
��

Chapter VII
Engineering Wireless Mobile

Applications
Qusay H. Mahmoud

University of Guelph, Canada

Zakaria Maamar
Zayed University, UAE

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

Conventional desktop software applications are usually designed, built, and tested on a platform similar
to the one on which they will be deployed and run. Wireless mobile application development, on the other
hand, is more challenging because applications are developed on one platform (like UNIX or Windows)
and deployed on a totally different platform like a cellular phone. While wireless applications can be
much smaller than conventional desktop applications, developers should think in the small in terms of
the devices on which the applications will run and the environment in which they will operate instead
of the amount of code to be written. This paper presents a systematic approach to engineering wireless
application and offers practical guidelines for testing them. What is unique about this approach is that
it takes into account the special features of the new medium (mobile devices and wireless networks), the
operational environment, and the multiplicity of user backgrounds; all of which pose new challenges to
wireless application development.

IntRoductIon

The general mobile computing model in a wireless
environment consists of two distinct sets of entities

(Figure 1): Mobile Clients (MCs) and fixed hosts.
Some of the fixed hosts, called Mobile Support
Stations (MSSs), are enhanced with wireless in-
terfaces. A MSS can communicate with the MCs

 ��

Engineering Wireless Mobile Applications

within its radio coverage area called wireless cell.
A MC can communicate with a fixed host/server
via a MSS over a wireless channel. The wireless
channel is logically separated into two sub-chan-
nels: an uplink channel and a downlink channel.
The uplink channel is used by MCs to submit
queries to the server via an MSS, whereas the
downlink channel is used by MSSs to disseminate
information or to forward the responses from the
server to a target client. Each cell has an identi-
fier (CID) for identification purposes. A CID is
periodically broadcasted to all the MCs residing
in a corresponding cell.

A wireless mobile application is defined as a
software application, a wireless service or a mobile
service that can be either pushed to users’ handheld
wireless devices or downloaded and installed,
over the air, on these devices. Such applications
must work within the daunting constraints of the
devices themselves:

•	 Memory: Wireless devices such as cellular
phones and two-way pagers have limited
amounts of memory, obliging developers to
consider memory management most care-
fully when designing application objects.

•	 Processing power: Wireless devices also
have limited processing power (16-bit pro-
cessors are typical).

•	 Input: Input capabilities are limited. Most
cell phones provide only a one-hand keypad
with twelve buttons: the ten numerals, an
asterisk (*), and a pound sign (#).

•	 Screen: The display might be as small as 96
pixels wide by 54 pixels high and 1 bit deep
(black and white). The amount of informa-
tion that can be squeezed into such a tight
screen is severely limited.

In addition, the wireless environment imposes
further constraints: (i) wireless networks are
unreliable and expensive, and bandwidth is low;
(ii) they tend to experience more network errors
than wired networks; and (iii) the very mobility
of wireless devices increases the risk that a con-
nection will be lost or degraded. In order to design
and build reliable wireless applications, designers
need to keep these constraints in mind and ask
themselves what impact do wireless devices with
limited resources have on application design?

The motivation for this paper is provided
in part by the above characteristics that form

Figure 1. Mobile Computing Model

IS 1

IS 2

IS 3

Fixed network

Mobile
client

Wireless
cell IS Information

server

Mobile
support
station

�00

Engineering Wireless Mobile Applications

some of the foundations for pervasive comput-
ing environments. Such characteristics pose
several challenges in designing wireless mobile
applications for mobile computing. This paper
provides a detailed treatment of the impact of these
characteristics on engineering wireless mobile
applications and presents a systematic approach
for designing them. In addition, it offers practical
design techniques for wireless application design
and development.

WIReless APPlIcAtIons

Wireless applications can be classified into
two streams (Beaulieu, 2002; Burkhardt et al.,
2002):

1. Browser-based: Applications developed
using a markup language: This is similar to
the current desktop browser model where
the device is equipped with a browser. The
Wireless Application Protocol or WAP
(http://www.wapforum.org) follows this
approach (Open Mobile Alliance, 2005).

2. Native applications: Compiled applications
where the device has a runtime environment
to execute applications. Highly interactive
wireless applications are only possible with
the latter model. Interactive applications,
such as mobile computer games, are a good
example. Such applications can be developed
using the fast growing Java 2 Micro Edition
(J2ME) platform (http://java.sun.com), and
they are known as MIDlets.

