Version number	Date	Page
1.0	01-JUN-1991	1-1

1 INTRODUCTION

1.1 PLATEWORK - Purpose

PLATEWORK is an interactive computer program with the main purpose of code checking stiffened plate structures against rules and regulations issued by the following authorities:

- API American Petroleum Institute
- DnV Det norske Veritas
- NPD Norwegian Petroleum Directorate

The code check features are mainly buckling checks, with some yield check facilities, see PLATEWORK Theoretical Manual /1/. PLATEWORK is based on the Capacity Model concept, and the following Capacity Model types are included:

- Simple, unstiffened plate (API, DnV, NPD)
- Stiffener (API, DnV, NPD)
- Girder (API, DnV, NPD)
- Uniaxially stiffened panel (API)
- Orthogonally stiffened panel (API)

The program has features for manual input of code check data, and extensive automatic features for extraction of such data from Finite Element (FE) analyses. This allows PLATEWORK to be used in a stand-alone mode or as a postprocessor to a FE-analysis.

Included are several features for graphics interaction and presentation. The code check results can be presented as print/plot to a file or to the screen. The result print utilities include very flexible and user-controllable options for results sorting and filtering. This enables the user to tailor the program output for easy inclusion of code-check results in an analysis report.

PLATEWORK is part of the SESAM suite of programs and operates on a local database file. When using the program as a postprocessor to a FE-analysis, it also reads FE-results from the SESAM Interface File /3/. The SESAM Interface File may have been created by the SESAM analysis program SESTRA /8/, the SESAM utility program PREPOST /4/ or by any other program.

1.2 PLATEWORK in the SESAM system

Figure 1-1 PLATEWORK in the SESAM system

Version number	Date	Page
1.0	01-JUN-1991	1-3

1.3 PLATEWORK environment

Below is shown the local PLATEWORK file environment. Note that it may be necessary to use the SESAM utility program PREPOST /4/ to establish the SESAM results file in direct access

Figure 1-2 Local PLATEWORK file environment

1.4 How to read this manual

Chapter 2 contains descriptions of important concepts employed in the program. A novice user should read this chapter first.

Chapter 3 is a quick user's guide and contains small concrete examples on how to use the concepts explained in chapter 2.

Chapter 4 contains practical information on how to start the program, important files and program requirements and limitations.

Chapter 5 provides a description of all program commands and associated input data.

Appendix A contains complete tutorial examples.

PLATEWORK Theoretical Manual

The basic theory behind the code checks are described in a separate manual, the PLATEWORK Theoretical Manual /1/. This manual is an important reference document for any PLATEWORK user. References to API, DnV and NPD code documents will be found here.

PLATEWORK Status List

The latest information about minor program modifications, error corrections or amendments to the PLATE-WORK documentation is available in the PLATEWORK Status List. The Status List will also state the latest revision numbers of the PLATEWORK documentation.

This document is issued regularly by Veritas SESAM Systems A.S to every PLATEWORK installation. The local SESAM installation responsible will be able to provide the latest copy.

PLATEWORK Maintenance Manual

The internal implementation aspects, programming tools and internal datastructures are described in a separate manual, the PLATEWORK Maintenance Manual /2/. The manual is not generally available for PLATEWORK users, but used by PLATEWORK maintenance responsible personnell.

Version number	Date	Page
1.0	01-JUN-1991	1-1

1 FEATURES OF PLATEWORK

1.1 Introduction

This chapter contains a broad description of important concepts employed and features available in PLATE-WORK. It serves as a first introduction to the program principles for the novice user, and as a reference document for the more experienced user.

1.2 The Code Checks

The main purpose of PLATEWORK is, as mentioned briefly in the preceding chapter, to perform code checks on stiffened plate structures. The current version supports the following checks, see also the Theoretical Manual /1/:

ſ	Table 1.1	Co	le checks	
Type of checks	AI	PI	Code of Practice DnV	NPD
Plate yield and buckling checks	Х	C	Х	Х
Stiffener yield and buckling checks	Х		Х	Х
Girder yield and buckling checks	Х		Х	Х
Uniaxially stiffened panel buckling checks	Х			
Orthogonally stiffened panel buckling chec	ks X			

The table shown above identifies certain structural parts that have been addressed by the different design codes. These structural parts are in PLATEWORK called "Basic Capacity Models" or simply "Capacity Models", and they are treated as separate entities independent of for example the elements in a Finite Element mesh.

The Basic Capacity Models are described in the following section.

1.3 The Basic Capacity Model

In order to handle code checks in a simple, efficient and versatile way, a new entity called a Capacity Model is introduced. Some important aspects characterizing the Capacity Model are:

1 Capacity Model types

There are 5 Capacity Model types :

- a Plate Capacity Models, denoted PLT.
- b Stiffener Capacity Models, denoted STF.
- c Girder Capacity Models, denoted GIR.
- d Uniaxially Stiffened Panel Capacity Models, denoted USP.
- e Orthogonally Stiffened Panel Capacity Models, denoted OSP.

2 Capacity Models are separate, named objects

The Capacity Models are stored as separate objects in the PLATEWORK database, no code checks can be performed without the explicit creation of Capacity Models. Each Capacity Model is identified by a unique name.

3 Capacity Models are origin-independent

The Capacity Model objects are to a large extent independent of the way in which they were created. This makes it possible to create Capacity Models either "manually" (i.e. by entering all data directly via the PLATEWORK commands), or "automatically" by reference to a Finite Element Model (i.e. most of the Capacity Model input data is inferred from analysis of the Finite Element Model geometry). The Code Check module does not distinguish between two Capacity Models that were created in one or the other way.

4 Capacity Models may be assigned to specific locations within a larger structure

A structure may for example have several plates with identical dimensions, plate thicknesses, material etc. These plates will be defined as separate Capacity Models, because the stresses in the plates (which form the basis for calculation of Capacity Model loads) will be different in the general case.

Version number	Date	Page
1.0	01-JUN-1991	1-3

1.3.1 The plate Capacity Model (PLT)

The plate is the geometrically simplest of the Capacity Models in PLATEWORK. It is used for checking individual plates between stiffeners and girders within a stiffened panel. Its geometry is described by the following paramers:

- lx Length of plate, x direction
- ly Length of plate, y direction
- t Plate thickness

For a complete description of all plate Capacity Model parameters, see the Theoretical Manual.

Figure 1-1 The plate Capacity Model

Page 1-4 Date 01-JUN-1991

1.3.2 The stiffener Capacity Model (STF)

The stiffener Capacity Model is used for checking individual stiffeners within a stiffened panel. Its main geometry is described by the following parameters:

- lx length of stiffener, x direction
- ly1 Stiffener spacing BEFORE stiffener
- ly2Stiffener spacing AFTER stiffener
- t1 Plate thickness BEFORE stiffener
- t2 Plate thickness AFTER stiffener

In addition to the main geometry parameters, the stiffener is also described by the stiffener section parameters

hwsStiffener web heighttwsStiffener web thicknessbfsStiffener flange widthtfsStiffener flange thicknessafsDistance between webs (=0.0 if one web)efsFlange eccentricity

For a complete description of all stiffener Capacity Model parameters, see the Theoretical Manual.

Figure 1-2 The stiffener Capacity Model

Version number	Date	Page
1.0	01-JUN-1991	1-5

1.3.3 The girder Capacity Model (GIR)

The girder Capacity Model is used for checking individual girders within a stiffened panel. Its main geometry is described by the following parameters:

- Ly Length of girder, y direction
- lx1 Girder spacing BEFORE girder
- lx2 Girder spacing AFTER girder
- t1 Plate thickness BEFORE girder
- t2 Plate thickness AFTER girder
- lya Average stiffener spacing, y direction

Figure 1-3 The girder Capacity Model

In addition to the main geometry parameters, the girder is also described by the girder and stiffener section parameters:

Girder section

hwg	Girder web height
twg	Girder web thickness
bfg	Girder flange width
tfg	Girder flange thickness
afg	Distance between webs (=0.0 if one web)
efg	Flange eccentricity

Page **1-6** Date 01-JUN-1991 Version number 1.0

Stiffener secti	on
hws	Stiffener web height
tws	Stiffener web thickness
bfs	Stiffener flange width
tfs	Stiffener flange thickness
afs	Distance between webs (=0.0 if one web)
efs	Flange eccentricity

For a complete description of all girder Capacity Model parameters, see the Theoretical Manual.

Version number	Date	Page
1.0	01-JUN-1991	1-7

1.3.4 The uniaxially stiffened panel Capacity Model (USP)

The uniaxially Capacity Model is used for checking the entire uniaxially stiffened panel in an API Code Check. Its main geometry is described by the following parameters:

- Lx Length of panel, x direction
- Ly Length of panel, y direction
- lya Average stiffener spacing, y direction
- t Plate thickness

In addition to the main geometry parameters, the uniaxially stiffened panel is also described by the stiffener section parameters

hws	Stiffener web height
tws	Stiffener web thickness
bfs	Stiffener flange width
tfs	Stiffener flange thickness

For a complete description of all uniaxially stiffened panel Capacity Model parameters, see the Theoretical Manual.

Figure 1-4 The uniaxially stiffened panel Capacity Model

je

1.3.5 The orthogonally stiffened panel Capacity Model (OSP)

Date

01-JUN-1991

The orthogonally stiffened panel Capacity Model is used for checking the entire orthogonally stiffened panel in an API Code Check. Its main geometry is described by the following parameters:

- Lx Length of panel, x direction
- Ly Length of panel, y direction
- lxa Average girder spacing, x direction
- lya Average stiffener spacing, y direction
- t Plate thickness

Figure 1-5 The orthogonally stiffened panel Capacity Model

In addition to the main geometry parameters, the orthogonally stiffened panel is also described by the girder and stiffener section parameters:

Girder section

hwg	Girder web height
twg	Girder web thickness

- bfg Girder flange width
- tfg Girder flange thickness

Stiffener section

hws	Stiffener web height
tws	Stiffener web thickness
bfs	Stiffener flange width
tfs	Stiffener flange thickness

For a complete description of all orthogonally stiffened panel parameters, see the Theoretical Manual.

1.4 The Capacity Model Assembly

The Capacity Models described in the previous section are basic entities that represent only small parts of a total structure. In order to code check a complete structure, many Capacity Models will have to be defined.

If the Capacity Models were to be created one by one, in separate operations, it would require extensive user input. One would also ignore the fact that Capacity Models within a certain area usually have a lot in common, for example:

- Common material
- Common plate thickness between adjacent stiffener and plate Capacity Models
- Girder spacings define stiffener lengths and vice versa.
- Stiffener cross sections are the same in adjacent stiffener and girder Capacity Models
- etc.

In realizing the above, the concept of the Capacity Model Assemby is introduced. A Capacity Model Assembly represents not just a simple plate, stiffener or girder, but a complete stiffened panel with Basic Capacity Models that are logically and geometrically connected.

The stiffened panel defined through a Capacity Model Assembly is a flat, rectangular area with main girders running parallel to two of the sides in the rectangle. The stiffeners run in the direction defined by the two remaining sides in the rectangle (i.e. at right angles wrt. the girders). The plates occupy the areas between the stiffeners and girders. The API-specific Capacity Models (Uniaxially & Orthogonally Stiffened Panels) occupy the whole Capacity Model Assembly area, but their geometry descriptions are simpler than the general description of the Capacity Model Assembly. For an example of a Capacity Model Assembly, see figure 1-6, page 1-10.

Note that the girder Capacity Models cover the whole span of the Capacity Model Assembly, while the stiffener Capacity Models only cover the area between two adjacent girders.

Note also the definition of the local coordinate system within a Capacity Model Assembly. This local coordinate system is shared by all Basic Capacity Models within the Assembly, except when the assembly area shape is distorted (not 100% rectangular):

- The Assembly area is defined by four corners, numbered as shown on figure 1-6..
- The local x-axis goes from corner 1 to corner 2. The local y-axis goes from corner 1 to corner 4.
- Girders are always oriented in the local y-direction.
- Stiffeners are always oriented in the local x-direction.

Figure 1-6 The Capacity Model Assembly

The Capacity Model Assembly is, as the Basic Capacity Models are, stored as a separate object in the PLATE-WORK database. Its main purpose is to organize the description of the stiffened panel, such that Basic Capacity Models can be created efficiently, i.e. it should be seen as a means of organizing input data to the process that creates the Basic Capacity Models.

Version number	Date	Page
1.0	01-JUN-1991	1-11

1.4.1 Creation of Capacity Models through an Assembly

The process that creates the Basic Capacity Models, is split into two main operations:

1 Creation of the Capacity Model Assembly

This is done on the basis of direct user input, optionally also by reading Finite Element geometry data. The product of this process is a Capacity Model Assembly object, which is stored in the database.

2 Creation of the Basic Capacity Models

This is done solely on the basis of the Assembly. The products of this process are several Basic Capacity Models, which are stored in the database.

Figure 1-7 Principles of Capacity Model creation

Page 1-12 Date 01-JUN-1991

1.4.2 Creation of Capacity Model Assemblies through a Finite Element mesh

The figure below shows part of a Finite Element Model that represent a stiffened panel as described earlier. PLATEWORK contains features for locating the Capacity Model Assembly (by means of the 4 corners) by referencing nodes in the FE-model (for example by pointing in the mesh display).

If, for example the girders and stiffeners have been modelled with beam elements and the plates have been modelled with shell or membrane elements, the user can then instruct PLATEWORK to automatically identify the girders, stiffeners, plate thicknesses, materials, cross sections etc., that together constitute a complete Capacity Model Assembly description, independent of the Finite Element mesh refinement. In the figure below, this would lead to an assembly with one girder, two stiffeners and four plates.

The Basic Capacity Models are created solely on the basis of the Assembly, as described in the previous section. From this it follows that Capacity Models can be efficiently created on the basis of a FE-model.

Figure 1-8 Creating Capacity Models through a FE-model

1.4.3 Non-rectangular assemblies

The preceding sections have described the normal situation, where the general shape of the assembly (and therefore also the shape of the basic Capacity Models) comply with the assumptions made by the Codes of Practice, namely that the assembly shape is rectangular (parallel sides & 90 degree corner angles).

In some cases, real structures do not fully comply with these requirements. To allow for such structures to be code checked, non-rectangular assemblies may be modelled in PLATEWORK, see figure 1-9. It must be noted, however, that it is the responsibility of the user to judge whether the distorted assembly shape is not too extreme.

The best way to understand how this feature works, is to assume that the whole assembly is made of rubber, and then stretched to fit the area described by the 4 corners. From this it follows that the local axis systems will be stretched also, i.e. adjacent Capacity Models will no longer have parallel local x- and y-axes. The Capacity Model loads will be calculated according to the real structure geometry.

In the Code Checks, an idealised shape will be assumed. The Theoretical Manual descibes the shape idealisations in more detail.

Real structure shape

Idealized rectangular shape

Figure 1-9 A "stretched" Capacity Model Assembly

Page 1-14

1.5 The element Scope

The scope facility is used to limit the part of the FE-model that can be accessed, in order to

- Reduce CPU-time used and increase program response
- Improve overview of the model, for example in the mesh display
- Guide the program in finding correct solutions, for example when creating Capacity Models on the basis of the element mesh, as described in section 1.4.2.

1.5.1 Superelement analyses and the element Scope

The superelement technique is an inherent feature of most SESAM programs. This technique is extremely efficient during the pre-processing phase, when repeated identical parts of the whole structure only have to be modelled once. This feature is also very important in the analysis phase, since each superelement stiffness matrix only has to be computed once, and then re-used several times. The multi-level superelement technique thus provides the user with a tool able to solve problems of almost unlimited size.

On the post-processing side, however, the situation is slightly less favourable. Repeated superelements have typically the same geometric properties, but they invariably have different loads and results, making it necessary to post-process each superelement repetition individually. Also, the convenient subdivision into superelements may turn out to be an obstacle on the post-processing side.

Figure 1-10 Capacity Model Assembly crossing superelement boundaries

Version number	Date	Page
1.0	01-JUN-1991	1-15

Parts of the structure that are geometrically close neighbours may, due to the superelement subdivision, not have any obvious relation in the Finite Element datastructure. This situation could cause problems if for instance Capacity Models Assemblies were defined to cross superelement boundaries, see figure 1-10.

To solve these problems, PLATEWORK does not operate on a superelement by superelement basis, but operates on the structure as a whole. This means that all graphics display, coordinates entered by the user etc., are always relative to the top level coordinate system, which also happens to be the "true" coordinate system of the real structure.

It may seem inefficient to have to deal with all superelements at the same time. That is where the element scope concept becomes useful.

Figure 1-11 A user-defined element scope

Typically, at a given time, one focuses ones interest to a small part of the structure. This part may contain Finite Elements from one or several superelements. Such parts may be defined in PLATEWORK using the element scope facility, see figure 1-11. Here, specified elements can be put into named scopes that are later investigated, disregarding all other elements, see figure 1-12.

Different techniques for defining scopes exist. One may put all elements from one or several superelements into the scope. More useful in PLATEWORK is perhaps the facility to define a plane using 3 nodes and specify that all elements lying in that plane shall be put into a scope. There is also a similar feature where all elements

within a trapezoid can be put in a scope. Elements that have common geometric or logical properties (for example common element type) may in this way be grouped together, even if the elements come from different superelements.

The element scope facility thus enables the user to limit his current area of interest, but does not pose the limitations that a postprocessor operating on a superelement by superelement basis would.

Figure 1-12 Working with a user-defined element scope

Page

1-17

1.6 The Resultcase

In order to execute a Code Check, one must not only have Capacity Models but also loads on the Capacity Models. In order to efficiently organize Capacity Model loads (and subsequently Code Check results), the concept of a Resultcase is introduced.

The Resultcase is typically used to identify Capacity Model loads (or code check results) of different Capacity Models that physically belong to the same external structural load. Resultcases are also used to control the combination of basic results into combination resultcases.

Resultcases are represented as separate entities in the PLATEWORK database, and also used for controlling access to Capacity Model loads and Code Check results.

Some important aspects characterizing resultcases are:

• **Resultcases are separate, named objects in the database** No code checks can be performed without either explicit creation of resultcases, or through inheritance of resultcases from an FE-analysis.

• Resultcases are either BASIC or COMBINATION resultcases

A basic resultcase may typically be inherited from a Finite Element Analysis, in which case FE-stresses exist and may be converted into Capacity Model loads.

A basic resultcase can also be created manually in PLATEWORK. The Capacity Model loads must in this case also be defined manually.

A combination resultcase is typically defined in PLATEWORK, by referring to basic resultcases and applying factors and phase shift angles.

• Resultcases are either of the STATIC, COMPLEX or SCAN types

A static resultcase will refer to Capacity Model loads that have only static load components. A complex resultcase will refer to Capacity Model loads that have complex load components, i.e. real and imaginary terms. A scan resultcase will refer to Capacity Model loads that have scan load components, i.e. both static, real and imaginary terms.

Resultcases have limit-state kinds assigned

During execution of the code checks, different limit-states will apply for different loads, due to the nature of the load, or the safety level required (examples are the NORMAL and STORM conditions in the API code checks). The resultcases have therefore assigned limit-state kinds, so that the relevant limit-state factors can be fetched as the loads within the different resultcases are checked.

• Resultcases & Capacity Models provide a convenient system for referencing loads and results The Resultcase and Capacity Model names are the main keys through which the Capacity Model loads and the corresponding code check results are referenced by the user. Date 01-JUN-1991

1.6.1 Combination resultcases & combination formulae

As mentioned above, resultcases can be either basic or combinations of basic resultcases. Combination resultcases are defined using the following procedure:

1 Create the basic resultcases

This is done either by reading in a SESAM Results Interface File (direct access format, the so-called SINfile) in which case basic resultcases will be automatically inherited from the FE-analysis. Alternatively, basic resultcases can also be created manually in PLATEWORK by use of the CREATE RESULTCASE command (BASIC option).

2 Create the combination resultcases

Once the basic resultcases have been created, the CREATE RESULTCASE command (COMBINATION option) should be used to define the combination resultcases. In addition to simple descriptive data, the following information will be required:

- a Destination resultcase kind The combination must be specified as either STATIC, COMPLEX or SCAN, independent of the basic resultcases input to the combination.
- b Source resultcase names Names of the source resultcases (i.e. basic or previously defined combination resultcases) must be entered.
- c Source resultcase factor A scale factor (F in table 1.2) for each source resultcase must be entered.
- d Source resultcase phase shift angle. A phase shift angle (θ in table 1.2) must be entered for each source resultcase.

Table 1.2Result combination formulae

Source kind		Combination formula	Destination kind	
STATIC	[S]	F*[Scosθ]	STATIC	[S]
COMPLEX	[R,I]	F*[Rcos0-Isin0]	STATIC	[S]
STATIC	[S]	F*[Scos0, Ssin0]	COMPLEX	[R,I]
COMPLEX	[R,I]	$F^*[R\cos\theta-I\sin\theta, I\cos\theta+R\sin\theta]$	COMPLEX	[R,I]
STATIC	[S]	$F^*[Scos\theta]$	SCAN (STATIC part)	[S ,R,I]
COMPLEX	[R,I]	$F^*[R\cos\theta-I\sin\theta, I\cos\theta+R\sin\theta]$	SCAN (COMPLEX part)	[S, R , I]

Combination is performed on unreduced Capacity Model loads

Note that the combination is performed on the basis of the unreduced Capacity Model loads (see section 1.7, The Capacity Model Load), i.e. NOT when the CREATE RESULTCASE command is entered, but when the CREATE LOAD-ON-CAPACITY-MODEL AUTOMATIC command is entered.

1.7 The Capacity Model Load

1.7.1 Creation of Capacity Model loads from Finite Element stresses

After creating a Finite Element Model, and running the analysis, stress and force results exist on the SESAM Interface File as shown schematically in the figure below. After creating the Capacity Models as described in section 1.4.2, the Finite Element stresses must be converted and processed to form Capacity Model loads.

What is logically one Capacity Model (e.g. the upper right quarter of the figure, which forms a plate Capacity Model) may consist of several finite elements (in this case 3x3=9 elements). The stress functions along the CM boundaries are typically piecewise non-continous linear functions. The Capacity Models require constant or linear load functions along their boundaries, see Theoretical Manual. The stress functions must therefore be simplified before they can be used.

Figure 1-13 Stresses and forces from a Finite Element Analysis

In order to transform the rather complicated stress functions into simple, linear load functions, the following procedure is used (see also figure 1-15):

Page 1-20 Date 01-JUN-1991

Version number 1.0

1 Creation of load transformation points

After creating the Capacity Models (by indicating the location of the Capacity Model Assembly wrt. the Finite Element Model), the so-called "load transformation points" can be found for each edge of all Capacity Models. There will be 2 times as many points per CM edge as there are Finite Elemens along that edge, in order to properly represent the piecewise non-continuous stress function. Each load transformation point contains information about which Finite Element it "belongs" to, and the necessary extrapolation and coordinate system transformation.

2 Creation of "unreduced" Capacity Model loads

After all the load transformation points have been established, the program uses them during the processing of stresses. The stresses are estimated in each point for all resultcases and Capacity Models. The result of this process is called "unreduced" Capacity Model loads, because of the arbitrary shape of the function. The unreduced Capacity Model loads are stored in the database, and may be displayed graphically.

3 Reduction of Capacity Model loads

After establishing the unreduced loads, the penultimate step in estimating the final Capacity Model loads consists of a simple integration (trapezoid method), where the total edge force and in-plane edge moment are established. By assuming a linear distribution along the CM edges of these total forces, the unaveraged Capacity Model loads are obtained (i.e. one linear function per edge of the Capacity Model).

4 Averaging of Capacity Model loads

The final step consists of averaging loads on opposite CM edges. This process is described in the Theoretical Manual. Note that the loads stored are force per unit edge length.

Figure 1-14 Reduced Capacity Model Loads

Figure 1-15 Principles of Capacity Model load calculation from FE stresses & forces

Page **1-22**

Date 01-JUN-1991 Version number 1.0

1.7.2 Manual creation of Capacity Model loads

The previous section described the process of transforming Finite Element stresses and forces into unreduced and reduced Capacity Model loads, a convenient method when an FE-model is available.

In some cases, especially when the program is used in the stand-alone mode, this may not be possible or desireable. Therefore an option exists where the user can enter the reduced Capacity Model loads manually through PLATEWORK commands, i.e. the user enters the final reduced & averaged Capacity Model loads directly.

It was earlier described how the Basic Capacity Models were independent of the way in which they were created. This principle applies also for the reduced Capacity Model loads. The part of the program which performs the code checks does not distinguish between Capacity Model loads entered manually, and the loads created on the basis of Finite Element stresses.

Figure 1-16 Manual creation of Capacity Model loads

Version number	Date	Page
1.0	01-JUN-1991	1-23

1.8 The Code Check analysis

After creation of Capacity Models and Capacity Model loads, the Code Checks can in principle be executed, as indicated in the figure below:

Figure 1-17 Principles of a Code Check analysis

Which part of the Code Check is executed is dependent on the currently selected Code of Practice and the type of Capacity Model. The Code Check is executed for those Capacity Model loads that refer to a selected Capacity Model and a selected Resultcase.

The Code Check results are stored in the PLATEWORK database, and may be investigated through use of print or display facilities.

On the following pages follow a summary of the Code Check results calculated for the different Codes of Practice and Capacity Models. Page **1-24**

1.9 The Code Check Results

The Code Checks are described in the PLATEWORK Theoretical Manual. On the following pages follow a summary of the Code Check result parameters as calculated for the different Codes of Practice and Capacity Models.

1.9.1 API Code Check results

API Code Check results, Girder Capacity Model

Parameter (GIR) API Code Check Results, Parameter description _____ Maximum of all Unity Criterion factors UCmax UCcbU Unity Criterion for column buckling Unity Criterion for beam-column buckling UCbcbU UCtfbU Unity Criterion for torsional/flexural buckling Unity Criterion for plastic bending UCpbU UCpdtw Unity criterion, web plastic bending requirement UCcdtw Unity criterion, web compact section requirement Unity criterion, flange plastic bending requirement UCpbftf Unity criterion, flange compact section requirement UCcbftf UClasup Unity criterion, laterally unsupportet length, compr. flange FSSLS Factor of safety, SLS FSULS Factor of safety, ULS sigx1 Normal stress in x direction sigx2 Normal stress in y direction, edge 1 Normal stress in y direction, edge 2 siqy Shear stress tauxy Plate slenderness; side1 beta1 beta2 Plate slenderness; side2 Correction coefficient, y direction, side1 Cy1 Correction coefficient, y direction, side2 Cy2 Effective plate flange, side 1 Le1 Effective plate flange, side 2 Le2 Ae Effective cross section Distance from neutral axis to center of girder flange zsDistance from neutral axis to midplane of plate zp Effective moment of inertia about z axis Iez Effective radius of gyration re Wep Effective sectional modulus, plate side Effective sectional modulus, flange side Wes Plastic sectional modulus Wpl Torsion constant J Cw Warping constant Is Polar moment of inertia about shear center Polar moment of inertia about centroid Ιc Ρ Effective axial force Compressive force in the girder Ftw

Version number	Date	Page
1.0	01-JUN-1991	1-25

Fwi	Assumed compressive force to be carried in the girder
Mbend	Bending moment
lambda	Column slenderness
PEe	Elastic buckling force (Euler)
PFu	Ultimate column buckling resistance
Mu	Bending moment capacity
B1	Bending amplification factor
РТе	Elastic torsional buckling force
PTFe	Elastic torsional/flexural buckling force
PTFu	Ultimate torsional/flexural buckling resistance
Мир	Ultimate plastic bending moment capacity
Rdtw	Web, height to thickness, bending ratio
etapdtw	Web, height to thickness, plastic bending ratio requirement
etacdtw	Web, height to thickness, compact section ratio requirement
Rbftf	Flange, height to thickness, bending ratio
etapbft	Flange, height to thickness, plastic bending ratio requirement
etacbft	Flange, height to thickness, compact seqtion ratio requirement
RLb	Laterally unsupported length of compression flange
etaL1L2	Laterally unsupported length of compression flange requirement

API Code Check results, Stiffener Capacity Model

Parameter	(STF) API Code Check Results, Parameter description
UCmax	Maximum of all Unity Criterion factors
UCcbU	Unity Criterion for column buckling
UCbcbU	Unity Criterion for beam-column buckling
UCtfbU	Unity Criterion for torsional/flexural buckling
UCpbU	Unity Criterion for plastic bending
UCpdtw	Unity criterion, web plastic bending requirement
UCcdtw	Unity criterion, web compact section requirement
UCpbftf	Unity criterion, flange plastic bending requirement
UCcbftf	Unity criterion, flange compact section requirement
UClasup	Unity criterion, laterally unsupported length, compr. flange
UCsreq	Unity criterion, moment of inertia, stiffener on panels, shear
UCsreql	Unity criterion, moment of inertia, stiffener cross sec., long
FSSLS	Factor of safety, SLS
FSULS	Factor of safety, ULS
sigx	Normal stress in x direction
sigy1	Normal stress in y direction, edge 1
sigy2	Normal stress in y direction, edge 2
tauxy	Shear stress
beta1	Plate slenderness; side1
beta2	Plate slenderness; side2
Cx1	Correction coefficient, x direction, side1
Cx2	Correction coefficient, x direction, side2
bel	Effective plate flange, side 1
be2	Effective plate flange, side 2
Ae	Effective cross section
ZS	Distance from neutral axis to center of stiffener flange

