order
> write the list of lines being displayed to a file
>> append the list of lines being displayed to a file
< read lines from a file
A filter all lines through a shell command, replacing the lines originally

found with the output of the shell command

pipe all lines to a shell command, displaying the output of the shell
command without changing the list of lines found

9-5

Compilation Systems Volume 1 (Tools)

If the first character of the text for which you are searching matches one of these
commands, you can escape the command by entering a backslash before the character.

Now examine the code around the newly found line. Eftéhe number of the line in the
list). The editor will be invoked with the filalloc.c ; the cursor will be at the begin-
ning of line 63 ofalloc.c

4 N

return(alloctest(realloc(p, (unsigned) size)));

}
/¥ check for memory allocation failure */
static char *
alloctest(p)
char *p;
if (p == NULL) {
(void) fprintf(stderr, "\n%s: out of storage\n", argv0);
exit(1);

return(p);

L T U B B N

"alloc.c" 67 lines, 1283 characters

o)

Screen 9-4. Examining a Line of Code Found by cscope

You can see that the error message is generated when the vapiablMULL. To
determine how an argument passedafoctest() could have beeNULL, you must
first identify the functions that callloctest()

Exit the editor by using normal quit conventions. You are returned to the menu of tasks.

Now type alloctest after the fourth itemFind functions calling this
function

9-6

Browsing Through Your Code with cscope

cxt string: out of storage \

File Line
1 alloc.c 63 (void) fprintf(stderr, "\n%s: out of storage\n”, argvO);

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function: alloctest
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

N J

Screen 9-5. Requesting a List of Functions That Call alloctest()

cscope finds and lists three such functions:

Gnctions calling this function: alloctest

File Function Line
1 alloc.c mymalloc 33 return(alloctest(malloc((unsigned) size)));
2 alloc.c mycalloc 43 return(alloctest(calloc((unsigned) nelem, (unsigned)
size)));
3 alloc.c myrealloc 53 return(alloctest(realloc(p, (unsigned) size)));

Find this C symbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

N j

Screen 9-6. cscope Lists Functions That Call alloctest()

Now you want to know which functions cafhymalloc() . cscope finds ten such
functions. It lists nine of them on the screen and instructs you to press the space bar to see
the rest of the list:

Compilation Systems Volume 1 (Tools)

Functions calling this function: mymalloc

File Function Line

1 alloc.c stralloc 24 return(strcpy(mymalloc(strlen(s) + 1), s));

2 crossref.c crossref 47 symbol = (struct symbol *) mymalloc(msymbols *
sizeof(struct symbol));

3 dir.c makevpsrcdirs 63 srcdirs = (char **) mymalloc(nsrcdirs *

sizeof(char
*Y)-

4 dir.c addincdir 167 incdirs = (char **) mymalloc(sizeof(char *));

5 dir.c addincdir 168 incnames = (char **) mymalloc(sizeof(char *));

6 dir.c addsrcfile 439 p = (struct listitem *) mymalloc(sizeof(struct
listitem));

7 display.c dispinit 87 displine = (int *) mymalloc(mdisprefs *

sizeof(int));

8 history.c addcmd 19 h = (struct cmd *) mymalloc(sizeof(struct

cmd));

9 main.c main 212 s = mymalloc((unsigned) (strlen(reffile) +

strlen(home) + 2));

* 9 more lines - press the space bar to display more *
Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

- /

Screen 9-7. cscope Lists Functions That Call mymalloc()

Because you know that the error message of storage is generated at the
beginning of the program, you can guess that the problem may have occurred in the func-
tion dispinit() (display initialization). To viewdispinit() , the seventh function

on the list, typer:

Browsing Through Your Code with cscope

@ N

Voi
dispinit()
{

/* calculate the maximum displayed reference lines */
lastdispline = FLDLINE - 4;
mdisprefs = lastdispline - REFLINE + 1;
if (mdisprefs > 9) {
mdisprefs = 9;

/* allocate the displayed line array */
displine = (int *) mymalloc(mdisprefs * sizeof(int));

AL/* display a page of the references */

void
display()
{
char file[PATHLEN + 1J; [* file name */
char function[PATLEN + 1]; /* function name */
char linenum[NUMLEN + 1]; /* line number */
int screenline; /* screen line number */
int width; /* source line display width */
register int i, I

"display.c" 622 lines, 14326 characters

NS J

Screen 9-8. Viewing dispinit() in the Editor

mymalloc() failed because it was called either with a very large number or a negative
number. By examining the possible valuesFafDLINE andREFLINE, you can see that
there are scenarios in which the valuenadisprefs is negative, for example, when you
are trying to callmymalloc() with a negative number.

Step 4. Edit the Code

On a windowing terminal you may have multiple windows of arbitrary size. The error
messag®ut of storage might have appeared as a result of runningg . That may

have been one of the situations in whioctymalloc() was called with a negative
number. Now you want to be sure that when the program aborts in this scenario in the
future, it does so after printing the more significant error messagzn too small

Edit the functiondispinit() as follows:

Compilation Systems Volume 1 (Tools)

-

/* initialize display parameters */

void
dispinit()
{

/* calculate the maximum displayed reference lines */
lastdispline = FLDLINE - 4;
mdisprefs = lastdispline - REFLINE + 1;
if (mdisprefs <= 0) {
(void) fprintf(stderr,"\n%s: screen too small\n", argv0);
exit(1);

}
if (mdisprefs > 9) {
mdisprefs = 9;

/* allocate the displayed line array */
displine = (int *) mymalloc(mdisprefs * sizeof(int));

AL/* display a page of the references */

void
display()

o)

Screen 9-9. Using cscope to Fix the Problem

You have fixed the problem that you began investigating at the beginning of this section.
Now if prog is run in a window with too few lines, it will not simply fail with the vague
error messageut of storage . Instead, it will check the window size and generate a
more significant error message before exiting.

Command Line Options

9-10

As notedcscope builds a symbol cross-reference table for thde®, , andyacc source
files in the current directory by default.

cscope
is equivalent to
cscope *.[chly]

The following example shows how you can browse through selected source files by
invoking cscope with the names of those files as arguments:

cscope filel.c file2.c file3.h

cscope provides command line options that allow you greater flexibility in specifying
source files to be included in the cross-reference. When you ingstape with the-s
option and any number of directory names (separated by commas)

cscope -s dir,dir,dir

cscope will build a cross-reference for all the source files in the specified directories as
well as the current directory. To browse through all of the source files whose names are

Browsing Through Your Code with cscope

listed infile (file names separated by spaces, tabs, or new-lines), imadape with the
-i option and the name of the file containing the list:

cscope i file

If your source files are in a directory tree, the following commands will allow you to
browse through all of them easily:

find . -name ".[chly]' -print | sort > file
cscope i file

Note that if this option is selectedscope ignores any other files appearing on the com-
mand line.

The-1 option tocscope is similar to the-l option tocc. By default,cscope searches

for included header files in the current directory, then the standard place. If you want
cscope to search for an included header file in a different directory, specify the path of
the directory with-| :

cscope -l dir

In this examplecscope will search the directorgir for #include files called into the
source files in the current directory. Directories are searchedifmude files in the
following order:

1. the current directory;
2. the directories specified with ;

3. the standard place for header files, usualbr/include

You can invoke thel option more than once on a command linscope will search the
specified directories in the order they appear on the command line.

You can specify a cross-reference file other than the defaglbpe.out by invoking

the-f option. This is useful for keeping separate symbol cross-reference files in the same
directory. You may want to do this if two programs are in the same directory, but do not
share all the same files:

cscope -f admin.ref admin.c common.c aux.c libs.c
cscope -f delta.ref delta.c common.c aux.c libs.c

In this example, the source files for two prograradmin anddelta , are in the same
directory, but the programs consist of different groups of files. By specifying different
symbol cross-reference files when you invaiseope for each set of source files, the
cross-reference information for the two programs is kept separate.

You can use thep n option to specify thatscope display the path name, or part of the
path name, of a file when it lists the results of a search. The number you gipedtands
for the lastn elements of the path name you want to be displayed. The defallttie
name of the file itself. So if your current directoryisme/common, the command

cscope -p2

will causecscope to displaycommon/filel.c , common/file2.c , and so forth
when it lists the results of a search.

9-11

Compilation Systems Volume 1 (Tools)

9-12

If the program you want to browse contains a large number of source files, you can use the
-b option to tellcscope to stop after it has built a cross-referencecope will not
display a menu of tasks. When you usseope -b in a pipeline with thebatch com-
mand,cscope will build the cross-reference in the background:

echo 'cscope -b' | batch

NOTE

See batch(1) for more information.

Once the cross-reference is built (and as long as you have not changed a source file or the
list of source files in the meantime), you need only specify

cscope

for the cross-reference to be copied and the menu of tasks to be displayed in the normal
way. In other words, you can use this sequence of commands when you want to continue
working without having to wait focscope to finish its initial processing.

The-d option instructescope not to update the symbol cross-reference. You can use it
to save time —escope will not check the source files for changes — if you are sure that
no such changes have been made.

NOTE

Use the-d option with care. If you specifyd under the
erroneous impression that your source files have not been
changedcscope will refer to an outdated symbol cross-
reference in responding to your queries.

To usecscope separately on several programs in the same directory structure while keep-
ing the databases in the same directory, use-thend-i options to rename the
cscope.out andcscope. files file as follows:

find dirl -name "™.[chlyCGHL} -print >dirl.files
find dir2 -name "™.[chlyCGHL}' -print >dir2.files
cscope -b -f dirl.db -i dirl.files
cscope -b -f dir2.db -i dir2.files

Call cscope with:
cscope -d -f dir2.db

Options used only when building the database, such aare not needed with theal
option. Use theP option to give the path to relative file names so the script does not have
to change to the directory where the database was built.

The-F file option reads symbol reference lines frdite, similar to the< command.

Browsing Through Your Code with cscope

The-qg option builds an inverted index for quick symbol searching. If you use this option
with the-f option, you must us€ on every call tacscope including building the data-

base, because it changes the names of the inverted index files. For large databases, you
will be able to find a symbol in a few seconds instead of the several minutes it can take to
build without-q , at the expense of about twice as much database disk space and build
CPU time. Updating aq database takes about half as long as building it. It contains
binary numbers, so it is portable only between machines with the same byte ordering.

The-g option makes it practical to have databases for entire projects. If you try to build a
project database and gefike too large message, you need to get your login's
ulimit raised by your system administrator. (S#€1) for information on the shell
built-in ulimit ~ command.) If you get thao space left on device message, you

will have to use a file system with more space. You can change the temporary file system
by setting theTMPDIRenvironment variable. If you have enough space to build the data-
base but not to rebuild it after some files have changed, try removing the inverted index
cscope.in.out andcscope.po.out files. If you still don't have enough space to
rebuild, remove thescope.out file.

Check thecscope(1l) page for other command line options.

Using Viewpaths

cscope searches for source files in the current directory by default. When the
environment variabl&PATHis set,cscope searches for source files in directories that
comprise your viewpath. A viewpath is an ordered list of directories, each of which has the
same directory structure below it.

For example, suppose you are part of a software project. There is an “official” set of
source files in directories beloWsl/ofc . Each user has a home directory
(/lusrlyou). If you make changes to the software system, you may have copies of just
those files you are changing fasr/you/src/cmd/progl . The official versions of

the entire program can be found in the directtisit/ofc/src/cmd/progl

Suppose you usescope to browse through the three files that comprisegl , namely,
fi.c ,f2.c, andf3.c. You would setVPATH to /usr/lyou and/fs1/ofc and
export it, as in

VPATH=/usr/you:/fsl/ofc export VPATH

You would then make your current directalysr/you/src/cmd/progl , and invoke
cscope :

cscope

The program will locate all files in the viewpath. In case duplicates are focsmhpe
uses the file whose parent directory appears earli&ATH Thus iff2.c is in your
directory (and all three files are in the official directorgscope will examinef2.c
from your directory andfl.c andf3.c from the official directory.

The first directory inVPATHmust be a prefix (usually$HOMIE of the directory you will
be working in. Each colon-separated directoryRATHmust be absolute: it should
begin at/ .

9-13

Compilation Systems Volume 1 (Tools)

Stacking cscope and Editor Calls

cscope and editor calls can be stacked. That means that wheope puts you in the
editor to view a reference to a symbol and there is another reference of interest, you can
invoke cscope again from within the editor to view the second reference without exiting
the current invocation of eith@scope or the editor. You can then back up by exiting the
most recent invocation with the appropriateope and editor commands.

Examples

This section presents examples of hoszope can be used to perform three tasks: chang-

ing a constant to a preprocessor symbol, adding an argument to a function, and changing
the value of a variable. The first example demonstrates the procedure for changing a text
string, which differs slightly from the other tasks on tb&cope menu. Once you have
entered the text string to be changesd¢ope prompts you for the new text, displays the
lines containing the old text, and waits for you to specify which of these lines you want it
to change.

Changing a Constant to a Preprocessor Symbol

Suppose you want to change a constdfi), to a preprocessor symbdAXSIZE.

Select the sixth menu iten©hange this text string , and entek100 . Thel must

be escaped with a backslash because it has a special meaning (item 1 on the menu) to
cscope . PressSRETURN. cscope will prompt you for the new text string. Type
MAXSIZE

.)

cscope Press the ? key for help

Find this C symbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

To: MAXSIZE

o)

Screen 9-10. Changing a Text String

9-14

Browsing Through Your Code with cscope

cscope displays the lines containing the specified text string, and waits for you to select
those in which you want the text to be changed:

Gange "100" to "MAXSIZE" \

File Line

err.c 19 p = total/100.0; /* get percentage */
find.c 8 if (c < 100) {

init.c 4 char s[100];

init.c 26 for (i = 0; i < 100; i++)

read.c 12 f = (bb & 0100);

A wWNPEP

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Select lines to change (press the ? key for help):

N J

Screen 9-11. cscope Prompts for Lines to Be Changed

You know that the constarit00 in lines 2, 3, and 4 of the list (lines 4, 26, and 8 of the
listed source files) should be changedM&XSIZE. You also know thaflO0 in err.c
and0100.0 inread.c (lines 1 and 5 of the list) should not be changed. You select the
lines you want changed with the following single-key commands:

Table 9-3. Commands for Selecting Lines to Be Changed

1-9 mark or “unmark” the line to be changed
* mark or “unmark” all displayed lines to be changed
space bar display next set of lines
+ display next set of lines

- display previous set of lines

a mark or “unmark” all lines to be changed
Ctrl-d change the marked lines and exit
ESC exit without changing the marked lines

In this case, ente2, 3, and4. Note that the numbers you type are not printed on the
screen. Insteadisscope marks each list item you want to be changed by printirsg a
(greater than) symbol after its line number in the list:

9-15

Compilation Systems Volume 1 (Tools)

-

Change "100" to "MAXSIZE" \

File Line
1 err.c 19 p = total/100.0; /* get percentage */
2>find.c 8 if (c < 100) {
3>init.c 4 char s[100];
4>init.c 26 for (i = 0; i < 100; i++)
5 read.c 12 f = (bb & 0100);

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Select lines to change (press the ? key for help):

o)

Screen 9-12. Marking Lines to Be Changed

Now pres<Ctrl-d to change the selected linesscope displays the lines that have been
changed and prompts you to continue:

-)

Changed lines:
char s[MAXSIZE];
for (i = 0; i < MAXSIZE; i++)
if (c < MAXSIZE) {

Press the RETURN key to continue:

o)

Screen 9-13. cscope Displays Changed Lines of Text

9-16

Browsing Through Your Code with cscope

When you presRETURN in response to this promptscope redraws the screen,
restoring it to its state before you selected the lines to be changed, as shown in the screen
below.

The next step is to add th&define for the new symboMAXSIZE. Because the header
file in which the#define is to appear is not among the files whose lines are displayed,
you must escape to the shell by typihgThe shell prompt will appear at the bottom of the
screen. Then enter the editor and add#Hefine

CXt string: 100 \

File Line

err.c 19 p = total/100.0; /* get percentage */
find.c 8 if (c < 100) {

init.c 4 char s[100];

init.c 26 for (i = 0; i < 100; i++)

read.c 12 f = (bb & 0100);

abhwWN P

Find this C symbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

$ vi defs.h

N)

Screen 9-14. Escaping from cscope to the Shell

To resume thescope session, quit the editor and preS#l-d to exit the shell.

Adding an Argument to a Function

Adding an argument to a function involves two steps: editing the function itself and
adding the new argument to every place in the code where the function is caibepe
makes that easy.

First, edit the function by using the second menu itdfind this global

definition . Next, find out where the function is called. Use the fourth menu item,
Find functions calling this function , to get a list of all the functions that
call it. With this list, you can either invoke the editor for each line found by entering the
list number of the line individually, or invoke the editor for all the lines automatically by
pressingCtrl-e. Using cscope to make this type of change assures that none of the
functions you need to edit will be overlooked.

9-17

Compilation Systems Volume 1 (Tools)

Changing the Value of a Variable

Technical Tips

The value ofcscope as a browser becomes apparent when you want to see how a
proposed change will affect your code. If you want to change the value of a variable or
preprocessor symbol, use the first menu itéind this C symbol , to obtain a list of
references that will be affected. Then use the editor to examine each one. This will help
you predict the overall effects of your proposed change. You can also use this menu to ver-
ify that your changes have been made.

This section describes certain problems that may arise when yotsaspe and how to
avoid them.

Unknown Terminal Type

You may see the error message
Sorry, | don't know anything about your "term" terminal

If this message appears, your terminal may not be listed in the Terminal Information
Utilities (terminfo) database that is currently loaded. Make sure you have assigned the
correct value torERM. If the message reappears, try reloading the Terminal Information
Utilities.

You may also see

Sorry, | need to know a more specific terminal type
than "unknown"

If this message appears, set and exporfllBRMas described in “Step 1: Set Up the Envi-
ronment” on page 9-2.

Command Line Syntax for Editors

9-18

cscope invokes thevi editor by default. You may override the default setting by
assigning your preferred editor to tl#DITOR environment variable and exporting
EDITOR, as described in the section “Step 1: Set Up the Environment” on page 9-2. Note,
however, thatscope expects the editor it uses to have a command line syntax of the
form

editor +linenum filename

as doewi . If the editor you want to use does not have this command line syntax, you
must write an interface betweescope and the editor.

Browsing Through Your Code with cscope

Suppose you want to ussl, for example. Becaused does not allow specification of a
line number on the command line, you will not be able to use it to view or edit files with
cscope unless you write a shell script (calledyedit here) that contains the following
line:

fusr/bin/ed $2
Now set the value 0EDITORto your shell script and expoBDITOR
EDITOR=myedit; export EDITOR

Whencscope invokes the editor for the list item you have specified, for example, line 17
in main.c , it will invoke your shell script with the command line

myedit +17 main.c

myedit will discard the line numbe($1) and called correctly with the file name
($2) . You will then have to execute the appropriate commands to display and edit the
line because you will not be moved automatically to line 17 of the file.

9-19

Compilation Systems Volume 1 (Tools)

9-20

10
Analyzing Your Code with lint

Introductionto lint. 10-1
Options and DireCtivesot 10-1
lintand the Compiler e 10-2
Message FOrmats e 10-2

What lINt DOBS o 10-2
Consistency Checks 10-2
Portability Checks 10-3
SUSPICIOUS CONSEIUCES. . . . oot e e 10-5

USA0E . ot ettt it e e 10-6
lintLibraries 10-7
Nt RIS . 10-8
Options and Directives Listed 10-8

lint-specific MeSSageso 10-12
argument unusedinfunction 10-13
array subscript cannotbe >value:value, 10-13
array subscript cannot be negative: value. oL 10-13
assignment causes implicit narrowing conversion. 10-14
assignment of negative constant to unsignedtype 10-14
assignment operator ?=? found where ?==?was expected 10-14
bitwise operation on signed value nonportable 10-15
constant in conditional context. 10-16
constantoperand to Op: 21 2. 10-16
constant truncated by assignment. 10-16
conversion of pointerloses bits 10-17
conversion to larger integral type may sign-extend incorrectly 10-17
declarationunused inblock. 10-18
declared global, could be static i 10-18
equality operator ?=="? found where ?=? was expected. 10-18
evaluation order undefined: name i 10-19
fallthrough on case statement. 10-19
function argument (number) declared inconsistently.................... 10-20
function argument (number) used inconsistently 10-20
function argument type inconsistent with format. 10-21
function called with variable number ofarguments. 10-21
function declared with variable number ofarguments. 10-22
function falls off bottom without returningvalue 10-23
function mustreturnint main() 10-23
function returns pointer to [automatic/parameter] 10-24
function returns value thatis alwaysignored. 10-24
function returns value that is sometimesignored. 10-25
function value is used, butnonereturned. 10-25
logical expression always false: 0p 2&&? i 10-26
logical expression always true: op 2[|?o oo 10-26
malformed format string. 10-27
may be indistinguishable due to truncationorcase 10-27
name declared but neverused ordefined L. 10-27

name defined butneverused 10-28

Compilation Systems Volume 1 (Tools)

name multiply defined 10-28
name used but notdefined 10-28
nonportable bit-field type... 10-29
nonportable characterconstant L. 10-29
only 0 or 2 parameters allowed: main() 10-29
pointer cast may result in improper alignment. 10-30
pointer casts may be troublesome. i 10-30
precedence confusion possible; parenthesize 10-31
precision lost in bit-field assignment il 10-31
setbutnotusedinfunction. 10-32
statement has noconsequent: else 10-32
statementhas noconsequent: if i 10-32
statementhasnulleffect. 10-33
statementnotreached 10-33
Static UNUSE oo 10-34
suspicious comparison of char with value: op ?0p? 10-34
suspicious comparison of unsigned with value: op?20p? 10-35
too few argumentsforformat 10-35
too many arguments forformat. 10-36
value type declared inconsistently L 10-36
value type used inconsistently. 10-37
variable may be used beforeset:name. L 10-37

variableunused infunctian 10-37

10
Analyzing Your Code with lint

Introduction to lint

lint checks for code constructs that may cause your C program not to compile, or to
execute with unexpected resullisit issues every error and warning message produced
by the C compiler. It also issueditit -specific” warnings about potential bugs and
portability problems.

In particularlint compensates for separate and independent compilation of files in C by
flagging inconsistencies in definition and use across files, including any libraries you have
used. In a large project environment especially, where the same function may be used by
different programmers in hundreds of separate modules of &iatle, can help discover

bugs that otherwise might be difficult to find. A function called with one less argument
than expected, for example, looks at the stack for a value the call has never pushed, with
results correct in one condition, incorrect in another, depending on whatever happens to be
in memory at that stack location. By identifying dependencies like this one, and
dependencies on machine architecture as Wetl, can improve the reliability of code

run on your machine or someone else's.

Options and Directives

lint s a static analyzer, which means that it cannot evaluate the run-time consequences
of the dependencies it detects. Certain programs may contain hundreds of unreachable
break statements, anliht will give a warning for each of them. The shear number of

lint messages issued can be distractlimy. , however, provides command line options

and directives to help suppress warnings you consider to be spurious.

NOTE

Directives are special comments embedded in the source text.

For the example we've cited here,

* You can invokdint with the-b option to suppress all complaints about
unreachabléreak statements;

* For a finer-grained control, you can precede any unreachable statement
with the comment* NOTREACHED */ to suppress the diagnostic for
that statement.

10-1

Compilation Systems Volume 1 (Tools)

“Usage” on page 10-6 details options and directives and introducelnthe filter
technique, which lets you taildint 's behavior even more finely to your project's needs.
It also shows you how to udimt libraries to check your program for compatibility with
the library functions you have called in it.

lint and the Compiler

Nearly five hundred diagnostic messages are issudihby . However, this chapter only
describes thoskint -specific warnings that are not issued by the compiler. Additionally,
this chapter lists diagnostics issued bothliog and the compiler that are capable of
being suppressed only iyt options. For the text and examples of all messages issued
exclusively bylint or subject exclusively to its options, refer to “lint-specific Messages”
on page 10-12.

Message Formats

What lint Does

Most oflint 's messages are simple, one-line statements printed for each occurrence of
the problem they diagnose. Errors detected in included files are reported multiple times by
the compiler but only once bint , no matter how many times the file is included in

other source files. Compound messages are issued for inconsistencies across files and, in a
few cases, for problems within them as well. A single message describes every occurrence
of the problem in the file or files being checked. When use lirfita filter requires that a
message be printed for each occurrence, compound diagnostics can be converted to the
simple type by invokindint with the-s option.

NOTE

See “Usage” on page 10-6 for more information.

lint -specific diagnostics are issued for three broad categories of conditions: inconsistent
use, non-portable code, and suspicious constructs. In this section, we'll review examples of
lint 's behavior in each of these areas, and suggest possible responses to the issues they
raise.

Consistency Checks

10-2

Inconsistent use of variables, arguments, and functions is checked within files as well as
across them. Generally speaking, the same checks are performed for prototype uses,
declarations, and parameters as for old-style functions. (If your program does not use
function prototypeslint will check the number and types of parameters in each call to a

Analyzing Your Code with Iin

function more strictly than the compiletint also identifies mismatches of conversion
specifications and arguments [fs]printf and [fs]scanf control strings.
Examples:

¢ Within files, lint flags nonvoid functions that “fall off the bottom”
without returning a value to the invoking function. In the past,
programmers often indicated that a function was not meant to return a
value by omitting the return typdun() {} . That convention means
nothing to the compiler, which regaréfisn as having the return typat .
Declare the function with the return typeid to eliminate the problem.

* Across files,lint detects cases where a nreoid function does not
return a value, yet is used for its value in an expression, and the opposite
problem, a function returning a value that is sometimes or always ignored
in subsequent calls. When the value is always ignored, it may indicate an
inefficiency in the function definition. When it is sometimes ignored, it's
probably bad style (typically, not testing for error conditions). If you do not
need to check the return values of string functions $ikeat , strcpy
andsprintf | or output functions likerintf andputchar , cast the
offending call(s) tovoid .

¢ lint identifies variables or functions that are declared but not used or
defined; used but not defined; or defined but not used. That means that
whenlint is applied to some, but not all files of a collection to be loaded
together, it will complain about functions and variables declared in those
files but defined or used elsewhere; used there but defined elsewhere; or
defined there and used elsewhere. Invoke-theoption to suppress the
former complaint;u to suppress the latter two.

Portability Checks

Some non-portable code is flaggedlbyt in its default behavior, and a few more cases

are diagnosed wheimt is invoked with-p and/or-Xc . The latter telldint to check

for constructs that do not conform to the ANSI C standard. For the messages issued under
-p and-Xc , check “Usage” on page 10-6. Examples:

* In some C language implementations, character variables that are not
explicitly declaredsigned or unsigned are treated as signed quantities
with a range typically from -128 to 127. In other implementations, they are
treated as nonnegative quantities with a range typically from 0 to 255. So

the test
char c;
¢ = getchar();
if (¢ == EOF) . . .

whereEOFhas the value -1, will always fail on machines where character variables
take on nonnegative values. Oneliot 's-p checks will flag any comparison that
implies a “plain”char may have a negative value. Note, however, that declariag
signed char in the above example eliminates the diagnostic, not the problem.
That's becausgetchar must return all possible characters and a distlBOF
value, so a&har cannot store its value. This example, which is perhaps the most

10-3

Compilation Systems Volume 1 (Tools)

10-4

common one arising from implementation-defined sign-extension, shows how a
thoughtful application ofint 's portability option can help you discover bugs not
related to portability. In any case, declaras anint .

