
Web 2.0 Applications
with EGL Rich UI

March 18, 2009

Note

The information contained in these materials is provided for informational purposes
only and is provided AS IS without warranty of any kind, express or implied. IBM
shall not be responsible for any damages arising out of the use of, or otherwise
related to, these materials. Nothing contained in these materials is intended to, nor
shall have the effect of, creating any warranties or representations from IBM or its
suppliers or licensors, or altering the terms and conditions of the applicable license
agreement governing the use of IBM software. References in these materials to actual
or potential IBM products, programs, or services do not imply that they will be
available in all countries in which IBM operates. Current planning about actual or
potential product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other
factors, and are not intended to be a commitment to future product or feature
availability in any way.

Before using this information and the product it supports, read the additional
information in “Notices” at the end of this document.

© Copyright International Business Machines Corporation 1996, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents
Web 2.0 Applications
 with EGL Rich UI 1

Introduction to EGL and EGL Rich UI 1
Web 2.0 . 2

Quick Application Development from Multiple Sources . 2
Greater Application Flexibility and Attractiveness 3
Increased Market Potential . 4
Easier Application Distribution . 4
Faster Collaboration in Pursuit of a Business Goal 4

Rich Internet Applications and EGL Rich UI 5
How a Rich UI Application Fits in the Enterprise 6
Support for Old and New Programming Models 7
End-to-end processing with EGL . 8
Deployment . 9
The DOM Tree . 9
The Rich UI Handler Part . 13
Introduction to the Rich UI Editor . 16
Embedded Handlers . 18
Overview of Service Access . 19

Styles of Service Access . 19
Service access in Rich UI . 20

Division of Labor in EGL Rich UI . 21
EGL Controller and ValidatingForm 22
Form Validation, Commit, and Publish 27
Service Invocation and Response 28

Defining Displayable Text in an External File 30
For Additional Information . 31
Notices . 32

Programming interface information 34
Trademarks and service marks . 34

Web 2.0 Applications
 with EGL Rich UI

developer’s use of new technologies. Our main focus is on the language’s
support for Web 2.0, which is a set of innovative techniques for reaching
users who rely on browsers, personal digital assistants, and cell phones.

We describe Web 2.0 and show how it relates to enterprise development. We
then demonstrate how to use EGL to create a responsive user interface. Last,
we tell how to access Web services, which may be deployed in techical
environments as diverse as the Windows platforms, Linux, IBM i, and CICS®
for z/OS®.

Introduction to EGL and EGL Rich UI

EGL is a high-level language that lets developers create business software
without requiring that they have a detailed knowledge of runtime technologies
or that they be familiar with object-oriented programming. The language is
architected to reflect patterns that are common to different kinds of business
software, and the language hides many details that are platform specific.

EGL helps a company retain developers who are knowledgeable in business
processes, even if those developers lack the time needed to stay current with
technical change. And the relative simplicity of the language helps traditional
developers become accustomed to the latest technologies.

The language feature that supports Web 2.0 is called Rich UI. Working with
this feature, you can create innovative user interfaces, which in turn can
access back-end services that process enterprise data. The services may be
developed by your company—written in EGL or another language—or may
be available on the Web.

Of particular interest is this: you can use EGL logic—often, just a few lines of
code—to exchange data between a Web 2.0 application and a long-standing

This whitepaper briefly introduces EGL, a business language that
both protects a company’s investment in software and facilitates a

2 Web 2.0 with EGL Rich UI
in-house application; for example, a COBOL application that runs on IBM i
or System z. In this way, EGL help you to retain your software inventory as
technologies change.

EGL also protects your company against the effects of future change. The
language’s support of multiple platforms means that migration of EGL code
will be relatively easy.

In short, use of EGL is prudent. The language conserves developer time,
training cost, and software inventory and is a hedge against future change.

EGL is provided in each of the following products:

• IBM Rational Business Developer

• IBM Rational Developer for i for SOA Construction

• IBM Rational Developer for System z with EGL

A free trial of Rational Business Developer is available at the following site:

 http://www.ibm.com/rational/cafe/community/egl

Web 2.0

The next sections outline the general benefits of developing Web 2.0
applications.

Quick Application Development from Multiple Sources

Web 2.0 lets your company quickly develop mashups, each of which is a
combination of software capability from different sources. For example, you
might be developing an application to let travelers reserve rooms in one or
another city. With Web 2.0, the application can provide access to a Google™
map for each hotel and can include, within the map, a weather forecast for the
city. Neither the mapping software nor the forecast software was created with
the other in mind, yet the two kinds of software are usefully integrated in a
creative way.

Web 2.0 3
Web 2.0 makes a huge amount of Internet-based data available to your
company. The effect is to increase convenience for customers and internal
users and to reduce development expense.

Greater Application Flexibility and Attractiveness

Web 2.0 interfaces are flexible and have a dynamic quality. The potential
variations in style and content allow for a visual quality that is far removed
from a traditional business application. As before, the developer’s job is to
create an interaction that gives users a set of choices appropriate to the
business need. An additional goal is to let users be productive in their
individual ways while protecting them from distractions and from being
overwhelmed by unwanted choice.

Consider an interface that lets users find a real-estate property of interest
(Figure 1). The user can search for a specific location, price range, type of
property, and so on.