Page	Date Version nur	mber
1-26	01-JUN-1991	1.0
zp	Distance from neutral axis to midplane of plate	
Iez	Effective moment of inertia about z axis	
re	Effective radius of gyration	
Wep	Effective sectional modulus, plate side	
Wes	Effective sectional modulus, stiffener side	
Wpl	Plastic sectional modulus	
J	Torsion constant	
Cw	Warping constant	
Is	Polar moment of inertia about shear center	
Ic	Polar moment of inertia about centroid	
P	Effective axial force	
Ftw	Compressive force in the stiffener	
Fwi	Assumed compressive force to be carried in the stiffener	
Mbend	Bending moment	
ms	Bending moment factor	
lambda	Column slenderness	
ks	Buckling length factor	
PEe	Elastic buckling force (Euler)	
PFu	Ultimate column buckling resistance	
Mu	Bending moment capacity	
B1	Bending amplification factor	
РТе	Elastic torsional buckling force	
PTFe	Elastic torsional/flexural buckling force	
PTFu	Ultimate torsional/flexural buckling resistance	
Мир	Ultimate plastic bending moment capacity	
Fxvu	Ultimate shear buckling resistance	
Rdtw	Web, height to thickness, bending ratio	
etapdtw	Web, height to thickness, plastic bending ratio requirement	
etacdtw	Web, height to thickness, compact section ratio requirement	
Rbftf	Flange, height to thickness, bending ratio	
etapbft	Flange, height to thickness, plastic bending ratio requirement	nt
etacbft	Flange, height to thickness, compact section ratio requirement	nt.
RLb	Laterally unsupported length of compression flange	
etali112	Laterally unsupported length of compression flange requirement	nt.
RIS	Moment of inertia for stiffeners, in-plane shear	
RTI	Moment of inertia for longitudinal stiffeners	
etaTe	Requiremnt to moment of inertia for stiffeners	
~~~~~	redarrente co momente er thereta for perfecto	

#### **API Code Check results, Plate Capacity Model**

Parameter (PLT) API Code Check Results, Parameter description _____ Maximum of all Unity Criterion factors UCmax UCinplS Unity Criterion for in-plane loads, SLS Unity Criterion for in-plane loads, ULS UCinplU Unity Criterion for elastic deflection UCWeWa UCstrsS Unity Criterion for stress due to lateral load, SLS UCplatU Unity Criterion for lateral load, ULS Factor of safety, SLS FSSLS Factor of safety, ULS FSULS

Version number	Date	Page
1.0	01-JUN-1991	1-27

sigx1	Normal stress in x direction, edge 1
sigx2	Normal stress in x direction, edge 2
sigy1	Normal stress in y direction, edge 1
sigy2	Normal stress in y direction, edge 2
tauxy	Shear stress
fxe	Elastic buckling stress, x direction
fye	Elastic buckling stress, y direction
taue	Elastic buckling stress, shear
kx	Buckling coefficient for normal stress, x direction
ky	Buckling coefficient for normal stress, y direction
ktau	Buckling coefficient for pure shear stress
feqb	Equivalent elastic buckling stress
fxs	Buckling resistance, x direction, SLS
fys	Buckling resistance, y direction, SLS
fxys	Buckling resistance, shear, SLS
beta	Plate slenderness
fxu	Buckling resistance, x direction ULS
fyu	Buckling resistance, y direction ULS
fxyu	Buckling resistance, shear ULS
We	Elastic deflection
Wa	Maximum allowable elastic deflection
fxb	Maximum plate bending stress, x direcection
fyb	Maximum plate bending stress, y direcection
feqt	Equivalent stress at center of plate, tension side, SLS
feqc	Equivalent stress at center of plate, compression side, SLS
platu	Ultimate uniform lateral pressure
Wp	Allowable permanent plastic deformation

## API Code Check results, Uniaxially Stiffened Panel Capacity Model

Parameter(USP) API Code Check Results, Parameter descriptionUCmaxMaximum of all Unity Criterion factorsUCubucUUnity Criterion for uniaxially stiffened panel bucklingFSSLSFactor of safety, SLSFSULSFactor of safety, ULSsigxAverage normal stress in x directionlambdaModified uniaxially stiffened panel slendernessfuUltimate panel buckling resistance

#### API Code Check results, Orthogonally Stiffened Panel Capacity Model

(OSP) API Code Check Results, Parameter description Parameter _____ UCmax Maximum of all Unity Criterion factors UCinplS Unity Criterion for in-plane loads, SLS UCWeWa Unity Criterion for elastic deflection Unity Criterion, service limit state stress, plate side UCpstrS UCsstrS Unity Criterion, service limit state stress, stiffener flange UCqstrS Unity Criterion, service limit state stress, girder flange Unity Criterion, ultimate lateral load UCulatU FSSLS Factor of safety, SLS FSULS Factor of safety, ULS siqx Average normal stress in x direction siqy Average normal stress in y direction tauxy Shear stress Elastic buckling stress, x direction fxse fyse Elastic buckling stress, y direction Кx Buckling coefficient, x direction Buckling coefficient, y direction Ky Torsional coefficient eta Plate slenderness, x side betax Plate slenderness, y side betay Effective plating acting with the stiffener, x direction Sxe Effective plating acting with the stiffener, y direction Sye Effective thickness acting with the stiffener, x direction tx Effective thickness acting with the stiffener, y direction ty Moment of inertia of stiffener, effective plating, x direction IxIy Moment of inertia of stiffener, effective plating, y direction Moment of inertia of effective plating alone, x direction Ipx Moment of inertia of effective plating alone, y direction Ipy feqb Equivalent elastic buckling stress Buckling resistance in x direction fxs fys Buckling resistance in y direction We Elastic deflection Maximum allowable elastic deflection Wa Deflection coefficient delta Panel bending stress, plate side, x direction fxbp Panel bending stress, plate side, y direction fybp fxbs Panel bending stress, stiffener side, x direction Panel bending stress, stiffener side, y direction fybs Platu Ultimate uniform pressure Rc Parameter for interaction forces, long./trans. stiffener Parameter of dimension load/length рс

Page

1-29

## 1.9.2 DnV Code Check results

## DnV Code Check results, Girder Capacity Model

Parameter	(GIR) DNV Code Check Results, Parameter description
UCmax	Maximum of all Unity Criterion factors
UCcomp	Unity Criterion for girder buckling, compression side
UCtens	Unity Criterion for girder buckling, tension side
UCweb	Unity criterion, web heigth to web thickness ratio
UCffla	Unity criterion, free flange of girder
UCbfla	Unity criterion, box section flange
eta0	Basic usage factor
etap	Maximum allowable usage factor
sigx1	Normal stress in x direction, edge 1
sigx2	Normal stress in x direction, edge 2
sigy	Normal stress in y direction
tauxy	Shear stress
le1	Effective plate flange, side 1
le2	Effective plate flange, side 2
beta	Plate slenderness
Cx	Correction parameter for compression in x direction
Ae	Effective cross section
zp	Distance from neutral axis to midplane of plate
zf	Distance from neutral axis to top of flange
Iez	Effective moment of inertia about z axis
Iz	Moment of inertia about z axis
ie	Effective radius of gyration
wep	Effective sectional modulus, plate side
wef	Effective sectional modulus, flange side
PO	Equivalent lateral load due to longitudional stress
Ре	Effective lateral load
siga	Effective axial stress
siqbp	Effective bending stress, plate side
siqbf	Effective bending stress, flange side
Mbend	Bending moment
siqE	Elastic buckling resistance
siqET	Elastic torsional buckling stress
siqT	Torsional buckling resistance
lambda	Reduced slenderness
siqk	Characteristic material strength
sigacr	Characteristic buckling resistance
etac	Usage factor, girder stability check, compression side
etat	Usage factor, girder stability check, tension side
Rhwtw	Web height to web thickness ratio
etaweb	Web height to web thickness ratio requirement
Rfftf	Free flange to thickness of flange ratio
etaffla	Free flange to thickness of flange ratio requirement
Rbaftf	Box section flange to thickness of flange ratio
etabfla	Box section flange to thickness of flange ratio requirement

Date 01-JUN-1991

# DnV Code Check results, Stiffener Capacity Model

Parameter	(STF) DNV Code Check Results, Parameter description
UCmax	Maximum of all Unity Criterion factors
UCcomp	Unity Criterion for stiffener buckling, compression side
UCtens	Unity Criterion for stiffener buckling, tension side
UCweb	Unity criterion, web heigth to web thickness ratio
UCffla	Unity criterion, free flange of stiffener
UCbfla	Unity criterion, box section flange
eta0	Basic usage factor
etap	Maximum allowable usage factor
sigx	Normal stress in x direction
sigy1	Normal stress in y direction, edge 1
sigy2	Normal stress in y direction, edge 2
tauxy	Shear stress
beta1	Plate slenderness; side1
beta2	Plate slenderness; side2
Cx1	Correction for compression, x-dir, side1
Cx2	Correction for compression, x-dir, side2
Cyl	Correction for compression, y-dir, side1
Cy2	Correction for compression, y-dir, side2
Ctau	Correction for shear
se1	Effective plate flange, side 1
se2	Effective plate flange, side 2
Ае	Effective cross section
ZS	Distance from neutral axis to top of stiffener
zp	Distance from neutral axis to midplane of plate
Iez	Effective moment of inertia about z axis
Iz	Moment of inertia about z axis
ie	Effective radius of gyration
Wep	Effective sectional modulus, plate side
Wes	Effective sectional modulus, stiffener side
sigE	Elastic buckling resistance
ks	Buckling length factor
Ctors	Torsional buckling coefficient
sigET	Elastic torsional buckling stress
lambdaT	Reduced slenderness wrt. torsional buckling
sigT	Torsional buckling resistance
sigk	Characteristic material strength
lambda	Reduced slenderness
sigacr	Characteristic buckling resistance
taucrg	Characteristic buckling shear resistance, global
taucrl	Characteristic buckling shear resistance, local
Nx	Effective axial force
p0	Equivalent lateral load
pe	Effective lateral load
siga	Effective axial stress used in stiffener buckling check
sigbp	Effective bending stress, plate side
sigbs	Effective bending stress, stiffener side

Version number **1.0** 

Date 01-JUN-1991 Page

1-31

Mbend	Bending moment
ms	Bending moment factor
etac	Usage factor, girder stability check, compression side
etat	Usage factor, girder stability check, tension side
Rhwtw	Web height to web thickness ratio
etaweb	Web height to web thickness ratio requirement
Rfftf	Free flange to thickness of flange ratio
etaffla	Free flange to thickness of flange ratio requirement
Rbaftf	Box section flange to thickness of flange ratio
etabfla	Box section flange to thickness of flange ratio requirement

#### **DnV Code Check results, Plate Capacity Model**

Parameter (PLT) DNV Code Check Results, Parameter description _____ UCmax Maximum of all Unity Criterion factors UCpbs Unity Criterion for plate buckling, serviceability UCpbu Unity Criterion for plate buckling, ultimate Unity Criterion for lateral pressure UCplat Basic usage factor eta0 Maximum allowable usage factor etap siqx1 Normal stress in x direction, edge 1 siqx2 Normal stress in x direction, edge 2 sigy1 Normal stress in y direction, edge 1 Normal stress in y direction, edge 2 siqy2 Shear stress tauxy siqex Elastic buckling stress, x direction Elastic buckling stress, y direction siqey taue Elastic buckling stress, shear Buckling coefficient, x direction Cx Buckling coefficient, y direction Су Buckling coefficient, shear Ctau VonMise Equivalent stress (Von Mises) Equivalent reduced slenderness lambda sigescr Characteristic buckling resistance, serviceability Characteristic buckling resistance, ultimate sigeucr etas Usage Factor for plate elements, serviceability criterion etau Usage Factor for plate elements, ultimate criterion platu Ultimate lateral pressure

Page **1-32** 

#### **1.9.3** NPD Code Check results

#### NPD Code Check results, Girder Capacity Model

(GIR) NPD Code Check Results, Parameter description Parameter _____ UCmax Maximum of all Unity Criterion factors UCcomp Unity Criterion for girder buckling, compression side Unity Criterion for girder buckling, tension side UCtens Unity criterion, web heigth to web thickness ratio UCweb Unity criterion, free flange of girder UCffla UCbfla Unity criterion, box section flange gammam Material coefficient sigx1 Normal stress in x direction, edge 1 Normal stress in x direction, edge 2 sigx2 Normal stress in y direction siqy tauxy Shear stress ae1 Effective plate flange, side 1 Effective plate flange, side 2 ae2 Plate slenderness beta Correction parameter for compression in x direction Cx Effective cross section Ae zp Distance from neutral axis to midplane of plate Distance from neutral axis to top of flange zf Effective moment of inertia about z axis Iez Moment of inertia about z axis Ιz ie Effective radius of gyration wep Effective sectional modulus, plate side wef Effective sectional modulus, flange side ΡO Equivalent lateral load due to longitudional stress Effective lateral load Pe Effective axial stress siqa siqbp Effective bending stress, plate side siqbf Effective bending stress, flange side Mbend Bending moment fe Elastic buckling resistance lambda Reduced slenderness fTi Elastic torsional buckling stress lambdaT Reduced slenderness wrt. torional buckling Torsional buckling resistance fkT fk Characteristic buckling resistance Web height to web thickness ratio Rhwtw etaweb Web height to web thickness ratio requirement Free flange to thickness of flange ratio Rfftf etaffla Free flange to thickness of flange ratio requirement Box section flange to thickness of flange ratio Rbaftf etabfla Box section flange to thickness of flange ratio requirement
Version number	Date	Page
1.0	01-JUN-1991	1-33

### NPD Code Check results, Stiffener Capacity Model

Parameter	(STF) NPD Code Check Results, Parameter description
UCmax	Maximum of all Unity Criterion factors
UCcomp	Unity Criterion for stiffener buckling, compression side
UCtens	Unity Criterion for stiffener buckling, tension side
UCweb	Unity criterion, web heigth to web thickness ratio
UCffla	Unity criterion, free flange of stiffener
UCbfla	Unity criterion, box section flange
gammam	Material coefficient
sigx	Normal stress in x direction
sigy1	Normal stress in y direction, edge 1
sigy2	Normal stress in y direction, edge 2
tauxy	Shear stress
beta1	Plate slenderness; side1
beta2	Plate slenderness; side2
Cx1	Correction for compression, x-dir, side1
Cx2	Correction for compression, x-dir, side2
Cyl	Correction for compression, y-dir, side1
Cy2	Correction for compression, y-dir, side2
Ctau	Correction for shear
bel	Effective plate flange, side 1
be2	Effective plate flange, side 2
Ae	Effective cross section
ZS	Distance from neutral axis to top of stiffener
zp	Distance from neutral axis to midplane of plate
Iez	Effective moment of inertia about z axis
Iz	Moment of inertia about z axis
ie	Effective radius of gyration
Wep	Effective sectional modulus, plate side
Wes	Effective sectional modulus, stiffener side
fe	Elastic buckling resistance
ks	Buckling length factor
fTi	Elastic torsional buckling stress
lambdaT	Reduced slenderness wrt. torsional buckling
fkT	Torsional buckling resistance
lambda	Reduced slenderness
fk	Characteristic buckling resistance
sigg	Elastic global buckling stress with stiffeners removed
taucrg	Characteristic buckling shear resistance, global
taucrl	Characteristic buckling shear resistance, local
Nx	Effective axial force
siga	Effective axial stress used in stiffener buckling check
sigbp	Effective bending stress, plate side
sigbs	Effective bending stress, stiffener side
Mbend	Bending moment
ms	Bending moment factor
Rhwtw	Web height to web thickness ratio
etaweb	Web height to web thickness ratio requirement

Date 01-JUN-1991

Version number 1.0

RfftfFree flange to thickness of flange ratioetafflaFree flange to thickness of flange ratio requirementRbaftfBox section flange to thickness of flange ratioetabflaBox section flange to thickness of flange ratio requirement

### NPD Code Check results, Plate Capacity Model