Another stream is the hybrid application model
that aims at incorporating the best aspects of
both streams above. The browser is used to allow
the user to enter URLs to download native ap-
plications from remote servers, and the runtime
environment is used to let these applications run
on the device.

WAP might be dead, but What did
We learn?

WAP and J2ME MIDP solve similar problems
but each can learn a couple of things from the
other. There are special features that are available
in WAP but not in MIDP and vice versa. These
features are summarized as follows:

•	 MIDP provides a low-level graphics APIs
that enable the programmer to have control
over every pixel of the device's display. This
is important for entertainment applications
(such as games) in a wireless environ-
ment.

•	 MIDP is the way to go for games. The nature
of MIDlets (they exist on the device until
they are explicitly removed) allows users
to run them even when the server becomes
unavailable (support for disconnected opera-
tions).

•	 WML provides tags and possible presenta-
tion attributes, but it doesn't define an inter-
action model. For example, WML defines
a SELECT tag for providing a list. Some
WAP-enabled devices interpret the SE-
LECT tag as a popup menu list while others
interpret it as a menu that can be used for
navigation. Therefore, there is no standard
interaction model defined for this element.
If a developer uses it, the application may
run well on some devices and poorly on
others. MIDlets, on the other hand, provide
a clearly defined standard for interaction
using commands.

A micro browser is needed

MIDlets combine excellent online and offline
capabilities that are useful for the wireless envi-
ronment, which suffers from low bandwidth and
network disconnection. Integrating WAP and
MIDP opens up possibilities for new wireless

 �0�

Engineering Wireless Mobile Applications

applications and over the air distribution models.
Therefore, WAP and MIDP shouldn’t be viewed as
competing but rather as complementing technolo-
gies. In order to facilitate downloading wireless
applications over the air, there is a need for some
kind of an environment on the handset that allows
the user to enter a URL for a MIDlet Suite, for
example. This environment could very well be a
WAP browser as shown in Figure 2.

Similar to Java Applets that are integrated into
HTML, MIDlets can be integrated into a WML
or an XHTML page. Such a page can then be
called from a WAP browser and the embedded
MIDlet gets downloaded and installed on the
device. In order to enable this, a WAP browser
is needed on the device. Another alternative ap-
proach for over the air provisioning is the use of
Short Message Service (SMS) as have been done
by Siemens where the installation of MIDlets is
accomplished by sending a corresponding SMS.
If the SMS contains a URL to a Java Descriptor
(JAD) file specifying a MIDlet Suite, then the
recipient can install the application simply by
confirming the SMS.

desIGn chAllenGes And
PossIble solutIons

In this paper we are more concerned with native
interactive applications that can be developed

using the J2ME platform or a similar technology.
J2M2-based wireless applications can be classified
into local (stand-alone) and network applications.
Local applications (or stand-alone) perform all
their operations on a handheld wireless device and
need no access to external data sources through
a wireless network. Examples include calculators
and single-player games. Network applications,
on the other hand, consist of some components
running on a wireless device and others running
on a network, and thus depend on access to ex-
ternal resources. An example would be an email
application, with a client residing on a wireless
phone interacting with a Simple Mail Transfer
Protocol (SMTP) server to send/receive e-mail
messages. A major difference between local and
networked applications is in the way they are
tested. Local applications are easier to test than
network applications. For example, a calculator
application can run on a wireless device even
when it is not connected to any network, but an
email client will not work without a connection
to mail servers.

challenges

The constraints discussed earlier pose several
crucial challenges, which must be faced in order
for wireless applications to function correctly in
the target environment.

Figure 2. Combining WAP and J2ME

�0�

Engineering Wireless Mobile Applications

•	 Transmission Errors: Messages sent over
wireless links are exposed to interference
(and varying delays) that can alter the content
received by the user, the target device, or
the server. Applications must be prepared to
handle these problems. Transmission errors
may occur at any point in a wireless transac-
tion and at any point during the sending or
receiving of a message. They can occur after
a request has been initiated, in the middle
of the transaction, or after a reply has been
sent. While wireless network protocols may
be able to detect and correct some errors,
error-handling strategies that address all
kinds of transmission errors that are likely
to occur are still needed.