A similar issue arises with bit-fields. When constant values are assigned to
bit-fields, the field may be too small to hold the value. On a machine that
treats bit-fields of typént as unsigned quantities, the values allowed for
int x:3 range from 0 to 7, whereas on machines that treat them as signed
guantities they range from -4 to 3. However unintuitive it may seem, a
three-bit field declared typst cannot hold the value 4 on the latter
machineslint invoked with-p flags all bit-field types other than
unsigned int orsigned int . Note that these are the only portable
bit-field types. The compilation system supparts , char , short , and

long bit-field types that may bensigned , signed , or “plain.” It also
supports thenum bit-field type.

Bugs can arise when a larger-sized type is assigned to a smaller-sized type.
If significant bits are truncated, accuracy is lost:

short s;
long I;
s =1

lint flags all such assignments by default; the diagnostic can be suppressed by
invoking the-a option. Bear in mind that you may be suppressing other diagnostics
when you invokdint with this or any other option. Check the list in “Usage” on
page 10-6 for the options that suppress more than one diagnostic.

A cast of a pointer to one object type to a pointer to an object type with
stricter alignment requirements may not be portalilg. flags

int *fun(y)
char *y;

{
}

because, on most machines,iah cannot start on an arbitrary byte boundary,
whereas &har can. If you suppress the diagnostic by invokiimg ~ with -h , you

may be disabling other messages. You can eliminate the problem by using the
generic pointeroid *

return(int *)y;

ANSI C leaves the order of evaluation of complicated expressions
undefined. What this means is that when function calls, nested assignment
statements, or the increment and decrement operators cause side effects —
when a variable is changed as a by-product of the evaluation of an
expression — the order in which the side effects take place is highly
machine dependent. By defadifit flags any variable changed by a side
effect and used elsewhere in the same expression:

int a[10];
main()
{
int i = 1;
a[i++] =i

Analyzing Your Code with Iin

Note that in this example the value afl] may be 1 if one compiler is used, 2 if
another. The bitwise logical operat&ican also give rise to this diagnostic when it is
mistakenly used in place of the logical operafd

if ((c = getchar()) = EOF & ¢ = '0)

Suspicious Constructs

lint flags a number of valid constructs that may not represent what the programmer
intended. Examples:

* Anunsigned variable always has a nonnegative value. So the test

unsigned X;
if (x <0)...

will always fail. Whereas the test

unsigned X;
if x>0)...

is equivalent to
if x!=0) ...

which may not be the intended actidint flags suspicious comparisons of
unsigned variables with negative constants or 0. To compareaiasigned
variable to the bit pattern of a negative number, cast itrtsigned

if (u == (unsigned) -1) . . .
Or use thdJ suffix:
if (u==-1U) ...

e lint flags expressions without side effects that are used in a context
where side effects are expected, where the expression may not represent
what the programmer intended. It issues an additional warning whenever
the equality operator is found where the assignment operator was expected,
in other words, where a side effect was expected:

int fun()
{
int a, b, x, vy;
@ =x && (b ==y)
}
e lint cautions you to parenthesize expressions that mix both the logical
and bitwise operators (specificallg, |, *, <<, >>) , Where

misunderstanding of operator precedence may lead to incorrect results.
Because the precedence of bitwésge for example, falls below logicak=,
the expression

if x &a==20)...

10-5

Compilation Systems Volume 1 (Tools)

Usage

10-6

will be evaluated as
if (x & (@ ==0)) ...

which is most likely not what you intended. Invokitigt with -h disables the
diagnostic.

You invokelint with a command of the form
lint file.c file.c

lint examines code in two passes. In the first, it checks for error conditions local to C
source files, in the second for inconsistencies across them. This process is invisible to the
user unleséint is invoked with-c :

lint -c filel.c file2.c

That command directint to execute the first pass only and collect information relevant
to the second — about inconsistencies in definition and use adiledsc and
file2.c — in intermediate files namefilel.In andfile2.In

Is -1
filel.c
filel.In

file2.c
file2.In

In this way, the.c option tolint is analogous to thec option tocc, which suppresses
the link editing phase of compilation. Generally speakiitg, 's command line syntax
closely followscc 's.

When theln files arelint ed
lint filel.In file2.In

the second pass is executéitit processes any number af or.In files in their
command line order. So

lint filel.In file2.In file3.c
directslint to checkfile3.c for errors internal to it and all three files for consistency.

lint searches directories for included header files in the same orader as

NOTE

For further information, see “Preprocessing Directives” in Con-
currentC Reference Manual

lint Libraries

Analyzing Your Code with Iin

Use the-l option tolint as you would thel option tocc. If you wantlint to check
an included header file that is stored in a directory other than your current directory or the
standard place, specify the path of the directory withas follows:

lint -l dir filel.c file2.c

You can specifyl more than once onthat command line. Directories are searched

in the order they appear on the command line. Of course, you can specify multiple options
tolint on the same command line. Options may be concatenated unless one of the
options takes an argument:

lint -cp -I dir -I dir filel.c file2.c
That command directint to

* Execute the first pass only;
¢ Perform additional portability checks;

¢ Search the specified directories for included header files.

You can usdint libraries to check your program for compatibility with the library
functions you have called in it: the declaration of the function return type, the number and
types of arguments the function expects, and so on. The starddrd libraries
correspond to libraries supplied by the C compilation system, and generally are stored in
the standard place on your system, the directasy/ccs/lib . By convention]int

libraries have names of the foritib-Ix.In

Thelint standard C libranylib-Ic.In , Is appended to thint command line by
default; checks for compatibility with it can be suppressed by invokingtheption.
Otherlint libraries are accessed as arguments to

lint -Ix filel.c file2.c

directslint to check the usage of functions and variablefilgl.c andfile2.c for
compatibility with thelint library llib-Ix.In . The library file, which consists only

of definitions, is processed exactly as are ordinary source files and ordmafiles,
except that functions and variables used inconsistently in the library file, or defined in the
library file but not used in the source files, elicit no complaints.

To create your owttint library, insert the directivé® LINTLIBRARY * atthe head
of a C source file, then invokint for that file with the-o option and the library name
that will be given to-l :

lint -0 x files headed b LINTLIBRARY */

causes only definitions in the source files headed*byINTLIBRARY */ to be written

to the file llib-Ix.In . (Note the analogy olint-o tocc -o .) A library can be
created from a file of function prototype declarations in the same way, except that both
/* LINTLIBRARY * and/* PROTOLIB n*/ must be inserted at the head of the dec-
larations file. Ifnis 1, prototype declarations will be written to a librany.file just as are

10-7

Compilation Systems Volume 1 (Tools)

old-style definitions. Ifnis 0, the default, the process is canceled. Invokinly with -y
is another way of creatinglant library:

lint -y -ox filel.c file2.c

causes each source file named on the command line to be treated as if it began with
/* LINTLIBRARY */ and only its definitions to be written tib-Ix.In

By default,lint searches folint libraries in the standard place. To dirdictt to
search for dint library in a directory other than the standard place, specify the path of
the directory with theL option:

lint -L dir -Ix filel.c file2.c

The specified directory is searched before the standard place.

lint Filters

A lint filter is a project-specific post-processor that typically usesak script or
similar program to read the output it and discard messages that your project has
decided do not identify real problems — string functions, for instance, returning values
that are sometimes or always ignored. It enables you to generate customized diagnostic
reports wherint options and directives do not provide sufficient control over output.

Two options tdint are particularly useful in developing a filter. Invokifigt ~ with -s

causes compound diagnostics to be converted into simple, one-line messages issued for
each occurrence of the problem diagnosed. The easily parsed message format is suitable
for analysis by arawk script.

Invokinglint ~ with -k causes certain comments you have written in the source file to be
printed in output, and can be useful both in documenting project decisions and specifying
the post-processor's behavior. In the latter instance, if the comment identified an expected
lint message, and the reported message was the same, the message might be filtered out.
To use-k , insert on the line preceding the code you want to comment*theNTED

[msd */ directive, wheremsgrefers to the comment to be printed whigm is

invoked with-k . (Refer to the list of directives below for whiitit ~ does whenk is not

invoked for a file containing* LINTED [msd * .)

Options and Directives Listed

These options suppress specific messages:
-a Suppress:

* assignment causes implicit narrowing
conversion

* conversion to larger integral type may
sign-extend incorrectly

10-8

Analyzing Your Code with Iin

-b For unreachablbreak and empty statements, suppress:

statement not reached

-h Suppress:
* assignment operator ‘=" found where
equality operator “==" was expected

constant operand to op: “I”
fallthrough on case statement

pointer cast may result in improper
alignment

precedence confusion possible; parenthesize
statement has no consequent: if

statement has no consequent: else

-m Suppress:

declared global, could be static

-u Suppress:

name defined but never used

name used but not defined

-v Suppress:

argument unused in function

-X Suppress:

name declared but never used or defined

These options enable specific messages:

-p Enable:

conversion to larger integral type may
sign-extend incorrectly

may be indistinguishable due to truncation
or case

pointer casts may be troublesome
nonportable bit-field type

suspicious comparison of char with value op

op

10-9

Compilation Systems Volume 1 (Tools)

10-10

-Xc Enable:

* hitwise operation on signed value
nonportable

¢ function must return int: main()

* may be indistinguishable due to truncation
or case

* only O or 2 parameters allowed: main()

* nonportable character constant

Other options:

-C Create aln file consisting of information relevant fint 's second pass for
every.c file named on the command line. The second pass is not executed.

-F When referring to thec files named on the command line, print their path
names as supplied on the command line rather than only their base names.

-l dir Search the directorgir for included header files.

-k When used with the directiveé LINTED [msgd */ , printinfo: msg.

-Ix Access thdint library llib-Ix.In

-L dir When used withl , search for dint library in the directorydir.

-n Suppress checks for compatibility with the defdint standard C library.

-0X Create the filellib-Ix.In , consisting of information relevant tint 's
second pass, from the files named on the command line. Generally used
with -y or/* LINTLIBRARY * tocreatdint libraries.

-S Convert compound messages into simple ones.

-y Treat every.c file named on the command line as if it began with the
directive/* LINTLIBRARY */

Y Write the product name and release to standard error.

Directives:

/* ARGSUSED */

Suppress:
¢ argument unused in function

for every argument but the firstin the function definition it precedes.
Default is 0.

/* CONSTCOND */

Suppress:

e constant in conditional context

* constant operand to op: "I"

Analyzing Your Code with Iin

* logical expression always false: op “&&"

* logical expression always true: op “||”
for the constructs it precedes. AlSo CONSTANTCONDITION */.

* EMPTY *
Suppress:

¢ statement has no consequent: else
when inserted between tledse and semicolon;
¢ statement has no consequent: if
when inserted between the controlling expression offthand semicolon.

/* FALLTHRU */
Suppress:

¢ fallthrough on case statement
for thecase statement it precedes. Algb FALLTHROUGH */.
/* LINTED [msg *
When-k is not invoked, suppress every warning pertaining to an intra-file

problem except:

¢ argument unused in function
¢ declaration unused in block

* set but not used in function
¢ static unused

¢ variable unused in function
for the line of code it precedesnsgis ignored.

/* LINTLIBRARY */
When-o is invoked, write to a libraryln file only definitions in the.c file
it heads.

/* NOTREACHED */
Suppress:

¢ statement not reached
for the unreached statements it precedes;
¢ fallthrough on case statement
for the case it precedes that cannot be reached from the preceding case;

¢ function falls off bottom without returning
value

for the closing curly brace it precedes at the end of the function.

10-11

Compilation Systems Volume 1 (Tools)

/* PRINTFLIKE n */
Treat thenth argument of the function definition it precedes as a
[fs]printf format string and issue:

* malformed format string
for invalid conversion specifications in that argument, and

¢ function argument type inconsistent with
format

¢ too few arguments for format

* too many arguments for format

for mismatches between the remaining arguments and the conversion
specificationslint issues these warnings by default for errors in calls to
[fs]printf functions provided by the standard C library.

/* PROTOLIB n */
Whennis 1 and/* LINTLIBRARY */ is used, write to a libraryn file
only function prototype declarations in the file it heads. Default is 0,
canceling the process.

/* SCANFLIKE n */
Same ag* PRINTFLIKEn */ except that theth argument of the function
definition is treated as Hs]scanf format string. By defaultlint issues
warnings for errors in calls tdgfs]scanf functions provided by the
standard C library.

* VARARGSh */
For the function whose definition it precedes, suppress:

e function called with variable number of
arguments

for calls to the function wit or more arguments.

lint-specific Messages

This section lists alphabetically the warning messages issued exclusivéilyt by or
subject exclusively to its options. The code examples illustrate conditions in which the
messages are elicited. Note that some of the examples would elicit messages in addition to
the one stated.

10-12

Analyzing Your Code with Iin

argument unused in function

Format Compound

A function argument was not used. Preceding the function definition with
/* ARGSUSEDn */ suppresses the message for all but the firatguments; invoking
lint with -v suppresses it for every argument.

int fun(int x, int y)
{

}
/* ARGSUSED1 *

int fun2(int x, int y)
{

return x;

return x;

©CoO~NOOOUTPA,WNPE

argument unused in function
(1) y in fun

array subscript cannot be > value: value

Format Simple

The value of an array element's subscript exceeded the upper array bound.

1 int fun()

2

3 int a[10];

4 int *p = a;

5 while (p '= &a[10]) /* using address is ok */
6 pt++;

7 return a5 + 6];

8 }

(7) warning: array subscript cannot be > 9: 11

array subscript cannot be negative: value

Format Simple

The constant expression that represents the subscript of a true array (as opposed to a
pointer) had a negative value.

10-13

Compilation Systems Volume 1 (Tools)

1 int f()

2 {

3 int a[10];

4 return a5 * 2 / 10 - 2];
5 1}

(4) warning: array subscript cannot be negative: -1

assignment causes implicit narrowing conversion

Format Compound

An object was assigned to one of a smaller type. Involing with -a suppresses the
message. So does an explicit cast to the smaller type.

1 void fun()

2

3 short s

4 long | =0
5 s = |

6 1}

assignment causes implicit narrowing conversion

()

assignment of negative constant to unsigned type

Format Simple

A negative constant was assigned to a variablarsfigned type. Use a cast or thed

suffix.
1 void fun()
2
3 unsigned i;
4 i = -1;
5 i = -1U;
6 i = (unsigned) (-4 + 3);
7}

(4) warning: assignment of negative constant to unsigned

type

assignment operator ?=? found where ?==? was expected

Format Simple

10-14

Analyzing Your Code with Iin

An assignment operator was found where a conditional expression was expected. The
message is not issued when an assignment is made to a variable using the value of a
function call or in the case of string copying (see the example below). The warning is
suppressed whdimt is invoked with-h .

1 void fun()

2 |

3 char *p, *q;

4 inta=0b=0c¢c=0d=0, i

5 i=(@=Db) & (c == d);

6 i = (c == d) && (a = b);

7 if (@ = b)

8 i = 1;

9 while (*p++ = *q++);

10 while (a = b);

11 while ((a = getchar()) == b);

12 if (a = foo()) return;

13 }

(5) warning: assignment operator "=" found where "=="
was expected

(7) warning: assignment operator "=" found where "=="
was expected

(10) warning: assignment operator "=" found where "=="

was expected

bitwise operation on signed value nonportable

Format Compound

The operand of a bitwise operator was a variable of signed integral type, as defined by
ANSI C. Because these operators return values that depend on the internal representations
of integers, their behavior is implementation-defined for operands of that type. The
message is issued only whimt is invoked with-Xc .

1 fun()

2

3 int i;

4 signed int j;

5 unsigned int k;
6 i =i & 055;
7 j =171 022

8 k = k >> 4
O }

warning: bitwise operation on signed value nonportable

(6) (7)

10-15

Compilation Systems Volume 1 (Tools)

constant in conditional context

Format Simple

The controlling expression of @h , while , orfor statement was a constant. Preceding
the statement witlt CONSTCOND */ suppresses the message.

1 void fun()

2

3 if (! 1) return;

4 while (1) foo();

5 for (;1));

6 for (;:);

7 /* CONSTCOND */
8 while (1);

O }

(3) warning: constant in conditional context
(4) warning: constant in conditional context
(5) warning: constant in conditional context

constant operand to op: ?!?

Format Simple

The operand of the NOT operator was a constant. Preceding the statement with
/* CONSTCOND * suppresses the message for that statement; invdiking with -h
suppresses it for every statement.

void fun()

1

2 {

3 if (! 0) return;

4 /* CONSTCOND */
5 if (! 0) return;

6

(3) warning: constant operand to op: "!"

constant truncated by assignment

Format Simple

An integral constant expression was assigned or returned to an object of an integral type
that cannot hold the value without truncation.

10-16

Analyzing Your Code with Iin

1 unsigned char f()

2

3 unsigned char i;
4 i = 255;

5 i = 256;

6 return 256;
70}

(5) warning: constant truncated by assignment
(6) warning: constant truncated by assignment

conversion of pointer loses bits

Format Simple

A pointer was assigned to an object of an integral type that is smaller than the pointer.

1 void fun()
2 A

3 char ¢
4 int *i
5 c =i
6 1}

(5) warning: conversion of pointer loses bits

conversion to larger integral type may sign-extend incorrectly

Format Compound

A variable of type “plain"char was assigned to a variable of a larger integral type.
Whether a “plain”char is treated as signed or unsigned is implementation-defined. The
message is issued only whéint is invoked with-p , and is suppressed when it is
invoked with-a .

1 void fun()

2

3 char ¢ = 0;
4 short s = O;
5 long I;

6 | = ¢

7 | = s;

8 }

conversion to larger integral type may sign-extend
incorrectly

(6)

10-17

Compilation Systems Volume 1 (Tools)

declaration unused in block

Format Compound

An external variable or function was declared but not used in an inner block.

1 int fun()

2

3 int foo();

4 int bar();

5 return foo();
6 }

declaration unused in block
(4) bar

declared global, could be static

Format Compound

An external variable or function was declared global, insteadtafic , but was
referenced only in the file in which it was defined. The message is suppressedinmthen
is invoked with-m.

file fl.c

1 inti

2 int foo() {return i}

3 int fun() {return i}

4 static int stfun() {return fun();}

file f2.c

1 main()

2

3 int a

4 a = foo()

5 1}

declared global, could be static
fun f1.c(3)
i fl.c(1)

equality operator ?==? found where ?=? was expected

Format Simple

An equality operator was found where a side effect was expected.

10-18

Analyzing Your Code with Iin

1 void fun(a, b)
2 int a, b;

3 |

4 a == b;
5 for (a == b; a < 10; at++);
6

(4) warning: equality operator "==" found where "="
was expected

(5) warning: equality operator "==" found where "="
was expected

evaluation order undefined: name

Format Simple
A variable was changed by a side effect and used elsewhere in the same expression.

int a[10];
main()

(5) warning: evaluation order undefined: i

fallthrough on case statement

Format Simple

Execution fell through one case to another witholitraak or return . Preceding a

case statement with* FALLTHRU */ , or/* NOTREACHED */ when the case

cannot be reached from the preceding case (see below), suppresses the message for that
statement; invokindgint with -h suppresses it for every statement.

1 void fun(i)

2

3 switch (i) {
4 case 10:
5 i = 0;
6 case 12:
7 return;
8 case 14:
9 break;
10 case 15:
11 case 16:
12 break;
13 case 18:
14 i = 0;

10-19

Compilation Systems Volume 1 (Tools)

15 [* FALLTHRU */

16 case 20:

17 error("bad number");
18 /* NOTREACHED */
19 case 22:

20 return;

21 }

22 }

(6) warning: fallthrough on case statement

function argument (number) declared inconsistently

Format Compound

The parameter types in a function prototype declaration or definition differed from their
types in another declaration or definition. The message described after this one is issued
for uses (not declarations or definitions) of a prototype with the wrong parameter types.

filei3a.c
1 int funl(int);
2 int fun2(int);
3 int fun3(int);
file i3b.c

1 int funl(int *i);

2 int fun2(int *) {}

3 void foo()

4

5 int *i;

6 fun3(i);

7}

function argument (number) declared inconsistently
fun2 (arg 1) i3b.c(2) int * : i3a.c(2) int
funl (arg 1) i3a.c(1) int :: i3b.c(1) int *

function argument (number) used inconsistently
fun3 (arg 1) i3a.c(3) int :: i3b.c(6) int *

function argument (number) used inconsistently

Format Compound

The argument types in a function call did not match the types of the formal parameters in
the function definition. (And see the discussion of the preceding message.)

10-20

Analyzing Your Code with Iin

filefl.c

1 int fun(int x, int y)
2

3 return x +vy;
4}

file f2.c

1 int main()

2

3 int *x;

4 extern int fun();
5 return fun(1, x);
6 }

function argument (number) used inconsistently
fun(arg 2) fl.c(2) int :: f2.c(5) int *

function argument type inconsistent with format

Format Compound

An argument was inconsistent with the corresponding conversion specification in the

control string of a[fs]printf or [fs]scanf function call. (See alsd*
PRINTFLIKEn */ and/* SCANFLIKE n */ in the list of directives in “Usage” on
page 10-6.)

1 #include <stdio.h>

2 main()

3

4 int i;

5 printf("%s", i);

6 }

function argument type inconsistent with format
printf(arg 2) int :: (format) char * test.c(5)

function called with variable number of arguments

Format Compound

A function was called with the wrong number of arguments. Preceding a function
definition with /* VARARGSnh */ suppresses the message for calls withr more
arguments; defining and declaring a function with the ANSI C notation “. "
suppresses it for every argument.

NOTE

See “function declared with variable number of arguments” on
page 10-22 for more information.

10-21

Compilation Systems Volume 1 (Tools)

file fl.c

1 int fun(int x, int y, int 2)
2

3 return x + y + z;
4}

5 int fun2(int x, . . .)

6 {

7 return x;

8 }

10 /* VARARGS1 */
11 int fun3(int x, int y, int 2)

12 {

13 return X;

14 }

file f2.c

1 int main()

2

3 extern int fun(), fun3(), fun2(int x, . . .);
4 return fun(l, 2);

5 return fun2(1, 2, 3, 4);

6 return fun3(1, 2, 3, 4, 5);
70}

function called with variable number of arguments
fun fl.c(2) :: f2.c(4)

function declared with variable number of arguments

10-22

Format Compound

The number of parameters in a function prototype declaration or definition differed from
their number in another declaration or definition. Declaring and defining the prototype
with the ANSI C notation * . . " suppresses the warning if all declarations have the
same number of arguments. The message immediately preceding this one is issued for
uses (not declarations or definitions) of a prototype with the wrong number of arguments.

filei3a.c

1 int funl(int);
2 int fun2(int);
3 int fun3(int);

Analyzing Your Code with Iin

file i3b.c

1 int funl(int, int);

2 int fun2(int a, int b) {}

3 void foo()

4

5 int i, j, k;

6 i = fun3(j, k)

7}

function declared with variable number of arguments
fun2 i3a.c(2) : i3b.c(2)
funl i3a.c(1) : i3b.c(1)

function called with variable number of arguments
fun3 i3a.c(3) :: i3b.c(6)

function falls off bottom without returning value

Format Compound

A non-void function did not return a value to the invoking function. If the closing curly
brace is truly not reached, preceding it with NOTREACHED */ suppresses the
message.

fun()

{}
void fun2()

{}
foo()

{
exit(1);
/* NOTREACHED */

©CoOoO~NOOOUTA,WNPE

function falls off bottom without returning value (2) fun

function must return int: main()

Format Simple

The program'snain function does not returmt , in violation of ANSI C restrictions.
The message is issued only whant is invoked with-Xc .

1 void main()

2§

(2) warning: function must return int: main()

10-23

Compilation Systems Volume 1 (Tools)

function returns pointer to [automatic/parameter]

Format Simple

A function returned a pointer to an automatic variable or a parameter. Since an object with
automatic storage duration is no longer guaranteed to be reserved after the end of the
block, the value of the pointer to that object will be indeterminate after the end of the

block.

©CoOoO~NOOOUTPA,WNPE

int *fun(int x)
{
int a[10];
int b;

if (x == 1)

return
else if (x
return

= 2)
&b;

else return &x;

(6) warning: function returns pointer to automatic
(8) warning: function returns pointer to automatic
(9) warning: function returns pointer to parameter

function returns value that is always ignored

Format Compound

A function contained aeturn

value.
file fl.c
1 int fun()
2
3 return 1;
4 }
file f2.c
1 extern int fun();
2 int main()
3
4 fun();
5 return 1;
6 1}

statement and every call to the function ignored its return

function returns value that is always ignored fun

10-24

Analyzing Your Code with Iin

function returns value that is sometimes ignored

Format Compound

A function contained aeturn statement and some, but not all, calls to the function
ignored its return value.

file fl.c
1 int fun()
2 {
3 return 1,
4}
file f2.c
1 extern int fun();
2 int main()
3
4 if(1) {
5 return fun();
6 }
else {
7 fun();
8 return 1,
9 }
10 }

function returns value that is sometimes ignored
fun

function value is used, but none returned

Format Compound

A non-oid function did not contain aeturn statement, yet was used for its value in an

expression.
file fl.c
1 extern int fun();
2 main()
3
4 return fun();
5 }
file f2.c
1 int fun()
2 {

function value is used, but none returned
fun

10-25

Compilation Systems Volume 1 (Tools)

logical expression always false: op ?&&?

Format Simple

A logical AND expression checked for equality of the same variable to two different con-
stants, or had the constant 0 as an operand. In the latter case, preceding the expression with
/* CONSTCOND */ suppresses the message.

1 void fun(a)

2 int g

3

4 a=(a==1 && (a == 2)
5 a=(a==1 && (a == 1)
6 a=(1==a) && (a == 2)
7 a=(a==1 && 0;

8 /* CONSTCOND */

9 a= (0 && (a == 1)),

10 }

(4) warning: logical expression always false: op "&&"
(6) warning: logical expression always false: op "&&"
(7) warning: logical expression always false: op "&&"

logical expression always true: op ?||?

Format Simple

A logical OR expression checked for inequality of the same variable to two different con-
stants, or had a nonzero integral constant as an operand. In the latter case, preceding the
expression with* CONSTCOND */ suppresses the message.