```
Parameter (PLT) NPD Code Check Results, Parameter description
_ _ _ _ _ _ _ _ _ _ _ _ _
           Maximum of all Unity Criterion factors
UCmax
           Unity Criterion for plate buckling, serviceability
UCpbs
UCpbu
           Unity Criterion for plate buckling, ultimate
UCplat
           Unity Criterion for lateral pressure
           Material coefficient
gammam
           Normal stress in x direction, edge 1
sigx1
siqx2
           Normal stress in x direction, edge 2
siqy1
           Normal stress in y direction, edge 1
siqy2
           Normal stress in y direction, edge 2
           Shear stress
tauxy
           Elastic buckling stress, x direction
sigex
           Elastic buckling stress, y direction
siqey
taue
           Elastic buckling stress, shear
           Buckling coefficient, x direction
kx
ky
           Buckling coefficient, y direction
ktau
           Buckling coefficient, shear
           Equivalent stress (Von Mises)
VonMise
lambda
           Equivalent reduced slenderness
sigke
           Characteristic buckling resistance, elastic
siqku
           Characteristic buckling resistance, ultimate
           Design buckling resistance, elastic
siqked
           Design buckling resistance, ultimate
siqkud
platd
           Ultimate lateral pressure
```

### **1.10** The results presentation

The previous sections described how the Code Check analyses were performed on the basis of the currently selected Capacity Models and Resultcases, and how the Code Check results were stored in the database.

In order for the user to view these results, one of the results presentation commands must be used, i.e PRINT or DISPLAY. The last display can also be saved on a plot file by use of the PLOT command.



Figure 1-18 Principles of result presentation

Date 01-JUN-1991 Version number 1.0

### **1.10.1 Printing Code Check results**

The Code Check results can in PLATEWORK be directed to either the screen or to a print file, by use of the SET PRINT DESTINATION command, see Chapter 5.

### **Print levels**

When printing Code Check results, several "print levels" are available:

	Table 1.3       Code Check print levels
Print level	Description
SUMMARY	Quick summary of all stored Code Check results
BRIEF	Brief listing of results, Capacity Model by Capacity Model
INTERMEDIATE	Intermediate Code Check results
MEDIUM	Capacity Model geometry, loads and UC-factors
FULL	= MEDIUM + INTERMEDIATE

When printing Code Check results, the print level is selected in the PRINT command (e.g. PRINT CODE-CHECK-RESULTS SUMMARY).

### **Results sorting and filtering**

The Code Check results can be sorted on the basis of any Code Check result parameter, by use of the DEFINE SORTING PARAMETER command. If not specified, the default sorting parameter UCmax will be used.

Similarly, the user may define upper and lower limits to the value of the current sorting parameter, meaning that those Capacity Models where the sorting parameter value is above maximum or below minimum will not be printed. This is controlled by use of the DEFINE SORTING MIN-VALUE and DEFINE SORTING MAX-VALUE.

Also, the user can control the order in which the sorting shall be performed, namely increasing or decreasing order. This is controlled by the DEFINE SORTING ORDER command.

Finally, the printout can be limited by defining a maximum number of entries in a results print table, by use of the DEFINE SORTING MAX-ENTRIES command.

The DEFINE SORTING command can be used both before or after running the Code Check analysis, the results will automatically be sorted whenever necessary.

### **Current selections**

Results print can also be limited by use of the SELECT CAPACITY-MODEL and SELECT RESULTCASE commands. Only those results which refer to a selected Capacity Model and a selected Resultcase will be printed.

Version number	Date	Page
1.0	01-JUN-1991	1-37

### **1.10.2** Summary print.

Below is shown an example of a summary print. Note the box where the current sorting definitions are shown.

06-MAY-1991 13:38 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 1 API Code Check Results Summary Table SUB PAGE: 1 NOMENCLATURE: Status Check status Maximum of all Unity Criterion factors UCmax Res-Name Resultcase name L-stat Resultcase Limit-state Phas Phase angle Basic Capacity Model name Capacity-Model Type Basic Capacity Model type +------! Sorting Parameter: UCMAX ! Max Entries: UNLIMITED 1 ! Sorting Order : DECREASING ! Max Value : UNLIMITED ! ! ! Min Value : UNLIMITED 1 +-----+ Status UCmax Res-Name L-stat Phas Capacity-Model Туре **-PB 5.18 2 **-PB 3.45 2 STORM XMANP2.2 PLT2 STORM XMANP1.2 PLT**-LB 3.05 3 XMANS2.2 STF STORM **-LB 3.05 4 STORM XMANS2.2 STF **-LB 3.05 1 STF STORM XMANS2.1 **-LB 3.05 2 STF STORM XMANS2.1 **-LB 3.05 3 STORM XMANS2.1 STF 3.05 **-LB 4 STORM XMANS2.1 STF **-LB 3.05 1 STORM XMANS2.2 STF **-LB 3.05 2 STORM XMANS2.2 STF **-PB 2.84 4 STORM XMANP2.2 PLT**-LB 2.03 3 STF STORM XMANS1.1 **-LB 2.03 4 STORM XMANS1.1 STF 2.03 **-LB 1 STORM XMANS1.2 STF **-LB 2.03 2 STORM XMANS1.2 STF **-LB 2.03 3 STF STORM XMANS1.2 **-LB 2.03 4 STORM XMANS1.2 STF **-LB 2.03 2 STF STORM XMANS1.1 **-LB 2.03 1 STORM XMANS1.1 STF **-PB 2.02 3 STORM XMANP1.2 PLT

Page 1-38			Date 01-JUN-19	991		Ve	rsion num	1.0
06-MAY-1991	13:38	PROGRAM:	SESAM	PLATEWORK	D1.0-02	11-APR-1991	PAGE:	2
				<b>-</b> .				

API	Code	Check	Results	
Sum	mary 1	「able		

SUB PAGE: 2

Status	UCmax	Res-Name	L-stat Phas	Capacity-Model	Туре
**-PB	1.77	4	STORM	XMANP1.2	PLT
**-PB	1.69	1	STORM	XMANP2.2	PLT
**-LB	1.52	3	STORM	XMANG1	GIR
**-LB	1.52	1	STORM	XMANG1	GIR
**-LB	1.52	2	STORM	XMANG1	GIR
**-LB	1.52	4	STORM	XMANG1	GIR
**-PY	1.49	3	STORM	XMANP2.2	PLT
**-PB	1.07	2	STORM	XMANP2.1	PLT
OK-PB	0.92	4	STORM	XMANP2.1	PLT
OK-PB	0.58	3	STORM	XMANP2.1	PLT
OK-PB	0.56	2	STORM	XMANP1.1	PLT
OK-PB	0.55	1	STORM	XMANP1.2	PLT
OK-PB	0.52	2	STORM	XMANP1.3	PLT
OK-PB	0.47	3	STORM	XMANP1.3	PLT
OK-PB	0.46	2	STORM	XMANP2.3	PLT
OK-PB	0.41	1	STORM	XMANP2.3	PLT
OK-PB	0.39	3	STORM	XMANP1.1	PLT
OK-PB	0.34	4	STORM	XMANP1.1	PLT
OK-PY	0.31	4	STORM	XMANP2.3	PLT
OK-OPBE	0.28	2	STORM	XMANO	OSP
OK-PB	0.27	4	STORM	XMANP1.3	PLT
OK-PY	0.24	3	STORM	XMANP2.3	PLT
OK-PB	0.22	1	STORM	XMANP1.3	PLT
OK-PB	0.21	1	STORM	XMANP1.1	PLT
OK-OPBE	0.21	4	STORM	XMANO	OSP
OK-OPBE	0.18	3	STORM	XMANO	OSP
OK-PY	0.17	1	STORM	XMANP2.1	PLT
OK-OPBE	0.13	1	STORM	XMANO	OSP

Version number	Date	Page
1.0	01-JUN-1991	1-39

### Minimum sorting parameter value applied

Below is shown the same summary printout, except that a sorting parameter minimum value=1.0 has been defined, i.e. the table ignores all results that did not cause a failure. At the end of the table it is reported how many instances were ignored,

06-MAY-1991 13:39 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 3 API Code Check Results Summary Table SUB PAGE: 1 NOMENCLATURE: Check status Status Maximum of all Unity Criterion factors UCmax Res-Name Resultcase name L-stat Resultcase Limit-state Phas Phase angle Capacity-Model Basic Capacity Model name Basic Capacity Model type Туре +-----+ ! Sorting Parameter: UCMAX ! Max Entries: UNLIMITED 1 ! Sorting Order : DECREASING ! Max Value : UNLIMITED 1 ! Min Value : 1.000E+00 T L +------Status UCmax Res-Name L-stat Phas Capacity-Model Type _____ **-PB 5.18 2 **-PB 3.45 2 **-LB 3.05 3 **-LB 3.05 4 STORM XMANP2.2 PLTSTORM XMANP1.2 PLTSTORM XMANS2.2 STF STF STORM XMANS2.2 **-LB 3.05 1 STF STORM XMANS2.1 3.05 3.05 3.05 **-LB 2 STORM XMANS2.1 STF 3 STF **-LB STORM XMANS2.1 **-LB 4 STORM XMANS2.1 STF **-LB 3.05 1 STORM XMANS2.2 STF 3.05 2 **-LB STORM XMANS2.2 STF 2.84 **-PB 4 PLTSTORM XMANP2.2 **-LB 2.03 3 STORM XMANS1.1 STF 2.03 **-LB 4 STORM XMANS1.1 STF 2.03 2.03 **-LB 1 STORM STF XMANS1.2 2 STF **-LB STORM XMANS1.2 **-LB 2.03 3 STORM XMANS1.2 STF 2.03 2.03 **-LB 4 STF STORM XMANS1.2 2 **-LB STORM XMANS1.1 STF **-LB 2.03 1 STF STORM XMANS1.1

Page 1-40		I (	Date ) <b>1-JUN-19</b>	91		Ver	sion number 1.0
OC MAX	1001 12.20		ECAM			1001	
00-MAI	1991 13:30	FROGRAM: 5	LISAM	FLAIEWOR	R DI.0-02 II	-AFK-1991	FAGE: 4
Status	IICmax	API Code Cl Summary Tal	heck Res ble	Bhag	Capacity Mo	SUB	PAGE: 2
**-PB	2.02	3	STORM		XMANP1.2	PLT	
**-PB	1.77	4	STORM		XMANP1.2	PLT	
**-PB	1.69	1	STORM		XMANP2.2	PLT	
**-LB	1.52	3	STORM		XMANG1	GIR	
**-LB	1.52	1	STORM		XMANG1	GIR	
**-LB	1.52	2	STORM		XMANG1	GIR	
**-LB	1.52	4	STORM		XMANG1	GIR	
**-PY	1.49	3	STORM		XMANP2.2	PLT	
**-PB	1.07	2	STORM		XMANP2.1	PLT	

Ignored: 20 Instances had sort parameter VALUE BELOW MIN

Version number	Date	Page
1.0	01-JUN-1991	1-41

### Sorting parameter redefined

Below is shown a summary table based on another sorting parameter (UCbcbU, beam column buckling, see box). Note that it is reported that some Capacity Models did not contain this parameter (in this case the plate Capacity Models).

06-MAY-1991 13:43 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 5 API Code Check Results NOMENCLATURE: Check status Status UCbcbU Unity Criterion for beam-column buckling Resultcase name Res-Name L-stat Resultcase Limit-state Phase angle Phas Capacity-Model Basic Capacity Model name Basic Capacity Model type Type +------! Sorting Parameter: UCbcbU ! Max Entries: UNLIMITED 1 ! Sorting Order : DECREASING ! Max Value : UNLIMITED 1 ! ! Min Value : UNLIMITED 1 +------+ Status UCbcbU Res-Name L-stat Phas Capacity-Model Туре **-LB 0.46 2 **-LB 0.43 4 **-LB 0.40 2 **-LB 0.40 4 **-LB 0.38 2 **-LB 0.37 2 **-LB 0.37 3 STORM XMANS1.2 STF STF STORM XMANS2.1 XMANS1.1 STORM STF STORM XMANS1.1 STF XMANS2.1 STF STORM STORM XMANS2.2 STF STF STORM XMANS2.1 **-LB 0.33 3 STF STORM XMANS1.1 0.31 0.31 0.28 **-LB 3 STORM XMANS1.2 STF 4 **-LB STORM XMANS1.2 STF 2 **-LB STORM XMANG1 GIR **-LB 0.24 1 STORM XMANS2.2 STF 0.23 0.20 **-LB 1 STORM XMANS2.1 STF **-LB 4 STF STORM XMANS2.2 **-LB 0.20 3 STORM XMANS2.2 STF **-LB 0.19 1 STORM XMANS1.1 STF 0.16 0.16 **-LB 1 STORM GIR XMANG1 **-LB 4 STORM XMANG1 GIR **-LB 0.15 3 STORM XMANG1 GIR **-LB 0.12 1 STORM XMANS1.2 STF

Ignored:

28 Instances did not contain the SORT PARAMETER

### 1.10.3 Brief print

On the following pages, examples of the BRIEF printout is shown. Note that here, the results are sorted on the basis of both the Capacity Models and the current sorting parameter.

API Code Check Brief Table

### NOMENCLATURE:

Status	Check status
UC*	Unity Criterion Factors
Res-Name	Resultcase name
Phas	Phase angle

+	-•	-•	-•	+
	UNLIMITED	UNLIMITED	1.000E+00	
i	თ 	••	••	1
	Entrie	Value	Value	
- - - -	Max	Max	Min	- - - -
i	-•	-•	-•	i
	UCmax	DECREASING		
1	 L			
	Paramete	Order		
	Sorting	Sorting		
÷	-•			÷

## Capacity Model: XMANG1 Type : GIR

UClasup 	1.52	1.52	1.52	1.52
UCcbftf	0.73	0.73	0.73	0.73
UCpbftf 	0.98	0.98	0.98	0.98
JCcdtw	0.62	06.0	0.56	0.57
JCpdtw 1	0.66	0.76	0.65	0.65
JCpbU [	0.01	0.01	0.02	0.02
JCtfbU [	0.45	0.77	0.38	0.39
UCbcbU [	0.16	0.28	0.15	0.16
UCcbU	0.15	0.26	0.13	0.13
UCmax	1.52	1.52	1.52	1.52
e Phas				
Res-Name	Ч	7	с	4
Status	**-LB	**-LB	**-LB	**-LB

# Capacity Model: XMANS1.1 Type : STF

JCsreq UCsreql	0.00 0.00	0.01 0.00	0.02 0.00	0.01 0.00
UClasup [ 	2.03	2.03	2.03	2.03
UCcbftf 	0.40	0.40	0.40	0.40
UCpbftf 	0.54	0.54	0.54	0.54
UCcdtw 	0.26	0.34	0.34	0.34
UCpdtw 1 	0.26	0.34	0.31	0.33
JCpbU	0.00	0.01	0.00	0.02
JCtfbU [	0.24	0.51	0.43	0.50
ICbcbU U	0.19	0.40	0.33	0.40
JCcbU U	0.18	0.38	0.32	0.37
Name Phas UCmax U	2.03	2.03	2.03	2.03
Res-	Ч	0	с	4
Status	**-LB	**-LB	**-LB	**-LB

Capacit. Type	y Model: XMANS1 : STF												
Status	Res-Name Phas	UCmax	UCcbU	UCbcbU	UCtfbU	ucpbu	UCpdtw	UCcdtw	UCpbftf	UCcbftf	UClasup	UCsreq	UC
		2.03	0.12	0.12	0.16	00.00	0.24	0.20	0.54	0.40	2.03	0.01	0     
* * - LB * * - LB	м л	2.03 2.03	0.43	0.46 0.31	0.58 0.41	0.02	0.34	0.34 0.34	0.54 0.54	0.40 0.40	2.03 2.03	0.01	00
**-LB Capacit: Type	4 Y Model: XMANS2 : STF	2.03	0.28	0.31	0.38	0.02	0.29	0.34	0.54	0.40	2.03	0.00	0
Status	Res-Name Phas	; UCmax	UCcbU	UCbcbU	UCtfbU	UCpbU	UCpdtw	UCcdtw	UCpbftf	UCcbftf	UClasup	UCsreq	UCsJ
		3.05	0.23	0.23	0.30	0.00	0.27	0.32	0.54	0.40	3.05	0.08	· · ·
**-LB	5	3.05	0.35	0.38	0.45	0.02	0.31	0.34	0.54	0.40	3.05	0.08	.0
**-LB	e	3.05	0.35	0.37	0.46	0.01	0.31	0.34	0.54	0.40	3.05	0.01	0
**-LB	4	3.05	0.37	0.43	0.48	0.04	0.32	0.34	0.54	0.40	3.05	0.02	.0
Capacit	Y Model: XMANS2	2											
Type	: STF												
Status	Res-Name Phas	; UCmax	UCcbU	UCbcbU	UCtfbU	ucpbu	UCpdtw	UCcdtw	UCpbftf	UCcbftf	UClasup	UCsreq	UCsr
**-LB		3.05	0.24	0.24	0.31	00.00	0.27	0.33	0.54	0.40	3.05	0.16	. 0
**-LB	Ŋ	3.05	0.34	0.37	0.44	0.02	0.30	0.34	0.54	0.40	3.05	0.18	.0
**-LB	С	3.05	0.16	0.20	0.20	0.02	0.24	0.22	0.54	0.40	3.05	0.09	0
**-LB	4	3.05	0.15	0.20	0.19	0.03	0.24	0.21	0.54	0.40	3.05	0.12	.0

0.00

0.12

3.05

0.40

0.54

0.21

0.24

0.03

0.19

0.20

0.15

3.05

**-LB

1-44 FEATURES OF PLATEWORK

Capacity Model: XMANP1.1 Type : PLT Res-Name Phas UCmax UCinplS UCinplU UCWeWa UCstrsS UCplatU Status

Ignored: 4 Instances had sort parameter VALUE BELOW MIN

Capacity Model: XMANP1.2

Type : PLT

Res-Name Phas UCmax UCinplS UCinplU UCWeWa UCstrsS UCplatU 0.02 0.04 0.04 0.37 0.37 0.36 0.37 0.79 0.79 0.80 0.47 0.40 3.45 2.02 1.77 3.45 2.02 1.77  $\sim \infty$ 4 Status **-PB **-PB **-PB 

Ignored: 1 Instances had sort parameter VALUE BELOW MIN

Capacity Model: XMANP1.3 Type : PLT Res-Name Phas UCmax UCinplS UCinplU UCWeWa UCstrsS UCplatU Status

Ignored: 4 Instances had sort parameter VALUE BELOW MIN

Capacity Model: XMANP2.1 Type : PLT Res-Name Phas UCmax UCinplS UCinplU UCWeWa UCstrsS UCplatU 0.01 0.37 0.08 0.54 1.07 1.07  $\sim$ Status **-PB | | | |

Ignored: 3 Instances had sort parameter VALUE BELOW MIN

Capacity Model: XMANP2.2 Type : PLT

tus	Res-Name P	has UCm	lax	UCinpls	UCinplu	UCWeWa	UCstrsS	UCplatU
i i i m	5	і Ц) І І І І	.18	5.18	0.87	0.70	0.39	0.02
ш	4	CI	.84	2.84	0.48	1.49	0.42	0.05
ш	1	Ч	69	1.69	0.30	0.40	0.26	0.01
Х	m	Ч	.49	1.37	0.26	1.49	0.39	0.05

Capacity Model: XMANP2.3 Type : PLT Status Res-Name Phas UCmax UCinplS UCinplU UCWeWa UCstrsS UCplatU 

Ignored: 4 Instances had sort parameter VALUE BELOW MIN

Capacity Model: XMANO Type : OSP Res-Name Phas UCmax UCinplS UCWeWa UCpstrS UCsstrS UCgstrS UCulatU Status 

Ignored: 4 Instances had sort parameter VALUE BELOW MIN

### 1.10.4 Full print

On the following pages, examples of the FULL printout is shown. Note that here, each result entity (a combination of a Capacity Model and a Resultcase) will normally fill a whole page.

Note also that here, it has been requested that the length of the print table shall be limited to 5 result entries (Max Entries = 5, see box).

06-MAY-1991 13:57 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 1

API Code Check Results Full Table

SUB PAGE: 1

NOMENCLATURE:

Girder section Material Mat-Value CM-Load Load-Value UC-Factor UC-Val	Girder parameter nam Geometric dimension Capacity Model mater Material parameter v Capacity Model load Load value Unity Criterion fact Unity Criterion fact	ne value vial parameter value cor cor value	
<pre>+ ! Sorting Para ! Sorting Orde ! +</pre>	ameter: UCmax er : DECREASING	! Max Entries: ! Max Value : UN ! Min Value : UN	5! SIUMITED NLIMITED NLIMITED

Page 1-48	Date <b>01-JUN-1991</b>		Version number 1.0
06-MAY-1991 13:57 PR 2 AP	OGRAM: SESAM P I Code Check Resu	LATEWORK D1.0-02 11-APR-1 lts	991 PAGE:
<pre>! Capacity Model : ! Resultcase Name : ! Code Check Status: +</pre>	XMANG1 1 **-LB	! Type : GIR ! Limit-State: STORM !	-+ ! ! !
Girder section UC-Val	Material Mat-Va	lue CM-Load Load-Value	UC-Factor
<pre>hwg = 3.980E+02 1.52 twg = 1.200E+01 0.15 bfg = 3.000E+02 0.16 tfg = 2.200E+01 0.45 afg = 0.000E+00 0.01 efg = 0.000E+00</pre>	<pre>fy = 3.400 fp = 2.040 E = 2.100 ny = 3.000 Stiffener sectio</pre>	$E+02 \qquad fx1 = -7.278E+02$ $E+02 \qquad fx2 = -5.541E+02$ $E+05 \qquad fy1 = -5.818E+02$ $E-01 \qquad fxy = 2.111E+02$ $plat = -4.000E-03$ $m \qquad Mbend = -4.946E+06$	UCmax = UCcbU = UCbcbU = UCtfbU = UCpbU = UCpbU =
0.62 Plate dimension 0.98	hws = 1.480 tws = 1.200	E+02 E+01 Girder parameter	UCcdtw = UCpbftf =
Ly = 5.000E+03 0.73 lx1 = 2.000E+03 1.52 lx2 = 3.000E+03 t1 = 2.500E+01 t2 = 2.500E+01 lya = 1.667E+03	bfs = 9.000 tfs = 1.200 afs = 0.000 efs = 3.900	E+01 Lty = 5.000E+03 E+01 kg = 1.000E+00 E+00 mg = 8.000E+00 E+01 GTYP = 0 GSTF = 0	UCcbftf = UClasup =

INTERMEDIATE CODE CHECK RESULTS:

Parameter Value Parameter Value Parameter Value UCmax = 1.524E+00 UCcbU = 1.530E-01 UCbcbU = 1.595E-01 UCtfbU = 4.495E-01 UCpbU = 5.527E-03 UCpdtw = 6.643E-01 UCcdtw = 6.181E-01 UCpbftf = 9.798E-01 UCcbftf = 7.316E-01 UClasup = 1.524E+00 FSSLS = 1.250E+00 FSULS = 1.500E+00 sigx1 = -2.784E+01 sigx2 = -2.120E+01 sigy = -1.969E+01 tauxy = 8.446E+00 beta1 = 3.219E+00 beta2 = 4.828E+00

Cy1 = 5.248E-01 Cy2 = 3.713E-01 Le1 = 1.050E+03 Le2 = 1.114E+03 Ae = 3.842E+04 zz = 3.228E+02 zp = 9.870E+01 lez = 1.077E+09 re = 1.674E+02 Wep = 1.091E+07 Wes = 3.335E+06 Wp1 = 4.170E+06 J = 1.294E+06 Cw = 5.023E+09 Is = 1.298E+09 Ic = 1.852E+08 P = -1.454E+06 lambda = 3.826E+01 PEE = 8.926E+07 PFu = 1.426E+07 Mu = 1.134E+09 B1 = 1.000E+00 PTe = 5.242E+06 PTFe = 4.989E+06 PTTu = 4.854E+06 Mup = 1.342E+09 Rdtw = 3.917E+01 etapdtw = 4.993E+01 etacbft = 1.864E+01 Rbff = 1.364E+01 etapdtw = 4.993E+01 etacbft = 1.864E+01 Rbff = 1.364E+01 etapltw = 4.932E+01 etacbft = 1.864E+01 Rb = 5.000E+03 etalL2 = 3.281E+03 06-MAY-1991 13:57 PROGRAM: SESAM FLATEWORK D1.0-02 11-APR-1991 PAGE: API Code Check Results 	Version numbe 1.0	er			Date <b>01-JU</b>	N-1991	Page <b>1-49</b>
$\begin{array}{c} Cy1 = 5.248E-01  Cy2 = 3.713E-01  Le1 = 1.050E+03 \\ Le2 = 1.114E+03  Ae = 3.842E+04  zs = 3.228E+02 \\ zp = 9.870E+01  Iez = 1.077E+09  re = 1.674E+02 \\ Wep = 1.091E+07  Wes = 3.335E+06  Wp1 = 4.170E+06 \\ J = 1.294E+06  CW = 5.022E+09  Is = 1.298E+09 \\ Ic = 1.852E+08  P = -1.454E+06  Iamba = 3.826E+01 \\ PEe = 8.926E+07  PFu = 1.426E+07  Mu = 1.134E+09 \\ B1 = 1.000E+00  PTe = 5.242E+08  PTFu = 4.854E+06  Iumba = 3.826E+01 \\ PEe = 4.932E+01  etacdtw = 5.366E+01  Rbftf = 1.364E+01 \\ etapdtw = 4.933E+01  etacdtw = 5.366E+01  Rbftf = 1.364E+01 \\ etapdtw = 4.933E+01  etacdtw = 5.366E+01  Rbftf = 1.364E+01 \\ etapdtw = 1.392E+01  etacdtw = 1.864E+01  Rlb = 5.000E+03 \\ etalL2 = 3.281E+03 \\ 06-MAY-1991  13:57  PROGRAM: SESAM  PLATEWORK \ D1.0-02  11-APR-1991  PAGE: \\ \end{array}$							
Le2 = 1.114E+03 Ae = 3.842E+04 zs = 3.22E+02 xp = 9.870E+01 Iez = 1.07TE+09 re = 1.674E+02 Wep = 1.091E+07 Wes = 3.335E+06 Wpl = 4.170E+06 J = 1.294E+06 Cw = 5.023E+09 Is = 1.298E+09 Ic = 1.852E+08 P = -1.454E+06 lambda = 3.826E+01 PE = 8.926E+07 PFu = 1.426E+06 PTF = 4.989E+06 PTTu = 4.854E+06 Mup = 1.342E+06 PTF = 4.989E+06 PTTu = 4.854E+01 etacdtw = 5.366E+01 Rbftf = 1.364E+01 etapdfw = 4.993E+01 etacdtw = 5.366E+01 Rbftf = 1.364E+01 etapdfw = 1.392E+01 etacbft = 1.864E+01 RLb = 5.000E+03 etalL2 = 3.281E+03 06-MAY-1991 13:57 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: API Code Check Results *	Cy1 =	5.248E-01	Cy2 =	3.713E-01	Lel =	1.050E+03	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Le2 =	1.114E+03	Ae =	3.842E+04	zs =	3.228E+02	
Wep = 1.091E+07       Wes = 3.335E+06       Wpl = 4.170E+06         J = 1.294E+06       CW = 5.022E+09       Is = 1.298E+09         Ic = 1.852E+08       P = -1.454E+06       Ftw = 5.278E+05         Fwi = 5.036E+07       PFu = 1.426E+07       Mu = 1.134E+09         Bl = 1.000E+00       PTE = 5.242E+06       PTFe = 4.989E+06         PTFu = 4.854E+06       Mup = 1.342E+09       Rdtw = 3.317E+01         etapdtw = 4.993E+01 etacbft = 1.864E+01       Rbft = 1.364E+01       etapft = 1.392E+01 etacbft = 1.864E+01         etapdtw = 4.932E+01 etacbft = 1.864E+01       RLb = 5.000E+03       etalL12 = 3.281E+03         06-MAY-1991 13:57 PROGRAM: SESAM       PLATEWORK D1.0-02 11-APR-1991 PAGE:         API Code Check Results         ***********************************	zp =	9.870E+01	Iez =	1.077E+09	re =	1.674E+02	
J = 1.294E+06   Cw = 5.023E+09   Is = 1.294E+06 Fw = 5.278E+05 Fwi = 5.036E+08   Mbend = -4.946E+06   lambda = 3.826E+01 FR = 8.926E+07   FFu = 1.426E+07   Mu = 1.134E+09 Bl = 1.000E+00   FF = 5.242E+06   FF = 4.989E+06 FTFu = 4.854E+06   Mup = 1.342E+09   Rdtw = 3.317E+01 etapdtw = 4.993E+01 etacdtw = 5.366E+01   Rbff = 1.364E+01 etapdtw = 1.322EH01 etacht = 1.864E+01   RLb = 5.000E+03 etaLL2 = 3.281E+03 06-MAY-1991 13:57 PROGRAM: SESAM   PLATEWORK D1.0-02 11-APR-1991   PAGE:	Wep =	1.091E+07	Wes =	3.335E+06	Wpl =	4.170E+06	
	J =	1.294E+06	Cw =	5.023E+09	Is =	1.298E+09	
$    Fvi = 5.036E+05 \ Mbend = -4.946E+06 \ lambda = 3.826E-01 \\    FRE = 8.926E+07 \ FVI = 1.422E+07 \ Mu = 1.134E+09 \\    Bl = 1.000E+00 \ PTE = 5.242E+06 \ PTFE = 4.989E+06 \\    PTFu = 4.9354E+06 \ Mup = 1.342E+09 \ Rdtw = 3.317E+01 \\    etapdtw = 4.993E+01 \ etadtw = 5.366E+01 \ Rbff = 1.364E+01 \\    etapdtw = 1.392E+01 \ etadbft = 1.864E+01 \ RLb = 5.000E+03 \\    etall2 = 3.281E+03 \\ 06-MAY-1991 \ 13:57 \ PROGRAM: SESAM \ PLATEWORK \ D1.0-02 \ 11-APR-1991 \ PAGE: \\                                   $	IC =	1.852E+08	P =	-1.454E+06	Ftw =	5.278E+05	
PEe = 8.926E+07 PFu = 1.426E+07 Mu = 1.134E+09 Bl = 1.000E+00 PTe = 5.242E+06 PTFe = 4.989E+06 PTFu = 4.854E+06 Mup = 1.342E+09 Rdtw = 3.317E+01 etapdtw = 4.993E+01 etacdtw = 5.366E+01 Rbftf = 1.364E+01 etapdtw = 4.993E+01 etacdtf = 1.864E+01 RLb = 5.000E+03 etall12 = 3.281E+03 06-MAY-1991 13:57 FROGRAM; SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE; API Code Check Results 	Fwi =	5.036E+05	Mbend =	-4.946E+06	lambda =	3.826E-01	
<pre>Bl = 1.000E+00 PTE = 5.242E+06 PTE = 4.998E+06 PTFu = 4.854E+06 Mup = 1.342E+09 Rdtw = 3.317E+01 etapdtw = 4.993E+01 etacdtw = 5.366E+01 Rbff = 1.364E+01 etapdtw = 4.993E+01 etacdtw = 5.366E+01 Rbff = 1.364E+01 etaplft = 1.392E+01 etacdtw = 5.366E+01 RLb = 5.000E+03 etalLl2 = 3.281E+03 06-MAY-1991 13:57 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: API Code Check Results </pre>	PEe =	8.926E+07	PFu =	1.426E+07	Mu =	1.134E+09	
PTFu = 4.854E+06 Mup = 1.342E+09 Rdtw = 3.317E+01 etapdtw = 4.932E+01 etacdbft = 1.864E+01 Rbfff = 1.364E+01 etapbft = 1.392E+01 etacbft = 1.864E+01 Rb = 5.000E+03 etalL12 = 3.281E+03 06-MAY-1991 13:57 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: API Code Check Results +	B1 =	1.000E+00	PTe =	5.242E+06	PTFe =	4.989E+06	
<pre>etapdtw = 4.993B+01 etacdtw = 5.366E+01 Rbft = 1.364B+01 etapbft = 1.392B+01 etacbft = 1.864E+01 RLb = 5.000E+03 etalL12 = 3.281E+03 06-MAY-1991 13:57 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: API Code Check Results</pre>	PTFu =	4.854E+06	Mup =	1.342E+09	Rdtw =	3.317E+01	
<pre>etapbft = 1.392E+01 etacbft = 1.864E+01 RLb = 5.000E+03 etaLLL2 = 3.281E+03 06-MAY-1991 13:57 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE:</pre>	etapdtw =	4.993E+01	etacdtw =	5.366E+01	Rbftf =	1.364E+01	
etall12 = 3.281E+03         06-MAY-1991 13:57 PROGRAM: SESAM       PLATEWORK D1.0-02 11-APR-1991 PAGE:         API Code Check Results         +	etapbft =	1.392E+01	etacbft =	1.864E+01	RLb =	5.000E+03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	etaL1L2 =	3.281E+03					
API Code Check Results 	06-MAY-199	1 13:57 PR	OGRAM: SES	AM PLATE	WORK D1.0-	02 11-APR-1	991 PAGE:
$\begin{array}{c} \mbox{API CODE Check Results} \\ \label{eq:check results} \\ \mbox{I} & \mbox{Code Check States} & \mbox{I} & $			T Codo Cho	alt Dogulta			
<pre>     Capacity Model : XMANG1 ! Type : GIR !     Resultcase Name : 2 ! Limit-State: STORM !     Code Check Status: **-LB ! Limit-State: STORM !     Code Check Status: **-LB ! Limit-State: STORM !     define section Material Mat-Value CM-Load Load-Value UC-Factor     UC-Val</pre>		AP.	I Code Che	CK RESULLS			
<pre>1 Capacity Model : XMANG1 ! Type : GIR ! 1 Resultcase Name : 2 ! Limit-State: STORM ! 1 Code Check Status: **-LB ! ! . +</pre>							- 1
<pre>1 Regulty Model . AMANGI . Type . GIA : 1 Regultase Name : 2 ! Limit-State: STORM ! 1 Code Check Status: **-LB !</pre>	+	Model			 Turno	. CTD	-+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	: Capacity	MOUEI :	ZMANGI	:	Iype Iimit Sta	: GIR	:
Girder check status. WHIS t	: Resulta	ak Status	∠ **_⊺₽	:	DIMIL-SCA	Ce: SIORM	:
Girder section Material Mat-Value CM-Load Load-Value UC-Factor UC-Val  hwg = 3.980E+02 fy = 3.400E+02 fx1 = -1.317E+03 UCmax = 1.52 twg = 1.200E+01 fp = 2.040E+02 fx2 = -1.282E+03 UCcbU = 0.26 bfg = 3.000E+02 E = 2.100E+05 fy1 = -9.943E+02 UCcbU = 0.28 tfg = 2.200E+01 ny = 3.000E-01 fxy = -2.097E+02 UCcbU = 0.77 afg = 0.000E+00 plat = 7.000E-03 UCpbU = 0.01 efg = 0.000E+00 Stiffener section Mbend = 1.108E+07 UCpdtw = 0.76 hws = 1.480E+02 UCcdtw = 0.90 plate dimension tws = 1.200E+01 Girder parameter UCpbftf = 0.98 Ly = 5.000E+03 bfs = 9.000E+01 Lty = 5.000E+03 UCcbftf = 0.73 1x1 = 2.000E+03 tfs = 1.200E+01 kg = 1.000E+00 UClasup = 1.52 1x2 = 3.000E+03 afs = 0.000E+00 mg = 8.000E+00 t1 = 2.500E+01 GTYP = 0 dSTF = 0	: code che			•			: -+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							'
UC-Val 	Girder	section	Material	Mat-Value	CM-Load	Load-Value	UC-Factor
hwg = $3.980E+02$ fy = $3.400E+02$ fx1 = $-1.317E+03$ UCmax = 1.52 twg = $1.200E+01$ fp = $2.040E+02$ fx2 = $-1.282E+03$ UCcbU = 0.26 bfg = $3.000E+02$ E = $2.100E+05$ fy1 = $-9.943E+02$ UCbcbU = 0.28 tfg = $2.200E+01$ ny = $3.000E-01$ fxy = $-2.097E+02$ UCtfbU = 0.77 afg = $0.000E+00$ plat = $7.000E-03$ UCpbU = 0.01 efg = $0.000E+00$ Stiffener section Mbend = $1.108E+07$ UCpdtw = 0.76 hws = $1.480E+02$ UCcdtw = 0.90 Plate dimension tws = $1.200E+01$ Girder parameter UCpbftf = 0.98 Ly = $5.000E+03$ bfs = $9.000E+01$ Lty = $5.000E+03$ UCcbftf = 0.73 1x1 = $2.000E+03$ tfs = $1.200E+01$ kg = $1.000E+00$ UClasup = 1.52 1x2 = $3.000E+03$ afs = $0.000E+00$ mg = $8.000E+00$ t1 = $2.500E+01$ efs = $3.900E+01$ GTYP = $0$ t2 = $2.500E+01$	UC-Val						
$\begin{array}{c} \\ hwg = 3.980E+02 & fy = 3.400E+02 & fx1 = -1.317E+03 & UCmax = \\ 1.52 & twg = 1.200E+01 & fp = 2.040E+02 & fx2 = -1.282E+03 & UCcbU = \\ 0.26 & bfg = 3.000E+02 & E = 2.100E+05 & fy1 = -9.943E+02 & UCbcbU = \\ 0.28 & tfg = 2.200E+01 & ny = 3.000E-01 & fxy = -2.097E+02 & UCtfbU = \\ 0.77 & afg = 0.000E+00 & plat = 7.000E-03 & UCpbU = \\ 0.01 & efg = 0.000E+00 & Stiffener section & Mbend = 1.108E+07 & UCpdtw = \\ 0.76 & & & & & & & & & & & & & & & & & & &$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
1.52 twg = 1.200E+01 fp = 2.040E+02 $fx2 = -1.282E+03$ UCcbU = 0.26 bfg = 3.000E+02 E = 2.100E+05 $fy1 = -9.943E+02$ UCcbU = 0.28 tfg = 2.200E+01 ny = 3.000E-01 $fxy = -2.097E+02$ UCtfbU = 0.77 afg = 0.000E+00 Stiffener section $plat = 7.000E-03$ UCpbU = 0.01 efg = 0.000E+00 Stiffener section $Mbend = 1.108E+07$ UCpdtw = 0.76 Nws = 1.480E+02 UCcdtw = 0.90 Plate dimension tws = 1.200E+01 Girder parameter UCpbftf = 0.98 Ly = 5.000E+03 bfs = 9.000E+01 Lty = 5.000E+03 UCcbftf = 0.73 1x1 = 2.000E+03 tfs = 1.200E+01 kg = 1.000E+00 UClasup = 1.52 1x2 = 3.000E+03 afs = 0.000E+00 mg = 8.000E+00 t1 = 2.500E+01 efs = 3.900E+01 GTYP = 0 c2 = 2.500E+01 $GTYP = 0$	hwg =	3.980E+02	fy =	3.400E+02	fx1 =	-1.317E+03	UCmax =
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.52						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	twg =	1.200E+01	fp =	2.040E+02	fx2 =	-1.282E+03	UCcbU =
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.26		-				
0.28 tfg = 2.200E+01 ny = 3.000E-01 fxy = -2.097E+02 UCtfbU = 0.77 afg = 0.000E+00 plat = 7.000E-03 UCpbU = 0.01 efg = 0.000E+00 Stiffener section Mbend = 1.108E+07 UCpdtw = 0.76 hws = 1.480E+02 UCcdtw = 0.90 Plate dimension tws = 1.200E+01 Girder parameter UCpbftf = 0.98 Ly = 5.000E+03 bfs = 9.000E+01 Lty = 5.000E+03 UCcbftf = 0.73 lx1 = 2.000E+03 tfs = 1.200E+01 kg = 1.000E+00 UClasup = 1.52 lx2 = 3.000E+03 afs = 0.000E+00 mg = 8.000E+00 t1 = 2.500E+01 efs = 3.900E+01 GTYP = 0 t2 = 2.500E+01	bfg =	3.000E+02	E =	2.100E+05	fy1 =	-9.943E+02	UCbcbU =
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.28				-		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	tfg =	2.200E+01	ny =	3.000E-01	fxy =	-2.097E+02	UCtfbU =
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.77						
0.01 efg = $0.000E+00$ Stiffener section hws = 1.480E+02 hws = 1.480E+02 0.76 hws = 1.480E+02 0.90 Plate dimension tws = 1.200E+01 Ly = 5.000E+03 $bfs = 9.000E+01lx1 = 2.000E+03$ $tfs = 1.200E+01lx1 = 2.000E+03$ $tfs = 1.200E+01lx2 = 3.000E+03$ $afs = 0.000E+00t1 = 2.500E+01$ $efs = 3.900E+01dfy = 0dfy = 0dfy$	afg =	0.000E+00			plat =	7.000E-03	UCpbU =
efg = $0.000E+00$ Stiffener section Mbend = $1.108E+07$ UCpdtw = 0.76 hws = $1.480E+02$ UCcdtw = 0.90 Plate dimension tws = $1.200E+01$ Girder parameter UCpbftf = 0.98 Ly = $5.000E+03$ bfs = $9.000E+01$ Lty = $5.000E+03$ UCcbftf = 0.73 lx1 = $2.000E+03$ tfs = $1.200E+01$ kg = $1.000E+00$ UClasup = 1.52 lx2 = $3.000E+03$ afs = $0.000E+00$ mg = $8.000E+00$ t1 = $2.500E+01$ efs = $3.900E+01$ GTYP = $0$ t2 = $2.500E+01$ GSTF = $0$	0.01				-		-
0.76 hws = $1.480E+02$ UCcdtw = 0.90 Plate dimension tws = $1.200E+01$ Girder parameter UCpbftf = 0.98 Ly = $5.000E+03$ bfs = $9.000E+01$ Lty = $5.000E+03$ UCcbftf = 0.73 lx1 = $2.000E+03$ tfs = $1.200E+01$ kg = $1.000E+00$ UClasup = 1.52 lx2 = $3.000E+03$ afs = $0.000E+00$ mg = $8.000E+00$ t1 = $2.500E+01$ efs = $3.900E+01$ GTYP = $0$ t2 = $2.500E+01$ GSTF = $0$	efq =	0.000E+00	Stiffener	section	Mbend =	1.108E+07	UCpdtw =
hws = 1.480E+02 UCcdtw = 0.90 Plate dimension tws = 1.200E+01 Girder parameter UCpbftf = 0.98 Ly = 5.000E+03 bfs = 9.000E+01 Lty = 5.000E+03 UCcbftf = 0.73 lx1 = 2.000E+03 tfs = 1.200E+01 kg = 1.000E+00 UClasup = 1.52 lx2 = 3.000E+03 afs = 0.000E+00 mg = 8.000E+00 t1 = 2.500E+01 efs = 3.900E+01 GTYP = 0 t2 = 2.500E+01 GTYP = 0	0.76						-
0.90 Plate dimension $tws = 1.200E+01$ Girder parameter UCpbftf = 0.98 Ly = 5.000E+03 bfs = 9.000E+01 Lty = 5.000E+03 UCcbftf = 0.73 lx1 = 2.000E+03 tfs = 1.200E+01 kg = 1.000E+00 UClasup = 1.52 lx2 = 3.000E+03 afs = 0.000E+00 mg = 8.000E+00 t1 = 2.500E+01 efs = 3.900E+01 GTYP = 0 t2 = 2.500E+01 GTYP = 0			hws =	1.480E+02			UCcdtw =
Plate dimension       tws = 1.200E+01       Girder parameter UCpbftf =         0.98       Ly = 5.000E+03       bfs = 9.000E+01       Lty = 5.000E+03 UCcbftf =         0.73       lx1 = 2.000E+03       tfs = 1.200E+01       kg = 1.000E+00 UClasup =         1.52       lx2 = 3.000E+03       afs = 0.000E+00       mg = 8.000E+00         t1 = 2.500E+01       efs = 3.900E+01       GTYP = 0         t2 = 2.500E+01       GSTF = 0	0.90						
0.98 Ly = 5.000E+03 bfs = 9.000E+01 Lty = 5.000E+03 UCcbftf = 0.73 lx1 = 2.000E+03 tfs = 1.200E+01 kg = 1.000E+00 UClasup = 1.52 lx2 = 3.000E+03 afs = 0.000E+00 mg = 8.000E+00 t1 = 2.500E+01 efs = 3.900E+01 GTYP = 0 t2 = 2.500E+01 GTYP = 0	Plate	dimension	tws =	1.200E+01	Girder	parameter	UCpbftf =
Ly = $5.000E+03$ bfs = $9.000E+01$ Lty = $5.000E+03$ UCcbftf = 0.73 lx1 = $2.000E+03$ tfs = $1.200E+01$ kg = $1.000E+00$ UClasup = 1.52 lx2 = $3.000E+03$ afs = $0.000E+00$ mg = $8.000E+00$ t1 = $2.500E+01$ efs = $3.900E+01$ GTYP = $0$ t2 = $2.500E+01$ GSTF = $0$	0.98					-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ly =	5.000E+03	bfs =	9.000E+01	Lty =	5.000E+03	UCcbftf =
<pre>lx1 = 2.000E+03 tfs = 1.200E+01 kg = 1.000E+00 UClasup = 1.52 lx2 = 3.000E+03 afs = 0.000E+00 mg = 8.000E+00 t1 = 2.500E+01 efs = 3.900E+01 GTYP = 0 t2 = 2.500E+01 GTYP = 0</pre>	0.73				- 1		
1.52 lx2 = 3.000E+03 afs = 0.000E+00 mg = 8.000E+00 t1 = 2.500E+01 efs = 3.900E+01 GTYP = 0 t2 = 2.500E+01 GSTF = 0	lx1 =	2.000E+03	tfs =	1.200E+01	ka =	1.000E+00	UClasup =
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.52				ر		<b>T</b>
t1 = 2.500E+01 efs = 3.900E+01 GTYP = 0 t2 = 2.500E+01 GSTF = 0	lx2 =	3.000E+03	afs =	0.000E+00	ma =	8.000E+00	
t2 = 2.500E+01 GSTF = 0	t1 =	2.500E+01	efs =	3.900E+01	GTYP =	0	
	t2 =	2.500E+01			GSTF =	0	

lya = 1.667E+03

INTERMEDIATE CODE CHECK RESULTS:

Paramete	r	Value	Paramete:	r	Value	Parameter	Value	
UCmax	=	1.524E+00	UCcbU :		2.615E-01	UCbcbU =	2.762E-01	
UCtfbU	=	7.682E-01	UCpbU :	=	1.358E-02	UCpdtw =	7.644E-01	
UCcdtw	=	9.017E-01	UCpbftf :	=	9.798E-01	UCcbftf =	7.316E-01	
UClasup	=	1.524E+00	FSSLS :	=	1.250E+00	FSULS =	1.500E+00	
sigx1	= -	-5.036E+01	sigx2 :	=	-4.902E+01	sigy =	-3.365E+01	
tauxy	= -	-8.387E+00	beta1 :	=	3.219E+00	beta2 =	4.828E+00	
Cyl	=	5.248E-01	Су2 :	=	3.713E-01	Le1 =	1.050E+03	
Le2	=	1.114E+03	Ae :	=	3.842E+04	zs =	3.228E+02	
zp	=	9.870E+01	Iez :	=	1.077E+09	re =	1.674E+02	
Wep	=	1.091E+07	Wes :	=	3.335E+06	Wpl =	4.170E+06	
J	=	1.294E+06	Cw :	=	5.023E+09	Is =	1.298E+09	
IC	=	1.852E+08	P :	=	-2.486E+06	Ftw =	5.241E+05	
Fwi	=	8.392E+05	Mbend :	=	1.108E+07	lambda =	3.826E-01	
PEe	=	8.926E+07	PFu :	=	1.426E+07	Mu =	1.134E+09	
B1 :	=	1.000E+00	PTe :	=	5.242E+06	PTFe =	4.989E+06	
PTFu	=	4.854E+06	Mup :	=	1.224E+09	Rdtw =	3.317E+01	
etapdtw	=	4.339E+01	etacdtw :	=	3.678E+01	Rbftf =	1.364E+01	
etapbft	=	1.392E+01	etacbft :	=	1.864E+01	RLb =	5.000E+03	
etaL1L2	=	3.281E+03						
6-MAY-19	91	13:57 PRO	GRAM: SES	AM	I PLATEW	ORK D1.0-02	11-APR-1991	
4								

### API Code Check Results

+						+
! Capacity ! Resultca	Model : ase Name :	XMANG1 3	! !	Type Limit-Sta	: GIR ate: STORM	!
! Code Che	eck Status:	* * - LB	1			1
+						Ŧ
Girder UC-Val	section	Material	Mat-Value	CM-Load	Load-Value	UC-Factor
hwg =	3.980E+02	fy =	3.400E+02	fx1 =	= -1.582E+03	UCmax =
1.52						
twg =	1.200E+01	fp =	2.040E+02	fx2 =	= -4.173E+02	UCcbU =
0.13						
bfg =	3.000E+02	E =	2.100E+05	fy1 =	= -4.932E+02	UCbcbU =
0.15						
tfg =	2.200E+01	ny =	3.000E-01	fxy =	= -7.190E+01	UCtfbU =
0.38						
afg = 0.02	0.000E+00			plat =	= -1.500E-02	UCpbU =

Version number	Date	Page
1.0	01-JUN-1991	1-51

efg =	0.000E+00	Stiffener	section	Mbend =	-1.478E+07	UCpdtw	=
0.65							
		hws =	1.480E+02			UCcdtw	=
0.56							
Plate	dimension	tws =	1.200E+01	Girder	parameter	UCpbftf	=
0.98							
Ly =	5.000E+03	bfs =	9.000E+01	Lty =	5.000E+03	UCcbftf	=
0.73							
lx1 =	2.000E+03	tfs =	1.200E+01	kg =	1.000E+00	UClasup	=
1.52							
lx2 =	3.000E+03	afs =	0.000E+00	mg =	8.000E+00		
t1 =	2.500E+01	efs =	3.900E+01	GTYP =	0		
t2 =	2.500E+01			GSTF =	0		
lya =	1.667E+03						

INTERMEDIATE CODE CHECK RESULTS:

Parameter	Value	Parameter	Value	Parameter	Value	
UCmax =	1.524E+00	UCcbU =	1.297E-01	UCbcbU =	1.493E-01	
UCtfbU =	3.810E-01	UCpbU =	1.626E-02	UCpdtw =	6.461E-01	
UCcdtw =	5.575E-01	UCpbftf =	9.798E-01	UCcbftf =	7.316E-01	
UClasup =	1.524E+00	FSSLS =	1.250E+00	FSULS =	1.500E+00	
sigx1 =	-6.051E+01	sigx2 =	-1.596E+01	sigy =	-1.669E+01	
tauxy =	-2.876E+00	betal =	3.219E+00	beta2 =	4.828E+00	
Cy1 =	5.248E-01	Cy2 =	3.713E-01	Le1 =	1.050E+03	
Le2 =	1.114E+03	Ae =	3.842E+04	zs =	3.228E+02	
zp =	9.870E+01	Iez =	1.077E+09	re =	1.674E+02	
Wep =	1.091E+07	Wes =	3.335E+06	Wpl =	4.170E+06	
J =	1.294E+06	Cw =	5.023E+09	Is =	1.298E+09	
IC =	1.852E+08	P =	-1.233E+06	Ftw =	1.797E+05	
Fwi =	7.872E+05	Mbend =	-1.478E+07	lambda =	3.826E-01	
PEe =	8.926E+07	PFu =	1.426E+07	Mu =	1.134E+09	
B1 =	1.000E+00	PTe =	5.242E+06	PTFe =	4.989E+06	
PTFu =	4.854E+06	Mup =	1.364E+09	Rdtw =	3.317E+01	
etapdtw =	5.133E+01	etacdtw =	5.949E+01	Rbftf =	1.364E+01	
etapbft =	1.392E+01	etacbft =	1.864E+01	RLb =	5.000E+03	
etaL1L2 =	3.281E+03					
06-MAY-199	91 13:57 PR	OGRAM: SESA	M PLATEV	VORK D1.0-0	2 11-APR-1991	P
5						

### API Code Check Results

+----+ ! Capacity Model : XMANG1 ! Type : GIR ! ! Resultcase Name : 4 ! Limit-State: STORM ! ! Code Check Status: **-LB ! ! +-----+

Date 01-JUN-1991

Girder UC-Val	section	Material	Mat-Value	CM-Load	Load-Value	UC-Factor
hwg =	3.980E+02	fy =	3.400E+02	fx1 =	-1.783E+03	UCmax =
1.52						
twg =	1.200E+01	fp =	2.040E+02	fx2 =	-2.161E+02	UCcbU =
0.13 bfg -	2 000 - 02	F _	2 1005.05	f1 _		IIChahii -
0.16	3.000E+02	E =	2.1006+05	LYL =	-5.0826+02	= 000000
tfg =	2.200E+01	ny =	3.000E-01	fxy =	-1.325E+02	UCtfbU =
0.39		_		_		
afg =	0.000E+00			plat =	1.500E-02	UCpbU =
0.02						TTG 1.
eig =	0.000E+00	Stiffener	section	Mbend =	1.931E+07	UCpatw =
0.05		hws =	1.480E+02			UCcdtw =
0.57						
Plate o	dimension	tws =	1.200E+01	Girder	parameter	UCpbftf =
0.98						
Ly =	5.000E+03	bfs =	9.000E+01	Lty =	5.000E+03	UCcbftf =
0.73 lv1 -	2 000 - 02	tfa -	1 2008,01	ka -	1 000 - 00	
1.52	2.0001105		1.2000+01	kg =	1.0001400	Ocrasup -
lx2 =	3.000E+03	afs =	0.000E+00	mg =	8.000E+00	
t1 =	2.500E+01	efs =	3.900E+01	GTYP =	0	
t2 =	2.500E+01			GSTF =	0	
lya =	1.667E+03					

INTERMEDIATE CODE CHECK RESULTS:

Paramete	er	Value	Paramete	er	Value	Paramete	er	Value
UCmax	=	1.524E+00	UCcbU	=	1.336E-01	UCbcbU	=	1.592E-01
UCtfbU	=	3.926E-01	UCpbU	=	2.130E-02	UCpdtw	=	6.491E-01
UCcdtw	=	5.669E-01	UCpbftf	=	9.798E-01	UCcbftf	=	7.316E-01
UClasup	=	1.524E+00	FSSLS	=	1.250E+00	FSULS	=	1.500E+00
sigx1	=	-6.819E+01	sigx2	=	-8.268E+00	sigy	=	-1.720E+01
tauxy	=	-5.298E+00	beta1	=	3.219E+00	beta2	=	4.828E+00
Cyl	=	5.248E-01	Cy2	=	3.713E-01	Lel	=	1.050E+03
Le2	=	1.114E+03	Ae	=	3.842E+04	ZS	=	3.228E+02
zp	=	9.870E+01	Iez	=	1.077E+09	re	=	1.674E+02
Wep	=	1.091E+07	Wes	=	3.335E+06	Wpl	=	4.170E+06
J	=	1.294E+06	Cw	=	5.023E+09	Is	=	1.298E+09
IC	=	1.852E+08	P	=	-1.271E+06	Ftw	=	3.311E+05
Fwi	=	7.663E+05	Mbend	=	1.931E+07	lambda	=	3.826E-01
PEe	=	8.926E+07	PFu	=	1.426E+07	Mu	=	1.134E+09
B1	=	1.000E+00	PTe	=	5.242E+06	PTFe	=	4.989E+06
PTFu	=	4.854E+06	Mup	=	1.360E+09	Rdtw	=	3.317E+01
etapdtw	=	5.109E+01	etacdtw	=	5.850E+01	Rbftf	=	1.364E+01

Version number <b>1.0</b>			Date 01-JUN-1991	Page 1-53	
etapbft = etaL1L2 = 06-MAY-1991 6	1.392E+01 3.281E+03 13:57 PRC API	etacbft = DGRAM: SESJ Code Chec	1.864E+01 AM PLATEN ck Results	RLb = 5.000E+03 WORK D1.0-02 11-APR-1	991 PAGE:
+ ! Capacity I ! Resultcase ! Code Chec +	Model : e Name : k Status:	XMANS1.1 1 **-LB	!	Type : STF Limit-State: STORM	-+ ! ! !
Stiffener UC-Val	section	Material	Mat-Value	CM-Load Load-Value	UC-Factor
hws = 1	1.480E+02	fy =	3.400E+02	fx1 = -6.762E+02	UCmax =
tws = 1	1.200E+01	fp =	2.040E+02	fy1 = -3.498E+02	UCcbU =
bfs =	9.000E+01	E =	2.100E+05	fy2 = -4.289E+02	UCbcbU =
tfs = 1	1.200E+01	ny =	3.000E-01	fxy = 4.643E+00	UCtfbU =
0.24 afs =	0.000E+00			plat = -4.000E-03	UCpbU =
efs = 1	3.900E+01	Stiffener	parameter	Mbend = 4.627E+05	UCpdtw =
0.26		Ly =	5.000E+03		UCcdtw =
Plate d	imension	Ltx =	2.000E+03		UCpbftf =
1x = 1	2.000E+03	ks0 =	1.000E+00		UCcbftf =
0.40 ly1 =	1.250E+03	ms0 =	8.000E+00		UClasup =
2.03 ly2 = 1	2.500E+03	ksp =	6.000E-01		UCsreq =
0.00 t1 = 1	2.500E+01	msp =	1.600E+01		UCsreql =
0.00 t2 = 1	2.500E+01	SEND = STYP = SSTF =	Continous 0 0		

Date 01-JUN-1991 Version number 1.0

INTERMEDIATE CODE CHECK RESULTS:

Paramete	er	Value	Paramete	er	Value	Paramete	er	Value
UCmax	=	2.032E+00	UCcbU	=	1.818E-01	UCbcbU	=	1.890E-01
UCtfbU	=	2.442E-01	UCpbU	=	3.643E-03	UCpdtw	=	2.558E-01
UCcdtw	=	2.649E-01	UCpbftf	=	5.389E-01	UCcbftf	=	4.024E-01
UClasup	=	2.032E+00	UCsreq	=	6.394E-04	UCsreql	=	0.000E+00
FSSLS	=	1.250E+00	FSULS	=	1.500E+00	sigx	=	-2.549E+01
sigyl	=	-1.399E+01	sigy2	=	-1.716E+01	tauxy	=	1.857E-01
beta1	=	2.012E+00	beta2	=	3.219E+00	Cx1	=	7.470E-01
Cx2	=	4.391E-01	bel	=	9.338E+02	be2	=	1.098E+03
Ae	=	2.825E+04	ZS	=	1.547E+02	zp	=	1.180E+01
Iez	=	4.387E+07	re	=	3.941E+01	Wep	=	3.717E+06
Wes	=	2.836E+05	Wpl	=	6.253E+05	J	=	1.371E+05
Cw	=	1.644E+08	Is	=	3.662E+07	Ic	=	7.540E+06
P	=	-1.268E+06	Ftw	=	8.655E+03	Fwi	=	1.228E+05
Mbend	=	4.627E+05	ms	=	1.600E+01	lambda	=	3.900E-01
ks	=	6.000E-01	PEe	=	6.314E+07	PFu	=	1.046E+07
Mu	=	9.642E+07	B1	=	1.000E+00	PTe	=	1.450E+07
PTFe	=	1.219E+07	PTFu	=	7.788E+06	Mup	=	1.905E+08
Fxyu	=	1.941E+02	Rdtw	=	1.233E+01	etapdtw	=	4.822E+01
etacdtw	=	4.656E+01	Rbftf	=	7.500E+00	etapbft	=	1.392E+01
etacbft	=	1.864E+01	RLb	=	2.000E+03	etaL1L2	=	9.842E+02
RIS	=	2.805E+04	RIl	=	0.000E+00	etaIe	=	4.387E+07

Version number	Date	Page
1.0	01-JUN-1991	1-55

### 1.10.5 Displaying Code Check results

An alternative to printing the results, is to display them. Code Check results can be labelled on top of a Capacity Model display. The user has the option of selecting a resultcase and a Code Check parameter.



Figure 1-19 Displaying Code Check results

### 1.11 The data files

The two main datafiles in PLATEWORK are:

- PLATEWORK database file
- SESAM direct access results file (SIN-file)



Figure 1-20 Link to SESAM direct access results file from PLATEWORK database

### 1.11.1 Database file

This file is opened by the program at the beginning of each session, either as a new file or as an old file (i.e. created in a previous PLATEWORK session). The file is used in both READ & WRITE mode, and contains all information necessary to perform a code check, for example :

- a Capacity Model geometry data
- b Capacity Model load data
- c Finite Element to Capacity Model transformation data
- d Code check results

### 1.11.2 SESAM results file (SIN-file)

This file is only used when a FE-model is referenced. The file is used in READ mode only, i.e. PLATEWORK does not create, modify or delete any information in the SIN-file. The file is opened by PLATEWORK in the following cases:

### 1 At the user's request (READ command).

In this case the program will open the SIN-file and transfer vital information about the FEM model to the PLATEWORK database file:

- a The full name of the SIN-file (to be used in subsequent sessions).
- b A list of superelements
- c A list of basic finite elements
- d A list of basic nodes
- e A list of beam cross sections
- f A list of materials
- g A list of resultcases

### 2 Automatically at the beginning of the session.

This requires that an old PLATEWORK database file is opened, and that the SIN-file was opened at the user's request in one of the previous sessions.

Version number	Date	Page
1.0	01-JUN-1991	1-1

### **1 USER'S GUIDE TO PLATEWORK**

### **1.1** Introduction

This Chapter serves as a practical guide in using PLATEWORK, by providing a series of small command examples. The examples illustrate the concepts and principles discussed in the preceding Chapter, and the novice user is therefore advised to read Chapters 1 and 2 first.

This Chapter does not explain practical aspects around program operation, as that is covered by Chapter 4.

### **1.2** Selecting Code of Practice

The current version supports API, DnV and NPD code checks, see the preceding chapters and the Theoretical Manual. When opening a new database, the default Code of Practice will be DnV. If API or NPD is required, this should be selected before other commands are used:

