ETPS User’sManual

2010 February 12

Frank Pfenning
Sunil Issar
Dan Nesmith
Peter B. Andrews
Hongwei Xi
Matthew Bishop
Chad E. Brown

Version for
Basic Logic
Mathematical Logic | and Il

Copyright 00 2010 Carnegie Mellon University. All rights reserved.

This manual is based upon work supported by NSF grants MCS81-02870, DCR-8402532, CCR-8702699,
CCR-9002546, CCR-9201893, CCR-9502878, CCR-9624683, CCR-9732312, CCR-0097179, and a grant from the
Center for Design of Educational Computing, Carnegie Mellon University. Any opinions, findings, and conclusions
or recommendations are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

1. ETPS User Interface

1.1. Introduction
Y ou may find the Table of Contents at the end of this manual.

ETPS is a program which is designed to help you do your logic homework. It was developed from TPS, an
ongoing research project in automated theorem proving. It iswritten in Common Lisp.

To do your homework on the computer, first enter ETPS. It is highly recommended that you run ETPS in an
X-window (on a Unix or Linux system) or use the Java interface for ETPS (if these facilities are available on your
system), so that formulas can be printed on the screen using specia fonts which contain logical symbols, and so that
the proof you are developing can be printed and updated in special proofwindows as you work.

You can start the Java interface for ETPS using the JAVAW N command; see Section 2.3. If you are running
ETPSin an X-window equipped with the specia fonts used to print logical symbols, you need to tell ETPS that you
want to use the special fonts for output. At the ETPS prompt, issue the command
setflag style
then, at the subsequent prompt
xterm
This will cause the special symbols to appear when any wffs are printed by ETPS. (If for some reason the special
symbolswon't print properly, just change the style back from xt er mto generi c.)

If you are running ETPS in an X-window or using the Java interface, you will probably also wish to use the
BEG N- PRFWcommand to start up windows containing the current subproof and the complete proof; see Section
2.4. You may need to iconify a window or move it up on your screen by the usual methods for manipulating
windows so that you will have room to issue ETPS commands. Y ou can eventually close the proofwindows with
the END- PRFWcomand. See Section 2.5 for commands which control what is regarded as the current subproof.

To help you learn how to use ETPS, transcripts of sample sessions are provided in Chapter 4. Just follow these
examples exactly on your own computer, and you will soon have a general idea of what to do. You can also do
some practice (unassigned) exercises (which you can find with the aid of the PROBLEMS command), and make
frequent use of the ADVI CE command, which will offer suggestions about what to do next.

Y ou should note that the only means of identification available to ETPS is the userid of the account from which it
isrun. It will credit all work to the owner of that account and to no other user. Thus, in order to receive credit for an
exercise, you must run ETPS from your own account. Run it from a private directory so that the files which ETPS
creates containing your proofs will not be accessible to others.

Start work on an exercise with the command EXERCI SE exercise-name; see Section 2.2. Next construct a
complete proof using the inference rules described in Chapter 3. However, some of the more powerful inference
rules may not be allowed for certain exercises. To find out which rules are prohibited, you should invoke the HELP
command on the exercise. If you cannot figure out what the next step in a proof should be, you may get hints by
using the ADVI CE command; but beware: these hints are not always helpful and can be misleading.

A partially completed proof will be called a proof outline or simply an outline. When you start proving a theorem
with the EXERCI SE or PROVE command, ETPS will create an outline for you which contains a single line: the
theorem you would like to prove. It is not yet justified since you are only planning to prove it. In place of the
justification there will be the word PLANL. This last line of the outline is therefore called a planned line. Lines

ETPSUser’'s Manual

which are justified can be introduced by justifying a planned line, introducing a hypothesis, or deriving
conseguences of already justified lines. Proofs may be built down from the top, adding consequences of established
lines, or up from the bottom, justifying planned lines by asserting new planned lines. It is a good idea to work up
from the bottom as much as possible, so that ETPS will aready know about most of the wffs you need, and you will
not have to type them in.

ETPS was originally developed for use with the textbook An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof by Peter B. Andrews. A second edition was published by Kluwer Academic
Publishers in 2002, and is now available from Springer, which which has taken over Kluwer. Exercises from this
textbook are available in ETPS. However, the inference commands available in your version of ETPS may depend
on the particular logical system chosen by your teacher. Inference commands are specified as inference rules and
are listed in Chapter 3. Idedlly, after repeatedly applying rules to planned and deduced lines, they will ‘*‘meet’” and
every planned line will be justified. The examplesin Chapter 4 should make all this clearer.

When you have finished the proof, issue the DONE command. This will record the completion of the exercise if
you used the EXERCI SE command. The PROVE command lets you prove arbitrary wffs, but it will not give you
credit for any exercises to which these wffs correspond. ETPS sends only a partial record of your session to afile on
the teacher’s area. Y ou must submit a printed copy of the finished proof, as well. To make this copy, first print the
proof into a file, using the TEXPROOF command. When you have exited from ETPS, run this file through TEX.
Then print the press file generated by TEX and hand this output to your teacher.

A word of advice to the user: ETPS is intended to aid you in learning logic, but if you use it thoughtlessly, you
might be able to do exercises without learning much. ETPS does not allow you to use the rules of logic in an
incorrect manner, but it's important that you learn for yourself how to apply the rules correctly. By allowing only
correct applications of the rules, ETPS encourages the user to spend more time learning the techniques of proving
theoremsin logic. It is strongly recommended that when ETPS does not allow you to do something, you think about
why what you tried was incorrect.

1.2. Saving and Restoring Your Work

ETPS saves your work automatically as you try to prove a theorem. This facility is very similar to Emacs
auto-save feature. ETPS commands SAVE- WORK, STOP- SAVE, RESUME- WORK and RESUME- SAVE dlow
you to explicitly use this feature. ETPS also provides the commands SAVEPROOF and RESTOREPROOF for
saving your proofs. Unlike the automatic saving facility, which saves everything typed by the user (and later
re-executes every command in the file), this feature only saves a proof (and later restores this proof, thus avoiding
the re-execution of everything that was done to achieve this state). It is, however, up to you to decide when to save a
proof. Although the auto saving feature starts to save your work whenever you start an exercise, you need to
explicitly use the command SAVEPROOF when you wish to save a proof. Typically, you will want to save the
proof whenever you need to interrupt a session in which you are constructing a proof and wish to continue this proof
later. ETPS commands associated with saving work are described in Section 2.6.

As soon as you start an exercise (but not a proof of your own theorem), ETPS will save your commands with the
appropriate arguments in a file. The name of this file will be exercise. wor k where exercise is the first exercise
attempted in your current session with ETPS. When ETPS is saving work, it echoes every character you typein a
stream obtained by opening the save-work file. The echo stream is closed only when the user issues the command
STOP- SAVE or the command EXI T (to exit ETPSin the usual way). The save-work file is not available until ETPS
closes this stream.

Chapter 1: ETPS User Interface

One more caution: When starting the same exercise in two different sessions, the same filename will be used.
The work for the new attempt will overwrite the old file exercise. wor k. To save the old attempt, rename it before
restarting ETPS.

After your work has been restored by RESTORE- WORK, ETPS will continue to save subsegquent work into the
same file by appending it to the end. If you would like to prevent that, give the STOP- SAVE command right after
RESTORE- WORK; better yet, use the EXECUTE- FI LE command.

When commands are read from a save-work file, most errors such as illegal arguments or logical mistakes are
faithfully re-executed, since some of them have side-effects. Only Lisp errors will lead to an abort of the
RESTORE- WORK and the state of the proof will be the same as after the last correct command read from thefile.

You may edit the save-work file in Emacs to delete wrong commands or correct illegal arguments, but you'll be
skating on thinice. It's easy to make a mistake in editing the save-work file and you may not be able to recover the
proof you wanted to restore! The inquisitive user may note that lines beginning with a semi-colon are ignored when
the proof is being restored.

There are several options you have when using this auto-save feature. You may switch off saving with the
STOP- SAVE command. Also, you can explicitly save into a different file with the SAVE- WORK command. To
check whether your work is being saved, use the system command PSTATUS.

Y ou also have the option of keeping a complete record of the session, including the system responses, in afile. If
you want to prepare such a copy, issue the ETPS command SCRI PT. Note, however, that the file obtained this way
cannot be used to restore your work as described earlier in this section.

1.3. Exiting and Reentering ETPS
If you wish to end a session with ETPS or temporarily interrupt your work, usethe EXI T command. Thisallows
ETPS to halt gracefully and to close an open save-work file.

If you are running ETPS under Unix and wish to interrupt a session temporarily, you canasouse Gt r| - Z. This
will return you immediately to the monitor; if you are currently saving work, the save-work file will not be closed.
Thus any work will be lost unless you return to ETPS. Once out of ETPS, you can run other programs, such as TEX.
To reeneter ETPS, use the Unix command f g.

1.4. Top-level Interaction
In ETPS every command line is identified with a statement number, shown in angle brackets. After a while,
command line numbers are reused, i.e., commands issued long ago are forgotten.

Thefollowing isalist of useful control characters and their meaning in ETPS. Some of them may not work under
certain operating systems or display environments. Additional control characters are discussed in Section |.1.

<Rubout > Delete the last character and back over it.

Crl-C Quit current command and return to top-level. (In some implementations of ETPS you must use
Crl-Ginstead.) Using this command may cause problems for any save-work file that is being
created, so it may be better to use ABORT.

Crl-U Deletecurrent input line.
Crl-W Deletelast input word.

ETPSUser’'s Manual

The next three characters are specia on the top-level only and are currently not to be used when typing in
arguments to commands.

@ Complete the name of the current command. If COMPLETION-OPTIONS is NIL, this works only if
there isaunique completion; if it is T, you will be offered alist of completions to choose from.

<Escape> Exactly equivalent to @ This character can confuse some terminals; we recommend using @instead.

? When typed at the top-level, ETPS will list al the available commands. Note that ? must be followed
by a<Ret ur n>.

<Li nef eed>
This starts a new line on the termina without terminating the input. This is useful for long command
arguments.

1.5. Using Commands and Defining Wffs

The commands available in ETPS are classified into system commands and inference commands. The system
commands, which are discussed in Chapter 2, deal with communication facilities, starting and finishing a session
with ETPS, the Java interface, proofwindows, the current subproof, saving work, printing, rearranging the proof,
getting assistance, displaying types in higher-order logic, setting flags, and locating and constructing wffs. The
inference commands, which are discussed in Chapter 3, correspond to inference rules. They transform one proof
outline into another by applying the rules.

Common to all commands is the way they are invoked. Simply type the name of the command (you may use
<Esc> to complete its name) and then type <Ret ur n>. The command may be printed in either upper or lower
case. If the command takes arguments, ETPS will prompt you in succession for each argument. The prompt takes
the general form

argument name (argumenttype) : help [default] >
For exanpl e:

<1>PROVE

WFF (GWFFO): Prove wif [No Default]>

PREFI X (SYMBOL): Nane of the proof [No Default]>
NUM (LI NE): Line nunber for theorem[100]>

You may aso specify command arguments on the command line itself. ETPS will then prompt you only for the
arguments you haven't specified. Thisisauseful option for commands like PL 2 50, which directly prints every
line in the range from 2 to 50.

After ETPS issues a prompt, you have the following options for your reply besides typing in the argument.
<Ret ur n> This selectsthe default, if thereis one.

! This selects the default, not only for this argument, but all remaining arguments. This can aso be used
on the command line itself.

? This gives help about the type of the argument ETPS iswaiting for.

?? This gives help about the command for which you are supplying arguments. In particular, when
applying an inference rule, thiswill give you the statement of therule.

ABORT Aborts current command.

PUSH Temporarily suspend whatever you're doing and start a new top-level. The command POP will return
you to the point at which you typed PUSH.

Crl-GReturn> or Crl-C
To abort. This is a system-dependent feature, and one or the other, or both, may not work on your

Chapter 1: ETPS User Interface

system. Using this command may cause problems for any save-work file that is being created, so it
may be better to use ABORT.

If amistake in an argument can be detected right away, ETPS will complain and let you try again. Sometimes ETPS
will note that something is wrong after all the arguments are typed in. You will then get an error message and be
thrown back to the top-level of ETPS.

The argument name is usually only important when typing in arguments to inference commands. If you are in
doubt what wff you are supposed to type in now, look at the description of the inference rule. The name of the
argument will be the same as the name of awff in the rule description.

The argument type tells you what kind of object ETPS expects. The most important argument types are listed
below. (You may omit most of the rest of this section when first reading this manual. However, be sure to read the
description of GWFF.)

ANYTHI NG Any legal LISP object.

SYMBOL Any lega LISP symbol.

BOOLEAN A Boolean value (NIL for false, T for true).
YESNO y oryes to mean YES, n or no to mean NO.
| NTEGER+ A nonnegative integer.

PCSI NTEGER
A positive integer .

STRING A string delimited by double-quotes. For example " This is a remark.". Strings may contain
<Ret ur n>, but no double-quotes.

FI LESPEC A file specification of the form "<dir>name. ext", "name. ext", or simply name. For
example:" <FPO1>EXAMPLEL. MSS" . The defaults for dir and ext are usually correct and it is enough
to specify name.

LI NE The number of aline.

LI NE- RANGE
A range of lines from M through N, written M--N, where M and N are positive integers and M <=
N. As shortcuts, one may write M, which represents the range M--M; M--, which stands for the range
from line M through the last line of the current proof; and --N, which represents the range from the first
line of the proof through line N. Hence -- represents the range consisting of every line in the proof.

EXI STI NG LI NE
The number of alinein the current outline.

PLI NE The number of aplanned line.

GWFF A well-formed formula (wff). ETPS prompts you for a GAFF if it needs a wff, term or variable, and it
will usually tell you which one of these it expectsin the brief help message in the prompt.

A GWFF can be one of the following:

1. A string representing a wff in double quotes. Strings may contain <Ret ur n>’s for
formatting purposes. Case does matter for variables and constants like " x" , "y", " P".
For example "x" is not the same as " X". Case is ignored, however, for specia
keywords, like quantifiers, connectives, etc. All logical symbols must be separated by
spaces. In addition, the bracketing conventions used in the logic textbook are used in
ETPS, and the symbol "~" can be used as an abbreviation for "NOT"; thus
"forall x.P x y inplies ~ [Q x or Q y]" represents the same gwff as
"FORALL Xx[P x y IMPLIES NOT .Q x OR Q y]". Ingenera you may type
wffs just as they appear in the logic text. See Chapter 4 for some examples of typed wffs
and variables, and Chapter 5 (especially Section 5.1.3) for examples of wffs of higher-
order logic (type theory). For more examples, execute the command PROBLEMS in
ETPS with style GENERIC and answer "yes' when you are asked if you wish to see

ETPSUser’'s Manual

definitions. Superscripts can be used, but unlike the textbook, they are not used to
indicate the arity of functions. Instead, they are used to distinguish variables. Superscripts
areindicated by using a""". Valid superscripts must follow these rules.

« Only strings of the form [0-9]+ can be superscripts.
» The user will explicitly indicate a superscript by the use of the "". E.g., "x"0",
"foo"1234567". A """ which is not followed by alegal superscript is treated as any

(non-logical-constant) character would be. Thus "x*" is legal input, as is """ or
SANTOF YAy

* A superscript can only be used at the end of a variable, not in the middle. Hence
"x"1y" will be parsed as "x*1(11) y(I)" (x*1 applied to y) not as "x"1y(l)" (asingle
variable).

« Generic style will show the superscripts with the ?, i.e., if you enter "x*1(1)", then it
will print as"x"1(1)" when the style is generic and PRINTTYPESis T.

* Entering "x1" results in "x1", not "x"1", i.e., superscripts will not be created from
the user’ s input unless explicitly indicated.

2. A number of aline in the proof, for example 100. ETPS will replace it with the wff
asserted in that line.

3. A labdl referring to awff or the name of an exercise or lemma. A label can be assigned by
the CWcommand (see page 15).

4. (ed gwf f) which allows you to locate a sub-expression of another GAFF. For example
(ed 100) can be used to extract a subformula from the assertion of line 100. See
Section 2.12 for an explanation of how to use this option.

5. A backquoted form, calling a wffop. For example, * (S x y A) is the wff resulting
from the substitution of x for y in A. See Appendix IIl for the most commonly used
wffops.

GWFFO A gwff of type 0. Two specia constants of type o are provided: TRUTH and FALSEHOOD. These
gwffs act just as you might expect, e.g., TRUTH = p[p and FALSEHOOD = p[p. After running a
proof through SCRI BE, TRUTH will print as T and FALSEHOOD will print as (.

GVAR A gwff which must be alogical variable.
TYPESYM The string representation of atype symbol. See Section 5.1.1.

BOOK- THEOREM
A theorem in the book. Seethe PROBLEMS command (page 9).

EXERCI SE An exercise which may be assigned.
PRACTI CE An unscored practice exercise.

TEST- PROBLEM
A potential test problem.

Several argument types are lists or pairs of other types. They are specified in parentheses, for example
(1 2 99). Theempty list is specified by () . Pairs are entered as two element lists where the two elements are
separated by a period. For example, you might enter the pair (" x" "y") . Do not put commas into your input!

We list the most common of the composite argument types below:

OCCLI ST A list of occurrences (counted left-to-right) of a subwff in awff. Thislist may be entered as alist of
positive numbers or the symbol ALL. ALL refersto al occurrences of the subwff.

LI NELI ST A list of numbers of lines.

LI NE- RANGE- LI ST
A list of line ranges.

Chapter 1: ETPS User Interface

EXI STI NG LI NELI ST
A list of numbers of linesin the current outline.