Figure 1: Example Interface for a Web 2.0 Application

The user changes entries at the left of the screen to display a set of pictures
that reflect the search criteria. The user then uses a mouse to move a cursor
over the set of pictures and in this way scrolls the images to the right or left.
The bottom area of the screen shows details of whatever house is displayed at
the front and center. The user can then access a mortgage calculator to quickly
learn the monthly payment needed to pay back a loan of a given size and term
for the selected property.

4 Web 2.0 with EGL Rich UI
Later, we consider some of the technological advances that make Web 2.0
applications like this one possible; in particular, JavaScript™, AJAX,
asynchronous service access, and cascading style sheets.

Increased Market Potential

Modern Web-based applications let you attend to the preferences of individual
users. The value of that capability is highest for Web-based sales applications,
for the following reason: attention to the changing preferences of a large
number of users means that your company can benefit from niche markets, as
noted in The Long Tail: Why the Future of Business is Selling Less of More, by
Chris Andersen (Hyperion, 2006).

Here’s an example. Amazon.com books that rank low in sales provide a
relatively large percentage of overall sales compared to the benefit of such
books in a brick-and-mortar store, where shelf space is a critical factor in
attracting business. The increased sales of lower-ranked products is a
consequence of two factors: the sheer numbers of potential customers on the
Web, and the individual attention paid to those people. The consequence of
increased interest in lower-ranked products is an increase in overall revenue.

Easier Application Distribution

Web 2.0 allows a quick response to changing business needs. The reason is
easy application update. Developers can add capabilities without reinstalling
an application on multiple workstations. A Web 2.0 application is deployed on
a Web server such as WebSphere® Application Server or Apache Tomcat.
Users then access the application from a Web browser that resides on a
workstation or on a mobile device such as an iPhone. A user requests the most
recent version of the application simply by clicking a button or typing a Web
address.

Faster Collaboration in Pursuit of a Business Goal

Web 2.0 also allows a company to gain the benefits of faster collaboration.
The blogs (Web logs) found throughout the Internet offer a model for
handling business tasks such as consulting with experts or eliciting customer
opinion. Search mechanisms are available for finding details in specific posts,

Rich Internet Applications and EGL Rich UI 5
which can be categorized by keyword so that users can retrieve information as
needed, avoiding the excessive information that undermines productivity.

Rich Internet Applications and EGL Rich UI

A subset of Web 2.0 applications is in the category of Rich Internet
Application (RIA). An example is the real-estate application that we
introduced earlier.

The processing of an RIA occurs primarily in the browser. The logic is said to
be client side because the logic does not run on the remote machine that
transmits the Web page. As a result, the response time for user interactions is
unusually fast. Fewer resources are needed on the server, lessening the load
on the server-side machine and reducing the need for hardware.

You write RIAs with EGL by using Rich UI.

With Rich UI, your logic is the basis of
generated, client-side JavaScript. The
important detail about JavaScript is that it
provides greater flexibility so that the
user’s experience can go beyond
receiving a page and submitting a form.
Consider Figure 2, for example. After the
user clicks a radio button, the code can
respond by changing the content of a
second control such as a textbox.

The change occurs quickly because the logic runs locally and, in most cases,
redraws only one area of the page.

An extension of client-side JavaScript is Asynchronous JavaScript and XML
(AJAX), a technology that permits the runtime invocation of remote code and
the subsequent update of a portion of a Web page, even as the user continues
working elsewhere on the page. For example, after the user selects a purchase
order from a list box, the JavaScript logic might request transmission of order-
item details from the remote Web server and then place those details in a table
displayed to the user. In this way, the application can access content from the
server but can save time by selecting, at run time, which content is
transmitted.

 Figure 2: Example Use of JavaScript

6 Web 2.0 with EGL Rich UI
How a Rich UI Application Fits in the Enterprise

Figure 3 illustrates how a Rich UI application might fit into a larger technical
scheme at run time.

Figure 3: The Rich UI Application at Run Time

Our example scheme includes four logical tiers:

• Tier 1 is a Web browser where the Rich UI application runs

• Tier 2 is a Web server that transmits the Rich UI application and that
handles the code’s subsequent access of services (as described later)

• Tier 3 is the software that runs those services

• Tier 4 is the software that hosts a database

A tier is logical in the sense that some or all can be on the same machine. The
distinction among the tiers gives you a way to think about the different kinds
of processing that occurs at run time.

After a Web server transmits the Rich UI application to the user’s browser,
subsequent interaction with the server occurs only if the browser-based code
accesses a service, which is a unit of logic that is more-or-less independent of
any other unit of logic. A service might be half a world away from the user.

The Rich UI application can access any number of discrete services, and each
might do a simple task such as provide details on a property. However,
enterprise development often involves access of service-oriented
applications. Each of these applications is composed of services that work as

Support for Old and New Programming Models 7
a unit to fulfill a specific and complex purpose; for example, to process a
mortgage request.

You automatically deploy the Rich UI application with the EGL Rich UI
Proxy, which is EGL runtime code that handles the communication between
the Rich UI application and the accessed services.