```
#SELECT CODE API
Selected design code changed:
From : DNV
To : API
```

This selection will be saved on the database, i.e. the current Code of Practice will remain API for all subsequent PLATEWORK sessions that references this database, unless the SELECT CODE command is entered again.

When later running a Code Check analysis (RUN CODE-CHECK-ANALYSIS) or printing results (PRINT CODE-CHECK-RESULTS...), these commands will implicitely operate towards the currently selected Code of Practice.

Date 01-JUN-1991 Version number 1.0

### 1.3 Creating Capacity Models and loads manually

When creating Capacity Models manually, the following must have been created first:

1 Materials

2 Cross Sections

### **1.3.1** Creating Materials

When creating materials manually in PLATEWORK, the program will require parameters describing a limited elastic material, see figure 1-1.

```
#CREATE MATERIAL GIR-MAT
LIMITED-ELASTIC 2.1E+05 0.3 420.0 207.
#CREATE MATERIAL STF-MAT
LIMITED-ELASTIC 2.1E+05 0.3 345.0 207.
#CREATE MATERIAL PLT-MAT
LIMITED-ELASTIC 2.1E+05 0.3 345.0 207.
```



Figure 1-1 Limited elastic material

Version number **1.0** 

Page 1-3

____

The materials can be printed:

#PRINT MATERIAL ALL

Name	Туре	Parameter	Value
GIR-MAT	LIMITED-ELASTIC	Young's modulus, E Poisson's ratio, ny Yield strength, fy Pr. limit stress fp	2.100E+05 3.000E-01 4.200E+02 2.070E+02
STF-MAT	LIMITED-ELASTIC	Young's modulus, E Poisson's ratio, ny Yield strength, fy Pr. limit stress fp	2.100E+05 3.000E-01 3.450E+02 2.070E+02
PLT-MAT	LIMITED-ELASTIC	Young's modulus, E Poisson's ratio, ny Yield strength, fy Pr. limit stress fp	2.100E+05 3.000E-01 3.450E+02 2.070E+02

Date 01-JUN-1991

Version number 1.0

### 1.3.2 Creating Cross Sections

The user will have the opportunity to choose between several cross section types:

I-section:

#CREATE SECTION I-GIR I 400.0 10.0 962.8 16.0 300.0 20.0

L-section:

#CREATE SECTION L-STF L 160.0 10.0 90.0 10.0

For figures, and details on the mapping of cross sections onto Capacity Models, see Chapter 5.

**#PRINT SECTION ALL** 

Name	Туре	Parameter Value Parameter Value	
I-GIR	I	Section Dimensions	
		HZ = 4.000E+02 TY = 1.000E+01	
		BT = 9.628E+02 TT = 1.600E+01	
		BB = 3.000E+02 TB = 2.000E+01	
		General section data	
		-void- = 0.000E+00 AREA = 2.504E+04	
		IX = 2.907E+06 IY = 6.922E+08	
		IZ = 1.235E+09 IYZ = 0.000E+00	
		WXMIN = 1.453E+05 WYMIN = 2.537E+06	
		WZMIN = 2.565E+06 SHARY = 2.134E+04	
		SHARZ = 3.649E+03 SHCENY = 0.000E+00	
		SHCENZ = 1.052E+02 SY = 1.897E+06	
		SZ = 2.084E+06	
L-STF	L	Section Dimensions	
		HZ = 1.600E+02 TY = 1.000E+01	
		BY = 9.000E+01 TZ = 1.000E+01	
		General section data	
		-void- = 0.000E+00 AREA = 2.400E+03	
		IX = 7.817E+04 IY = 6.420E+06	
		IZ = 1.520E+06 IYZ = -1.800E+06	
		WXMIN = 6.672E+03 WYMIN = 6.114E+04	
		WZMIN = 2.171E+04 SHARY = 6.204E+02	
		SHARZ = 1.165E+03 SHCENY = -1.500E+01	
		SHCENZ = -5.000E+01 SY = 5.513E+04	
		SZ = 2.450E + 04	

Version number	Date	Page
1.0	01-JUN-1991	1-5

### **1.3.3** Creating Capacity Models

After having created materials and cross sections, the assembly can be created:

```
#CREATE ASSEMBLY-OF-CAPACITY-MODELS XCMA
    ARBITRARY
         -3000.0 -800.0 0.0
          3000.0 -800.0 0.0
          3000.0 800.0 0.0
         -3000.0 800.0 0.0
    GIRDERS MANUAL
         1 EVEN
         I-GIR
    STIFFENERS MANUAL
         1 EVEN
         1 EVEN
         L-STF
         L-STF
    PLATES MANUAL
         20.0 20.0
         20.0 20.0
    MATERIALS MANUAL
         GIR-MAT
         STF-MAT STF-MAT
         PLT-MAT PLT-MAT
         PLT-MAT PLT-MAT
    Creation of Basic Capacity Models
    ------
    Created : XCMAG1 (type GIR)
Created : XCMAS1.1 (type STF)
    Created : XCMAS2.1 (type STF)
    Created : XCMAP1.1
                           (type PLT)
    Created : XCMAP1.2 (type PLT)
Created : XCMAP2.1 (type PLT)
Created : XCMAP2.2 (type PLT)
```

Date 01-JUN-1991 Version number 1.0

### #DISPLAY CAPACITY-MODEL



Figure 1-2 A manually defined Capacity Model Assembly

**#PRINT ASSEMBLY-OF-CAPACITY-MODELS XCMA** 

```
Version number 1.0
```

```
Number of girders:
                                     Ngir = 1
Number of girders:NgIr = 1Girder Spacing 1 :3.000E+03 Nstf = 1Girder Spacing 2 :3.000E+03 Nstf = 1
Girder Spacing 1 :
    Stiffener spacings:
                   s1.1 = 8.000E+02 s1.2 = 8.000E+02
Girder Spacing 2 :
    Stiffener spacings:
                   s2.1 = 8.000E+02 \ s2.2 = 8.000E+02
#PRINT CAPACITY-MODEL XCMAP1.1
Capacity Model : XCMAP1.1
Туре
                : PLT
-----
Corner coordinates
    X1 = -3.000E+03 Y1 = -8.000E+02 Z1 = 0.000E+00
    X2 = 0.000E+00 Y2 = -8.000E+02 Z2 = 0.000E+00
    X3 = 0.000E+00 Y3 = 0.000E+00 Z3 = 0.000E+00
    X4 = -3.000E+03 Y4 = 0.000E+00 Z4 = 0.000E+00
Material parameters
    fy = 3.450E+02 fp = 2.070E+02 E = 2.100E+05
    ny = 3.000E-01
Plate geometry
    lx = 3.000E+03 ly = 8.000E+02 t = 2.000E+01
Plate parameters
    PTYP = 0 \qquad PSTF = 0 \qquad PDEF = 0
    wa = -1.000E+00 wp = -1.000E+00
```

### **1.3.4** Creating Resultcases

```
#CREATE RESULTCASE R1
'Manual example' STATIC E-ULS BASIC
```

### 1.3.5 Creating Capacity Model loads

#CREATE LOAD-ON-CAPACITY-MODEL MANUAL XCMAP1.1 R1 fx1 -1800.0 fx2 -4000.0 fy1 -1200.0 fy2 600.0 fxy 600.0 plat 0.15 END #CREATE LOAD-ON-CAPACITY-MODEL MANUAL XCMAS1.1 R1 fx1 -932.0 fy1 -76.0 fy2 -76.0 fxy 600.0 plat 0.04 END **#PRINT LOAD-ON-CAPACITY-MODEL ALL ALL** Capacity Model: XCMAP1.1 : PLT Туре Res-Name Type fx1 fyl fxy plat pdfl pbst fx2 fy2 _____ S -1.800E+03 -1.200E+03 6.000E+02 1.500E-01 ----R1 _ _ _ _ 4.000E+02 6.000E+02 Capacity Model: XCMAS1.1 : STF Туре Res-Name Type fx1 fy1 fxy plat Mbend fy2 _ _ _ _ _ _ R1 S -9.320E+02 -7.600E+01 6.000E+02 4.000E-02 -----7.600E+01

Version number	Date	Page
1.0	01-JUN-1991	1-9

#DISPLAY LOAD-ON-CAPACITY-MODEL XCMAP1.1 R1 NORMAL



Figure 1-3 A manually defined Capacity Model load

### 1.4 Creating Capacity Models and loads automatically from FEM-data

This section explains normal operations used when running PLATEWORK in the "postprocessor mode", i.e. when the program can be viewed as a postprocessor to a Finite Element analysis.

### 1.4.1 Reading a SESAM Results Interface File (SIN-file)

In order to establish the link between the PLATEWORK database and the SESAM direct access results file, the READ command is used. The program will read information about superelements, basic elements and nodes.

```
#READ SIN XMAN R10
Commenced reading SESAM results file
Reading superelement hierarchy
* NOTE: 1 new superelement index was imposed for s.el. type: 10
Reading element definitions
Reading node definitions
Calculating display window
Transferred 4 resultcase(s)
Transferred 2 beam cross section(s)
Transferred 1 material(s)
Completed reading SESAM results file
```

The name and prefix of the SIN-file (XMAN R10) will then be stored on the PLATEWORK database. In later sessions referencing the same database, the SIN-file will be opened automatically before the main command prompt # is made available to the user.

When using the READ command, the PLATEWORK database file will also inherit resultcases, cross sections and materials from the SIN-file, thereby eliminating the need to use the commands CREATE RESULTCASE, CREATE SECTION and CREATE MATERIAL as described in section 1.3.

The resultcases, cross sections and materials created in this way will be given default names:

Resultcase names	:	1, 2, 3, 4
Cross section names	:	SEC-1, SEC-2, SEC-3
Material names	:	MAT-1, MAT-2, MAT-3

Version number	Date	Page
1.0	01-JUN-1991	1-11

### **1.4.2** Displaying Finite Element Mesh

After successfully reading in the SIN-file, the Finite Element mesh can be displayed. In case of a multisuperelement model, all superelements will be displayed in the top level coordinate system:

#DISPLAY MESH

#LABEL ELEMENT-NUMBERS ON



Note that if beam elements exist in the model, they will be drawn with a slightly thicker line. This enables the user to see where the beam elements are, and in most cases it is possible to recognise the stiffeners and girders immediately.
## **1.4.3** Using the SCOPE facilities

The Scope facility is used to limit the part of the Finite Element model which can be accessed. There are several options available to define Scopes, see Chapter 5 (SCOPE ELEMENT commands) for details.

An example may be that the user wants to see only the beams, in order to get a clear overview over the girders and stiffeners within the model:

#SCOPE ELEMENT INCLUDE TYPE BEAM-2NODES

The included elements will be marked with small squares:



To confirm the scope and to see it displayed, enter the following:

#SCOPE ELEMENT CONFIRM DEFINED #DISPLAY MESH



## **1.4.4** Creating Capacity Models

After selecting the code, reading in the SIN-file, and optionally limiting the part of the FE-model that can be accessed by use of the Scope facility, the Capacity Models can be created.

The most convenient way to do this is by pointing at nodes with the mouse or crosshair in the mesh display, in order to define the Capacity Model Assembly corners (the corner nodes can also be identified by giving the node numbers, see Chapter 5).

Below is shown the command to create a Capacity Model Assembly named "XMAN", which has its corners defined by 4 nodes that are picked graphically from the FE-model.

```
#CREATE ASSEMBLY-OF-CAPACILTY-MODELS XMAN NODES PICK ...
```

```
PICK node 1 of 4
PICK node 2 of 4
PICK node 3 of 4
PICK node 4 of 4
```



At this stage, the Capacity Mode Assembly area has been defined, as well as the local coordinate system within the assembly (x from Corner 1 to Corner 2, y from Corner 1 to Corner 4).

The next step is to define the Girders within the assembly. In this case, beam elements exist in the FE-model, so the AUTOMATIC option should be used:

... GIRDERS AUTOMATIC ...

The program reports how many girders were found, and the girder spacings:

```
Number of girders= 1Girder spacing scale factor= 5000.Girder spacing 1= 2000.Girder spacing 2= 3000.
```

After defining the Girders, the Stiffeners in the two girder spacings must be defined. Again, beam elements representing the stiffeners exist, so the AUTOMATIC option is the most convenient:

... STIFFENERS AUTOMATIC ...

The program reports how many stiffeners were found, and stiffener spacings. This is done for each girder spacing:

	GIRDER SPACING 1	
Number of	stiffeners	= 2
Stiffener	spacing scale factor	= 5000.
Stiffener	spacing 1	= 1250.
Stiffener	spacing 2	= 2500.
Stiffener	spacing 3	= 1250.
	GIRDER SPACING 2	
Number of	GIRDER SPACING 2	= 2
Number of Stiffener	GIRDER SPACING 2 stiffeners spacing scale factor	= 2 = 5000.
Number of Stiffener Stiffener	GIRDER SPACING 2 stiffeners spacing scale factor spacing 1	= 2 = 5000. = 1250.
Number of Stiffener Stiffener Stiffener	GIRDER SPACING 2 stiffeners spacing scale factor spacing 1 spacing 2	= 2 = 5000. = 1250. = 2500.

The next step is to define the plate thicknesses. This can be picked up from the shell elements by use of the AUTOMATIC option:

... PLATES AUTOMATIC ...

The program will search in the FE-model and report the plate thicknesses found:

GIR spacing 1, STF spacing 1, Plate Thickness : 25.00 GIR spacing 1, STF spacing 2, Plate Thickness : 25.00 GIR spacing 1, STF spacing 3, Plate Thickness : 25.00 GIR spacing 2, STF spacing 1, Plate Thickness : 25.00 GIR spacing 2, STF spacing 2, Plate Thickness : 25.00 GIR spacing 2, STF spacing 3, Plate Thickness : 25.00

Version number	Date	Page
1.0	01-JUN-1991	1-15

Finally, materials must be assigned to the Girders, Stiffeners and Plates. Again, the AUTOMATIC option will be the most convenient:

```
... MATERIALS AUTOMATIC
```

	MATE	ERIALS		
Girder	1,	using	material	MAT-1
Stiffener	1,	using	material	MAT-1
Stiffener	2,	using	material	MAT-1
Stiffener	З,	using	material	MAT-1
Stiffener	4,	using	material	MAT-1
Plate	1,	using	material	MAT-1
Plate	2,	using	material	MAT-1
Plate	З,	using	material	MAT-1
Plate	4,	using	material	MAT-1
Plate	5,	using	material	MAT-1
Plate	6,	usinq	material	MAT-1

Now, the program has received all necessary information, and it will proceed automatically to create the Basic Capacity Models:

```
Creation of Basic Capacity Models
_____
Created : XMANG1
                     (type GIR)
                     (type STF)
Created : XMANS1.1
Created : XMANS1.2
                     (type STF)
                     (type STF)
Created : XMANS2.1
Created : XMANS2.2
                     (type STF)
                     (type PLT)
Created : XMANP1.1
Created : XMANP1.2
                     (type PLT)
Created : XMANP1.3
                     (type PLT)
Created : XMANP2.1
                     (type PLT)
Created : XMANP2.2
                     (type PLT)
Created : XMANP2.3
                     (type PLT)
Created : XMANO
                     (type OSP)
```

Now, the program returns with the main command prompt "#", and the user is free to enter other commands, see the following pages.

Date

01-JUN-1991

# 1.4.5 Displaying Capacity Models

#### #DISPLAY CAPACITY-MODELS



It is also possible now to get more details about the Capacity Models created by printing the Capacity Model gaometry data. On the next page is shown the command to print the geometry data of the girder Capacity Model XMANG1 shown above.

Version number **1.0** 

#### 1.4.6 Printing Capacity Models

**#PRINT CAPACITY-MODEL XMANG1** 

```
Capacity Model : XMANG1
      : GIR
Type
Corner coordinates
     X1 = 2.000E + 03
                     Y1 = 0.000E+00
                                   Z1 = 0.000E+00
     X2 = 2.000E+03
                     Y2 = 5.000E+03 Z2 = 0.000E+00
Material parameters
     fy = 3.400E+02
                   fp = 2.040E+02
                                   E = 2.100E + 05
     ny = 3.000E-01
Plate geometry
     Ly = 5.000E+03 lx1 = 2.000E+03 lx2 = 3.000E+03
     t1 = 2.500E+01 t2 = 2.500E+01 lya = 1.667E+03
Stiffener section
    hws = 1.480E+02 tws = 1.200E+01 bfs = 9.000E+01
    tfs = 1.200E+01 afs = 0.000E+00 efs = 3.900E+01
Girder section
    hwg = 3.980E+02 twg = 1.200E+01 bfg = 3.000E+02
    tfg = 2.200E+01 afg = 0.000E+00 efg = 0.000E+00
Girder parameters
    Lty = 5.000E+03 kg = 1.000E+00 mg = 8.000E+00
   GTYP = 0
                 GSTF = 0
```

Note that the stiffener and girder section data shown here are mapped cross sections, i.e. there might be flanges that are skipped. For details on cross section mappings, see the CREATE SECTION command in Chapter 5.

To get a detailed description of all the parameters printed in the table above, simply ask for a nomenclature printout:

**#PRINT NOMENCLATURE CAPACITY-MODEL** 

Extract from the output from this command is shown on the next page:

Date 01-JUN-1991

Version number 1.0

Parameter (GIR) Capacity Model, Parameter description Material fy Yield stress fp Proportionality limit stress Е Young's modulus Poisson's ratio ny Plate geometry Length of girder, y direction Ly 1x1 Girder spacing BEFORE girder 1x2 Girder spacing AFTER girder t1 Plate thickness BEFORE girder t2 Plate thickness AFTER girder lya Average stiffener spacing, y direction Stiffener section hws Stiffener web height tws Stiffener web thickness bfs Stiffener flange width tfs Stiffener flange thickness afs Distance between webs (=0.0 if one web) efs Flange eccentricity Girder section hwg Girder web height twg Girder web thickness bfg Girder flange width tfg Girder flange thickness afg Distance between webs (=0.0 if one web) efg Flange eccentricity Girder parameters Lty Distance between lateral supports Buckling length factor kq mg Bending moment factor GTYP Girder Type GSTF Stiffener Failure parameter

Page

1-19

### 1.4.7 Creating Capacity Model loads

In Chapter 2, the principles employed for creating Capacity Model loads on the basis of FE stresses and forces are described. Below is shown the command that must be entered in order to activate this feature, and also the following screen output produced by the program.

As described in Chapter 2, the process involves several operations, of which the 2 first are most important:

- 1 Creation of load transformation points
- 2 Creation of CM loads on the basis of load transformation points and FE stresses and forces.

Note that the creation of load transformation points involves extensive automatic searching in the FE model, and it is usually this part of a PLATEWORK session that will require most computer resources. The user can optimize this process (and save a considerable amount of computing and elapsed time) by actively using the SCOPE command such that elements outside the assembly area are not included in the current element scope. It may also be adviseable to submit PLATEWORK in a batch queue to perform this operation.

Note also that SELECT RESULTCASE can be used to limit the creation of Capacity Model loads to only specified resultcases.

#CREATE LOAD-ON-CAPACITY-MODEL AUTOMATIC ASSEMBLY XMAN

Transformations from FE stresses to CM loads, i.e. intersection points between mesh & Capacity Models _____ Creating CM load points for : XMANG1 (type GIR) Creating CM load points for : XMANS1.1 (type STF) Creating CM load points for : XMANS1.2 (type STF) Creating CM load points for : XMANS2.1 (type STF) Creating CM load points for : XMANS2.2 (type STF) Creating CM load points for : XMANP1.1 (type PLT) (type PLT) Creating CM load points for : XMANP1.2 Creating CM load points for : XMANP1.3 (type PLT) Creating CM load points for : XMANP2.1 (type PLT) Creating CM load points for : XMANP2.2 (type PLT) (type PLT) Creating CM load points for : XMANP2.3 Creating CM load points for : XMANO (type OSP)

Creating Capacity Model loads

		==:		===	==			
CM:	XMANG1	,	Resultcase	1	,	New	loads	created
CM:	XMANS1.1	,	Resultcase	1	,	New	loads	created
CM:	XMANS1.2	,	Resultcase	1	,	New	loads	created
CM:	XMANS2.1	,	Resultcase	1	,	New	loads	created
CM:	XMANS2.2	,	Resultcase	1	,	New	loads	created
CM:	XMANP1.1	,	Resultcase	1	,	New	loads	created
CM:	XMANP1.2	,	Resultcase	1	,	New	loads	created
CM:	XMANP1.3	,	Resultcase	1	,	New	loads	created
CM:	XMANP2.1	,	Resultcase	1	,	New	loads	created

Version number 1.0

CM:	XMANP2.2	,	Resultcase	1	,	New	loads	created
CM:	XMANP2.3	,	Resultcase	1	,	New	loads	created
CM:	XMANO	,	Resultcase	1	,	New	loads	created
CM:	XMANG1	,	Resultcase	2	,	New	loads	created
CM:	XMANS1.1	,	Resultcase	2	,	New	loads	created
CM:	XMANS1.2	,	Resultcase	2	,	New	loads	created
CM:	XMANS2.1	,	Resultcase	2	,	New	loads	created
CM:	XMANS2.2	,	Resultcase	2	,	New	loads	created
CM:	XMANP1.1	,	Resultcase	2	,	New	loads	created
CM:	XMANP1.2	,	Resultcase	2	,	New	loads	created
CM:	XMANP1.3	,	Resultcase	2	,	New	loads	created
CM:	XMANP2.1	,	Resultcase	2	,	New	loads	created
CM:	XMANP2.2	,	Resultcase	2	,	New	loads	created
CM:	XMANP2.3	,	Resultcase	2	,	New	loads	created
CM:	XMANO	,	Resultcase	2	,	New	loads	created
CM:	XMANG1	,	Resultcase	3	,	New	loads	created
CM:	XMANS1.1	,	Resultcase	3	,	New	loads	created
CM:	XMANS1.2	,	Resultcase	3	,	New	loads	created
CM:	XMANS2.1	,	Resultcase	3	,	New	loads	created
CM:	XMANS2.2	,	Resultcase	3	,	New	loads	created
CM:	XMANP1.1	,	Resultcase	3	,	New	loads	created
CM:	XMANP1.2	,	Resultcase	3	,	New	loads	created
CM:	XMANP1.3	,	Resultcase	3	,	New	loads	created
CM:	XMANP2.1	,	Resultcase	3	,	New	loads	created
CM:	XMANP2.2	,	Resultcase	3	,	New	loads	created
CM:	XMANP2.3	,	Resultcase	3	,	New	loads	created
CM:	XMANO	,	Resultcase	3	,	New	loads	created
CM:	XMANG1	,	Resultcase	4	,	New	loads	created
CM:	XMANS1.1	,	Resultcase	4	,	New	loads	created
CM:	XMANS1.2	,	Resultcase	4	,	New	loads	created
CM:	XMANS2.1	,	Resultcase	4	,	New	loads	created
CM:	XMANS2.2	,	Resultcase	4	,	New	loads	created
CM:	XMANP1.1	,	Resultcase	4	,	New	loads	created
CM:	XMANP1.2	,	Resultcase	4	,	New	loads	created
CM:	XMANP1.3	,	Resultcase	4	,	New	loads	created
CM:	XMANP2.1	,	Resultcase	4	,	New	loads	created
CM:	XMANP2.2	,	Resultcase	4	,	New	loads	created
CM:	XMANP2.3	,	Resultcase	4	,	New	loads	created
CM:	XMANO	,	Resultcase	4	,	New	loads	created

Version number	Date	Page
1.0	01-JUN-1991	1-21

## **1.4.8 Displaying Capacity Model loads**

Any of the loads created in the preceding section can now be displayed, for example the membrane normal loads on the girder XMANG1 in Resultcase 3:

#DISPLAY LOAD-ON-CAPACITY-MODEL XMANG1 3 NORMAL



Note the dashed curves, showing the unreduced CM loads as described by the stresses and forces in the shell or membrane elements within FE-model. It is also possible to recognize the beam element axial forces that are included in the unreduced Capacity Model loads. The straight solid lines show the reduced Capacity Model loads that are used in the Code Checks. The real numbers indicated at the start and end of each edge are the start and end values of the reduced load on that edge.

Date 01-JUN-1991

Version number 1.0

# 1.4.9 Printing Capacity Model loads

An alternative way of presenting the Capacity Model loads, is to print them. Below is shown how to print all the reduced Capacity Model loads for the girder XMANG1. Compare the printout for resultcase 3 with the plot shown in the preceding section.

**#PRINT LOAD-ON-CAPACITY-MODEL XMANG1 ALL** 

NOMENCLATURE:

Resultcase name
Static or real/imaginary load component
Normal stress*plate thickness (x direction)
Normal stress*plate thickness (x direction)
Normal stress*plate thickness (y direction)
Normal stress*plate thickness (y direction)
In-plane shear stress*plate thickness
Lateral plate load
Beam bending moment
Lateral plate deflection

Capacity Model: XMANG1

Type : GIR

Res-Name	Туре	fx1 fx2	fyl	fxy	plat	Mbend
1	S	-7.278E+02 -5.541E+02	-5.818E+02	2.111E+02	-4.000E-03	-4.946E+06
2	S	-1.317E+03 -1.282E+03	-9.943E+02	-2.097E+02	7.000E-03	1.108E+07
3	S	-1.582E+03 -4.173E+02	-4.932E+02	-7.190E+01	-1.500E-02	-1.478E+07
4	S	-1.783E+03 -2.161E+02	-5.082E+02	-1.325E+02	1.500E-02	1.931E+07

Version number	Date	Page
1.0	01-JUN-1991	1-23

# **1.5** Using the VIEW facility

The VIEW command contains a collection of operations for manipulating the graphics display:

## 1.5.1 Panning

Shifting the display in the plane of the screen:

```
#VIEW PAN <pick1> <pick2>
```



Figure 1-4 Using the VIEW PAN feature

## 1.5.2 Positioning

Implicit defininition of viewing direction by choosing an eye-point position in space. Viewing direction is implicitely defined as being a vector starting at the eye-point and pointing towards the origin of the model coordinate system. The vector is shifted in the plane of the screen such that the centre of the model roughly coincides with the centre of the screen.

#VIEW POSITION 0.0 0.0 1.0



Date 01-JUN-1991 Version number 1.0

## Figure 1-5 Using the VIEW POSITION feature

# 1.5.3 Rotating

Absolute or relative rotations around model or screen axes.

**#VIEW ROTATE X-AXIS 30.** 



Figure 1-6 Using the VIEW ROTATE X-AXIS feature

**#VIEW ROTATE DOWN 30.** 





Version number	Date	Page
1.0	01-JUN-1991	1-25

# 1.5.4 Zooming

Move closer to or further away from the model.

