Web 2.0 Applications
with EGL Rich Ul

March 18, 2009

— Note

The information contained in these materials is provided for informational purposes
only and is provided AS IS without warranty of any kind, express or implied. IBM
shall not be responsible for any damages arising out of the use of, or otherwise
related to, these materials. Nothing contained in these materiasis intended to, nor
shall have the effect of, creating any warranties or representations from IBM or its
suppliersor licensors, or atering the terms and conditions of the applicable license
agreement governing the use of IBM software. References in these materialsto actual
or potential 1BM products, programs, or services do not imply that they will be
availablein all countriesin which IBM operates. Current planning about actual or
potential product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other
factors, and are not intended to be a commitment to future product or feature
availability in any way.

Before using this information and the product it supports, read the additional
information in “Notices’ at the end of this document.

© Copyright International Business Machines Corporation 1996, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

Web 2.0 Applications

with EGL Rich Ul 1
Introductionto EGL and EGL RichUI 1
WED 2.0 .. 2
Quick Application Development from Multiple Sources . 2
Greater Application Flexibility and Attractiveness 3
Increased Market Potential 4
Easier Application Distribution 4
Faster Collaboration in Pursuit of aBusinessGoa 4
Rich Internet Applicationsand EGL RichUl 5
How a Rich Ul Application Fitsin the Enterprise 6
Support for Old and New Programming Models 7
End-to-end processingwithEGL 8
Deployment i 9
TheDOM Treeot e 9
TheRichUlHandlerPart 13
Introduction totheRich Ul Editor 16
EmbeddedHandlers i 18
Overview of SerVICEACCESS ... oo vi i 19
Stylesof Service ACCESSo 19
ServiceaccessinRichUl 20
Divisionof Labor inEGL RichUl 21
EGL Controller and ValidatingForm 22
Form Validation, Commit, and Publish 27
Servicelnvocationand Response 28
Defining Displayable Text in an External File 30
For Additional Information 31
NOUICES . oot e e e e 32
Programming interface information 34

Trademarksand servicemarks 34

Web 2.0 Applications
with EGL Rich Ul

T his whitepaper briefly introduces EGL, a business language that
both protects a company’s investment in software and facilitates a
developer’s use of new technologies. Our main focus is on the language’s
support for Web 2.0, which is a set of innovative techniques for reaching
users who rely on browsers, personal digital assistants, and cell phones.

We describe Web 2.0 and show how it relates to enterprise development. We
then demonstrate how to use EGL to create aresponsive user interface. Last,
wetell how to access Web services, which may be deployed in techical
environments as diverse as the Windows platforms, Linux, IBM i, and CICS®
for z/OS®.

Introduction to EGL and EGL Rich Ul

EGL isahigh-level language that lets devel opers create business software
without requiring that they have a detailed knowledge of runtime technologies
or that they be familiar with object-oriented programming. The language is
architected to reflect patterns that are common to different kinds of business
software, and the language hides many details that are platform specific.

EGL helps a company retain developers who are knowledgeable in business
processes, even if those devel opers lack the time needed to stay current with
technical change. And the relative simplicity of the language helps traditional
devel opers become accustomed to the latest technologies.

The language feature that supports Web 2.0 is called Rich Ul. Working with
this feature, you can create innovative user interfaces, which in turn can
access back-end services that process enterprise data. The services may be
developed by your company—uwritten in EGL or another language—or may
be available on the Web.

Of particular interest isthis: you can use EGL logic—often, just afew lines of
code—to exchange data between a Web 2.0 application and along-standing

2

Web 2.0 with EGL Rich Ul

in-house application; for example, a COBOL application that runson IBM i
or System z. In thisway, EGL help you to retain your software inventory as
technol ogies change.

EGL also protects your company against the effects of future change. The
language’s support of multiple platforms means that migration of EGL code
will berelatively easy.

In short, use of EGL is prudent. The language conserves devel oper time,
training cost, and software inventory and is a hedge against future change.

EGL is provided in each of the following products:
* IBM Rational Business Developer
* |BM Rational Developer for i for SOA Construction
* IBM Rational Developer for System z with EGL
A freetrial of Rational Business Developer is available at the following site:

http: //www.ibm.convr ational/cafe/community/egl

Web 2.0

The next sections outline the general benefits of developing Web 2.0
applications.

Quick Application Development from Multiple Sources

Web 2.0 lets your company quickly develop mashups, each of whichisa
combination of software capability from different sources. For example, you
might be developing an application to let travelers reserve rooms in one or
another city. With Web 2.0, the application can provide access to a Google™
map for each hotel and can include, within the map, aweather forecast for the
city. Neither the mapping software nor the forecast software was created with
the other in mind, yet the two kinds of software are usefully integrated in a
creative way.

Web 2.0

Web 2.0 makes a huge amount of Internet-based data available to your
company. The effect is to increase convenience for customers and internal
users and to reduce development expense.

Greater Application Flexibility and Attractiveness

Web 2.0 interfaces are flexible and have a dynamic quality. The potential
variationsin style and content alow for avisual quality that is far removed
from atraditional business application. As before, the developer’sjobisto
create an interaction that gives users a set of choices appropriate to the
business need. An additional goal isto let users be productive in their
individual ways while protecting them from distractions and from being
overwhelmed by unwanted choice.

Consider an interface that lets users find a real-estate property of interest
(Figure 1). The user can search for a specific location, price range, type of
property, and so on.