•	 Message Latency: Message latency, or the
time it takes to deliver a message, is primarily
affected by the nature of each system that
handles the message, and by the processing
time needed and delays that may occur at
each node from origin to destination. Mes-
sage latency should be taken into account
and users of wireless applications should
be kept informed of processing delays. It
is especially important to remember that a
message may be delivered to a user long after
the time it is sent. A long delay might be due
to coverage problems or transmission errors,
or the user’s device might be switched off
or have a dead battery. Some systems keep
trying, at different times, to transmit the mes-
sage until it is delivered. Other systems store
the message, then deliver it when the device
is reconnected to the network. Therefore,
it is important to design applications that
avoid sending stale information, or at least
to make sure that users are aware it is not up
to date. Imagine the possible consequences
of sending a stock quote that is three days
old, without warning the user!

•	 Security: Any information transmitted over
wireless links is subject to interception.

Some of that information could be sensitive,
like credit card numbers and other personal
information. The solution needed really de-
pends on the level of sensitivity. To provide
a complete end-to-end security solution, you
must implement it on both ends, the client
and the server, and assure yourself that
intermediary systems are secure as well.

Possible solutions

Here are some practical hints useful to consider
when developing mobile applications.

• Understand the environment. Do some
research up front. As with developing any
other software application, we must under-
stand the needs of the potential users and
the requirements imposed by all networks
and systems the service will rely on.

• Choose an appropriate architecture. The
architecture of the mobile application is very
important. No optimization techniques will
make up for an ill-considered architecture.
The two most important design goals should
be to minimize the amount of data transmit-
ted over the wireless link, and to anticipate
errors and handle them intelligently.

• Partition the application. Think carefully
when deciding which operations should be
performed on the server and which on the
handheld device. Downloadable wireless
applications allow locating much of an ap-
plication’s functionality of the device; it can
retrieve data from the server efficiently, then
perform calculations and display informa-
tion locally. This approach can dramatically
reduce costly interaction over the wireless
link, but it is feasible only if the device can
handle the processing the application needs
to perform.

• Use compact data representation. Data can
be represented in many forms, some more

 �0�

Engineering Wireless Mobile Applications

compact than others. Consider the avail-
able representations and select the one that
requires fewer bits to be transmitted. For
example, numbers will usually be much more
compact if transmitted in binary rather than
string forms.

• Manage message latency. In some applica-
tions, it may be possible to do other work
while a message is being processed. If the
delay in appreciable – and especially if the
information is likely to go stale – it is impor-
tant to keep the user informed of progress.
Design the user interface of your applications
to handle message latency appropriately.

• Simplify the interface. Keep the application’s
interface simple enough that the user seldom
needs to refer to a user manual to perform a
task. To do so: reduce the amount of infor-
mation displayed on the device; make input
sequences concise so the user can accomplish
tasks with the minimum number of button
clicks; and offer the user selection lists.

Ad-hoc develoPment PRocess

An ad-hoc development process for wireless ap-
plications comprises three steps:

1. Write the application: Several Integrated
Development Environments (IDEs) are
available for developing Java-based wire-
less applications, e.g. Sun’s J2ME Wireless
Toolkit, and Metrowerks CodeWarrior.

2. Test the application in an emulation environ-
ment: Once the application compiles nicely,
it can be tested in an emulator.

3. Download the application to a physical
device and test it. Once application’s per-
formance is satisfactory on one or more
emulators, it can be downloaded to a real
device and tested it there. If it is a network
application, it is tested on a live wireless

network to ensure that its performance is
acceptable.

It is clear that many important software engi-
neering activities are missing from this ad-hoc
development process. For example, there is no
formal requirements analysis phase, and so fol-
lowing an ad-hoc development process may lead
to building a product different from the one the
customers want, and also testing an application
without knowing its requirements is not an easy
task. In addition, issues related to the operating
environment such as network bandwidth should
be considered during the design so that the per-
formance of the application will be satisfactory.

WIReless softWARe
enGIneeRInG

While wireless application development might
appear to have less need for the coordination that
a process provides, aspects of development, test-
ing, evaluation, deployment, and maintenance of
a wireless application have to be integrated in the
design process throughout the full development
lifecycle. We have put forward a systematic ap-
proach to developing wireless applications, which
is compatible with the Rational Unified Process
or RUP (Jacobsen et al., 2000) in the sense that
it is iterative and responsibility-driven. We have
developed this systematic approach based on our
experience designing and building wireless ap-
plications. We recognized that the development of
a wireless application is not a one-shot task, and
testing wireless applications is more challenging
than testing conventional desktop software ap-
plications, and therefore an ad hoc development
process cannot be used.

development Activities

Our software engineering approach to wireless
application development consists of a set of

�0�

Engineering Wireless Mobile Applications

manageable activities that if followed properly
leads to reliable and maintainable wireless ap-
plications. The activities of our approach are
shown in Figure 3.