Support for Old and New Programming Models

A traditional COBOL, RPG, or Web application is form based. The typical
steps may be quite familiar to you:

1. Transmit a form from a server, to elicit user input

2. On the client, validate the input for a given field; for example, to
ensure that a numeric field contains only digits

3. Elicit the user’s data submission, which occurs when the user takes an
action such as clicking a SUBMIT button or pressing ENTER

4. On the server, validate the submitted data to ensure (for example) that
one field value—such as U.S. state—is compatible with a second—
such as zip code:

If the cross-field validation fails, redisplay the same form,
including an error message and the user’s input

If the cross-field validation succeeds, store the data in a data-
base and, if necessary, transmit a different form to the user

Whatever the variations in these steps, the form-based processing model has
widespread and continued value. When you use EGL Rich UI, you can
organize data fields into a set of forms, can enforce a pre-specified ordering of
user tasks, and can perform cross-field validation on a form-by-form or
multiform basis. The new EGL technology lets you simulate use of the old.

However, even if you simulate use of the old technology, Rich UI offers
benefits that are specific to Web 2.0. First, the cross-field validations can
occur in logic that runs in the browser, so you can move from form to form
quickly, without contacting the server. Second, any contact with the server is
asynchronous, which means that the user does not wait for a response, but

8 Web 2.0 with EGL Rich UI
keeps interacting with the application. Later, we show how a new variation in
the EGL call statement makes this behavior possible.

Beyond leading the user through a sequence of forms, you can devise an
application flow that updates different areas of the screen from within the
application; for example, in response to the user’s choice or to some
combination of application data. Again, changes to the displayed Web page
reflect statements that run in the client-side code.

End-to-end processing with EGL

Rich UI is only one of the EGL facilities that are available when you work
with one of the products listed on page 2. You can always do the following
tasks:

• Create an EGL Web project. Working in that project, you write,
generate, and debug services and specify details on how a given
service will be deployed.

• Create an EGL Rich UI project. Working in that project, you write a
Rich UI application that interacts with users and that accesses
services. The EGL debugger lets you step through the application,
step into an invoked service that you generated previously, and step
through the rest of the application. The Rich UI deployment wizard
lets you organize the generated output for placement on one or
another type of Web server.

• Organize your generated outputs for installation on the same Web
server or on different ones.

The available tools include a visual editor for Rich UI, as well as a source-
code editor and enterprise tooling that help you to handle many aspects of
development and code preparation.

We use the phrase end-to-end processing to indicate that both the front- and
back-end logic can be written in EGL. In response to a simple requirement,
you can code all aspects of end-to-end processing. More important for
enterprise development, you can share expertise with colleagues who are
handling different aspects of a complex requirement and who share both the
development environment and the coding language.

Deployment 9
The ability to communicate easily—a result of shared knowledge and
experience—offers a productivity boost beyond the boost offered by the tools
and by the structure of EGL itself.

Deployment

A Rich UI application that is deployed to WebSphere Application Server or
Apache Tomcat is accompanied by the EGL Rich UI Proxy, which is runtime
software that oversees communication between the application and each
service that is accessed by the application.

A Rich UI application that is deployed to a simple HTTP server—for
example, to the Apache HTTP server—has the interface capabilities of a Rich
Internet Application but does not support service access.

The DOM Tree

We now describe how browsers handle a Rich Internet Application at run
time. The purpose is twofold:

• To help you learn the Rich UI technology faster, as is possible by
clarifying the runtime effect of what you code at development time

• To make it easy for you to respond to advanced technical
requirements

When a user enters a Web address into a browser, the browser transmits a
request to a Web server, which is usually on a second machine. The address
identifies a specific server and indicates what content is to be returned to the
browser. For example, if you enter the address http://www.ibm.com, a server
replies with a message that the browser uses to display the IBM home page.
The question that is of interest now is, how does the browser use the message?

The browser brings portions of the message into an internal set of data areas.
The browser then uses the values in those data areas to display on-screen
controls, which are commonly called widgets. Example widgets are buttons
and text fields.

Consider the next Web page (Figure 4).

10 Web 2.0 with EGL Rich UI
Figure 4: Example Web Page

Seven widgets are displayed:

• The enclosing box is myBox

• The upper box within myBox is myBox02 and includes the text field
myHelloField

• The lower box within myBox is myBox03 and includes the text field
myInTextField, the button myButton, and the textField
myOutTextField

The internal data areas used by the browser are represented by an inverted tree
(Figure 5).

Figure 5: Example DOM Tree

The DOM Tree 11
The tree is composed of a root—named document—and a set of elements,
which are units of information. The topmost element that is available to you is
named body. The elements subordinate to body are specific to your
application.

A set of rules describe both the tree and how to access the data that the tree
represents. That set of rules is called the Document Object Model (DOM). We
refer to the tree as the DOM tree; and we refer to the relationships among the
DOM elements by using terms of family relationships:

• myBox03 and myInTextField are parent and child

• myBox and myButton are ancestor and descendant

• myInTextField, myButton, and myOutTextField are siblings

In the simplest case (as in our example), a widget reflects the information in a
single DOM element. In other cases, a widget reflects the information in a
subtree of several elements. But in all cases, the spacial relationship among
the displayed widgets reflects the DOM-tree organization, at least to some
extent. The following rules describe the default behavior:

• A widget that reflects a child element is displayed within the widget
that reflects a parent element.