Raleigh, NC

Figure 1: Example Interface for a Web 2.0 Application

The user changes entries at the left of the screen to display a set of pictures
that reflect the search criteria. The user then uses a mouse to move a cursor
over the set of pictures and in thisway scrolls the images to the right or left.
The bottom area of the screen shows details of whatever houseis displayed at
the front and center. The user can then access a mortgage cal culator to quickly
learn the monthly payment needed to pay back aloan of agiven size and term
for the selected property.

4 Web 2.0 with EGL Rich Ul

Later, we consider some of the technol ogical advances that make Web 2.0
applications like this one possible; in particular, JavaScript™, AJAX,
asynchronous service access, and cascading style sheets.

Increased Market Potential

M odern Web-based applications|et you attend to the preferences of individual
users. The value of that capability is highest for Web-based sal es applications,
for the following reason: attention to the changing preferences of alarge
number of users means that your company can benefit from niche markets, as
noted in The Long Tail: Why the Future of Businessis Selling Less of More, by
Chris Andersen (Hyperion, 2006).

Here's an example. Amazon.com books that rank low in sales provide a
relatively large percentage of overall sales compared to the benefit of such
books in a brick-and-mortar store, where shelf spaceisacritical factor in
attracting business. The increased sales of lower-ranked productsis a
consequence of two factors: the sheer numbers of potential customers on the
Web, and the individual attention paid to those people. The consequence of
increased interest in lower-ranked products is an increase in overall revenue.

Easier Application Distribution

Web 2.0 allows a quick response to changing business needs. Thereason is
easy application update. Devel opers can add capabilities without reinstalling
an application on multiple workstations. A Web 2.0 application is deployed on
aWeb server such as WebSphere® Application Server or Apache Tomcat.
Users then access the application from a Web browser that resides on a
workstation or on amobile device such asan iPhone. A user requests the most
recent version of the application simply by clicking a button or typing a Web
address.

Faster Collaboration in Pursuit of a Business Goal

Web 2.0 also allows a company to gain the benefits of faster collaboration.
The blogs (Web logs) found throughout the Internet offer amodel for
handling business tasks such as consulting with experts or eliciting customer
opinion. Search mechanisms are available for finding detailsin specific posts,

Rich Internet Applications and EGL Rich Ul

which can be categorized by keyword so that users can retrieve information as
needed, avoiding the excessive information that undermines productivity.

Rich Internet Applications and EGL Rich Ul

A subset of Web 2.0 applicationsis in the category of Rich Internet
Application (RIA). An example is the real-estate application that we
introduced earlier.

The processing of an RIA occurs primarily in the browser. Thelogic is said to
be client side because the logic does not run on the remote machine that
transmits the Web page. As aresult, the response time for user interactionsis
unusually fast. Fewer resources are needed on the server, lessening the load
on the server-side machine and reducing the need for hardware.

You write RIAswith EGL by using Rich UI.

With Rich Ul, your logic is the basis of Web Page
generated, client-side JavaScript. The
important detail about JavaScript isthat it
provides greater flexibility so that the

Highlight Insurance

. © Home
user’s experience can go beyond @ Car
receiving a page and submitting a form. (| Selectign¥ Car

SUBMIT

Consider Figure 2, for example. After the
user clicks aradio button, the code can
respond by changing the content of a
second control such as a textbox.

Figure 2: Example Use of JavaScript

The change occurs quickly because the logic runslocally and, in most cases,
redraws only one area of the page.

An extension of client-side JavaScript is Asynchronous JavaScript and XML
(AJAX), atechnology that permits the runtime invocation of remote code and
the subsequent update of a portion of aWeb page, even as the user continues
working elsewhere on the page. For example, after the user selects a purchase
order from alist box, the JavaScript logic might request transmission of order-
item details from the remote Web server and then place those detailsin atable
displayed to the user. In thisway, the application can access content from the
server but can save time by selecting, at run time, which content is
transmitted.

6 Web 2.0 with EGL Rich Ul

How a Rich Ul Application Fits in the Enterprise

Figure 3illustrates how a Rich Ul application might fit into a larger technical
scheme at run time.

EGL Rich Ul Proxy

I Tier 1 | I Tier 2

Figure 3: The Rich Ul Application at Run Time
Our example scheme includes four logical tiers:
» Tier 1isaWeb browser where the Rich Ul application runs

» Tier 2isaWeb server that transmits the Rich Ul application and that
handles the code’s subsequent access of services (as described later)

» Tier 3isthe software that runs those services
* Tier 4 isthe software that hosts a database

A tier islogical in the sense that some or all can be on the same machine. The
distinction among the tiers gives you away to think about the different kinds
of processing that occurs at run time.

After aWeb server transmits the Rich Ul application to the user’s browser,
subsequent interaction with the server occurs only if the browser-based code
accesses a service, which isaunit of logic that is more-or-less independent of
any other unit of logic. A service might be half aworld away from the user.

The Rich Ul application can access any number of discrete services, and each
might do a simple task such as provide details on a property. However,
enterprise development often involves access of service-oriented
applications. Each of these applicationsis composed of services that work as

Support for Old and New Programming Models

aunit to fulfill a specific and complex purpose; for example, to process a
mortgage request.

You automatically deploy the Rich Ul application with the EGL Rich Ul
Proxy, which is EGL runtime code that handles the communication between
the Rich Ul application and the accessed services.