• Planning. This iterative process begins
with a planning phase, which is an activity
that identifies the objectives of the wireless
application and specifies the scope of the
first increment. In addition, the costs of the
overall project are estimated, the risks are
evaluated, and a tentative schedule is set.

• Mobile User Analysis. First, we must un-
derstand the audience of the application and
the environment in which it will operate. As
an example, if the application is a wireless
network-aware application such as a multi-
player game, the study will include the users
of the application and how they plan to use it.

The output at the end of this phase is a wire-
less application plan document that serves
as the mobile end user requirement.

• Scenario Analysis. This phase is similar to
conventional software requirements analy-
sis, and therefore concepts and principles of
requirements analysis can be applied here
(Pressman, 2005). In this phase, the mobile
end user, an interaction designer, and a
developer sit together to come up with a
complete scenario analysis model that takes
into account the following types of scenario
analysis:

° Screen and Interaction Analysis:
The basic unit of interaction between
the user and the mobile device is the
screen, which is an object that encap-
sulates device-specific graphic user

Figure 3. Wireless application development activities

 �0�

Engineering Wireless Mobile Applications

input. Therefore, the content to be
displayed on the screen is identified.
Content may include text fields, menus,
lists, and graphics. Interaction analysis
specifies how the user interacts with the
application. In order to find out how the
user will interact with the application,
UML (Booch et al., 2000) use cases
are developed.

° Usage Analysis: The use case model de-
veloped during screen and interaction
analysis is mainly related to how users
interact with the application through the
screen. The whole functionality of the
application should be described with
use cases.

° Environment Analysis: The environ-
ment in which the application will
operate should be described in details.
This includes the different wireless
networks and backend systems used. In
addition, target mobile devices such as
cellular phones and PDAs on which the
application will run should be described
in details.

The output of this phase is an information
analysis model document produced by the inter-
action designer and developer that outlines the
functional requirements of the application and the
constraints of the environment. This document
is reviewed by developers and other stakeholders
and modified as required.

• Architectural Design. This phase is con-
cerned with the overall architecture (or
structure) of the wireless application. Archi-
tecture is very important for any application,
and no optimization techniques will make
up for an ill-considered architecture. Design
patterns can be used in this phase to reuse
experience in order to come up with an
extensible, high-performance architecture.

Some of the most important design goals
should be to minimize the amount of data
transmitted over the wireless link, and to
anticipate errors and handle them intelli-
gently. Other design and architecture issues
include:

° Application partitioning. Designers
need to think carefully when deciding
which operations should be performed
on the server and which on the wireless
device. J2ME allows designers to locate
much of an application’s functionality
on the device; it can retrieve data from
the server efficiently, then perform
calculations and display information
locally. This approach can dramatically
reduce costly interaction over the wire-
less link, but it is feasible only if the
device can handle the processing your
application needs to perform.

° Message latency. In some applications,
it may be possible to do other work while
a message is being processed. If the
delay is appreciable – and especially if
the information is likely to go stale – it
is important to keep the user informed
of progress.

The outcome of the architectural design phase
is a design document that details the system
architecture.

Navigation and User Interface Design. Once
the application architecture has been established
and its components identified, the interaction
designer prepares screen mockups and naviga-
tion paths that show how the user moves from
one screen to another to access services. Figure 4
shows a simple example where the user will have to
login before she is able to check her messages.

The user interface is the face of the application
to users. A poorly designed user-interface will

�0�

Engineering Wireless Mobile Applications

scare the user away, and a well-designed user
interface will give a good first impression and
improves the user’s perception of the services of-
fered by the application. The user interface must
be well-structured and easy to use. Here are some
guidelines that can help in designing simple, but
yet effective user interfaces for mobile devices
with tiny screens.

•	 Keep the application’s interface simple
enough that the user seldom needs to refer
to a user manual to perform a task.

•	 Reduce the amount of information displayed
on the device.

•	 Make input sequences concise so the user
can accomplish tasks with the minimum
number of button clicks.

•	 Offer the user selection lists.
•	 Do not depend on any specific screen size.

The output of this phase is a user manual that
describes the screen mockups and the navigational
paths.