GWFFLI ST A list of GWFFs.

GVAR- LI ST
A list of GVARs.

1.6. Flags and Amenities
Many aspects of ETPS are controlled by flags. See section 2.11 for some information about flags.

ETPS incorporates severa features of the Unix C-shell (csh) top-level. These features include various control
characters, command sequences, a history mechanism, and aliases. See Appendix | for detalils.

You may wish to set certain flags and define certain aliases each time you run ETPS. A good way to do this
without having to repeat the commands is to start a work file (using SAVE- WORK), then set the flags and define
your aliases, then use STOP- SAVE to stop saving into the file. When you subsequently use ETPS, you can use
EXECUTE- FI LE to automatically execute all the commands in the work file to set the flags and define the aliases.

1.7. Bugsand Error Messages
Typing or logica errors are usualy noticed by ETPS, which issues an appropriate diagnostic message and
typically throws you back to top-level.

Most bugsin ETPS itself will be caught by an error handler which appends an appropriate message to afile in the
teacher's area. This of course only applies to real bugs in the ETPS software or Common Lisp, not typing errors
which are caught by the command interpreter. Y ou may try again after you get a bug error message, and often you
will discover that you just made a mistake which was not caught by the usua error handling routines. If you still get
an error send mail to the teacher or send a message with the REMARK command. If you think that you have
discovered a bug in ETPS, don't delete the . WORK file for that session but rename that file (say, to
Yexercise-number. wor k) so that your work is not overwritten, then allow read access for it and send mail to the
teacher with a pointer to that file.

ETPSUser’'s Manual

2. System Commands

2.1. Communication

HELP subject
Will list help available on the subject. The help messages for inference rules can be very long; you may
wish to set the flag SHORT-HELP to T, to prevent this. (The default value of thisflag isNIL.)

? Will list al available commands.

LI ST- RULES
Will list al the available inference rules.

PROBLEMS Lists all exercises available in ETPS, and shows which are practice exercises for which ADVI CE is
available. Also lists theorems which can be asserted with the ASSERT command.

NEWS Will list al bugs fixed, changes, improvements, et cetera. The most recent ETPS news items are
announced whenever you start ETPS.

REMARK string
Will mail the string to the teacher, or will include it as acomment in arecordfile created in the teacher’s
directory.

2.2. Starting and Finishing

EXERCI SE label
Set up the proof outline to attempt the proof of exercise label from the logic text.

PROVE gwffO label line
Similar to EXERCI SE, but lets you prove your own wff. label isthe name of the proof, line is number
of thelast line of the proof, i.e., the number of the line which will assert the theorem.

PROCFLI ST
Gives a list of al the completed or partially completed proofs in memory, any of which may be
RECONSI DERed.

RECONSI DER label
Allows you to return to a previous proof. label isthe name that you gave the proof when you originally
started it using EXERCI SE or PROVE; all of the proofs that you have worked on in the current session
with ETPS may be RECONSI DERed.

CLEANUP Deéletes, in the current completed proof, unnecessary lines and redundant lines introduced by the SAME
rule. This command is applicable only if the proof is complete. CLEANUP asks for confirmation before
actually deleting lines.

DONE Signals that you think that you have completed the current proof. ETPS will not believe you if you are
not really done. The DONE command appends a message to the recordfile in the teacher’ s directory. If
you fail to useit, you may not get credit for your work.

SUMVARY Téellsthe user what exercises have been completed.

EXIT Leave ETPS. See Section 1.3 for some information on reentering ETPS. This command will
automatically close open work files.

HI STORY nreverse
Show history list. Shows the N most recent events; N defaults to the value of HISTORY-SIZE,
showing entire history list. REVERSE defaults to NO; if YES, most recent commands will be shown
first.

ALI AS name def
Define an alias DEF for the symbol NAME. Works just like the alias command in the Unix csh. If the
value of NAME is*ALL*, all aliases will be printed; if the value of DEF is the empty string, then the
current alias definition of NAME will be printed. See UNALIAS.

ETPSUser’'s Manual

UNALI AS name
Remove an alias for the symbol NAME. Like the Unix csh unalias, except that NAME must exactly
match the existing alias; no filename completion is done.

See Section |.4 for more discussion of aliases.

2.3. Starting the Java I nterface
There is a Java interface for ETPS running under Allegro Lisp (version 5.0 or greater). Special symbol fonts,
proofwindows (see Section 2.4) and editor windows (see Section 2.12) are available when using the Java interface.
JAVAW N Start the Java interface. This should open a Java window with menus, a display area for ETPS output,
and possibly a prompt at the bottom of the window. All ETPS output after the Java window opens will
be printed into the Java window. Also, all user input must be entered via the Java window, either using

the menus or using the prompt at the bottom of the window. To enter input into the prompt, the user
may need to click on the prompt areato bring it into focus.

2.4. Proofwindows

When ETPS is running under X-windows or through the Java interface (see section 2.3), it is possible to start up
separate windows displaying the current subproof (which is described in Section 2.5 and can be printed on the
screen with the P command), the current subproof plus line numbers (which can be printed with the ~PN
command) and the complete proof (which can be printed with the PALL command). These windows will be
automatically updated as commands are issued to modify the proof interactively. (By scrolling up in these windows,
you can see the previous displays.) The windows may be moved around and resized by the usual methods for
manipulating windows. PSTATUS will update the proofwindows. Printing in the proofwindows can be modified
by changing the flags PROOFW-ACTIVE, PROOFW-ALL, PROOFW-ACTIVE+NOS, and PRINTLINEFLAG.
For more information about the proofwindows, type HELP BEG N- PRFW
BEG N- PRFW

Begin proofwindow top-level; open Current Subproof, Current Subproof & Line Numbers, and
Complete Proof windows.

END- PRFW
End proofwindow top-level; close al the proofwindows.

If you forget to use the END- PRFW command before issuing the EXI T command to leave ETPS, the
proofwindows may not disappear. To get rid of such awindow, put the cursor into it and hit ~ C (control-C).

2.5. The Current Subproof

ETPS maintains a list which contains the status information for the current proof outline. The status information
consists of the planned lines (lines not yet justified) and the lines (called sponsoring lines) which ETPS thinks you
may wish to use in the proof of the associated planned line. The planned line which is the focus of current attention
and its sponsoring lines constitute the Current Subproof. This is displayed in the windows mentioned in Section 2.4
and can be printed on the screen by using the P command. The following commands allow you to examine and
modify the current subproof and the status information.

PSTATUS Thiswill print the status information in the form
(@ <7 PR PSS I (f < R IO Y
where p; ... p,, are the planned lines and the rest of each list are the sponsors for the planned line. The

first list corresponds to the *“current’” plan. In addition, it'll issue a message if you are currently saving
work.

10

Chapter 2: System Commands

SUBPROCF pline
Tells ETPS that you now wish to focus on the planned line pline. This changes the current subproof; it
mainly affects the displays in the proofwindows, the results of the ~P and ~PN commands, and the
defaults offered for outline manipul ations commands.

SPONSOR pline existing-linelist
TellsETPS to add the lines in the list existing-linelist of existing proof lines to the list of sponsors for
the planned line pline.

UNSPONSOR pline existing-linelist
Tells ETPS to remove the lines in the list existing-linelist of existing proof lines from the list of
sponsors for the planned line pline.

2.6. Saving Work

SAVEPRQOOF filename
Saves the current natural deduction proof to the specified file in aform in which it can be restored. Use
RESTOREPROOF to restore the proof. Overwrites thefileif it aready exists.

RESTOREPROCF filename
Reads a natural deduction proof from afile created by SAVEPROOF and makes it the current proof. A
security feature prevents the restoration of saved proofs which have been atered in any way.

SAVE- WORK filename
Starts to save subsequent commands in the save-work file filename. Notice that this is not necessary,
unless you want to specify your own filename before starting an exercise or if you did a STOP- SAVE
some time before. A typical use would be to switch save-work files when you are done with one
exercise and are starting the next one without leaving ETPS. The extension of filename defaults to
. VWORK.

STOP- SAVE
Stops saving into the current save-work file. All commands that have been given but not yet saved will
be written out to thefile.

RESTORE- WORK filename show-lines exec-print outfile

Executes commands from filename and continues to save in that file. When the end of the file is
reached, you will be back at ETPS command level. show-lines controls whether proof lines will be
shown when restoring the proof. This is very time consuming, therefore the default is NO. exec-print
controls whether printing commands will be executed when restoring the proof. These are commands
like PLI NE, PRI NTPROOF, HELP, or PROBLEMS. The default is NO. ouitfile is the name of a file
where the commands and the output is echoed to, while they are re-executed. The default isTTY: , the
terminal, so you can see how far ETPS has progressed. To speed up the process you may select NUL: .
RESTORE- WORK will not re-execute any of the following: EXI T, RESUME- SAVE, RESTCORE- WORK,
EXECUTE- FI LE, SAVE- WORK, STOP- SAVE. They usualy don't make sense when reading
commands from a save-work file. If you aborted a command with a Ctrl-C, the Ctrl-C will bein thefile
and will abort the execution of the commands.

RESUME- SAVE
Use this command to resume saving commands into the most recent save-work file. Unlike
RESTORE- WORK, this command doesn’t execute commands from the file, but simply appends
subsequent commands to the file. You may not use this command if you are already saving work.
Also, you may run into troubleif you forgot to save some commands.

EXECUTE- FI LE filename show-lines exec-print outfile
Works like RESTORE- WORK, but does hot continue saving into afile after executing the commands in
thefile.

SCRI PT scriptfile if-exists-append
Saves atranscript of session to afile.

UNSCRI PT Closes the most recent file opened with the SCRIPT command.

11

ETPSUser’'s Manual

2.7. Printing

DEPTHN nisanumber. This command causes all subformulas at depth greater than n to be printed as & For
example the wff "FORALL x FORALL y FORALL z.P x y z" will be printed as below after
the command DEPTH 4: FORALL x FORALL y FORALL z. & Thiscommand may savetimein
printing huge formulas, particularly in higher-order logic.

PWgowff Print gwiff.

PWSCOPE gwff
Print gwff with all brackets restored. Thisis sometimes useful if you are not sure which connective has
precedence over another.

PLI NE line Print aspecified line.

PL lower upper
Print al linesin the range from lower to upper.

PL* print-ranges
Print all proof linesin given ranges.

PPLAN pline
Prints the planned line pline and all of its sponsors. A similar effect can be achieved with the "P,
provided pline is the current planned line. SUBPROOF will change the current planned line. See
Section 2.5 for more information on SUBPROCF.

AP Same as PPLAN for the current planned line. Note that "P is not a control-character, but two
characters” P followed by a<Ret ur n>.

PN Asfor 2P, but aso prints the line numbers (only) of all the other lines of the proof. ~PNis not a control
character, but three characters”, P and N.
PALL Print all the linesin the current outline.

PRI NTPROOF filespec
Thiswill print the current proof into afile.

SCRI BEPROOF filespec
Thiswill also print the current proof into afile, but uses specia symbols. In order to print thisfile, you
must first run it through SCRI BE. filespec has the same format as in PRI NTPROOF. The extension
defaultsto MSS.

TEXPROOF filespec
Print the current proof into a tex file. After leaving tps, run this .tex file through TeX and print the
resulting file.

2.8. Rearranging the Proof
This section describes commands which rearrange the proof outline, which is described in Section 3.1. The first
two commands are frequently useful for starting over a part of the proof after you realize you have tried a wrong
approach.
DELETE existing-linelist
Delete the lines in existing-linelist from the proof. If you delete a hypothesis line, al lines which use

this hypothesis will also be deleted. If aline justifying another line is deleted, the justification of that
lineis changed to PLANN. Lines are shown asthey are deleted.

DELETE* ranges
Delete ranges of lines from the proof outline.

PLAN existing-line
Change ajustified line back to a planned line.

The next few commands allow you to change the numbers of lines in the proof, or even change the order of lines, as
long as the conclusion of a rule of inference comes after the justifying lines. All references to line numbers are

12

Chapter 2: System Commands

changed automatically whenever the numbers are changed.

MOVE fromto
Moves alinein the proof. ETPS checksto make sure the moveislegadl, i.e, the linesjustifying a given
line appear before it in the proof.

MOVE* range-to-move new-start
Move all proof lines in given range to begin at new start number, but preserving the relative distances
between the lines.

RENUVBERALL increment
Renumbers all the linesin the proof with an increment of increment.

As a proof is constructed, new lines must be inserted into the outline and given new line numbers between
occupied line numbers. A space alotted for thistask is called a gap. Gaps are indicated in the outline by ellipses
(...) and may be adjusted by the command MODI FY- GAPS.
| NTRODUCE- GAP existing-line increment

Introduce a new gap (or increase an existing gap) above existing-line by increasing the line numbers by
increment of all lines beginning with line existing-line.

MODI FY- GAPS lower upper
Removes unnecessary gaps in line numbers from the proof structure. Also, gaps with length less than
lower have their length increased to lower, while gaps with length greater than upper have their length
decreased to upper. lower must be less than or equal to upper.

SQUEEZE Removes unnecessary gaps in line numbers from the proof structure. Leaves necessary gaps (those just
above planned lines) alone.

There is no UNDO command in ETPS. Usually one can undo the results of commands fairly easily by such
measures as deleting lines from the proof. However, if this seems complicated, the following procedure can often be
used to restore the proof to one of its previous states. ETPS is probably creating a save-work file. Execute the
STOP- SAVE command, make a backup copy of the save-work file for safety, edit the save-work file by deleting the
commands you wish you had not executed, then start a new ETPS and use RESTORE- WORK with the edited
save-work file.

2.9. Proof Assistance

ADVI CE Initially gives hints based on the current structure of the proof. The next time it is executed, it suggests
the inference command based on the previous hint. It repeats this flip-flopping between hints and
suggestions until it has no more suggestions. Advice may not be available for some exercises. ETPS
will tell you if advice cannot be given and ask for confirmation if the advice would deduct points from
your score.

CHECK- STRUCTURE
Finds those lines which are not integrated into the proof and suggests their deletion. These lines are
deduced lines which have not been used to justify another line and are no longer supports for any
planned line. In addition, CHECK- STRUCTURE looks for extraneous hypotheses in each of the lines of
the proof.

2.10. Higher-Order Logic

PWI'YPES gwiff
Print wff with type symbols.

13

ETPSUser’'s Manual

SHOWYPES
From now on show the types of al wffs.

SHOWNOT YPES
From now on suppress types of all wffs.

2.11. Flagsand Review

Many aspects of ETPS are controlled by flags. Most of the time you can ignore these, but if you wish to change
some aspect of ETPS (such as the widths of the lines in a proof), you may be able to do so by changing the value of
aflag (such as RIGHTMARGIN). HELP flag will provide information about a particular flag. Use the REVIEW
top-level to find what flags are available. Enter ? for alist of al the commands in this top-level; the following is
just a selection of those available.

REVI EW Enter the review top-level.
SETFLAG Change the value of aflag.

SUBJECTS Each flag is associated with one or more subjects; this command lists al the known subjects. Some of
these subjects may be irrelevant to ETPS, but used in a larger system of which ETPS is a component;
you can ignore them.

LI ST subjects
List all the flags associated with these subjects.

LEAVE Return to the main top-level.

2.12. ETPS Editor

The ETPS editor can be used to construct new formulas and extract subformulas from formulas already known to
ETPS. You can enter the editor with the top-level command ED. Use (ed gwff) when asked for a GAFF. This
will prompt you with <Edn>. The wff you are editing will be referred to as EDWFF. Using the editor commands,
move to a subformula and/or modify the EDWFF until you have the GAFF you desire. Then exit the editor by using
the command CK; the current value of EDWFF will be returned.

For example, suppose that ETPS has asked you for a GAFF and the GAFF you would like to supply is B, a subwff
of the assertion in line 1, whichisA AND B | MPLI ES C. Enter (ed 1) to enter the editor with that formula
Then use the following sequence of commands:

<Ed1>L This moves to the left of the implication sign.
A AND B

<Ed2>R This moves to the right of the conjunction.

B

<Ed3>K Snce we have what we want, we exit the editor.

This is of course a trivial example, but if B had been a very complicated formula, using the editor would have
been both faster and less susceptible to error than typing it in would have been.

You can also use multiple commands on a single editor input line, which will save more time. We could have
done the above example as follows:

<Ed1>L R &K

When ETPS is running under X-windows or through the Java interface (see Section 2.3), the command ED will
also start up two windows which display the top formula and the current formula in the editor. These windows are
automatically updated as commands are issued to modify the formula, and they will disappear when you use OK to
leave the editor. (By scrolling up in these windows, you can see the previous displays) The windows may be

14

Chapter 2: System Commands

moved around and resized by the usual methods for manipulating windows.
To prevent the windows from appearing, modify the flags EDWIN-TOP and EDWIN-CURRENT.

The following sections give brief descriptions of the most commonly used editor commands. Other editor
commands are listed in Appendix I1.

2.12.1. Top-Levels
<Edn>OK Exit the editor with the current wff.

2.12.2. Printing

<Edn>P Print the current expression in short format, i.e., some subformulas will be replaced by &.
<Edn>PP Pretty-print awff.

<Edn>PS Print awff showing al brackets and dots.

<Edn>PT Print awff showing types.

2.12.3. Labels

<Edn>CW label
Assigns a label to the edwff, but does not change the edwff. Y ou can use the label to refer to this wif
later.

2.12.4. Moving Commands
<Edn>0 Moveuponelevel,i.e, undothelast L, R, D, or Acommand. Note that 0 stands for the numeral zero.

<Edn>A For an expression like P x y, delete the rightmost element; in this example the result will be to make
Px the current expression. For a quantified expression, move to the quantified variable.