1 void fun(a)

2 int g

3

4 a=(@l!=1)] (@'=2);
5 a=(@l!=1)] (@'= 12,
6 a=(11!1=a)] (@!'=2);
7 a=(a==10) | 1

8 /* CONSTCOND */

9 a= (1] (a==10);
10 }

(4) warning: logical expression always true: op "||"
(6) warning: logical expression always true: op "||"
(7) warning: logical expression always true: op "||"

10-26

Analyzing Your Code with Iin

malformed format string

Format Compound

A [fs]printf or [fs]scanf control string was formed incorrectly. (See also/*
PRINTFLIKEn */ and/* SCANFLIKE n */ in the list of directives in “Usage” on
page 10-6.)

1 #include <stdio.h>
2 main()

3

4 printf("%y");

5

malformed format string
printf test.c(4)

may be indistinguishable due to truncation or case

Format Compound

External names in a program may be indistinguishable when it is ported to another
machine due to implementation-defined restrictions as to length or case. The message is
issued only wherint is invoked with-Xc or-p . Under-Xc , external names are
truncated to the first 6 characters with one case, in accordance with the ANSI C lower
bound; undekp , to the first 8 characters with one case.

file fl.c

1 int foobarl;

2 int FooBar12;
file f2.c

1 int foobar2;

2 int FOOBAR12;

under-p

may be indistinguishable due to truncation or case
FooBarl2 fl.c(2) : FOOBAR12 f2.c(2)

under-Xc

may be indistinguishable due to truncation or case
foobarl fl.c(l) : FooBarl2 fl.c(2)
foobarl fl.c(1) : foobar2 f2.c(2)
foobarl fl.c(l) :: FOOBAR12 f2.c(2)

name declared but never used or defined

Format Compound

A nonstatic external variable or function was declared but not used or defined in any
file. The message is suppressed wlieh is invoked with-x .

10-27

Compilation Systems Volume 1 (Tools)

file f.c
1 extern int fun();
2 static int foo();

name declared but never used or defined
fun f.c(1)

name defined but never used

Format Compound

A variable or function was defined but not used in any file. The message is suppressed
whenlint is invoked with-u .

file f.c

1 inti j, k =1;
2 main()

3

4 =k
5 1}

name defined but never used
i f.c(1)

name multiply defined

Format Compound
A variable was defined in more than one source file.

file fl.c
1 char i
file f2.c
1 longi = 1;

I
)

name multiply defined
[fl.c(1) :: f2.c(1)

name used but not defined

Format Compound

A non-static external variable or function was declared but not defined in any file. The
message is suppressed whieh is invoked with-u .

10-28

Analyzing Your Code with Iin

file f.c

1 extern int fun();

2 int main()

3

4 return fun();

5 }

name used but not defined
fun f.c(4)

nonportable bit-field type

Format Simple

A bit-field type other tharsigned int orunsigned int was used. The message is
issued only whetint is invoked with-p . Note that these are the only portable bit-field
types. The compilation system suppdrts , char , short , andlong bit-field types that
may beunsigned , signed , or “plain.” It also supports thenum bit-field type.

1 struct u {

2 unsigned v:1;
3 int w:l;
4 char X:8;
5 long y:8;
6 short z:8;
7 k%

(3) warning: nonportable bit-field type
(4) warning: nonportable bit-field type
(5) warning: nonportable bit-field type
(6) warning: nonportable bit-field type

nonportable character constant

Format Simple

A multi-character character constant in the program may not be portable. The message is
issued only whetlint is invoked with-Xc .

1 int ¢ = 'abc’;

(1) warning: nonportable character constant

only O or 2 parameters allowed: main()

Format Simple

10-29

Compilation Systems Volume 1 (Tools)

The functionmain in your program was defined with only one parameter or more than
two parameters, in violation of the ANSI C requirement. The message is issued only when
lint s invoked with-Xc .

1 main(int argc, char **argv, char **envp)

2§

(2) warning: only 0 or 2 parameters allowed: main()

pointer cast may result in improper alignment

Format Compound

A pointer to one object type was cast to a pointer to an object type with stricter alignment
requirements. Doing so may result in a value that is invalid for the second pointer type.
The warning is suppressed whigmt is invoked with-h .

1 void fun()

2 |

3 short *s;

4 int *i;

5 i = (int ¥ s;
6 }

pointer cast may result in improper alignment

()

pointer casts may be troublesome

Format Compound

A pointer to one object type was cast to a pointer to a different object type. The message is
issued only whetint is invoked with-p , and is not issued for the generic pointeid

*

1 void fun()

2

3 int *i;

4 char *c;

5 void *v;

6 i = (int * c;
7 i = (int *) v,
8 }

warning: pointer casts may be troublesome

(6)

Analyzing Your Code with Iin

precedence confusion possible; parenthesize

Format Simple

An expression that mixes a logical and a bitwise operator was not parenthesized. The
message is suppressed whieh is invoked with-h .

1 void fun()

2

3 int x =0, m=0, MASK = 0O, ij;
4 i= X+ m==0);

5 i = (X & MASK == 0); /* evald

(X & (MASK == 0)) */
(MASK == 1 & x); /* evald
(MASK == 1) & x) */

()]
1

(5) warning: precedence confusion possible; parenthesize
(6) warning: precedence confusion possible; parenthesize

precision lost in bit-field assignment

Format Simple

A constant was assigned to a bit-field too small to hold the value without truncation. Note
that in the following example the bit-field may have values that range from 0 to 7 or -4
to 3, depending on the machine.

1 void fun()

2 {

3 struct {

4 signed x:3; /* max value allowed is 3 */
5 unsigned y:3; /* max value allowed is 7 */
6 int z:3; I* max value allowed is 7 */
7 }s;

8 SX = 3;

9 SX = 4

10 sy = T,

11 sy = §;

12 sz =1,

13 sz = §;

14 }

(9) warning: precision lost in bit-field assignment: 4
(11) warning: precision lost in bit-field assignment: 0x8
(13) warning: precision lost in bit-field assignment: 8

10-31

Compilation Systems Volume 1 (Tools)

set but not used in function

Format Compound

An automatic variable or a function parameter was declared and set but not used in a
function.

void fun(y)
int v;

set but not used in function
(4) x in fun
(1) y in fun

statement has no consequent: else

Format Simple

Anif statement had a nudlse part. Inserting* EMPTY */ between theelse and
semicolon suppresses the message for that statement; indokingwith -h suppresses
it for every statement.

1 void f(a)

2 int a;

3

4 if (a)

5 return;
6 else;
7}

(6) warning: statement has no consequent: else

statement has no consequent: if

Format Simple

An if statement had a nuifi part. Inserting* EMPTY */ between the controlling
expression of thé& and semicolon suppresses the message for that statement; invoking
lint with -h suppresses it for every statement.

10-32

oO~NO O WNPE

void f(a)
int a;
{
if (a);
if (a == 10)
* EMPTY */;
else return;

Analyzing Your Code with Iin

(4) warning: statement has no consequent: if

statement has null effect

Format Compound

An expression did not generate a side effect where a side effect was expected. Note that
the message is issued for every subsequent sequence point that is reached at which a side
effect is not generated.

void fun()

{
int a, b, ¢, x;
a;
a == 5,

while (x++ != 10);

(@ ==b) && (c =
(@ =b) & (c ==
(@ h);

statement has null effect

statement not reached

(4) (5)

Format Compound

a);
a);

9) (10)

A function contained a statement that cannot be reached. Preceding an unreached state-
ment with/* NOTREACHED */ suppresses the message for that statement; invoking
lint with -b suppresses it for every unreache@ak and empty statement. Note that

this message is also issued by the compiler but cannot be suppressed.

10-33

Compilation Systems Volume 1 (Tools)

1 void fun(a)

2

3 switch (@) {

4 case 1:
5 return;
6 break;
7 case 2:
8 return;
9 /* NOTREACHED */
10 break;
11 }

12 }

statement not reached

(6)

static unused

Format Compound

A variable or function was defined or declarethtic in a file but not used in that file.
Doing so is probably a programming error because the object cannot be used outside the
file.

1 static int x;

2 static int main() {}
3 static int foo();

4 static int y = 1;

static unused
4y (3) foo (2) main (1) x

suspicious comparison of char with value: op ?op?

Format Simple

A comparison was performed on a variable of type “plath&ar that implied it may have
a negative value (< 0, <=0, >= 0, > 0). Whether a “plaghiar is treated as signed or
non-negative is implementation-defined. The message is issued only hmtenis
invoked with-p .

1 void fun(c, d)

2 char ¢

3 signed char d;

4

5 int i;

6 i = (c == -b);
7 i = (c <0y
8 i =(d < 0);
O }

10-34

Analyzing Your Code with Iin

(6) warning: suspicious comparison of char with negative

constant: op "=="

(7) warning: suspicious comparison of char with 0: op "<"

suspicious comparison of unsigned with value: op ?o0p?

Format Simple

A comparison was performed on a variableuokigned type that implied it may have a
negative value (< 0, <=0, >=0, > 0).

1 void fun(x)

2 unsigned x;

3

4 int i;

5 i = (x> -2);
6 i = (x <0y
7 i = (x <= 0);
8 i = (x >= 0);
9 i = (x > 0);
10 i = (-2 < Xx);
11 i = (x == -1);
12 i = (x == -1U);
13 }

(5) warning: suspicious
negative constant:

(6) warning: suspicious
op "<"

(7) warning: suspicious
op "<="

(8) warning: suspicious
op ">="

(9) warning: suspicious
op ">"

comparison
op ">"

comparison
comparison

comparison

comparison

of unsigned with

of unsigned with 0:
of unsigned with O:
of unsigned with O:

of unsigned with 0:

(10) warning: suspicious comparison of unsigned with

negative constant:

op <t

(11) warning: suspicious comparison of unsigned with

negative constant:

too few arguments for format

Format Compound

A control string of a [fs]printf

op "=="

or [fs]scanf function call had more conversion
specifications than there were arguments remaining in the call. (Seé&aRBINTF-
LIKEn * and/* SCANFLIKE n */ inthe list of directives in “Usage” on page 10-6.)

10-35

Compilation Systems Volume 1 (Tools)

1 #include <stdio.h>
2 main()

3

4 int i
5 printf("%d%d", i);
6

too few arguments for format
printf test.c(5)

too many arguments for format

Format Compound

A control string of a [fs]printf or [fs]scanf function call had fewer conversion
specifications than there were arguments remaining in the call. (Seé&aRBINTF-
LIKEn * and/* SCANFLIKE n */ inthe list of directives in “Usage” on page 10-6.)

1 #include <stdio.h>

2 main()

3

4 int i, j;

5 printf("%d", i, j);

6 }

too many arguments for format
printf test.c(5)

value type declared inconsistently

Format Compound

The return type in a function declaration or definition did not match the return type in
another declaration or definition of the function. The message is also issued for inconsis-

tent declarations of variable types.

filefl.c

1 void fun() {}

2 void foo();

3 extern int a;
file f2.c

1 extern int fun();
2 extern int foo();
3 extern char a;

value type declared inconsistently

fun fl.c(1) void() :: f2.c(1) int()
foo fl.c(2) void() :: f2.c(2) int()
a fl.c(3) int :: f2.¢(3) char

10-36

Analyzing Your Code with Iin

value type used inconsistently

Format Compound

The return type in a function call did not match the return type in the function definition.

file fl.c

1 int *fun(p)

2 int *p;

3

4 return p;
5 1}

file f2.c

1 main()

2

3 int i, *p;
4 i = fun(p);
5 1}

value type used inconsistently
fun fl.c(3) int *() : f2.c(4) int()

variable may be used before set: name

Format Simple

The first reference to an automatic, non-array variable occurred at a line number earlier
than the first assignment to the variable. Note that taking the address of a variable implies
both a set and a use, and that the first assignment to any membstratts or union

implies an assignment to the entsguct or union .

1 void fun()

2

3 int i, j, k;
4 static int Xx;
5 k =7}

6 =i+ 1
7 X =X+ 1
8 }

(5) warning: variable may be used before set: |
(6) warning: variable may be used before set: i

variable unused in function

Format Compound

A variable was declared but never used in a function.

10-37

Compilation Systems Volume 1 (Tools)

1 void fun()

2 {

3 int x, v;
4 static z;
5 1}

variable unused in function
(4) z in fun
(3) y in fun
(3) x in fun

10-38

11
Performance Analysis

INtrOdUCHION . . .o e 11-1

ANAlYZe . . . 11-1
Information. 11-1
StALISHICS .« o . vt 11-3
Profilingo 11-3
USBI0E . . oot e 11-4
Assumptions and Constraints. 11-9

1] 0o] 11-9
USA0E - o ottt i 11-10

Assumptions and Constraints i 11-12

Compilation Systems Volume 1 (Tools)

11
Performance Analysis

Introduction

An analysis of the run-time performance and characteristics of a program can identify
sections of code which have a significant effect on the speed and behavior of the program.
PowerUX provides a tool which can be used to obtain an execution profile opamny
gram.

Two traditional UNIX tools provide profile data for a program which has been compiled

to produce this data during execution. The output fionof identifies which routines in

the program have been executed, how often they were invoked, and what percentage of
the program’s execution time was spent in each routine.gpnef tool additionally pro-

vides a call graph of the ancestors and descendants of the routines. These tools are not
available on supported hardware platforms.

Better information can be obtained through a Concurrent-developed tool, called
analyze . Whereprof andgprof require a special compilation of a program for
producing profile dataanalyze operates on already-compiled code. It may be necessary
to invokeanalyze through a link edit step, but recompilation of the program is not
necessaryanalyze first reads an executable file. It then interprets the instructions in this
file to find the routines and basic blocks (a block is a sequence of instructions having one
entry and one exit point) within each routine. Neahalyze performs a local timing
analysis for each basic block to determine statistics like; the time spent in the block, or
places where execution is delayed due to pipe constraints, etc. A companion tool,
report , produces information that is useful in evaluating the program’s performance.

analyze can also be used to transform, or even eliminate instructions in the program, to
produce fasterunning code. Thus, it is able to further optimize code that has previously
been compiled.

analyze

Information

The lowest level of detailed output is generated with 4theoption, which generates a
disassembly listing, and the option, which annotates that listing with detailed
information on the resources being used.

Because there is so much information, it is compressed into a fairly cryptic form:

111

Compilation Systems Volume 1 (Tools)

t= This indicates the relative clock time. Everything on the same line
happens at the same time.

U#r An entry that starts with the letter indicates a resource is now being
used. The number following the is the sequence number of the
instruction within the basic block that is using the resource, finally the
resource name appears immediately following the number (resource
names are things like registers or pipeline stages).

fHr An entry that starts witl indicates the instruction at the given sequence
has now freed the resource.

b#r[#] The b entry indicates an instruction that has been blocked because it
needs a resource. The number at the end enclosed in brackets is the
sequence number of the instruction which currently has the resource and
is the cause of the block.

SHr On the PowerPC platforms, individual pipeline stages are not shown as
allocated and freed. Instead, it is simply announced that a particular
instruction has entered a particular stage withgtentry.

Use the-Zstage_status option to causanalyze s output to include the status of all

the pipeline stages each cycle. While this output is much easier to read, it is extremely
verbose. Note that instructions are disassembled at the cycle they enter dispatch. Negative
numbers in thestage_status output are placeholders for pipeline bubbles caused by
alignment constraints. Screen 11-1 illustrates this situation.

Klo (10001028) 3d000000 lis r8,0 t=6 x

11 (1000102c) 39200000 li 19,0 t=6
t=6

Fetch: 16 17 18 19

Decode: 12 13 14 15

Dispatch: 8 9 10 11

SCIU1 SCIu2 MCIU FPU LSU BPU

Q1 ---- ---- spr ---- m/d -
X1 6 7 -

Finished: 4 5
Complete: 4 5
Writeback GPR: 4 5 FPR: CRF:

N /

Screen 11-1. Sample Output from analyze

Whenanalyze prints an instruction out, it puts it on a line by itself with the clock time it
started execution on the end. The fields on the line represent the source line number (blank
if no debug information is available in the file), the sequence number within the block, the
absolute address of the instruction in the file, the four-byte hex for the instruction itself,
then the symbolic disassembly of the instruction.

Currently, max time is defined as the total number of cycles required for all instructions in
the block to make it through all pipe stages. It, therefore, represents a worst-case upper
bound.

11-2

Statistics

Profiling

Performance Analysis

Note that all times are local; a block containing a subroutine call will only have the time
for the call instruction. No information is computed about the time actually spent in the
subroutine, and no information is known about the state of the pipelines when the subrou-
tine returns. The max time for a block ending in a subroutine call does not count any
cycles remaining in the pipe at the time the call is made because most of these cycles
never cause any delay (the subroutine is usually still in the prologue when the pipe drains).

The optimization features @nalyze can be invoked at link edit time by using the Con-
current link editor’s-O option. Refer tdd(1) and Chapter 20 (“Program Optimiza-
tion”), for more information.

Theanalyze tool computes several statistics, some of which are more meaningful than
others, but all are designed to help someone analyze the quality of generated code.

BURT

BURT stands foBogus Uniform Routine Timand (as its name indicates) is a fairly bogus
statistic which may have some value as a guide. It is computed by multiplying the max
time for each basic block by a weighting factor that increases rapidly as the loop nesting
level goes up. The accumulated time for all the blocks isBb&Tnumber.

ERNIE

ERNIEis External Routine Necessary Interface Executj@argl is a statistic designed to
help you decide iBURTnumbers are different because subroutines have been inlined (or
vice-versa), or if they are different simply because of different code quERNIE is
computed by simply adding up all the nesting level factors for any block that contains a
subroutine call.

The above statistics all depend on accurately computing loop nesting levels. If the flow
graph is irreducible, then it is difficult to decide just what a loop is, so a warning is
generated for routines with irreducible flow graphs. Often when code finally gets
generated, a single basic block will be the header of several back edges. Each back edge is
counted as a separate loop, so the nesting level for the header may get very high.

The -P option patches the input program, generating a new program which will
accumulate cycle count statistics at the basic block level and dump them to an output file
on exit. The statistics are always dumped to a file with the same name as the executable
given as the argument t® , with the.prof suffix added. For example, if you specified

-P fred then when you run the generated program theffiéel. prof will be generated

with the profiling statistics.

The-C option adds statistics about cache misses due to instruction fetches and data
accesses to the profile data. With #@ option, the patched program simulates the activity
of the primary instruction and data caches, as well as that of the secondary cache. This

11-3

Compilation Systems Volume 1 (Tools)

Usage

114

option can be useful for diagnosing performance problems arising from lack of memory
access locality (proximity). It should be used with care because it can significantly
increase run-time overhead and the size of the executable program.

Currently, the statistics are only as accurate as the timing information shown in the
disassembly listing. Both min and max times are accumulated, so the report can print only
upper and lower bounds on the cycle count. A future version may attempt to add code that
will correct the cycle count with additional information gathered about pipe conflicts that
will occur depending on the arc followed to reach each basic block.

It is often difficult to profile some programs, especially those generated by non-Concur-
rent compilers. The following guidelines are given as an aid to people attempting to
profile foreign code:

Theanalyze tool relies on the symbol table to find subroutine entry points. A stripped
program cannot be profiled. Even if a symbol table existsalyze can identify
subroutine entry points only if they have associated tdesc information, if they have
symbolic debug information identifying them as subroutine entry points, or if they are
explicitly named using thea option.

analyze records its profile statistics by writing them into thess section. The header

of the object file is modified to reserve spaceliss , but the run-time environment also
needs to be informed that the space is being uaealyze does this by first attempting

to patch the initial value of the global variableufbrk) used by the library routines to
record the break address. If this variable is not found in the symbol table it then attempts to
patch a call tdork() into the main entry point. If it cannot find tHark() entry point in

the symbol table, then it cannot successfully patch the program. It may be necessary to
re-link the program, forcing thbrk() routine to be included by linking in an additional
object file that references it, or use ti#break= nameoption to specify a different name

for the break variable.

Finally, analyze writes the statistics out by patching in a call to the write routine when
the__exit routine is called (that is two underscores). If the low level exit routine is not
called__exit or if the program exits in a different way (possibly by calliegec()),
then you will need to use th& option to name the routines that should dump statistics.

After dumping the statistics at an exit point, all the basic block counts are set to zero. This
feature allows you to divide your program into separate sections which will be profiled
independently, each generating a separate data set iprdfe file. All you need to do is

call a dummy routine once between each section of the program, then ude timion to
declare these dummy routines as exit points.

If any basic block begins with a trap instruction of some kiadalyze will generate a
warning. Normally it relies on the flow of control resuming right after the patched
instruction, but it is uncertain where control will resume after the kernel gets control.
Unless you know what the routine does, it might be wise to exclude it from the list of
routines to be profiled.

analyze is invoked as follows:

Performance Analysis

analyze [-A] [-C] [-D flag] [-H] [-N] [-O file] [-P file]
[[S sectiof [-X routing [-W routind= weighi] [-a routing]

[[d file] [.g file] [-] [-n] [-r file] [-s routing]

[-v] [-X] [-Z keyword file

Thefile argument specifies the name of the executable file over wéinatyze will be
run. All other arguments are optional and are as follows:

-A Include all the routines in the analysis. This is the default mode of operation.

-C Gather cache activity statistics during profiling. This option works wkh
and has no effect without it. It also writes its statisticsfile.prof as
specified by theP option. Cache statistics include instruction accesses
gathered at each basic block, and data accesses gathered at each load or store
instruction. Theeport program can be used to generate various reports that
include this information.

-D flag Turn on the specified debug flag. You will not be interested in using this
unless you know a lot about the inner detailsaofilyze

-H Print a summary of the command usage.

-N Set the list of routines to be analyzed to the empty set. This overrides the
default setting (which corresponds-# above).

-0 file Generate a new program file file which has been optimized by replacing
many of the two-instruction sequences (which are required to reference global
memory locations) with single instructions which use the reserved linker
registersi28 throughr31) as base registers. This allows faster access to the
four most commonly referenced 64K data blocks. Certain library routines that
are known to access the linker registers (esgtjmp andlongjmp) are
automatically excluded from the optimization process. Theoption may be
used to specifically exclude others. (Normally any reference to a linker
register will cause an error).

-P file Generate a new program file fite which has been patched to gather profiling
statistics on each basic block and dump therfilégprof — on exit. The report
program can be used to generate various reports from this information. The
-X option may be useful with this option.

-S section
Analyzesectioninstead of text.

-X routine
Declareroutine to be the name of a subroutine which causes the program to
exit. When the-P option is used, this routine, when called, will dump the
accumulated statistics to thygrof file. After writing the statistics data set to
the.prof file, the statistics are reset to zero. When t®eoption is used, the
-X option will exclude the named routine from the optimization.

-W routing=weighi
Specify a weighting factor for counting lis instructions in routioetine. If
weightis omitted, it will default to 5. This option is used with th@ option.

-a routine
Add the specific named routine to the list of routines to be analyzed. This can

11-5

Compilation Systems Volume 1 (Tools)

11-6

be used aftesN to add a routine to the list. If used withotN , it assumes you
meant to specifyN, and supplies one for you.

file Generate a detailed disassembly listing of each routine included in the
analysis. The listing is done on a per basic block basis. By default this only
generates the assembler listing, the clock cycle each instruction executes at
(relative to the beginning of each basic block), and the reason any instruction
is delayed. Use thes option for more detail. Use th&stage_status
option for much more verbose status of each pipeline stage each cycle.

file Generate global program statistics to file.
Print various informative bits of information about the object file.
Use nesting level to weight the countliaf instructions. This option is used
with the-O option.

file Print summary statistics for each routine to file.

routine
Subtract a routine from the list to be analyzed. It pairs with-#eoption
much like-N and-a team up, only inverted.
Annotate the disassembly listing with the details about which instructions are
using which machine resources at each cycle.
Suppress the output of warning messages.

keyword

Pass a keyword option tanalyze . The keywords recognized on thg
option are:

PPC604 Disassemble instructions as they would be interpreted on a Pow-
erPC 604 system. By default, instructions are disassembled as
they would be interpreted relative to a PowerPC 604 system. It
also causesC to emulate the cache behavior of the PowerPC 604
system.

PPC601 Disassemble instructions as they would be interpreted on a Pow-
erPC 601 system. By default, instructions are disassembled as
they would be interpreted relative to a PowerPC 601 system. It
also causesC to emulate the cache behavior of the PowerPC 601
system.

break =name
Tell analyze the name of the global variable used to contain the
break address. This variable is used by Iike() andsbrk()
routines to track the next available heap address. When using the
-P option, the initial value of this variable must be patched. The
default name igurbrk

exclude =register
Exclude the named register from the list of registers used to
optimize outlis instruction. It may be used multiple times to
exclude more than one register. Normally #@ option uses
registerg28 thoughr31 .

Performance Analysis

help Give a short list and description of keyword options.

include =register
Add the named register to the list of registers used to optimize out
lis instructions. It may be used multiple times to include more
than one register. Normally the option uses registen28
thoughr31 . However, if no routine in a program uses r6 though
r27 or the frame pointen?2 , these registers can be used too.
Analyze will exit with an error if it finds a use of any of the
named registers.

[2cache =cache_siZgblock_sizg
Define the characteristics of the secondary (L2) cache for use with
the-C option. Thecache_sizeargument is the total secondary
cache size. It may be suffixed witllfor megabytes oK for
kilobytes. Acache_sizeof 0 means that there is no secondary
cache. The optiondllock_sizeargument is the cache block (line)
size in bytes; it defaults to 64 bytes. For example,
-Zl2cache=1m,128 specifies a secondary cache size of 1
megabyte with 128 bytes per cache block. If this option is not
used, the secondary cache is 1 megabyte with 64-byte cache
blocks. (Note that the first character is the lettemot the number
1)

options =filename
Tell analyze to readfilenamefor a list of additional options.
Each additional option should be on a separate line.

pdcache= cache_siZgblock_siz§setd]
Define the characteristics of the primary datche for use with
the-C option. Thecache_sizargument is the total primary data
cache size. It may be suffixed witlfor megabytes oK for
kilobytes. Acache_sizef 0 is not permitted. The optional
block_sizeargument is the cache block (line) size in bytes; it
defaults to 64 bytes. The optionsg¢tsargument is the number of
sets; it defaults tacache_sizalivided byblock_size For
example;Zpdcache=32k,32,128 specifies an 8-way
associative primary data cache of size 32768 bytes with 128 sets,
each set containing 8 cache blocks 32 bytes long.

This option also indicates that the primary data cache is separate
from the primary instruction cache; therefore, it may not be used
with the-Zpucache option. If this option is not used, the data
cache characteristics are determined by the CPU type.

picache =cache_sizZgblock_sizgset§]
Define the characteristics of the primary instructeacthe for use
with the -C option. Thecache_sizeargument is the total primary
instruction cache size. It may be suffixed witfor megabytes or
K for kilobytes. Acache_sizef 0 is not permitted. The optional
block_sizeargument is the cache block (line) size in bytes; it
defaults to 64 bytes. The optionsg¢tsargument is the number of
sets; it defaults te@ache_sizelivided byblock_sizeFor example,
-Zpicache=32k,32,128 specifies an 8-way associative
primary instruction cache of size 32768 bytes with 128 sets, each

117

Compilation Systems Volume 1 (Tools)

11-8

set containing 8 cache blocks 32 bytes long.