Implementation. In this phase development
tools are used to implement the wireless applica-
tion. There are several tools available for building
wireless applications such as Sun’s J2ME Wireless
Toolkit. We would recommend using a tool that
allows installing the application in various emula-
tion environments. Conventional implementation
strategies and techniques such as coding standards
and code reviews can be used in this phase.

Testing. Software testing is a systemic process
to find differences between the expected behavior
of the system specified in the software require-
ments document and its observed behavior. In
other words, it is an activity for finding errors in
the software system and fixing them so users can
be confident that they can depend on the software.
Errors in software are generally introduced by
people involved in software development (includ-
ing analysts, architects, designers, programmers,
and the testers themselves). Examples of errors
include mismatch between requirements and
implementation.

Many developers view the subject of software
testing as “not fashionable,” and as a result too
few of them really understand the job software
testers do. Testing is an iterative process and
should start from the beginning of the project.
Software developers need to get used to the idea
of designing software with testing in mind. Some
of the new software development methodologies
such as eXtreme Programming (XP) (Beck, 1999)
stress incremental development and testing. XP
is ideally suited for some types of applications,
depending on their size, scope, and nature. User
interface design, for example, benefits highly
from rapid prototyping and testing usability with
actual users.

Wireless applications, like all other types of
software, must be tested to ensure functionality
and usability under all working conditions. Test-
ing is even more important in the wireless world

Figure 4. Screen Mockups

 �0�

Engineering Wireless Mobile Applications

because working conditions vary a lot more than
they do for most software. For example, wireless
applications are developed on high-end desktop
machines but deployed on handheld wireless
devices with very different characteristics.

One way to make testing simple is to design
applications with testing in mind. Organizing the
system in a certain way can make it much easier to
test. Another implication is that the system must
have enough functionality and enough output
information to distinguish among the system’s
different functional features. In our approach, and
similar to many others, the system’s functional
requirements (features that the system must pro-
vide) are described using the Unified Modeling
Language (Booch et al., 2000) to create a use case
model, then detailing the use cases in a consistent
written form. Documenting the various uses of
the system in this way simplifies the task of test-
ing the system by allowing the tester to generate
test scenarios from the use cases. The scenarios
represent all expected paths users will traverse
when they use the features that the system must
provide.

Deployment. Deploying and running applica-
tions in an emulation environment is a very good
way to test the logic and flow of your applica-
tion generally, but you won’t be certain it will
satisfy users until you test it on a real physical
device connected to a wireless network. Your
application’s performance may be stunning in
the emulator, which has all the processing power
and memory of your desktop machine at its com-
mand, but will it perform well on the handheld
device, with its limited memory and processing
power, low bandwidth, and other constraints? In
this phase, the application is deployed on a live
network and evaluated.

Customer Evaluation. Once the application
has been deployed, it is ready to be downloaded
by users for evaluation and usage. In this phase,
users start using the deployed application and
report any problems they may experience to the
service provider.

Maintenance. Software maintenance encom-
passes four activities: error correction, adaptation,
enhancement, and reengineering (Pressman,
2005). The application will evolve over time
as errors are fixed and customers request new
features. In this phase, users report errors to and
request new features from the service provider,
and developers fix errors and enhance the ap-
plication.

testInG Issues And testInG
ActIvItIes

The wide variety of mobile devices such as
wireless phones and PDAs results in each device
running a different implementation of the J2ME
environment. Varying display sizes add to the
complexity of the testing process. In addition,
some vendors provide proprietary API extensions.
As an example, some J2ME vendors may support
only the HTTP protocol, which the MIDP 1.0
specification requires, while others support TCP
sockets and UDP datagrams, which are optional.
Here are some guidelines for testing wireless
applications.

Validating the Implementation. Ensuring that
the application does what it is supposed to be is an
iterative process that you must go through during
the implementation phase of the project. Part of
the validation process can be done in an emulation
environment such as the J2ME Wireless Toolkit
(Sun Microsystems, 2005), which provides sev-
eral phone skins and standard input mechanisms.
The toolkit’s emulation environment does not
support all devices and platform extensions, but
it allows making sure that the application looks
appealing and offers a user-friendly interface on
a wide range of devices. Once the application has
been tested on an emulator, you can move on to
the next step and test it on a real device, and in
a live network.

Usability Testing. In usability testing, the
focus is on the external interface and the relation-

�0�

Engineering Wireless Mobile Applications

ships among the screens of the application. As
an example, consider an email application that
supports entry and validation of a user name and
password, enables the user to read, compose, and
send messages, and allows maintenance of related
settings, using the screens shown in Figure 3,
among others.