• A widget that reflects a sibling element is displayed below or to the
right of a widget that reflects the immediately previous sibling
element

We often use a technical shorthand that communicates the main idea without
distinguishing between the displayed widgets and the DOM elements. Instead
of the previous list, we might say, “A widget is contained within its parent,
and a sibling is displayed below or to the right of an earlier sibling.”

The DOM tree organization does not completely describe how the widgets are
arranged. A parent element may include detail that causes the child widgets to
be arranged in one of two ways: one sibling below the next or one sibling to
the right of the next. The display also may be affected by the specifics of a
given browser; for example, by the browser-window size, which the user can
update at run time in most cases. Last, the display may be affected by settings
in one or more cascading style sheets, which are files that set display
characteristics for an individual widget or for all widgets of a given type.

12 Web 2.0 with EGL Rich UI
When you develop a Web page with Rich UI, you declare widgets much as
you declare integers. However, the widgets are displayable only if your code
also adds those widgets to the DOM tree. Your code can also update the tree—
adding, changing, and removing widgets—in response to runtime events such
as a user's clicking a button. The central point is this: Your main task in
Web-page development is to create and update a DOM tree.

Some of the tasks needed for initial DOM-tree creation are handled for you
automatically when you work with the Rich UI editor to fulfill a drag-and-
drop operation. Alternatively, you can create a DOM tree by writing EGL
definitions in source code and can even reference DOM elements explicitly.

In general terms, you create and update a DOM tree in three steps:

1. Declare widgets of specific types—Button for buttons, TextField for
text fields, and so forth—and customize the widget properties. For
example, you might set the text of a button to “Input to Output,” as in
our example. Here is EGL code to set the text:

2. Add widgets to the initial DOM tree. Here is EGL code to relate one
widget to the next:

myButton Button {text = "Input to Output"};

handler MyHandlerPart
 type RUIhandler { initialUI =[myBox] }

 myBox Box{ children = [myBox02, myBox03] };

 myBox02 Box{ children = [myHelloField] };

 myBox03 Box{ children = [myInTextField,
 myButton, myOutTextField] };

 myHelloField TextField { text = "Hello" };

 myInTextField TextField{};

 myButton Button { text = "Input to Output" };

 myOutTextField TextField{};
end

The Rich UI Handler Part 13
3. Alter the DOM tree by adding, changing, and removing widgets at
those points in your code when you want the changes to be
displayable. Here is EGL code that resets myBox03 so that the only
child of that box is myOutTextField:

Given the Web page in Figure 4 as a starting point, the revised Web
page is as follows:

Figure 6: Revised Web Page Example

We say that a widget or its changes are “displayable” rather than “displayed”
because a widget in a DOM tree can be hidden from view.

The Rich UI Handler Part

To create a Rich UI application, you code a Rich UI Handler part. The
Handler part holds the EGL logic to add widgets to an initial DOM tree
and to respond to events such as a user's click of a button.

Let’s consider our example Web page again (Figure 7).

Figure 7: Example Web Page

The content shown there is displayed after the user types World in the field
myInputTextField and clicks the button.

myBox03.children = [myOutTextField];

14 Web 2.0 with EGL Rich UI
Here is the Rich UI handler part that provides the logic for displaying that
Web page.

Listing 1: Code for the Example Web Page

Consider the following components of the part MyHandlerPart:

• The definition statement at the beginning of the part has the identifier
RUIHandler, which indicates that the handler logic will be
transformed into client-side JavaScript. The part also has a set of
handler properties with which you customize runtime behavior.

• The part includes a set of widget declarations, Those declarations—
starting with the one for myHelloField—are ordered so that the later
declarations such as for myBox02 can access the earlier ones.

handler MyHandlerPart
 type RUIhandler {initialUI =[myBox]}

 myBox Box{padding = 8,
 children =[myBox02, myBox03],
 columns = 1,
 backgroundColor = "Aqua"};

 myBox02 Box{padding = 8, columns = 2,
 children =[myHelloField],
 backgroundColor = "DarkGray"};

 myBox03 Box{padding = 8, columns = 3,
 children =[myInTextField, myButton,
 myOutTextField],
 backgroundColor = "CadetBlue"};

 myHelloField TextField
 {readOnly = true, text = "Hello"};

 myInTextField TextField{};

 myButton Button
 {text = "Input to Output", onClick ::= click};

 myOutTextField TextField{};

 function click(e EVENT in)
 myOutTextField.text =
 myHelloField.text + " " + myInTextField.text;
 end
end

The Rich UI Handler Part 15
• The part includes an on-construction function, which is a function
that runs when the handler is first invoked by the browser. In this
example, the on-construction function is named initialization and
does nothing. Later, we give example logic for the function.

• The part includes an event handler, which is a function that you write
to respond to an event, In this example, the function click runs as soon
as the user clicks the button myButton.

You can also configure your code so that an event handler responds to
an event that is internal to the code. Such an event might be receipt of
a message that was returned from a service.

You can see how to create an initial DOM tree by reviewing the part named
MyHandlerPart:

• To specify which widgets are the initial children of the body element,
use the initialUI property of the Rich UI handler. In our example, the
only child of the body element is myTopBox, which is a widget of
type Box. This widget is a rectangular control that can contain other
widgets.