This option also indicates that the primary instruction cache is
separate from the primary data cache; therefore, it may not be
used with theZpucache option. If this option is not used, the

instruction cache characteristics are determined by the CPU type.

pucache =cache_sizgblock_sizgset§]
Define the characteristics of the unified primary cache for use
with the -C option. Thecache_sizargument is the total unified
primary cache size. It may be suffixed wiliifor megabytes oK
for kilobytes. Acache_sizef 0 is not permitted. The optional
block_sizeargument is the cache block (line) size in bytes; it
defaults to 64 bytes. The optionsg¢tsargument is the number of
sets; it defaults te@ache_sizelivided byblock_sizeFor example,
-Zpucache=32k,64,64 specifies an 8-way associative unified
primary cache of size 32768 bytes with 64 sets, each set
containing 8 cache blocks 64 bytes long.

This option also indicates that a single primary cache is used for
both instructions and data; therefore, it may not be used with the
-Zpdcache or-Zpicache options. If this option is not used,
the cache characteristics are determined by the CPU type.

retain Retain the extra relation information that the Concurrent link
editor to the object file. This information is provided apalyze
can optimize things like assigned gotos correctly. Normally this
information is stripped after optimization. If you are going to want
to profile or disassemble the program file, this option will retain
the extra relocation information so the additional processing can
be more accurate.

rmask =register_list
Specify a list of registers to be considered live at a return
instruction. To optimize pure C or Fortran 77 code, use
-Zrmask=r3r4 . The default mask contain8 throughrl5 .

rtag =character
Specify a character to enclose all routine names output in reports.
This is for an Ada filter that translates raw routine names into Ada
R.M. expanded names.

stag =character
Specify a character to enclose all source file names output in
reports. This is for an Ada filter that translates raw source file
names into actual file names.

stage_status
Add output describing the status of all pipeline stages each cycle
to the disassembly output of the option.

strip Strip the object file before writing it out.

Performance Analysis

Assumptions and Constraints

report

The timing information is not totally accurate. The worst-case timing information should
really be generated by propagating live on entry resource utilizations backwards through
the flow graph to see how they interact with live on exit resource utilizations from the
predecessor blocks, but this is complex and would require a great deal more code to do the
analysis.

analyze assumes all memory references are cache hits. Thus, the timing information
assumes there will never be any cache misses or memory wait states since a static analysis
cannot know if a memory reference will be in the cache or not. Note thaiGheption

does not circumvent this restriction.

The -C option cannot provide a completely accurate model of the real cache because the
simulation is not aware of other running processes nor of the operating system itself. The
purpose of this option is to provide a measure of the locality of a user program.

With the -C option, loads and stores that access multiple storage locationslexgar

stmw) are treated as if they access only the first unit of storage. Also, if multiple
consecutive accesses of a cache block occur, only one miss is recorded. In reality, multiple
misses might occur while the cache block is loading. Finally, conditional stetesx .)

are assumed to always succeed.

For more detailed information on the hardware architectures, refer to the following
publications:

PowerPC User Instruction Set Architecture

PowerPC 604 User’s Manual

Thereport tool reads the profile data generated by running a program which has been
patched with theP option of theanalyze tool.

report needs two arguments, the name of the patched program (generaadlpge)
and the name of the profile data file. If the second argument is not specified, it will append
to the end of the first argument and look there for the profile data.

The printed reports are generated in a format that will conform with tools that are used to
parse error messages from compilers, with

file name : line number
listed first on the line.

Except where explicitly indicated in the individual report, all times are reported in terms
of cycles. Because no analysis of pipe conflicts across basic blocks is done, times are
always reported in terms of a range of times from max time to min time. All sorts are done
on max time, and percentages are calculated in terms of max time.

11-9

Compilation Systems Volume 1 (Tools)

Usage

11-10

report is invoked as follows:

report [-H] [-a] [-b] [-B numbet [-c] [-d rangq [-i]
] [-m] [-M megahertg [-n] [-N numbe} [-0] [-O numbef
[-1] [R numbet [-s] [-f] [-T file] [-w] [-Y charactet [-Z]

[-Z charactet programfile [programfile.prof

The programfileargument specifies the name of the executable file over wémetyze
has patched, for producing profile information. All other arguments are optional and are as
follows:

-H Print a help message and exit.

-a Report on all the individual data sets recorded in the profile data file. lftthe
option is used, normally only the totals for all the runs of the program are
printed. The-a option forces all the individual runs to generate reports as
well.

-b Generate a report showing where the program spent its time at the individual
basic block level. This report is ordered with the most expensive block listed
first (in terms of cycles spent in that block).

-B number
Restrict the basic block report to only the firstimberbasic blocks. If the
number is written with a trailin§6character on the end, then it will restrict the
list of blocks printed to just the first set of blocks that total to that percent of
the total time. This option implies the use of the option. Both forms of the
-B option may be used, in which case the first limit reached will terminate the
listing.

-C List the names of routines called by each routine.

-d range Select which data sets to report. Each time a patched program is run, it
appends a new set of profile data onto the end of its profile data file. This
means that one data file may contain several sets of data. The first set is set
number one. This option may be used to select which sets are actually
reported Rangecan be a single number, a list of comma separated numbers or
a range of numbers separated with a dash.

-i Report summary information for the complete program. This option uses the
assumed clock rate (specified with thd option) to report the clock time the
original program would take to run. It also summarizes the count of the
different types of instructions that were executed.

- Use max time instead of min time when sorting statistics and computing

percentages.
-m Print timing information in milliseconds rather than cycles.
-M megahertz

Specify the megahertz clock rate to assume when computing clock time from
cycle counts. The default is 100.

Performance Analysis

-n Generate a profiling report showing the number of cache misses due to data
accesses (loads and stores). The report is sorted in decreasing order of
secondary cache misses.

-N number
Limit the number of data access cache statistics printed. Us¢ ohplies-n .
This option acts much like thd option (above).

-0 Generate a profiling report showing the number of cache misses due to
instruction fetches. The report is sorted in decreasing order of secondary
cache misses.

-O number
Limit the number of instruction access cache statistics printed. Us® of
implies-o . This option acts much like thd option (above).

-r Generate a profiling report showing the time spent in each routine. This report
is generated by adding up all the time in the individual basic blocks.

-R number
Restrict the routine report to only the firaimberroutines. This option acts
much like the-B option (above), and will accept an absolute number or a
percentage. Use 6R implies-r .

-S Print the header information from each profile data set. This may be used by
itself to determine how many sets of data are in a profile data file in order to
determine which sets to examine with tite option.

-t Total all the data sets and print the total statistics in any of the reports
requested. Normally this option suppresses the generation of any reports on
individual data sets and only the totals are printed. Theption (above) can
be used to change this behavior.

-T file Print a summary of all data sets to the specified file.

-w Print the raw statistics information from the profile data file in a human
readable form.

-Y character
Specify a character which is used to enclose all routine hames output in
reports. This is for an Ada filter that translates raw routine names into Ada
R.M. expanded names.

-Z Print information about blocks and routines that are executed zero times. If no
blocks in a routine were executed, only the routine name is printed and the
individual blocks for that routine are not reported. For routines in which some
blocks were executed and some were not, the blocks with zero execution time
are reported individually.

-Z character
Specify a character which is used to enclose all source file names output in
reports. This is for an Ada filter that translates raw source file names into
actual file names.

11-11

Compilation Systems Volume 1 (Tools)

Assumptions and Constraints

11-12

The cycle counts reported are based on the cycle counts calculatetilyge and are
subject to the same limitations described in the documentation for that tool.

Most notably the behavior of the memory system is not taken into account, so actual wall
time may be even longer than the maximum time reported (especially if the application
has many cache misses).

If the program was not compiled with line number information, or if it was stripped before
being processed bgnalyze , none of the reports will be able to include accurate file
names or line numbers. (Generally the file name will be the null string, and the line num-
bers will be0 if the information was not present in the object file).

3
Project Control

Replace with Part 3 tab

Compilation Systems Volume 1 (Tools)

Part 3 - Project Control

Part 3 - Project Control

Part 3 Project Control

Chapter 12 Introduction to Project CoNntrolccoeeieiiiiiiiiiiieieee e 12-1
Chapter 13 Managing File Interactions with make.............cccocovnieninnns 13-1

Chapter 14 Tracking Versions with SCCS............ociiiiiiiiiiiiee e 14-1

Compilation Systems Volume 1 (Tools)

12
Introduction to Project Control

INErOdUCTION e e e e e

Compilation Systems Volume 1 (Tools)

Introduction to Project Control

12
Introduction to Project Control

Introduction

A software projectonsists of one or more products. Eqebductconsists of one or more
files, including the following:

* Program files, for example, source, object, and executables for one or more
platforms

* Documentation files, for example, design and functional specifications,
release notes, man pages, user and reference manuals, and reference cards

* Training files, for example, student guides, instructor guides, and example
source files

¢ Testing files, for example, third-party and internally developed test suites
and programs supplied with error reports

You can save time by using tools to automate project management. This part of the manual
covers tools that give you control over projects, products, and files. For example:

* Remembering file locations and dependencies and product-generation
steps for a developing product can be cumbersome. You can store this
information in description files for thenake tool to process. Chapter 13
(“Managing File Interactions with make”) discussesmke and its
description files.

* Retaining an audit trail of editing changes can be useful in debugging and
documenting a developing product. Chapter 14 (“Tracking Versions with
SCCS”) describes SCCS, the Source Code Control System, that allows you
to capture this information.

12-1

Compilation Systems Volume 1 (Tools)

12-2

13
Managing File Interactions with make

INtrOdUCTION . . . 13-1
BasiC Features 13-2
Parallelmake 13-5
Description Files and Substitutions. 13-6
COMMENES. . . e e e 13-6
Continuation LINeS oot e e 13-6
Macro Definitions.o e 13-6
General FOrm . ..o 13-6
Dependency Information e 13-7
Executable Commands. 13-7
Extensions of $*, $@, and $< o 13-8
Output Translations 13-8
Recursive Makefiles. 13-8
Suffixes and TransformationRules 13-9
Implicit Rules 13-9
Archive Libraries 13-11
Source Code Control System FileNames 13-13
The NUll SUFfiX. e e e 13-13
Included Files e e 13-14
SCCS MakKefiles 13-14
Dynamic Dependency Parameters i 13-14
Viewpaths (VPATH)o e 13-15
Command USageo it ittt e 13-16
Themake Command. e e 13-16
EnvironmentVariables 13-18
Suggestions and Warnings.ot 13-19

Internal RUIES.o e e 13-19

Compilation Systems Volume 1 (Tools)

Introduction

13
Managing File Interactions with make

The trend toward increased modularity of programs means that a project may have to cope
with a large assortment of individual files. There may also be a wide range of generation
procedures needed to turn the assortment of individual files into the final executable
product.

make provides a method for maintaining up-to-date versions of programs that consist of a
number of files that may be generated in a variety of ways.

An individual programmer can easily forget
* File-to-file dependencies
* Files that were modified and the impact that has on other files

* The exact sequence of operations needed to generate a new version of the
program

make keeps track of the commands that create files and the relationship between files.
Whenever a change is made in any of the files that make up a programrmake
command creates the finished program by recompiling only those portions directly or
indirectly affected by the change. The relationships between files and the processes that
generate files are specified by the user in a description file.

The basic operation ahake is to

* Find the target in the description file

* Ensure that all the files on which the target depends, the files needed to
generate the target, exist and are up to date

* (Re)create the target file if any of the generators have been modified more
recently than the target

The description file that holds the information on inter-file dependencies and command
sequences is conventionally calledakefile , Makefile , s.makefile , or
s.Makefile . If this naming convention is followed, the simple commamedke is
usually sufficient to regenerate the target regardless of the number of files edited since the
last make. In most cases, the description file is not difficult to write and changes
infrequently. Even if only a single file has been edited, rather than entering all the
commands to regenerate the target, enteringmiae command ensures that the
regeneration is done in the prescribed way.

13-1

Compilation Systems Volume 1 (Tools)

Basic Features

13-2

The basic operation ahake is to update a target file by ensuring that all of the files on
which the target file depends exist and are up to date. The target file is regenerated if it has
not been modified since the dependents were modified.riike program builds and
searches a graph of these dependencies. The operatinakef depends on its ability to

find the date and time that a file was last modified.

Themake program operates using three sources of information:

* A user-supplied description file
* File names and last-modified times from the file system

¢ Built-in rules supply default dependency information and implied
commands

To illustrate, consider a simple example in which a program napred is made by
compiling and loading three C language fites ,y.c , andz.c with the math library,
libm . By convention, the output of the C language compilations will be found in files
namedx.o ,y.0 ,andz.o . Assume that the files.c andy.c share some declarations in
a file nameddefs.h , butthatz.c does not. Thatist.c andy.c have the line

#include "defs.h"
The following specification describes the relationships and operations:

prog : X0 Yy.0 z.0
cc x0 y.0 zo -Im -o prog
X.0 Yy.0 : defs.h

If this information were stored in a file nameaglakefile , the command
make

would perform the operations needed to regenepadg after any changes had been
made to any of the four source filgs ,y.c , z.c , ordefs.h . Inthe example above,
the first line states thgtrog depends on three files. Once these object files are
current, the second line describes how to combine them to cpeage The third line
states thak.o andy.o depend on the filelefs.h . From the file systemmake discov-
ers that there are three files corresponding to the needed files and uses built-in rules
on how to generate an object from a C source file (that is, isswe & command).

If make did not have the ability to determine automatically what needs to be done, the
following longer description file would be necessary:

prog : X0 Yy.0 ZzZ.0
cC X0 Yo z0 -lm -o prog
X.0 : X.c defs.h

ccC -C X.C
y.0 : y.c defs.h
cc -c Yy.C
zo : z.c
cc -¢c z.c

Managing File Interactions with make

If none of the source or object files have changed since the lastgioge was made, and
all of the files are current, the commanthke announces this fact and stops. If, however,
thedefs.h file has been editek.c andy.c (but notz.c) are recompiled; and then
prog is created from the new.o andy.o files, and the existing.o file. If only the file

y.c had changed, only it is recompiled; but it is still necessary to rediolg . If no target
name is given on thenake command line, the first target mentioned in the description is
created; otherwise, the specified targets are made. The command

make X.0
would regeneratg.o if x.c ordefs.h had changed.

A method often useful to programmers is to include rules with mnemonic names and
commands that do not actually produce a file with that name. These entries can take
advantage ofmake's ability to generate files and substitute macros (for information about
macros, see “Description Files and Substitutions” on page 13-6.) Thus, ansanty

might be included to copy a certain set of files, or an estean might be used to throw
away unneeded intermediate files.

If a file exists after such commands are executed, the file's time of last modification is
used in further decisions. If the file does not exist after the commands are executed, the
current time is used in making further decisions.

You can maintain a zero-length file purely to keep track of the time at which certain
actions were performed. This technique is useful for maintaining remote archives and
listings.

A simple macro mechanism for substitution in dependency lines and command strings is
used bymake. Macros can either be defined by command-line arguments or included in
the description file. In either case, a macro consists of a name followed by the symbol
followed by what the macro stands for. A macro is invoked by preceding the name by the
symbol$. Macro names longer than one character must be parenthesized. The following
are valid macro invocations:

$(CFLAGS)
$2

$(xy)

$z

$(2)

The last two are equivalent.

$*, %@, $?, and $< are four special macros that change values during the execution
of the command. (These four macros are described later in “Description Files and Substi-
tutions” on page 13-6.) The following fragment shows assignment and use of some
macros:

OBJECTS = x0 y.0 z.0
LIBES = -Im
prog: $(OBJECTS)
cc $(OBJECTS) $(LIBES) -o prog

The command

make LIBES="-ll -Im"

13-3

Compilation Systems Volume 1 (Tools)

loads the three objects with both thex (-Il) and the math-{m) libraries, because
macro definitions on the command line override definitions in the description file. (In
UNIX system commands, arguments with embedded blanks must somehow be quoted.)

As an example of the use afake, a description file that might be used to maintain the
make command itself is given. The code forake is spread over a number of C language
source files and hasymcc grammar. The description file contains the following:

-

Description file for the make command

FILES = Makefile defs.h main.c doname.c misc.c \
files.c dosys.c gram.y
OBJECTS = main.o doname.o misc.o files.o \
dosys.o gram.o

LIBES =
LINT = lint -p
CFLAGS = -0
LP = Ip

make: $(OBJECTS)
$(CC) $(CFLAGS) -0 make $(OBJECTS) $(LIBES)
@size make

$(OBJECTS): defs.h

cleanup:
-rm *.0 gram.c
-du
install:
make
@size make /usr/ccs/bin/make
cp make /usr/ccs/bin/make && rm make
lint: dosys.c doname.c files.c main.c misc.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c \
gram.c

print files that are out-of-date
with respect to "print" file.

print. $(FILES)

pr $? | $(LP)

touch print

~

)

Themake program prints out each command before issuing it.

The following output results from entering the commaneke in a directory containing

only the source and description files:

13-4

Parallel make

Managing File Interactions with make

4 N

cc
cc
cc

¢ main.c
-c doname.c
C misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -O -c gram.c
cc -0 make main.o doname.o misc.o files.o dosys.o gram.o
13188 + 3348 + 3044 = 19580

N j

The last line results from theize make command. The printing of the command line
itself was suppressed by the symi@ih the description file.

66066

If make is invoked with the-P option, it tries to build more than one target at a time, in
parallel. (This is done by using the standard UNIX system process mechanism which
enables multiple processes to run simultaneously.)

prog : X0 Yy.0 Z.0
cc X0 yo zo -lm -o prog
X.0 : X.c defs.h
cC -C X.cC
y.0 : y.c defs.h
cc -C y.cC
z0 . z.cC
cc ¢ z.c

For themakefile shown above, it would create processes to bxitd, y.0o andz.o in
parallel. After these processes were complete, it would hpribd) .

The number of targetsmake will try to build in parallel is determined by the value of the
environment variabl®ARALLEL If -P is invoked, butPARALLELIs not set, themmake
will try to build no more than two targets in parallel.

You can use theMUTEX directive to serialize the updating of some specified targets.
This is useful when two or more targets modify a common output file, such as when
inserting modules into an archive or when creating an intermediate file with the same
name, as is done Hgx andyacc .

If the makefile above contained &MUTEX directive of the form
.MUTEX: Xx.0 y.0

it would preventmake from buildingx.o andy.o in parallel.

13-5

Compilation Systems Volume 1 (Tools)

Description Files and Substitutions

The following section will explain the customary elements of the description file.

Comments

The comment convention is that the symioand all characters on the same line after it
are ignored. Blank lines and lines beginning wétlare totally ignored.

Continuation Lines

If a non-comment line is too long, the line can be continued by using the symldiich

must be the last character on the line. If the last character of a lihetisen it, the
new-line, and all following blanks and tabs are replaced by a single blank. Comments can
be continued on to the next line as well.

Macro Definitions

A macro definition is an identifier followed by the symbsl The identifier must not be
preceded by a colon § or a tab. The name (string of letters and digits) to the left ofthe
(trailing blanks and tabs are stripped) is assigned the string of characters followiag the
(leading blanks and tabs are stripped). The following are valid macro definitions:

2 = xyz
abc = -l -ly -Im
LIBES =

The last definition assignisIBES the null string. A macro that is never explicitly defined
has the null string as its value. Remember, however, that some macros are explicitly
defined inmake's own rules.

General Form

The general form of an entry in a description file is

targetl [target2.] :[] [dependentl]..[[commands[# ..]
[commands[# ..]

Items inside brackets may be omitted and targets and dependents are strings of letters,
digits, periods, and slashes. Shell metacharacters sutlaad? are expanded when the
commands are evaluated. Commands may appear either after a semicolon on a
dependency line or on lines beginning with a tab (denoted abov¥e asmmediately

13-6

Managing File Interactions with make

following a dependency line. A command is any string of characters not inclutling
except whenr is in quotes.

Dependency Information

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency line, but all of those lines must be of the same (single or
double colon) type. For the more common single colon case, a command sequence may be
associated with at most one dependency line. If the target is out of date with any of the
dependents on any of the lines and a command sequence is specified (even a null one
following a semicolon or tab), it is executed; otherwise, a default rule may be invoked. In
the double colon case, a command sequence may be associated with more than one
dependency line. If the target is out of date with any of the files on a particular line, the
associated commands are executed. A built-in rule may also be executed. The double
colon form is particularly useful in updating archive-type files, where the target is the
archive library itself. (An example is included in “Archive Libraries” on page 13-11.)

Executable Commands

If a target must be created, the sequence of commands is executed. Normally, each
command line is printed and then passed to a separate invocation of the shell after
substituting for macros. The printing is suppressed in the silent mad@jtion of the

make command) or if the command line in the description file begins with@sign.

make normally stops if any command signals an error by returning a nonzero error code.
Errors are ignored if the flag has been specified on theake command line, if the fake
target namelGNORE appears in the description file, or if the command string in the
description file begins with a hyphen). If a program is known to return a meaningless
status, a hyphen in front of the command that invokes it is appropriate. Because each
command line is passed to a separate invocation of the shell, care must be taken with
certain commandsc@l and shell control commands, for instance) that have meaning only
within a single shell process. These results are forgotten before the next line is executed.

Before issuing any command, certain internally maintained macros are seb@mhacro

is set to the full target name of the current target. B@macro is evaluated only for
explicity named dependencies. T macro is set to the string of names that were found

to be younger than the target. T2 macro is evaluated when explicit rules from the
makefile are evaluated. If the command was generated by an implicit rule$¢he
macro is the name of the related file that caused the action; argftheacro is the prefix
shared by the current and the dependent file names. If a file must be made but there are no
explicit commands or relevant built-in rules, the commands associated with the name
.DEFAULT are used. If there is no such namegke prints a message and stops.

In addition, a description file may also use the following related mac$¢&D),
$(@F), $(*D), $(*F), $(<D), and $(<F) (see below).

13-7

Compilation Systems Volume 1 (Tools)

Extensions of $*, $@, and $<

The internally generated macr8s, $@, and$< are useful generic terms for current
targets and out-of-date relatives. To this list is added the following related macros:
$(@D), $(@F), $(*D), $(*F), $(<D), and $(<F). The Drefers to the
directory part of the single character macro. Fheefers to the file name part of the single
character macro. These additions are useful when building hierarchégadfile s. They
allow access to directory names for purposes of usingtheommand of the shell. Thus,

a command can be

cd $(<D); $(MAKE) $(<F)

Output Translations

The values of macros are replaced when evaluated. The general form, where brackets
indicate that the enclosed sequence is optional, is as follows:

$(macrd: stringl=[string2])

The parentheses are optional if there is no substitution specification and the macro name is
a single character. If a substitution sequence is present, the value of the macro is
considered to be a sequence of “words” separated by sequences of blanks, tabs, and
new-line characters. Then, for each such word that endsstiiig1, stringlis replaced

with string2 (or no characters #tring2is not present).

This particular substitution capability was chosen becanake usually concerns itself

with suffixes. The usefulness of this type of translation occurs when maintaining archive
libraries. Now, all that is necessary is to accumulate the out-of-date members and write a
shell script that can handle all the C language programs (that is, files ending.ifhus,

the following fragment optimizes the executionsméke for maintaining an archive
library:

$(LIB): $(LIB)(a.0) $(LIB)(b.0) $(LIB)(c.0)
$(CC) -¢c $(CFLAGS) $(?:.0=.c)
$(AR) $(ARFLAGS) $(LIB) $?
rm $?

A dependency of the preceding form is necessary for each of the different types of source
files (suffixes) that define the archive library. These translations are added in an effort to
make more general use of the wealth of information thake generates.

Recursive Makefiles

13-8

Another feature ofmake concerns the environment and recursive invocations. If the
sequenc&(MAKE) appears anywhere in a shell command line, the line is executed even if
the-n flag is set. Since then flag is exported across invocations mfke (through the
MAKEFLAG®Sariable), the only thing that is executed is tinake command itself. This
feature is useful when a hierarchy mbkefile s describes a set of software subsystems.

Managing File Interactions with make

For testing purposesjake -n can be executed and everything that would have been done
will be printed including output from lower-level invocations wiake.

Suffixes and Transformation Rules

Implicit Rules

make uses an internal table of rules to learn how to transform a file with one suffix into a
file with another suffix. If ther flag is used on thenake command line, the internal
table is not used.

The list of suffixes is actually the dependency list for the na®EgFFIXES. make
searches for a file with any of the suffixes on the list. If it finds omake transforms it

into a file with another suffix. Transformation rule names are the concatenation of the
before and after suffixes. The name of the rule to transform dile to a.o file is thus

.r.o . Ifthe rule is present and no explicit command sequence has been given in the user's
description files, the command sequence for the rule is used. If a command is
generated by using one of these suffixing rules, the m&érés given the value of the

stem (everything but the suffix) of the name of the file to be made; and the riadsothe

full name of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to right. The first
name formed that has both a file and a rule associated with it is used. If new names are to
be appended, the user can add an entry.8&/FFIXES in the description file. The
dependents are added to the usual listSAIFFIXES line without any dependents deletes

the current list. It is necessary to clear the current list if the order of names is to be
changed.

make uses a table of suffixes and a set of transformation rules to supply default
dependency information and implied commands. The default suffix list (in order) is as fol-
lows:

.0 Obiject file

.C C source file

.C~ SCCS C source file

y yacc C source grammar

y~ SCCSyacc C source grammar

A lex C source grammar

A~ SCCSlex C source grammar

.S Assembler source file
.S~ SCCS assembler source file
.sh Shell file

13-9

Compilation Systems Volume 1 (Tools)

.sh~ SCCS shell file

.h Header file

.h~ SCCS header file

f Fortran source file

f~ SCCS Fortran source file

.C C++ source file

.C~ SCCS C++ source file

Y yacc C++ source grammar

Y~ SCCS yacc C++ source grammar
L lex C++ source grammar

L~ SCCS lex C++ source grammar

Figure 13-1 summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

Figure 13-1. Summary of Default Transformation Path

If the file x.0 is needed and axc is found in the description or directory, tixeo file
would be compiled. If there is also anl , that source file would be run throudéx
before compiling the result. However, if there isxe but there is arx.| , make would
discard the intermediate C language file and use the direct link as shown in Figure 13-1.

It is possible to change the names of some of the compilers used in the default or the flag
arguments with which they are invoked by knowing the macro names used. The compiler
names are the macrésS, CC, C++C, F77, YACC, andLEX The command

make CC=newcc

13-10

Managing File Interactions with make

will cause thenewcc command to be used instead of the usual C language compiler. The
macrosCFLAGS, YFLAGS, LFLAGS, ASFLAGS, FFLAGS, andC++FLAGSmay be
set to cause these commands to be issued with optional flags. Thus

make CFLAGS=-g

causes thec command to include debugging information.

Archive Libraries

The make program has an interface to archive libraries. A user may name a member of a
library in the following manner:

projlib(object.o)
or

projlib((entry_pt))

where the second method actually refers to an entry point of an object file within the
library. (make looks through the library, locates the entry point, and translates it to the
correct object file name.)