```
#VIEW ZOOM IN <pick1> <pick2>
```



Figure 1-8 Using the VIEW ZOOM IN feature

#VIEW ZOOM OUT <pick1> <pick2>



Figure 1-9 Using the VIEW ZOOM OUT feature

Date 01-JUN-1991 Version number 1.0

# 1.6 Selecting Capacity Models and Resultcases

The current selection of Capacity Models and Resultcases is controlled through the use of the SELECT CAPACITY-MODEL and SELECT RESULTCASE commands:

#### 1.6.1 Selecting Capacity Models

```
#SELECT CAPACITY-MODEL ALL OFF
ALL ( 11 ) CM(s) selected OFF
#SELECT CAPACITY-MODEL XMANG1 ON
CM XMANG1 selected ON
Currently selected : 1 of 11 CM(s)
#SELECT CAPACITY-MODEL XMANP1.1 ON
CM XMANP1.1 selected ON
Currently selected : 2 of 11 CM(s)
```

#### 1.6.2 Selecting Resultcases

```
#SELECT RESULTCASE ALL OFF
ALL ( 4 ) Resultcase(s) selected OFF
#SELECT RESULTCASE 2 ON
Resultcase 2 selected ON
Currently selected : 1 of 4 resultcase(s)
#SELECT RESULTCASE 4 ON
Resultcase 4 selected ON
Currently selected : 2 of 4 resultcase(s)
```

# **1.7** Performing a Code Check

## **1.7.1 Defining Limit State Factors**

It is possible to modify the default limit state factors that are provided by the program, by use of the DEFINE LIMIT-STATE-FACTOR command.

For example, the command to modify the basic usage factor  $\eta 0$  in the Ultimate Limit State (environmental load) for the DnV Code Check is:

#DEFINE LIMIT-STATE-FACTOR DNV E-ULS 0.6

This factor will then be used in the DnV Code Check for all resultcases that have the E-ULS limit state kind assigned.

### 1.7.2 Defining phase angle stepping for complex CM loads

When loads are complex, the following procedure will be used in the Code Checks:

- The Code Check will be executed for all phase angles specified
- The results will be stored for the phase angle that corresponded to the highest value of UCmax, the maximum Unity Criterion factor.

The user decides which phase angles shall be used, either by:

- Constant phase angle stepping The user defines start angle, stop angle and angle step.
   #DEFINE PHASE-ANGLE-STEPPING CONSTANT 0.0 350.0 10.0
- Arbitrary phase angle stepping The user defines all phase angles explicitely.
   #DEFINE PHASE-ANGLE-STEPPING ARBITRARY 30.0 48.0 55.0 73.0 END

### 1.7.3 Running the Code Check Analysis

After possibly using SELECT RESULTCASE and/or SELECT CAPACITY-MODEL, the command to perform the Code Check is:

**#RUN CODE-CHECK-ANALYSIS** 

The Checks will be performed according to Code of Practice selected by previous use of the SELECT CODE command.

# **1.8 Printing Code Check results**

#### **1.8.1** Defining sorting parameter and sorting order

The user has complete control over which Code Check results parameter the results shall be sorted after, and also the sorting order, by using the DEFINE SORTING commands.

The commands below show how to select the Code Check results parameter UCmax as the sorting parameter. The results shall be sorted and printed in decreasing order according to the UCmax values.

#DEFINE SORTING PARAMETER UCmax #DEFINE SORTING ORDER DECREASING

These two commands correspond to the default sorting definitions in PLATEWORK.

## **1.8.2** Defining print filters

In addition to defining the sorting parameter and sorting order, the user can define print filters to the results, and thereby limit the amount of data printed to include only selected parts of the results.

A very useful filtering facility is the possibility to define upper and lower limits to the current sorting parameter (defined by using DEFINE SORTING PARAMETER), causing results that correspond to a sorting parameter value outside the selected range to be suppressed in the Code Check result print tables.

The commands below show how to limit the printout to include only failures, i.e. UCmax  $\ge 1.0$ . Note that if another sorting parameter is defined, the filters will be applied to that parameter.

#DEFINE SORTING MIN-VALUE 1.0 #DEFINE SORTING MAX-VALUE UNLIMITED

The user can, in addition to the above, define the maximum number of entries in the Code Check results print table by use of the following command:

#DEFINE SORTING MAX-ENTRIES 10

This will then ensure that only the 10 "worst" failures will be printed (since the sorting order is defined to be DECREASING).

### 1.8.3 Printing Code Check nomenclature

To see a complete list of Code Check result parameters, and their descriptions, the following command should be used (nomenclature output examples are shown in Chapter 2):

**#PRINT NOMENCLATURE CODE-CHECK-RESULTS** 

Version number	Date	Page
1.0	01-JUN-1991	1-29

#### **1.8.4** Code Check status codes

For each result instance printed (i.e. combination of Capacity Model and Resultcase) there will be a "Status" code included, indicating the status of the Code Check. The general layout of this "Status" will be:

**- <status-code></status-code>	(when Code Check resulted in failure)
OK- <status-code></status-code>	(when Code Check did not result in failure)

For an example on the use of status codes, see section 1.8.5.

The <status-code> is a short alphanumeric code indicating which check failed or which check was closest to failure. The following three tables describe which status codes are relevant for the different Capacity Models / Codes of Practice. The tables also describe the meaning of the alphanumeric codes.

Capacity Model Type	Status Code	Description
PLT	PB	Plate buckling
	PY	Plate bending/yielding
STF	LB	Local buckling
	CB	Column buckling
	BCB	Beam-column buckling
	TFB	Torsional/flexural buckling
	PLB	Plastic bending
GIR	LB	Local buckling
	CB	Column buckling
	BCB	Beam-column buckling
	TFB	Torsional/flexural buckling
	PLB	Plastic bending
USP	OPBU	Overall panel buckling
OSP	OPBU	Overall panel buckling
	OPBE	Overall panel bending

#### Table 1.1 API Code Check status codes

Capacity Model Type	Status Code	Description
PLT	PB	Plate buckling
	PY	Plate bending/yielding
STF	PIF1	Plate induced failure (check1)
	PIF2	Plate induced failure (check2)
	SIF1	Stiffener induced failure (check1)
	SIF2	Stiffener induced failure (check2)
	LB1P	Local buckling (PIF1 check performed)
	LB1S	Local buckling (SIF1 check performed)
	LB2P	Local buckling (PIF2 check performed)
	LB2S	Local buckling (SIF2 check performed)
GIR	PIF1	Plate induced failure (check1)
	PIF2	Plate induced failure (check2)
	FIF1	Flange induced failure (check1)
	FIF2	Flange induced failure (check2)
	LB1P	Local buckling (PIF1 check performed)
	LB1F	Local buckling (FIF1 check performed)
	LB2P	Local buckling (PIF2 check performed)
	LB2F	Local buckling (FIF2 check performed)

#### Table 1.2 DnV Code Check status codes

Table 1.3	NPD Code Check status codes
I GOIC IIC	THE COLL CHECK Status could

Capacity Model Type	Status Code	Description
PLT	PB	Plate buckling
	PY	Plate bending/yielding
STF	PIF1	Plate induced failure (check1)
	PIF2	Plate induced failure (check2)
	SIF1	Stiffener induced failure (check1)
	SIF2	Stiffener induced failure (check2)
	LB1P	Local buckling (PIF1 check performed)
	LB1S	Local buckling (SIF1 check performed)
	LB2P	Local buckling (PIF2 check performed)
	LB2S	Local buckling (SIF2 check performed)
GIR	PIF1	Plate induced failure (check1)
	PIF2	Plate induced failure (check2)
	FIF1	Flange induced failure (check1)
	FIF2	Flange induced failure (check2)
	LB1P	Local buckling (PIF1 check performed)
	LB1F	Local buckling (FIF1 check performed)
	LB2P	Local buckling (PIF2 check performed)
	LB2F	Local buckling (FIF2 check performed)

## **1.8.5 Printing a results summary**

Assuming the sorting definitions from the preceding sections, a first short overview over the Code Check results may be obtained by entering the following command:

**#PRINT CODE-CHECK-RESULTS SUMMARY** 

To get a permanent copy of this print table stored on a file called *xmansummary.lis*, the following command sequence should be used.

#SET PRINT DESTINATION FILE #SET PRINT FILE xman summary #PRINT CODE-CHECK-RESULTS SUMMARY

Below is shown the summary output:

API	Code	Check	Results	
Summ	nary 7	Table		

SUB PAGE: 1

#### NOMENCLATURE:

Status UCmax Res-Name L-stat Phas Capacity- Type	Model	Check stat Maximum of Resultcase Resultcase Phase angle Basic Capa Basic Capa	us all Unity C name Limit-state e city Model n city Model t	riterion factors ame ype	
+ ! Sorting ! Sorting ! +	Parameto Order	er: UCmax : DECREAS	! Max ING ! Max ! Min	Entries: 10 Value : UNLIMITED Value : 1.000E+00	+ ! ! !
Status	UCmax	Res-Name	L-stat Phas	Capacity-Model	Туре
**-PB	5.18	2	STORM	XMANP2.2	PLT
**-PB	3.45	2	STORM	XMANP1.2	PLT
**-LB	3.05	3	STORM	XMANS2.2	STF
**-LB	3.05	4	STORM	XMANS2.2	STF
**-LB	3.05	1	STORM	XMANS2.1	STF
**-LB	3.05	2	STORM	XMANS2.1	STF
**-LB	3.05	3	STORM	XMANS2.1	STF
**-LB	3.05	4	STORM	XMANS2.1	STF
**-LB	3.05	1	STORM	XMANS2.2	STF
**-LB	3.05	2	STORM	XMANS2.2	STF

Date 01-JUN-1991

Version number 1.0

#### **1.8.6** Printing further result details

Further details about the Code Check analysis may be obtained by use of the BRIEF, INTERMEDIATE, MEDIUM and FULL options under PRINT CODE-CHECK-RESULTS.

Let us assume here that the summary print from the preceding section has been produced, and that the two worst failures should be investigated in every detail. This can be done by use of the following command sequence:

#SELECT RESULTCASE ALL OFF #SELECT RESULTCASE 2 ON #SELECT CAPACITY-MODEL ALL OFF #SELECT CAPACITY-MODEL XMANP2.2 ON #SELECT CAPACITY-MODEL XMANP1.2 ON #SET PRINT DESTINATION FILE #SET PRINT DESTINATION FILE #SET PRINT FILE XMAN WORST2 #PRINT CODE-CHECK-RESULTS FULL

This will then produce the following output on *xmanworst2.lis*:

12-MAY-1991 13:01 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 1

API Code Check Results Full Table

SUB PAGE: 1

NOMENCLATURE:

Plate	Plate parameter name		
dimension	Geometric dimension value		
Material	Capacity Model material parameter		
Mat-Value	Material parameter value		
CM-Load	Capacity Model load		
Load-Value	Load value		
UC-Factor	Unity Criterion factor		
UC-Val	Unity Criterion factor value		
+			-+
! Sorting Para	ameter: UCmax ! Max Entries:	10	!

!	Sorting	Parameter	:	UCmax	!	Max	Entries:	10	!
!	Sorting	Order	:	DECREASING	!	Max	Value :	UNLIMITED	!
!					!	Min	Value :	1.000E+00	!
+ •									+

Version number Date Page 1.0 01-JUN-1991 1-33 12-MAY-1991 13:01 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 2 API Code Check Results Full Table SUB PAGE: 2 +-----+ ! Capacity Model : XMANP1.2 ! Type : PLT ! ! Capacity model ! Resultcase Name : 2 ! Limit-State: STORM ! ! Code Check Status: **-PB ! 1 +------Plate dimension Material Mat-Value CM-Load Load-Value UC-Factor UC-Val _____ lx = 2.000E+03 fy = 3.400E+02 fx1 = -1.290E+03 UCmax = ly = 2.500E+03 fp = 2.040E+02 fx2 = -1.518E+03 UCinplS = t = 2.500E+01 E = 2.100E+05 fy1 = -1.313E+03 UCinplU = ny = 3.000E-01 fy2 = -8.471E+02 UCWeWa = 3.45 3.45 0.80 0.37 fxy = 2.322E+01 UCstrsS = Plate parameter 0.37 PTYP = 0plat = 7.000E-03 UCplatU = 0.02 PSTF = 0pdfl = ----PDEF = 0pbst = ---wa = -1.000E+00wp = -1.000E+00

INTERMEDIATE CODE CHECK RESULTS:

Paramete	er	Value	Paramete	er	Value	Paramete	er	Value
UCmax	=	3.450E+00	UCinplS	=	3.450E+00	UCinplU	=	8.005E-01
UCWeWa	=	3.665E-01	UCstrsS	=	3.718E-01	UCplatU	=	1.814E-02
FSSLS	=	1.250E+00	FSULS	=	1.500E+00	sigxl	=	-5.159E+01
sigx2	=	-6.073E+01	sigyl	=	-5.251E+01	sigy2	=	-3.388E+01
tauxy	=	9.288E-01	fxe	=	7.976E+01	fye	=	1.186E+02
taue	=	2.343E+02	kx	=	2.690E+00	ky	=	4.000E+00
ktau	=	7.900E+00	feqb	=	4.847E+01	fxs	=	5.345E+01
fys	=	4.111E+01	fxys	=	1.680E+02	beta	=	3.219E+00
fxu	=	1.493E+02	fyu	=	1.784E+02	fxyu	=	1.805E+02
We	=	2.545E+00	Wa	=	6.944E+00	fxb	=	9.313E+00
fyb	=	1.110E+01	feqt	=	4.152E+01	feqc	=	6.068E+01
platu	=	5.788E-01	Wp	=	1.609E+01			

Page Date Version number 1-34 01-JUN-1991 1.0 12-MAY-1991 13:01 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 3 API Code Check Results Full Table SUB PAGE: 3 +-----+ ! Capacity Model : XMANP2.2 ! Type : PLT ! ! Capacity Model ! Resultcase Name : 2 ! Limit-State: STORM ! ! Code Check Status: **-PB ! I. +-----+ Plate dimension Material Mat-Value CM-Load Load-Value UC-Factor UC-Val _____ 

 lx = 3.000E+03
 fy = 3.400E+02
 fx1 = -1.131E+03
 UCmax = 5.18

 ly = 2.500E+03
 fp = 2.040E+02
 fx2 = -1.108E+03
 UCinplS = 5.18

 t = 2.500E+01
 E = 2.100E+05
 fy1 = -9.237E+02
 UCinplU = 0.87

 ny = 3.000E-01fy2 = -1.026E+03 UCWeWa = 0.70 fxy = -3.213E+02 UCstrsS = 0.39 Plate parameter PTYP = 0plat = 7.000E-03 UCplatU = 0.02 PSTF = 0pdfl = ----PDEF = 0pbst = ---wa = -1.000E+00wp = -1.000E+00

INTERMEDIATE CODE CHECK RESULTS:

Paramete	er	Value	Paramete	er	Value	Paramete	r	Value
UCmax	=	5.183E+00	UCinplS	=	5.183E+00	UCinplU	=	8.729E-01
UCWeWa	=	6.950E-01	UCstrsS	=	3.875E-01	UCplatU	=	2.408E-02
FSSLS	=	1.250E+00	FSULS	=	1.500E+00	sigx1	=	-4.526E+01
sigx2	=	-4.431E+01	sigy1	=	-3.695E+01	sigy2	=	-4.104E+01
tauxy	=	-1.285E+01	fxe	=	7.592E+01	fye	=	5.449E+01
taue	=	1.541E+02	kx	=	4.000E+00	ky	=	2.871E+00
ktau	=	8.118E+00	feqb	=	3.280E+01	fxs	=	3.482E+01
fys	=	3.032E+01	fxys	=	1.413E+02	beta	=	4.024E+00
fxu	=	1.480E+02	fyu	=	1.284E+02	fxyu	=	1.662E+02
We	=	5.792E+00	Wa	=	8.333E+00	fxb	=	1.799E+01
fyb	=	1.580E+01	feqt	=	3.361E+01	feqc	=	6.324E+01
platu	=	4.360E-01	Wp	=	2.012E+01			

Ignored:	40	Instances	referenced	INACTIVE	CM's.
Ignored:	6	Instances	referenced	INACTIVE	RESULTCASES

Version number	Date
1.0	01-JUN-1991

Page

1-35

# **1.9 Displaying Code Check results**

By investigation of the print tables produced in the preceding sections, we can conclude that the Code Check Unity Criterion parameter UCinplS (Unity Criterion for in-plane loads, SLS) in resultcase 2 was the critical one. This can be further illustrated through the use of graphics:

#SELECT CAPACITY-MODEL ALL #DISPLAY CODE-CHECK-RESULTS 2 UCinplS



# 1.10 Changing Capacity Model geometry data

After investigating the Code Check results, the user might wish to increase the plate thickness of the plate XMANP2.2. This can be done as shown below:

#CHANGE CAPACITY-MODEL XMANP2.2 PLATE-GEOMETRY t 30.0 Parameter t changed for CM XMANP2.2 Code Check Results deleted for this CM

The results must be re-calculated:

#RUN CODE-CHECK-ANALYSIS
 Running API Code Check
 Sorting PASS 1 of 3
 Sorting PASS 2 of 3

Sorting PASS 3 of 3

A new summary print can be produced:

API Code Check Results Summary Table

SUB PAGE: 1

#### NOMENCLATURE:

* *

**-

Status Clieck Status	
UCmax Maximum of all Unity Criterion factors	
Res-Name Resultcase name	
L-stat Resultcase Limit-state	
Phas Phase angle	
Capacity-Model Basic Capacity Model name	
Type Basic Capacity Model type	
	· <b>⊥</b>
' Sorting Parameter: UCmax ! Max Entries: 10	!
! Sorting Order : DECREASING ! Max Value : UNLIMITED	!
! ! Min Value : 1.000E+00	!
+	+
Status UCmax Res-Name L-stat Phas Capacity-Model	Туре
**-PB 3.45 2 STORM XMANP1.2	PLT
**-LB 3.05 2 STORM XMANS2.1	STF
**-LB 3.05 2 STORM XMANS2.2	STF

ЧЧ	2.05	2	DIORA	MINANDI.Z	DII
LB	2.03	2	STORM	XMANS1.1	STF
PB	1.74	2	STORM	XMANP2.2	PLT
LB	1.52	2	STORM	XMANG1	GIR
PB	1.07	2	STORM	XMANP2.1	PLT

Ignored:	20	Instances	had	sort	pa	arameter	VALUE	BELOW	MIN
Ignored:	17	Instances	refe	erence	ed	INACTIVE	E RESUI	TCASES	3.

Version number	Date	Page
1.0	01-JUN-1991	1-37

# 1.11 Changing Capacity Model load data

The Code Check results were still not satisfactory after increasing the plate thickness. Another possibility is to modify the Capacity Model load:



Figure 1-10 Original Capacity Model load

#CHANGE LOAD-ON-CAPACITY-MODEL MANUAL XMANP2.2 2
 fx1 -800
 fx2 -800
END
Results deleted for this CM and resultcase
CM load values stored



Figure 1-11 Modified Capacity Model load

Date **01-JUN-1991** 

Again, the Code Check results must be re-calulated

#RUN CODE-CHECK-ANALYSIS
 Running API Code Check
 Sorting PASS 1 of 3
 Sorting PASS 2 of 3
 Sorting PASS 3 of 3

**#PRINT CODE-CHECK-RESULTS SUMMARY** 

API	Code	Check	Results	
Sumn	nary	Table		

SUB PAGE: 1

NOMENCLATURE:

Status	Check status
UCmax	Maximum of all Unity Criterion factors
Res-Name	Resultcase name
L-stat	Resultcase Limit-state
Phas	Phase angle
Capacity-Model	Basic Capacity Model name
Туре	Basic Capacity Model type

+ ·								+
!	Sorting	Parameter:	UCmax	!	Max	Entries:	10	!
!	Sorting	Order :	DECREASING	!	Max	Value :	UNLIMITED	!
!				!	Min	Value :	1.000E+00	!
+								+

Status	UCmax	Res-Na	ame L-stat Phas	Capacity-Model	Туре
**-PB	3.45	2	STORM	XMANP1.2	PLT
**-LB	3.05	2	STORM	XMANS2.1	STF
**-LB	3.05	2	STORM	XMANS2.2	STF
**-LB	2.03	2	STORM	XMANS1.2	STF
**-LB	2.03	2	STORM	XMANS1.1	STF
**-LB	1.52	2	STORM	XMANG1	GIR
**-PB	1.33	2	STORM	XMANP2.2	PLT
**-PB	1.07	2	STORM	XMANP2.1	PLT

Ignored:20 Instances had sort parameter VALUE BELOW MINIgnored:17 Instances referenced INACTIVE RESULTCASES.

Version number	Date	Page
1.0	01-JUN-1991	1-39

# **1.12** Creating Resultcase combinations

Assume that a combination equal to the sum of resultcases 3 and 4 is required. This can be accomplished by following this procedure:

#### Create the new resultcase:

```
#CREATE RESULTCASE C1 'Resultcase 3 + RESULTCASE 4' STATIC STORM
COMBINATION
3 1.0 0.0
4 1.0 0.0
END
```

Select the new resultcase:

```
#SELECT RESULTCASE ALL OFF
ALL ( 5 ) Resultcase(s) selected OFF
#SELECT RESULTCASE C1 ON
Resultcase C1 selected ON
Currently selected : 1 of 5 resultcase(s)
```

#### Create the new loads:

#CREATE LOAD-ON-CAPACITY-MODEL AUTOMATIC ALL

Creating Capacity Model loads

====		==:	==========					
CM:	XMANG1	,	Resultcase	C1	,	New	loads	created
CM:	XMANS1.1	,	Resultcase	C1	,	New	loads	created
CM:	XMANS1.2	,	Resultcase	C1	,	New	loads	created
CM:	XMANS2.1	,	Resultcase	C1	,	New	loads	created
CM:	XMANS2.2	,	Resultcase	C1	,	New	loads	created
CM:	XMANP1.1	,	Resultcase	C1	,	New	loads	created
CM:	XMANP1.2	,	Resultcase	C1	,	New	loads	created
CM:	XMANP1.3	,	Resultcase	C1	,	New	loads	created
CM:	XMANP2.1	,	Resultcase	C1	,	New	loads	created
CM:	XMANP2.2	,	Resultcase	C1	,	New	loads	created
CM:	XMANP2.3	,	Resultcase	C1	,	New	loads	created
CM:	XMANO	,	Resultcase	C1	,	New	loads	created
#								

 Page
 Date
 Version number

 1-40
 01-JUN-1991
 1.0

Below are shown plots illustrating the combinations that have been done on the basis of unreduced Capacity Model loads:



Figure 1-12 Basic CM load, Resultcase 3



Figure 1-13 Basic CM load, Resultcase 4



Figure 1-14 Combination CM load, Resultcase C1

```
#RUN CODE-CHECK-ANALYSIS
    Running API Code Check
    Sorting PASS 1 of 3
    Sorting PASS 2 of 3
    Sorting PASS 3 of 3
```

**#PRINT CODE-CHECK-RESULTS SUMMARY** 

Page				Version n	umber		
1-42		Ū	/1-JUN-1/	<b>91</b>			1.0
12-MAY-	1991 14:57	PROGRAM: SI	ESAM	PLATEWOR	K D1.0-02 11-AH	PR-1991 PAG	E: 1
		API Code Cl Summary Tał	heck Rea ble	sults		SUB PAGI	E: 1
NOMENCI	ATURE:						
Status UCmax Res-Nam L-stat Phas Capacit Type	ne :y-Model	Check statu Maximum of Resultcase Resultcase Phase angle Basic Capac Basic Capac	all Un name Limit-; e city Mod	ity Crite state del name del type	rion factors		
+ ! Sorti ! Sorti !	.ng Paramet .ng Order	er: UCmax : DECREAS	! ING ! !	Max Entr Max Valu Min Valu	ies: 10 e : UNLIMITED e : 1.000E+00	+ D ! ! D !	
Status	UCmax	Res-Name	L-stat	Phas	Capacity-Mode]	l Type	
**-PB	7.58	C1	STORM		XMANP1.2	PLT	
**-LB	3.05	C1	STORM		XMANS2.1	STF	
**-LB	3.05	C1	STORM		XMANS2.2	STF	
**-PB	2.96	C1	STORM		XMANP2.1	PLT	
**-PB	2.74	C1	STORM		XMANP2.2	PLT	
**-LB	2.03	C1	STORM		XMANS1.1	STF	
**-LB	2.03	C1	STORM		XMANS1.2	STF	
**-LB	1.52	C1	STORM		XMANG1	GIR	
**-PB	1.11	C1	STORM		XMANP1.3	PLT	
**-PB	1.06	C1	STORM		XMANP1.1	PLT	
I	Ignored:	25 Instand	ces ref	erenced I	NACTIVE RESULT	CASES.	

Version number	Date	Page
1.0	01-JUN-1991	1-1

# **1 EXECUTION OF PLATEWORK**

# **1.1 Program Environment**

### 1.1.1 Starting PLATEWORK

The command required to start the execution of PLATEWORK is dependent on operating system and installation. A typical command used for a VAX/VMS installation may look like:

\$RUN SESAM: PLATEWORK

The program will now display the program heading on the screen, see figure 1-1, page 1-2. The program heading contains important information such as program version number and release date. When reporting program errors, the user should always refer to the program version number ("Program id") shown in the program heading:

The program will then invite the user to enter the prefix of the PLATEWORK database and journal files. The default prefix is dependent on operating system of the current installation. The default prefix "[]" shown below is used for a VAX/VMS installation.

Database & journal file prefix? /[]/ <Return>

When <Return> is pressed, the default prefix will be used by the progam.

The next step is to specify the name of the database and journal files. Again, the user can accept the default by pressing the <Return> key:

Database & journal file name? /PLATEWORK/ <Return>

***** ***** ***** ***** ** *** **** ******* ***** +++++ ******* ****** * * * * * * * * * * * * * * * * * * ****** ****** ****** ******* * * ** ** * * * * **** **** * * ** ** * * * * * * * * * * * * * * ** **** ***** * * ** * * * * * * * PLATEWORK * Plate Structure Design & Code Checking Marketing and Support by Veritas Sesam Systems : D1.0-02 Program id Computer : VAXstation 3100/ Release date : 11-APR-1991 Impl. update : None Access time : 15-MAY-1991 10:03:34 Operating system : VMS V5.4 User id : CA CPU id : 0321622480 Account : VSS11391 Installation : VSS GARM Copyright Veritas Sesam Systems A.S, P.O.Box 300, N-1322 Hovik, Norway Database & journal file prefix? /[]/ <return> Database & journal file name? /PLATEWORK/ <return> New or old database? /OLD/ NEW Commencing PLATEWORK initialization. Default graphics device : TX4014-15-16-54 Default design code : DNV Completed PLATEWORK initialization. NEW journal file opened. #

Figure 1-1 Starting PLATEWORK

Page **1-2** 

Version number	Date	Page
1.0	01-JUN-1991	1-3

Finally, the user is requested to specify whether the PLATEWORK database already exists or if a new database shall be created:

```
New or old? /OLD/ NEW <Return>
```

At this stage, the program will initialize the database file. This may require the user to wait for a few seconds before the program prompt "#" appears, after which the commands described in Chapter 5 will be available.

#### 1.1.2 **Initial commands**

Normally, the first command to enter when a new PLATEWORK database has been initialized is the SELECT CODE command, for example:

#SELECT CODE API

In some cases, defaults used by the program will be dependent of the current Code of Practice, and the initial use of SELECT CODE will ensure that valid defaults will be used. An example is when reasultcases are read from a SIN-file and automatically assigned limit-states.

If there exists an FE-model which shall be used when creating Capacity Models, the next command would normally be READ-SIN-DIRECT-ACCESS, for example (for further details, please refer to Chapters 2 and 3.):

#READ SIN-DIRECT-ACCESS SINDIR:SESTRA R100

#### 1.1.3 **Startup files**

On some computers, it is possible to prepare a PLATEWORK startup file containing commands that are automatically executed each time PLATEWORK is started. The format of this file is the same as any other Command Input File. An example of commands in a startup file may be:

SET DISPLAY DEVICE X-WINDOWS SET DISPLAY WORKSTATION-WINDOW 28 120 8 100 SET PRINT PAGE-ORIENTATION PORTRAIT

This example shows how to automatically select the display device (in this case a workstation running under the Xwindows system). A large display window is also defined. Finally, the PORTRAIT page orientation is selected as default for the print files.

#### How to define startup files

This will be slightly different between different operating systems. In genereal, however, a logical name or environment variable called PLATEWORK_STARTUP must point to a PLATEWORK journal file containing the startup commands. On VAX/VMS this is obtained by a command similar to:

\$DEFINE PLATEWORK STARTUP my disk: [my directory] PW STARTUP.JNL

Please consult the PLATEWORK Status List (See Chapter 1 for information on how to get a copy) for other

Date 01-JUN-1991 Version number 1.0

computers and operating systems.

Version number	Date	Page
1.0	01-JUN-1991	1-5

#### 1.1.4 Entering commands / obtaining help

PLATEWORK uses the standard SESAM command processor, i.e. the following general SESAM command features are available:

#### • <Return> key

After typing in a command (optionally with subcommands) the <Return> key must be pressed in order to have the specified command executed. The <Return> key can be pressed at any stage in a command sequence, in which case the program will prompt the user for the next subcommand and display the default value of that subcommand.

#### • Default values or alternatives

Often, the program offers a default value or a default alternative to the user. If a default is available, it will be presented between two slashes after the command prompt:

This is the command prompt /This is the default/

To accept the default, the user can simply press the <Return> key.

#### • Question mark

At any stage, the question mark "?" can be entered to get help on the current alternatives available. If entered at the main command level, all main commands will be listed.

```
#VIEW
Select VIEW option? /ROTATE/ ?
GIVE
FRAME
PAN
POSITION
ROTATE
ZOOM
Select VIEW option? /ROTATE/
```

#### • Double dot

At any stage, two dots ".." can be entered to abort the current command. The program will return control to the main command level.