• To specify which other widgets are descendents of the body element,
use the children property of a container widget. In our example,
myTopBox is the parent of myBox02 and myBox03. The code also
shows that myBox02 is the parent of myHelloField and that myBox03
is the parent of myInTextField, myButton, and myOutTextField. We
illustrated these relationships earlier, in Figure 5.

Here’s a revised example of the on-construction function, followed by a
revised display (Figure 8):

Figure 8: Revised Web Page

function initialization()
 myButton.text = “Click here!”;
 initialUI = [myBox03];
end

16 Web 2.0 with EGL Rich UI
Introduction to the Rich UI Editor

You can use the EGL Rich UI editor to modify a Rich UI handler and to
preview the handler's runtime behavior.

The Rich UI editor includes three views:

• The Design surface is a rectangular area that shows the displayable
content of the Rich UI handler. You can drag-and-drop widgets from
the palette into the Design surface and then customize those widgets
in the Properties view.

• The Source view provides an embedded version of the EGL editor,
where you update logic and add or update widgets. The Design view
and Source view are integrated: changes to the Design view are
reflected in the Source view; and, if possible, changes to the Source
view are reflected in the Design view.

• The Preview view is a browser, internal to the Workbench, where you
can run your logic. You can easily switch to an external browser if
you prefer.

Figure 9 gives an example of a file open in the Rich UI editor and shows the
Design surface, along with the palette at the right and, at the bottom left, a
Properties view.

Introduction to the Rich UI Editor 17
Figure 9: EGL Rich UI Editor

When you drag a widget from the palette to the Design surface, the areas that
can receive the widget are called potential drop locations, and the color of
those areas is yellow by default. When you hover over a potential drop
location, the area is called a selected drop location, and the color of that area
is green by default. You can customize those colors.

When you first drag a widget to the Design surface, the entire surface is a
selected drop location, and the effect of the drop is to declare the widget and
to identify it as the first element in the Rich UI handler's initialUI property.

When you drag another widget to the Design surface, you have the following
choices:

• You can place the widget adjacent to the initially placed widget. The
effect on your source code is to declare the second widget and to
identify it as another element in the initialUI array. Your placement of
the new widget is either before or after the first widget and indicates
where the widget is placed in the array at development time. The
ultimate effect is to specify another child of the DOM tree body
element at run time.

• If the initially placed widget was a container—for example, a box—
you can place the second widget inside the first. The effect on your
source code is to add an element to the children property of the

18 Web 2.0 with EGL Rich UI
container. The ultimate effect is to specify a child of the container
element at run time.

Your subsequent work continues to build the DOM tree. You can repeatedly
fulfill drag-and-drop operations, with the placement of a widget determining
what array is affected and where the widget is placed in the array. The drag-
and-drop operation is an alternative to writing a widget declaration and array
assignment in the code itself.

Embedded Handlers

You can use multiple Rich UI Handler parts to compose a single application.
However, by saying “embedded handlers” we do not mean to say that you
physically embed one Handler part in another. Instead, one Handler part—a
part that presents the user interface—declares a variable used to access the
functions and widgets in a second Handler part. For example, the following
statement declares a variable that provides access to the Handler part
secondHandlerPart:

A reasonable practice is to use embedded handlers for service invocation and
for other back-end business processing.

If the embedded handler (secondHandlerPart) has an on-construction
function, the function runs when the related variable (myVariable) is
declared.

You use a dot syntax to access the widgets and functions in an embedded
handler. In the following outline, the handler secondHandlerPart is assumed
to have declared a button named itsButton, which is attached to the DOM tree
only after the button is included in the embedding handler:

myVariable secondHandlerPart{};

handler SimpleHandler type RUIHandler
 { initialUI = [myVariable.itsButton] }
 myVariable secondHandlerPart{};
end

Overview of Service Access 19
You can access a function or property in an embedded widget by extending
the dot syntax. For example, the following statement retrieves the displayed
text of the embedded Button itsButton:

The initialUI array of the embedded handler has no effect at run time.

Overview of Service Access

We turn now to the back-end processing, returning later to a review of the
application structure.

Styles of Service Access

A service accessed from a Rich UI application can represent either of two
styles:

• Traditional Web services fulfill a Remote Procedure Call (RPC) style.
In this case, you pass a business-specific operation name (for
example, GetEmployeeData) and a set of arguments. With this style,
invoking a service is similar to invoking a function.

• In contrast, REST services conform to the rules of Representational
State Transfer (REST). The RESTful style is based on the transfer of
(at most) a single unit of business data; for example, a set of values
that include an employee number, title, and salary. The invoked
service fulfills one of four preset operations:

GET, for reading data; for example, to retrieve details on the
specified employee

POST, for creating data

PUT, for updating data

DELETE, for deleting data

myString STRING = myVariable.itsButton.text;

20 Web 2.0 with EGL Rich UI
When you access a service that fully conforms with the principles of
REST, you do not need to include a business-specific operation name
such as GetEmployeeData.

A service provider indicates whether a service is deployed as a traditional
Web service or as a REST service. An important difference between the two
kinds of service technologies is their relative complexity:

• A traditional Web service receives and returns data that is in a format
called SOAP. which once stood for Simple Object Access Protocol.
The long name was dropped.