Support for Old and New Programming Models

A traditional COBOL, RPG, or Web application is form based. The typical
steps may be quite familiar to you:

1. Transmit aform from a server, to elicit user input

2. Ontheclient, validate the input for a given field; for example, to
ensure that a numeric field contains only digits

3. Elicit the user’s data submission, which occurs when the user takes an
action such as clicking a SUBMIT button or pressing ENTER

4. Onthe server, validate the submitted data to ensure (for example) that
one field value—such as U.S. state—is compatible with a second—
such as zip code:

+ |If the cross-field validation fails, redisplay the same form,
including an error message and the user’s input

+ If the cross-field validation succeeds, store the datain a data-
base and, if necessary, transmit a different form to the user

Whatever the variations in these steps, the form-based processing model has
widespread and continued value. When you use EGL Rich Ul, you can
organize datafieldsinto a set of forms, can enforce a pre-specified ordering of
user tasks, and can perform cross-field validation on aform-by-form or
multiform basis. The new EGL technology lets you simulate use of the old.

However, even if you simulate use of the old technology, Rich Ul offers
benefits that are specific to Web 2.0. First, the cross-field validations can
occur in logic that runs in the browser, so you can move from form to form
quickly, without contacting the server. Second, any contact with the server is
asynchronous, which means that the user does not wait for a response, but

8

Web 2.0 with EGL Rich Ul

keeps interacting with the application. Later, we show how anew variation in
the EGL call statement makes this behavior possible.

Beyond leading the user through a sequence of forms, you can devise an
application flow that updates different areas of the screen from within the
application; for example, in response to the user’s choice or to some
combination of application data. Again, changes to the displayed Web page
reflect statements that run in the client-side code.

End-to-end processing with EGL

Rich Ul is only one of the EGL facilities that are available when you work
with one of the products listed on page 2. You can always do the following
tasks:

» Create an EGL Web project. Working in that project, you write,
generate, and debug services and specify details on how a given
service will be deployed.

» Create an EGL Rich Ul project. Working in that project, you write a
Rich Ul application that interacts with users and that accesses
services. The EGL debugger lets you step through the application,
step into an invoked service that you generated previoudly, and step
through the rest of the application. The Rich Ul deployment wizard
lets you organize the generated output for placement on one or
another type of Web server.

» Organize your generated outputs for installation on the same Web
server or on different ones.

The available tools include a visua editor for Rich Ul, aswell as a source-
code editor and enterprise tooling that help you to handle many aspects of
development and code preparation.

We use the phrase end-to-end processing to indicate that both the front- and
back-end logic can be written in EGL. In response to a simple requirement,
you can code all aspects of end-to-end processing. More important for
enterprise development, you can share expertise with colleagues who are
handling different aspects of a complex requirement and who share both the
development environment and the coding language.

Deployment 9

The ahility to communicate easily—a result of shared knowledge and
experience—offers a productivity boost beyond the boost offered by the tools
and by the structure of EGL itself.

Deployment

A Rich Ul application that is deployed to WebSphere Application Server or
Apache Tomcat is accompanied by the EGL Rich Ul Proxy, which is runtime
software that oversees communication between the application and each
service that is accessed by the application.

A Rich Ul application that is deployed to asimple HTTP server—for
example, to the Apache HTTP server—has the interface capabilities of aRich
Internet Application but does not support service access.

The DOM Tree

We now describe how browsers handle a Rich Internet Application at run
time. The purpose is twofold:

» To help you learn the Rich Ul technology faster, asis possible by
clarifying the runtime effect of what you code at development time

* Tomakeit easy for you to respond to advanced technical
regquirements

When a user enters a Web address into a browser, the browser transmits a
reguest to a Web server, which is usually on a second machine. The address
identifies a specific server and indicates what content is to be returned to the
browser. For example, if you enter the address http://mwwww.ibm.com, a server
replies with a message that the browser uses to display the IBM home page.
The question that is of interest now is, how doesthe browser use the message?

The browser brings portions of the message into an internal set of data areas.
The browser then uses the values in those data areas to display on-screen
contrals, which are commonly called widgets. Example widgets are buttons
and text fields.

Consider the next Web page (Figure 4).

10 Web 2.0 with EGL Rich Ul

| Input fo Outpuit_ Hello World

Figure 4: Example Web Page
Seven widgets are displayed:
» Theenclosing box is myBox

* The upper box within myBox is myBox02 and includes the text field
myHelloField

* Thelower box within myBox is myBox03 and includes the text field
mylnTextField, the button myButton, and the textField
myOutTextField

Theinternal data areas used by the browser are represented by an inverted tree

(Figure5).
Document
i
Body
myBox
myBox02 myBox03
I I |
myHelloField mylnTextField myButton myOutTextField

Figure 5: Example DOM Tree

The DOM Tree

Thetreeis composed of aroot—named document—and a set of elements,
which are units of information. The topmost element that isavailabletoyouis
named body. The elements subordinate to body are specific to your
application.

A set of rules describe both the tree and how to access the data that the tree
represents. That set of rulesis called the Document Object Model (DOM). We
refer to the tree asthe DOM tree; and we refer to the relationships among the
DOM elements by using terms of family relationships:

* myBox03 and myInTextField are parent and child
* myBox and myButton are ancestor and descendant
* mylnTextField, myButton, and myOutTextField are siblings

In the simplest case (asin our example), awidget reflects the informationin a
single DOM element. In other cases, awidget reflects the information in a
subtree of several elements. But in all cases, the spacia relationship among
the displayed widgets reflects the DOM-tree organization, at least to some
extent. The following rules describe the default behavior:

* A widget that reflects a child element is displayed within the widget
that reflects a parent element.