To use this procedure to maintain an archive library, the following typmaiefile is
required:

projlib:: projlib(pfilel.0)
$(CC) -¢ $(CFLAGS) pfilel.c
$(AR) $(ARFLAGS) projlib pfilel.o
rm pfilel.o

projlib:: projlib(pfile2.0)
$(CC) -¢ $(CFLAGS) pfile2.c
$(AR) $(ARFLAGS) projlib pfile2.0
rm pfile2.0

and so on for each object. This is tedious and error prone. Obviously, the command
sequences for adding a C language file to a library are the same for each invocation; the
file name being the only difference each time. (This is true in most cases.)

The make command also gives the user access to a rule for building libraries. The handle
for the rule is theaa suffix. Thus, a.c.a rule is the rule for compiling a C language
source file, adding it to the library, and removing tlee file. Similarly, the.y.a , the

.s.a , and the.l.a rules rebuildyacc , assembler, antkéx files, respectively. The
archive rules defined internally are.a ,.c~a ,.fa ,.f~a ,and.s~.a . (Thetilde

(=) syntax will be described shortly.) The user may define other needed rules in the
description file.

The above two-member library is then maintained with the following shanteefile

projlib: projlib(pfile1.0) projlib(pfile2.0)
@echo projlib up-to-date.

The internal rules are already defined to complete the preceding library maintenance. The
actual.c.a rule is as follows:

13-11

Compilation Systems Volume 1 (Tools)

c.a
$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $(<F:.c=.0)
rm -f $(<F:.c=.0)

Thus, the$@macro is thea target projlib); the $< and$* macros are set to the
out-of-date C language file, and the file name minus the suffix, respectipélgl.c
andpfilel). The$< macro (in the preceding rule) could have been changé&d.tw .

It is useful to go into some detail about exactly winadke does when it sees the
construction

projlib: projlib(pfile1.0)
@echo projlib up-to-date

Assume the object in the library is out of date with respegifiel.c . Also, there is no
pfilel.o file.

1. make projlib
2. Beforemakeing projlib , check each dependent fojlib

3. projlib (pfilel.o) is a dependent oprojlib and needs to be
generated.

4. Before generatingprojlib (pfilel.o), check each dependent of
projlib (pfilel.o). (There are none.)

5. Use internal rules to try to creafwojlib (pfilel.o). (There is no
explicit rule.) Note thaprojlib (pfilel.o) has a parenthesis in the
name to identify the target suffix aa . This is the key. There is no explicit
.a at the end of therojlib library name. The parenthesis implies the
.a suffix. In this sense, the is hard-wired intamake.

6. Break the nameprojlib (pfilel.o) up into projlib and
pfilel.o . Define two macrosp@(projlib) and$* (pfilel).

7. Look for arule.X.a and a file$*.X . The first.X (in the .SUFFIXES
list) which fulfills these conditions isc so the rule isc.a , and the file is
pfilel.c . Set$< to bepfilel.c and execute the rule. In faaghake
must then compil@filel.c

8. The library has been updated. Execute the command associated with the
projlib: dependency, hamely

@echo projlib up-to-date

It should be noted that to lgdfilel.o have dependencies, the following syntax is
required:

projlib(pfile1.0): $(INCDIR)/stdio.h pfilel.c

There is also a macro for referencing the archive member name when this form is used.
The $%macro is evaluated each tin$@is evaluated. If there is no current archive
member$%is null. If an archive member exists, th&&oevaluates to the expression
between the parenthesis.

13-12

Managing File Interactions with make

Source Code Control System File Names

The Null Suffix

The syntax ofmake does not directly permit referencing of prefixes. For most types of
files on UNIX operating system machines, this is acceptable since nearly everyone uses a
suffix to distinguish different types of files. SCCS files are the exception. Here,
precedes the file name part of the complete path name.

To allow make easy access to the prefix the symbol is used as an identifier of SCCS
fles. Hence,.c~.0 refers to the rule which transforms an SCCS C language source file
into an object file. Specifically, the internal rule is

.c~.0:
$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $*.c
m -f $*.c

Thus,~ appended to any suffix transforms the file search into an SCCS file name search
with the actual suffix named by the dot and all characters up to (but not including)

The following SCCS suffixes are internally defined:

.C~ .sh~ .C~
y~ .h~ Y~
A~ g~ L~
.S~

The following rules involving SCCS transformations are internally defined:

.c~: .S~.S: .C~:
.c~.C: .S~.a: .C~.C:
.c~.a: .S~.0: .C~a:
.C~.0: .sh~: .C~.o:
y~.C: .sh~.sh: .Y~.C:
y~.0: .h~.h: .Y~.0:
Yy~ f~ Y~Y:
~.c: f~f .L~.C:
~.0: f~.a: .L~.0:
=1 f~.0: L~.L:
.5~

Obviously, the user can define other rules and suffixes that may prove usefuk The
provides a handle on the SCCS file name format so that this is possible.

There are many programs that consist of a single source riileke handles this case by
the null suffix rule. Thus, to maintain the UNIX system prograat , a rule in the
makefile of the following form is needed:

.C.
$(CC) $(CFLAGS) -0 $@ $< $(LDFLAGS)

13-13

Compilation Systems Volume 1 (Tools)

Included Files

SCCS Makefiles

In fact, this.c: rule is internally defined so nmakefile is necessary at all. The user
only needs to enter

make cat dd echo date

(these are all UNIX system single-file programs) and all four C language source files are
passed through the above shell command line associated wittx theule. The internally
defined single suffix rules are

.C: .sh: f~:
.C~: .sh~: .C:
.S: £ .C~:
.S~

.sh:

Others may be added in timeakefile by the user.

The make program has a capability similar to th&include directive of the C
preprocessor. If the strinmclude appears as the first seven letters of a line in a
makefile and is followed by a blank or a tab, the rest of the line is assumed to be a file
name, which the current invocation wfake will read. Macros may be used in file names.
The file descriptors are stacked for readinglude files so that no more than 16 levels

of nestedncludes are supported.

Makefiles under SCCS control are accessiblenike. That is, ifmake is typed and only
a file nameds.makefile ors.Makefile exists,make will do aget on the file, then
read and remove the file.

Dynamic Dependency Parameters

13-14

A dynamic dependency parameter has meaning only on the dependency line in a
makefile . The$$@refers to the current “thing” to the left of the symbol (which is

$@). Also the form$$(@F) exists, which allows access to the file part $@.Thus, in

the following:

cat: $3@.c

the dependency is translated at execution time to the stéhg . This is useful for
building a large number of executable files, each of which has only one source file. For
instance, the UNIX system software command directory could hamelefile like:

CMDS = cat dd echo date cmp comm chown

Managing File Interactions with make

$(CMDS): $3@.c
$(CC) $(CFLAGS) $? -0 $@

Obviously, this is a subset of all the single file programs. For multiple file programs, a
directory is usually allocated and a sepanatzkefile is made. For any particular file
that has a peculiar compilation procedure, a specific entry must be made in the
makefile

The second useful form of the dependency paramet®$(&F) . It represents the file
name part of$@ Again, it is evaluated at execution time. Its usefulness becomes evident
when trying to maintain théusr/include directory frommakefile in the
lusr/src/head directory. Thus, théusr/src/head/makefile would look like

INCDIR = /usr/include

INCLUDES =\
$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(INCDIR)/dir.h \
$(INCDIR)/a.out.h

$(INCLUDES): $$(@F)
cp $? 3@
chmod 0444 $@

This would completely maintain theisr/include directory whenever one of the
above files inusr/src/head was updated.

Viewpaths (VPATH)

This implementation ofmake(1) has been enhanced to suppgRATHfunctionality or

the concept of viewpaths/PATHis a macro that allows one to specify a list of directories

to search for the filesnake(1) needs to complete its tasks. The viewpath may be
specified in one or more of four methods. First, it may be specified on the command line
with the-v viewpathoption; whereviewpathis some directory (absolute or relative to the
current working directory) other than the current working directory. Second, it may be
specified on the command line in thdlPATH=macro specification as a colon separated
list of directories to be searched. The third method is to specifiyB&TH=macro within

the makefile being used; again, as a blank- or colon-separated list of directories.
Finally, theVPATHmay be specified within the environment by setting tHeATH=
environment variable to a blank- or colon-separated list of directories. In all cases, the
directories specified may be absolute paths or relative to the current working directory.
The methods have been identified in the order of precedence; in other words, the method
of using-v viewpathtakes precedence over the others.

Examples of how to invoke use these methods are illustrated below:
To search for components in the current working directory/asdsrc
make -f makefile -v /usr/src

To search for components in the current working directorysrc , and/usr/src
in that order:

13-15

Compilation Systems Volume 1 (Tools)

make -f makefile VPATH=mysrc:/usr/src

To search for components in the current working directmysrc , /ust/src , and
yoursrc in that order:

VPATH = mysrc:/usr/src:${DIR1}
DIR1 = yoursrc
OBJS = main.o allocate.o delete.o
outfile: ${OBJS}

${CC} -0 $@ ${OBJIS}
main.o: main.c
allocate.o: allocate.c
delete.o: delete.c

With this enhancement, SCCS directories can now be searched for build components sim-
ply by specifying the SCCS directory in one of the above methods.

This enhancement also allows for the expansion off\RATHas new makefiles are
included or referenced through the initial invocation.

Some limitations on th& PATHinclude: any one path specified cannot be longer than
MAXPATHLEN-1land the maximum number of paths specified, regardless of length, can-
not exceed 10.

Command Usage

Refer tomake(1) for detailed information.

The make Command

13-16

The make command takes macro definitions, options, description file names, and target
file names as arguments in the form:

make [-f makefild [-v viewpath [-eiknpPgrstuw] [name$

The following summary of command operations explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embeddsgmbols) are analyzed

and the assignments made. Command line macros override corresponding definitions
found in the description files. Next, the option arguments are examined. The permissible
options are as follows:

-i Ignore error codes returned by invoked commands. This mode is
entered if the fake target nam&NORE appears in the descrip-
tion file.

-f makefile

-u

-v viewpath

-W

Managing File Interactions with make

Silent mode. Do not print command lines before executing. This
mode is also entered if the fake target nai@® ENT appears in
the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute them.
Even lines beginning with a@sign are printed.

Touch the target files (causing them to be up to date) rather than
issue the usual commands.

Question. Thanake command returns a zero or nonzero status
code depending on whether the target file is or is not up to date.

Print out the complete set of macro definitions and target descrip-
tions.

Abandon work on the current entry if something goes wrong, but
continue on other branches that do not depend on the current
entry.

Environment variables override assignments withizkefile s.

Description file namemakefileis assumed to be the name of a
description file. Amakefileof - denotes the standard input. If
there are nef arguments, the file namednakefile, Make-

file, s.makefile, or s.Makefile inthe current directory

is read. The contents of the description files override the built-in
rules if they are present.

Update, in parallel, more than one target at a time. The number of
targets updated concurrently is determined by the environment
variablePARALLELand the presence oMUTEXdirectives in
makefiles.

Unconditionally make the target, ignoring all timestamps.

Absolute or relative path namevi¢wpatl) to be searched for
needed files.

Suppress warning messages. Fatal messages will not be affected.

The following fake target names are evaluated in the same manner as flags:

.DEFAULT

.PRECIOUS

SILENT

IGNORE

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists.

Dependents on this target are not removed when quit or interrupt
is pressed.

Same effect as thes option.

Same effect as thé option.

13-17

Compilation Systems Volume 1 (Tools)

.PRECIOUS Dependents of thPRECIOUS entry will not be removed when

quit or interrupt are pressed.

Finally, the remaining arguments are assumed to be the names of targets to be made and
the arguments are done in left-to-right order. If there are no such arguments, the first name
in the description file that does not begin with the symba$ made.

Environment Variables

Environment variables are read and added to the macro definitions eacmiike=
executes. Precedence is a prime consideration in doing this properly. The following
describesnake's interaction with the environment. A macMAKEFLAGS js maintained

by make. The macro is defined as the collection of all input flag arguments into a string
(without minus signs). The macro is exported and thus accessible to recursive invocations
of make. Command line flags and assignments in thakefile updateMAKEFLAGS.

Thus, to describe how the environment interacts withke, the MAKEFLAG $nacro
(environment variable) must be considered.

When executednake assigns macro definitions in the following order:

1.

Read thavAKEFLAG ®&nvironment variable. If it is not present or null, the
internalmake variableMAKEFLAG$s set to the null string. Otherwise,
each letter ilMAKEFLAG$s assumed to be an input flag argument and is
processed as such. (The only exceptions arefthep , and-r flags.)

Read the internal list of macro definitions.

Read the environment. The environment variables are treated as macro
definitions and marked axported(in the shell sense).

Read thenakefile (s). The assignments in tineakefile (s) override the
environment. This order is chosen so that whenakefile is read and
executed, you know what to expect. That is, you get what is seen unless the
-e flag is used. Thee is the input flag argument, which teltsake to

have the environment override theakefile assignments. Thus, ihake

-e is entered, the variables in the environment override the definitions in
the makefile . Also MAKEFLAG®verrides the environment if assigned.
This is useful for further invocations ofiake from the currenmakefile

It may be clearer to list the precedence of assignments. Thus, in order from least binding
to most binding, the precedence of assignments is as follows:

1
2
3.
4

Internal definitions
Environment
makefile (s)

Command line

The-e flag has the effect of rearranging the order to:

1.
2.

13-18

Internal definitions

makefile (s)

Managing File Interactions with make

3. Environment

4. Command line

This order is general enough to allow a programmer to defineakefile or set of
makefile s whose parameters are dynamically definable.

Suggestions and Warnings

Internal Rules

The most common difficulties arise fromake's specific meaning of dependency. If file
X.c hasa

#include "defs.h"

line, then the object filx.o depends omlefs.h ;the source filex.c does not. If
defs.h is changed, nothing is done to the fklee while file x.0 must be recreated.

To discover whamake would do, the-n option is very useful. The command
make -n

ordersmake to print out the commands thatake would issue without actually taking the
time to execute them. If a change to a file is absolutely certain to be mild in character
(adding a comment to anclude file, for example), thet (touch) option can save a lot

of time. Instead of issuing a large number of superfluous recompilatinake updates

the modification times on the affected file. Thus, the command

make -ts
(touch silently) causes the relevant files to appear up to date. Obvious care is necessary

because this mode of operation subverts the intentionalfe and destroys all memory of
the previous relationships.

The standard set of internal rules usedngke are reproduced below.

13-19

Compilation Systems Volume 1 (Tools)

13-20

SUFFIXES RECOGNIZED BY MAKE

###\

.SUFFIXES: .0 .c .c~ .y .y~ .l I~ s .s~ .sh sh~ .h .h~ f f~ .C .C~\
Y .Y~ L L~

#
PREDEFINED MACROS
#

AR=ar
ARFLAGS=rv
AS=as
ASFLAGS=
BUILD=build
CC=cc
CFLAGS=-0
C++C=CC
C++FLAGS=-0
F77=f77
FFLAGS=-O0
GET=get
GFLAGS=
LEX=lex
LFLAGS=
LD=Id
LDFLAGS=
MAKE=make
YACC=yacc
YFLAGS=

#

SPECIAL RULES
#

markfile.o : markfile
A=@; echo "static char _sccsid[]=\042'grep $$A'(#)' markfile\042;" \
> markfile.c
$(CC) -c markfile.c
-rm -f markfile.c

SINGLE SUFFIX RULES

3+ 3+ H*

$(CC) $(CFLAGS) -0 $@ $< $(LDFLAGS)

$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -0 $@ $*.c $(LDFLAGS)
-rm -f $*.c

-

Screen 13-1. make Internal Rules

Managing File Interactions with make

N

.sh:

.sh~:

.c.a:

.C~.a:
$(GET) $(GFLAGS) $<

~

$(AS) $(ASFLAGS) -0 $*.0 $<
$(CC) -0 $@ $*.0 $(LDFLAGS)
-rm -f $*.0

$(GET) $(GFLAGS) $<

$(AS) $(ASFLAGS) -0 $*.0 $*.5
$(CC) -0 $* $*.0 $(LDFLAGS)
-rm -f $*.[so]

cp $< $@; chmod +x $@

$(GET) $(GFLAGS) $<
cp $*.sh $*; chmod +x $@
-rm -f $*.sh

$(F77) $(FFLAGS) -0 $@ $< $(LDFLAGS)

$(GET) $(GFLAGS) $<
$(F77) $(FFLAGS) -0 $@ $*.f $(LDFLAGS)
-rm -f $*f

$(C++C) $(C+FLAGS) -0 $@ $< $(LDFLAGS)

$(GET) $(GFLAGS) $<
$(C++C) $(C++FLAGS) -0 $@ $*.C $(LDFLAGS)
-rm -f $*.C

DOUBLE SUFFIX RULES

y~y JI~lI .s~s .sh~sh .h~h: f~f .C~.C .Y~Y .L~-.L
$(GET) $(GFLAGS) $<

$(CC) $(CFLAGS) -c $<
$(AR) $(ARFLAGS) $@ $(<F:.c=.0)
-rm -f $(<F:.c=.0)

$(CC) $(CFLAGS) -c $*.c
$(AR) $(ARFLAGS) $@ $*.0
-rm -f $*.[co]

13-21

Compilation Systems Volume 1 (Tools)

13-22

c.0:
$(CC) $(CFLAGS) -c $<

.c~.0:
$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $*.c
-rm -f $*.c

y.c:
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

y~.c:
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*y
mv y.tab.c $*.c
-rm -f $*y

.y.0:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
-rm -f y.tab.c
mv y.tab.o $@

.y~.0:

$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.y

$(CC) $(CFLAGS) -c y.tab.c

-rm -f y.tab.c $*.y
mv y.tab.o $*.0

$(LEX) $(LFLAGS) $<
mv lex.yy.c $@

$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.
mv lex.yy.c $@

-rm -f $*I

$(LEX) $(LFLAGS) $<

$(CC) $(CFLAGS) -c lex.yy.c

-rm -f lex.yy.c
mv lex.yy.o $@

$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.I

$(CC) $(CFLAGS) -c lex.yy.c

-rm -f lex.yy.c $*.
mv lex.yy.o $@

Managing File Interactions with make

" §(AS) $(ASFLAGS) -0 $*.0 $*.s
$(AR) $(ARFLAGS) $@ $*.0

S~a:
$(GET) $(GFLAGS) $<

$(AS) $(ASFLAGS) -0 $*.0 $*.s
$(AR) $(ARFLAGS) $@ $*.0
-rm -f $*.[so]

.S.0:
$(AS) $(ASFLAGS) -0 $@ $<

.8~.0:
$(GET) $(GFLAGS) $<

$(AS) $(ASFLAGS) -0 $*.0 $*s
-rm -f $*s

fa:
$(F77) $(FFLAGS) ¢ $*.f
$(AR) $(ARFLAGS) $@ $(<F:.f=.0)
-rm -f $(<F:.f=.0)

f~a:
$(GET) $(GFLAGS) $<
$(F77) $(FFLAGS) -¢ $*.f
$(AR) $(ARFLAGS) $@ $*.0
-rm -f $*.[fo]

f.o:
$(F77) $(FFLAGS) ¢ $*.f

f~.0:
$(GET) $(GFLAGS) $<
$(F77) $(FFLAGS) -¢ $*.f
-rm -f $*f

.Ca:
$(C++C) $(C++FLAGS) -c $<
$(AR) $(ARFLAGS) $@ $(<F:.C=.0)
-rm -f $(<F:.C=.0)

.C~a:
$(GET) $(GFLAGS) $<
$(C++C) $(C++FLAGS) -c $*.C
$(AR) $(ARFLAGS) $@ $*.0
-rm -f $*.[Co]

.C.o:
$(C++C) $(C++FLAGS) -c $<

.C~.0:
$(GET) $(GFLAGS) $<
$(C++C) $(C++FLAGS) -c $*.C
-rm -f $*.C

~

13-23

Compilation Systems Volume 1 (Tools)

13-24

Y.C:
$(YACC) $(YFLAGS) $<
mv y.tab.c $@
.Y~.C:
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.Y
mv y.tab.c $*.C
-rm -f $*Y
.Y.0:
$(YACC) $(YFLAGS) $<
$(C++C) $(C++FLAGS) -c y.tab.c
-rm -f y.tab.c
mv y.tab.o $@
.Y~.0:
$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $*.Y
$(C++C) $(C++FLAGS) -c y.tab.c
-rm -f y.tab.c $*.Y
mv y.tab.o $*.0
.L.C:
$(LEX) $(LFLAGS) $<
mv lex.yy.c $@
.L~.C:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.L
mv lex.yy.c $@
-rm -f $*.L
.L.o:
$(LEX) $(LFLAGS) $<
$(C++C) $(C++FLAGS) -c lex.yy.c
-rm -f lex.yy.c
mv lex.yy.o $@
.L~.0:
$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $*.L
$(C++C) $(C++FLAGS) -c lex.yy.c
-rm -f lex.yy.c $*.L
mv lex.yy.o $@

o

14
Tracking Versions with SCCS

INtrOdUCTION . . . 14-1
BasiC USa0eot 14-1
Terminologyo 14-1
Creating an SCCS Filewithadmin 14-2
Retrievinga Filewithget. 14-2
Recording Changes withdelta 14-3
More ON get. . ..o e 14-4
ThehelpCommand i 14-5
Delta Numbering 14-5
SCCS Command CoNVENLIONS.ttt et e e e 14-7
xfilesand zfiles. e 14-8
ErrOr MESSagesS . . o .ttt 14-8
SCCS COMMANAS . .ottt e e e e 14-8
ThegetCommand 14-9
IDKEYWOIdSot 14-10
Retrieval of Different\Versions i 14-10
ToUpdate SOUICEo i e 14-12
Undoingaget-eo 14-13
Additional get Options 14-13
Concurrent Edits of DifferentSID 14-13
ConcurrentEditsof Same SID e 14-15
Key letters that Affect Output. 14-16
ThedeltaCommand i e e 14-17
TheadminCommand. i e 14-19
Creation of SCCSFiles i e 14-19
Inserting Commentary for the Initial Delta. 14-20
Initialization and Modification of SCCS File Parameters. 14-20
TheprsCommand 14-21
Thesact Command.t e e e 14-23
ThehelpCommand e 14-23
ThermdelCommand e 14-23
ThecdcCommand e e 14-24
ThewhatCommand e e 14-24
ThescesdiffCommand. 14-25
ThecombCommand e 14-25
ThevalCommand e 14-26
SCCS FIlES. . .t 14-26
ProteCtioN . .. 14-26
Formatting e 14-27

AUdItINg . ..o 14-28

Compilation Systems Volume 1 (Tools)

Introduction

Basic Usage

Terminology

14
Tracking Versions with SCCS

The Source Code Control System, SCCS, is a set of programs that you can use to track
evolving versions of files, ordinary text files as well as source files. SCCS takes custody of
a file and, when changes are made, identifies and stores them in the file with the original
source code and/or documentation. As other changes are made, they too are identified and
retained in the file.

Retrieval of the original or any set of changes is possible. Any version of the file as it
develops can be reconstructed for inspection or additional modification. History
information can be stored with each version: why the changes were made, who made
them, and when they were made.

This chapter covers the following topics:

* The basics of creating, retrieving, and updating an SCCS file;
¢ Delta numbering: how versions of an SCCS file are named;
* SCCS command conventions: what rules apply to SCCS commands;

® SCCS commands: the 14 SCCS commands and their more useful
arguments;

* SCCSsfiles: protection, format, and auditing of SCCS files.

Several terminal session fragments are presented in this section. Try them all. The best
way to learn SCCS is to use it.

A delta is a set of changes made to a file under SCCS custody. To identify and keep track
of a delta, it is assigned an SID (SCCS IDentification) number. The SID for any original
file turned over to SCCS is composed of release number 1 and level number 1, stated as
1.1. The SID for the first set of changes made to that file, that is, its first delta, is release 1
version 2, or 1.2. The next delta would be 1.3, the next 1.4, and so on. More on delta

14-1

Compilation Systems Volume 1 (Tools)

numbering later. At this point, it is enough to know that by default SCCS assigns SIDs
automatically.

Creating an SCCS File with admin

Suppose you have a file calléang that is simply a list of five programming language
names:

C

PL/I
Fortran
COBOL
ALGOL

Custody of yourdang file can be given to SCCS using tle&lmin (for administer)
command. The following creates an SCCS file fromltgg file:

admin -ilang s.lang

All SCCS files must have names that begin wath, hences.lang . The-i key letter,
together with its valuéang , meansadmin is to create an SCCS file and initialize it with
the contents of the filéang .

Theadmin command replies
No id keywords (cm7)

This is a warning message that may also be issued by other SCCS commands. Ignore it for
now. Its significance is described later under gig¢ command in “SCCS Commands” on
page 14-8. In the following examples, this warning message is not shown although it may
be issued.

Remove thdang file. Itis no longer needed because it exists now under SCCS as
s.lang

rm lang

Retrieving a File with get

14-2

The command
get s.lang
retrieves the latest version sflang and prints

1.1
5 lines

This tells you thapet retrieved version 1.1 of the file, which is made up of five lines of
text.

Tracking Versions with SCE

The retrieved text is placed in a new file callleshg . That is, if you list the contents of
your directory, you will see bottang ands.lang

The get s.lang command creatdang , a file meant for viewing (read-only), not for
making changes to. If you want to make changes to it-théedit) option must be used.
This is done as follows:

get -e s.lang

get -e causes SCCS to createng for both reading and writing (editing). It also
places certain information abolang in another new file, callegh.lang , which is
needed later by thdelta command. Now if you list the contents of your directory, you
will sees.lang , lang , andp.lang

get -e prints the same messagesgas , except that the SID for the first delta you will
create also is issued:

1.1
new delta 1.2
5 lines

Changdang by adding two more programming languages:

SNOBOL
ADA

Recording Changes with delta

Next, use thalelta command as follows:
delta s.lang

delta then prompts with
comments?

Your response should be an explanation of why the changes were made. For example,
added more languages

delta now reads the filgp.lang and determines what changes you madiahg . It
does this by doing its owget to retrieve the original version and applying héf(1)
command to the original version and the edited version. Nisita stores the changes
in s.lang and destroys the no longer neeqethng andlang files.

When this process is completiglta outputs

1.2

2 inserted

0 deleted

5 unchanged

The number 1.2 is the SID of the delta you just created, and the next three lines summarize
what was done ts.lang

14-3

Compilation Systems Volume 1 (Tools)

More on get

14-4

The command
get s.lang

retrieves the latest version of the fédang , now 1.2. SCCS does this by starting with
the original version of the file and applying the delta you made. If you useyéte
command now, any of the following will retrieve version 1.2:

get s.lang
get -rl s.ang
get -rl1.2 s.lang

The numbers followingr are SIDs. When you omit the level number of the SID (as in

get -r1 s.lang), the default is the highest level number that exists within the
specified release. Thus, the second command requests the retrieval of the latest version in
release 1, namely 1.2. The third command requests the retrieval of a particular version, in
this case also 1.2.