The complexity of a traditional Web service is related not only to the
message format, but to the required presence of a configuration file at
deployment time. That configuration file is called a Web Services
Description Language (WSDL) file.

The overall complexity has a benefit for enterprise development,
allowing for advanced capabilities related (for example) to security
and to coordination among services. In any case, the task of working
with the WSDL file is handled largely by automated tools.

• A traditional REST service exchanges messages but does not require
the added complexity of SOAP. Access to this kind of service usually
does not involve a configuration file.

Service access in Rich UI

Service invocation in Rich UI is always asynchronous, which means that the
requester—the Rich UI application—continues running without waiting for a
response from the service. The user can still interact with the user interface
while the Rich UI application is waiting for the service to respond. However,
you may want to indicate that an activity is occurring “behind the scenes” and
must complete before the user continues working. For example, you can
disable some functionality and present a simple animation until the service
responds.

A Rich UI application can access a SOAP (Web) service or a REST (Web)
service, and either kind of service may be written in EGL.

Division of Labor in EGL Rich UI 21
Access of a REST service involves a different way of thinking about service
construction and interaction, as is explained in Overview of Service Access in
the EGL Rich UI User Manual. (The Manual is cited at the end of this
document.) However, if you access a REST service written in EGL, you can
ignore the issue in favor of an RPC style that is similar to a function
invocation.

To access a service, you write one or two functions to handle the response that
follows a given invocation:

• A callback function receives the business data returned from a service

• An onException function (if present) receives error details if the
runtime technology is unable to return business data

The overall process for invoking a service from Rich UI has four steps:

1. Create an EGL Interface part, in some cases by working through an
automated task.

2. Create a variable based on the Interface part.

3. Code a call statement that includes a reference to a callback function
and (optionally) a reference to an onException function.

4. Code the functions that were referenced in the call statement. You can
start the task with a few clicks that quickly create empty functions for
subsequent customization.

Division of Labor in EGL Rich UI

Modern data-processing systems organize logic by a division of labor known
as Model, View, and Controller (MVC). The terms—especially view and
model—are variously defined:

• The view is the user interface, or the logic that supports the user
interface, or the business data in the user interface

• The model is a database (or other data storage), or the logic that
accesses a database, or the data that is sent to or retrieved from a
database

22 Web 2.0 with EGL Rich UI
• The controller is the logic that oversees data transfer between the user
interface and the database-access logic

In many cases, the acronym MVC refers to processing that involves multiple
platforms. For example, a Rich UI application on a Windows platform might
be considered to be the view (and to include the controller), while a service
that accesses a database might be considered to be the model.

You can distinguish the view from model in the Rich UI application itself. In
this case, the terms have a constant meaning:

• The view is a widget in the user interface

• The model is a data field that is internal to the application

EGL Controller and ValidatingForm

Rich UI provides two definitions to help you create an MVC division of labor.
The controller lets you tie a specific view to a specific model. The validating

form lets you reference a set of controllers and in this way simulate traditional
form processing.

Figure 10 shows a set of widgets, including a validating form that allows input
of a user name, password, and email address.

Figure 10: Traditional Form in Rich UI

Division of Labor in EGL Rich UI 23
The following outline indicates how you can accomplish the display:

The topmost widget is a div, which is a container that offers flexibility in
Web-page design. Here, the div includes a single child—a grouping, which is
a widget collection preceded by customized text. The text in this case is
Create Account. The grouping in turn includes a validating form—our main
concern—and a box that contains two buttons.

Also present in the preceding code are two declarations:

handler MyHandlerPart
 type RUIhandler {initialUI =[myDiv]}

 myDiv Div {
 width = 310,
 borderStyle="solid",
 borderWidth=1,
 padding=10,
 children=[myGrouping]};

 myGrouping Grouping {
 text="Create Account",
 legend.font="Arial",
 children=[
 myForm,
 new Box {
 marginTop=3,
 children=[submitButton, clearButton]
 }
]};

 myForm ValidatingForm{};

 submitButton Button{ text = "Submit",
 onClick ::= submitForm };

 clearButton Button{ text = "Clear",
 onClick ::= clearForm };

 myService MyInterfacePart{@BindService{}};

 myRecord MyRecordPart{};

 // other declarations are not displayed
end

24 Web 2.0 with EGL Rich UI
• myService is a variable that is based on the Interface part
MyInterfacePart. We’ll use the variable to access a Web (SOAP)
service.

• myRecord is a record that points to an area described by the Record
part MyRecordPart. We’ll use the record to work with myForm, the
validating form.