* A widget that reflects asibling element is displayed below or to the
right of awidget that reflects the immediately previous sibling
element

We often use atechnical shorthand that communicates the main idea without
distinguishing between the displayed widgets and the DOM elements. Instead
of the previous list, we might say, “A widget is contained within its parent,
and asibling is displayed below or to the right of an earlier sibling.”

The DOM tree organi zation does not completely describe how the widgets are
arranged. A parent element may include detail that causes the child widgetsto
be arranged in one of two ways: one sibling below the next or one sibling to
theright of the next. The display also may be affected by the specifics of a
given browser; for example, by the browser-window size, which the user can
update at run time in most cases. Last, the display may be affected by settings
in one or more cascading style sheets, which are files that set display
characteristics for an individual widget or for all widgets of a given type.

11

12 Web 2.0 with EGL Rich Ul

When you develop a Web page with Rich Ul, you declare widgets much as
you declare integers. However, the widgets are displayable only if your code
also adds those widgets to the DOM tree. Your code can also update the tree—
adding, changing, and removing widgets—in response to runtime events such
as auser's clicking a button. The central point isthis: Your main task in
Web-page development is to create and update a DOM tree.

Some of the tasks needed for initial DOM-tree creation are handled for you
automatically when you work with the Rich Ul editor to fulfill a drag-and-
drop operation. Alternatively, you can create a DOM tree by writing EGL
definitions in source code and can even reference DOM elements explicitly.

In general terms, you create and update aDOM tree in three steps:

1. Declare widgets of specific types—Button for buttons, TextField for
text fields, and so forth—and customize the widget properties. For
example, you might set the text of a button to “Input to Output,” asin
our example. Hereis EGL code to set the text:

myButton Button {text = "Input to Output"};

2. Addwidgetsto theinitial DOM tree. Here is EGL code to relate one
widget to the next:

handler MyHandlerPart
type RUIhandler { initialUI =[myBox] }

myBox Box{ children = [myBox02, myBox03] };
myBox02 Box{ children = [myHelloField] };

myBox03 Box{ children = [myInTextField,
myButton, myOutTextField] };

myHelloField TextField { text = "Hello" };
myInTextField TextField{};
myButton Button { text = "Input to Output" };

myOutTextField TextField{};
end

The Rich Ul Handler Part

3. Alter the DOM tree by adding, changing, and removing widgets at
those points in your code when you want the changes to be
displayable. Here is EGL code that resets myBox03 so that the only
child of that box is myOutTextField:

myBox03.children = [myOutTextField];

Given the Web page in Figure 4 as a starting point, the revised Web
pageis asfollows:

Hello Warld

Figure 6: Revised Web Page Example

We say that awidget or its changes are “displayable” rather than “ displayed”
because awidget in a DOM tree can be hidden from view.

The Rich Ul Handler Part

To create aRich Ul application, you code a Rich Ul Handler part. The
Handler part holds the EGL logic to add widgetsto aninitial DOM tree
and to respond to events such as a user's click of a button.

Let’s consider our example Web page again (Figure 7).

{Hello Warld

Figure 7: Example Web Page

The content shown there is displayed after the user types World in the field
mylnputTextField and clicks the button.

14 Web 2.0 with EGL Rich Ul

Here isthe Rich Ul handler part that provides the logic for displaying that
Web page.

handler MyHandlerPart
type RUIhandler {initialUI =[myBox]}

myBox Box{padding = 8,
children =[myBox02, myBox03],
columns = 1,
backgroundColor = "Aqua"};

myBox02 Box{padding = 8, columns = 2,
children =[myHelTloField],
backgroundColor = "DarkGray"};

myBox03 Box{padding = 8, columns = 3,
children =[myInTextField, myButton,
myOutTextField],
backgroundColor = "CadetBlue"};

myHelloField TextField
{readOnly = true, text = "Hello"};

myInTextField TextField{};

myButton Button
{text = "Input to Output", onClick ::= click};

myOutTextField TextField{};

function click(e EVENT 1in)
myOutTextField.text =
myHelTloField.text +

+ myInTextField.text;
end
end

Listing 1: Code for the Example Web Page
Consider the following components of the part MyHandlerPart:

» Thedefinition statement at the beginning of the part has the identifier
RUIHandler, which indicates that the handler logic will be
transformed into client-side JavaScript. The part also has a set of
handler properties with which you customize runtime behavior.

e The part includes a set of widget declarations, Those declarations—
starting with the one for myHelloField—are ordered so that the later
declarations such as for myBox02 can access the earlier ones.

The Rich Ul Handler Part

The part includes an on-construction function, which is a function
that runs when the handler isfirst invoked by the browser. In this

example, the on-construction function is named initialization and
does nothing. Later, we give example logic for the function.

The part includes an event handler, which is afunction that you write
to respond to an event, In this example, the function click runs as soon
as the user clicks the button myButton.

You can also configure your code so that an event handler respondsto
an event that isinternal to the code. Such an event might be receipt of
amessage that was returned from a service.

You can see how to create an initial DOM tree by reviewing the part named
MyHandlerPart:

To specify which widgets are the initial children of the body element,
use the initialUl property of the Rich Ul handler. In our example, the
only child of the body element is myTopBox, which is awidget of
type Box. Thiswidget is arectangular control that can contain other
widgets.

To specify which other widgets are descendents of the body element,
use the children property of a container widget. In our example,
myTopBox is the parent of myBox02 and myBox03. The code also
shows that myBox02 isthe parent of myHelloField and that myBox03
isthe parent of myInTextField, myButton, and myOutTextField. We
illustrated these relationships earlier, in Figure 5.