Whenever a major change is made to a file, you may want to signify it by changing the
release number, the first number of the SID. This, too, is done withj¢ghecommand:

get -e -r2 s.lang

Because release 2 does not exg#t retrieves the latest version before releaseg2t
also interprets this as a request to change the release number of the new delta to 2, thereby
naming it 2.1 rather than 1.3. The output is

1.2
new delta 2.1
7 lines

which means version 1.2 has been retrieved, and 2.1 is the versidelthe command
will create. If the file is now edited — for example, by deleti@@BOLfrom the list of
languages — andelta is executed

delta s.lang
comments? deleted cobol from list of languages

you will see bydelta 's output that version 2.1 is indeed created:

2.1

0 inserted

1 deleted

6 unchanged

Deltas can now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release can be
created in a similar manner. A delta can still be made to the “old” release 1. This will be
explained later in the chapter.

Tracking Versions with SCE

The help Command

If the command
get lang

is now executed, the following message will be output:
ERROR [lang]: not an SCCS file (col)

The codecol can be used withelp to print a fuller explanation of the message:
help col

This gives the following explanation of wiget lang produced an error message:

col:

"not an SCCS file"

A file that you think is an SCCS file
does not begin with the characters "s.".

help is useful whenever there is doubt about the meaning of almost any SCCS message.

Delta Numbering

Think of deltas as the nodes of a tree in which the root node is the original version of the
file. The root node is normally named 1.1 and deltas (nodes) are named 1.2, 1.3, etc. The
components of these SIDs are called release and level numbers, respectively. Thus, normal
naming of new deltas proceeds by incrementing the level number. This is done automati-
cally by SCCS whenever a delta is made.

Because the user may change the release number to indicate a major change, the release
number then applies to all new deltas unless specifically changed again. Thus, the
evolution of a particular file could be represented by Figure 14-1.

Figure 14-1. Evolution of an SCCS File

This is the normal sequential development of an SCCS file, with each delta dependent on
the preceding deltas. Such a structure is called the trunk of an SCCS tree.

There are situations that require branching an SCCS tree. That is, changes are planned to a
given delta that will not be dependent on all previous deltas. For example, consider a
program in production use at version 1.3 and for which development work on release 2 is

14-5

Compilation Systems Volume 1 (Tools)

14-6

already in progress. Release 2 may already have a delta in progress as shown in
Figure 14-1. Assume that a production user reports a problem in version 1.3 that cannot
wait to be repaired in release 2. The changes necessary to repair the trouble will be applied
as a delta to version 1.3 (the version in production use). This creates a new version that
will then be released to the user but will not affect the changes being applied for release 2
(that is, deltas 1.4, 2.1, 2.2, etc.). This new delta is the first node of a new branch of the

tree.

Branch delta names always have four SID components: the same release number and level
number as the trunk delta, plus a branch number and sequence number. The format is as
follows:

release level branch sequence

The branch number of the first delta branching off any trunk delta is always 1, and its
sequence number is also 1. For example, the full SID for a delta branching off trunk delta
1.3 will be 1.3.1.1. As other deltas on that same branch are created, only the sequence
number changes: 1.3.1.2, 1.3.1.3, etc. This is shown in Figure 14-2.

Figure 14-2. Tree Structure with Branch Deltas

The branch number is incremented only when a delta is created that starts a new branch off
an existing branch, as shown in Figure 14-3. As this secondary branch develops, the
sequence numbers of its deltas are incremented (1.3.2.1, 1.3.2.2, etc.), but the secondary
branch number remains the same.

Tracking Versions with SCE

@@
O O OO OO

Figure 14-3. Extended Branching Concept

The concept of branching may be extended to any delta in the tree, and the numbering of
the resulting deltas proceeds as shown above. SCCS allows the generation of complex
tree structures. Although this capability has been provided for certain specialized uses,
the SCCS tree should be kept as simple as possible. Comprehension of its structure
becomes difficult as the tree becomes complex.

SCCS Command Conventions

SCCS commands accept two types of arguments, key letters and file names. Key letters
are options that begin with a hyphen) followed by a lowercase letter and, in some cases,
a value.

File and/or directory names specify the file(s) the command is to process. Naming a
directory is equivalent to naming all the SCCS files within the directory. Non-SCCS files
and unreadable files in the named directories are silently ignored.

In general, file name arguments may not begin with a hyphen. If a lone hyphen is
specified, the command will read the standard input (usually your terminal) for lines and
take each line as the name of an SCCS file to be processed. The standard input is read until
end-of-file. This feature is often used in pipelines.

Key letters are processed before file names, so the placement of key letters is arbitrary —
they may be interspersed with file names. File names, however, are processed left to right.
Somewhat different conventions applylttelp , what , sccsdiff , andval , detailed

later in “SCCS Commands” on page 14-8.

Certain actions of various SCCS commands are controlled by flags appearing in SCCS
files. Some of these flags will be discussed, but for a complete description see
admin(1)

14-7

Compilation Systems Volume 1 (Tools)

x.files and z.files

Error Messages

The distinction between real user (gesesswd(1)) and effective user will be of concern
in discussing various actions of SCCS commands. For now, assume that the real and
effective users are the same — the person logged into the UNIX system.

All SCCS commands that modify an SCCS file do so by first writing and modifying a
copy calledx. file. This is done to ensure that the SCCS file is not damaged if processing
terminates abnormallyx. file is created in the same directory as the SCCS file, given the
same mode (seehmod(1)) and is owned by the effective user. It exists only for the
duration of the execution of the command that creates it. When processing is complete,
the contents o&. file are replaced by the contents »f file, whereuporx. file is
destroyed.

To prevent simultaneous updates to an SCCS file, the same modifying commands also
create a lock-file called. file. z. file contains the process number of the command that
creates it, and its existence prevents other commands from processing the SCCS file.
z. file is created with access permission mode 444 (read-only for owner, group, and other)
in the same directory as the SCCS file and is owned by the effective user. It exists only for
the duration of the execution of the command that creates it.

In general, you can ignore these files. They are useful only in the event of system crashes
or similar situations.

SCCS commands produce error messages on the diagnostic output in this format:
ERROR file]: message tex{ code

The code in parentheses can be used as an argument helthecommand to obtain a
further explanation of the message. Detection of a fatal error during the processing of a
file causes the SCCS command to stop processing that file and proceed with the next file
specified.

SCCS Commands

14-8

This section describes the major features of the fourteen SCCS commands and their most
common arguments.

Here is a quick-reference overview of the commands:

get(1) Retrieves versions of SCCS files.
unget(1) Undoes the effect of get -e prior to the file beinglelta ed.
delta(1) Applies deltas (changes) to SCCS files and creates new versions.

Tracking Versions with SCE

admin(1) Initializes SCCS files, manipulates their descriptive text, and
controls delta creation rights.

prs(1) Prints portions of an SCCS file in user-specified format.

sact(1) Prints information about files that are currently out for editing.
help(1) Gives explanations of error messages.

rmdel(1) Removes a delta from an SCCS file — allows removal of deltas

created by mistake.
cdc(1) Changes the commentary associated with a delta.

what(1) Searches any UNIX system file(s) for all occurrences of a special
pattern and prints out what follows it — useful in finding
identifying information inserted by thget command.

scesdiff(1) Shows differences between any two versions of an SCCS file.

comb(1) Combines consecutive deltas into one to reduce the size of an
SCCsfile.

val(1) Validates an SCCS file.

The get Command

Theget command creates a file that contains a specified version of an SCCS file. The
version is retrieved by beginning with the initial version and then applying deltas, in order,
until the desired version is obtained. The resulting file, callegifde (for gotten), is
created in the current directory and is owned by the real user. The mode assigned to the
g-file depends on how thget command is used.

The most common use gkt is
get s.abc

which normally retrieves the latest versionébc from the SCCS file tree trunk and
produces (for example) on the standard output

13
67 lines
No id keywords (cm7)

meaning version 1.3 af.abc was retrieved (assuming 1.3 is the latest trunk delta), it has
67 lines of text, and no ID keywords were substituted in the file.

The g-file, namely, fileabc, is given access permission mode 444 (read-only for owner,
group, and other). This particular way of usiget is intended to producg-files only for
inspection, compilation, or copying, for example. It is not intended for editing (making
deltas).

When several files are specified, the same information is output for each one. For exam-
ple,

14-9

Compilation Systems Volume 1 (Tools)

ID Keywords

get s.abc s.xyz
produces

s.abc:

13

67 lines

No id keywords (cm7)
S.XyZ:

1.7

85 lines

No id keywords (cm7)

In generating a-file for compilation, it is useful to record the date and time of creation,
the version retrieved, the module's name, and so on imgdfile itself. This information
appears in a load module when one is eventually created. SCCS provides a convenient
mechanism for doing this automatically. Identification (ID) keywords appearing any-
where in theg-file are replaced by appropriate values according to the definitions of those
ID keywords. The format of an ID keyword is an uppercase letter enclosed by percent
signs @9. For example,

%1%

is the ID keyword replaced by the SID of the retrieved version of a file. Simil&slii%
and%M?Yare the date and name of thefile, respectively. Thus, executinget on an
SCCS file that contains the PL/I declaration

DCL ID CHAR(100) VAR INIT(%M% %1% %H%";

gives (for example) the following:
DCL ID CHAR(100) VAR INIT(‘MODNAME 2.3 07/18/85);

When no ID keywords are substituted gt , the following message is issued:
No id keywords (cm7)

This message is normally treated as a warningély although the presence of theflag
in the SCCS file causes it to be treated as an error. For a complete list of the keywords
provided, seg@et(1)

Retrieval of Different VVersions

14-10

The version of an SCCS file thget retrieves by default is the most recently created delta
of the highest numbered trunk release. However, any other version can be retrieved with
get -r by specifying the version's SID. Thus,

get -r1.3 s.abc

retrieves version 1.3 af.abc and produces (for example) on the standard output

Tracking Versions with SCE

1.3
64 lines

A branch delta may be retrieved similarly,
get -r1.5.2.3 s.abc
which produces (for example) on the standard output

1523
234 lines

When a SID is specified and the particular version does not exist in the SCCS file, an error
message results.

Omitting the level number, as in
get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the given release.
Thus, the above command might output

3.7
213 lines

If the given release does not exigiet retrieves the trunk delta with the highest level
number within the highest-numbered existing release that is lower than the given release.
For example, assume release 9 does not exist indfildc and release 7 is the
highest-numbered release below 9. Executing

get -r9 s.abc
would produce

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version ofgikbc below release 9.
Similarly, omitting the sequence number, as in

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the given
branch. This might result in the following output:

4328
89 lines

(If the given branch does not exist, an error message results.)

get -t will retrieve the latest (top) version of a particular release wherrngs used or

when its value is simply a release number. The latest version is the delta produced most
recently, independent of its location on the SCCS file tree. Thus, if the most recent delta
in release 3 is 3.5,

get -r3 -t s.abc

14-11

Compilation Systems Volume 1 (Tools)

To Update Source

14-12

would produce

35
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same
command might produce

3.2.15
46 lines

get -e indicates an intent to make a delta. Figg#t checks the following:

* The user list to determine if the login name or group ID of the person
executingget is present. The login name or group ID must be present for
the user to be allowed to make deltas. (See “The admin Command” on page
14-19 for a discussion of making user lists.)

* The release number (R) of the version being retrieved to determine if the
release being accessed is a protected release. That is, the release number
must satisfy the relation

floor is less than or equal to R,
which is less than or equal to ceiling

floor andceiling are flags in the SCCS file representing start and end of the range of
valid releases.

* Ris not locked against editing. The lock is a flag in the SCCS file.

* Whether multiple concurrent edits are allowed for the SCCS file byj the
flag in the SCCS file.

A failure of any of the first three conditions causes the processing of the corresponding
SCCS file to terminate.

If the above checks succeagbt -e causes the creation ofgefile in the current directory
with mode 644 (readable by everyone, writable only by the owner) that is owned by the
real user. If a writablg-file already existsget terminates with an error.

Any ID keywords appearing in thg-file are not replaced bget -e because the
generated)-file is subsequently used to create another delta.

In addition,get -e causes the creation (or updating) of thefile that is used to pass
information to thedelta command.

The following
get -e s.abc

produces (for example) on the standard output

Tracking Versions with SCE

1.3
new delta 1.4
67 lines

Undoing a get -e

There may be times when a file is retrieved accidentally for editing; there is really no edit-
ing that needs to be done at this time. In such casegyiet command can be used to
cancel the delta reservation that was set up.

Additional get Options

If get -r and/ort are used together witle , the version retrieved for editing is the one
specified with-r and/or-t .

get -i and-x are used to specify a list of deltas to be included and excluded, respec-
tively (seeget(1) for the syntax of such a list). Including a delta means forcing its
changes to be included in the retrieved version. This is useful in applying the same
changes to more than one version of the SCCS file. Excluding a delta means forcing it not
to be applied. This may be used to undo the effects of a previous delta in the version to be
created.

Whenever deltas are included or excludget, checks for possible interference with other
deltas. Two deltas can interfere, for example, when each one changes the same line of the
retrievedg-file. A warning shows the range of lines within the retriewgéile where the
problem may exist. The user should examine gifdle to determine what the problem is

and take appropriate corrective steps (edit the file if necessary).

CAUTION

get -i andget -x should be used with extreme care.

get -k is used either to regenerat@dile that may have been accidentally removed or
ruined afterget -e , or simply to generate g-file in which the replacement of ID key-
words has been suppressedgfile generated bget -k is identical to one produced by
get -e , but no processing related fo file takes place.

Concurrent Edits of Different SID

The ability to retrieve different versions of an SCCS file allows several deltas to be in
progress at any given time. This means that se\gghl-e commands may be executed

on the same file as long as no two executions retrieve the same version (unless multiple
concurrent edits are allowed).

Thep. file created byget -e is created in the same directory as the SCCS file, given
mode 644 (readable by everyone, writable only by the owner), and owned by the effective
user. It contains the following information for each delta that is still in progress:

14-13

Compilation Systems Volume 1 (Tools)

The SID of the retrieved version
The SID given to the new delta when it is created

The login name of the real user executipef

The first execution ofiet -e causes the creation pf file for the corresponding SCCS

file. Subsequent executions only updatefile with a line containing the above
information. Before updating, howeveaget checks to assure that no entry already in

p. file specifies that the SID of the version to be retrieved is already retrieved (unless
multiple concurrent edits are allowed). If the check succeeds, the user is informed that
other deltas are in progress and processing continues. If the check fails, an error message
results.

It should be noted that concurrent executiongef must be carried out from different

directories. Subsequent executions from the same directory will attempt to overwrite the
g-file, which is an SCCS error condition. In practice, this problem does not arise because
each user normally has a different working directory. See “Protection” on page 14-26 for a
discussion of how different users are permitted to use SCCS commands on the same files.

Table 14-1 shows the possible SID components a user can specifgetitifleft-most
column), the version that will then be retrieveddst , and the resulting SID for the delta,
whichdelta will create (right-most column). In the table

R, L, B, and S mean release, level, branch, and sequence numbers in the
SID, and m means maximum. Thus, for example, R.mL means the
maximum level number within release R. R.L.(mB+1).1 means the first
sequence number on the new branch (maximum branch number plus 1) of
level L within release R. Note that if the SID specified is R.L, R.L.B, or
R.L.B.S, each of these specified SID humbers must exist.

The-b key letter is effective only if thé flag (see admin(1)) is present
in the file. An entry of- means irrelevant.

The first two entries in the left-most column apply only if tde(default
SID) flag is not present. If the flag is present in the file, the SID is
interpreted as if specified on the command line. Thus, one of the other
cases in this figure applies.

R.1 (the third entry in the right-most column) is used to force the creation
of the first delta in a new release.

hR (the seventh entry in the fourth column) is the highest existing release
that is lower than the specified, nonexistent release R.

Table 14-1. Determination of New SID

SID -b Key- Other SID SID of Delta
Specified Letter Conditions Retrieved To be Created
in get Used by get by delta
none no R defaultsto mR mR.mL mR.(mL+1)
none yes R defaultsto mR mR.mL mR.mL.(mB+1).1
R no R>mR mR.mL R.1

14-14

Tracking Versions with SCE

Table 14-1. Determination of New SID (Cont.)

SID -b Key- Other SID SID of Delta
Specified Letter Conditions Retrieved To be Created
in get Used by get by delta

R no R=mR mR.mL mR.(mL+1)

R yes R>mR mR.mL mR.mL.(mB+1).1

R yes R=mR mR.mL mR.mL.(mB+1).1

R - R<mRand R hR.mL hR.mL.(mB+1).1
does not exist

R - Trunk successor R.mL R.mL.(mB+1).1
number in
release > R
and R exists

R.L no No trunk R.L R.(L+1)
successor

R.L yes No trunk R.L R.L.(mB+1).1
successor

R.L - Trunk successor R.L R.L.(mB+1).1
in release R

R.L.B no No branch R.L.B.mS R.L.B.(mS+1)
successor

R.L.B yes No branch R.L.B.mS R.L.(mB+1).1
successor

R.L.B.S no No branch R.L.B.S R.L.B.(S+1)
successor

R.L.B.S yes No branch R.L.B.S R.L.(mB+1).1
successor

R.L.B.S - Branch successor R.L.B.S R.L.(mB+1).1

Concurrent Edits of Same SID

Under normal conditions, more than oget -e for the same SID is not permitted. That
is, delta must be executed before a subsequent -e is executed on the same SID.

Multiple concurrent edits are allowed if theflag is set in the SCCS file. Thus:

get -e s.abc
1.1

new delta 1.2
5 lines

may be immediately followed by

14-15

Compilation Systems Volume 1 (Tools)

get -e s.abc

1.1

new delta 1.1.1.1
5 lines

without an interveninglelta . In this case, alelta after the firstget will produce
delta 1.2 (assuming 1.1 is the most recent trunk delta), afedta after the secondet
will produce delta 1.1.1.1.

Key letters that Affect Output

14-16

get -p causes the retrieved text to be written to the standard output rather thgrfile.a

In addition, all output normally directed to the standard output (such as the SID of the
version retrieved and the number of lines retrieved) is directed instead to the standard
error.get -p is used, for example, to creategdile with an arbitrary name, as in

get -p s.abc > arbitrary file name

get-s suppresses output normally directed to the standard output, such as the SID of the
retrieved version and the number of lines retrieved, but it does not affect messages nor-
mally directed to the standard errget -s is used to prevent non-diagnostic messages
from appearing on the user's terminal and is often usedpitto pipe the output, as in

get -p -s s.abc | pg

get -g prints the SID on standard output and there is no retrieval of the SCCS file. This
is useful in several ways. For example, to verify a particular SID in an SCCS file

get -g -r4.3 s.abc

outputs the SID 4.3 if it exists in the SCCS fdeabc or an error message if it does not.
Another use ofget -g isin regenerating ®. file that may have been accidentally
destroyed, as in

get -e -g s.abc

get -| causes SCCS to credtefile in the current directory with mode 444 (read-only
for owner, group, and other) and owned by the real user.|THéde contains a table
(whose format is described oget(1)). showing the deltas used in constructing a
particular version of the SCCS file. For example

get -r2.3 -l s.abc

generates ah file showing the deltas applied to retrieve version 2.3afbc .
Specifyingp with -l , as in

get -Ip -r2.3 s.abc

causes the output to be written to the standard output rather tharfite. get -g can be
used with-l to suppress the retrieval of the text.

get -m identifies the changes applied to an SCCS file. Each line oftfile is preceded
by the SID of the delta that caused the line to be inserted. The SID is separated from the
text of the line by a tab character.

Tracking Versions with SCE

get -n causes each line ofgtfile to be preceded by the value of tBeM %D keyword

and a tab character. This is most often used in a pipelinegvép(1). For example, to

find all lines that match a given pattern in the latest version of each SCCS file in a
directory, the following may be executed:

get -p -n -s directory | grep pattern

If both -m and-n are specified, each line of tliefile is preceded by the value of tdeM%
ID keyword and a tab (this is the effect af) and is followed by the line in the format
produced bym.

Because use ofm and/or-n causes the contents of thefile to be modified, such g-file
must not be used for creating a delta. Therefore, neittrenor -n may be specified
together withget -e . See theget(1) page.

The delta Command

Thedelta command is used to incorporate changes made gofide into the
corresponding SCCS file — that is, to create a delta and, therefore, a new version of the
file.

Thedelta command requires the existencepoffile (created byget -e). It examines
p. file to verify the presence of an entry containing the user's login name. If none is found,
an error message results.

Thedelta command performs the same permission checksgbtate performs. If all
checks are successfulglta determines what has been changed in ghiéle by
comparing it with its own temporary copy of thgefile as it was before editing. This
temporary copy is called. file and is obtained by performing an interrgdt on the SID
specified in thep. file entry.

The requiredp. file entry is the one containing the login name of the user executing
delta , because the user who retrieved théle must be the one who creates the delta.
However, if the login name of the user appears in more than one entry, the same user has
executedjet -e more than once on the same SCCS file. Thimita -r must be used

to specify the SID that uniquely identifies tipe file entry. This entry is then the one used

to obtain the SID of the delta to be created.

In practice, the most common usedsdlta is
delta s.abc

which prompts
comments?

to which the user replies with a description of why the delta is being made, ending the
reply with a new-line character. The user's response may be up to 512 characters long with
new-lines (not intended to terminate the response) escaped by backslashes (

If the SCCS file has & flag, delta first prompts with

MRs?

14-17

Compilation Systems Volume 1 (Tools)

14-18

(Modification Requests) on the standard output. The standard input is then read for MR
numbers, separated by blanks and/or tabs, ended with a new-line character. A
Modification Request is a formal way of asking for a correction or enhancement to the
file. In some controlled environments where changes to source files are tracked, deltas are
permitted only when initiated by a trouble report, change request, trouble ticket, and so on,
collectively called MRs. Recording MR numbers within deltas is a way of enforcing the
rules of the change management process.

delta -y and/or-m can be used to enter comments and MR numbers on the command
line rather than through the standard input, as in

delta -y “"descriptive commentm"mrnuml mrnum?2"s.abc

In this case, the prompts for comments and MRs are not printed, and the standard input is
not read. These two key letters are useful widefta is executed from within a shell
procedure. Note thatelta -m is allowed only if the SCCS file has\aflag.

No matter how comments and MR numbers are entereddeiia , they are recorded as
part of the entry for the delta being created. Also, they apply to all SCCS files specified
with thedelta

If delta is used with more than one file argument and the first file named hdtag, all
files named must have this flag. Similarly, if the first file named does not have the flag,
none of the files named may have it.

Whendelta processing is complete, the standard output displays the SID of the new
delta (fromp. file) and the number of lines inserted, deleted, and left unchanged. For
example:

1.4

14 inserted

7 deleted

345 unchanged

If line counts do not agree with the user's perception of the changes madefile,at may

be because there are various ways to describe a set of changes, especially if lines are
moved around in thg-file. However, the total number of lines of the new delta (the
number inserted plus the number left unchanged) should always agree with the number of
lines in the edited-file.

If you are in the process of making a delta anddieta command finds no ID keywords
in the editedy-file, the message

No id keywords (cm7)

is issued after the prompts for commentary but before any other output. This means that
any ID keywords that may have existed in the SCCS file have been replaced by their
values or deleted during the editing process. This could be caused by making a delta from
ag-file that was created byget without-e (ID keywords are replaced lyet in such a
case). It could also be caused by accidentally deleting or changing ID keywords while
editing theg-file. Or, it is possible that the file had no ID keywords. In any case, the delta
will be created unless there is anflag in the SCCS file (meaning the error should be
treated as fatal), in which case the delta will not be created.

After the processing of an SCCS file is complete, the correspongirfde entry is
removed fromp. file. All updates top. file are made to a temporary copy, file, whose

Tracking Versions with SCE

use is similar to that of. file described in “SCCS Command Conventions” on page 14-7.
If there is only one entry ip. file, thenp. file itself is removed.

In addition,delta removes the editeg-file unless-n is specified. For example
delta -n s.abc
will keep theg-file after processing.

delta -s suppresses all output normally directed to the standard output, other than
comments? and MRs?. Thus, use 6§ with -y (and/or-m) causeglelta neither to
read from the standard input nor to write to the standard output.

The differences between tlgefile and thed. file constitute the delta and may be printed on
the standard output by usirdglta -p . The format of this output is similar to that
produced bydiff

The admin Command

Theadmin command is used to administer SCCS files — that is, to create new SCCS
files and change the parameters of existing ones. When an SCCS file is created, its param-
eters are initialized by use of key letters watimin or are assigned default values if no

key letters are supplied. The same key letters are used to change the parameters of exist-
ing SCCS files.

Two key letters are used in detecting and correcting corrupted SCCS files (see “Auditing”
on page 14-28).

Newly created SCCS files are given access permission mode 444 (read-only for owner,
group and other) and are owned by the effective user. Only a user with write permission in
the directory containing the SCCS file may use #tgnin(1) command on that file.

Creation of SCCS Files

An SCCS file can be created by executing the command
admin -ifirst s.abc

in which the valudirst with -i is the name of a file from which the text of the initial
delta of the SCCS fils.abc is to be taken. Omission of a value with meansadmin is
to read the standard input for the text of the initial delta.

The command
admin -i s.abc < first
is equivalent to the previous example.
If the text of the initial delta does not contain ID keywords, the message

No id keywords (cm7)

14-19

Compilation Systems Volume 1 (Tools)

is issued byadmin as a warning. However, if the command also setd tiflag (not to be
confused with thei key letter), the message is treated as an error and the SCCS file is not
created. Only one SCCS file may be created at a time wesingn -i

admin -r is used to specify a release number for the first delta. Thus:
admin -ifirst -r3 s.abc

means the first delta should be named 3.1 rather than the normal 1.1. Becahss
meaning only when creating the first delta, its use is permitted only with

Inserting Commentary for the Initial Delta

When an SCCS file is created, the user may want to record why this was done. Comments
(admin -y) and/or MR numbers-n) can be entered in exactly the same way as with
delta

If -y is omitted, a comment line of the form
date and time created YY/MM/DD HH:MM:SS by logname
is automatically generated.

Ifit is desired to supply MR numbersidmin -m), thev flag must be set withf . Thev

flag simply determines whether MR numbers must be supplied when using any SCCS
command that modifies a delta commentary in the SCCS file{sesfile(4)). An
example would be

admin -ifirst -m mrnuml -fv s.abc

Note thaty and-m are effective only if a new SCCS file is being created.

Initialization and Modification of SCCS File Parameters

14-20

Part of an SCCS file is reserved for descriptive text, usually a summary of the file's
contents and purpose. It can be initialized or changed by w&ingn -t

When an SCCS file is first being created aihdis used, it must be followed by the name
of a file from which the descriptive text is to be taken. For example, the command

admin -ifirst -tdesc s.abc
specifies that the descriptive text is to be taken fromdisc .