In this example, start the test at the Login
window. Enter a user name and a password and
press the soft button labeled Login. Enter a valid
user name and password. The application should
display the main menu. Does it? The main menu
should display a SignOut button. Does it? Press
the SignOut button. Does the application return
to the Login screen? Write yourself a note to raise
the question, “Why does the user ‘log’ in but
‘sign’ out?” Now enter an invalid user name or
password. The program should display a mean-
ingful message box with an OK button. Does it?
Press the OK button. Does the application return
to the Login screen?

You need to test the GUI navigation of the entire
system, making notes about usability along the
way. If, for example, the user must traverse several
screens to perform a function that’s likely to be
very popular, you may wish to consider moving
that particular function up the screen layers. Some
of the questions you should ask during usability
testing include: is the navigation depth (the number
of screens the user must go through) appropriate
for each particular function, does the application
minimize text entry (painful on a wireless phone)
or should it provide more selection menus, can
screens of all supported devices display the content
without truncating it, and if you expect to deploy
the application on foreign devices, does it support
international character sets?

Network Performance Testing. The goal of
this type of testing is to verify that the application
performs well in the hardest of conditions (for
example, when the battery is low or the phone is
passing through a tunnel). Testing performance
in an emulated wireless network is very impor-
tant. The drawback with testing in a live wireless

network is that so many factors affect the perfor-
mance of the network itself that you can’t repeat
the exact test scenarios. In an emulated network
environment, it is easy to record the result of a
test and repeat it later, after you have modified
the application, to verify that the performance of
the application has improved.

Server-Side Testing. It is very likely that wire-
less applications communicate with server-side
applications. If your application communicates
with servers you control, you have a free hand to
test both ends of the application. If it communicates
with servers beyond your control (such as quotes.
yahoo.com), you just need to find the prerequisites
of use and make the best of them. You can test
server-side applications that communicate over
HTTP connections using testing frameworks such
as HttpUnit (http://httpunit.sourceforge.net)), and
measure a Web site’s performance using httperf
(http://citeseer.nj.nec.com/mosberger98httperf.
html), a tool designed for measuring the perfor-
mance of Web servers.

testing checklists

Here we provide checklists that are useful when
testing your application, in both emulation and
live environments. These checklists include tests
that are usually performed by certification pro-
grams offered by Nokia and Motorola (Motorola
Application Certification Program).

Navigation Checklist. Here are some items
to check for when testing the navigational paths
of wireless applications:

• Successful startup and exit: Verify that your
application starts up properly and its entry
point is consistent. Also make sure that the
application exits properly.

• Application name: Make sure your applica-
tion displays a name in the title bar.

• Keep the user informed: If your application
does not start up within a few seconds, it
should alert the user.

 �0�

Engineering Wireless Mobile Applications

• For large applications, it is a good idea to
have a progress bar.

• Readable text: Ensure that all kinds of
content are readable on both grayscale and
color devices. Also make sure the text does
not contain any misspelled words.

• Repainting screens: Verify that screens are
properly painted and that the application does
not cause unnecessary screen repaints.

• Soft buttons: Verify that the functionality
of soft buttons is consistent throughout the
application. Verify that the whole layout of
screens and buttons is consistent.

• Screen Navigation: Verify that the most
commonly used screens are easily acces-
sible.

• Portability: Verify that the application will
have the same friendly user interface on all
devices it is likely to be deployed on.

Network Checklist. Some of the items that
should be inspected when testing wireless ap-
plications are:

• Sending/Receiving data: For network-aware
applications, verify that the application sends
and receives data properly.

• Name resolution: Ensure that the application
resolves IP addresses correctly, and sends
and receives data properly.

• Sensitive data: When transmitting sensitive
data over the network, verify that the data
is being masked or encrypted.

• Error handling: Make sure that error mes-
sages concerning network error conditions
(such as no network coverage) are displayed
properly, and that when an error message
box is dismissed the application regains
control.

• Interruptions: Verify that, when the device
receives system alerts, Short Message Ser-
vice (SMS) messages, and so on while the
application is running, messages are prop-
erly displayed. Also make sure that when

the message box is dismissed the application
continues to function properly.