Here's arevised example of the on-construction function, followed by a
revised display (Figure 8):

function initialization(Q)
myButton.text = “Click here!”;
initialUI = [myBox03];

end

| Hello World

Figure 8: Revised Web Page

16 Web 2.0 with EGL Rich Ul

Introduction to the Rich Ul Editor

You can use the EGL Rich Ul editor to modify a Rich Ul handler and to
preview the handler's runtime behavior.

The Rich Ul editor includes three views:

» TheDesign surfaceis arectangular areathat shows the displayable
content of the Rich Ul handler. You can drag-and-drop widgets from
the palette into the Design surface and then customize those widgets
in the Properties view.

» The Source view provides an embedded version of the EGL editor,
where you update logic and add or update widgets. The Design view
and Source view are integrated: changes to the Design view are
reflected in the Source view; and, if possible, changes to the Source
view are reflected in the Design view.

e ThePreview view isabrowser, internal to the Workbench, where you
can run your logic. You can easily switch to an external browser if
you prefer.

Figure 9 gives an example of afile open in the Rich Ul editor and shows the
Design surface, along with the palette at the right and, at the bottom Ieft, a
Properties view.

Introduction to the Rich Ul Editor

18 £GL Rich LI - MyRichIIPFo ject Gl SourcalmyPkp/Myttandler. sgl - Hational® Business Dovelopor ™
Fle Edt Wevgats Seerch Projct Run Window lheb

B0 G- M- k - | ea R
* Lmmtendeed

r] nputto Output [j

Conbe

.....

Frogartiat | Events

® || Gt Seamen | praview

wrtade Snatbnet | ®:§

Figure 9: EGL Rich Ul Editor

When you drag awidget from the pal ette to the Design surface, the areas that
can receive the widget are called potential drop locations, and the color of
those areasis yellow by default. When you hover over a potential drop
location, the areaiis called a selected drop location, and the color of that area
is green by default. You can customize those colors.

When you first drag awidget to the Design surface, the entire surfaceisa
selected drop location, and the effect of the drop is to declare the widget and
to identify it asthe first element in the Rich Ul handler's initialUl property.

When you drag another widget to the Design surface, you have the following
choices:

* You can place the widget adjacent to the initially placed widget. The
effect on your source code is to declare the second widget and to
identify it as another element in the initialUl array. Your placement of
the new widget is either before or after the first widget and indicates
where the widget is placed in the array at development time. The
ultimate effect isto specify another child of the DOM tree body
element at run time.

« If theinitially placed widget was a container—for example, a box—
you can place the second widget inside the first. The effect on your
source code isto add an element to the children property of the

17

18 Web 2.0 with EGL Rich Ul

container. The ultimate effect is to specify achild of the container
element at run time.

Your subsequent work continues to build the DOM tree. You can repeatedly
fulfill drag-and-drop operations, with the placement of awidget determining
what array is affected and where the widget is placed in the array. The drag-
and-drop operation is an alternative to writing awidget declaration and array
assignment in the code itself.

Embedded Handlers

You can use multiple Rich Ul Handler parts to compose a single application.
However, by saying “embedded handlers’” we do not mean to say that you
physically embed one Handler part in another. Instead, one Handler part—a
part that presents the user interface—declares a variable used to access the
functions and widgets in a second Handler part. For example, the following
statement declares a variable that provides access to the Handler part
secondHandlerPart:

myVariable secondHandlerPart{};

A reasonable practice is to use embedded handlers for service invocation and
for other back-end business processing.

If the embedded handler (secondHandlerPart) has an on-construction
function, the function runs when the related variable (myVariable) is
declared.

You use a dot syntax to access the widgets and functions in an embedded
handler. In the following outline, the handler secondHandlerPart is assumed
to have declared a button named itsButton, which is attached to the DOM tree
only after the button isincluded in the embedding handler:

handler SimpleHandler type RUIHandler
{ initialUI = [myVariable.itsButton] }
myVariable secondHandlerPart{};

end

Overview of Service Access

You can access a function or property in an embedded widget by extending
the dot syntax. For example, the following statement retrieves the displayed
text of the embedded Button itsButton:

myString STRING = myVariable.itsButton.text;

TheinitialUl array of the embedded handler has no effect at run time.

Overview of Service Access
We turn now to the back-end processing, returning later to areview of the
application structure.

Styles of Service Access

A service accessed from a Rich Ul application can represent either of two
styles:

» Traditional Web servicesfulfill aRemote Procedure Call (RPC) style.

In this case, you pass a business-specific operation name (for
example, GetEmployeeData) and a set of arguments. With this style,
invoking a serviceis similar to invoking a function.

* Incontrast, REST services conform to the rules of Representational
State Transfer (REST). The RESTful style is based on the transfer of
(at most) asingle unit of business data; for example, a set of values
that include an employee number, title, and salary. The invoked
service fulfills one of four preset operations:

¢+ GET, for reading data; for example, to retrieve details on the
specified employee

+ POST, for creating data
+ PUT, for updating data

¢+ DELETE, for deleting data

19

20 Web 2.0 with EGL Rich Ul

When you access a service that fully conforms with the principles of
REST, you do not need to include a business-specific operation name
such as GetEmployeeData.

A service provider indicates whether a service is deployed as a traditional
Web service or as a REST service. An important difference between the two
kinds of service technologiesistheir relative complexity:

A traditional Web service receives and returns data that isin aformat
called SOAP. which once stood for Simple Object Access Protocol.
The long name was dropped.