When processing an existing SCCS fike, specifies that the descriptive text (if any)
currently in the file is to be replaced with the text in the named file. Thus:

admin -tdesc s.abc

specifies that the descriptive text of the SCCS file is to be replaced by the contents of
desc . Omission of the file name after the key letter as in

admin -t s.abc

Tracking Versions with SCE

causes the removal of the descriptive text from the SCCS file.

The flags of an SCCS file may be initialized or changeddoynin -f , or deleted by
admin -d .

SCCS file flags are used to direct certain actions of the various commands. (See the
admin(1) page for a description of all the flags.) For example,itiftag specifies that a
warning message (stating that there are no ID keywords contained in the SCCS file)
should be treated as an error. Tdhédefault SID) flag specifies the default version of the
SCCS file to be retrieved by thget command.

admin -f isused to set flags and, if desired, their values. For example
admin -ifirst -fi -fm modnames.abc

sets the andm(module name) flags. The valumodnamespecified for thenflag is the
value that theget command will use to replace tRéM%D keyword. (In the absence of
themflag, the name of thg-file is used as the replacement for theM %D keyword.)
Severalf key letters may be supplied on a singlgmin , and they may be used whether
the command is creating a new SCCS file or processing an existing one.

admin -d is used to delete a flag from an existing SCCS file. As an example, the
command

admin -dm s.abc

removes thenflag from the SCCS file. Severatl key letters may be used with one
admin and may be intermixed witH .

SCCS files contain a list of login names and/or group IDs of users who are allowed to
create deltas. This list is empty by default, allowing anyone to create deltas. To create a
user list (or add to an existing on&dmin -a is used. For example,

admin -axyz -awgl -al234 s.abc

adds the login namesg/z andwql and the group 101234 to the list.admin -a may be
used whether creating a new SCCS file or processing an existing one.

admin -e (erase)is used to remove login names or group IDs from the list.

The prs Command

Theprs command is used to print all or part of an SCCS file on the standard output. If
prs -d is used, the output will be in a format called data specification. Data specification
is a string of SCCS file data keywords (not to be confused wih ID keywords)
interspersed with optional user text.

Data keywords are replaced by appropriate values according to their definitions. For
example,

is defined as the data keyword replaced by the SID of a specified delta. Simikarlyis
the data keyword for the SCCS file name currently being processed,Gnds the

14-21

Compilation Systems Volume 1 (Tools)

comment line associated with a specified delta. All parts of an SCCS file have an
associated data keyword. For a complete list, seegts1) page.

There is no limit to the number of times a data keyword may appear in a data specification.
Thus, for example,

prs -d"l: this is the top delta for :F: :I:" s.abc
may produce on the standard output
2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying its SID usiag-r . For
example,

prs -d":F:: :I: comment line is: :C:" -r1.4 s.abc
may produce the following output:
s.abc: 1.4 comment line is: THIS IS A COMMENT
If -r is not specified, the value of the SID defaults to the most recently created delta.

In addition, information from a range of deltas may be obtained withor-e. The use
of prs -e substitutes data keywords for the SID designated withand all deltas
created earlier, whilprs -1 substitutes data keywords for the SID designated with
and all deltas created later. Thus, the command

prs -d:l: -rl.4 -e s.abc
may output

14
13
1211
12
11

and the command
prs -d:l: -rl.4 -l s.abc
may produce

3.3
3.2
3.1
2211
2.2
21
14

Substitution of data keywords for all deltas of the SCCS file may be obtained by
specifying bothre and-l .

14-22

Tracking Versions with SCE

The sact Command

sact is a special form of thers command that produces a report about files that are out
for edit. The command takes only one type of argument: a list of file or directory names.
The report shows the SID of any file in the list that is out for edit, the SID of the
impending delta, the login of the user who executedgée -e command, and the date
and time theget -e was executed. Itis a useful command for an administrator.

The help Command

Thehelp command prints information about messages that may appear on the user's
terminal. Arguments thielp are the code numbers that appear in parentheses at the end
of SCCS messages. (If no argument is givhalp prompts for one.) Explanatory
information is printed on the standard output. If no information is found, an error message

is printed. When more than one argument is used, each is processed independently, and an
error resulting from one will not stop the processing of the others. For more information,
see thenelp(1l) page.

The rmdel Command

Thermdel command allows removal of a delta from an SCCS file. Its use should be
reserved for deltas in which incorrect global changes were made. The delta to be removed
must be a leaf delta. That is, it must be the most recently created delta on its branch or on
the trunk of the SCCS file tree. In Figure 14-3, only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be
removed. Only after they are removed can deltas 1.3.2.1 and 2.1 be removed.

To be allowed to remove a delta, the effective user must have write permission in the
directory containing the SCCS file. In addition, the real user must be either the one who
created the delta being removed or the owner of the SCCS file and its directory.

The-r key letter is mandatory withmdel . It is used to specify the complete SID of the
delta to be removed. Thus

rmdel -r2.3 s.abc
specifies the removal of trunk delta 2.3.

Before removing the deltamdel checks that the release number (R) of the given SID
satisfies the relation

floor is less than or equal to R,
which is less than or equal to ceiling

floor andceiling are flags in the SCCS file representing start and end of the range of valid
releases.

Thermdel command also checks the SID to make sure it is not for a version on which a

get for editing has been executed and whose associig#td has not yet been made.

In addition, the login name or group ID of the user must appear in the file's user list (or the

user list must be empty). Also, the release specified cannot be locked against editing.

14-23

Compilation Systems Volume 1 (Tools)

That is, if thel flag is set (se@dmin(1l)), the release must not be contained in the list.
If these conditions are not satisfied, processing is terminated, and the delta is not removed.

Once a specified delta has been removed, its type indicator in the delta table of the SCCS
file is changed fronD (delta) toR (removed).

The cdc Command

Thecdc command is used to change the commentary made when the delta was created. It
is similar to thermdel command (for exampler and full SID are necessary), although
the delta need not be a leaf delta. For example,

cdc -r3.4 s.abc

specifies that the commentary of delta 3.4 is to be changed. New commentary is then
prompted for as witldelta .

The old commentary is kept, but it is preceded by a comment line indicating that it has
been superseded, and the new commentary is entered ahead of the comment line. The
inserted comment line records the login name of the user exeadn@nd the time of its
execution.

Thecdc command also allows for the insertion of new and deletion of old MR numbers
with the! symbol. Thus

cdc -r1.4 s.abc

MRs? mrnum3 !mrnuml (The MRs? prompt appears only
if the v flag has been sgt.

comments? deleted wrong MR no.and inserted correct MR no.

insertsmrnum3 and deletesarnum1 for delta 1.4.

The what Command

14-24

Thewhat command is used to find identifying information in any UNIX system file
whose name is given as an argument. No key letters are acceptedhBhecommand
searches the given file(s) for all occurrences of the st@ng) , which is the replacement
for the % Z%D keyword (see thget(1) page). It prints on the standard output whatever
follows the string until the first double quoté), greater than symbobl), backslash(),
new-line, null, or non-printing character.

For example, if an SCCS file calleslprog.c (a C language source file) contains the
following line

char id[]= "%W%";
and the command

get -r3.4 s.prog.c

Tracking Versions with SCE

is used, the resulting-file is compiled to producerog.o anda.out . Then, the
command

what prog.c prog.o a.out

produces

prog.c:
prog.c: 3.4
prog.o:
prog.c: 3.4
a.out:
prog.c: 3.4

The string searched for byhat need not be inserted with an ID keywordgst ; it may
be inserted in any convenient manner.

The sccsdiff Command

Thescesdiff command determines (and prints on the standard output) the differences
between any two versions of an SCCS file. The versions to be compared are specified
with sccsdiff -r in the same way as withet -r . SID numbers must be specified as

the first two arguments. The SCCS file or files to be processed are named last. Directory
names and a lone hyphen are not acceptalbde ¢ediff

The following is an example of the format s€csdiff
scesdiff -r3.4 -r5.6 s.abc

The differences are printed the same way asdliffy .

The comb Command

The comb command lets the user reduce the size of an SCCS file. It generates a shell
procedure on the standard output, which reconstructs the file by discarding unwanted
deltas and combining other specified deltas. (It is not recommendedahdt be used as

a matter of routine.)

In the absence of any key lettergmb preserves only leaf deltas and the minimum
number of ancestor deltas necessary to preserve the shape of an SCCS tree. The effect of
this is to eliminate middle deltas on the trunk and on all branches of the tree. Thus, in
Figure 14-3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated.

Some of the key letters used with this command are:
-S This option generates a shell procedure that produces a report of the
percentage space (if any) the user will save. This is often useful as a

preliminary check.

-p This option is used to specify the oldest delta the user wants preserved.

14-25

Compilation Systems Volume 1 (Tools)

-C This option is used to specify a list (see thet(1) page for its syntax) of
deltas the user wants preserved. All other deltas will be discarded.

The shell procedure generated dgmb is not guaranteed to save space. A reconstructed
file may even be larger than the original. Note, too, that the shape of an SCCS file tree
may be altered by the reconstruction process.

The val Command

SCCS Files

Protection

14-26

Theval command is used to determine whether a file is an SCCS file meeting the
characteristics specified by certain key letters. It checks for the existence of a particular
delta when the SID for that delta is specified with.

The string following-y or -m is used to check the value set by theor mflag,
respectively. Seeadmin(1) for descriptions of these flags.

Theval command treats the special argument hyphen differently from other SCCS
commands. It allowsal to read the argument list from the standard input instead of from
the command line, and the standard input is read until an end-ofddaffol-d) is
entered. This permits oneal command with different values for key letters and file
arguments. For example,

val -

-yc -mabc s.abc
-mxyz -ypll s.xyz
control_d

first checks if files.abc has a value for its type flag and valuabc for the module
name flag. Once thisis doneal processes the remaining file, in this caseyz .

Theval command returns an 8-bit code. Each bit set shows a specific errordKé

for a description of errors and codes). In addition, an appropriate diagnostic is printed
unless suppressed by . A return code of 0 means all files met the characteristics speci-
fied.

This section covers protection mechanisms used by SCCS, the format of SCCS files, and
the recommended procedures for auditing SCCS files.

SCCS relies on the capabilities of the UNIX system for most of the protection
mechanisms required to prevent unauthorized changes to SCCS files — that is, changes by
non-SCCS commands. Protection features provided directly by SCCS are the release lock
flag, the release floor and ceiling flags, and the user list.

Tracking Versions with SCE

Files created by thadmin command are given access permission mode 444 (read-only
for owner, group, and other). This mode should remain unchanged because it (generally)
prevents modification of SCCS files by non-SCCS commands. Directories containing
SCCS files should be given mode 755, which allows only the owner of the directory to
modify it.

SCCS files should be kept in directories that contain only SCCS files and any temporary
files created by SCCS commands. This simplifies their protection and auditing. The

contents of directories should be logical groupings — subsystems of the same large
project, for example.

SCCS files should have only one link (hame) because commands that modify them do so
by creating and modifying a copy of the file. When processing is done, the contents of the
old file are automatically replaced by the contents of the copy, whereupon the copy is
destroyed. If the old file had additional links, this would break them. Then, rather than
process such files, SCCS commands would produce an error message.

When only one person uses SCCS, the real and effective user IDs are the same; and the
user ID owns the directories containing SCCS files. Therefore, SCCS may be used directly
without any preliminary preparation.

When several users with unique user IDs are assigned SCCS responsibilities (on large
development projects, for example), one user — that is, one user ID — must be chosen as
the owner of the SCCS files. This person will administer the files (useatirain
command) and will be SCCS administrator for the project. Because other users do not
have the same privileges and permissions as the SCCS administrator, they are not able to
execute directly those commands that require write permission in the directory containing
the SCCS files. Therefore, a project-dependent program is required to provide an interface
to theget , delta , and, if desiredimdel andcdc commands.

The interface program must be owned by the SCCS administrator and must have the
set-user-ID-on-execution bit on (selemod(1)). This assures that the effective user ID is

the user ID of the SCCS administrator. With the privileges of the interface program during
command execution, the owner of an SCCS file can modify it at will. Other users whose
login names or group IDs are in the user list for that file (but are not the owner) are given
the necessary permissions only for the duration of the execution of the interface program.
Thus, they may modify SCCS only wittelta and, possiblyrmdel andcdc .

Formatting

SCCS files are composed of lines of ASCII text arranged in six parts as follows:

Checksum a line containing the logical sum of all the characters of the file
(not including the checksum line itself)

Delta Table information about each delta, such as type, SID, date and time of
creation, and commentary

User Names list of login names and/or group IDs of users who are allowed to
modify the file by adding or removing deltas

Flags indicators that control certain actions of SCCS commands

14-27

Compilation Systems Volume 1 (Tools)

Auditing

14-28

Descriptive Text usually a summary of the contents and purpose of the file

Body the text administered by SCCS, intermixed with internal SCCS
control lines

Details on these file sections may be foundsitsfile(4). The checksum line is

discussed in “Auditing” on page 14-28.

Because SCCS files are ASCII files they can be processed by non-SCCS commands like
ed, grep , andcat . This is convenient when an SCCS file must be modified manually (a
delta's time and date were recorded incorrectly, for example, because the system clock was
set incorrectly), or when a user wants simply to look at the file.

CAUTION

Extreme care should be exercised when modifying SCCS files
with non-SCCS commands.

When a system or hardware malfunction destroys an SCCS file, any command will issue
an error message. Commands also use the checksum stored in an SCCS file to determine
whether the file has been corrupted because it was last accessed (possibly by having lost
one or more blocks or by having been modified wétl). No SCCS command will
process a corrupted SCCS file except daein -h or -z , as described below.

SCCS files should be audited for possible corruptions on a regular basis. The simplest and
fastest way to do an audit is to uadmin -h and specify all SCCS files:

admin -h s. filel s. file2 ...
or
admin -h directoryl directory2 ...

If the new checksum of any file is not equal to the checksum in the first line of that file, the
message

corrupted file (co6)

is produced for that file. The process continues until all specified files have been
examined. When examining directories (as in the second example above), the checksum
process will not detect missing files. A simple way to learn whether files are missing from

a directory is to execute the command periodically, and compare the outputs. Any file
whose name appeared in a previous output but not in the current one no longer exists.

When a file has been corrupted, the way to restore it depends on the extent of the
corruption. If damage is extensive, the best solution is to contact the local UNIX system
operations group and request that the file be restored from a backup copy. If the damage is
minor, repair through editing may be possible. After such a repairadingn command

must be executed:

Tracking Versions with SCE

admin -z s. file

The purpose of this is to recompute the checksum and bring it into agreement with the
contents of the file. After this command is executed, any corruption that existed in the file
will no longer be detectable.

14-29

Compilation Systems Volume 1 (Tools)

14-30

Symbols

#pragma 4-23
.align directive 2-12
.ascii directive 2-16
.asciiz directive 2-16
.bss directive 2-17
.bss section 2-1, 2-11, 2-17
.byte directive 2-14
.comm directive 2-17
.comment section 2-18, 2-19
.data directive 2-13
.data section 2-1, 2-3, 2-11, 2-13
.def directive 2-16
.double directive 2-16
.extern directive 2-16
file directive 2-18
float directive 2-15
.globl directive 2-16
.int directive 2-15
Jong directive 2-15
.org directive 2-12
.rela_* section 2-2
.set directive 2-16
.short directive 2-14
.space directive 2-12
.symtab section 2-2
.text directive 2-13
.text section 2-1, 2-5, 2-11, 2-13
.vbyte directive 2-14
.word directive 2-14
/etc/group file 16-15
/etc/mnttab 16-14
/etc/passwd 16-14
/etc/shadow file 16-15
letc/vfstab 16-13
/tmp directory 2-2
lusr

lib 4-15, 4-16
/varladm/utmp 16-16
/varfadm/utmpx 16-16
/varfadm/wtmp 16-16
/varladm/wtmpx 16-16
/var/tmp directory 2-2

Index

A

Access control list functions 16-51
acpp(1) 1-4
Ada 2-3
Ada compiler 1-4
Ada programming language 1-2
ada(1) 1-4
adb(1) 1-4
Address mode determination 20-16, 20-17
Address modes 20-17
admin(1) 14-2, 14-9, 14-19-14-21, 14-28-14-29
Algebraic simplification 20-16, 20-17
align directive 2-12, 2-17
Alphanumeric labels 2-4
Alternate math library 16-2
Analyze
detecting references to reserved registers 20-25
optimizing programs during post-linking stage
20-25
analyze(1) 1-4
ar(l) 1-4,4-11
Archive 1-3
archive libraries 4-9
implementation 4-17
linking with 4-9, 4-15, 4-35
archive libraries, creating
creating 4-11
archive libraries, maintaining 13-11-13-12
Archiver 1-3, 1-4
Arithmetic functions 16-41
as
invocation 2-2
as(1) 1-4
Assembler 1-2,1-4
Assembler directive 2-6
Assembly language 1-2, 2-1, 2-2, 2-4, 2-5, 2-6, 2-8, 2-9,
2-10, 2-11, 2-12, 2-15, 2-17, 2-19, 2-20, 2-21
Alphanumeric labels 2-4
Assembler directives 2-12, 2-17, 2-19
Assembler invocation 2-2
Assembly syntax 2-21
Character constants 2-9
Character set 2-4

Index-1

Compilation Systems Volume 1 (Tools)

Constants 2-8, 2-9
Directives mnemonics 2-19
Expression operators 2-10
Expression types 2-10, 2-11
Expression values 2-11
Expressions 2-9, 2-10, 2-11
Floating point constants 2-8
Identifiers 2-6, 2-8
identifiers 2-5
Integer constants 2-8
Location counter control 2-12
Null statements 2-4
Numeric (local) labels 2-5
Operator precedence 2-10
Position-independent code 2-21
Predefined symbols 2-5, 2-6
Source statements 2-4, 2-5
Symbol attributes 2-17
User-defined symbols 2-8
Using the assembler 2-2, 2-20

Assembly language, Comments
Comments 2-5

Auditing functions 16-51

Back end 1-3
Backward reference 2-5
base address 22-38
Bessel Functions 16-37
Bessel functions 16-37
Binary tree functions 16-32
Binary Tree Management 16-32
bit-fields 10-4
Branch displacement optimization 2-20
Branch optimizations 20-10, 20-11, 20-12
Browser
C 15
bss directive 2-17
byte directive 2-14

C

C code browser 1-5
C code checkter 1-5
C compiler 1-4
C library 16-1, 16-2
linking with 4-9, 4-11
C preprocessor 1-4
C programming language 1-2

Index-2

CC(1)
creating shared objects 4-13
cc(l) 14
creating shared objects 4-12, 4-18, 4-21, 4-22
library linking option 4-9, 4-16, 4-35
library search option 4-16, 4-36
static linking options 4-10, 4-11, 4-14, 4-15, 4-35
cc(1), 4-13
CCG 1-3
cdc(1) 14-9, 14-24
cflow(1) 1-5
Character Manipulation 16-22, 16-25, 16-26
Character test functions 16-25
Character Translation Functions 16-26
Character translation functions 16-26
Code checker
C 15
Code motion 20-16, 20-17
COFF 1-5
comb(1) 14-9, 14-25-14-26
comm directive 2-17
Comment 2-5
Common code generator 1-3
Common Object File Format 1-5
Common subexpression elimination 20-16, 20-17
Compilation system 1-2
Compiler 1-2
Ada 1-4
C 14
Fortran 1-4
Compiler optimization classes 20-10, 20-11, 20-12,
20-14, 20-15, 20-16, 20-17, 20-18, 20-19,
20-20, 20-21, 20-22, 20-24, 20-26, 20-27,
20-28, 20-29
Branch optimizations 20-10, 20-11, 20-12
Expression optimizations 20-10, 20-16, 20-17
Inline expansion of subprograms 20-10, 20-26
Instruction scheduling 20-10, 20-24
Loop optimizations 20-10, 20-18, 20-19, 20-20,
20-21, 20-22
Optimization of constraints 20-10, 20-27, 20-28,
20-29
Register allocation 20-10, 20-24
Variable optimizations 20-10, 20-12, 20-14, 20-15,
20-16
Compiler optimization levels 20-2
Compiler optimization options 20-2
O 20-2
Q 20-2, 20-3, 20-8
Compiler options, Verbose
Verbose 20-10
Compiler technology 20-1
Compiler-compiler 1-4
Compressor 1-5

const 4-20
Constant propagation 20-11
Control functions 16-46
Control level functions 16-51
Controlling compiler optimizations 20-3, 20-8
Copy propagation 20-12, 20-14, 20-15, 20-16
Expression 20-14
Copy propagation, Constant
Constant 20-14
Copy propagation, Variable
Variable 20-14
Copy variables 20-12, 20-15, 20-16
cpp(l) 1-4
cprs(1) 1-5
Cross reference 1-5
cscope(l) 1-5,9-1-9-19
cscope(l), command line 9-2,9-10-9-13
cscope(1), environment setup 9-2, 9-18-9-19
cscope(1), environment variable 9-13
cscope(l), usage examples 9-1-9-10, 9-14-9-18
ctrace(1) 1-4
cxref(1) 1-5

D

data directive 2-11, 2-13
data representation 22-2

data segment (see also object files) 4-17, 4-18, 4-19,

4-20, 4-21
Data structures functions 16-31
Date and time functions 16-34
Dead code elimination 20-12, 20-13, 20-14
Debugger
object 1-4
symbolic 1-3,1-4

Debugging optimized code 20-32, 20-33, 20-34, 20-35

Debugging with arbitrary record format 1-5, 1-6
def directive 2-8, 2-16
Delimeter

comment 2-5
delta(1) 14-3, 14-8, 14-17-14-19
DES Algorithm Access 16-41, 16-52
Devices functions 16-12
Directive 2-1

.align 2-12

.ascii 2-16

.asciiz 2-16

.bss 2-17

.byte 2-14

.comm 2-17

.data 2-13

.def 2-16

Index

.double 2-16
.extern 2-16
file 2-18
float 2-15
.globl 2-16
.int 2-15
long 2-15
.org 2-12
.set 2-16
.short 2-14
.Space 2-12
text 2-13
.vbyte 2-14
.word 2-14
align 2-12,2-17
byte 2-14
comm 2-17
data 2-11, 2-13
def 2-8, 2-16
double 2-16
extern 2-16
file 2-8, 2-18
float 2-15
gloabl 2-16
half 2-14
ident 2-18, 2-19
local 2-17
previous 2-14
shyte 2-14
section 2-13
set 2-16
shalf 2-15
short 2-14
size 2-18
string 2-16
text 2-13
type 2-18
uahalf 2-15
uaword 2-15
ubyte 2-14
uhalf 2-15
vhyte 2-14
version 2-4, 2-6, 2-7,2-18
weak 2-17
zero 2-12
directive
bss 2-17
word 2-15
Directory
tmp 2-2
/var/tmp 2-2
Directory functions 16-7
Directory Use Functions 16-7
Diretive

Index-3

Compilation Systems Volume 1 (Tools)

assembler 2-6 Executable program 1-3
dis(1) 1-5 Expression optimizations 20-10, 20-16, 20-17
Disassembler 1-5 Expressions
double directive 2-16 Optimizing 20-16
dump(l) 1-5 Propagating 20-14
Dumper 1-5 Simplifying 20-16
Duplicating loop exit tests 20-18, 20-22 extensions 22-61
Duplicating partially-constant conditional branches extern directive 2-16

20-11, 20-12

DWARF 1-5,1-6
DWARF Access Library 22-61

DWARF address ranges tables 22-16 F

DWARF debugging 22-16

DWAREF line number information 22-16 fr7(1) 1-4

DWARF name lookup tables 22-17 Flle

DWAREF version 2 draft 5 specification 22-61 /var/adm/utmpx 16-16

Dwarf_base_encoding() 22-62 File

dwarf_dealloc() 22-62 /etc/group 16-15

Dwarf_Error *error 22-62 /etc/mnttab 16-14

Dwarf_Half** tagbuf 22-62 /etc/passwd 16-14

dwarf_isbasetype() 22-62 /etc/shadow 16-15

Dwarf_Signed dwarf_modtags 22-62 /etc/vfstab 16-13

Dwarf_Type 22-62 /var/adm/utmp 16-16

Dwarf_Type typ 22-62 /var/adm/wtmp 16-16

Dynamic link 1-6 /var/adm/wtmpx 16-16

dynamic linking 4-8 common object format 1-5
implementation 4-17, 4-18, 22-27, 22-45 object 1-5

relocatable object 1-3, 2-1, 2-2
File Access Functions 16-5, 16-11, 16-12
File and 1/O status functions 16-6

E file directive 2-8, 2-18
File functions 16-7
EDITOR environment variable 9-2, 9-18 File Status Functions 16-6
ELF 1-5,1-6, 2-1 File systems tables file functions 16-13
ELF (see also object files) 22-1 File tree functions 16-32
ELF file functions 16-17, 16-18 float directive 2-15
ELF library 16-3 Floating point 1-7
Eliminating unreachable code 20-10, 20-11 Floating-point functions 16-41
Encryption functions 16-52 Floating-point operations 17-1, 17-12
Environment variable compares 17-12
EDITOR 9-2, 9-18 control bits 17-7
LD_BIND_NOW 4-16, 22-47, 22-55 data representation 17-1,17-6
LD _LIBRARY_PATH 4-7, 4-14, 4-36, 22-52 data types and formats 17-2
LD_RUN_PATH 4-7, 4-15, 4-36 denormalized numbers 17-3
MAKEFLAGS 13-18 double-extended 17-11
PARALLEL 13-5, 13-17 double-precision 17-2
STATIC_LINK 4-8 exception handling 17-7, 17-9
TERM 9-2 exceptions 17-7
TMPDIR 2-2,9-13 floating point to integer conversion 17-11
VIEWER 9-2 IEEE requirements 17-11
VPATH 9-2,9-13 infinities 17-5
exceptions 22-61 infinities /10 17-12
Executable and linking format 1-5, 1-6, 2-1 language mappings 17-3
executable files 22-1 maximum and minimum values 17-4