<Edn>D For an expression like P x y, move to the rightmost element; in this example y. For a quantified
expression, move to the scope of the quantifier.

<Edn>FB Find thefirst binder (left to right).

<Edn>FI Find aninfix operator.

<Edn>L For aninfix-operator, move to the left argument.
<Edn>R For aninfix-operator, move to the right argument.

<Edn>UNDO
Moves up (like 0), but throws away any editing since your last downward moving command (typically
A,D,L,or R).

<Edn>XTR Makes the current edwff the top wff.
<Edn>* Move upwards through enclosing wffs all the way to the top.

2.12.5. Substitution

<Edn>AB newvar
Alphabetic change of variable at top-level.

<Edn>| B term
Instantiate atop-level universal or existential binder with aterm.

15

ETPSUser’'s Manual

<Edn>REW EQUI V gwff
Replaces each equivalence in the gwff with a conjunction of implications.

<Edn>RP rep-sym rep-by
Replace one occurrence of a symbol rep-sym (such as AND) by a predefined equivalent wff involving
the symbol rep-by (such as [A p A g.~.p O ~q]). In this example, rep-sym is AND and rep-by is
IMPLIES. To see if a symbol can be replaced using this command, enter HELP symbol; any such
replacements will be listed under the heading ‘ Replaceable Symbols'.

<Edn>RPALL rep-sym rep-by
Replace al occurrences of a symbol by a predefined equivalent wff.

<Edn>SUB gwff
Replaces the current wff by the wff supplied.

<Edn>SUBST term var
Substitute aterm for the free occurrences of variable in agwff. Bound variables may be renamed, using
the function in the global variable REN-VAR-FN.

<Edn>SUBSTYP typevar typesym
Substitute typevar with typesym.

2.12.6. Negation movers

<Edn>NEG Negates current wff, erasing double negations.
<Edn>NNF Return the negation normal form of the given wff.

<Edn>PULL- NEG
Pulls negations out one level.

<Edn>PUSH NEG
Pushes negation through the outermost operator or quantifier.

16

3. Inference Rules

3.1. How to Read I nference Rules

The user works within a proof-outline, which is a sequence of lines. Each line is either a hypothesis, a
consequence of lines with lower numbers or an unjustified planned line. In general, a line of the proof has the
following form:

(n) Hy ..., H, ! assertion judtification: wffs [, ... I,

n is anumber which serves as alabel for the line. Each of the H;’sis the number of aline asserting a hypothesis. !
stands for the turnstyle |-, and I, ... 1, are the numbers of the lines which are used to justify thisline.

Every description of alogical inference rule states that certain lines of a proof may be inferred from certain other
lines, provided that certain restrictions are satisfied, and notes the change which the rule effects on the proof status
(see Section 2.5). Inference commands apply inference rules, and they may be used in various ways to complete the
proof. They may generate either new planned or sponsoring lines, or close up a proof by justifying planned lines
with sponsoring lines. However, there is usually a most natural way to use arule. Thisisindicated in the statement
of the rule by labelling those lines which are usually sponsors, before or after the rule is applied, with a D (for
deduced) followed by a number. Similarly, those lines the rule expects to be planned lines are labelled with a P
followed by a number.

The transformation statement in an inference rule description indicates the change in the proof status effected by
the most natural use of therule. The lists before the arrow ==> are matched against the initial status; those after the
arrow describe what the new status should be. The first element of alist is always a planned line and the remaining
elements are its sponsors. Each element of alist is either a label for alinein the rule, pp or ss. The symbol pp
refersto all matched planned lines and the symbol ss to all (other) sponsoring lines for each of the matched planned
lines.

Certain lines in a rule description are expected to exist in the proof before the rule is applied; these are indicated
by an asterisk. If aline does not aready exist when you apply an inference command, and its corresponding line in
the rule asserts a wff which cannot be formed from the wffs in rule lines corresponding to existing proof lines, then
the wff asserted by that new line will have to be entered. Thus, in order to avoid typing in long wffs, you should try
to organize your work (often by working up from the bottom) so that such lines will be introduced before they are
needed.

ETPS automatically applies the metatheorem that if H; |- AandH; 0O H,thenH, |- A, so that normally
you do not have to worry about expanding sets of hypotheses before applying inference rules.

Some rules use wffops, operations on well-formed formulae, in their descriptions. For example, arule might form
the assertion of one line by substituting aterm, t , for al free occurrences of a variable, x, in a wff, A, asserted in
another line. The new assertion would thenbe* (S t x A), where S is the wffop performing the substitution.
(The backquote tells ETPS that the application of a wffop is being asserted, and not a wff.) However, this
substitution will only be allowed when t isfreefor x in A. Thus, theform (FREE- FOR t x A) would appear in
the restrictions for the rule. FREE- FOR is the wffop which checks that t is free for x in A. A catalogue of the
wffops used in inference rulesis provided in Appendix I11. It isincluded in this manual only to help you understand
the descriptions of the inference rules.

Now we shall give an example which demonstrates how to read a command. Before proceeding the reader should
look at the description of DEDUCT in Section 3.5 below.

17

ETPSUser’'s Manual

Suppose the proof originally contains the line

(P3) H|- ADOB PLAN4
and we apply the command:

<n>DEDUCT P3 H1 D2

Here
» P3 stands for the planned line that you are trying to prove.

* H1 stands for the number of the line which asserts the new hypothesis (the wff A in this case).

« D2 stands for the number of the new planned line (whose assertion is B in this case).
After theruleis applied, the proof will contain the lines:

(H1) H,A - A Hyp
(D2) H,A - B PLANS
(P3) H - ADOB Deduct: D2

3.2. Quick Referenceto Rules

Here is a list of the most generaly useful rules of inference available in ETPS for quick reference. Some
additional rules of inference may be found by typing "?' or "LI ST- RULES" in ETPS. See the page indicated for a
precise description of each rule listed below. You can also type "HELP rule” in ETPS. The rules of inference in
ETPS are applicable to both first-order logic and higher-order logic. The user who is interested only in first-order
logic should ignore the rules for higher-order logic.

Special Rules
RULEP 19 Justify a lineby RuleP.
ASSERT 20 Assert atheorem known to ETPS.
ADD- HYPS 20 Weaken alineto include extra hypotheses.

DELETE- HYPS 20 Delete some hypotheses from the given line.

Miscellaneous Rules

HYP 20 Introduce anew hypothesis line into the proof outline.
LEMVA 20 Introduce aLemma
SAMVE 20 Usethefact that two lines are identical to justify aplanned line.
Propositional Rules
CASES 20 Ruleof Cases.
DEDUCT 21 Thededuction rule.
Dl SJ-1 MP 21 Ruleto replace adisunction by an implication.
ECONJ 21 Ruleto eliminate a conjunction.
EQUI V-1 MPLICS 21 Ruleto convert an equivalence into twin implications.
| CONJ 21 Ruleto introduce a conjunction.
| MP-DI SJ 21 Ruleto replace an implication by a disjunction.
| MPLI CS- EQUIV 21 Ruleto convert twin implications into an equivalence.
| NDI RECT 21 Ruleof Indirect Proof.
| NDI RECT1 22 Ruleof Indirect Proof using one contradictory line.
| NDI RECT2 22 Ruleof Indirect Proof using two contradictory lines.
P 22 Modus Ponens.
Negation Rules
ABSURD 22 From falsehood, deduce anything.

18

Chapter 3: Inference Rules

ENEG 22 Eliminate a negation.
I NEG 22 Introduce a negation.
PULLNEG 22 Pull out negation.
PUSHNEG 23 Pushin negation.
Quantifier Rules
AB* 23 Ruleto aphabetically change embedded bound variables.
ABE 23 Ruleto change atop-level occurrence of an existentially
quantified variable.
ABU 23 Ruleto change atop-level occurrence of auniversally quantified
variable.
EGEN 23 Ruleof Existential Generalization.
RULEC 23 RuleC.
UGEN 23 Ruleof Universal Generaization.
ul 24 Ruleof Universal Instantiation.
Substitution Rules
SUBSTI TUTE 24 Ruleto substitute aterm for avariable.
Equality Rules
EXT= 24 Rule of Extensionality.
EXT=0 24 Ruleto derive an equality at type o from an equivalence.
LET 24 Ruleto produce a new variable which will represent an entire
formula during part of a proof.
SUBST= 24 Substitution of Equality. Performs whichever of the SUBST=L and SUBST=R
rulesis appropriate.
SUBST=L 25 Substitution of Equality. Replaces some occurrences of the left hand
side by the right hand side.
SUBST=R 25 Substitution of Equality. Replaces some occurrences of the right

hand side by the left hand side.
SUBST- EQUI V 25 Substitution of Equivalence.

SYM= 25 Symmetry of Equality.
Definition Rules
EDEF 25 Ruleto eliminate first definition, left to right.
EQUI V- WFFS 25 Ruleto assert equivalence of lines up to definition.
| DEF 25 Ruleto introduce adefinition.
Lambda Conversion Rules
LANVBDA* 26 Convert between two equivalent lambda-expressions.
LCONTR* 26 Ruleto put an inferred line into Lambda-normal form.
LEXPD* 26 Ruleto put aplanned lineinto Lambda-normal form.

3.3. Special Rules
RULEP Justify aline by Rule P.

Infer B, from AL and ... and A" , provided that [[A* O ... OA"] O B,] isasubstitution instance of
atautology. As a special casg, infer B if it is a substitution instance of a tautology. The first argument
must be the line to be justified; the second argument must be a list of lines (possibly empty) from which
this line follows by Rule P. The flag RULEP-MAINFN controls which of two functions will be used by
RULEP. When RULEP-MAINFN is set to RULEP- SI MPLE, RULEP will merely ensure that the
planned line follows by Rule P from the specified support lines. When RULEP-MAINFN is set to
RULEP- DELUXE (which is the default), RULEP will find a minimal subset of the support lines which
suffices to prove the planned line by Rule P (if any). Note that RULEP- DELUXE will be somewhat
dower than RULEP- SI MPLE. In order to check the setting of RULEP-MAINFN, merely enter

19

ETPSUser’'s Manual

"RULEP-MAINFN" at the top-level. You will be prompted for a new value and the current value will
be displayed. Hit <return> to accept the current value, or enter the new value.

ASSERT Assert atheorem known to ETPS.
Use a theorem known to ETPS (see Appendix V) as alemma in the current proof. Such a theorem can
only be used if allowed by the teacher for that exercise. The first argument is the name of the theorem;
the second argument is the line number. If the line already exists, ETPS will check whether it is alega
instance of the theorem schema, otherwise it will prompt for the metavariables in the theorem schema
(usually x or P, Q, ...).

ADD- HYPS Weaken aline to include extra hypotheses.

Adding the hypotheses to the line may cause some lines to become planned lines. If possible, the user is

given the option of adding hypotheses to lines after the given line so that no lines will become planned.
DELETE- HYPS Delete some hypotheses from the given line.

This may leave the given line as a planned line. The user is given the option of also deleting some

hypotheses from lines after the given line. If possible, the user is given the option of deleting some

hypotheses from lines before the given line so that the given line does not become a planned line.

3.4. Miscellaneous Rules

HYP Introduce a new hypothesis line into the proof outline.
(H) H - A, Hyp
*(P2) H - B,
Transformation: (P2 ss) ==> (P2 Hl ss)
LEMVA Introduce a Lemma.
(P1) H - A,
*(P2) H - B,
Transformation: (P2 ss) ==> (P2 P1 ss) (Pl ss)
SAMVE Use the fact that two lines are identical to justify a planned line.
*(D1) H - A
*(P2) H - A, Sane as: D1

Transformation: (P2 DL ss) ==>

3.5. Propositional Rules
CASES Rule of Cases.

*(D1) H - A OB,

(H2) H H2 - A, Case 1: D1
(P3) H H2 - C,

(H4) HH4 - B, Case 2: D1
(P5) H H4 - C,

*(P6) H - C, Cases: D1 P3 P5

Transformation: (P6 D1 ss) ==> (P3 H2 ss) (P5 H4 ss)

20

Chapter 3: Inference Rules

DEDUCT The deduction rule.

(HL) HHL |- A Hyp
(D2) HHL |- B,
*(P3) H - A OB Deduct: D2

Transformation: (P3 ss) ==> (D2 Hl ss)
DI SJ- 1 MP Ruleto replace a disjunction by an implication.

*(D1) H - OA OB,
(D2) H - A O B, Disj-lmp: D1
Transformation: (pp D1 ss) ==> (pp D2 ss)

ECONJ Rule to eliminate a conjunction by inferring its two conjuncts.
*(D1) H - A OB,
(D2) H - A, Conj: D1
(D3) H |- B, Conj: D1

Transformation: (pp D1 ss) ==> (pp D2 D3 ss)

EQUI V- | MPLI CS
Rule to convert an equivalence into twin implications.

*(Dl) H - P, =R
(D2) H - [P, OR] OROP Equi vl mp: D1
Transformation: (pp DL ss) ==> (pp D2 ss)
| CONJ Rule to introduce a conjunction by inferring it from two conjuncts.
(P1) H - A,
(P2) H - B,
*(P3) H - A OB, Conj: P1 P2

Transformation: (P3 ss) ==> (Pl ss) (P2 ss)

| MP- DI SJ Ruleto replace an implication by a disjunction.

*(D1) H - A OB,
(D2) H - OA OB, I'mp-Disj: D1
Transformation: (pp DL ss) ==> (pp D2 ss)
| MPLI CS- EQUI V
Rule to convert twin implications into an equivalence.
(P1) H - [P, OR] OROP
*(P2) H - P, = R | npEqui v: P1

Transformation: (P2 ss) ==> (Pl ss)
| NDI RECT Rule of Indirect Proof.

(H1) HH - OA, Assume negation
(P2) HHL - O
*(P3) H - A Indirect: P2

[o]

Transformation: (P3 ss) ==> (P2 Hl ss)

21

ETPSUser’'s Manual

| NDI RECT1
Rule of Indirect Proof using one contradictory line.
(H1) HHL - OA
(P2) HHL |- B, OO B,
*(P3) H - A,
Transformation: (P3 ss) ==> (P2 Hl ss)
| NDI RECT2
Rule of Indirect Proof using two contradictory lines.
(H1) HHL - OA
(P2) HHL - B,
(P3) HHL - O B,
*(P4) H - A,
Transformation: (P4 ss) ==> (P2 Hl ss) (P3 Hl ss)
VP Modus Ponens.
(P1) H - A,
*(D2) H - A O B,
(D3) H - B,
Transformation: (pp D2 ss) ==> (Pl ss) (pp D3 ss P1)

3.6. Negation Rules

ABSURD From fasehood, deduce anything.
(P1) H - O
*(P2) H - A,
Transformation: (P2 ss) ==> (Pl ss)
ENEG Eliminate a negation.
*(D1l) H |- A,
(P2) H - A,
*(P3) H - O
Transformation: (P3 D1 ss) ==> (P2 ss)
I NEG Introduce a negation.
(H1) HHL - A,
(P2) HHL - O
*(P3) H |- [A,
Transformation: (P3 ss) ==> (P2 Hl ss)
PULLNEG Pull out negation.
(P1) H |- ' (PUSH NEGATION [0 A])
*(P2) H - OA
Restrictions: (NON-ATOMC A)
Transformation: (P2 ss) ==> (Pl ss)

22

Assune negation

Indirect: P2

Assume negation

Indirect: P2 P3

MP: P1 D2

Absurd: P1

NegEl i m D1 P2

Hyp

Neglntro: P2

Neg: P1

Chapter 3: Inference Rules

PUSHNEG Push in negation.
*(D1) H - OA
(D2) H |- ' (PUSH NEGATION [0 A]) Neg: D1
Restrictions: (NON-ATOMC A)
Transformation: (pp DL ss) ==> (pp D2 ss)

3.7. Quantifier Rules

AB* Rule to alphabetically change embedded bound variables.
*(D1) H - A,
(D2) H - B, AB: D1

Restrictions: (WFEQAB A B)
Transformation: (pp DL ss) ==> (pp D2 ss)

ABE Rule to change atop-level occurrence of an existentially quantified variable.
*(D1) H - X, A,
(D2) H - O, ‘(S y x, A) AB: y D1

Restrictions: (FREE-FOR Yy, x, A) (NOT-FREE-INvy_ A)
Transformation: (pp D1 ss) ==> (pp D2 ss)

ABU Rule to change atop-level occurrence of a universally quantified variable.
(P1) H - Oy, “(S y x, A)
*(P2) H - Ox, A AB: x P1

Restrictions: (FREE-FORy, x, A) (NOT-FREE-INy_ A)
Transformation: (P2 ss) ==> (Pl ss)

EGEN Rule of Existential Generalization.
(P1) H |- * (LCONTR [[Ax, A] t_.])
*(P2) H - X, A EGen: t Pl

Transformation: (P2 ss) ==> (Pl ss)
RULEC Rule C.

*(D1) H - X, B,

(H2) HH2 |- “(LCONTR [[Ax, B] vy,) Choose: vy
(D3) H H2 - A,

*(P4) H - A Rul eC. D1 D3

[o]

Restrictions: (IS VAR ABLE y_) (NOT-FREE-IN-HYPS vy)
(NOT-FREE-IN y, [X, B]) (NOT-FREE-IN vy, A)
Transformation: (P4 D1 ss) ==> (D3 H2 ss)

UGEN Rule of Universal Generalization.
(P1) H - A,
*(P2) H - Ox, A UGen: x P1

Restrictions: (NOT- FREE-I N-HYPS X)
Transformation: (P2 ss) ==> (Pl ss)

23

ETPSUser’'s Manual

ul

Rule of Universal Instantiation.