Consider the full declaration of myForm:

The first assignments in that declaration separate the form from other content.
However, at the heart of the declaration is the entries field, which specifies an
array of validating-form fields. Each field includes a label (for example,
* User name:) and a controller. Here are the controllers:

Each controller includes the complex property @MVC, which ties a view to a
model. Each view in this case is basically a text field, although the widget

myForm ValidatingForm {
 marginTop=20, marginLeft=20, marginBottom = 20,
 entries = [
 new FormField
 { displayName="* User name:",
 controller = usernameController },
 new FormField
 { displayName="* Password:",
 controller = passwordController },
 new FormField
 { displayName="* Email:",
 controller = emailController }
]
};

usernameController Controller
 { @MVC { view = userNameField,
 model = myRecord.userName } };

passwordController Controller
 { @MVC { view = passwordField,
 model = myRecord.password } };

emailController Controller
 { @MVC { view = emailField,
 model = myRecord.email },
 validators ::= validateEmail };

Division of Labor in EGL Rich UI 25
passwordField additionally ensures that the user’s input is displayed as a
series of unreadable characters, for user security:

Each model is a field in myRecord, the record that points to a data area
described by the following Record part:

The declaration for a model such as myRecord.userName can include simple
properties that cause the EGL runtime to validate user input. In our example,
the property MinimumInput indicates that the minimum number of characters
for the user name is 6 and for the password is 8. Two of the models also
identify a Rich UI properties library and a message key. Those last details are
part of a mechanism by which you assign displayable text in an external file,
as needed to isolate changeable text outside of your code. One use of that
mechanism is to communicate with users who read one language or another.

In addition to specifying validations as shown in the previous code, you can
write validators, which are customized functions that also validate input. In

userNameField TextField{};
passwordField PasswordTextField{};
emailField TextField{};

Record MyRecordPart
 userName string {
 MinimumInput=6,
 ValidationPropertiesLibrary = ValidationMessages,
 MinimumInputMsgKey = "usrMinInput" };
 password string {
 MinimumInput = 8,
 ValidationPropertiesLibrary = ValidationMessages,
 MinimumInputMsgKey = "pwMinInput" };
 email string {};
end

26 Web 2.0 with EGL Rich UI
our example, the controller emailController references the validator
validateEmail:

The example function ensures that the “at sign” (@) is in the input email
address and that a period is three characters from the end of the address.

In general, you can code a validator of any complexity. A returned blank or
null from the validator indicates success, and a returned string is displayed as
an error message at the right of the validation-form field. We’ll explain
ValidationMessages.emailError later, after we outline the process by which a
Rich UI application has the following effect: validates user input; commits all
the validated data to some backend code—in our case, to a service; and
presents the returned data to the user.

emailController Controller
 { @MVC { view = emailField,
 model = myRecord.email },
 validators ::= validateEmail };

function validateEmail(input String in) returns(String?)
 i int = StrLib.indexOf(input, "@");
 if (i > 0)
 i = StrLib.characterLen(input) - 3;
 if (i == StrLib.indexOf(input, ".", i));
 return("");
 end
 end
 return(ValidationMessages.emailError);
end

Division of Labor in EGL Rich UI 27
Form Validation, Commit, and Publish

You handle form validation by coding an event handler that responds to the
user’s click of a button. In our example, the function is named submitForm:

When the function myForm.isValid runs, the validations for each controller
are handled in turn, in form-field order. The function myForm.commit is
invoked only if all validations succeed. Each controller-specific validation
includes several steps; and then the function myForm.commit causes a second
series of steps, invoking controller-specific commit functions to transfer data
from views to models.

Two important details are not shown. First, Rich UI offers a way to minimize
user inconvenience when authentication is necessary for accessing the Rich
UI application, the EGL Rich UI Proxy, and individual services. For details,
see the sections on security in the EGL Rich UI User Manual and, in
particular, see EGL single sign-on.

Second, you can use a validation form to display the business data retrieved
from a service. The function you use in this case is publish; for example,
myForm.publish. Such a function invokes the controller-specific publish
functions to transfer data from models to views.

Rich UI gives you much control over the runtime behavior described here,
although system defaults are available. For details on controllers and form
processing, see the following sections in the EGL Rich UI User Manual:

• Rich UI validation and formatting

• Form processing with Rich UI

function submitForm(event Event in)

 if (myForm.isValid())
 myForm.commit();

 call myService.register
 (myRecord.userName,
 myRecord.password,
 myRecord.email)
 returning to myCallback;
 end
end

28 Web 2.0 with EGL Rich UI
Service Invocation and Response

Our example assumes that you are using an Interface part named
MyInterfacePart:

Our invocation of the service operation named register requires the presence
of the callback function myCallback, which accepts the returned business
data. That function refreshes the page with a set of widgets embedded in the
original Grouping widget (Figure 10).

Figure 11: Display that Results from a Successful Service Access

Interface MyInterfacePart
 Function register(userName STRING in,
 password STRING in,
 email STRING in)
 returns(STRING);
end

Division of Labor in EGL Rich UI 29
Here is myCallback:

The user’s button click invokes the function reset:

The function begins by pointing the global record myRecord to a new data
area of type MyRecordPart and then by publishing the empty data. The rest of
the code re-creates the original display (Figure 9).