PRovIsIonInG WIReless
APPlIcAtIons

Developers usually build, test, and evaluate an
application on a platform similar to the one on
which it will be deployed and run. Development
of wireless applications is more challenging be-
cause they typically are developed on one platform
(such as Solaris or MS Windows) but deployed
on a totally different one (such as a cell phone or
PDA). One consequence is that, while emulators
enable developers to do some of their testing on the
development platform, ultimately they must test
and evaluate the application in the very different
environment of a live wireless network.

Wireless applications fall into two broad
categories:

Local applications (also called stand-alone
applications) perform all their operations on a
handheld wireless device and need no access to
external data sources through a wireless network.
Examples include calculators and single-player
games.

Network applications consist of some com-
ponents running on a wireless device and others
running on a network, and thus depend on access to
external resources. An example would be an email
application, with a client residing on a wireless
phone that interacts with a Simple Mail Transfer
Protocol (SMTP) server to send messages.

Although these two types of applications are
different, they are deployed in the same way. The
big difference shows up later: Local applications
are easier to test than network applications. For
example, a calculator application can run on a
wireless phone even when it is not connected
to any network, but an email client won’t work
without a connection to the SMTP server that
actually transmits the messages.

��0

Engineering Wireless Mobile Applications

over the Air Provisioning

For some time, wireless portals in Europe such
as Midletcentral have allowed customers to
download applications directly to their phones,
over the air. Over-the-air provisioning of wire-
less applications (OTA) is finally available in
North America. Nextel customers, for example,
can download network-aware wireless applica-
tions without an update data cable. OTA is the
deployment of wireless Java applications (MIDlet
suites) from the Internet to wireless devices over
a wireless network. Users need not connect their
devices to the desktop with a data cable or visit
a service center to install or upgrade software.
To take advantage of OTA, you must equip your
handheld device with a mechanism to discover
MIDlet suites available for download, using the
device’s browser (such as a WAP browser) or a
resident application written specifically to iden-
tify downloadable MIDlet suites. The process of

downloading MIDlets over the air is illustrated
in Figure 5.

RelAted WoRk

The explosive growth of the wireless mobile appli-
cation market raises new engineering challenges
(Morisio & Oivo, 2003); what is the impact of the
wireless Internet on engineering wireless mobile
applications for the new wireless infrastructure
and wireless handheld devices? Due to the limited
experience with wireless technologies and devel-
oping wireless applications, little work has been
in the area of wireless software engineering. We
found a special issue in the IEEE Transactions on
Software Engineering on ‘Software Engineering
for the Wireless Internet’ (Morisio & Oivo, 2003).
However, out of the six papers accepted in the
special issue only two papers deal with the devel-
opment process. Ocampo et al., (2003) provided

Figure 5. Over the air provisioning

 ���

Engineering Wireless Mobile Applications

an initial reference process for developing wire-
less Internet applications, which does not differ
significantly from traditional iterative process
models but includes domain-specific guidance on
the level of engineering processes. Satoh (2003)
developed a framework for building and testing
networked applications for mobile computing.
The framework is aimed to emulate the physical
mobility of portable computing devices through
the logical mobility of applications designed to
run on them; an agent-based emulator is used to
perform application-level emulation of its target
device.

More recently, Chen (2004) proposed a meth-
odology to help enterprises develop business
strategies and architectures for mobile applica-
tions. It is an attempt to formulate a life-cycle
approach to assisting enterprises in planning and
developing enterprise-wide mobile strategies and
applications. This methodology is more concerned
with business strategies rather than technical
details and thus it is targeted at managers rather
than developers. And finally, Nikkanen (2004)
presented the development work of a browser-
agnostic mobile e-mail application. It reports
on experiences porting a legacy WAP product
to a new XHTML-based browser application,
and offers guidelines for developing mobile ap-
plications.

Our work is different in the sense that we
provide a detailed treatment of the impact of the
characteristics of mobile devices and the wire-
less environment on engineering wireless mobile
applications; we discuss the challenges and offer
practical solutions for developing mobile applica-
tions. We present a systematic approach for de-
signing wireless mobile application. Our approach
is iterative just like in (Ocampo et al., 2003), but
differs in the sense that our process has more focus
on requirements elicitation and more importantly
scenario analysis. We do not provide a testing
framework, but our testing strategy and check-
list is more practical than using just an emulated
environment. Finally, unlike the work reported

in (Chen, 2004) our methodology is targeted at
developers and researchers rather than managers.
And, unlike the work in (Nikkanen, 2004), our
guidelines and systematic approach is not limited
to WAP-based applications, but can be applied to
engineering any wireless application.