*(Dl) H - Ox, A

(D2) H |- " (LCONTR [[Ax, A] t_]) u: t DL
Transformation: (pp D1 ss) ==> (pp D2 D1 ss)

3.8. Substitution Rules
SUBSTI TUTE

Rule to substitute aterm for avariable.
*(D1) H - A
(D2) H (S t, x, A) Subst: t x D1

Restrictions: (NOT-FREE-IN-HYPS x) (FREE-FOR t x, 6 A)
Transformation: (pp D1 ss) ==> (pp D2 ss D1)

3.9. Equality Rules

EXT=

EXT=0

LET

SUBST=

Rule of Extensionality.

(P1) H |- DxB.fuB X = Qg X

*(P2) H F fos = e Ext=: P1
Transformation: (P2 ss) ==> (Pl ss)

Rule to derive an equality at type o from an equivalence.

(P1) H - P, = R

*(P2) H - P, =R Ext=: P1

Transformation: (P2 ss) ==> (Pl ss)

Rule to produce a new variable which will represent an entire formula during part of a proof.

(D1) H - A =A Ref | =
(D2) H - X,.x = A, EGen: x D1
(H3) H H3 - x, = A, Choose: X
(P4) H H3 - C,

*(P5) H - C, Rul eC. D2 P4

Restrictions: (NOT-FREE-IN HYPS x) (NOT-FREE-IN x C)
Transformation: (P5 ss) ==> (P4 ss D1 D2 H3)

Substitution of Equality. Performs whichever of the SUBST=L and SUBST=R rules is appropriate.

(P1) H - P,
*(D2) H s, =t,
(D3) H - R Sub=: P1 D2

Restrictions: (SAVE-MODULO-EQUALITY P, R s t)
Transformation: (pp D2 ss) ==> (P1 ss) (pp D3 ss P1 D2)

24

Chapter 3: Inference Rules

SUBST=L Substitution of Equality. Replaces some occurrences of the left hand side by the right hand side.

(P1) H - P,
*(D2) H s, =t,
(D3) H - R Subst=: P1 D2

Restrictions: (RPRIME-RESTRs, Pt R)
Transformation: (pp D2 ss) ==> (Pl ss) (pp D3 ss P1 D2)
SUBST=R Substitution of Equality. Replaces some occurrences of the right hand side by the left hand side.

(P1) H - P,
*(D2) H Ft, =s,
(D3) H - R Subst=: P1 D2

Restrictions: (RPRIME-RESTRs, Pt R)
Transformation: (pp D2 ss) ==> (Pl ss) (pp D3 ss Pl D2)

SUBST- EQUI V
Substitution of Equivalence. Useable when R and P are the same modulo the equivalence s EQUIV t.
(P1) H - P,
*(D2) H - s, =t,
(B3) H - R Sub-equiv: P1 D2

Restrictions: (SAVE-MODULO EQUALITY P, R s t)
Transformation: (pp D2 ss) ==> (Pl ss) (pp D3 ss Pl D2)

SYM= Rule of Symmetry of Equality.
(P1) H - A, = B,
*(P2) H - B, = A Syme: P1

Transformation: (P2 ss) ==> (Pl ss)

3.10. Definition Rules

EDEF Rule to eliminate first definition, left to right.
*(Dl) H - A,
(D2) H |- * (INST-DEF A) Defn: D1

Restrictions: (CONTAINS-DEFN A)
Transformation: (pp DL ss) ==> (pp D2 ss)

EQUI V- WFFS
Rule to assert equivalence of lines up to definition.
*(D1) H - P,
(D2) H - R, Equi vWfs: D1

Restrictions: (WFEQ DEF P, R)
Transformation: (pp D1 ss) ==> (pp D2 ss)

| DEF Rule to introduce a definition.
(P1) H |- * (INST-DEF A)
*(P2) H - A, Def n: P1

Restrictions: (CONTAINS-DEFN A)
Transformation: (P2 ss) ==> (Pl ss)

25

ETPSUser’'s Manual

3.11. Lambda Conversion Rules

L AVBDA*

BETA*

ETA*

LCONTR*

Rule to infer aline from one which is equal up to lambda conversion using both beta and eta rules and
alphabetic change of bound variables.
*(D1) H - A

(D2) H - B, Lambda=: D1
Restrictions: (WFEQ AB-LAVBDA A B)
Transformation: (pp DL ss) ==> (pp D2 ss)

Rule to infer aline from one which is equal up to lambda conversion using betarule (but NOT etarule)
and alphabetic change of bound variables.

*(D1) H - A

(D2) H - B
Beta Rul e: D1

Restrictions: (WFEQ AB-BETA A B)

Transformation: (pp D1 ss) ==> (pp D2 ss)

Rule to infer aline from one which is equal up to lambda conversion using etarule (but NOT beta rule)
and alphabetic change of bound variables.

*(DL) H - A

(D2) H - B
Beta Rule: D1

Restrictions: (WFEQ AB-ETA A B)

Transformation: (pp D1 ss) ==> (pp D2 ss)

Ruleto put an inferred line into Lambda-normal form using both beta and eta conversion.

*(D1) H - A,

(D2) H |- ' (LNORM A) Lanbda: D1

Transformation: (pp DL ss) ==> (pp D2 ss)

LCONTR* - BETA

Rule to put an inferred line into beta-normal form.

LCONTR* - ETA

LEXPD*

*(Dl) H - A,

(D2) H |- * (LNORM BETA A) Lanbda: D1
Transformation: (pp DL ss) ==> (pp D2 ss)

Ruleto put an inferred line into eta-normal form.

*(Dl) H - A,

(D2) H |- “ (LNORMETA A) Lanbda: D1

Transformation: (pp D1 ss) ==> (pp D2 ss)

Rule to put a planned line into Lambda-normal form using both beta and eta conversion.

(P1) H |- “ (LNORM A)

*(P2) H - A, Lanbda: P1
Transformation: (P2 ss) ==> (Pl ss)

26

Chapter 3: Inference Rules

LEXPD* - BETA
Rule to put a planned line into beta-normal form.
(P1) H |- * (LNORM BETA A)
*(P2) H - A, Lanbda: P1
Transformation: (P2 ss) ==> (Pl ss)
LEXPD* - ETA
Rule to put a planned line into eta-normal form.
(P1) H |- * (LNORMETA A)
*(P2) H - A Lanbda: P1

Transformation: (P2 ss) ==> (Pl ss)

27

ETPSUser’'s Manual

28

4. Sample Proofs

The following are transcripts of proofs of sample theorems obtained by using scri pt before starting ETPS.
Remarks are added initalics. It may be a good idea to look ahead a little bit, i.e., look at the final proof first to see
what we are trying to obtain. Y ou can execute these proof steps on your own computer and use the PALL command
frequently to get a good picture of how the proof grows, or (if you are running ETPS under X-windows or using the
Java interface) use the BEG N- PRFWcommand to open proofwindows, and watch the proof grow in them. As
mentioned in Section 1.1, you will probably find it best to set the style flag to xterm and have logical formulas
displayed with logical symbolsif you can. However, in this chapter we display formulasin generic style.

4.1. Example 1

>et ps

etps for issar. Version from Saturday, Septenber 23, 1989 at 5:59:15..

(c) Copyrighted 1988 by Carnegie Mellon University. Al rights reserved.

kkhkhkkhkhkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhkhkdhkhkhkhkkhkhkkhkhhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdhkhdhkhkkhkhkhkhkhkhkhkdkhdhkhrdhkhkkhkhkkhkhkhdhhdkxkx*k

WARNI NG -- Be sure that you when you begin ETPS, your current directory is
one for which you have wite access, e.g., your hone directory.

EE R R R S I I S R I I I R R I R I R I I R I I R R I
EE R R R R I I I R I I R R I R R R I I R I I R R I R

WARNI NG -- You cannot use the Unix ~ convention in specifying file nanes.
Use the full pathnanme instead, e.g., instead of entering

"~/ foo.work", enter "/afs/andrew usrl1l/dn0Oz/foo.work".
khhkkhhkhhhdhhdhhdhdhhdhhhhhdhhdhdhhdhhhdhhdhhddhdhdhhdhhhkdhhdhddhddhddhdhhhdhhkdhddrddrddrhdhhdhdxdx%

khkhkkhkhkkhkhkhhkhkhhhkhhhkhhhhkhhhhhhkhhhhhhhhhhhhhhhhkhhhhhhhhhhhdhhhdhhkhkhdkhkrhhrkkhkrkk **x*%

ANNOUNCI NG -- ETPS can now be run on the sun3_35 workstation type, as well
as on the M crovax.

The nore nenory on the machine, the faster ETPS will run. To
check the amount of nenory available on a Sun-3, type
"/etc/dnmesg | grep avail" in your typescript.

khkhkkhkhkhhkhhhhkhhhhhhhhhhhdhhhhhhdhhhdhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhddhdddhrrdrrdrx*k

[Loadi ng changes . ..
...done]
Loadi ng / af s/ andr ew. cnu. edu/ mat h/ et ps/ et ps. i ni
Fi ni shed | oadi ng / af s/ andrew. crmu. edu/ mat h/ et ps/ et ps. ini

If you are using ETPSin an environment where proofwindows are
available, issue the BEA N- PRFWcommand now to open proofwindows.

<l>exerci se x2108
(100) | FORALL x EXISTS y.P x IMPLIES Py PLANL

Sncethistheoremis universally quantified, we will first use
universal generalization. Note that to accept the defaults that ETPS
offers, we just hit a <Return>.

<2>ugen

P2 (LINE): Universally Quantified Line [100]>

P1 (LINE): Line with Scope of Universal Quantifier [99]>

(99) I EXISTSY.P x IMPLIES P y PLAN2

Aswe will see later, the justification of line 100 has been changed
from PLANL to UGen, which stands for universal generalization.
Now the formula we are trying to prove is existentially quantified,
SO we use the appropriate rule.

<3>egen
P2 (LINE): Existentially Quantified Line [99]>

29

ETPSUser’'s Manual

P1 (LINE): Line to be Existentially CGeneralized [98]>
t (GANFF): Termto be Ceneralized Upon [No Default]>(ED 99)

Let’ s use the editor to pick out the term we want fromline 99.

<Ed1>p

EXISTS y.P x IMPLIES Py Here' sthe current formula.

<Ed2>d

Px IMPLIES P y We move inside the quantifier.

<Ed3>|] d We use two commands to get to x.

X

<Ed4>o0k Return x as the GAFF we wer e asked for.

(98) I Px IMPLIES P x PLAN3
All that remainsis an easy application of RULEP.

<4>rul ep

P1 (PLINE): Plan Line [98]>
L (EXI STING LI NELI ST): List of Lines [()]>

<5>squeeze

SQUEEZE removes any unnecessary gaps. Now we take a look at the

completed proof.
<6>pal |
(1) I Px IMPLIES P x Rul eP
(2) I EXISTSy.P x IMPLIES P y EGen: x 1
(3) I FORALL x EXISTS y.P x IMPLIES P y UGen: x 2
<7>done

Score fil e updated.

The DONE command iscrucial! Not only does it
verify that the proof is complete, it also ensures that you get credit
for doing it. Now let’s make a nice copy of the proof.

<8>t expr oof
FI LENAME (FILESPEC): Filenane [x2108.tex]>
Witten file x2108.tex

<O>NZ

Let'sinterrupt ETPS and print the current proof.
>t ex x2108
This is TeX, Version 3.14159 (C version 6.1)
(x2108. t ex

Hyphenation patterns for english, german, | oaded.
(/afs/cs/project/tps/tps/doc/lib/tps.tex) [1])
Qutput written on x2108.dvi (1 page, 628 bytes).
Transcript witten on x2108. 1 og.

>dvi ps x2108 -0 x2108. ps

This is dvipsk 5.58f Copyright 1986, 1994 Radi cal Eye Software
" TeX out put 1998.09.04:1219" -> x2108. ps

<tex.pro>. [1]

>l pr -Pprinter x2108. ps

We' Il now resume our ETPS session. The unix command f g continues the
last job that was interrupted.

30

Chapter 4: Sample Proofs

>fg

Let’s now prove this same theoremin a different way,
and saveitin anew file.

<1>st op-save
File x2108. work witten.

<2>save-wor k
SAVEFI LE (FI LESPEC): SAVE-WORK file [work.work]>"x2108b. wor k"

<3>exerci se x2108
(100) I FORALL x EXISTS y.P x IMPLIES Py PLAN1

<4>i ndi r ect

P3 (LINE): Line to be Proven by Contradiction [100]>

P2 (LINE): Line with Contradiction [99]>

Hl (LINE): Line with Assuned Negation [1]>

(1) 1 I ~ FORALL x EXISTS y.P x IMPLIES Py Assune negation
(99) 1 I FALSEHOOD PLAN2

We can always use indirect proof.
Asyou can see, line 1 is negated, so let’s push in that negation.

<5>pushneg

D1 (LINE): Line with Negation [1]>

D2 (LINE): Line after Pushing in Negation one Step [2]>

(2) 1 ! EXISTS x.~ EXISTS y.P x IMPLIES P y Neg: 1

We use the * P command to show the lines which are now relevant.

<6>"p
(2) 1 I EXISTS x.~ EXISTS y.P x IMPLIES P y Neg: 1
(99) 1 | FALSEHOOD PLAN2
RULEC is often required when trying to prove a statement
from an existentially quantified line. 1t is probably the most
complicated rule you will use, so you might wish to study the
description of RULEC in the previous chapter first, as well
the description in the textbook.
<7>rul ec

P4 (LINE): Conclusion w thout Additional Hypothesis [99]>
D1 (LINE): Existentially Quantified Line [2]>

D3 (LINE): Conclusion with Additional Hypothesis [98]>

H2 (LINE): Hypothesis with Chosen Variable [3]>

y (GWFF): Chosen Variable Name [No Defaul t]>"x"
(3) 1,3! ~EXISTSYy.P x IMPLIES P y Choose: X
(98) 1,3 ! FALSEHOOD PLAN5
The last command created a negated statement, so we can use
PUSHNEG again.
<8>pushneg 3 4
(4) 3,1 ! FORALL y.~.P x IMPLIES P y Neg: 3

<9>ui

D1 (LINE): Universally Quantified Line [4]>

D2 (LINE): Instantiated Line [5]>

t (GAFF): Substitution Term[No Defaul t]>"x"

(5) 1,3 ! ~P x IMPLIES P x Uu: x 4

31

ETPSUser’'s Manual

<10>"p
(4 3,1 ! FORALL y.~.P x IMPLIES Py Neg: 3
(5 1,3! ~.P x IMPLIES P x U: x 4
(98) 1,3 ! FALSEHOOD PLANS
Note that line 5 is a contradiction, so we can useit to justify
line 98 by RULEP. Line4 isn't necessary for this step.
<1>rul ep 98

L (EXI STING LI NELI ST): List of Lines [(5 4)]>(5)
<2>squeeze

<3>cl eanup
No |i nes can be del et ed.

CLEANUP will remove unnecessary lines and hypotheses from

your finished proof.
<4>pal |
(1) 1 I ~ FORALL x EXISTS y.P x IMPLIES P vy Assunme negation
(2) 1 ! EXISTS x.~ EXISTSy.P x IMPLIES P y Neg: 1
(3) 3 Il ~EXISTSyYy.P X IMPLIES P y Choose: X
(4) 3 ! FORALL y.~.P x IMPLIES P y Neg: 3
(5 3 ! ~Px IMLIESP x U: x 4
(6) 3 I FALSEHOOD Rul eP: 5
(7) 1 I FALSEHOOD RuleC. 2 6
(8) I FORALL x EXISTS y.P x IMPLIES P vy Indirect: 7
Have we finished?
<5>done

Score file updated.

Yes. Let’s make a nice copy of this proof. Note that we have
to specify a new file name to keep ETPS from overwriting
thefirst file we made.

<6>t expr oof
FI LENAME (FILESPEC): Fil ename [x2108.tex]>"x2108b"
Witten file x2108b.tex

If you have open proofwindows, close them now with the
command END- PRFW

<7>exit
File x2108b.work witten.

4.2. Example 2

>et ps

etps for issar. Version from Saturday, Septenber 23, 1989 at 5:59:15..

(c) Copyrighted 1988 by Carnegie Mellon University. Al rights reserved.

R R R R S I I R R R R S O R S I R I I R I I I O R I I I R S R S R I I O R
WARNI NG -- Be sure that you when you begin ETPS, your current directory is

one for which you have wite access, e.g., your hone directory.
khhkkkhhhkkhhhkhkkhhhkhhhhkkhhhkhhhhkdhhhhdhhhkdhhhdhhkddhhhdhhddhhxhdhhddhxrdhdkddxrdhdxkddxrkdkx**x*%

khkhkkhkhkhkhkhhhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhdhhhdhhhdhhhkhdhkrdkhrkkdrkkhk*x*%

32

Chapter 4: Sample Proofs

WARNI NG -- You cannot use the Unix ~ convention in specifying file nanes.
Use the full pathnanme instead, e.g., instead of entering
"~/ foo.work", enter "/afs/andrew usr11/dn0z/foo.work".

R S S O R I O S R I S S O O I
khkhkkhkhkkhkhkhhkhkhhhkhhkhkhhhhkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkdhhkhkhhkhkhdhkhhkhkrkkdkrkk **x*

ANNOUNCI NG -- ETPS can now be run on the sun3_35 workstation type, as well
as on the M crovax.