The complexity of atraditional Web service is related not only to the
message format, but to the required presence of a configuration file at
deployment time. That configuration fileis called aWeb Services
Description Language (WSDL) file.

The overall complexity has a benefit for enterprise development,
alowing for advanced capabilities related (for example) to security
and to coordination among services. In any case, the task of working
with the WSDL fileis handled largely by automated tools.

A traditional REST service exchanges messages but does not require
the added complexity of SOAP. Accessto thiskind of service usualy
does not involve a configuration file.

Service access in Rich Ul

Service invocation in Rich Ul is always asynchronous, which means that the
requester—the Rich Ul application—continues running without waiting for a
response from the service. The user can still interact with the user interface
while the Rich Ul application iswaiting for the service to respond. However,
you may want to indicate that an activity is occurring “ behind the scenes’ and
must compl ete before the user continues working. For example, you can
disable some functionality and present a simple animation until the service
responds.

A Rich Ul application can access a SOAP (Web) service or aREST (Web)
service, and either kind of service may be written in EGL.

Division of Labor in EGL Rich Ul 21

Access of a REST service involves adifferent way of thinking about service
construction and interaction, asis explained in Overview of Service Accessin
the EGL Rich Ul User Manual. (The Manual is cited at the end of this
document.) However, if you access a REST service written in EGL, you can
ignore the issuein favor of an RPC style that is similar to afunction
invocation.

To access aservice, you write one or two functions to handle the response that
follows a given invocation:

e A callback function receives the business data returned from a service

* AnonException function (if present) receives error detailsif the
runtime technology is unable to return business data

The overall process for invoking a service from Rich Ul has four steps:

1. Create an EGL Interface part, in some cases by working through an
automated task.

2. Create avariable based on the Interface part.

3. Code a call statement that includes a reference to a callback function
and (optionally) areference to an onException function.

4. Codethefunctionsthat werereferenced in the call statement. You can
start the task with afew clicksthat quickly create empty functions for
subsequent customization.

Division of Labor in EGL Rich Ul

Modern data-processing systems organize logic by a division of labor known
as Model, View, and Controller (MVC). The terms—especially view and
model—are variously defined:

» Theview isthe user interface, or the logic that supports the user
interface, or the business datain the user interface

* Themode isadatabase (or other data storage), or the logic that
accesses a database, or the datathat is sent to or retrieved from a
database

22 Web 2.0 with EGL Rich Ul

» Thecontroller isthelogic that oversees datatransfer between the user
interface and the database-access logic

In many cases, the acronym MV C refers to processing that involves multiple
platforms. For example, a Rich Ul application on a Windows platform might
be considered to be the view (and to include the controller), while a service
that accesses a database might be considered to be the model.

You can distinguish the view from maodel in the Rich Ul application itself. In
this case, the terms have a constant meaning:

* Theview isawidget in the user interface

 Themodel isadatafield that isinternal to the application

EGL Controller and ValidatingForm

Rich Ul provides two definitionsto help you create an MV C division of |abor.
The controller lets you tie a specific view to a specific model. The validating
form letsyou reference aset of controllersand in thisway simulate traditional
form processing.

Figure 10 shows a set of widgets, including avalidating form that allowsinput
of auser name, password, and email address.

Create Account

* User name: |
* Password: |
* Email:

[Submit] [Clearl

Figure 10: Traditional Form in Rich Ul

Division of Labor in EGL Rich Ul

The following outline indicates how you can accomplish the display:

handler MyHandlerPart
type RUIhandler {initialUI =[myDiv]}

myDiv Div {
width = 310,
borderStyle="solid",
borderWidth=1,
padding=10,
children=[myGrouping 1};

myGrouping Grouping {
text="Create Account",
legend. font="Arial",
children=[
myForm,
new Box {
marginTop=3,
children=[submitButton, clearButton]
}
1%;

myForm ValidatingForm{};

submitButton Button{ text = "Submit",
onClick ::= submitForm };

clearButton Button{ text = "Clear",
onClick ::= clearForm };

myService MyInterfacePart{@BindService{}};
myRecord MyRecordPart{};

// other declarations are not displayed
end

The topmost widget isadiv, which is a container that offers flexibility in
Web-page design. Here, the div includes a single child—a grouping, which is
awidget collection preceded by customized text. Thetext inthiscaseis
Create Account. The grouping in turn includes a validating form—our main
concern—and a box that contains two buttons.

Also present in the preceding code are two declarations:

23

24 Web 2.0 with EGL Rich Ul

* myService isavariable that is based on the Interface part
MylinterfacePart. We'll use the variable to access a Web (SOAP)
service.

* myRecord isarecord that points to an area described by the Record
part MyRecordPart. We'll use the record to work with myForm, the
validating form.

Consider the full declaration of myForm:

myForm ValidatingForm {
marginTop=20, marginLeft=20, marginBottom = 20,
entries = [
new FormField
{ displayName="* User name:",
controller = usernameController },
new FormField
{ displayName="* Password:",
controller = passwordController },
new FormField
{ displayName="* Email:",
controller = emailController }
]
b

Thefirst assignmentsin that declaration separate the form from other content.
However, at the heart of the declaration isthe entries field, which specifiesan
array of validating-form fields. Each field includes alabel (for example,

* User name:) and a controller. Here are the controllers:

usernameController Controller
{ @mvC { view = userNameField,
model = myRecord.userName } };

passwordController Controller
{ @emvC { view = passwordField,
model = myRecord.password } };

emailController Controller
{ @amvC { view = emailField,
model myRecord.email },
validators ::= validateEmail };