conclusIon And futuRe WoRk

As the wireless Internet becomes a reality and
software developers become comfortable with
the methods and processes required to build
software, we recognize that the methods devel-
oped for conventional systems are not optimal
for wireless applications. In particular, wireless
application development doesn’t always fit into
the development model originated to cope with
conventional large software systems. Most wire-
less application systems will be smaller than
any medium size project; however, a software
development method can be just as critical to
a small software project success as it is to that
of a large one. In this paper we have presented
and discussed a systematic approach to wireless
application development, and presented practi-
cal guidelines for testing wireless applications.
The proposed approach takes into account the
special features of the wireless environment. We
have successfully used the approach presented
to develop various wireless applications ranging
from a stock portfolio management application to
a mobile agent platform for mobile devices (Mah-
moud, 2002). Our future work includes evaluating
the effectiveness of the proposed methodology,
documenting wireless software design patterns,
and building tools to automate the task of testing
wireless applications.

There are several interesting research prob-
lems in the emerging area of wireless mobile
applications and services. Some of these research
issues include: Novel mobile services in the area
of m-commerce and health care; Security and
privacy issues; Mobile agents for mobile services;
Discovery and interaction of mobile services;

���

Engineering Wireless Mobile Applications

Enabling roaming of applications and profiles
between different wireless standards; Location-
aware and context-aware mobile services. We
are currently addressing some of these research
problems and research results will be presented
in future articles.

AcknoWledGment

The authors would like to thank the anonymous
reviewers for the many helpful suggestions for
improving this paper. This work was supported
in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery
Grant No. 045635.

RefeRences

Beaulieu, M. (2002). Wireless Internet Applica-
tions and Architecture, Addison-Wesley.

Beck, K. (1999). Extreme Programming Ex-
plained: Embrace Change. Addison-Wesley.

Booch, G., Rumbaugh, J., & Jacobsen, I. (2000).
The Unified Modeling Language User Guide,
Addison-Wesley.

Burkhardt, J, Henn, H., Hepper, S., Rintdorff,
K., & Schack, T. (2002). Pervasive Computing
Technology and Architecture of Mobile Internet
Applications, Addison-Wesley.

Chen, M. (2004). A methodology for building
mobile computing applications. International
Journal of Electronic Business, Vol. 2, No. 3,
pp. 229-243.

Jacobsen, I., Booch, G., & Rumbaugh, J. (2000).
The Unified Software Development Process.
Addison-Wesley.

Httperf. citeseer.nj.nec.com/mosberger98httperf.
html.

HttpUnit. http://httpunit.sourceforge.net.

Mahmoud, Q. (2002). MobiAgent: An Agent-
based Approach to the Wireless Internet. Journal
of Internet Computing, special issue on Wireless
Internet, pp. 156.162.

Morisio, M., & Oivo, M. (2003). Guest Editors
Introduction: Software Engineering for the Wire-
less Internet. IEEE

Transactions on Software Engineering, Vol. 29,
No. 12, pp. 1057-1058.

Motorola Application Certification Program.
http://qpqa.com/motorola/iden.

Nikkanen, M. (2004). User-centered development
of a browser-agnostic mobile e-mail application.
Proceedings of the third Nordic conference on
Human-computer interaction, Tampere, Finland,
pp. 53-56.

Ocampo, A., Boggio, D., Munch, J., & Palladino,
G. (2003): Towards a Reference Process for
Developing Wireless Internet Services. IEEE
Transactions on Software Engineering, Vol. 29,
No. 12, pp. 1122 – 1134.

Open Mobile Alliance. http://www.wapforum.
org.

Pressman, R.S. (2005). Software Engineering: A
Practitioner’s Approach. Sixth Edition, McGraw
Hill.

Satoh, I. (2003). A Testing Framework for Mo-
bile Computing Software. IEEE Transactions
on Software Engineering, Vol. 29, No. 12, pp.
1112-1121.

Sun Microsystems J2ME: http://java.sun.com/
j2me.

Sun Microsystems J2ME Wireless Toolkit: http://
java.sun.com/products/j2mewtoolkit.

This work was previously published in Int. Journal of Information Technology and Web Engineering, Vol 1, Issue 1, edited by
G. Alkhatib and D. Rine, pp. 59-75, copyright 2006 by IGI Publishing (an imprint of IGI Global).