The nore nenory on the machine, the faster ETPS will run. To
check the amount of nenory available on a Sun-3, type
"/etc/dnmesg | grep avail" in your typescript.

hkhkhkkhkhkhhkhhhhkhhhkhhhhhhhhdhhhdhhhdhhhdhhhdhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhdhddhrrhkrrhkrx*

[Loadi ng changes . ..
... done]
Loadi ng / af s/ andr ew. cnu. edu/ mat h/ et ps/ et ps. i ni
Fi ni shed | oadi ng /af s/ andrew. crmu. edu/ mat h/ et ps/ et ps.ini

<1>prove

WFF (GAFFO): Prove W [No Default]>"exists x forall y Px y inplies

forall y exists x P x y"

PREFI X (SYMBOL): Nane of the Proof [No Default]>exanplel

NUM (LI NE) : Line Nunber for Theorem [100] >

(100) I EXISTS x FORALL y P x vy IMPLIES FORALL vy EXISTS x P x vy PLAN1

If we were trying to prove one of the exercisesin the text, we would
have used EXERCI SE instead of pr ove.

Note that EXI STS (for example) was typed in lower case, but is always
printed in upper case.

<2>deduct

P3 (LINE): Line with Inplication [100]>

D2 (LINE): Line with Conclusion [99]>

H1 (LINE): Line with Hypothesis [1]>

(1) 1 I EXISTS x FORALL y P x vy Hyp
(99) 1 I FORALL y EXISTS x P x vy PLAN2

DEDUCT is often the right way to start the proof of an implication.
Note that the defaults were just what we wanted anyway, so we selected
them by simply typing <Ret ur n>.

<3>ugen

P2 (LINE): Universally Quantified Line [99]>

P1 (LINE): Line with Scope of Universal Quantifier [98]>

(98) 1 I EXISTS x P Xx vy PLAN3

<4>rul ec

P4 (LINE): Conclusion w thout Additional Hypothesis [98]>
D1 (LINE): Existentially Quantified Line [1]>

D3 (LINE): Conclusion with Additional Hypothesis [97]>

H2 (LINE): Hypothesis with Chosen Variable [2]>

y (GWFF): Chosen Variable Name [No Defaul t]>"x"
(2) 1,2! FORALL Y P x vy Choose: X
(97) 1,2! EXISTS x Px vy PLANS
Wenow do a P (note that thisis not a control-character) to
see what still has to be proven.
<5>AP
(2) 1,2 ! FORALL Y Px vy Choose: X
(97) 1,2 ! EXISTSx P x y PLANS

33

ETPSUser’'s Manual

<6>ui 2

D2 (LINE): Instantiated Line [3]>

t (GAFF): Substitution Term[No Default]>"y"

(3) 2,11 Pxy Uu: vy 2

We are closing in. You can now see that line 97 follows immediately from
line 3 by existential generalization. Therefore we use the

ECGEN command, and display the proof with the

PALL command.

<7>egen

P2 (LINE): Existentially Quantified Line [97]>

P1 (LINE): Line to be Existentially Generalized [96]>3
t (GAFF): Termto be Generalized Upon [No Defaul t]>"x"

<8>pal
(1) 1 ' EXISTS x FORALL y P x y Hyp
(2) 1,2 ! FORALL Y PXx vy Choose: X
(3) 2,1! Pxy U: vy 2
(97) 1,2 ! EXISTS x Px y EGen: x 3
(98) 1 I EXISTS x Px vy Rul eC. 1 97
(99) 1 ! FORALL y EXISTS x P x y UGen: y 98
(100) | EXISTS x FORALL y P x y I MPLIES FORALL y EXISTS x P x y
Deduct: 99

Thisiswhat our completed proof looks like. Let’s make sure that

we are done and print the proof into a file before exiting ETPS.
<9>done
You conpl eted the proof. Since this is not an assigned exerci se,
the score file will not be updated.

<10>t expr oof
FI LENAME (FI LESPEC): Fil ename [exanpl el.tex]>
Witten file exanpl el.tex

<10>exit

4.3. Example 3

>et ps

etps for issar. Version from Saturday, Septenber 23, 1989 at 5:59:15..

(c) Copyrighted 1988 by Carnegie Mellon University. Al rights reserved.

kkhkhkkhkhkkhkhkkhkhkhkdhkhkkhkhkkhkhkkhkhkhkdhhkdhhdhkhdhkhkkhkhkkhkhhkdhhkdhkhdhkhkdhkhkkhkhhkhhkdhhdhkhdhkhokhkhokhkhohkdhhkdhrdkddhkhkhkhkhhdddxkx*x

WARNI NG -- Be sure that you when you begin ETPS, your current directory is
one for which you have wite access, e.g., your honme directory.

LR S R I I I I I R I I S O I I S I R R I S I R R I I S I I SR I I O S
LR S I I I I I I R I R S S I R R S I R I R I I R I I SR I R I S

WARNI NG -- You cannot use the Unix ~ convention in specifying file nanes.
Use the full pathnanme instead, e.g., instead of entering
"~/ foo.work", enter "/afs/andrew usr1l/dn0z/foo.work".

EE R R I R R I I I I I I R I I I S S R I R R I I R S I S R I I
khkhkkkhhkkhkhhkhkkhhhkhkhhhkkhhhhkhhhkhhhhkhhhkkhhrxhkhhhkkhdhrxhkdhhkkhddxhdhhkkdddxhdhhkddxrkdhrkkddxhhhxx*x*x

ANNOUNCI NG -- ETPS can now be run on the sun3_35 workstation type, as well
as on the M crovax.
The nore nenory on the machine, the faster ETPS will run. To
check the amount of nenory available on a Sun-3, type
"/etc/dnmesg | grep avail" in your typescript.

Chapter 4: Sample Proofs

EE R I R R I I I S I R R I R R I I R I I R R I I

[Loadi ng changes ...
... done]
Loadi ng / af s/ andrew. crmu. edu/ mat h/ et ps/ et ps. i ni
Fi ni shed | oadi ng /af s/ andrew. crru. edu/ mat h/ et ps/ et ps. i ni

<l>prove

WFF (GAFFO): Prove W [No Default]>"forall x [forall y Px y inplies Q x X]
inplies. forall z [Paz and Pb z] inplies. Qa a and Qb b"

PREFI X (SYMBOL): Name of the Proof [No Default]>exanple2

NUM (LI NE): Line Nunmber for Theorem [100] >

(100) ! FORALL x [FORALL y P x y IMPLIES Q x X]
| MPLIES. FORALL z [Pa z ANDP b z] IMPLIES Qa a ANDQb b
PLANL1
This example does not involve an existential quantifier, but hasa more
complicated structure. Since our theoremis an implication, we use the
deduction theorem again right away.
<2>deduct
P3 (LINE): Line with Inmplication [100]>!
(1) 1 ! FORALL x.FORALL y P x y IMPLIES Q x x Hyp
(99) 1 ! FORALL z [Paz ANDPb z] IMPLIESQa a ANDQb b PLAN2
Note that we used ! to specify that we want to choose the defaults
for the remaining arguments.
Itisclear that we need to instantiate x with a and b.
We do thisin the next two steps.
<3>ui
D1 (LINE): Universally Quantified Line [1]>!
Sone defaults could not be determ ned.
t (GAFF): Substitution Term[No Default]>"a"
(2) 1 I FORALLy Pay IMPLIES Qa a U: alil
We again used ! , but ETPS couldn’t determine all the defaults,
S0 it prompted us again for the arguments for which it couldn’t figure
the defaults.
<4>ui
D1 (LINE): Universally Quantified Line [2]>1
D2 (LINE): Instantiated Line [3]>
t (GAFF): Substitution Term[No Default]>"b"
(3) 1 I FORALLY Pby IMPLIES Qb b U: b1l
The planned line 99 isagain an implication, which suggests using
DEDUCT again.
<5>deduct
P3 (LINE): Line with Inplication [99]>
D2 (LINE): Line with Conclusion [98]>
H1 (LINE): Line with Hypothesis [4]>
(4) 1,4! FORALL z.Paz ANDP b z Hyp
(98) 1,4! Qaa ANDQbob PLAN5

We now use universal instantiation again, this time to distribute the
universal quantifier over a conjunction.

<6>ui

D1 (LINE): Universally Quantified Line [4]>
D2 (LINE): Instantiated Line [5]>

35

ETPSUser’'s Manual

GW\FF) :

t (Substitution Term[No Default]>"y"
(5) 4,1

Pay ANDPby

Just to make sure ECONJ isthe inference rule we want, let’s call the

<7>hel p econj

*(DL) H
(D2) H
(D3) H

HELP command.
IA AND B
A Conj: D1
B Conj: D1

Transformation: (pp D1 ss) ==> (pp D2 D3 ss)

<8>econj
D1 (LINE): Line with Conjunction [5]>
D3 (LINE): Line with Right Conjunct [7]>
D2 (LINE): L|ne with Left Conjunct [6]>
(6) 1,4! Pay
(7) 1,4! Pby
Let’slook at the current planned line and its support lines.
<9>ppl an
PLINE (PLINE): Print planned |ine [98]>
(1) 1 ! FORALL x.FORALL y P x y IMPLIES Q x x
(2) 1 ! FORALLY Pay IMPLIESQa a
(3) 1 I FORALL Yy Pby IMPLIES Qb b
(4) 1,4! FORALL z.Pa z ANDP b z
(6) 1,4'!' Pay
(7) 1,4! Pby
(98) 1,4! QaaANDQbob
<10>i conj
P3 (LINE): Line with Conjunction [98]>
P2 (LINE): Line with Ri ght Conjunct [97]>
P1 (LINE): Line with Left Conjunct [52]>
(52) 1,4! Qaa
(97) 1,4!' Qbb
<1>mp
D2 (LINE): Line with Inplication [6]>2
D3 (LINE): Line with Succedent of Inplication [30]>52
P1 (LINE): Line with Antecedent of Inplication [29]>
(29) 1,4! FORALL Y P ay
<2>ppl an
PLINE (PLINE): Print planned line [29]>
(1) 1 ' FORALL x.FORALL v P x y IMPLIES Q X X
(3) 1 ! FO?ALLbeyII\/PLESbe
(4) 1,4! FORALL z.Pa z ANDP b z
(6) 1,4! Pay
(7) 1,4! Pby
(29) 1,4! FORALLY Pay
<3>ugen
P2 (LINE): Universally Quantified Line [29]>
P1 (LINE): Line with Scope of Universal Quantifier [28]>6
<4>ppl an

Yes, that’ s what we need.

PLINE (PLINE): Print planned Iine [97]>

36

u: vy 4

Conj: 5
Conj: 5

Ul :
ul:

Fo2Z
[N kel i o]

Conj :
Conj :

PLAN9
PLANS

PLAN11

ul .

“Fog
G O1T T

Conj :
Conj :

PLAN11

B R kR

B RRRRRRR

1,41

P2 (LINE):
PL (LI NE):

Bk e)

OO 0N DN O

ANANANANAN AN AN AN AN AN AN SN
POOONOUOINNOOITRAWN
O

<9>squeeze

<10>pal |

B LR L S S ol

RPRRPRRPRRPRRPRRPRRPRARRRR

ANANAN AN AN AN AN AN AN AN AN A SN
PRPRPPRPPOONOOUIDWNE
—

Chapter 4: Sample Proofs

FORALL x. FORALL v P x y I MPLIES Q x X Hyp
FORALL Yy Pby IMPLIES Qb b U: b1
FORALL z.Pa z ANDP b z Hyp
Pay Conj: 5
Pby Conj: 5
FORALL y P ay UCGen: y 6
Qa a MP. 29 2
Qb b PLANS
Line with Inmplication [52]>3
Line with Succedent of Inplication [75]>97
Line with Antecedent of Inplication [74]>
FORALL y P by PLAN14
Universally Quantified Line [74]>
Line with Scope of Universal Quantifier [73]>7

The proof is complete. Let’slook at the entire proof.
FORALL x. FORALL v P x y I MPLIES Q x X Hyp
FORALL y Pay IMPLIES Qa a u: al
FORALL Yy Pby IMPLIES Qb b U: b1
FORALL z.Pa z ANDP b z Hyp
Pay ANDPby u: vyd4
Pay Conj: 5
Pby Conj: 5
FORALL v P ay UCGen: y 6
Qaa MP. 29 2
FORALL y P b vy UGen: y 7
Qb b MP: 74 3
QaaAND Qb b Conj: 52 97
FORALL z [Pa z ANDP b z] IMPLIES Qa a AND Qb b Deduct: 98

FORALL x [FORALL y P x y I MPLIES Q x X]
| MPLIES. FORALL z [Pa z ANDP b z] IMPLIES Qa a ANDQb b

Deduct: 99

WE Il next use SQUEEZE to remove gaps from the proof structure.

We could also have used MODI FY- GAPS 1 1).

Let’s see how the proof looks now.
FORALL x. FORALL v P x y I MPLIES Q x X Hyp
FORALL y Pay IMPLIES Qa a u: al
FORALL y Pb y IMPLIES Qb b U: b1l
FORALL z.Pa z ANDP b z Hyp
Pay ANDP Dby u: vy4
Pay Conj: 5
Pby Conj: 5
FORALL y P ay UGen: y 6
Qaa MP. 8 2
FORALL y Pb y UGen: y 7
Qb b MP: 10 3
QaaAND Qb b Conj: 9 11
FORALL z [Pa z ANDP b z] IMPLIES Qa a ANDQb b Deduct: 12

FORALL x [FORALL v P x y IMPLIES Q x X]

ETPSUser’'s Manual

| MPLIES. FORALL z [Pa z ANDP b z] IMPLIES Qa a ANDQb b

Deduct :
<1>done
You conpleted the proof. Since this is not an assigned exerci se,
the score file will not be updated.

The proof is complete. Let’s print it into a file, so we can print it later
<2>pri nt pr oof
FI LENAME (FI LESPEC): Fil ename [exanpl e2.prt]>
Witten file exanpl e2.prt

<3>exit

38

13

5. TypeTheory in ETPS

5.1. Using ETPSfor Type Theory

ETPS can be used for higher-order logic as well as for first-order logic. Wffs of type theory are written
essentially as they are expressed in the logic book. There are a few additional inference rules and the parsing and
printing of wffsis dlightly different, while everything else described in the previous chaptersis still valid.

5.1.1. Typesin Higher-Order Logic

There is a very direct trandation from the way types are represented in the logic book and the way types are
represented in ETPS. Since Greek subscripts are not available on most terminals, the Greek letters are trandliterated
to uppercase Roman letters. The most commonly used types are
| fori Oforo Sforo
Afora Bfor 3 Cfory
The same conventions for parentheses are used as in the logic book, i.e., association to the left is assumed. Note,
however, that the outermost pair of parentheses must be preserved in order to distinguish types from identifiers.

Types are entered as strings, such as"(Q(OA)) "; typically they are substrings of a string representing a wff and
serve to give type information about the symbols in that wff, e.g., "p(O(OA)) ". If entered separately, the opening
and closing double-quotes must still be provided. Indeed, al of the string input rules apply; for example, carriage
returns may be embedded. For more examples of entering typed wffs, see Section 5.1.3.

ETPS has a powerful type-inference mechanism which makes explicit typing mostly unnecessary within wffs.
Often the type of one variable is enough to uniquely determine the type of every identifier in awff. Within awff, al
occurrences of a variable are assumed to have the same type, unless the contrary is specifically indicated. If the type
of a variable remains undetermined after all other type information has been used, | is assumed. Take care to
specify types if you use ‘ ‘type variables’ like a. Also note that type-inferenceis local, i.e., the type of an identifier
is determined anew for each wff parsed by ETPS.

5.1.2. Abbreviations and Special Symbols

ETPS allows polymorphic abbreviations. These are abbreviations with variable type, which may have multiple
occurrences with different types in the same wff. Since their special symbols cannot be typed on most keyboards,
thereisa‘‘long’’ form of each of them, which hasto be used in ETPS. The following is atemporary list of special
symbols, the binary operators ordered according to their binding priority and abbreviations marked with (abb).

Improper symbols

A LAVBDA The A-binder

O FORALL

O EXI STS

0 EXI STS1 o Mo A
EXI STSN [z, NAT z O A
FORALLN Oz, NAT z O A,

Il MJ- Bl ND MU oy Az A
THAT LAZ A,

Unary operators with equal binding priority (except NOT which has the least binding priority):

~ NOT

39

ETPSUser’'s Manual

% (abb) % quB)\xol3 Az, g x t Oz =f t.

VNN G) POAERSET AP, M- g O p

N (abb) SETI NTERSECT)\so(w))\qu PSS P OP X
Intersection of acollection of sets

[l (abb) SETUNI ON AS oMo Poe- S P O p X
Union of acollection of sets

O FALSEHOOD

T TRUTH

Binary operators, strongest binding first:

n (abb) | NTERSECT AP, A AX- P X O g X
Intersection of two sets

0 (abb) UNI ON AP, AQ AX . p X O Qg X
Union of two sets

O (abb) SUBSET Ap, Q.0 X,.p x Oqg X

= = Equality at type a

oaa

=S (abb) SETEQUI V A Ad,,-P O0qg 0O qgOp
Equality between sets.

=S (abb) EQUI VS
AP AR [Ox,.P x =RX
Elementwise equality between sets. Thisis equivalent to
equality between sets, if one assumes extensionality.