For additional details on service access, see the EGL Rich UI User Manual
section Accessing a service in Rich UI, including the embedded sections on
REST and SOAP service access.

function myCallback(serviceResponse in)
 myGrouping.children = [
 new TextLabel {
 color="red", fontWeight="bold", margin=10,
 text = serviceResponse },
 new Box { columns=2, marginLeft=10,
 children=[
 new TextLabel { text="User name:" },
 new TextLabel { marginLeft = 10,
 text=myRecord.username},
 new TextLabel { text="Email address:" },
 new TextLabel { marginLeft = 10,
 text=myRecord.email},
 new Button { width = 100, margin = 10,
 text = "OK",
 onClick ::= reset}
]
 }
];
end

function reset(e Event in)

 myRecord = new MyRecordPart{};
 myForm.publish;

 myGrouping.children = [
 myForm,
 new Box { marginTop=3,
 children=[
 submitButton,
 clearButton
]
 }
];
end

30 Web 2.0 with EGL Rich UI
Defining Displayable Text in an External File

Rich UI lets you define displayable text in an external file used at run time.
The mechanism is useful for the following reasons:

• To override the runtime messages that are available, by default, for
failed input validations or for incorrect formatting on output

• To assign text to widgets without hard-coding that text in the Rich UI
application

• To display text in one or another language

The basic idea is that you set up variables in a library (type
RUIPropertiesLibrary) and then provide the runtime content of those
variables in a properties file that is referenced in the library. Here is an
example library:

The content in a properties file can include inserts—substitution variables—
whose values are specified in your code. This feature lets you embed business
data—for example, a specific employee number—in a message.

You can have several properties file for a given library, one file for each
language you are supporting. The naming convention is crucial:

• You specify the root of the name as the value of propertiesFile (in
this case, the root is myFile).

• When you create the properties files, you specify names that include
locale information. For example, the file myFile-en.properties has
content in English, while the file myFile-es.properties has content in
Spanish

The invocation of the Rich UI application determines which locale to use. For
example, to ensure use of Spanish files, the user might invoke an application
as www.example.com/MyApplication-es.html. A set of rules determines which
properties file to access if the invocation does not match an available locale.

Library ValidationMessages type RUIPropertiesLibrary
 { propertiesFile="myFile" }
 emailError STRING;
 otherContent STRING;
end

For Additional Information 31
For details on using properties file, see the EGL Rich UI User Manual, section
Use of properties files for displayable text.

For Additional Information

The EGL Rich UI User Manual contains material that is also in the product
help system; however, the content in the Manual is likely to be more recent:

 http://www.ibm.com/rational/cafe/docs/DOC-2689

The EGL Cafe also includes material of interest:

 http://www.ibm.com/software/rational/eglcafe

For a concise introduction to EGL, see IBM Rational Business Developer with
EGL (MC Press, 2007):

 http://www.mc-store.com/5087.html

For an expansion of the current essay, see Enterprise Web 2.0 with EGL
(MC Press, expected May 2009).

For details on Web-page design, see the following Web sites:

 http://www.w3schools.com/css

 http://css.maxdesign.com.au

For a complete description of cascading style sheets, see CSS: The Definitive
Guide (O'Reilly Media, Inc., November 2006).

For an overview of service interaction and some of the RPC-related
technologies, see SOA for the Business Developer (MC Press, May 2007).

For a good introduction to REST services, see Restful Web Services (O'Reilly
Media, Inc., May 2007).

32 Web 2.0 with EGL Rich UI
Notices

This information was developed for products and services offered in the U.S.A. IBM may not
offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available
in your area. Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at those
Web sites are not part of the materials for this IBM product and use of those Web sites is at your
own risk.

Licensees of this program who wish to have information about it for the purpose of enabling: (i)
the exchange of information between independently created programs and other programs

Notices 33
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

Intellectual Property Dept. for Rational Software
3600 Steeles Avenue East
Markham, ON Canada L3R 9Z7

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results may vary. Users
of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing,
using, marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a
copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs. © Copyright IBM Corp. 1996, 2008. All rights reserved.

34 Web 2.0 with EGL Rich UI
If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Programming interface information

Programming interface information is intended to help you create application software using
this program.

General-use programming interfaces allow you to write application software that obtain the
services of this program's tools.

However, this information may also contain diagnosis, modification, and tuning information.
Diagnosis, modification and tuning information is provided to help you debug your application
software.

Warning: Do not use this diagnosis, modification, and tuning information as a programming
interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of International Business Machines Corporation in the
United States, other countries, or both:

• AIX

• CICS

• CICS/ESA®

• ClearCase®

• DB2®

• IBM

• IMS

• Informix

• iSeries

• MQSeries®

• MVS™

• OS/400®

Notices 35
• RACF®

• Rational

• VisualAge

• WebSphere

• z/OS

Intel is a trademark of Intel Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and Windows NT® are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product or service names, may be trademarks or service marks of others.

	Web 2.0 Applications with EGL Rich UI
	Introduction to EGL and EGL Rich UI
	Web 2.0
	Quick Application Development from Multiple Sources
	Greater Application Flexibility and Attractiveness
	Increased Market Potential
	Easier Application Distribution
	Faster Collaboration in Pursuit of a Business Goal

	Rich Internet Applications and EGL Rich UI
	How a Rich UI Application Fits in the Enterprise
	Support for Old and New Programming Models
	End-to-end processing with EGL
	Deployment
	The DOM Tree
	The Rich UI Handler Part
	Introduction to the Rich UI Editor
	Embedded Handlers
	Overview of Service Access
	Styles of Service Access
	Service access in Rich UI

	Division of Labor in EGL Rich UI
	EGL Controller and ValidatingForm
	Form Validation, Commit, and Publish
	Service Invocation and Response

	Defining Displayable Text in an External File
	For Additional Information
	Notices
	Programming interface information
	Trademarks and service marks