Index-4

NaNs 17-5
NaNs I/0 17-12
normalized numbers 17-3
rounding 17-6
single-precision 17-2,17-9, 17-11
single-precision functions 17-11
special-case values 17-4
square root 17-12
status bits 17-7
unordered condition 17-12
Floating-point register name 2-6
Flow functions 16-44
Flow grapher 1-5
Folding conditional tests 20-10, 20-11
Format
DWARF 1-5, 1-6
ELF 1-5,1-6, 2-1
Fortran compiler 1-4
Fortran programming language 1-2
Forward reference 2-5
Frame
stack 1-6
Function
message queue 16-32
function prototypes, lint(1) 10-2

function prototypes, lint(1) checks for 10-7

Functions
access control lists 16-51
arithmetic 16-41
auditing 16-51
bessel 16-37
binary tree 16-32
character test 16-25
character translation 16-26
control 16-46
control levels 16-51
data structures 16-31
devices 16-12
directory 16-7
ELF files 16-17, 16-18
encryption 16-52
file 16-7
file and I/O status 16-6
file systems tables file 16-13
file tree 16-32
floating-point 16-41
flow 16-44
general date and time 16-34
general input 16-8
general output 16-9
group file 16-15

internationalization 16-35
interval timer 16-35

loadable kernel modules 16-53
locales 16-36

LWP 16-49

mathematic 16-38
mathematic and numeric 16-36
memory 16-28

memory allocation 16-29
memory control 16-30
memory manipulation 16-28
message catalog 16-36

mount table file 16-14
multibyte and wide characters 16-27
numeric conversion 16-39
other security 16-52
parameter 16-45

password file 16-14

pipes and FIFOs 16-12

POSIX timer 16-35

processes 16-45

profile 16-44

program 16-44

queues 16-33

random number 16-42

Index

regular expression and pattern matching 16-27

security 16-50

semaphores 16-33

shadow password file 16-15
shared memory 16-30

shared object 16-22

signal 16-47

special files 16-12

STREAMS 16-11

string and characters 16-22
string manipulation 16-23
system environment 16-53
tables 16-31

temporary file 16-22

terminal /O 16-10

trees 16-31

trigonometric 16-37

user and accounting files 16-16
user-level interrupt 16-49
wide character test 16-26
wide string manipulation 16-24

G

hash table 16-31
hyperbolic 16-38
I/0O control 16-4

gdb(1) 1-4
General input functions 16-8
General output functions 16-9

Index-5

Compilation Systems Volume 1 (Tools)

General register name 2-6
General-purpose library 16-3
get(l) 14-2-14-4,14-8, 14-9-14-17
global directive 2-16

global symbols 4-22

Grapher 1-5

Group file functions 16-15

half directive 2-14

Hash table functions 16-31
Hash Table Management 16-31
header files, lint(1)ing 10-6-10-7
help(1) 14-5, 14-9, 14-23
High-level language 1-2
Hyperbolic Functions 16-38
Hyperbolic functions 16-38

I/0 control functions 16-4
ident directive 2-18, 2-19
Identifier

ordering 1-5

predefined 2-6

user-defined 2-6
Identifiers 2-5
ifiles 4-23
Induction variable 20-20
Inline expansion 20-11, 20-26
Inline expansion of subprograms 20-10, 20-26
Input Functions 16-8
Inserting zero trip tests 20-11, 20-12
Instruction mnemonic 2-1
Instruction mnemonics 2-6
Instruction scheduling 20-10, 20-24
Instruction set

PowerPC 3-2
Internal table

Table

internal 2-1

Internationalization functions 16-35
Interpreter 1-2

program 1-6
Interval timer functions 16-35
Invocation

as 2-2

Index-6

Label
numeric 2-5
Labels
alphanumeric 2-4
Language
high-level 1-2
low-level 1-2
machine 2-1
processor 1-2
programming 1-1
ld(1) 1-4
LD_BIND_NOW 4-16, 22-47
LD_BIND_NOW environment variable 4-16, 22-47,
22-55
LD_LIBRARY_PATH 4-14, 4-16
LD_LIBRARY_PATH environment variable 4-7,4-14,
4-36, 22-52
LD_RUN_PATH 4-15, 4-16
LD_RUN_PATH environment variable 4-7, 4-15, 4-36
ldd(1) 4-16
lex(1) 1-4, 6-1-6-19
lex(1), command line 6-1-6-2
lex(1), definitions 6-12-6-14, 6-17
lex(1), disambiguating rules 6-9
lex(1), how to write source 6-3-6-15
lex(1), library 6-2, 6-17
lex(1), operators 6-4-6-6
lex(1), quick reference 6-18-6-19
lex(1), routines 6-7, 6-10-6-12
lex(1), source format 6-3, 6-18-6-19
lex(1), start conditions 6-13-6-14
lex(1), use with yacc(1) 6-12, 6-15-6-17, 7-1-7-3, 7-7-
7-8,7-22-7-23
lex(1), user routines 6-10-6-11, 6-14-6-15
lex(1), yylex() 6-2, 6-15
Lexical analyzer 1-4
lexical analyzer (see lex(1)) 6-2
libraries
archive 4-9
creating 4-11, 4-13, 4-18, 4-22
libc 4-9, 4-11
libdl 4-10, 4-11, 4-17
libelf 22-1
libm 4-11
linking with 4-35
naming conventions 4-35
shared object 4-8, 22-27, 22-45
standard place 4-11
libraries, lint(1) 10-7-10-8
libraries, maintaining 13-11-13-12
Library 1-3

Index

alternate math 16-2 M

C 16-1, 16-2

DWARF Access Library 22-61

ELF 16-3 m4(1) 1-5, 2-2, 2-3, 5-1-5-10

m4(1), argument handling 5-5-5-7

?ne;tﬁrailg-);rpose 16-3 m4(1), arithmetic capabilities 5-7

shared 1-6 m4(1), commgnd line 5-1—5-2_

system 16-1 m4(1), coqd_ﬁmnal preprocessing 5-8-5-9
Link m4(1), d.eflnlng.macr.os 5-2-5-5

dynamic 1-6 m4(1), file mampulatlon 5-7-5-8

static 1-6 m4(1), quoting 5-3-5-5

m4(1), string handling 5-9-5-10

Machine language 2-1

Macro preprocessor 1-5

make(1) 13-1-13-24

make(1), command line 13-16-13-18
make(1), environment variables 13-18-13-19
make(1), how to write source 13-2-13-8
make(1), macros 13-3-13-8, 13-10, 13-12
make(1), maintaining libraries 13-11-13-12

link editing 22-23, 22-45
library linking options 4-9, 4-16, 4-35
multiply defined symbols 4-22, 4-23
quick reference 4-35
undefined symbols 4-8

link editing, dynamic
dynamic 4-8, 22-27, 22-45

link editing, static

. StaF'C 4-8 make(1), makefile convention 13-1
Link editor 1-3,1-4 make(1), sample output 13-4-13-5
Linking 4-1 ' P P

make(1), source format 13-6
make(1), suffix transformation rules 13-9-13-11, 13-19-
13-24

make(1), usage example 13-4-13-5
make(1), use with SCCS 13-13-13-14
MAKEFLAGS environment variable 13-18
Manipulator 1-5
mapfiles 4-35

defaults 4-30

error messages 4-34

example 4-29

map structure 4-31

mapping directives 4-27

segment declarations 4-25

size-symbol declarations 4-28

structure 4-24

syntax 4-24

usage 4-24
Math library 16-2
math library, linking with

linking with 4-11
Mathematic and numeric functions 16-36
Mathematic functions 16-38
mcs(1) 1-5
Memory Allocation 16-29, 16-30
Memory allocation functions 16-29
Memory control functions 16-30
Memory functions 16-28
Memory Manipulation Functions 16-28
Memory manipulation functions 16-28
Message catalog functions 16-36
Message queue functions 16-32

lint(1) 1-5,10-1-10-38
lint(1), command line 10-6-10-8
lint(1), consistency checks 10-2-10-3
lint(1), filters 10-8
lint(1), libraries 10-7-10-8
lint(1), message formats 10-2
lint(1), messages 10-12-10-38
lint(1), options and directives 10-1-10-2, 10-8-10-12
lint(1), portability checks 10-3-10-5
lint(1), suspicious constructs 10-5-10-6
Lister
name 1-5
Loadable kernel module functions 16-53
local directive 2-17
Locale functions 16-36
Locale Information 16-36
Location counter 2-5
Loop optimizations 20-10, 20-18, 20-19, 20-20, 20-21,
20-22
Loop unrolling 20-18, 20-22
Loops
Forward branch into 20-19
Optimizing 20-17, 20-18, 20-19, 20-20, 20-21,
20-22
Test replacement 20-21
Unrolling 20-22
With multiple entries 20-19, 20-20
lorder(1) 1-5
Low-level language 1-2
LWP functions 16-49

Index-7

Compilation Systems Volume 1 (Tools)

Messages
About copy variables 20-15
About forward branch into loop 20-19
About loop exits 20-22
About loop unrolling 20-23, 20-24
About optimizing variables 20-13
About uninitialized variables 20-35
About zero trip tests 20-11
at unknown line 20-19
Miscellaneous Functions 16-10, 16-12, 16-27, 16-38,
16-44, 16-45, 16-51, 16-52, 16-53
Mnemonic
instruction 2-1, 2-6
Mount table file functions 16-14
Multibyte and wide character functions 16-27
multiply defined symbols 4-22, 4-23

Name lister 1-5

NightTrace(1) 1-4

NightView(1) 1-4

nm(1) 1-5

Null statement 2-4

Numeric conversion functions 16-39
Numeric Conversions 16-39

O

O option 20-2
Object
shared 1-6
Object debugger 1-4
Object file 1-5
relocatable 1-3, 2-1, 2-2
Object File Library 16-2, 16-17, 16-18, 16-35, 16-36
Object files
80-bit precision 22-21, 22-22
FP rounding modes 22-19
object files 22-1
data representation 22-2
function addresses 22-57
global offset table 22-54
procedure linkage table 22-58
program header 22-35
program interpreter 22-45
program linking 22-3
program loading 22-42
section alignment 22-12
section attributes 22-14

Index-8

section header 22-9
segment contents 22-40
segment permissions 22-39
tools for manipulating 22-1
object files, base address
base address 22-38
object files, ELF header
ELF header 22-3
Object files, FP exceptions
FP exceptions 22-19
object files, hash table
hash table 22-59
object files, libelf
libelf 22-1
object files, note section
note section 22-41
object files, relocation
relocation 22-27, 22-54
object files, section names
section names 22-18
object files, section types
section types 22-12
object files, segment types
segment types 22-36
Object files, string table
string table 22-22
object files, symbol table
symbol table 22-23
Object files, zero page
zero page 22-21, 22-22
Optimization
during post-linking stage 20-25
longjmp routine 20-25
setjmp routine 20-25
Optimization of constraints 20-10, 20-27, 20-28, 20-29
Optimization programming techniques 20-30, 20-31,
20-32
Coding tips 20-30, 20-31
Performance analysis techniques 20-30, 20-32
Optimizations, Safe
Safe 20-2
Optimizations, Unsafe
Unsafe 20-2
Optimize 1-2
Optimizer 1-4
Options
O 20-2
Q 20-13, 20-15, 20-18, 20-20, 20-22
Ordering identifier 1-5
Other security functions 16-52
Output Functions 16-9

paging 4-18, 4-20, 4-21, 22-42

PARALLEL environment variable 13-5, 13-17
Parameter functions 16-45

parser (see yacc(1)) 7-1

Password File Access 16-13, 16-14, 16-15, 16-16

Password file functions 16-14
pctolf(1) 1-5
Performance analysis 11-1
Performance analyzer 1-4
Pipe and FIFO functions 16-12
portability, lint(1) checks for 10-3-10-5
position-independent code 4-18, 22-45, 22-54
POSIX timer functions 16-35
Post-Linker Optimization 20-25
PowerPC
condition codes 3-25
implementation-specific instructions 3-31
operand abbreviations 3-26
optional instructions 3-31
special-purpose registers 3-28
time base registers 3-31
trap operand 3-26
PowerPC instructions 3-1
Precprocessor
macro 1-5
Predefined identifer 2-6
Preprocessor
C 14
previous directive 2-14
Process functions 16-45
Processor
language 1-2
prof(1) 1-4
Profile functions 16-44
Profiler 1-4
Profiling 1-3
Program
executable 1-3
Program counter 1-5, 2-5
Program functions 16-44
Program interpreter 1-6
Program Monitoring 16-44
Program optimization 20-1, 20-2
Programming language 1-1
Ada 1-2
assembly 1-2
C 1-2
Proramming language
Fortran 1-2
prs(1) 14-9, 14-21-14-22
Pseudo-op 2-1

Index

Pseudo-random number functions 16-42
Pseudo-random Number Generation 16-42

Q

Q option 20-3, 20-8, 20-18
benchmark 20-8
block_limit= 20-8
fast_math 20-8
growth_limit= 20-11, 20-20, 20-22
loops= 20-15
objects= 20-13
opt_class= 20-2
optimize_for_space 20-8
variable_limit= 20-8

-Qalign_double
see Table 2-1 20-3

-Qavoid_overflow
see Table 2-1 20-3

-Qinline_divide
see Table 2-1 20-3

-Qinvert_divides
see Table 2-1 20-3

-Qnotic
see Table 2-1 20-3

-Qschedule_tn_window
see Table 2-1 20-3

-Qskew_large_arrays
see Table 2-1 20-3

-Qtic
see Table 2-1 20-3

guery operations 22-61

Queue functions 16-33

Queue Management 16-32, 16-33

-Qunaligned_args
see Table 2-1 20-3

R

Random number functions 16-42
Reference

backward 2-5

forward 2-5
Region constant 20-20
Register allocation 20-10, 20-24
Register name

floating-point 2-6

general 2-6

special-purpose 2-6
Regular expression and pattern matching functions

Index-9

Compilation Systems Volume 1 (Tools)

16-27
regular expressions 6-4-6-6
relocatable files (see also object files) 4-9, 22-1
Relocatable object file 1-3, 2-1, 2-2
relocation 22-27
report(1l) 1-4
rmdel(1) 14-9, 14-23-14-24

sact(1) 14-9, 14-23

sbyte directive 2-14

SCCS 14-1-14-29

SCCS, auditing files 14-28-14-29
SCCS, changing comments 14-24

SCCS, changing file parameters 14-19, 14-20-14-21

SCCS, commands 14-7-14-26
SCCS, creating files 14-2, 14-19-14-21
SCCS, file format 14-27-14-28
SCCS, file protection 14-26-14-27
SCCS, ID keywords 14-10
SCCS, marking differences 14-19, 14-25
SCCS, printing files 14-21-14-23
SCCS, removing versions 14-23-14-24
SCCS, retrieving files 14-2-14-3, 14-9-14-17
SCCS, updating files 14-3, 14-17-14-19
SCCS, usage example 14-2-14-4
SCCS, use with make(1) 13-13-13-14
SCCS, version numbering 14-5-14-7
scesdiff(1) 14-9, 14-25
Section
Jbss 2-1, 2-11, 2-17
.comment 2-18, 2-19
.data 2-1, 2-3, 2-11, 2-13
rela_* 2-2
.symtab 2-2
text 2-1, 2-5, 2-11, 2-13
section directive 2-13
Security functions 16-50
Selecting compiler optimization levels 20-2
Semaphore functions 16-33
Separate lifetimes 20-12, 20-15
set directive 2-16
Shadow password file functions 16-15
shalf directive 2-15
Shared library 1-6
Shared memory functions 16-30
Shared object 1-6
Shared object functions 16-22
shared objects 4-8
guidelines for building 4-18, 4-22
implementation 4-17, 4-18, 22-27, 22-45

Index-10

linking with 4-9, 4-16, 4-35
shared objects, creating

creating 4-12, 4-13, 4-18
short directive 2-14
Signal functions 16-47
Signal Handling Functions 16-47
size directive 2-18
size(1) 1-5
Sizer 1-5
Sorter

topological 1-5
Special files functions 16-12
Special-purpose register name 2-6
Stack 1-6
Stack frame 1-6
Statement

null 2-4
Static link 1-6
static linking 4-8

implementation 4-17
STATIC_LINK environment variable 4-8
Straightening blocks 20-10, 20-11
STREAMS functions 16-11
Strength reduction 20-13, 20-18, 20-20, 20-21
String and characters functions 16-22
string directive 2-16
String Manipulation Functions 16-22
String manipulation functions 16-23
strip(1) 1-5
Stripper 1-5
Subprograms

inline expansion 20-26
Symbol table 1-5, 2-1

Table

symbol 1-6

Symbolic debugger 1-3, 1-4
Symbols 2-2, 2-6
System environment functions 16-53
System libraries 16-1

Table

symbol 1-5, 2-1
Table functions 16-31
Table Management 16-31
tdesc 1-6
tdesc (text description) 23-1
Temporary file functions 16-22
TERM environment variable 9-2
Terminal I/O functions 16-10
Test replacement 20-18, 20-21

Text description (tdesc) 23-1

Text description information 1-6

text directive 2-13

text segment (see also object files) 4-17, 4-18, 4-19,
4-20, 4-21

Time Functions 16-33

TMPDIR environment variable 2-2,9-13

Topological sorter 1-5

Translator 1-5

Tree functions 16-31

Trigonometric Functions 16-37

Trigonometric functions 16-37

Trigonometric identities 20-17

tsort(1) 1-5

type directive 2-18

type information 22-61

uahalf directive 2-15

uaword directive 2-15

ubyte directive 2-14

uhalf directive 2-15

undefined symbols 4-8

unget(1) 14-8, 14-13

Unreachable code 20-11

Unsafe optimizations 20-21

User and accounting file functions 16-16
User-defined identifier 2-6
User-level interrupt functions 16-49

\%

val(1) 14-9, 14-26
Variable
EDITOR 9-2,9-18
LD_BIND_NOW 4-16, 22-47, 22-55
LD_LIBRARY_PATH 4-7, 4-14, 4-36, 22-52
LD_RUN_PATH 4-7, 4-15, 4-36
MAKEFLAGS 13-18
PARALLEL 13-5,13-17
STATIC_LINK 4-8
TERM 9-2
TMPDIR 9-13
VIEWER 9-2
VPATH 9-2,9-13
Variable length displacements 2-20
Variable optimizations 20-10, 20-12, 20-14, 20-15,
20-16
Variables

Index

Copy 20-15, 20-16
Number to optimize 20-13
Optimizing 20-12
Separate lifetimes 20-15
vbyte directive 2-14
version directive 2-4, 2-6, 2-7, 2-18
Version number
assembler 2-3
VIEWER environment variable 9-2
virtual addressing 22-42
VPATH environment variable 9-2, 9-13

W

weak directive 2-17

weak symbols 4-22, 4-23

what(1) 14-9, 14-24-14-25

Wide character test functions 16-26
Wide string manipulation functions 16-24
word directive 2-15

Y

yacc(l) 1-4, 7-1-7-39

yacc(1), definitions 7-7-7-8

yacc(1l), disambiguating rules 7-12-7-20

yacc(1), error handling 7-20-7-22

yacc(1), how to write source 7-3-7-7

yacc(1), library 6-17, 7-22-7-23

yacc(1l), parser actions 7-9-7-12

yacc(1), routines 7-26

yacc(1), source format 7-3

yacc(1l), symbols 7-3-7-7

yacc(1), typing 7-27-7-28

yacc(1l), usage examples 7-29-7-39

yacc(1l), use with lex(1) 6-12, 6-15-6-17, 7-1-7-3, 7-7-
7-8,7-22-7-23

yacc(l), yylex() 7-22

yacc(l), yyparse() 7-22-7-23

zero directive 2-12
Zero-trip test 20-11

Index-11

Compilation Systems Volume 1 (Tools)

Index-12

Spine for 1.5” Binder

Product Name: 0.5" from
top of spine, Helvetica,
36 pt, Bold

Volume Number (if any):
Helvetica, 24 pt, Bold

Volume Name (if any):
Helvetica, 18 pt, Bold

Manual Title(s):
Helvetica, 10 pt, Bold,
centered vertically
within space above bar,
double space between
each title

Bar: 1" x 1/8" beginning
1/4" in from either side

Part Number: Helvetica,
6 pt, centered, 1/8" up

-
)
=
@
<
>
X
O
w

Programmer

Compilaton Systems
Volume 1 (Tools)

0890459

	Compilation Systems Volume 1 (Tools)
	Preface
	Contents
	Part 1 - Software Development Environments
	Introduction to SDEs
	Introduction
	Programming Languages
	Compilation Systems Concepts
	Concurrent Computer Corporation Compilation Systems
	Object Files
	Stack Frames
	Static and Dynamic Linking
	Floating-Point Arithmetic

	Assembler and Assembly Language
	Introduction
	Assembler Operation
	Using the Assembler
	Assembler Invocation

	Character Set
	Source Statements
	Null Statements
	Alphanumeric Labels
	Numeric (Local) Labels
	Comments

	Identifiers
	Predefined Symbols
	User-Defined Symbols

	Constants
	Integer Constants
	Floating-Point Constants
	Character Constants

	Expressions
	Expression Operators
	Operator Precedence
	Expression Types
	Expression Values

	Assembler Directives
	Location Counter Control
	Section Switching
	Data Initialization
	Symbol Definitions
	ELF Symbol Attributes
	Miscellaneous Operations
	Summary of Directives Mnemonics
	Example

	Position-Independent Code
	Assembly Syntax
	Example

	PowerPC Instruction Set Summary
	PowerPC Instruction Set
	Condition Codes
	Trap Operand
	Operand Abbreviations
	Special-Purpose Registers
	Time Base Registers
	Implementation-Specific and Optional Instructions

	Link Editor and Linking
	Introduction
	Using the Link Editor
	Basics of Linking
	Default Arrangement
	Linking with Standard Libraries
	Creating and Linking with Archive and Shared Object Libraries
	Specifying Directories to Be Searched by the Link Editor
	Specifying Directories to Be Searched by the Dynamic Linker
	Checking for Run-Time Compatibility
	Dynamic Linking Programming Interface
	Implementation
	Guidelines for Building Shared Objects
	Multiply-Defined Symbols
	Mapfiles
	Using the Mapfile Option
	Mapfile Structure and Syntax
	Segment Declarations
	Mapping Directives
	Extended Mapping Directives
	Size-Symbol Declarations
	Mapping Example
	Mapfile Option Defaults
	Internal Map Structure
	Error Messages

	Quick-Reference Guide

	m4 Macro Processor
	Introduction
	m4 Macros
	Defining Macros
	Quoting
	Arguments
	Arithmetic Built-Ins
	File Inclusion
	Diversions
	System Command
	Conditionals
	String Manipulation
	Printing

	Lexical Analysis with lex
	Introduction
	Generating a Lexical Analyzer Program
	Writing lex Source
	The Fundamentals of lex Rules
	Regular Expressions
	Operators
	Actions

	Advanced lex Usage
	Some Special Features
	lex Routines
	Definitions
	Start Conditions
	User Routines

	Using lex with yacc
	Miscellaneous
	Summary of Source Format

	Parsing with yacc
	Introduction
	Basic Specifications
	Actions
	Lexical Analysis

	Parser Operation
	Ambiguity and Conflicts
	Precedence
	Error Handling
	The yacc Environment
	Hints for Preparing Specifications
	Input Style
	Left Recursion
	Lexical Tie-Ins
	Reserved Words

	Advanced Topics
	Simulating error and accept in Actions
	Accessing Values in Enclosing Rules
	Support for Arbitrary Value Types
	yacc Input Syntax

	Examples
	1. A Simple Example
	2. An Advanced Example

	Part 2 - Analysis
	Introduction to Analysis
	Introduction

	Browsing Through Your Code with cscope
	Introduction
	How cscope Works

	How to Use cscope
	Step 1: Set Up the Environment
	Step 2: Invoke cscope
	Step 3: Locate the Code
	Step 4: Edit the Code
	Command Line Options
	Using Viewpaths
	Stacking cscope and Editor Calls
	Examples
	Changing a Constant to a Preprocessor Symbol
	Adding an Argument to a Function
	Changing the Value of a Variable

	Technical Tips
	Unknown Terminal Type
	Command Line Syntax for Editors

	Analyzing Your Code with lint
	Introduction to lint
	Options and Directives
	lint and the Compiler
	Message Formats

	What lint Does
	Consistency Checks
	Portability Checks
	Suspicious Constructs

	Usage
	lint Libraries
	lint Filters
	Options and Directives Listed

	lint-specific Messages
	argument unused in function
	array subscript cannot be > value: value
	array subscript cannot be negative: value
	assignment causes implicit narrowing conversion
	assignment of negative constant to unsigned type
	assignment operator ?=? found where ?=�=? was expected
	bitwise operation on signed value nonportable
	constant in conditional context
	constant operand to op: ?!?
	constant truncated by assignment
	conversion of pointer loses bits
	conversion to larger integral type may sign-extend incorrectly
	declaration unused in block
	declared global, could be static
	equality operator ?=�=? found where ?=? was expected
	evaluation order undefined: name
	fallthrough on case statement
	function argument (number) declared inconsistently
	function argument (number) used inconsistently
	function argument type inconsistent with format
	function called with variable number of arguments
	function declared with variable number of arguments
	function falls off bottom without returning value
	function must return int: main()
	function returns pointer to [automatic/parameter]
	function returns value that is always ignored
	function returns value that is sometimes ignored
	function value is used, but none returned
	logical expression always false: op ?&&?
	logical expression always true: op ?||?
	malformed format string
	may be indistinguishable due to truncation or case
	name declared but never used or defined
	name defined but never used
	name multiply defined
	name used but not defined
	nonportable bit-field type
	nonportable character constant
	only 0 or 2 parameters allowed: main()
	pointer cast may result in improper alignment
	pointer casts may be troublesome
	precedence confusion possible; parenthesize
	precision lost in bit-field assignment
	set but not used in function
	statement has no consequent: else
	statement has no consequent: if
	statement has null effect
	statement not reached
	static unused
	suspicious comparison of char with value: op ?op?
	suspicious comparison of unsigned with value: op ?op?
	too few arguments for format
	too many arguments for format
	value type declared inconsistently
	value type used inconsistently
	variable may be used before set: name
	variable unused in function

	Performance Analysis
	Introduction
	analyze
	Information
	Statistics
	Profiling
	Usage
	Assumptions and Constraints

	report
	Usage
	Assumptions and Constraints

	Part 3 - Project Control
	Introduction to Project Control
	Introduction

	Managing File Interactions with make
	Introduction
	Basic Features
	Parallel make

	Description Files and Substitutions
	Comments
	Continuation Lines
	Macro Definitions
	General Form
	Dependency Information
	Executable Commands
	Extensions of $*, $@, and $<
	Output Translations
	Recursive Makefiles
	Suffixes and Transformation Rules
	Implicit Rules
	Archive Libraries
	Source Code Control System File Names
	The Null Suffix
	Included Files
	SCCS Makefiles
	Dynamic Dependency Parameters
	Viewpaths (VPATH)

	Command Usage
	The make Command
	Environment Variables

	Suggestions and Warnings
	Internal Rules

	Tracking Versions with SCCS
	Introduction
	Basic Usage
	Terminology
	Creating an SCCS File with admin
	Retrieving a File with get
	Recording Changes with delta
	More on get
	The help Command

	Delta Numbering
	SCCS Command Conventions
	x.files and z.files
	Error Messages

	SCCS Commands
	The get Command
	ID Keywords
	Retrieval of Different Versions
	To Update Source
	Undoing a get -e
	Additional get Options
	Concurrent Edits of Different SID
	Concurrent Edits of Same SID
	Key letters that Affect Output

	The delta Command
	The admin Command
	Creation of SCCS Files
	Inserting Commentary for the Initial Delta
	Initialization and Modification of SCCS File Parameters

	The prs Command
	The sact Command
	The help Command
	The rmdel Command
	The cdc Command
	The what Command
	The sccsdiff Command
	The comb Command
	The val Command

	SCCS Files
	Protection
	Formatting
	Auditing

	Index