<= (abb) <= AX, Ay, Op,.p x OOz [p z Op.SUCC, z] Opy
Less than or equal to, for natural numbers.

u AND

O OoR

O | MPLI ES

(abb) EQUI V Equality at typeo

Other abbreviations:

Conditiona COND
)\xx)\yx Ap, THAT q.p Ux =q 0O0p Oy =q

Equipollence EQP
ApoBAqouESaB. DXB[p x O0g.s x]O0Oy,.qy OO0, p x Oy =s X

Zero ZERO [Ap,. Mxp X]

40

Chapter 5: Type Theory in ETPS

Successor SucC)\no(Ol))\me X.px On[At.t =x Op t]
One ONE succ, O,

Finite FI NI TE Ap,, My NAT n O n p

K MJ

Ap,, THAT x_.NAT x Op x OFORALLN y_.p y O x <=y

Natural No. NAT
An Op,,- P ZERO, OOx_ [p x O p.SUCC,, x] O p n

o(or)

NC NC Agog DPog U = Eggpop P
Recursion RECURSI ON
Ah_ . Ag,)\no(m) THAT m, Ow, . w ZERQ g OOx, Oy, [wx y O
w([SUCC_ x].h xy] Ownm
y1 SI GVAL [Ap, DV, Py = -= VI
U UNI TSET AX, Ay, X =Y

5.1.3. Some Examples of Higher-Order Wffs

Here are some examples of higher-order wffs. The first line shows how the formulais printed in the logic book,
the second line shows how it could be entered into ETPS as a string, and the third line shows how ETPS would print
it with type symbols (for example with the PWIYPES command). Look at these carefully and make sure you
understand how to type in wffs of higher-order logic.

O o0S,. X[S x] OSf S
"EXISTS f FORALL S. EXISTS x S x IMPLIES S . f &
EXI STS f(1(O)) FORALL S(O).EXISTS x(1)[S x] IMPLIES S.f S

0S,q X,[S x] OSf S

oi(o(or)) o(o)*

"EXI STS f(O (O(O))) FORALL S. EXISTS x S x IMPLIES S.f S"
EXISTS f(O (O(O))) FORALL S(Q(O)).EXISTS x(O)[S x] IMPLIES S.f S

[0 0S, OX,[S x] O S.f S

a(oa)

"EXI STS f FORALL S. EXISTS x(A) S x IMPLIES S.f S"
EXI STS f(A(QA)) FORALL S(QA).EXI STS x(A)[S x] IMPLIES S.f S

p, =d, = [ArAs.[r Os] Os Or] pq

"[p EQUV q] EQUV . [LAVMBDA r LAMBDA s . [r IMPLIES s] AND .s IMPLIES r] p q"
p(O EQUV q(O
EQUI V[LAVBDA r (O LAVBDA s(O).[r IMPLIES s] AND.s IMPLIES r] p q

DAE 0P, PLAp, Al = P f
"FORALL A(O) EXISTS f FORALL P . P [LAVBDA p A] EQUV P f"
FORALL A(O) EXISTS f(O) FORALL P(Q(O)).P[LAVBDA p(1) A] EQUV P f

OA T OODPO(OO). P[Ap, A] = P f

41

ETPSUser’'s Manual

"FORALL A(O) EXISTS f(0O0) FORALL P. P[LAMBDA p A] EQUIV P f"
FORALL A(O) EXISTS f(00) FORALL P(O(00)).P[LAVBDA p(O A EQUV P f

5.2. Example of a Proof of a Higher-Order Theorem
The following is an annotated transcript of part of a proof in type theory. Basic familiarity with ETPS is assumed.

>et ps

etps for issar. Version from Saturday, Septenber 23, 1989 at 5:59:15..

(c) Copyrighted 1988 by Carnegie Mellon University. Al rights reserved.

kkhkhkkhkhkkhkhkkhkhhkkhkhkkhkhkkhkhkkhkhkkhkhkhkdhkhkdhkhkdhkhkkhkhkhkhhkdhhkdhkhdhkhkdhkhkhkhhkhhkdhhdhkhdhkhkkhkhkkhkhhkdhhkdhrdkhdkhkhkhkhkhhdhhdxdxx*k

WARNI NG -- Be sure that you when you begin ETPS, your current directory is
one for which you have wite access, e.g., your hone directory.

LR R R I I I I S R I I R R I O R I I R I I S R O R

EE R I R R I I I I I R I S I I I R I I O I R I I R I I S R S R

WARNI NG -- You cannot use the Unix ~ convention in specifying file nanes.
Use the full pathnanme instead, e.g., instead of entering
"~/ foo.work", enter "/afs/andrew usr11/dn0z/foo.work".

R S O O I S S R I S b O I O I R O S S S I I O b
R S S I IR I S S S S R I I S R I SR S

ANNOUNCI NG -- ETPS can now be run on the sun3_35 workstation type, as well
as on the M crovax.

The nore nenory on the machine, the faster ETPS will run. To
check the amount of nenory available on a Sun-3, type
"/etc/dnmesg | grep avail" in your typescript.

hkhkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhdhdhdhkdddhrddrrdrx*

[Loadi ng changes ...
...done]
Loadi ng / af s/ andr ew. cnu. edu/ mat h/ et ps/ et ps. i ni
Fi ni shed | oadi ng / af s/ andrew. crmu. edu/ mat h/ et ps/ et ps. ini

<1>Exerci se X5209
(100) ! PONERSET [D(QA) | NTERSECT E(QA)]
= POWNERSET D | NTERSECT POVERSET E PLAN1

<2>ext =

P2 (LINE): Line with Equality [100]>

P1 (LINE): Universally Quantified Equality [99]>

X (GAFF): Universally Quantified Variable [No Default]>"S(QA)"

(99) I FORALL S(0A). PONERSET [D(OA) | NTERSECT E(QA)] S
= [PONERSET D | NTERSECT PONERSET E] S PLAN2
<3>ugen !
(98) ! PONERSET [D(OA) | NTERSECT E(OA)] S(OA)
= [PONERSET D | NTERSECT PONERSET E] S PLAN3
<4>ext =0

P2 (LINE): Line with Equality [98]>
P1 (LINE): Li ne wi t h Equi val ence [97] >
(97) ! PONERSET [D(OA) | NTERSECT E(OA)] S(OA)
EQUI V [POAERSET D | NTERSECT POWNERSET E|] S PLAN4

<5>i npl i cs-equiv
P2 (LINE): Line with Equival ence [97]>
P1 (LINE): Li ne with Inplications in Both Directions [96]>
(96) [PONERSET [D(QA) | NTERSECT E(QA)] S(OA)
| MPLI ES [PONERSET D | NTERSECT POWNERSET E] S]
AND. [PONERSET D | NTERSECT POMERSET E] S
| MPLI ES POAERSET [D | NTERSECT E] S PLANS

42

Chapter 5: Type Theory in ETPS

<6>i conj !
(48) ! POAERSET [D(QA) | NTERSECT E(QA)] S(QA)

| MPLI ES [PONERSET D | NTERSECT POWERSET E] S PLAN7
(95) ! [PONERSET D(QA) | NTERSECT POWNERSET E(QA)] S(QA)

| MPLI ES POAERSET [D | NTERSECT E] S PLANG

In this example we will prove only line 95. It may bea
a good exerciseto try to proveline 48.

<7>subpr oof
PLINE (PLINE): Line to prove [48]>95

<8>deduct !

(49) 49 I [PONERSET D(QA) | NTERSECT PONERSET E(QA)] S(QA) Hyp
(94) 49 I PONERSET [D(QA) I NTERSECT E(QA)] S(QA) PLANS
Now we eliminate the PONERSET. Sisin the powerset

of Dn E iffSisasubsetof D n E.
<9>j def !
(93) 49 I S(0A) SUBSET D(QA) | NTERSECT E(QA) PLAN9
Now we eliminate the | NTERSECT from the justified line 49.
We therefore have to use the command symmetric to | DEF,
which is EDEF.
<10>edef !
(50) 49 I POWERSET D(QA) S(0A) AND POWERSET E(QA) S Defn: 49
<1>"P
(50) 49 I PONERSET D(QA) S(0A) AND POWNERSET E(QA) S Defn: 49
(93) 49 | S(OA) SUBSET D{QA) | NTERSECT E(QA) PLANO
<2>econj !
(51) 49 I PONERSET D(QA) S(OA) Conj: 50
(52) 49 I PONERSET E(QA) S(OA) Conj: 50
From here on we go through a sequence of routine elimination of definitions.
<3>edef !
(53) 49 I S(0A) SUBSET D(QA) Defn: 51
<4>edef

D1 (LINE): Line with Definition [53]>52
D2 (LINE): Line with Instantiated Definition [54]>

(54) 49 | S(0A) SUBSET E(QA) Defn: 52
<5>"Pp

(53) 49 | S(0A) SUBSET D(QA) Defn: 51
(54) 49 | S(OA) SUBSET E(QA) Defn: 52
(93) 49 | S(OA) SUBSET D{QA) | NTERSECT E(QA) PLANO

Weareontheright tracké FromS O DandS O Ewe should be
abletoinferthatS 0 D n E

<6>edef 53

D2 (LINE): Line with Instantiated Definition [55]>

(55) 49 I FORALL x(A).S(QA) x I MPLIES D(QA) x Defn: 53
<7>edef 54

D2 (LINE): Line with Instantiated Definition [56]>

43

ETPSUser’'s Manual

(56) 49
<8>i def !
(92) 49
<O>NP

(55) 49
(56) 49
(92) 49
<10>ui 55
D2 (LI NE)

t (GNFF):
(57) 49
<1>ui 56

D2 (LI NE)

t (GAFF):
<Ed1>a

X(A)
<Ed2>0k
(58) 49
<2>ugen !
(91) 49
<3>deduct !
(59) 49,59
(90) 49,59
<4>j def !
(89) 49,59
<5>AP

(55) 49
(56) 49
(57) 49
(58) 49
(59) 49,59
(89) 49,59
<6>unsponsor

FORALL

FORALL

FORALL
FORALL

.#. .

X(A).S(OA) x | MPLIES E(QA) X

Def n: 54

x(A).S(0A) x | MPLIES [D(0A) | NTERSECT E(QA)] x PLANL6

x(A).S(0A) x | MPLIES D(O8) x
x(A).S(0A) x | MPLIES E(OA) x

x

Def n: 53
Def n: 54

x(A).S(0A) x | MPLIES [D(0A) | NTERSECT E(OA)] x PLANL6

We have to get rid of the universal quantifier, but we have to be careful to give

our

S(OA)

variable the right type, namely a.

Instantiated Line [57]>
Substitution Term[No Defaul t]>"x(A)"

x(A) | MPLIES D(QA) X

Instantiated Line [58]>

Let’s use the editor to extract the variable.

S(On)

S(OA)

S(O
[D(OA)

D(OA)

FORALL
FORALL

We don't need the universally quantified sponsoring lines any more

Substitution Term[No Default]>(ed 56)

x(A) | MPLIES E(OA) x

x(A) | MPLIES [D(OA) | NTERSECT E(QA)] x

X(A)
| NTERSECT E(QA)] x(A)

x(A) AND E(0A) x

x(A).S(OA) x I MPLIES D{QA) x
X(A).S(OA) x IMPLIES E(QA) X
x(A) I MPLIES D(QA) x

x(A) I MPLIES E(QA) x

X(A)

X(A) AND E(QA) x

in order to proveline 89, so let’suse UNSPONSOR.

PLINE (PLINE): Pl anned |ine [89]>

LI NELI ST (EXI STI NG LI NELI ST):

<7>rulep !

<8>pal

(48)
(49) 49

| MPLI

[PONERSET D(OA)

POWERSET [D(0A) | NTERSECT E(QA)] S(QA)
ES [POAERSET D | NTERSECT POWERSET E] S
| NTERSECT POWERSET E(QA)] S(QA)

U: x 55

U: x 56

PLAN19

Hyp
PLAN20
PLAN21

Defn: 53
Defn: 54
U: x 55
U: x 56

PLAN21

Sponsoring lines [(59 58 56 57 55)]>(55 56)

PLAN7
Hyp

Chapter 5: Type Theory in ETPS

(50) 49 I PONERSET D(0OA) S(QA) AND PONERSET E(QA) S Def n: 49
(51) 49 I POAERSET D(QA) S(QA) Conj: 50
(52) 49 I POAERSET E(QA) S(QA) Conj: 50
(53) 49 I S(0A) SUBSET D(QA) Defn: 51
(54) 49 I S(0A) SUBSET E(QA) Def n: 52
(55) 49 I FORALL x(A).S(®A) x IMPLIES D(QA) x Def n: 53
(56) 49 I FORALL x(A).S(®A) x IMPLIES E(QA) x Def n: 54
(57) 49 I S(0A) x(A) IMPLIES D(QA) x U: x 55
(58) 49 I S(0A) x(A) IMPLIES E(QA) x U: x 56
(59) 49,59 ! S(QA) x(A Hyp
(89) 49,59 ! D(QA) x(A) AND E(®A) x Rul ep: 59 58 57
(90) 49,59 ! [D(QA) INTERSECT E(QA)] x(A) Defn: 89
(91) 49 I S(0A) x(A) I MPLIES [D(0OA) | NTERSECT E(OA)] X Deduct: 90
(92) 49 I FORALL x(A).S(0OA) x | MPLIES [D(OA) | NTERSECT E(OA)] X
Ugen: x 91
(93) 49 I S(OA) SUBSET D(0OA) | NTERSECT E(0OA) Defn: 92
(94) 49 I PONERSET [D(QA) | NTERSECT E(QA)] S(OA) Defn: 93
(95) ! [POAERSET D(OA) | NTERSECT PONERSET E(QA)] S(OA)
| MPLI ES PONERSET [D | NTERSECT E] S Deduct: 94
(96) ! [PONERSET [D(QA) | NTERSECT E(QA)] S(QA)
| MPLI ES [PONERSET D | NTERSECT POAERSET E] S]
AND. [POAERSET D | NTERSECT POAERSET E] S
| MPLI ES PONERSET [D | NTERSECT E] S Conj: 48 95
(97) ! PONERSET [D(QA) | NTERSECT E(QA)] S(QA)
EQUI V [PONERSET D | NTERSECT POWERSET E] S | mpEqui v: 96
(98) ! PONERSET [D(QA) | NTERSECT E(QA)] S(QA)
= [PONERSET D | NTERSECT POWERSET E] S Ext=: 97
(99) I FORALL S(QA). POWERSET [D(QA) | NTERSECT E(QA)] S
= [PONERSET D | NTERSECT POWERSET E] S
Ugen: S 98
(100) ! PONERSET [D(QA) | NTERSECT E(QA)]
= POAERSET D | NTERSECT POAERSET E Ext=: 99
<9>exi t

45

ETPSUser’'s Manual

46

Appendix |

Appendix |
menities

ETPS incorporates severa features of the Unix C-shell (csh) top-level. These features include various control
characters, command sequences, a history mechanism, and aliases.

[.1. Control charactersfor Unix
If you are running ETPS under Unix (or Linux), you may be able to use the following control characters in
addition to those discussed in Section 1.4.
Crl-S Freezeoutput.
Crl-Q Proceed with output.
Crl-2zZ Suspend the current program (ETPS), and return to the monitor.
Crl-R Redisplay the current input line.

|.2. Command Sequences
Y ou may enter a series of commands on the same command line by using the ampersand (&) as a separator. This
is analogous to the C-shell’ s use of the semicolon (;). That is, entering

<0> comand; & command, & ... & command,

will cause ETPS to sequentially execute command, through command,, as though you had typed them in one at a
time.

For example, after you have finished a proof, you may want to enter the sequence:

<0> cl eanup & squeeze & done & texproof !

[.3. History Substitutions

It is often convenient to be able to refer to commands and arguments that you have aready typed. Asin the
C-shdll, the exclamation point (!) is used to indicate a history substitution, with two exceptions. An exclamation
point that is followed by whitespace will not be interpreted as a history reference, nor will an exclamation point that
is immediately preceded by a a backslash (\). Any input line that contains history substitutions will, before
execution, be echoed on the screen as it would appear without the history references.

In ETPS, each command line is given a unique number; this number is part of the top-level prompts. A certain
number of previous commands are saved by ETPS; the number saved is determined by the flag HISTORY-SIZE.
The previous command is always saved. In addition, each line is parsed into a series of tokens. Unlike the C-shell,
these tokens are not distinguished simply by surrounding whitespace, but rather by their Lisp syntax. All that the
user needs to know is that, in general, each argument entered on a command line will be considered a separate token.
On each input line, the tokens are numbered from left to right, beginning at 0. For example, the input line

<n> rulep 27 (1 2 7 14)

would be parsed into three tokens: rul ep, 27 and (1 2 7 14), which would be numbered 0, 1 and 2,

47

ETPSUser’'s Manual

respectively.

The H STORY command is used to examine the list of input lines that have been saved by ETPS. It takes two
arguments, the first being the number of lines to show (defaulting to the entire list), and the second being whether to
show them in reverse numerical order (defaulting to no). The number of each input lineisaso given. Thelinesare
saved in the history list as they appear after al history substitutions are made.

Previous lines can be referred to using the following input line specifiers:
I'n the command line whose number isn.
I-n theinput line that was entered n lines above the current one.
I the previous line.
I str the most recent command that begins with the string str.
| ?str? the most recent command that has a token containing the substring str.

Here are some examples. Suppose we had the following output from the H STORY command

<10> history 5!
exerci se x2106
pst at us

N

p
pal |
history 5!

QUOWONO®

1
Then, asinput line 11, we could refer toline7 by ! ps or! - 4, or evenby ! ?t at 2.

Used alone, the above references merely insert every token of the line referred to into the the current input line.
In order to select particular tokens from an input line, a colon (:) follows the input line specifier, along with a
selector for the intended tokens. Here is the syntax for the token selectors, where x and y indicate arbitrary token
selectors.