Each controller includes the complex property @mMvC, which tiesaview to a
model. Each view in this caseis basically atext field, although the widget

Division of Labor in EGL Rich Ul

passwordField additionally ensures that the user’s input is displayed asa
series of unreadable characters, for user security:

userNameField TextField{};
passwordField PasswordTextField{};
emailField TextField{};

Each model isafield in myRecord, the record that pointsto a data area
described by the following Record part:

Record MyRecordPart
userName string {
MinimumInput=6,
ValidationPropertiesLibrary = ValidationMessages,
MinimumInputMsgKey = "usrMinInput" };
password string {
MinimumInput = 8,
ValidationPropertiesLibrary = ValidationMessages,
MinimumInputMsgKey = "pwMinInput" };
email string {};
end

The declaration for amodel such as myRecord.userName can include simple
properties that cause the EGL runtime to validate user input. In our example,
the property MinimumIinput indicates that the minimum number of characters
for the user name is 6 and for the password is 8. Two of the models also
identify aRich Ul properties library and a message key. Those last details are
part of a mechanism by which you assign displayable text in an external file,
as needed to isolate changeabl e text outside of your code. One use of that
mechanism is to communicate with users who read one language or another.

In addition to specifying validations as shown in the previous code, you can
write validators, which are customized functions that also validate input. In

25

26 Web 2.0 with EGL Rich Ul

our example, the controller emailController references the validator
validateEmail:

emailController Controller
{ @amvC { view = emailField,
model = myRecord.email },
validators ::= validateEmail };
function validateEmail(input String in) returns(String?)
i int = StrLib.indexOf(input, "@");

if (i > 0)
i = StrLib.characterLen(input) - 3;
if (i == StrLib.indexOf(input, ".", 1i));

return("");

end

end

return(ValidationMessages.emailError);

end

The example function ensures that the “at sign” (@) isin the input email
address and that a period is three characters from the end of the address.

In general, you can code a validator of any complexity. A returned blank or
null from the validator indicates success, and a returned string is displayed as

an error message at the right of the validation-form field. We'll explain

ValidationMessages.emailError |ater, after we outline the process by which a
Rich Ul application hasthe following effect: validates user input; commits all

the validated data to some backend code—in our case, to a service; and
presents the returned data to the user.

Division of Labor in EGL Rich Ul 27

Form Validation, Commit, and Publish

You handle form validation by coding an event handler that responds to the
user’s click of abutton. In our example, the function is named submitForm:

function submitForm(event Event in)

if (myForm.isValid())
myForm.commit();

call myService.register
(myRecord.userName,
myRecord.password,
myRecord.email)
returning to myCallback;
end
end

When the function myForm.isValid runs, the validations for each controller
are handled in turn, in form-field order. The function myForm.commit is
invoked only if all validations succeed. Each controller-specific validation
includes several steps; and then the function myForm.commit causes a second
series of steps, invoking controller-specific commit functionsto transfer data
from views to models.

Two important details are not shown. First, Rich Ul offers away to minimize
user inconvenience when authentication is necessary for accessing the Rich
Ul application, the EGL Rich Ul Proxy, and individual services. For details,
see the sections on security in the EGL Rich Ul User Manual and, in
particular, see EGL single sign-on.

Second, you can use avalidation form to display the business data retrieved
from a service. The function you use in this case is publish; for example,
myForm.publish. Such afunction invokes the controller-specific publish
functions to transfer data from models to views.

Rich Ul gives you much control over the runtime behavior described here,
although system defaults are available. For details on controllers and form
processing, see the following sections in the EGL Rich Ul User Manual:

* Rich Ul validation and formatting

* Formprocessing with Rich Ul

28 Web 2.0 with EGL Rich Ul

Service Invocation and Response

Our example assumes that you are using an Interface part named
MylinterfacePart:

Interface MyInterfacePart
Function register(userName STRING 1in,
password STRING in,
email STRING 1in)
returns (STRING);
end

Our invocation of the service operation named register requires the presence
of the callback function myCallback, which accepts the returned business
data. That function refreshes the page with a set of widgets embedded in the
original Grouping widget (Figure 10).

Create Account

Success!
User name: Sandy Patel
Email address: sp@ibm.com

Figure 11: Display that Results from a Successful Service Access

Division of Labor in EGL Rich Ul

Here is myCallback:

function myCallback(serviceResponse in)
myGrouping.children = [
new TextlLabel {
color="red", fontWeight="bold", margin=10,
text = serviceResponse },
new Box { columns=2, marginLeft=10,
children=[
new TextLabel { text="User name:" },
new TextlLabel { marginLeft = 10,
text=myRecord.username},
new TextLabel { text="Email address:" },
new TextlLabel { marginLeft = 10,
text=myRecord.email},
new Button { width = 100, margin = 10,
text = "OK",
onClick ::= reset}

The user’s button click invokes the function reset:

function reset(e Event in)

myRecord = new MyRecordPart{};
myForm.pubTish;

myGrouping.children = [
myForm,
new Box { marginTop=3,
children=[
submitButton,
clearButton

1;

end

The function begins by pointing the global record myRecord to a new data
area of type MyRecordPart and then by publishing the empty data. The rest of
the code re-creates the original display (Figure 9).

For additional details on service access, see the EGL Rich Ul User Manud
section Accessing a service in Rich Ul, including the embedded sections on
REST and SOAP service access.