0 first (command) word

n n’'th argument

N first argument, i.e. 1

$ last argument

% word matched by (immediately preceding) ?str? search

X-y range of words from the X' th through the y'th

-y abbreviates 0- y

* abbreviates~- $, or nothing if only 1 word ininput line referred to
X~ abbreviates x- $

X- like x* but omitting word $

The: separating the event specification from the token selector can be omitted if the token selector begins with a
I\y $1 * y - or %

Going back to our example, we can then create the input line
<11> hel p x2106

by enteringhel p ! 5:*,0orhel p !ex: $,orhel p ! ?22?%

48

Appendix |

Here is a longer example of the use of history substitutions. We will omit the output of the commands
themselves, showing only the results of history substitutionsin italics.
<38> prove "[[A and B] and C] inplies [B or C]" foo 100
<39> deduct !!:$ 99 50
deduct 100 99 50
<40> econj !39:% !
econj 50!
<41> le:0 !
econ; !
<42> texproof "!?inplies?:2_proofl. nmes”
texproof "foo_proofl.mss"

One cautionary note: It is unwise to use absolute references to input line numbers (e.g., ! 25) in your work files,
because when the file is executed again, it is unlikely that a particular line numbered n will be the same as line n
was when the work file was created.

You may wish to know what a command history substitution will look like without executing it. In order to do
that, merely choose a word that is not a command (such as "foobar"), and prefix your history substitution by that
word. ETPSwill first echo the substituted line, then just complain that "foobar" is an unknown command.

|.4. Aliases

ETPS maintains a list of aliases which can be created, printed and removed by the ALI AS and UNALI AS
commands. Each input line is separated into distinct commands and the first word of each command is checked to
see if it has an dlias. If it does, then the text which is the alias for that command is reread with the history
mechanism available as though that command were the previous input line. The resulting tokens replace the
command and argument list. If no history references appear, then the argument list is not changed.

Asan example, if the dliasfor ded is" deduct ", the command ded 100 ! would beinterpreted as deduct
100 !. Ifthedliasfor pr was"prove \!\!:1 foo 100", thenpr x2106 would become prove x2106
foo 100. Note that any occurrences of ! in the alias definition that are meant to be expanded when the alias is
invoked must be escaped with a backslash (\) to keep them from being interpreted as history substitutions when the
aliasis defined.

If an dias is found, the token transformation of the input text is performed and the aliasing process begins again
on the new input line. Looping is prevented if the first word of the new text is the same as the old by flagging it to
prevent further aliasing.

The command ALI AS can be used to create or display an dlias, or to display all existing aliases. The command
UNALI AS can be used to delete an existing alias. The following example will illustrate;

We define an alias.

<135>alias d "deduct \!\!:1-$ \!"

We show its definition.

<136>ali as !

d deduct !1:1-$!
<137>exerci se x2106
<138>d

49

ETPSUser’'s Manual

This expandsto "deduct !!:1-$ " but here $is0.

TPS error while reading.

I1:1-%: Bad ! arg selector. Last of range is less than first.
WE'll remove this definition, and try again.

<139>unalias d

The* selector iswhat we want.
<140>alias d "deduct \!\!:* \I"
<141>d
This expands to "deduct !", which is what we intend.
Suppose now that we have finished the proof.
<155>alias finish "cleanup & squeeze & done & pall & texproof \I\!l:*"

T
<156>fi ni sh "myproof . mss"

50

Appendix |1

Appendix I
More Editor Commands
The most commonly used editor commands were listed in Section 2.12. Here we list the rest of the commands
available in the editor. Note that some of the commands available within the editor are needed for type theory, and
may be ignored by the user who isinterested only in first-order logic.

[1.1. Labels

<Edn>DELVEAK label
Replace al occurrences of the label in the current edwff by the wff it represents.

<Edn>DW Replace atop-level occurrence of label by the wff it represents.
<Edn>DW Replace dl labelsin awff by the wffs represented by them.

<Edn>NAME label
Assign alabdl to the edwff, and replace the edwff with thislabel.

<Edn>RW label
Makes current edwff the new value of label (which must already exist).

I1.2. Basic Abbreviations

<Edn>EXPAND=
Instantiates al equalities.

<Edn>| NST gabbr
Instantiate all occurrences of an abbreviation. The occurrences will be lambda-contracted, but not
|ambda-normalized.

<Edn>| NST1
Instantiate the first abbreviation, left-to-right.

<Edn>| NSTALL exceptions
Instantiate all definitions, except the ones specified in the second argument.

[1.3. Lambda-Calculus

<Edn>ABNORM
Convert the gwff to alphabetic normal form.

<Edn>ETAB gwff
Eta-expands until original wff is part of awff of base type.

<Edn>ETAC
Reduces [lambda x.fx] to f at the top.

<Edn>ETAN
Reduces [lambda x.fx] to f from inside out.

<Edn>ETAX
Performs one step of eta expansion of the gwff.

<Edn>LEXP var term occurs
Converts the wif into the application of a function to the term. The function is formed by replacing
given valid occurrences of aterm with the variable and binding the result.

<Edn>LNORM
Put awff into lambda-normal form; equivalent to LNORM BETA followed by LNORM ETA.

<Edn>LNORM BETA

51

ETPSUser’'s Manual

Put awff into beta-normal form.

<Edn>LNORM ETA
Put awff into eta-normal form (exactly equivalent to ETAN).

<Edn>RED Lambda-contract atop-level reduct. Bound variables may be renamed.

[1.4. Quantifier Commands

<Edn>DB Delete the leftmost binder in awff.

<Edn>EP Deleteall essentially existential quantifiersin awff.

<Edn>0P Deletetheleftmost binder in awff. Delete all essentially existential quantifiersin awff.

[1.5. Embedding Commands

There are a range of embedding commands, which take the current edwff and embed it below a quantifier or
connective. These commands all begin MBED, and then have a suffix denoting the quantifier or connective, and a
further suffix (if appropriate) denoting whether the current wff is to become the left or right side of the new formula

They are:

<Edn>MBED- AL
Embed the current wff below AND, on the |eft side.

<Edn>MBED- AR
Embed the current wff below AND, on theright side.

<Edn>MBED- E
Embed the current wff below an EXISTS quantifier.

<Edn>MBED- E1
Embed the current wff below an EXISTS1 quantifier.

<Edn>MBED- F
Embed the current wff below a FORALL quantifier.

<Edn>MBED- | L
Embed the current wff below IMPLIES, on the |eft side.

<Edn>MBED- | R
Embed the current wff below IMPLIES, on the right side.

<Edn>MBED- L
Embed the current wff below a LAMBDA binder.

<Edn>MBED- OL
Embed the current wff below OR, on the left side.

<Edn>MBED- OR
Embed the current wff below OR, on the right side.

<Edn>MBED- QL
Embed the current wff below EQUIV, on the |eft side.

<Edn>MBED- QR
Embed the current wff below EQUIV, on theright side.

<Edn>MBED=L
Embed the current wff below =, on the | eft side.

<Edn>MBED=R
Embed the current wff below =, on theright side.

52

Appendix |1

I1.6. Changing and Recur sive Changing Commands
Many of these commands operate only on the current wff, but have a recursive form that will perform the same
operation on the current wff and all of its subwffs.

<Edn>ASRB
Absorbs unnecessary AND and OR connectives; see the help message for examples. This command also
has arecursive form, ASRB* .

<Edn>ASSL
Applies the left associative law, changing (A * (B * C)) to((A * B) * C). Thiscommand
also hasarecursive form, ASSL* .

<Edn>ASSR
Applies the right associative law, changing((A * B) * C) to(A * (B * C)) Thiscommand
also has arecursive form, ASSR* .

<Edn>CVRG

Deletes the constants TRUTH and FALSEHOCD from a wff; see the help message for examples. This
command also has arecursive form, CVRG* .

<Edn>CMUT
Applies the commutative laws to a formula; see the help message for examples. This command also
has arecursive form, CMJT* .

<Edn>CNTOP connective-or-quantifier
Changes the outermost connective or quantifier to that specified.

<Edn>Dl ST- CTR
Applies the laws of distributivity to a wff in the contracting direction; see the help message for
examples. Thiscommand also has arecursive form, DI ST- CTR*.

<Edn>DI ST- EXP
Applies the laws of distributivity to a wff in the expanding direction; see the help message for
examples. Thiscommand also has arecursive form, DI ST- EXP* .

<Edn>DNEG
Removes a double negation from awff. This command also has arecursive form, DNEG* .

<Edn>MRG Merges redundant connectives in a wff; see help message for examples. This command also has a
recursive form, MRG*.

<Edn>PMJUT
Permutes the two components of an infix operator. This command also has arecursive form, PMJT* .

<Edn>SUBEQ
Reduces an equivalence to a conjunction of implications. This command also has a recursive form,
SUBEQ* .

<Edn>SUBI M
Reduces an implication to adisjunction. This command also has arecursive form, SUBI M.

[1.7. Miscellaneous
<Edn>CNF Find the conjunctive normal form of a wff.

<Edn>HEAD
Finds the head of a gwff.

<Edn>HVARS
Returns all the head variables of a gwff.

<Edn>M N- SCOPE
Minimises the scope of quantifiersin a gwff.

53

ETPSUser’'s Manual

[1.8. Wellformedness

<Edn>DUPW connective
Duplicates awff across a connective.

<Edn>EDI LL
Finds aminimal ill-formed subformula

<Edn>| LL Returnsalist of messages, each describing the error in aminimal ill-formed subformula
<Edn>TP Returnsthe type of agwff.

<Edn>WFFP
Tests for agwff (general well-formed formula).

[1.9. Saving and Recording Wffs
Saving wffsinto afileis governed by the two flags PRINTEDTFILE and PRINTEDTFLAG, which determine the
name of the file being written and whether or not wffs are currently being written to it, respectively.

<Edn>0 Toggles recording on and off (i.e. invertsthe current value of PRI NTEDTFLAG).

<Edn>REM string
Writes a comment into the current output file.

<Edn>SAVE label
Saves agwff by appending it to thefilesavedwf f s.

Appendix I 11

Agopendix [Tl
Wt Operations
This is a list of those wffops mentioned in Chapter 3; you can get a complete list of wffops by typing

ENVI RONMENT and then WFFOP.

[11.1. Equality between Wffs

(WFFEQ AB wffl wif2)
Tests for equality modulo a phabetic change of bound variables.

(WFFEQ AB- BETA wiffl wiff2)
Tests for equality modulo a phabetic change of bound variables and beta-conversion.

(WFFEQ AB- ETA wffl wiff2)
Tests for equality modulo a phabetic change of bound variables and eta-conversion.

(WFFEQ AB- LAVMBDA wiffl wiff2)
Tests for equality modulo a phabetic change of bound variables and both beta- and eta-conversion.

(WFFEQ DEF wiffl wff2)
Tests for equality modulo definitions, lambda conversion and al phabetic change of bound variables.

[11.2. Predicates on Wffs

(FREE- FOR term var inwff)
Tests whether aterm isfree for avariable in awff.

(1 S- VARI ABLE gwff)
Tests whether awff isalogical variable.

(NON- ATOM C gwiff)
Tests whether a wff is not atomic, that is, negated, quantified or the result of joining two wffs with a
binary connective.

(NOT- FREE- I N gvar inwff)
Tests whether avariable is not free in a wff.

(NOT- FREE- | N- HYPS gvar)
Tests whether avariableis not free in the set of hypotheses of arule.

(R- PRI ME- RESTR terml wiffl term2 wff2)
Verifies that wff2 follows from wffl by Rule R’ using equality terml=term?2.

(SAME- MODULO EQUALI TY wiffl wff2 terml term2)
Verifies that wff2 follows from wffl by Rule R' (possibly iterated) using the equality terml=term2.

[11.3. Substitution

(S term var inwff)
Substitute aterm for the free occurrences of variable in a gwff.

[11.4. Basic Abbreviations

(CONTAI NS- DEFN wif)
Tests whether the argument contains a definition.

(1 NST- DEF inwff)
Instantiate the first abbreviation, |eft-to-right.

55

ETPSUser’'s Manual

[11.5. Lambda-Calculus

(LCONTR reduct)
Lambda-contract a top-level reduct.

(LNORM wiff)
Put awff into lambda-normal form (equivalent to LNORM BETA followed by LNORM ETA).

(LNORM BETA wif)
Put awff into beta-normal form.

(LNORM ETA wif)
Put awff into eta-normal form.

[11.6. Negation movers

(PUSH- NEGATI ON gwff)
Pushes negation through the outermost operator or quantifier.

56

Appendix
Theorellfonps and

IV.1. Book Theorems

Substitution instances of the theorems below can be inserted into a proof by using the ASSERT command.

DESCR (Axiom of description at all types.)
L[=Y,] =Y
EXT (Axiom of extensionality at all types.)
DxB[qux:gan] Oof =g
REFL= (Reflexivity of Equality.)
A = A
SYM= (Symmetry of Equality.)
A =B, O0B=A
T5302 (Symmetry of Equality.)
xa = yu =y =X
T5310 (Theorem about descriptions.)
DZG[pOGZEyC(:Z] DI p:y
T5310A (Theorem about descriptions.)
Uz, [Pz =z =y] O p=y

IV.2. First-Order Logic

A2
Exercises

Appendix |V

X2106 Ox [Rx OPx] OOx [0Qx ORXx] OOx.P x OQX

X2107 RabOOx Oy [Rxy ORy x 0Qx y] OOu Ov [Quv OQuu OQa
alQbob

X2108 Ox y.Px OPYy

X2109 X [p 0Qx] =p O0x QX

X2110 x Rx 00y [Ry OO0z Qy z] O0Ox Oy [@Qx y OQx x] O0Ox y.Qx vy O
Ry

X2111 Ox [y Pxy OO0y Qx y] O0z Oy Pzy OOy Ox Qx vy

X2112 Ov Ox Px v OOx [Sx OOy Qy x] OOx Oy [Px y OO0 Qx y] OOu.OS
u

X2113 Oy v Ry wdOOz Ox [P x OO0 Rz x] OOx.0P x

X2114 Ox Rx b OOy [Ry zORay] OOu v Ruv

X2115 Ox [y Pxy OOz Pz z] O0u v [Puv OMu O0Qf uv] OOw[Qw[O
OMgw OOu @.P[gu] vOPuUuu

X2116 Ox Oy [Px ORx [g.-hy] OPy] OCOw[PwOPI[gw OP.hw OOx.P
x Ody.Rxy OPYy

X2117 Ou Ov [Ruu=Ruv] OOw Oz [Rww=Rzw O Rx x 00y Ry y

X2118 Ox [p O0Qx OO pORXx] OOx Qx OOx R x

X2119 Oy Ox.Py OP x

X2120 Ou Ov Ow[Puv OPv wW OOx Oy Px vy

X2121 v Oy z.Pay [hy] OPvy [fy] OPvy?z

X2122 X Rx x OOy Ry y OO0Ou Ov.Ruu ORV YV

X2123 Oy [Py O0Qx] OOy.Py OQy

X2124 x [Px O0Qx] =[x Px OOx Qx

X2125 x Oy [Px =Py] =k Px =0y Py

57

ETPSUser’'s Manual

X2126
X2127
X2128
X2129

X2130
X2131
X2132
X2133

X2134
X2135
X2136
X2137
X2138

IV.3.