29

30 Web 2.0 with EGL Rich Ul

Defining Displayable Text in an External File

Rich Ul lets you define displayable text in an external file used at run time.
The mechanism is useful for the following reasons:

» To override the runtime messages that are available, by default, for
failed input validations or for incorrect formatting on output

» Toassign text to widgets without hard-coding that text in the Rich Ul
application

» Todisplay text in one or another language

The basic ideais that you set up variablesin alibrary (type
RUIPropertiesLibrary) and then provide the runtime content of those
variablesin a propertiesfile that is referenced in the library. Hereis an
example library:

Library ValidationMessages type RUIPropertiesLibrary
{ propertiesFile="myFile" }
emailError STRING;
otherContent STRING;

end

The content in a properties file can include inserts—substitution variables—
whose values are specified in your code. Thisfeature lets you embed business
data—for example, a specific employee number—in a message.

You can have several propertiesfile for agiven library, onefile for each
language you are supporting. The naming convention is crucial:

* You specify the root of the name as the value of propertiesFile (in
this case, the root is myFile).

* When you create the properties files, you specify names that include
locale information. For example, the file myFile-en.properties has
content in English, while the file myFile-es.properties has content in
Spanish

Theinvocation of the Rich Ul application determines which locale to use. For
example, to ensure use of Spanish files, the user might invoke an application
as www.example.conVMyApplication-es.html. A set of rules determineswhich
propertiesfile to access if the invocation does not match an available locale.

For Additional Information 31

For details on using propertiesfile, seethe EGL Rich Ul User Manual, section
Use of propertiesfilesfor displayable text.

For Additional Information

The EGL Rich Ul User Manual contains material that is also in the product
help system; however, the content in the Manual is likely to be more recent:

http://www.ibm.com/rational/cafe/docs/DOC-2689
The EGL Cafe also includes material of interest:
http: //www.ibm.convsoftware/r ational/egl cafe

For aconciseintroduction to EGL, see IBM Rational Business Developer with
EGL (MC Press, 2007):

http: //mmw.me-store.com/5087.html

For an expansion of the current essay, see Enterprise Web 2.0 with EGL
(MC Press, expected May 2009).

For details on Web-page design, see the following Web sites:
http: //mmw.w3school s.com/css
http://css.maxdesign.com.au

For a complete description of cascading style sheets, see CSS The Definitive
Guide (O'Reilly Media, Inc., November 2006).

For an overview of service interaction and some of the RPC-related
technologies, see SOA for the Business Developer (MC Press, May 2007).

For agood introduction to REST services, see Restful Web Services (O'Reilly
Media, Inc., May 2007).

32 Web 2.0 with EGL Rich Ul

Notices

This information was developed for products and services offered in the U.S.A. IBM may not
offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available
in your area. Any referenceto an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

Thefollowing paragraph does not apply to the United Kingdom or any other country
where such provisions areinconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "ASI1S' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESSFOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warrantiesin certain
transactions, therefore, this statement may not apply to you.

Thisinformation could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any referencesin this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at those
Web sites are not part of the materialsfor thisIBM product and use of those Web sitesis at your
own risk.

Licensees of this program who wish to have information about it for the purpose of enabling: (i)
the exchange of information between independently created programs and other programs

Notices

(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

Intellectual Property Dept. for Rational Software
3600 Steeles Avenue East
Markham, ON Canada L3R 927

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of afee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and thereis no guarantee
that these measurements will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results may vary. Users
of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-1BM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

Thisinformation contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

Thisinformation contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing,
using, marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a
copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs. © Copyright IBM Corp. 1996, 2008. All rights reserved.

33

34 Web 2.0 with EGL Rich Ul

If you are viewing this information softcopy, the photographs and color illustrations may not

appear.

Programming interface information

Programming interface information is intended to help you create application software using
this program.

General-use programming interfaces allow you to write application software that obtain the
services of this program'stools.

However, this information may also contain diagnosis, modification, and tuning information.
Diagnosis, modification and tuning information is provided to help you debug your application

software.

Warning: Do not use this diagnosis, modification, and tuning information as a programming
interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of International Business Machines Corporation in the
United States, other countries, or both:

AlX
cICcS
CICS/ESA®
ClearCase®
DB2®

IBM

IMS
Informix
iSeries
MQSeries®

™

MVS

05/400%

Notices 35

+ RACF®

e Rational

*« VisuaAge
« WebSphere
e Z/I0S

Intel isatrademark of Intel Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Linux isatrademark of Linus Torvaldsin the United States, other countries, or both.

Microsoft, Windows, and Windows NT® are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX isaregistered trademark of The Open Group in the United States and other countries.

Other company, product or service names, may be trademarks or service marks of others.

	Web 2.0 Applications with EGL Rich UI
	Introduction to EGL and EGL Rich UI
	Web 2.0
	Quick Application Development from Multiple Sources
	Greater Application Flexibility and Attractiveness
	Increased Market Potential
	Easier Application Distribution
	Faster Collaboration in Pursuit of a Business Goal

	Rich Internet Applications and EGL Rich UI
	How a Rich UI Application Fits in the Enterprise
	Support for Old and New Programming Models
	End-to-end processing with EGL
	Deployment
	The DOM Tree
	The Rich UI Handler Part
	Introduction to the Rich UI Editor
	Embedded Handlers
	Overview of Service Access
	Styles of Service Access
	Service access in Rich UI

	Division of Labor in EGL Rich UI
	EGL Controller and ValidatingForm
	Form Validation, Commit, and Publish
	Service Invocation and Response

	Defining Displayable Text in an External File
	For Additional Information
	Notices
	Programming interface information
	Trademarks and service marks