X5200
X5201
X5202
X5203
X5204
X5205
X5206
X5207
X5208
X5209
X5210
X5211
X5212
X5304
X5305
X5308
X5309
X5310
X5500

X6004

X6101
X6104

X6105

Ox [Px = Py] =x Px =03 Py
(x Oy [Py =P x] OOx Px OOx.0P x
Ox [Px =0y Py] =X Px =0y Py

x Oy [Px =Pyl =[x Qx =0y Py] =0k Oy [Qx = QY]

i
!
jv)
x
i

Uy Qy
Ox Px OO0y Qy O0Oz. Pz O0Qz

Ox Px O0y.Ox Oz Qx y z 00OO z.Pz OO Qy vy z
Ow [ORww 0O0Ox y.ORxy 0Qy x 00z Qz z
Ox [y Qx y OPx] O0Ov u Quv OOwdz [Qwz 0 QzwDQz z] O

Oz

Pz

Oz x [Oy Px y OQx z] OO0y x.Pxy OQx vy
x Oy.Px OQy OQx OPYy

(X y DuuPxy z OPuUXX

x Oy.Px O0Qx OPYy

Ox Oy Fxy O0Ox e h Ow[SnwO Dwx e] UOOe [Oa Ob [D a
Oy Ozz.Fay OFbz ODy ze] OOy Oe dnOwS mw O0Oz.F w z

O

b d
0Dz

y e

Higher-Order Logic

X
%
%
%
%
%
%

oa oa

Xog U
N

=LA, ,v=x0Ov=y
=N.Av v =x0v=y
faB[x()BDyoﬁ] = %f x O %f vy
fuB[xoﬁnyoﬂ] O %f x n %f vy
fuB[D W) = %[%f] w

fog [N Wl ON.%[%F] w

qu[xoﬁDyoﬁ] = %f x O %f vy
faﬁ[xoﬁnyoﬁ] O %f xn %f y

Y oa
y

S, Ox, [[Sx OP, x] O0OSx 0Q x] =0y.Py O0Qy

g
o(oa)(oa) [Doa

nEJ]=0DnlUE

[=x] =Az, y,y =x 0Oz =y

Yoo = LAz, Ox,.y x Oz =[= X]

Az, D(B[gon Dz:fuB X] %f g

DDgoau Dfoct Du'gj =f

Os., 009, Of .f Os O0j,.sj Ogj =f

EJB(OB) 0Py [DxB px Op.j p] O Ox, g Fope X Y = Efsa Ox r x.f X

D:Dhl(m) Dpot qul'h p = h q D p = q

Or

- [onB Oy, r xy DDfB(OB) Ox r x.f x] DDjB(OB) UPge [2g Pz O p.j p

|:|P0B[D(BPX g p.J P] DngB DgaB.f [J.A&x.O0f x =g x] =g [J.»xOf

B(oB)

x =g x] Of =

Eooaon [= Xgl - = Ya

T = Z10(01)

Do(aa)(m.Dgw [i g [A, x] Oi g.Ax g.gx] O00Of, Oy,.i [&xxy] f Ofy-=
y

(Thisisalemmafor X6106. You may need to ASSERT DESCR or T5310 or T5310A)

On

NAT n OOq,.n q O0]j Or,.r OqgOOx r x Or.jr

o(or)*

1(o1)

58

Appendix |V

X6106 FINNTE [Ax, T] O0j,, Or.xr x Or.jr
X6201 r Ox, Oy, Oz, [On r x w OO r

oaa

X X
R Ox, 0OY,, 0Z_. 0N, R X WOO R X X

o(oa)(oa)

X8030A [9,, TOg O = 0x, g x

59

60

| ndex

% 40 CVRG*, Editor command 53

0 621,40 CMUT, Editor command 53

T 6,40 CMUT*, Editor command 53

~ 39 CNF, Editor command 53

= 40 CNTOP, Editor command 53

<= 40 COMPLETION-OPTIONS, Flag 4
COND, 40

0, Editor command 15 CONTAINS-DEFN 55
Control characters 3, 47

?, System Command 4,9, 14 Current subproof 10

CW Editor command 6, 15
A, Editor command 15

AB, Editor command 15 D, Editor command 15
AB*, Inference Rule 19,23 DB, Editor command 52
ABE, Inference Rule 19, 23 DEDUCT, Inference Rule 18, 21, 33, 35, 43, 44
ABNORM Editor command 51 DELETE, System Command 12
ABORT 4 DELETE*, System Command 12
ABSURD, Inference Rule 18, 22 DELETE- HYPS, Inference Rule 18, 20
ABU, Inference Rule 19, 23 DELWVEAK, Editor command 51
ADD- HYPS, Inference Rule 18, 20 DEPTH, System Command 12
ADVI CE, System Command 1,9, 13 DI SJ- | MP, Inference Rule 18,21
Alias 7 DI ST- CTR, Editor command 53
ALl AS, System Command 9, 49 DI ST- CTR*, Editor command 53
AND, 40 DI ST- EXP, Editor command 53
ANYTHI NG, Argument Type 5 DI ST- EXP*, Editor command 53
Argument Types DNEG, Editor command 53
ANYTHI NG 5 DNEG*, Editor command 53
BOOK- THEOREM 6 DONE, System Command 9, 30, 32, 34, 38
BOOLEAN 5 DUPW Editor command 54
EXERCI SE 6 DW Editor command 51
EXI STING LI NE 5 DW , Editor command 51
EXI STI NG LI NELI ST 6
FI LESPEC 5 ECONJ, Inference Rule 18, 21, 36, 43
GVAR- LI ST 7 ED, 30
GVAR 6 ED, System Command 14
GNFFO 6 EDEF, Inference Rule 19, 25, 43
GAFF 5,6 EDI LL, Editor command 54
GWFFLI ST 7 EDWIN-CURRENT, Flag 15
| NTEGER+ 5 EDWIN-TOP, Flag 15
LI NE- RANGE- LI ST 6 EGEN, Inference Rule 19, 23, 29, 34
LI NE- RANGE 5 END- PRFW System Command 1, 10
LINE 5 ENEG, Inference Rule 19, 22
LI NELI ST 6 EP, Editor command 52
OCCLI ST 6 EQP, 40
PLINE 5 EQUIV, 40
PCSI NTEGER 5 EQUI V-1 MPLI CS, Inference Rule 18,21
PRACTI CE 6 EQUI V- WFFS, Inference Rule 19, 25
STRING 5 EQUI VS, 40
SYMBOL 5 ETA*, Inference Rule 26
TEST- PROBLEM 6 ETAB, Editor command 51
TYPESYM 6 ETAC, Editor command 51
YESNO 5 ETAN, Editor command 51, 52
ASRB, Editor command 53 ETAX, Editor command 51
ASRB*, Editor command 53 EXECUTE- FI LE, System Command 7, 11
ASSERT, Inference Rule 18, 20 EXERCI SE, Argument Type 6
ASSL, Editor command 53 EXERCI SE, System Command 1, 9, 29, 31, 33, 42
ASSL*, Editor command 53 EXI STI NG LI NE, Argument Type 5
ASSR, Editor command 53 EXI STI NG LI NELI ST, Argument Type 7
ASSR*, Editor command 53 EXI STS, 39
EXI STS1, 39
BEG N- PRFW System Command 1, 10 EXI STSN, 39
BETA*, Inference Rule 26 EXI T, System Command 3,9, 10, 32, 34, 38
BOOK- THEOREM Argument Type 6 EXPAND=, Editor command 51
BOOLEAN, Argument Type 5 EXT=, Inference Rule 19, 24, 42

EXT=0, Inference Rule 19, 24, 42
CASES, Inference Rule 18, 20

CHECK- STRUCTURE, System Command 13 FALSEHOOD, 6,40
CLEANUP, System Command 9, 32 Seeadso O
CMRG, Editor command 53 FB, Editor command 15

61

FI , Editor command 15
FI LESPEC, Argument Type 5
FINITE, 41

Flag 7

Flags 14
FORALL, 39
FORALLN, 39
FREE-FOR 55
Gaps 13

GVAR, Argument Type 6
GVAR- LI ST, Argument Type 7
GWFF, Argument Type 5,6
GWFFO, Argument Type 6
GWFFLI ST, Argument Type 7

HEAD, Editor command 53
Help

Seedso ?
HELP, System Command 1,9, 36
HI STORY, System Command 9, 48
HISTORY-SIZE, Flag 9, 47
HVARS, Editor command 53
HYP, Inference Rule 18, 20

| B, Editor command 15

| CONJ, Inference Rule 18, 21, 36

| DEF, Inference Rule 19, 25, 43, 44
I LL, Editor command 54

| MP- DI SJ, Inference Rule 18,21

| MPLI CS- EQUI' V, Inference Rule 18, 21, 42

| MPLI ES, 40
| NDI RECT, Inference Rule 18,21, 31
I NDI RECT1, Inference Rule 18,22
| NDI RECT2, Inference Rule 18, 22
I NEG, Inference Rule 19, 22
Inference Rules

AB* 19, 23

ABE 19, 23

ABSURD 18, 22

ABU 19, 23

ADD- HYPS 18, 20

ASSERT 18,20

BETA* 26

CASES 18,20

DEDUCT 18, 20, 33, 35, 43, 44

DELETE- HYPS 18,20

DI SJ-1MP 18,21

ECONJ 18, 21, 36, 43

EDEF 19, 25, 43

EGEN 19,23,29, 34

ENEG 18,22

EQUI V-1 MPLI CS 18,21

EQUI V- WFFS 19, 25

ETA* 26

EXT=0 19, 24,42

EXT= 19,24,42

HYP 18,20

| CONJ 18,21, 36

| DEF 19, 25,43, 44

I MP-DISJ 18,21

| MPLI CS- EQUI'V 18, 21,42

| NDI RECT1 18,21

| NDI RECT2 18,22

| NDI RECT 18,21, 31

I NEG 19, 22

LAVBDA* 19, 26

LCONTR* - BETA 26

LCONTR*- ETA 26

LCONTR* 19, 26

62

LEMVA 18, 20
LET 19,24
LEXPD* - BETA 26
LEXPD* - ETA 27
LEXPD* 19, 26
MP 18, 22, 36, 37
PULLNEG 19, 22
PUSHNEG 19, 22, 31
RULEC 19, 23,31
RULEP 18,19, 30, 32, 44
SAME 18, 20
SUBST- EQUI V 19, 25
SUBST= 19,24
SUBST=L 19,24
SUBST=R 19, 25
SUBSTI TUTE 19, 24
SYM= 19,25
UGEN 19, 23, 29, 36, 37, 42, 44
U 19,23,31,35,44
I NST, Editor command 51
INST-DEF 55
I NST1, Editor command 51
I NSTALL, Editor command 51
| NTECER+, Argument Type 5
| NTERSECT, 40

| NTRODUCE- GAP, System Command 13

ISVARIABLE 55
JAVAW N, System Command 1, 10

L, Editor command 15

LAMBDA, 39

LAMBDA*, Inference Rule 19, 26
LCONTR 56

LCONTR*, Inference Rule 19, 26
LCONTR* - BETA, Inference Rule 26
LCONTR* - ETA, Inference Rule 26
LEAVE, System Command 14
LEMVA, Inference Rule 18, 20
LET, Inference Rule 19, 24

LEXP, Editor command 51
LEXPD*, Inference Rule 19, 26
LEXPD* - BETA, Inference Rule 27
LEXPD* - ETA, Inference Rule 27
LI NE, Argument Type 5

LI NE- RANGE, Argument Type 5

LI NE- RANGE- LI ST, Argument Type 6

LI NELI ST, Argument Type 6

LI ST, System Command 14

LI ST- RULES, System Command 9
LNORM 56

LNORM Editor command 51
LNORM-BETA 56

LNORM BETA, Editor command 51
LNORM-ETA 56

LNORM ETA, Editor command 51, 52

MBED- AL, Editor command 52
MBED- AR, Editor command 52
MBED- E, Editor command 52
MBED- E1, Editor command 52
MBED- F, Editor command 52
MBED- | L, Editor command 52
MBED- | R, Editor command 52
MBED- L, Editor command 52
MBED- OL, Editor command 52
MBED- OR, Editor command 52
MBED- QL, Editor command 52
MBED- QR, Editor command 52
MBED=L, Editor command 52

MBED=R, Editor command 52

M N- SCOPE, Editor command 53

MODI FY- GAPS, System Command 13, 37
MOVE, System Command 13

MOVE*, System Command 13

MP, Inference Rule 18, 22, 36, 37

MRG, Editor command 53

MRG*, Editor command 53

MJ, 41

MJ BI ND, 39

NAME, Editor command 51
NAT, 41

NC, 41

NEG, Editor command 16
NEWS, System Command 9
NNF, Editor command 16
NON-ATOMIC 55

NOT, 39

NOT-FREE-IN 55
NOT-FREE-IN-HYPS 55

O, Editor command 54
OCCLI ST, Argument Type 6
OK, Editor command 15

ONE, 41
OP, Editor command 52
OR, 40

P, Editor command 15

PALL, System Command 10, 12, 30, 32, 34, 37
PL, System Command 12

PL*, System Command 12

PLAN, System Command 12

Planned 10

PLI NE, Argument Type 5

PLI NE, System Command 12

PMUT, Editor command 53

PMJT*, Editor command 53

POP, System Command 4

POSI NTEGER, Argument Type 5
PONERSET, 40

PP, Editor command 15

PPLAN, System Command 12, 36
PRACTI CE, Argument Type 6
PRINTEDTFILE, Flag 54
PRINTEDTFLAG, Flag 54
PRINTLINEFLAG, Flag 10

PRI NTPROOF, System Command 12, 38
PRINTTYPES, Flag 6

PROBLEMS, System Command 1,5, 6,9
PROOFLI ST, System Command 9
PROOFW-ACTIVE, Flag 10
PROOFW-ACTIVE+NOS, Flag 10
PROOFW-ALL, Flag 10

PROVE, System Command 1,9, 33,35
PS, Editor command 15

PSTATUS, System Command 3, 10
PT, Editor command 15

PULL- NEG, Editor command 16
PULLNEG, Inference Rule 19, 22
PUSH, System Command 4

PUSH- NEG, Editor command 16
PUSH-NEGATION 56

PUSHNEG, Inference Rule 19, 23, 31
PW System Command 12

PWSCOPE, System Command 12
PWI'YPES, System Command 13

Quitting

63

Seeaso END- PRFWEXI T, LEAVE, K

R, Editor command 15
R-PRIME-RESTR 55

RECONSI DER, System Command 9
RECURSI ON, 41

RED, Editor command 52

REM Editor command 54

REMARK, System Command 9
RENUMBERALL, System Command 13
RESTORE- WORK, System Command 11, 13
RESTOREPROOF, System Command 2, 11
RESUME- SAVE, System Command 2, 11
RESUME- WORK, System Command 2
REVI EW System Command 14

REW EQUI V, Editor command 16
RIGHTMARGIN, Flag 14

RP, Editor command 16

RPALL, Editor command 16

RULEC, Inference Rule 19, 23, 31
RULEP, Inference Rule 18, 19, 30, 32, 44
RULEP- DELUXE, Function 19
RULEP-MAINFN, Flag 19

RULEP- SI MPLE, Function 19

RW Editor command 51

S 55

SAME, Inference Rule 18, 20
SAME-MODULO-EQUALITY 55

SAVE, Editor command 54

SAVE- WORK, System Command 2, 3,7, 11, 31
SAVEPROOF, System Command 2, 11
SCRI BEPROCF, System Command 12
SCRI PT, System Command 3, 11
SETEQUI V, 40

SETFLAG, System Command 14

SETI NTERSECT, 40

SETUNI ON, 40

SHORT-HELP, Flag 9

SHOWNOTYPES, System Command 14
SHOWTYPES, System Command 14

SI GvAL, 41

Sponsor 10

SPONSOR, System Command 11
SQUEEZE, System Command 13, 30, 32, 37
Status 10, 17

STOP- SAVE, System Command 2, 3,7, 11, 13,31

STRI NG, Argument Type 5

SUB, Editor command 16

SUBEQ, Editor command 53
SUBEQ*, Editor command 53

SUBI M Editor command 53

SUBI M, Editor command 53
SUBJECTS, System Command 14
SUBPROOF, System Command 11, 43
SUBSET, 40

SUBST, Editor command 16
SUBST- EQUI V, Inference Rule 19, 25
SUBST=, Inference Rule 19,24
SUBST=L, Inference Rule 19,25
SUBST=R, Inference Rule 19,25
SUBSTI TUTE, Inference Rule 19, 24
SUBSTYP, Editor command 16
SUCC, 41

SUMVARY, System Command 9
SYM=, Inference Rule 19, 25
SYMBOL, Argument Type 5

TEST- PROBLEM Argument Type 6
TEXPROOF, System Command 12, 30, 32, 34

THAT, 39
TP, Editor command 54
TRUTH, 6,40
Seeaso T
TYPESYM Argument Type 6

UGEN, Inference Rule 19, 23, 29, 36, 37, 42, 44
Ul , Inference Rule 19,24, 31, 35, 44

UNALI AS, System Command 10, 49

UNDO 13

UNDO, Editor command 15

UNI ON, 40

UNI TSET, 41

UNSCRI PT, System Command 11
UNSPONSOR, System Command 11, 44

WFFEQ-AB 55
WFFEQ-AB-BETA 55
WFFEQ-AB-ETA 55
WFFEQ-AB-LAMBDA 55
WFFEQ-DEF 55

WFFP, Editor command 54

XTR, Editor command 15
YESNO, Argument Type 5
ZERO, 40

A, Editor command 15

AP, System Command 10, 12, 31, 32, 33, 43
APN, System Command 10, 12

1. ETPS User Interface

1.1. Introduction

Table of Contents

1.2. Saving and Restoring Your Work

1.3. Exiting and Reentering ETPS
1.4. Top-level Interaction

1.5. Using Commands and Defining Wffs

1.6. Flags and Amenities
1.7. Bugsand Error M essages

2. System Commands

2.1. Communication
2.2. Starting and Finishing
2.3. Starting the Java I nterface
2.4. Proofwindows
2.5. The Current Subpr oof
2.6. Saving Work
2.7. Printing
2.8. Rearranging the Proof
2.9. Proof Assistance
2.10. Higher-Order Logic
2.11. Flags and Review
2.12. ETPS Editor
2.12.1. Top-Levels
2.12.2. Printing
2.12.3. Labels
2.12.4. Moving Commands
2.12.5. Substitution
2.12.6. Negation movers

3. Inference Rules

3.1. How to Read I nference Rules
3.2. Quick Referenceto Rules
3.3. Special Rules

3.4. Miscellaneous Rules

3.5. Propositional Rules

3.6. Negation Rules

3.7. Quantifier Rules

3.8. Substitution Rules

3.9. Equality Rules

3.10. Definition Rules

3.11. Lambda Conversion Rules

4. Sample Proofs

4.1. Example 1
4.2. Example 2
4.3. Example 3

5. TypeTheory in ETPS

5.1. Using ETPSfor Type Theory

5.1.1. Typesin Higher-Order Logic

5.1.2. Abbreviations and Special Symbols

5.1.3. Some Examples of Higher-Order Wffs
5.2. Example of a Proof of a Higher-Order Theorem

O©CO O NNPWWNEF -

Appendix |. Amenities

|.1. Control charactersfor Unix
|.2. Command Sequences

|.3. History Substitutions

1.4. Aliases

Appendix I1. More Editor Commands

I1.1. Labels

I1.2. Basic Abbreviations

I1.3. Lambda-Calculus

I1.4. Quantifier Commands

I1.5. Embedding Commands

I1.6. Changing and Recur sive Changing Commands
I1.7. Miscellaneous

11.8. Wellfor medness

11.9. Saving and Recording Wffs

Appendix I11. Wff Operations

I11.1. Equality between Wffs
I11.2. Predicates on Wffs
I11.3. Substitution

I11.4. Basic Abbreviations
I11.5. Lambda-Calculus
I11.6. Negation movers

Appendix V. Theorems and Exercises

IV.1. Book Theorems
IV.2. First-Order Logic
IV.3. Higher-Order Logic

I ndex