```
#VIEW
Select VIEW option? /ROTATE/ ? ..
#
```

#### • Semi-colon

If a semi-colon ";" is entered, the program will use the current default value presented and all default values for the following subcommands until there are no more subcommands with default values assigned. In some cases, the program may prompt for input even if there is a default value. A second semi-colon may then be entered to continue accepting the following default-values.

**#VIEW ROTATE TO 90. ;** 

#### Abbreviations

Commands can be abbreviated as long as they are unique. Names cannot be abbreviated.
Page 1-6

### **1.2 Program Requirements**

PLATEWORK can be used interactively or submitted in a batch queue. In principle, only an alphanumeric terminal is required, but if a graphics terminal or workstation is available, it is recommended to use the DISPLAY features.

If the PostScript plot file format is used, access to a PostScript plotter is required.

### **1.2.1** Execution time

This depends heavily on which commands are used. In general, however, the CREATE LOAD-ON-CAPACITY-MODEL AUTOMATIC command may require most time. Note the use of SCOPE ELEMENT in connection with this feature.

#### 1.2.2 Storage Space

In general, PLATEWORK does not require a lot of disk space for the database file. The SESAM results Interface file (SIN-file) usually requires more disk space than the PLATEWORK database file.

## **1.3 Program Limitations**

#### **1.3.1** Name limitations

Max length of Capacity Model Assembly name	:	8	(characters)
Max length of Basic Capacity Model name	:	16	
Max length of all other names	:	8	

Names can not be abbreviated in the commands. Names are stored in uppercase only.

#### **1.3.2** Capacity Model size limitations

Max number of girders within an assembly	:	100
Max number of stiffeners within an assembly	:	200
Max number of plates within an assembly	:	200
Max number of elements along a CM edge	:	150

#### **1.3.3** Code Check limitations

For limitations in the Code Checks, please refer to the Theoretical Manual.

Version number	Date	Page
1.0	01-JUN-1991	1-1

# **1** COMMAND DESCRIPTION

The following notation is used in the description of the commands:

• Uppercase words signify reserved commands.

Example: PRINT

• Lowercase words enclosed in angle brackets "<>" within the commands signify parameters where an al phanumeric or numerical value is expected.

Example: PRINT RESULTCASE <RES-name>

• Big parentheses "()" indicate selection between alternatives

Example: PRINT RESULTCASE ( <RES-name> ALL )

• Words enclosed in square brackets "[]" signify a parameter which is not always relevant.

Example: DISPLAY LOAD-ON-CAPACITY-MODEL <BCM-name> ... ... <BCM-name> <RES-name> ( NORMAL SHEAR ) [<angle>]

• Small parentheses "()" followed by multiplication sign indicate repeated input.

Example: (<Typ> <Idx> <Nod>) *4

## 1.1 CHANGE

#### COMMAND:

CHANGE

CAPACITY-MODEL ... LOAD-ON-CAPACITY-MODEL ... RESULTCASE ... SIN-DIRECT-ACCESS ...

#### **PURPOSE:**

To modify objects in the PLATEWORK database, typically created by use of the CREATE command.

#### SUBCOMMANDS:

CAPACITY-MODEL	Change Capacity Model geometry, see "notes".
LOAD-ON-CAPACITY-MODEL	Change reduced Capacity Model load, see "notes".
RESULTCASE	Change Resultcase characteristics.
SIN-DIRECT-ACCESS	Change name of linked SIN-file.

#### NOTES:

# Automatic deletion of Code-Check results Whenever a Capacity Model or a Capacity Model Load is changed, any existing Code Check results will be deleted.

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS CREATE LOAD-ON-CAPACITY-MODEL CREATE RESULTCASE READ SIN-DIRECT-ACCESS

### CHANGE CAPACITY-MODEL

#### SUBCOMMAND:

... CAPACITY-MODEL <BCM-name> <attribute> <name> [ <value> ]

#### **PURPOSE:**

To modify the overall geometry, material or cross section data in a basic Capacity Model previously created by use of the CREATE ASSEMBLY-OF-CAPACITY-MODELS command.

#### **PARAMETERS:**

Note that the parameters of this command are dependent of the type of Capacity Model specified implicitely through the Capacity Model name <BCM-name>, see note 1.

<bcm-name></bcm-name>	Name of Basic Capacity Model.	
<attribute></attribute>	Type of data to be changed.	
	<attribute></attribute>	Description
	MATERIAL	Material data
	PLATE-GEOMETRY	Plate x & y lengths, plate thicknesses
	PLATE-PARAMETER	Plate parameters
	STIFFENER-SECTION	Stiffener cross section
	STIFFENER-PARAMETER	Stiffener parameters
	GIRDER-SECTION	Girder cross section
	GIRDER-PARAMETER	Girder parameter
<name></name>	Name of material, cross section or s	ingle CM component.
<value></value>	Value of single CM component as d	lescribed on the following pages.

#### NOTES:

1 **Each Capacity Model type is explained separately** As the range of relevant attributes are different for each Capacity Model type, separate descriptions are found on the following pages.

#### 2 **Results will be deleted**

Any previously calculated Code Check results for the named Capacity Model will be deleted.

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS CHANGE LOAD-ON-CAPACITY-MODEL

# CHANGE CAPACITY-MODEL (PLT Capacity Models)

#### SUBCOMMAND:

... CAPACITY-MODEL <BCM-name> <attribute> <name> [ <value> ]

#### **PURPOSE:**

To modify the material, plate geometry or plate parameter data in a Capacity Model of type PLT (Plate).

#### **PARAMETERS:**

<bcm-name></bcm-name>	Name of Basic Capacity Model		
<attribute></attribute>	Type of data to be changed, see below.		
<name></name>	Name of material, cross section or single CM parameter.		
<value></value>	Value of single CM parameter as described below.		
	<attribute> MATERIAL PLATE-GEOMETRY PLATE-PARAMETER</attribute>	< <b>name&gt;</b> <mat-name> <pgeo-name> <ppar-name></ppar-name></pgeo-name></mat-name>	<value> <pgeo-value> <ppar-value></ppar-value></pgeo-value></value>
MATERIAL	Modify the material data of	f the Capacity Model	
<mat-name></mat-name>	Name of material from whi	ch new material data shall b	e fetched
PLATE-GEOMETRY	Modify the plate geometry data of the Capacity Model		
<pgeo-name></pgeo-name>	Name of plate geometry co	mponent, see below	
<pgeo-value></pgeo-value>	New value of plate geomet	ry component	
	< <b>PGEO-name&gt;</b> lx ly t	< <b>PGEO-value</b> > Length of plate, x direction Length of plate, y direction Plate thickness	1
PLATE-PARAMETER	Modify the plate parameter data of the Capacity Model		
<ppar-name></ppar-name>	Name of plate parameter component, see next page		
<ppar-value></ppar-value>	New value of plate parameter component		

Version number	Date	Page
1.0	01-JUN-1991	1-5

#### <PPAR-name> <PPAR-value>

РТҮР	Plate type = 0: Simply supported along 4 edges
PSTF	Stiffener failure parameter = 0: Plate edge stress reach yield before the stiffeners fail = 1: Plate edge stress do not reach yield before the stiffeners fail.
PDEF	Deformation parameter = 0: Permanent deformation allowed = 1: Permanent deformation not allowed
wa	Max allowable elastic deformation < 0: Not specified, use formulae in Theoretical Manual > 0: Use specified value
wp	Max allowable plastic deformation < 0: Not specified, use formulae in Theoretical Manual > 0: Use specified value

#### NOTES:

#### 1 **Results will be deleted**

Any previously calculated Code Check results for the referenced Capacity Model will be deleted on the successful completion of this command.

- 1 CHANGE CAPACITY-MODEL XMANP1.1 PLATE-GEOMETRY t 30.0
- 2 CHANGE CAPACITY-MODEL XMANP1.1 MATERIAL MAT-1

# CHANGE CAPACITY-MODEL (STF Capacity Models)

#### SUBCOMMAND:

... CAPACITY-MODEL <BCM-name> <attribute> <name> [ <value> ]

#### **PURPOSE:**

To modify the material, plate geometry, stiffener section or stiffener parameter data in a Capacity Model of type STF (Stiffener).

#### **PARAMETERS:**

<bcm-name></bcm-name>	Name of Basic Capacity Model				
<attribute></attribute>	Type of data to be chan	Type of data to be changed, see below.			
<name></name>	Name of material, cross	Name of material, cross section or single CM component			
<value></value>	Value of single CM component				
	<attribute> MATERIAL PLATE-GEOMETRY</attribute>	< <b>name&gt;</b> <mat-name> <pgeo-name></pgeo-name></mat-name>	< <b>value&gt;</b> <pgeo-value></pgeo-value>		
	STIFFENER-SECTION STIFFENER-PARAMI	N <sec-name> ETER <spar-name></spar-name></sec-name>	<spar-value></spar-value>		
MATERIAL	Modify the material dat	ta of the Capacity Model			
<mat-name></mat-name>	Name of material from	Name of material from which new material data shall be fetched			
PLATE-GEOMETRY	Modify the plate geome	etry data of the Capacity M	lodel		
<pgeo-name></pgeo-name>	Name of plate geometry	Name of plate geometry component to be changed			
<pgeo-value></pgeo-value>	New value of plate geometry component				
	<pgeo-name></pgeo-name>	<pgeo-value></pgeo-value>			
	lx	length of stiffener, x dire	ection		
	ly1	Stiffener spacing BEFOI	RE stiffener		
	ly2	Stiffener spacing AFTER	R stiffener		
	t1	Plate thickness BEFORE	E stiffener		
	t2	Plate thickness AFTER s	stiffener		

Version number 1.0		Date Pag 01-JUN-1991 1-	ge -7	
STIFFENER-SECTION <sec-name></sec-name>	Modify the stiffe Name of section	ner section data of the Capacity Model from which new section data shall be fetched		
STIFFENER-PARAMETER	Modify the stiffe	Modify the stiffener parameter data of the Capacity Model		
<spar-name></spar-name>	Name of stiffene	r parameter component to be changed		
<spar-value></spar-value>	New value of stif	fener parameter component		
	<spar-name></spar-name>	<spar-value></spar-value>		
	Ly Ltx ks0 ms0 ksp msp	Length of girder, y direction Distance between lateral supports Buckling length factor, without lateral load Bending moment factor, without lateral load Buckling length factor, including lateral load Bending moment factor, including lateral load		
	SEND	End condition CONTINUOUS (clamped at ends) SNIPED		
	STYP	Stiffener Type = 0: Panel (normal) stiffener = 1: Transverse web stiffener type 1 = 2: Transverse web stiffener type 2 = 3: Longitudinal web stiffener		
	SSTF	Stiffener Failure parameter = 0: Plate edge stresses reach yield before the stiffeners fail = 1: Plate edge stresses do not reach yield before stiffeners fai	uil	

#### NOTES:

#### 1 **Results will be deleted**

Any previously calculated Code Check results for the referenced Capacity Model will be deleted on the successful completion of this command.

1	CHANGE	CAPACITY-MOD	EL XMANS1.	l STIFFENER	-PARAMETER	ks0	1.0

- 2 CHANGE CAPACITY-MODEL XMANS1.1 MATERIAL MAT-1
- 3 CHANGE CAPACITY-MODEL XMANS1.1 STIFFENER-SECTION SEC-2

# CHANGE CAPACITY-MODEL (GIR Capacity Models)

#### SUBCOMMAND:

... CAPACITY-MODEL <BCM-name> <attribute> <name> [ <value> ]

#### **PURPOSE:**

To modify the material, plate geometry, stiffener section, girder section or girder parameter data in a Capacity Model of type GIR (Girder).

#### **PARAMETERS:**

<bcm-name></bcm-name>	Name of Basic Capacity Model			
<attribute></attribute>	Type of data to be changed, see below.			
<name></name>	Name of material, cross section or single CM component			
<value></value>	Value of single CM component			
	<attribute> MATERIAL PLATE-GEOMETRY STIFFENER-SECTION</attribute>	<name> <mat-name> <pgeo-name> <sec-name></sec-name></pgeo-name></mat-name></name>	< <b>value&gt;</b> <pgeo-value></pgeo-value>	
	GIRDER-SECTION GIRDER-PARAMETER	<sec-name> <gpar-name></gpar-name></sec-name>	<gpar-value></gpar-value>	
MATERIAL	Modify the material data o	f the Capacity Model		
<mat-name></mat-name>	Name of material from which new data shall be fetched			
PLATE-GEOMETRY	Modify the plate geometry	data of the Capacity Model	L	
<pgeo-name></pgeo-name>	Name of plate geometry co	omponent		
<pgeo-value></pgeo-value>	New value of plate geomet	try component		
	<pgeo-name></pgeo-name>	<pgeo-value></pgeo-value>		
	Ly	Length of girder, y directi	on	
	lx1	Girder spacing BEFORE	girder	
	lx2	Girder spacing AFTER gi	rder	
	t1	Plate thickness BEFORE	girder	
	t2	Plate thickness AFTER girder		
	lya	Average stiffener spacing, y direction		

Version number 1.0		Date 01-JUN-1991	Page 1-9
STIFFENER-SECTION	Modify the stiffe	ner section data of the Capacity Model	
<sec-name></sec-name>	Name of section	Name of section from which new data shall be fetched	
GIRDER-SECTION	Modify the girde	Modify the girder section data of the Capacity Model	
<sec-name></sec-name>	Name of section	Name of section from which new data shall be fetched	
GIRDER-PARAMETER	Modify the girder parameter data of the Capacity Model		
<gpar-name></gpar-name>	Name of girder parameter component		
<gpar-value></gpar-value>	New value of girder parameter component		
	<gpar-name></gpar-name>	<gpar-value></gpar-value>	
	Lty kg mg	Distance between lateral supports Buckling length factor Bending moment factor	
	GTYP	Girder Type = 0 : Panel (normal) girder = 1 : Transverse web girder, type 1 = 2 : Transverse web girder, type 2	
	GSTF	Stiffener Failure parameter = 0: Plate edge stresses reach yield before the girders fail	

#### **NOTES:**

#### 1 **Results will be deleted**

Any previously calculated Code Check results for the referenced Capacity Model will be deleted on the successful completion of this command.

= 1: Plate edge stresses do not reach yield before the girders fail

- 1 CHANGE CAPACITY-MODEL XMANG1 GIRDER-PARAMETER Lty 600.
- 2 CHANGE CAPACITY-MODEL XMANG1 PLATE-GEOMETRY t2 30.0
- 3 CHANGE CAPACITY-MODEL XMANG1 GIRDER-SECTION SEC-1
- 4 CHANGE CAPACITY-MODEL XMANG1 STIFFENER-SECTION SEC-2

# CHANGE CAPACITY-MODEL (USP Capacity Models)

#### SUBCOMMAND:

... CAPACITY-MODEL <BCM-name> <attribute> <name> [ <value> ]

#### **PURPOSE:**

To modify the material, plate geometry or stiffener section data in a Capacity Model of type USP (Uniaxially Stiffened Panesls), used in API Code Checks.

#### **PARAMETERS:**

<bcm-name></bcm-name>	Name of Basic Capacity Model			
<attribute></attribute>	Type of data to be changed, see below.			
<name></name>	Name of material, cross se	Name of material, cross section or single CM component		
<value></value>	Value of single CM component			
	<attribute> MATERIAL PLATE-GEOMETRY STIFFENER-SECTION</attribute>	<name> <mat-name> <pgeo-name> <sec-name></sec-name></pgeo-name></mat-name></name>	< <b>value&gt;</b> <pgeo-value></pgeo-value>	
MATERIAL	Modify the material data of the Capacity Model			
<mat-name></mat-name>	Name of material from which new data shall be fetched			
PLATE-GEOMETRY	Modify the plate geometry data of the Capacity Model			
<pgeo-name></pgeo-name>	Name of plate geometry component			
<pgeo-value></pgeo-value>	New value of plate geometry component			
	< <b>PGEO-name&gt;</b> Lx Ly lya t	< <b>PGEO-value</b> > Length of panel, x direction Length of panel, y direction Average stiffener spacing, Plate thickness	n n y direction	
STIFFENER-SECTION	Modify the stiffener section data of the Capacity Model			
<sec-name></sec-name>	Name of section from which new data shall be fetched			

Version number	Date	Page
1.0	01-JUN-1991	1-11

#### NOTES:

#### 1 Results will be deleted

Any previously calculated Code Check results for the referenced Capacity Model will be deleted on the successful completion of this command.

- 1 CHANGE CAPACITY-MODEL XMANU PLATE-GEOMETRY lya 200.0
- 2 CHANGE CAPACITY-MODEL XMANU STIFFENER-SECTION SEC-2
- 3 CHANGE CAPACITY-MODEL XMANU MATERIAL MAT-1

# CHANGE CAPACITY-MODEL (OSP Capacity Models)

#### SUBCOMMAND:

... CAPACITY-MODEL <BCM-name> <attribute> <name> [ <value> ]

#### **PURPOSE:**

To modify the material, plate geometry, stiffener section or girder section in a Capacity Model of type OSP (Orthogonally Stiffened Panel), used in API Code Checks.

#### **PARAMETERS:**

<bcm-name></bcm-name>	Name of Basic Capacity M	Iodel		
<attribute></attribute>	Type of data to be changed, see below.			
<name></name>	Name of material, cross section or single CM parameter.			
<value></value>	Value of single CM parameter as described			
	<attribute> MATERIAL PLATE-GEOMETRY GIRDER-SECTION STIFFENER-SECTION</attribute>	<name> <mat-name> <pgeo-name> <sec-name> <sec-name></sec-name></sec-name></pgeo-name></mat-name></name>	< <b>value&gt;</b> <pgeo-value></pgeo-value>	
MATERIAL	Modify the material data of the Capacity Model			
<mat-name></mat-name>	Name of material from which new data shall be fetched			
PLATE-GEOMETRY	Modify the plate geometry	v data of the Capacity Model		
<pgeo-name></pgeo-name>	Name of plate geometry component			
<pgeo-value></pgeo-value>	New Value of plate geometry component			
	<pgeo-name></pgeo-name>	<pgeo-value></pgeo-value>		
	Lx Length of panel, x direction		n	
	Ly Length of panel, y direction		n	
	lxa Average girder spacing, x direction			
	lya Average stiffener spacing, y direction			
	t Plate thickness			

Version number	Date	Page
1.0	01-JUN-1991	1-13

STIFFENER-SECTION	Modify the stiffener section data of the Capacity Model
<sec-name></sec-name>	Name of section from which new data shall be fetched
GIRDER-SECTION	Modify the girder section data of the Capacity Model
<sec-name></sec-name>	Name of section from which new data shall be fetched

#### NOTES:

# 1 **Results will be deleted** Any previously calculated Code Check results for the referenced Capacity Model will be deleted on the successful completion of this command.

- 1 CHANGE CAPACITY-MODEL XMANO PLATE-GEOMETRY t 30.0
- 2 CHANGE CAPACITY-MODEL XMANO STIFFENER-SECTION SEC-4

## CHANGE LOAD-ON-CAPACITY-MODEL

#### COMMAND:

CHANGE LOAD-ON-CAPACITY-MODEL

( AUTOMATIC ... MANUAL ...

#### **PURPOSE:**

To modify basic Capacity Model loads previously created by use of the CREATE LOAD-ON-CAPACITY-MODEL command.

#### **SUBCOMMANDS:**

AUTOMATIC Automatic re-calculation of reduced Capacity Model loads from the unreduced loads

MANUAL Manual re-definition of reduced Capacity Model loads.

#### NOTES:

#### 1 Results will be deleted

Any previously calculated Code Check results for the referenced combination of Capacity Models and resultcases will be deleted on the successful completion of this command.

See also:

CREATE LOAD-ON-CAPACITY-MODEL CREATE RESULTCASE CHANGE RESULTCASE READ SIN-DIRECT-ACCESS CHANGE CAPACITY-MODEL

## CHANGE LOAD-ON-CAPACITY-MODEL AUTOMATIC

#### SUBCOMMAND:

... AUTOMATIC ( ASSEMBLY <CMA-name> ALL

#### **PURPOSE:**

To re-calculate the reduced Capacity Model loads from the unreduced loads, typically following previous manual re-definition of the loads, by use of CHANGE LOAD-ON-CAPACITY-MODEL MANUAL. See Chapter 2 for more details on calculation of Capacity Model loads.

#### **PARAMETERS:**

ASSEMBLY	Re-calculate the loads for the basic Capacity Models within the specified Capacity Model Assembly.
ALL	Re-calculate the loads for all basic Capacity Models.

#### NOTES:

#### 1 Loads must have been created using AUTOMATIC option

When CM loads are created through the CREATE LOAD-ON-CAPACITY-MODEL AUTOMATIC command, both unreduced and reduced loads will be stored. When the CHANGE LOAD-ON-CAPACITY-MODEL MANUAL command is used, only the reduced loads will be changed. The CHANGE LOAD-ON-CAPACITY-MODEL AUTOMATIC command can then be used to re-calculate the original reduced loads on the basis of the original unreduced loads.

#### 2 Results will be deleted

Any previously calculated Code Check results for the referenced combination of Capacity Models and resultcases will be deleted on the successful completion of this command.

- 1 CHANGE LOAD-ON-CAPACITY-MODEL AUTOMATIC ALL
- 2 CHANGE LOAD-ON-CAPACITY-MODEL AUTOMATIC ASSEMBLY XMAN
- 3 See Chapter 3

## CHANGE LOAD-ON-CAPACITY-MODEL MANUAL

#### SUBCOMMAND:

... MANUAL <BCM-name> <RES-name>

<component> <new_value> END

#### **PURPOSE:**

To modify the reduced Capacity Model load of a basic Capacity Model previously created by use of CREATE LOAD-ON-CAPACITY-MODEL (MANUAL or AUTOMATIC options).

#### **PARAMETERS:**

<bcm-name></bcm-name>	Name of Basic Capacity Model
<res-name></res-name>	Name of Resultcase
<component></component>	Name of Capacity Model load component. Note that the range of Capacity Model load components available is dependent on the type of Capacity Model specified implicitely through the Capacity Model name ( <bcm-name>).</bcm-name>

# Table 1.1Load Components relevant for different CM types

<component></component>	PLT	STF	GIR	USP	OSP
fx1	Х	Х	х	х	х
fx2	Х		х		
fy1	Х	Х	Х		х
fy2	Х	х			
fxy	Х	х	Х		
plat	Х	х	Х		Х
Mbend		х	Х		
pdfl	Х				
pbst	Х				

END

End of component selection

# Table 1.2Description of load components

<component></component>	Description
fx1	Membrane normal load in local x-direction
fx2	Membrane normal load in local x-direction
fy1	Membrane normal load in local y-direction
fy2	Membrane normal load in local y-direction
fxy	Membrane shear load
plat	Lateral plate load
Mbend	Girder or Stiffener bending moment
pdfl	Local plate deflection
pbst	plate bending load

# Table 1.3Unit description for load components

<component></component>	Unit description
fx1	Force / Capacity Model edge length
fx2	Force / Capacity Model edge length
fy1	Force / Capacity Model edge length
fy2	Force / Capacity Model edge length
fxy	Force / Capacity Model edge length
plat	Force / Capacity Model plate area
Mbend	Force * length
pdfl	Length
pbst	Force / Capacity Model edge length

<new_value>

New value of Capacity Model load component. Note that the new value of a Capacity Model load component is defined by one, two or three real numbers, dependent on the kind of Resultcase specified implicitly through the Resultcase name <RES-name>, i.e. whether the Resultcase is of the static, complex or scan kind.

Interpretation of <new_value></new_value>
<new_value> = <nv_static></nv_static></new_value>
<new_value> = <nv_real> <nv_imag></nv_imag></nv_real></new_value>
<new_value> = <nv_static> <nv_real> <nv_imag></nv_imag></nv_real></nv_static></new_value>
New static load value
New real load value

Page **1-18** 

#### Entering <nv_static>, <nv_real> and <nv_imag>:

The new values can be entered in the following 3 ways (assume in the following example that the current value of load component fx1 is 50., and that it shall be changed to 200., the examples show 3 different ways of achieving this):

by typing in the new value:
 ... MANUAL <BCM-name> <RES-name> fx1 200. END

<new_value> = 200.

 by adding to the existing value : ... MANUAL <BCM-name> <RES-name> fx1 ADD 150. END

<new_value> = 50. + 150. = 200.

 by multiplication of the existing value : ... MANUAL <BCM-name> <RES-name> fx1 MULTIPLY 4.0 END

<new_value> = 50. * 4.0 = 200.

#### NOTES:

- 1 **Only reduced loads are changed** This command will not affect unreduced loads calculated through the use of CREATE LOAD-ON-CAPACITY-MODEL AUTOMATIC.
- 2 **Original reduced loads can be re-calculated** The CHANGE LOAD-ON-CAPACITY-MODEL AUTOMATIC can be used to re-calculate reduced loads on the basis of the original unreduced loads.
- 3 Results will be deleted

Any previously calculated Code Check results for the referenced combination of Capacity Model and resultcase will be deleted on the successful completion of this command.

- 1 CHANGE LOAD-ON-CAPACITY-MODEL MANUAL XMANP1.1 RES-1 fx1 -500. fx2 -300. END
- 2 CHANGE LOAD-ON-CAPACITY-MODEL MANUAL XMANP1.1 RES-1
  fx1 -500.
  fx2 -300.
  fy1 +300.
  plat 0.015
  END

## **CHANGE RESULTCASE**

#### SUBCOMMAND:

... RESULTCASE <RES-name> <Description> <limit-state>

#### **PURPOSE:**

To modify a Resultcase description and/or limit-state.

#### **PARAMETERS:**

<res-name></res-name>	Name of Resultcase to be modified
<description></description>	New text description of the Resultcase.
<li>limit-state&gt;</li>	New Resultcase limit state kind. Note that the limit states available are dependent on the current Code of Practice.

# Table 1.4Code Check limit states

Code of Practice	Limit state name & description		
API	NORMAL STORM	Normal condition	
	<b>DI ORM</b>		
DnV	E-ULS	Environmental load, Ultimate Limit State	
	F-ULS	Functionality load, Ultimate Limit State	
	PLS	Progressive Limit State	
	SLS	Serviceability Limit State	
NPD	ULS	Ultimate Limit State	
	SLS	Serviceability Limit State	
	PLS	Progressive collapse Limit State	
	FLS	Fatigue Limit State	

#### NOTES:

#### 1 Default limit-states

If the current limit-state kind is not valid for the current Code of Practice, the following defaults will be offered:

API:	NORMAL
DnV:	E-ULS
NPD:	ULS

Page 1-20

#### 2 Cannot change combination data

The combination data in combination resultcases (see CREATE RESULTCASE) cannot be changed.

#### 3 Changing limit states of resultcases inherited from FEM-analyses

This command can be used to change limit-states of resultcases which have been given default limi-states as described under READ-SIN-DIRECT-ACCESS.

#### **EXAMPLES:**

1 CHANGE RESULTCASE 3 'New text' E-ULS

2 CHANGE RESULTCASE 3 ; If this resultcase has assigned a limit-state kind which is not legal, according to the last selection of Code of Practice (SELECT CODE), this command will assign the default limit-state kind corresponding to the current code of practice (see note 1). The resultcase descriptive text will not be changed.

3 CHANGE RESULTCASE 3 'New text' ;

See also:

CREATE RESULTCASE READ SIN-DIRECT-ACCESS SELECT CODE

## CHANGE SIN-DIRECT-ACCESS

#### SUBCOMMAND:

... SIN-DIRECT-ACCESS <prefix> <name>

#### **PURPOSE:**

To modify the link from the PLATEWORK database file to the SESAM Interface File (Direct Access format), also called SIN-file.

Note that the link must have been created previously by use of the READ SIN-DIRECT-ACCESS command.

The command is typically used in cases where the SIN-file is moved from its previous physical location (e.g. from one disk to another). The command can in such cases be used to re-establish the link between the PLATEWORK database file and the SIN-file, stored in a new location.

#### **PARAMETERS:**

<prefix> New file prefix of the SIN-file

<name> New file name of the SIN-file

#### EXAMPLES:

1 CHANGE SIN-DIRECT-ACCESS SINDIR:SESTRA R100

See also:

READ SIN-DIRECT-ACCESS

## 1.2 CREATE

#### COMMAND:

```
CREATE ( ASSEMBLY-OF-CAPACITY-MODELS ...
LOAD-ON-CAPACITY-MODEL ...
MATERIAL ...
RESULTCASE ...
SECTION ...
```

#### **PURPOSE:**

To create objects such as Capacity Models, Capacity Model loads, materials, Resultcases, cross sections etc. for direct or indirect use in code checks.

#### SUBCOMMANDS:

ASSEMBLY-OF-CAPACITY-MODELS	Create a Capacity Model Assembly and its child basic Models.	Capacity
LOAD-ON-CAPACITY-MODEL	Create loads on basic Capacity Models.	
MATERIAL	Create material instances.	
RESULTCASE	Create Resultcase instances.	
SECTION	Create cross section instances.	

See also:

CHANGE CAPACITY-MODEL CHANGE LOAD-ON-CAPACITY-MODEL CHANGE RESULTCASE READ SIN-DIRECT-ACCESS

## **CREATE ASSEMBLY-OF-CAPACITY-MODELS**

#### SUBCOMMAND:

... ASSEMBLY-OF-CAPACITY-MODELS <CMA-name> <location> <specification>

#### **PURPOSE:**

To create a Capacity Model Assembly and the child basic Capacity Models, for later use in Code Checks.

#### **PARAMETERS:**

<cma-name></cma-name>	Name of new Capacit child basic Capacity N	Name of new Capacity Model Assembly. This name is also the name prefix for the child basic Capacity Models of this assembly, see below.		
<location></location>	Definition of Capacity	Definition of Capacity Model Assembly location in space.		
	NODES	The location of the assembly is defined by 4 nodes in a Finite Element Model (FE-model). This option requires that a link to a FE-model has been established previously, by use of the command READ SIN- DIRECT-ACCESS.		
	ARBITRARY	The location of the assembly is defined by 4 arbitrary coordinate sets.		
	UNLOCATED	The assembly does not have a specific location, and is defined by its main x- and y-dimensions.		
<specification></specification>	Definition of materia	al, number of girders and stiffeners etc., i.e. a complete		

#### **NOTES:**

#### 1 Material and cross section data must have been created Before creating a Capacity Model Assembly, the materials and cross sections must have been created previously, either directly by use of the commands CREATE MATERIAL and CREATE SECTION, or indirectly via the SIN-file by use of the command READ SIN-DIRECT-ACCESS.

description of a stiffened panel. For details, see the following pages.

- 2 **Local axis systems and assembly corner definitions** The 4 assembly corners define the local axis systems within the assembly, and also the naming order. See figure 1-1.
- 3 Assembly shape may be distorted The assembly shape need not be 100% rectangular. See Chapter 2 and Theoretical Manual for details.

#### 4 API Capacity Models

This command will create the necessary USP or OSP Capacity Model in addition to girders, stiffeners and plates, provided that the current Code of Practice has been set to API by use of SELECT CODE API.

#### 5 Names are automatically given to Basic Capacity Models

The Basic Capacity Models are given names according to the conventions described in table 1.5 and figure 1-1. Note that the Capacity Model Assembly name (<CMA-name>) is used as name prefix for the Basic Capacity Models within the assembly.

# Table 1.5 Name conventions for basic Capacity Model types

CM-type	Name convention
GIR	<cma-name>G<ig></ig></cma-name>
STF	<cma-name>S<igs>.<is></is></igs></cma-name>
PLT	<cma-name>P<igs>.<iss></iss></igs></cma-name>
USP	<cma-name>U</cma-name>
OSP	<cma-name>O</cma-name>
Where,	
G	Girder identifier
S	Stiffener identifier
Р	Plate identifier
U	Uniaxially Stiffened Panel identifier
0	Orthogonally Stiffened Panel identifier
<ig></ig>	Girder number
<igs></igs>	Girder spacing number
<is></is>	Stiffener number (within current girder spacing)
<iss></iss>	Stiffener spacing number (within current girder spacing)

#### See also:

CREATE MATERIAL CREATE SECTION CHANGE CAPACITY-MODEL CREATE LOAD-ON-CAPACITY-MODEL CHANGE LOAD-ON-CAPACITY-MODEL DELETE ASSEMBLY-OF-CAPACITY-MODELS SELECT CODE RUN CODE-CHECK-ANALYSIS



Figure 1-1 Capacity Model naming convention & local coordinate systems within an assembly

#### CREATE ASSEMBLY-OF-CAPACITY-MODELS <CMA-name> NODES

#### SUBCOMMAND:

 $... \text{ NODES} \left( \begin{array}{c} (<\!\!\text{Typ}\!\!>\!\!<\!\!\text{Idx}\!\!>\!\!<\!\!\text{Nod}\!\!>)^{*4} \\ \text{PICK}<\!\!\text{pick-node}\!\!>\!\!^{*4} \end{array} \right) <\!\!\!\text{specification}\!\!>$ 

#### **PURPOSE:**

Define the location of a Capacity Model Assembly by use of 4 nodes in a Finite Element model (FE-model). The 4 nodes correspond to the CMA corners defined in figure 1-1, page 1-25.

#### **PARAMETERS:**

<typ></typ>	Superelement type no. of a FE-node.
<idx></idx>	Superelement index no. of the FE-node.
<nod></nod>	Node no. of the FE-node within the superelement.
PICK	Signifies that the nodes are identified graphically by use of a mouse or crosshair.
<pick-node></pick-node>	Signifies a node identification in the graphics display by use of a mouse or crosshair.
<specification></specification>	Definition of material, number of girders and stiffeners etc.,i.e. a complete description of a stiffened panel. For details, see the following pages.

#### NOTES:

#### 1 **FE-model must exist**

This command requires that a link to a FE-model has been established previously, by use of the command READ SIN-DIRECT-ACCESS. If no such link exists, the location of the assembly can be defined directly by use of the ARBITRARY option.

#### 2 Using the PICK option

This option requires that the mesh display is currently visible through recent use of the DISPLAY MESH command. Nodes are picked by use of a mouse (workstation devices), or a cross-hair (ordinary graphic terminals).

#### **3** See further notes on page 1-23.

Version number	Date	Page
1.0	01-JUN-1991	1-27

- 1 CREATE ASSEMBLY XMAN NODES 10 1 23 10 1 49 10 1 64 10 1 38 ...
- 2 CREATE ASSEMBLY XMAN NODES PICK <PICK1> <PICK2> <PICK3> <PICK4> ...

#### **CREATE ASSEMBLY-OF-CAPACITY-MODELS < CMA-name> ARBITRARY**

#### SUBCOMMAND:

#### **PURPOSE:**

Define the location of a Capacity Model Assembly by use of 4 arbitrary points in space, either by entering 4 coordinate sets directly, or by use of guide nodes within a Finite Element model (FE-model).

#### **PARAMETERS:**

<x></x>	x-coordinate of a Capacity Model Assembly corner point.
<y></y>	y-coordinate of a Capacity Model Assembly corner point.
<z></z>	z-coordinate of a Capacity Model Assembly corner point.
<typ></typ>	Superelement type no. of an FE-node.
<idx></idx>	Superelement index no. of the FE-node.
<nod></nod>	Node no. of the FE-node within the superelement.
PICK	Signifies that the nodes are identified graphically by use of a mouse or crosshair. Note that this option requires that the mesh display is visible through recent use of the DISPLAY MESH command.
<pick-node></pick-node>	Signifies a node identification in the graphics display by use of a mouse or crosshair.
<pick-corner></pick-corner>	Signifies a CMA corner identification in the graphics display by use of a mouse or crosshair. The point need not coincide with a node in the FE-model. For more details on the CMA corner definitions, see figure 1-1, page 1-25.
<specification></specification>	Definition of material, number of girders and stiffeners etc., i.e. a complete description of a stiffened panel. For details, see the following pages.

#### NOTES:

#### 1 **FE-model must exist if PICK option is used** This command requires that a link to a FE-model has been established previously, by use of the command READ SIN-DIRECT-ACCESS.

2 Using the PICK option

Version number	Date	Page
1.0	01-JUN-1991	1-29

This option requires that the mesh display is currently visible through recent use of the DISPLAY MESH command. Nodes are picked by use of a mouse (workstation devices), or a cross-hair (ordinary graphic terminals).

3 See further notes on page 1-23.

- 1 CREATE ASSEMBLY XMAN ARBITRARY
  -100. -100. 0.0
  +100. -100. 0.0
  +100. +100. 0.0
  -100. +100. 0.0 ...
  2 CREATE ASSEMBLY XMAN ARBITRARY PICK
  <PICK-NODE1>
  - <PICK-NODE1> <PICK-NODE2> <PICK-NODE3> <PICK-POINT1> <PICK-POINT2> <PICK-POINT3> <PICK-POINT4> ...

#### CREATE ASSEMBLY-OF-CAPACITY-MODELS <CMA-name> UNLOCATED

#### SUBCOMMAND:

... UNLOCATED <LX> <LY> <specification>

#### **PURPOSE:**

Define an unlocated Capacity Model Assembly, i.e. an assembly which is not assigned to a specific location in space or relative to a Finite Element Model, but only described through its main dimensions.

An unlocated Capacity Model Assembly may typically be used for design purposes, concept studies etc. where little or no coordinate data is available.

#### **PARAMETERS:**

<lx></lx>	Overall panel length in x-direction. This value can also be interpreted as the sum of the girder spacings.
<ly></ly>	Overall panel length in y-direction. This value can also be interpreted as girder lengths.
<specification></specification>	Definition of material, number of girders and stiffeners etc., i.e. a complete description of a stiffened panel. For details, see the following pages.

#### NOTES:

- 1 **AUTOMATIC loads cannot be created.** The UNLOCATED Capacity Models must be given loads using the CREATE LOAD-ON-CAPACITY-MODEL MANUAL command.
- 2 See further notes on page 1-23.

#### **EXAMPLES:**

1 CREATE ASSEMBLY XMAN UNLOCATED 6000. 18000. ...

Version number	Date	Page
1.0	01-JUN-1991	1-31

#### CREATE ASSEMBLY-OF-CAPACITY-MODELS <CMA-name> ... GIRDERS

#### SUBCOMMAND:

... GIRDERS

AUTOMATIC MANUAL [1]... NONE (more specification)

#### **PURPOSE:**

Define the number of girders, the girder spacings and the girder cross sections within the Capacity Model Assembly. The Girder section data entered will be used in the basic girder Capacity Models.

#### **PARAMETERS:**

AUTOMATIC	The number of girders and from an FE-model. This established previously, by u	d their relative positions are picked up automatically option requires that a link to a FE-model has been use of the command READ SIN-DIRECT-ACCESS.
MANUAL	The number of girders and their relative positions are defined explicitly by the user in this command.	
	[1] Manual specification of gir then the girder spacings:	ders is done by first entering the number of girders, and
	<ngir> ( EVEN <gs1>,<gs2>&lt;</gs2></gs1></ngir>	gsn> ) <gsec_names></gsec_names>
	<ngir></ngir>	Number of girders in the Capacity Model Assembly.
	EVEN	The girders are evenly spaced.
	<gs1>,<gs2></gs2></gs1>	Girder spacing values for all girder spacings.
		Note that the number of girders spacings is <ngir>+1.</ngir>
	<gsec_names></gsec_names>	Cross section names for each girder.

Signifies that there are no girders in the Assembly.

#### **EXAMPLES:**

NONE

- 1 CREATE ASSEMBLY XMAN NODES PICK <PICK1> <PICK2> <PICK3> <PICK4> GIRDERS MANUAL 1 EVEN SEC-1 STIFFENERS ...
- 2 CREATE ASSEMBLY XMAN NODES PICK <PICK1> <PICK2> <PICK3> <PICK4> GIRDERS AUTOMATIC STIFFENERS ...

### **CREATE ASSEMBLY-OF-CAPACITY-MODELS < CMA-name> ... STIFFENERS**

#### SUBCOMMAND:

... STIFFENERS

AUTOMATIC CONSTANT ... [1] MANUAL ... [1] NONE

(more specification)

#### **PURPOSE:**

Define the number of stiffeners, the stiffener spacings and the stiffener cross sections within the Capacity Model Assembly. The stiffener section data will be used in the basic stiffener Capacity Models and in the adjacent girder Capacity Models.

#### **PARAMETERS:**

AUTOMATIC	The number of stiffeners a from an FE-model. This of established previously, by u	nd their relative positions are picked up automatically option requires that a link to a FE-model has been use of the command READ SIN-DIRECT-ACCESS.
CONSTANT	This option is similar to the MANUAL option (see below), except that stiffener data is entered for one girder spacing only, and the other girder spacings are thus assumed to have the same stiffener specifications.	
MANUAL	The number of stiffeners and their relative positions are defined explicitly by the user in this command.	
	[1] For each girder spacing, the	e following is entered:
	<nstf> ( EVEN</nstf>	ssn>) <ssec_names></ssec_names>
	<nstf></nstf>	Number of stiffeners in the current girder spacing.
	EVEN	The stiffeners are evenly spaced.
	<ss1>,<ss2></ss2></ss1>	Stiffener spacing values for all stiffener
		Note that the number of girders spacings is
		Note that the number of griders spacings is $-ngir_{\pm}$ and that the number of stiffeners is
		<pre><ingit>+1 and that the number of sufferents is <nstf>+1.</nstf></ingit></pre>
	<ssec_names></ssec_names>	Cross section names for each girder.
NONE	Signifies that there are no g	irders in the Assembly.

Version number	Date	Page
1.0	01-JUN-1991	1-33

- 1 CREATE ASSEMBLY XMAN NODES PICK <PICK1> <PICK2> <PICK3> <PICK4> GIRDERS AUTOMATIC STIFFENERS MANUAL 1 EVEN 1 EVEN SEC-2 SEC-2 PLATES ...
- 2 CREATE ASSEMBLY XMAN NODES PICK <PICK1> <PICK2> <PICK3> <PICK4> GIRDERS AUTOMATIC STIFFENERS AUTOMATIC PLATES ...

#### CREATE ASSEMBLY-OF-CAPACITY-MODELS <CMA-name> ... PLATES

#### SUBCOMMAND:

... PLATES  $\begin{pmatrix} AUTOMATIC \\ MANUAL ... [1] \end{pmatrix}$  (more specification)

#### **PURPOSE:**

Define the plate thicknesses for all plates in the Capacity Model Assembly, i.e. the areas bounded by the girders and stiffeners. The plate thicknesses entered will be used in the basic plate Capacity Models and in adjacent basic girder and stiffener Capacity Models.

#### **PARAMETERS:**

AUTOMATIC	The plate thicknesses are picked up automatically from an FE-model. This option requires that a link to a FE-model has been established previously, by use of the command READ SIN-DIRECT-ACCESS.
MANUAL	The plate thicknesses are defined explicitly by the user in this command.
	[1] <plate thicknesses=""> The plate thicknesses are first entered for each plate in the first girder spacing followed by the plate thicknesses for each plate in the other girder spacings., i.e. the same order as in the plate Capacity Model naming convention, see figure 1-1, page 1-25.</plate>

- 1 CREATE ASSEMBLY XMAN NODES PICK <PICK1> <PICK2> <PICK3> <PICK4> GIRDERS AUTOMATIC STIFFENERS MANUAL 1 EVEN 1 EVEN SEC-2 SEC-2 PLATES MANUAL 10.0 10.0 12.0 12.0 MATERIAL ...
- 2 CREATE ASSEMBLY XMAN NODES PICK <PICK1> <PICK2> <PICK3> <PICK4> GIRDERS AUTOMATIC STIFFENERS AUTOMATIC PLATES AUTOMATIC MATERIAL ...

#### CREATE ASSEMBLY-OF-CAPACITY-MODELS <CMA-name> ... MATERIALS

#### SUBCOMMAND:

... MATERIALS ( AUTOMATIC... MANUAL ... [1] ) (more specification)

#### **PURPOSE:**

Select materials for all girders, stiffeners and plates in the Capacity Model Assembly. The materials selected will be used in the basic Capacity Models corresponding to the girder beams, stiffener beams and plates.

#### **PARAMETERS:**

AUTOMATIC	The material references are picked up automatically from an FE-model. This option requires that a link to a FE-model has been established previously, by use of the command READ SIN-DIRECT-ACCESS.
MANUAL	The materials are selected explicitly by the user in this command.
	[1] <material names=""> The material names are first entered for each girder in the Assembly. Then, material names are entered for all stiffeners in the Assembly, starting with the stiffeners in the first girder spacing. Finally, material names are entered for all plates in the Assembly, starting with the plates in the first girder spacing, i.e. the same order as in the plate Capacity Model naming convention, see figure 1-1, page 1-25.</material>

- 1 CREATE ASSEMBLY XMAN NODES PICK <PICK1> <PICK2> <PICK3> <PICK4> GIRDERS AUTOMATIC STIFFENERS MANUAL 1 EVEN 1 EVEN SEC-2 SEC-2 PLATES MANUAL 10.0 10.0 12.0 12.0 MATERIAL MANUAL MAT-1 MAT-2 MAT-2 MAT-3 MAT-3 MAT-3
- 2 CREATE ASSEMBLY XMAN NODES PICK <PICK1> <PICK2> <PICK3> <PICK4> GIRDERS AUTOMATIC STIFFENERS AUTOMATIC PLATES AUTOMATIC MATERIAL AUTOMATIC
# **CREATE LOAD-ON-CAPACITY-MODEL**

#### SUBCOMMAND:

... LOAD-ON-CAPACITY-MODEL  $\left(\begin{array}{c} \text{AUTOMATIC} \dots \\ \text{MANUAL} \dots \end{array}\right)$ 

#### **PURPOSE:**

To create the basic Capacity Model loads that are used in the Code Check analyses, i.e. membrane loads, lateral plate load, bending moments etc.

Note that before basic Capacity Model loads can be created, the basic Capacity Models and Resultcases must exist. Capacity Models are created by use of the CREATE ASSEMBLY-OF-CAPACITY-MODELS command.

Resultcases can be created in two different ways:

- Directly, by use of the CREATE RESULTCASE command.
- Indirectly, through the use of the READ SIN-DIRECT-ACCESS command, where resultcases are inherited from the Finite Element analysisis.

#### **PARAMETERS:**

AUTOMATIC	Create basic Capacity Model loads automatically. This requires that		
	Either,	The Resultcases were created through the use of the READ SIN-DIRECT-ACCESS command, and the basic Capacity Models were given a location wrt. the FE-model which corresponds to a flat area modelled with membrane or shell elements, optionally with beams representing girders and stiffeners.	
	or,	The Resultcases were combination resultcases created by use of the CREATE RESULTCASE command.	
MANUAL	Create bas basic Capa	ic Capacity Model loads manually. There are no restrictions to how the acity Models or the Resultcases were created.	

See also:

READ SIN-DIRECT-ACCESS CREATE ASSEMBLY-OF-CAPACITY-MODELS CREATE RESULTCASE CHANGE LOAD-ON-CAPACITY-MODEL

# **CREATE LOAD-ON-CAPACITY-MODEL AUTOMATIC**

#### SUBCOMMAND:

... AUTOMATIC ( ASSEMBLY <CMA-name> ALL

#### **PURPOSE:**

To calculate and store the basic Capacity Model loads on the basis of results from a FE-analysis (shell stresses, beam forces etc.).

Note that use of the AUTOMATIC feature requires that

- Either, The Resultcases were created through the use of the READ SIN-DIRECT-ACCESS command, and the basic Capacity Models were given a location wrt. the FE-model which corresponds to a flat area modelled with membrane or shell elements, optionally with beams representing girders and stiffeners.
- or, The Resultcases were combination resultcases created by use of the CREATE RESULTCASE command.

#### **PARAMETERS:**

ASSEMBLY	Calculate Capacity Model loads for a specified Capacity Model Assembly.
<cma-name></cma-name>	Name of Capacity Model Assembly.
ALL	Calculate Capacity Model loads for all Capacity Model Assemblies.

#### NOTES:

#### 1 Command can be very time-consuming; use SCOPE ELEMENT

The execution of this command involves extensive searching in the FE-model, which can be very timeconsuming, depending on the refinement of both the FE-model and the Capacity Model Assemblies. It is therefore highly recommended to reduce the FE-model scope, by use of the SCOPE ELEMENT command, so that elements outside the assembly area is excluded in the search. It may also be adviseable to execute this command in a batch queue when the model is very large, and when more powerful computer resources are available nearby (for example in a local network system).

#### 2 Unreduced and reduced Capacity Model loads

The FE-stresses are in the general case more complicated than the simple loads depicted in e.g. figure 1-2, page 1-41. Therefore, intermediate loads termed "unreduced" are first calculated on the basis of the FE-stresses. The simpler, "reduced" loads are thereafter calculated on the basis of the unreduced loads. The reduced loads correspond to the values entered in the CREATE LOAD-ON-CAPACITY-MODEL MAN-UAL command. For an example of unreduced and reduced loads, see figure 1-16, page 1-82. See also Chapter 2.

Page 1-38 Date 01-JUN-1991 Version number 1.0

# **EXAMPLES:**

- 1 CREATE LOAD AUTOMATIC ALL
- 2 CREATE LOAD AUTOMATIC ASSEMBLY XMAN
- 3 See Chapters 2 and 3

Page

1-39

# **CREATE LOAD-ON-CAPACITY-MODEL MANUAL**

#### SUBCOMMAND:

... MANUAL <BCM-name> <RES-name> ( <component> <value> END

### **PURPOSE:**

To specify reduced Capacity Model loads directly, without reference to a FE-analysis.

#### **PARAMETERS:**

<bcm-name></bcm-name>	Name of Basic Capacity Model
<res-name></res-name>	Name of Resultcase
<component></component>	Name of Capacity Model load component, see below.
END	End of component selection
<value></value>	Value of Capacity Model load component.

### Table 1.6 Load Components relevant for different CM types

<component></component>	PLT	STF	GIR	USP	OSP
fx1	х	х	х	х	х
fx2	х		х		
fy1	х	Х	х		х
fy2	х	х			
fxy	х	х	х		
plat	Х	Х	Х		х
Mbend		Х	Х		
pdfl	Х				
pbst	Х				

END

End of component selection

Page 1-40

# Table 1.7Description of load components

<component></component>	Description
fx1	Membrane normal load in local x-direction
fx2	Membrane normal load in local x-direction
fy1	Membrane normal load in local y-direction
fy2	Membrane normal load in local y-direction
fxy	Membrane shear load
plat	Lateral plate load
Mbend	Girder or Stiffener bending moment
pdfl	Local plate deflection
pbst	plate bending stress

# Table 1.8Unit description for load components

<component></component>	Unit description
fx1	Force / Capacity Model edge length
fx2	Force / Capacity Model edge length
fy1	Force / Capacity Model edge length
fy2	Force / Capacity Model edge length
fxy	Force / Capacity Model edge length
plat	Force / Capacity Model plate area
Mbend	Force * length
pdfl	Length
pbst	Force / Capacity Model edge length

#### **EXAMPLES:**

- 1 CREATE LOAD-ON-CAPACITY-MODEL MANUAL XMANP1.1 RES-1 fx1 -500. fx2 -300. END
- 2 CREATE LOAD-ON-CAPACITY-MODEL MANUAL XMANP1.1 RES-1
  fx1 -500.
  fx2 -300.
  fy1 +300.
  plat 0.015
  END

Version number	Date	Page
1.0	01-JUN-1991	1-41



Figure 1-2 Loads on a plate (PLT) Capacity Model

#### Table 1.9 Loads on a plate (PLT) Capacity Model

- fx1 Normal, in-plane force per unit edge length, x-direction
- fx2 Normal, in-plane force per unit edge length, x-direction
- fy1Normal, in-plane force per unit edge length, y-directionfy2Normal, in-plane force per unit edge length, y-direction
- fxy Shear, in-plane force per unit edge length
- nixy Shear, in-plane force per unit edge fer
- plat Lateral load, force per unit area



Figure 1-3 Loads on a stiffener (STF) Capacity Model

# Table 1.10 Loads on a stiffener (STF) Capacity Model

fx1	Normal, in-plane force per unit edge length, x-direction
fy1	Normal, in-plane force per unit edge length, y-direction
fy2	Normal, in-plane force per unit edge length, y-direction
fxy	Shear, in-plane force per unit edge length
plat	Lateral load, force per unit area
Mbend	Bending moment, centre of stiffener

Version number	Date	Page
1.0	01-JUN-1991	1-43



Figure 1-4 Loads on a girder (GIR) Capacity Model

# Table 1.11 Loads on a girder (GIR) Capacity Model

fx1	Normal, in-plane force per unit edge length, x-direction
fx2	Normal, in-plane force per unit edge length, x-direction
fy1	Normal, in-plane force per unit edge length, y-direction
fxy	Shear, in-plane force per unit edge length
plat	Lateral load, force per unit area
Mbend	Bending moment, centre of girder



Figure 1-5 Loads on a uniaxially stiffened panel (USP) Capacity Model

 Table 1.12
 Loads on a Uniaxially Stiffened Panel (USP) Capacity Model

fx1 Normal, in-plane force per unit edge length, x-direction





Figure 1-6 Loads on a orthogonally stiffened panel (OSP) Capacity Model

#### Table 1.13 Loads on a girder (GIR) Capacity Model

- fx1 Normal, in-plane force per unit edge length, x-direction
- fy1 Normal, in-plane force per unit edge length, y-direction
- plat Lateral load, force per unit area

# **CREATE MATERIAL**

### SUBCOMMAND:

... MATERIAL <MAT-name> LIMITED-ELASTIC <E> <ny> <fy> <fp>

#### **PURPOSE:**

Create a material for later reference in the CREATE ASSEMBLY-OF-CAPACITY-MODELS command. This command is most typically used when PLATEWORK is executed for design purposes, i.e. when the materials are not inherited from a FE-model.

### **PARAMETERS:**

<mat-name></mat-name>	Material name
LIMITED-ELASTIC	Limited elastic material type, i.e. an elastic material which has a limited range of elasticity.
<e></e>	Young's modulus
<ny></ny>	Poisson's ratio
<fy></fy>	Yield stress
<fp></fp>	Proportionality limit stress

#### **NOTES:**

1 **Proportionality limit stress, <fp>** This parameter is only used in the API Code Checks, see Theoretical Manual.

## **EXAMPLES:**

1 CREATE MATERIAL MAT-1 LIMITED-ELASTIC 2.1E5 0.3 420. 207.

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS CHANGE CAPACITY-MODEL PRINT MATERIAL

# **CREATE RESULTCASE**

#### SUBCOMMAND:

... RESULTCASE <RES-name> <Description> <Resultcase-kind> <limit-state> ...

... ... imit-state> (BASIC COMBINATION ( <source-RES-name> <factor> <phase> END

#### **PURPOSE:**

Create Resultcases for use with Capacity Model loads and Code Check results. See Chapter 2 for details.

#### **PARAMETERS:**

<res-name></res-name>	Name of new Resultcase to be created	
<description></description>	Text description of new Resultcase	
<resultcase-kind></resultcase-kind>	Kind of Resultcase	
	STATICstatic valuesCOMPLEXreal & imaginary valuesSCANstatic + real & imaginary values	
<limit-state></limit-state>	Resultcase limit state kind. Note that the limit states available are dependent on th current Code of Practice, see below.	

# Table 1.14Code Check limit states

AF Dn	de of Practice	Limit state name & description	
Dn	Ы	NORMAL STORM	Normal condition Storm condition
	١V	E-ULS F-ULS PLS SLS	Environmental load, Ultimate Limit State Functionality load, Ultimate Limit State Progressive Limit State Serviceability Limit State
NF	РD	ULS SLS PLS FLS	Ultimate Limit State Serviceability Limit State Progressive collapse Limit State Fatigue Limit State

Page 1-48

BASIC	Resultcase is a basic Resultcase
COMBINATION	Resultcase is a combination Resultcase, defined through a number of factored source Resultcases.
<source-res-name></source-res-name>	Name of a source Resultcase, contributing to the definition of a combination Resultcase.
<factor></factor>	Weight factor to be applied to <source-res-name>.</source-res-name>
<phase></phase>	Phase angle (in degrees) at which the <source-res-name> is evaluated in the combination.</source-res-name>
END	Signifies that no more source Resultcases contribute to a combination Resultcase.

### **NOTES:**

#### 1 Default limit-states

If the current limit-state kind is not valid for the current Code of Practice, the following defaults will be offered:

API: NORMAL DnV: E-ULS NPD: ULS

#### 2 Calculation of CM loads in combination resultcases

This is done by use of CREATE LOAD-ON-CAPACITY-MODEL AUTOMATIC. See Chapter 2 for combination formulae and more details on the procedure.

# **EXAMPLES:**

- 1 CREATE RESULTCASE R1 'Big wave' COMPLEX STORM BASIC
- 2 CREATE RESULTCASE R2 'Gravity' STATIC NORMAL BASIC
- 3 CREATE RESULTCASE C1 'Gravity + Big wave' SCAN STORM COMBINATION R1 1.0 0.0 R2 1.0 0.0 END

#### See also:

CHANGE RESULTCASE CREATE LOAD-ON-CAPACITY-MODEL PRINT RESULTCASE

# **CREATE SECTION**

### SUBCOMMAND:

... SECTION <SEC-name> <section-type> <section-parameters>

#### **PURPOSE:**

Create a cross section for later reference in the CREATE ASSEMBLY-OF-CAPACITY-MODELS command. This command is most typically used when PLATEWORK is executed for design purposes, i.e. when the cross sections are not inherited directly from an FE-model.

### **PARAMETERS:**

<sec-name></sec-name>	Cross section name		
<section-type></section-type>	SESAM Cross section type		
	GENERAL	General section	
	BAR	Massive Bar section	
	BOX	Box section	
	Ι	I or H section	
	L	L section	
<section-parameters></section-parameters>	Cross section param descriptions on the	eters, according to cross section type. See the detailed following pages.	

### **EXAMPLES:**

1 See Chapter 3

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS CHANGE CAPACITY-MODEL PRINT SECTION Page **1-50** 

Date 01-JUN-1991

Version number 1.0

# **GENERAL** General section

Cross section parameters:

AREA	Cross section area (used in mapping formula)
IX	Torsional moment of inertia about shear centre
IY	Moment of inertia about Y-axis (used in mapping formula)
IZ	Moment of inertia about Z-axis
IYZ	Product of inertia about Y and Z axes
WXMIN	Min. torsional section modulus about shear centre
WYMIN	Min. section modulus about Y-axis
WZMIN	Min. section modulus about Z-axis
SHARY	Shear area in direction of Y-axis
SHARZ	Shear area in direction of Z-axis
SHCENY	Shear centre location from centroid, Y-component
SHCENZ	Shear centre location from centroid, Z-component
SY	Static area moment about Y-axis
SZ	Static area moment about Z-axis

FE-model

Capacity Model





Mapping formulae used :

 $\begin{aligned} hw &= SQRT(12 * IY / AREA) \\ tw &= AREA / hw \\ bf &= 0.0 \\ tf &= 0.0 \end{aligned}$ 

Version number	Date	Page
1.0	01-JUN-1991	1-51

 $\begin{array}{rll} af & = & 0.0 \\ ef & = & 0.0 \end{array}$ 

Page	Date
1-52	01-JUN-1991

Version number 1.0

# BAR Massive bar section

Cross section parameters:

HZ	Height of beam
BT	Width of bar at top
BB	Width of bar at bottom





Mapping formulae used :

 $\begin{array}{rll} hw & = & HZ \\ tw & = & (BB+BT)/2 \\ bf & = & 0.0 \\ tf & = & 0.0 \\ af & = & 0.0 \\ ef & = & 0.0 \end{array}$ 

Version number	Date	Page
1.0	01-JUN-1991	1-53

#### BOX **Box section**

Cross section parameters:

HZ	Height of beam
TY	Thickness of webs
ТВ	Thickness of bottom flange
TT	Thickness of top flange

- TT
- BY Width of beam





Mapping formulae used :

HZ - TB hw = ΤY = tw bf = BY tf = ΤT BY - 2*TY af = = 0.0 ef

# I I or H section

Cross section parameters:

HZ	Height of beam
TY	Thickness of web
BT	Width of top flange
TT	Thickness of top flange
BB	Width of bottom flange
TB	Thickness of bottom flange





Mapping formulae used :

 $\begin{array}{rcl} hw & = & HZ - TB \\ tw & = & TY \\ bf & = & BB \\ tf & = & TB \\ af & = & 0.0 \\ ef & = & 0.0 \end{array}$ 

Version number	Date	Page
1.0	01-JUN-1991	1-55

# L L section

Cross section parameters:

HZ	Height of beam
TY	Thickness of web

- BY Width of flange
- TZ Thickness of flange

К	Web	orientation
11		orrentation







Figure 1-11 Mapping from L section to PLATEWORK CM cross section (stiffener or girder).

Mapping formulae used :

HZ - TZ hw = tw = ΤY BY bf = ΤY tf = 0.0 af = (bf - tw) / 2. ef =

Page 1-56 Date 01-JUN-1991 Version number 1.0

# 1.3 **DEFINE**

# COMMAND:

LIMIT-STATE-FACTOR ... LOAD-DISPLAY-FACTOR ... PHASE-ANGLE-STEPPING ... SORTING ... TOLERANCE ... DEFINE (

# **PURPOSE:**

To define or re-define global variables used in code checks, result presentations etc.

### SUBCOMMANDS:

LIMIT-STATE-FACTOR	Define the limit state factor values associated with the different code check limit states.
LOAD-DISPLAY-FACTOR	Define a scale factor used in the display of Capacity Model loads.
PHASE-ANGLE-STEPPING	Define the phase angle(s) at which the code checks will be executed in case of complex Capacity Model loads.
SORTING	Define the Code Check results sorting parameter, sorting order and the sorting filters.
TOLERANCE	Define the coordinate, angle and parameter tolerances used during creation of Capacity Models and Capacity Model loads.

# **DEFINE LIMIT-STATE-FACTOR**

### SUBCOMMAND:

LIMIT-STATE-FACTOR	( API DNV NPD

#### **PURPOSE:**

To define or re-define the values of the factors associated with the different limit-state kinds. Each Resultcase is associated with a limit-state (see for example CREATE RESULTCASE command). In the code check analysis, the program will use the limit-state factor which is associated with the limit-state kind of each Resultcase.

#### **PARAMETERS:**

API	Limit-state factors associated with API Code of Practice
DNV	Limit-state factors associated with DnV Code of Practice
NPD	Limit-state factors associated with DnV Code of Practice

See also:

Page

1-59

# **DEFINE LIMIT-STATE-FACTOR API**

#### SUBCOMMAND:

 $\begin{array}{cccc} ... \ \ API & \left( \begin{array}{ccc} NORMAL & <\!\!FS\text{-}SLS\!\!> & <\!\!FS\text{-}ULS\!\!> \\ STORM & <\!\!FS\text{-}SLS\!\!> & <\!\!FS\text{-}ULS\!\!> \end{array} \right)$ 

### **PURPOSE:**

To define or re-define the values of the API limit-state factors. The factors are used in API Code Checks for those resultcases that have assigned an API NORMAL or STORM condition.

#### **PARAMETERS:**

NORMAL	Normal condition
STORM	Storm condition
<fs-sls></fs-sls>	Factor of safety, Serviceability limit state
<fs-uls></fs-uls>	Factor of safety, Ultimate limit state

#### **EXAMPLES:**

1 DEFINE LIMIT-STATE-FACTOR API STORM 1.25 1.5

See also:

# **DEFINE LIMIT-STATE-FACTOR DNV**

### SUBCOMMAND:

DNV	(E-ULS F-ULS PLS SUS	<eta0> <eta0> <etap> <etap></etap></etap></eta0></eta0>
	( SLS	<etap></etap>

#### **PURPOSE:**

To define or re-define the values of the DnV limit-state factors. The factors are used in DnV Code Checks for those resultcases that have assigned a DnV limit-state (E-ULS, F-ULS, PLS or SLS).

### **PARAMETERS:**

E-ULS	Environmental load, Ultimate Limit State
F-ULS	Functionality load, Ultimate Limit State
PLS	Progressive Limit State
SLS	Serviceability Limit State
<eta0></eta0>	Basic usage factor
<etap></etap>	Usage factor

#### **EXAMPLES:**

1 DEFINE LIMIT-STATE-FACTOR DNV E-ULS 0.6

See also:

Version	number
1.0	

Page

1-61

# **DEFINE LIMIT-STATE-FACTOR NPD**

NPD	ULS	<gamma-m></gamma-m>
	SLS	<gamma-m></gamma-m>
	PLS	<gamma-m></gamma-m>
	( FLS	<gamma-m></gamma-m>

#### **PURPOSE:**

To define or re-define the values of the NPD limit-state factors. The factors are used in NPD Code Checks for those resultcases that have assigned a NPD limit-state (ULS, SLS, PLS or FLS).

#### **PARAMETERS:**

ULS	Ultimate Limit State
SLS	Serviceability Limit State
PLS	Progressive collapse Limit State
FLS	Fatigue Limit State
<gamma-m></gamma-m>	Material coefficient

#### **EXAMPLES:**

1 DEFINE LIMIT-STATE-FACTOR NPD ULS 1.15

See also:

# **DEFINE LOAD-DISPLAY-FACTOR**

# SUBCOMMAND:

... LOAD-DISPLAY-FACTOR <factor>

### **PURPOSE:**

To define or re-define the scale factor used during display of Capacity Model loads.

### **PARAMETERS:**

<factor> Load display factor. Default value is <factor>=1.0.

### **EXAMPLES:**

1 DEFINE LOAD-DISPLAY-FACTOR 1.5

See also:

DISPLAY LOAD-ON-CAPACITY-MODEL

# **DEFINE PHASE-ANGLE-STEPPING**

#### SUBCOMMAND:

... PHASE-ANGLE-STEPPING (CONSTANT <astart> <astop> <astep> ARBITRARY (<angle> END

#### **PURPOSE:**

To define or re-define the phase angles at which the Code Checks will be executed in the case of complex Capacity Model loads.

For a given complex Capacity Model load, the program will step through all phase angles specified, and store the results corresponding to the phase angle that resulted in the largest maximum Unity Criterion factor, UC-max.

All phase angles shall be entered in degrees, ranging from 0 to 360 degrees.

#### **PARAMETERS:**

CONSTANT	The phase angles are defined with a constant phase angle step.
<astart></astart>	The first angle where Code Check will be executed.
<astop></astop>	The last angle where Code Check will be executed.
<astep></astep>	The phase angle step between <astart> and <astop>.</astop></astart>
ARBITRARY	The phase angles are defined with an arbitrary phase angle step.
<angle></angle>	Next phase angle where Code Check will be executed.
END	Signifies end of phase angle specification.

#### **EXAMPLES:**

1 DEFINE PHASE-ANGLE-STEPPING CONSTANT 0.0 360.0 30.0

2 DEFINE PHASE-ANGLE-STEPPING ARBITRARY 10.0 45. 85. 95. 110. 140. END

See also:

# **DEFINE SORTING**

### SUBCOMMAND:

... SORTING (

MAX-ENTRIES ... MAX-VALUE ... MIN-VALUE ... ORDER ... PARAMETER ...

#### **PURPOSE:**

To define or re-define the Code Check results sorting parameter, sorting order and the sorting filters, used during print of Code Check results.

#### **PARAMETERS:**

MAX-ENTRIES	Define max number of entries in a Code Check results print table.
MAX-VALUE	Define the upper limit of the current sorting parameter value. The results for a given Capacity Model and Resultcase will not be printed if the value of the sorting parameter exceeds the specified max value.
MIN-VALUE	Define the lower limit of the current sorting parameter value. The results for a given Capacity Model and Resultcase will not be printed if the value of the sorting parameter is less than the specified min value.
ORDER	Define the order in which the sorted Code Check results shall be printed.
PARAMETER	Define which Code Check results parameter shall be used as sorting parameter. Default sorting parameter is maximum Unity Criterion factor (UCmax). The range of parameters available depends on which Code of Practice (API,DnV or NPD) is selected. A complete list of parameter names and parameter descriptions can be obtained by entering the command PRINT NOMENCLATURE CODE-CHECK-RESULTS.

See also:

PRINT CODE-CHECK-RESULTS PRINT DEFINITIONS PRINT NOMENCLATURE CODE-CHECK-RESULTS

Page

1-65

# **DEFINE SORTING MAX-ENTRIES**

#### SUBCOMMAND:

... MAX-ENTRIES

<NumEnt> UNLIMITED

### **PURPOSE:**

Define max number of entries in a Code Check results print table.

#### **PARAMETERS:**

<nument></nument>	Number of entries.
UNLIMITED	Signifies that there is no upper limit to the number of entries.

#### **EXAMPLES:**

- 1 DEFINE SORTING MAX-ENTRIES UNLIMITED
- 2 DEFINE SORTING MAX-ENTRIES 10.

See also:

# **DEFINE SORTING MAX-VALUE**

### SUBCOMMAND:

... MAX-VALUE ( <MaxVal> UNLIMITED

#### **PURPOSE:**

Define the upper limit of the current sorting parameter value. The results for a given Capacity Model and Resultcase will not be printed if the value of the sorting parameter exceeds the specified max value.

#### **PARAMETERS:**

<MaxVal> The actual max value.

UNLIMITED Signifies that there is no upper limit to the max value.

#### **EXAMPLES:**

- 1 DEFINE SORTING MAX-VALUE UNLIMITED
- 2 DEFINE SORTING MAX-VALUE 100.

See also:

# **DEFINE SORTING MIN-VALUE**

#### SUBCOMMAND:

... MIN-VALUE ( <MinVal> UNLIMITED

#### **PURPOSE:**

Define the lower limit of the current sorting parameter value. The results for a given Capacity Model and Resultcase will not be printed if the value of the sorting parameter is less than the specified min value.

#### **PARAMETERS:**

<maxval></maxval>	The actual min value.
Ninux vui>	The actual min value.

UNLIMITED Signifies that there is no upper limit to the min value.

#### **EXAMPLES:**

- 1 DEFINE SORTING MIN-VALUE UNLIMITED
- 2 DEFINE SORTING MIN-VALUE 1.0

See also:

# **DEFINE SORTING ORDER**

# SUBCOMMAND:

... ORDER

INCREASING DECREASING

#### **PURPOSE:**

To define the order in which the Code Check results are printed.

#### **PARAMETERS:**

INCREASING	Print Code Check results in the order defined by an increasing value of the sorting parameter.
DECREASING	Print Code Check results in the order defined by a decreasing value of the sorting parameter.

#### **EXAMPLES:**

- 1 DEFINE SORTING ORDER DECREASING
- 2 DEFINE SORTING ORDER INCREASING

See also:

Page

1-69

# **DEFINE SORTING PARAMETER**

#### SUBCOMMAND:

... PARAMETER <ParNam>

#### **PURPOSE:**

To define which Code Check results parameter shall be used as sorting parameter.

#### **PARAMETERS:**

<ParNam> The actual name of the Code Check results parameter that the results shall be sorted after. Default sorting parameter is maximum Unity Criterion factor (UCmax). The range of parameters available depends on which Code of Practice (API,DnV or NPD) is selected. A complete list of parameter names and parameter descriptions can be obtained by entering the command PRINT NOMENCLATURE CODE-CHECK-RESULTS.

#### **EXAMPLES:**

- 1 DEFINE SORTING PARAMETER UCmax
- 2 DEFINE SORTING PARAMETER etaweb

See also:

PRINT CODE-CHECK-RESULTS PRINT DEFINITIONS PRINT NOMENCLATURE CODE-CHECK-RESULTS

# **DEFINE TOLERANCE**

### SUBCOMMAND:

TOLERANCE	( COORDINATE	<epspnt></epspnt>
	ANGLE	<epsang></epsang>
	PARAMETER	<epspar></epspar>

# **PURPOSE:**

To define tolerances typically used during creation of Capacity Models.

#### **PARAMETERS:**

COORDINATE	Define the coordinate tolerance. This value is for example used to compare the lo cation of a point wrt. a plane, as is the case in the command SCOPE ELEMENT INCLUDE PLANE.
<epspnt></epspnt>	Value of the coordinate tolerance. When a FE-model is read, the default value of $\langle EpsPnt \rangle$ is DIAG*0.001, where DIAG is the diagonal in the smallest x,y,z box that encapsulates the FE-model.
ANGLE	Define the angle tolerance. This value is typically used to compare the orientation of beam elements in a FE-model with main Capacity Model assembly x- and y-directions, in order to determine whether the beam elements are candidates for girders or stiffeners.
<epsang></epsang>	Value of the angle tolerance in radians. Default is equivalent to about 0.25 degrees.
PARAMETER	Define the parameter tolerance. A straight line has a start point and a end point. The start point corresponds to parameter= $0.0$ . The end point corresponds to parameter = $1.0$ . The parameter tolerance is used internally in the program, for example in connection with calculation of straight line intersections.
<epspar></epspar>	Value of the parameter tolerance. Default is 0.001.

#### **EXAMPLES:**

- 1 DEFINE TOLERANCE ANGLE 0.004
- 2 DEFINE TOLERANCE PARAMETER 0.001

See also:

PRINT DEFINITIONS

# **1.4 DELETE**

# COMMAND:

DELETE ( ASSEMBLY-OF-CAPACITY-MODELS ... CODE-CHECK-RESULTS ...

# **PURPOSE:**

To delete objects created in the CREATE command, or created by use of the RUN CODE-CHECK-ANALYSIS command.

# SUBCOMMANDS:

ASSEMBLY-OF-CAPACITY-MODELS Delete a Capacity Model Assembly

CODE-CHECK-RESULTS Delete Code Check results.

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS RUN CODE-CHECK-ANALYSIS
# DELETE ASSEMBLY-OF-CAPACITY-MODELS

## SUBCOMMAND:

```
... ASSEMBLY-OF-CAPACITY-MODELS ( <CMA-name> ALL
```

### **PURPOSE:**

To delete a Capacity Model assembly, all basic Capacity Models in the assembly, all basic Capacity Model loads and Code Check results associated with the basic Capacity Models.

#### **PARAMETERS:**

<cma-name></cma-name>	Name of the Capacity Model assembly to delete.

ALL Signifies that all Capacity Model assemblies shall be deleted.

#### **EXAMPLES:**

- 1 DELETE ASSEMBLY ALL
- 2 DELETE ASSEMBLY-OF-CAPACITY-MODELS XMAN

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS

# **DELETE CODE-CHECK-RESULTS**

#### SUBCOMMAND:

$$... CODE-CHECK-RESULTS \left( \begin{array}{c} < BCM-name > \\ ALL \end{array} \right) \left( \begin{array}{c} < RES-name > \\ ALL \end{array} \right)$$

#### **PURPOSE:**

To delete Code Check results created by use of the RUN CODE-CHECK-ANALYSIS command. Note that only results associated with the current Code of Practice will be deleted.

#### **PARAMETERS:**

<bcm-name></bcm-name>	Name of a basic Capacity Model for which results shall be deleted
ALL	Delete results for all basic Capacity Models.
<res-name></res-name>	Name of a Resultcase for which results shall be deleted.
ALL	Delete results for all Resultcases.

#### **EXAMPLES:**

- 1 DELETE CODE-CHECK-RESULTS ALL ALL
- 2 DELETE CODE-CHECK-RESULTS XMANG1 ALL
- 3 DELETE CODE-CHECK-RESULTS ALL RES-2
- 4 DELETE CODE-CHECK-RESULTS XMANG1 RES-2

See also:

RUN CODE-CHECK-ANALYSIS

# 1.5 DISPLAY

### COMMAND:

```
DISPLAY ( MESH
CAPACITY-MODELS
LOAD-ON-CAPACITY-MODEL ...
CODE-CHECK-RESULT ...
OFF
```

## **PURPOSE:**

To present models and associated data graphically.

#### SUBCOMMANDS:

MESH	Display the Finite Element mesh.
CAPACITY-MODELS	Display the Capacity Models.
LOAD-ON-CAPACITY-MODEL	Display the load on a basic Capacity Model.
CODE-CHECK-RESULT	Display a Code Check result on the basic Capacity Models.
OFF	Turn off automatic re-display.

Page

1-75

# **DISPLAY MESH**

### **PURPOSE:**

To display the Finite Element mesh. Note that this requires that a link has been established previously from the PLATEWORK database file to the SESAM Interface File (the SIN-file), by use of the READ SIN-DIRECT-ACCESS command.

By default, all basic Finite Elements within all Superelements will be displayed. Use of the SCOPE ELEMENT command can, however, limit the display of the mesh to include only relevant areas, for example selected superelements or selected element types.

Figure 1-12 A mesh display

Page 1-76 Date 01-JUN-1991 Version number 1.0

See also:

READ SIN-DIRECT-ACCESS VIEW LABEL SCOPE ELEMENT

Version number	Date	Page
1.0	01-JUN-1991	1-77

# **DISPLAY CAPACITY-MODELS**

#### **PURPOSE:**

To display the Capacity Models.

By default, all basic Capacity Models will be displayed. Use of the SELECT CAPACITY-MODEL command can, however, limit the display to include only those Capacity Models that are currently relevant.

Figure 1-13 A Capacity Model display

Page 1-78 Date 01-JUN-1991 Version number 1.0

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS SELECT CAPACITY-MODEL VIEW

# DISPLAY LOAD-ON-CAPACITY-MODEL

#### SUBCOMMAND:

```
... LOAD-ON-CAPACITY-MODEL <BCM-name> <RES-name> ( NORMAL SHEAR ) [<angle>]
```

#### **PURPOSE:**

To display superimposed the unreduced and reduced basic Capacity Model loads for a specific basic Capacity Model and Resultcase.

### **PARAMETERS:**

<bcm-name></bcm-name>	Name of Basic Capacity Model
<res-name></res-name>	Name of Resultcase
NORMAL	Display the normal in-plane loads (fx and fy).
SHEAR	Display the shear in-plane load (fxy).
<angle></angle>	Angle (in degrees) at which the loads shall be evaluated and displayed in case the Resultcase referenced contains complex values. <angle> is not entered if the Resultcase contains only static values.</angle>

See also:

CREATE LOAD-ON-CAPACITY-MODEL CHANGE LOAD-ON-CAPACITY-MODEL DEFINE LOAD-DISPLAY-FACTOR Page 1-80 Date 01-JUN-1991 Version number 1.0

Figure 1-14 Girder load display, reduced (solid) versus unreduced (dashed) loads

Version number	Date	Page
1.0	01-JUN-1991	1-81

Figure 1-15 Stiffener load display, reduced (solid) versus unreduced (dashed) loads

Page 1-82 Date 01-JUN-1991

Version number 1.0

Figure 1-16 Plate load display, reduced (solid) versus unreduced (dashed) loads

Version number	Date	Page
1.0	01-JUN-1991	1-83

Figure 1-17 OSP load display, reduced (solid) versus unreduced (dashed) loads

## **DISPLAY CODE-CHECK-RESULT**

#### SUBCOMMAND:

... CODE-CHECK-RESULT <RES-name> <ParNam>

#### **PURPOSE:**

Display a Code Check result on the basic Capacity Models. This command gives a display similar to the DIS-PLAY CAPACITY-MODELS command, except that the Capacity Models will have superimposed the numeric value of a Code Check results parameter for a specified Resultcase

#### **PARAMETERS:**

<RES-name> Name of Resultcase <ParNam> Name of Code Check results parameter. The range of parameters available depends on which Code of Practice (API,DnV or NPD) is selected. A complete list of parameter names and parameter descriptions can be obtained by entering the command PRINT NOMENCLATURE CODE-CHECK-RESULTS. See also Chapter 2.

#### **EXAMPLES:**

- 1 DISPLAY CODE-CHECK-RESULT 2 UCmax (see next page)
- 2 See Chapter 3

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS SELECT CAPACITY-MODEL VIEW RUN CODE-CHECK-ANALYSIS PRINT NOMENCLATURE CODE-CHECK-RESULTS

Version number	Date	Page
1.0	01-JUN-1991	1-85

Figure 1-18 A Code Check results display

# **DISPLAY OFF**

### **PURPOSE:**

To turn off the automatic re-display in the VIEW or LABEL commands. This enables the user to perform several rotations without having to await a re-display between each rotation.

The automatic re-display is re-enabled by entering any of the other DISPLAY subcommands, for example DIS-PLAY MESH.

See also:

DISPLAY MESH DISPLAY CAPACITY-MODELS VIEW

# 1.6 LABEL

## COMMAND:

 $\left(\begin{array}{c} \text{ELEMENT-NUMBER} \\ \text{ELEMENT-TYPE} \\ \text{NODE-NUMBER} \end{array}\right) \left(\begin{array}{c} \text{ON} \\ \text{OFF} \end{array}\right)$ LABEL (

#### **PURPOSE:**

To label the mesh with node numbers, element numbers etc. Note that when a label is turned ON, it will remain so until it is explicitly turned OFF.

Note that the labels are drawn immediately after the LABEL command is used, unless the DISPLAY OFF command has been used to suppress this.

#### **PARAMETERS:**

ELEMENT-NUMBER	Label the element numbers.
ELEMENT-TYPE	Label the element types.
NODE-NUMBER	Label the node numbers.
ON	Turn on a label. The label remains turned ON until it is turned OFF.
OFF	Turn off a label. The label remains turned OFF until it is turned ON.

See also:

DISPLAY OFF DISPLAY MESH

# **1.7 PLOT**

## **PURPOSE:**

To send last display to plot file. This requires that a DISPLAY command has been used previously.

See also:

DISPLAY SET PLOT FORMAT SET PLOT FILE

Page

1-89

# 1.8 PRINT

COMMAND:

PRINT ( ASSEMBLY-OF-CAPACITY-MODELS ... CAPACITY-MODEL ... CODE-CHECK-RESULTS ... DEFINITIONS ... LOAD-ON-CAPACITY-MODEL ... MATERIAL ... NOMENCLATURE ... RESULTCASE ... SCOPE ... SECTION ... SELECTION ... SUPERELEMENT ...

### **PURPOSE:**

To print input or results data to the screen or to a print file.

## **PARAMETERS:**

ASSEMBLY-OF-CAPACITY-MODELS	Print the main assembly data
CAPACITY-MODEL	Print the Capacity Model geometry data
CODE-CHECK-RESULTS	Print Code Check results
DEFINITIONS	Print global definitions
LOAD-ON-CAPACITY-MODEL	Print reduced Capacity Model loads
MATERIAL	Print material data
NOMENCLATURE	Print Code Check nomenclature tables
RESULTCASE	Print Resultcase definition data
SCOPE	Print scope data
SECTION	Print cross section data
SELECTION	Print Selections
SUPERELEMENT	Print superelement overview

# PRINT ASSEMBLY-OF-CAPACITY-MODELS

### SUBCOMMAND:

.. ASSEMBLY-OF-CAPACITY-MODELS  $\begin{pmatrix} < CMA-name > \\ ALL \end{pmatrix}$ 

#### **PURPOSE:**

To print main Capacity Model assembly definition data, i.e. corner coordinates, number of girders, girder spacings, number of stiffeners, stiffener spacings etc.

#### **PARAMETERS:**

<cma-name></cma-name>	Name of the Capacity Model assembly to print.
ALL	Signifies that all Capacity Model assemblies shall be printed.

### **EXAMPLES:**

1 See Chapter 3.

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS DISPLAY CAPACITY-MODELS DELETE ASSEMBLY-OF-CAPACITY-MODELS

# **PRINT CAPACITY-MODEL**

### SUBCOMMAND:

... CAPACITY-MODEL ( <BCM-name> ALL

## **PURPOSE:**

To print basic Capacity Model definition data, i.e. material data, plate dimensions, girder section, stiffener section etc.

### **PARAMETERS:**

<bcm-name></bcm-name>	Name of the basic Capacity Model to print.
ALL	Signifies that all basic Capacity Models shall be printed.

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS DISPLAY CAPACITY-MODELS DELETE ASSEMBLY-OF-CAPACITY-MODELS

## PRINT CODE-CHECK-RESULTS

#### SUBCOMMAND:

CODE CHECK REDUEID   DO	CODE-CHECK-RESULTS	(SU
-------------------------	--------------------	-----

SUMMARY BRIEF INTERMEDIATE MEDIUM FULL

### **PURPOSE:**

To print results from a Code Check analysis (see RUN CODE-CHECK-ANALYSIS). The results can be printed in several different ways, i.e. with different amounts of Code Check analysis input and output printed together. The type of printout is controlled by use of subcommands SUMMARY, BRIEF etc.

In addition to the above, the results can be ordered according to any of the Code Check result parameters, by use of the DEFINE SORTING PARAMETER command. The sorting order is controlled by use of DEFINE SORTING ORDER INCREASING or DEFINE SORTING ORDER DECREASING.

Filters can also be applied to the print presentation, by use of the commands DEFINE SORTING MAX-ENTRIES, DEFINE SORTING MAX-VALUE and DEFINE SORTING MIN-VALUE, effectively limiting the amount of printout to include only the results range which is currently of greatest interest.

#### **PARAMETERS:**

SUMMARY	Print a Code Check results summary. This command is normally used to obtain a first overview over which combinations of Capacity Models and Resultcases are most likely to fail. The value of the current sorting parameter is printed together with the failure status, Capacity Model and Resultcase names.
BRIEF	Print a brief overview of Code Check results. The difference from the SUMMARY table is that, in the brief table, results are sorted per Capacity Model. For each Capacity Model, the Resultcases are sorted on the basis of the sorting parameter defined. Also, in the brief table, all Unity Criterion factors are printed in addition to the sorting parameter.
INTERMEDIATE	Print all results, including the intermediate result parameters. This print table is a condensed, but complete list of intermediate and final code check results.
MEDIUM	Print all Code Check input and final results together. The input includes basic Capacity Model geometry (plate geometry, stiffener and girder sections, material etc.) and the basic Capacity Model loads (reduced loads). The final results include all the Unity Criterion factors.
FULL	Print all input and results together, i.e. the MEDIUM table followed immediately by the INTERMEDIATE table.

Version number	Date	Page
1.0	01-JUN-1991	1-93

## **EXAMPLES:**

1 See Chapter 3 and Appendix A.

See also:

CREATE ASSEMBLY-OF-CAPACITY-MODELS RUN CODE-CHECK-ANALYSIS

# PRINT CODE-CHECK-RESULTS SUMMARY

### **PURPOSE:**

To print a Code Check results summary. This command is normally used to obtain a first overview over which combinations of Capacity Models and Resultcases are most likely to fail. The value of the current sorting parameter is printed together with the failure status, Capacity Model and Resultcase names.

Note that the length and sorting of this print table is controlled by the use of the DEFINE SORTING command.

#### NOTES:

- 1 **Command is sensitive to Code selection** The results currently selected in the SELECT CODE COMMAND will be printed.
- 2 **Command is sensitive to Capacity Model selection** The Capacity Models currently selected in the SELECT CAPACITY-MODELcommand will be printed
- 3 **Command is sensitive to Resultcase selection** The Resultcases currently selected in the SELECT RESULTCASE command will be printed
- 4 **Command is sensitive to current sorting definitions** The results will be sorted according to last definition entered in DEFINE SORTING PARAMETER and DEFINE SORTING ORDER.
- 5 **Command is sensitive to current sorting filters** The results may be filtered by use of the DEFINE SORTING MAX-ENTRIES, DEFINE SORTING MAX-VALUE and DEFINE SORTING MIN-VALUE.
- 6 **Command is sensitive to current print destination setting** The results will be directed to screen or file according to last SET PRINT DESTINATION setting.

- 1 SELECT CODE API PRINT CODE-CHECK-RESULTS SUMMARY
- 2 See Chapter 3 and Appendix 1.

## PRINT CODE-CHECK-RESULTS BRIEF

### **PURPOSE:**

To print a brief overview of Code Check results, normally after using the PRINT CODE-CHECK-RESULTS SUMMARY command for a first assessment of the results, followed by filter applications (for example DE-FINE SORTING MIN-VALUE 1.0). Filters are applied to suppress results from those analyses that did not cause failure status (UCmax > 1.0).

The difference from the SUMMARY table is that, in the brief table, results are sorted per Capacity Model. For each Capacity Model, the Resultcases are sorted on the basis of the sorting parameter defined. Also, in the brief table, all Unity Criterion factors are printed in addition to the sorting parameter.

#### NOTES:

- 1 **Command is sensitive to Code selection** The results currently selected in the SELECT CODE COMMAND will be printed.
- 2 **Command is sensitive to Capacity Model selection** The Capacity Models currently selected in the SELECT CAPACITY-MODELcommand will be printed
- 3 **Command is sensitive to Resultcase selection** The Resultcases currently selected in the SELECT RESULTCASE command will be printed
- 4 **Command is sensitive to current sorting definitions** The results will be sorted according to last definition entered in DEFINE SORTING PARAMETER and DEFINE SORTING ORDER.
- 5 Command is sensitive to current sorting filters The results may be filtered by use of the DEFINE SORTING MAX-ENTRIES, DEFINE SORTING MAX-VALUE and DEFINE SORTING MIN-VALUE.
- 6 Command is sensitive to current print destination setting The results will be directed to screen or file according to last SET PRINT DESTINATION setting.

#### **EXAMPLES:**

1 See Chapter 3.

# PRINT CODE-CHECK-RESULTS INTERMEDIATE

### **PURPOSE:**

To print all results, including the intermediate result parameters. This print table is a condensed, and complete list of intermediate and final code check results.

The order of the INTERMEDIATE print is the same as in the SUMMARY table, and the order is controlled by the use of the DEFINE SORTING command.

### NOTES:

- 1 **Command is sensitive to Code selection** The results currently selected in the SELECT CODE COMMAND will be printed.
- 2 **Command is sensitive to Capacity Model selection** The Capacity Models currently selected in the SELECT CAPACITY-MODELcommand will be printed
- 3 **Command is sensitive to Resultcase selection** The Resultcases currently selected in the SELECT RESULTCASE command will be printed
- 4 **Command is sensitive to current sorting definitions** The results will be sorted according to last definition entered in DEFINE SORTING PARAMETER and DEFINE SORTING ORDER.
- 5 **Command is sensitive to current sorting filters** The results may be filtered by use of the DEFINE SORTING MAX-ENTRIES, DEFINE SORTING MAX-VALUE and DEFINE SORTING MIN-VALUE.
- 6 **Command is sensitive to current print destination setting** The results will be directed to screen or file according to last SET PRINT DESTINATION setting.

- 1 SELECT CODE API PRINT CODE-CHECK-RESULTS INTERMEDIATE
- 2 See Appendix A, FULL print. The INTERMEDIATE data is included in the FULL print (=second half).

# PRINT CODE-CHECK-RESULTS MEDIUM

### **PURPOSE:**

To print all Code Check input and final results on one page. The input includes basic Capacity Model geometry (plate geometry, stiffener and girder sections, material etc.)and the basic Capacity Model loads (reduced loads). The final results include all the Unity Criterion factors.

The order of the MEDIUM print is the same as in the SUMMARY table, and the order is controlled by the use of the DEFINE SORTING command.

The contents of the print tables are similar to the FULL tables, except that INTERMEDIATE data are not included.

#### NOTES:

- 1 **Command is sensitive to Code selection** The results currently selected in the SELECT CODE COMMAND will be printed.
- 2 **Command is sensitive to Capacity Model selection** The Capacity Models currently selected in the SELECT CAPACITY-MODELcommand will be printed
- 3 **Command is sensitive to Resultcase selection** The Resultcases currently selected in the SELECT RESULTCASE command will be printed
- 4 **Command is sensitive to current sorting definitions** The results will be sorted according to last definition entered in DEFINE SORTING PARAMETER and DEFINE SORTING ORDER.
- 5 **Command is sensitive to current sorting filters** The results may be filtered by use of the DEFINE SORTING MAX-ENTRIES, DEFINE SORTING MAX-VALUE and DEFINE SORTING MIN-VALUE.
- 6 **Command is sensitive to current print destination setting** The results will be directed to screen or file according to last SET PRINT DESTINATION setting.

- 1 SELECT CODE API PRINT CODE-CHECK-RESULTS MEDIUM
- 2 See Appendix A, FULL print. The MEDIUM data is included in the FULL print (= first half).

# PRINT CODE-CHECK-RESULTS FULL

## **PURPOSE:**

To print all input and results together, i.e. the MEDIUM table followed immediately by the INTERMEDIATE table. The order of the FULL print is the same as in the SUMMARY tables, and the order is controlled by the use of the DEFINE SORTING command.

### NOTES:

- 1 **Command is sensitive to Code selection** The results currently selected in the SELECT CODE COMMAND will be printed.
- 2 **Command is sensitive to Capacity Model selection** The Capacity Models currently selected in the SELECT CAPACITY-MODELcommand will be printed
- 3 **Command is sensitive to Resultcase selection** The Resultcases currently selected in the SELECT RESULTCASE command will be printed
- 4 **Command is sensitive to current sorting definitions** The results will be sorted according to last definition entered in DEFINE SORTING PARAMETER and DEFINE SORTING ORDER.
- 5 **Command is sensitive to current sorting filters** The results may be filtered by use of the DEFINE SORTING MAX-ENTRIES, DEFINE SORTING MAX-VALUE and DEFINE SORTING MIN-VALUE.
- 6 **Command is sensitive to current print destination setting** The results will be directed to screen or file according to last SET PRINT DESTINATION setting.

- 1 SELECT CODE API PRINT CODE-CHECK-RESULTS FULL
- 2 See Chapter 3 and Appendix A.

# **PRINT DEFINITIONS**

### **PURPOSE:**

To print the current global definitions, such as sorting definitions, limit state factors, tolerances and phase angle stepping.

#### **EXAMPLES:**

1 PRINT DEFINITIONS

Define option		Value					
Sorting	Parameter Order Max entries Max Value Min Value	UCMAX DECREASING UNLIMITED UNLIMITED UNLIMITED					
Limit State Factor	DNV	E-ULS = PLS =	6.000E-01 1.000E+00	F-ULS = SLS =	8.000E-01 1.000E+00		
Tolerance	Coordinate Angle Parameter	5.436E+01 3.920E-03 1.000E-03					
Phase Angle Stepping	3	0.000E+00 1.800E+02	4.500E+01 2.250E+02	9.000E+01 2.700E+02	1.350E+02 3.150E+02		

#### Table 1.15Print of definitions

# PRINT LOAD-ON-CAPACITY-MODEL

#### SUBCOMMAND:

 $... \ LOAD-ON-CAPACITY-MODEL \ \left( \begin{array}{c} <\!\! \text{BCM-name} \\ ALL \end{array} \right) \left( \begin{array}{c} <\!\! \text{RES-name} \\ ALL \end{array} \right)$ 

### **PURPOSE:**

To print the reduced basic Capacity Model loads. For each Capacity Model, the loads from all resultcases will be printed.

#### **PARAMETERS:**

<bcm-name></bcm-name>	Name of Basic Capacity Model to print loads for
ALL	Print loads for all Basic Capacity Models
<res-name></res-name>	Name of Resultcase to print loads for
ALL	Print loads for all Resultcases

#### **EXAMPLES:**

1 See Chapter 3.

# **PRINT MATERIAL**

## SUBCOMMAND:

... MATERIAL ( <MAT-name> ALL

### **PURPOSE:**

To print the material data defined in the CREATE MATERIAL command, or inherited from the SIN-file by use of the READ SIN-DIRECT-ACCESS command.

#### **PARAMETERS:**

<MAT-name> Name of material to be printed. ALL Print all materials.

#### **EXAMPLES:**

1 See Chapter 3.

## PRINT NOMENCLATURE

### SUBCOMMAND:

... NOMENCLATURE

CAPACITY-MODEL CODE-CHECK-RESULTS

### **PURPOSE:**

To print parameter names and descriptions for the Capacity Model input and the Code Check results.

The PRINT CAPACITY-MODEL and PRINT CODE-CHECK-RESULTS commands does not include a complete description of of each parameter each time a print is produced, as it would in most cases require too much space, since these tables include a large number of parameters.

Therefore, separate print tables with parameter names and descriptions are made available.

#### **PARAMETERS:**

CAPACITY-MODEL	Print names and descriptions of the Basic Capacity Model input parameters.
CODE-CHECK-RESULTS	Print names and descriptions of the intermediate and final Code Check result parameters.

#### **EXAMPLES:**

1 See Chapters 2 and 3.

## PRINT RESULTCASE

#### SUBCOMMAND:

... RESULTCASE ( <RES-name> ALL

#### **PURPOSE:**

To print an overview of Resultcases created either in the CREATE RESULTCASE command, or inherited from the SIN-file by use of the READ SIN-DIRECT-ACCESS command.

In the case of combined resultcases, the source Resultcase names, factors and phase angles will also be printed.

#### **PARAMETERS:**

<RES-name> Name of Resultcase to be printed

ALL Print all Resultcases.

#### **EXAMPLES:**

1 PRINT RESULTCASE ALL

#### Table 1.16Print of resultcases

Res-Name Type L-stat Sel Description

1 Static E-ULS ON LINEAR ANALYSIS (FE-resultcase) 2 Static E-ULS OFF LINEAR ANALYSIS (FE-resultcase) 3 Static E-ULS OFF LINEAR ANALYSIS (FE-resultcase) 4 Static E-ULS OFF LINEAR ANALYSIS (FE-resultcase) 5 Static E-ULS OFF LINEAR ANALYSIS (FE-resultcase) 6 Static E-ULS OFF LINEAR ANALYSIS (FE-resultcase) 7 Static E-ULS OFF LINEAR ANALYSIS (FE-resultcase) 8 Static E-ULS OFF LINEAR ANALYSIS (FE-resultcase) 9 Static E-ULS OFF LINEAR ANALYSIS (FE-resultcase) 10 Static E-ULS OFF LINEAR ANALYSIS (FE-resultcase)

## **PRINT SCOPE ELEMENT**

#### SUBCOMMAND:

... ELEMENT

( <scope-name> ALL

### **PURPOSE:**

To print the description, superelement identification(s), and Finite Element numbers of elements in a saved element scope.

#### **PARAMETERS:**

<scope-name></scope-name>	Name of element scope to be printed			
ALL	Print all element scopes.			

#### **EXAMPLES:**

1 PRINT SCOPE ELEMENT SCOPE1

Name	Туре	Index	Elem	ent	numk	er				
SCOPE1			Test	of	scop	be fa	acili	ty		
	161	1	607	608	609	611	613	627	628	629
			630	631	632	633	634	635	636	637
			638	639	641	643	647	648	649	650
			651	652	653	654	655	656	657	658
			659	660	661	662	664	667	668	669
			670	671	672	673	677	678	679	680
			681	749	789	790	791	797	798	799
			800	801	805	806	807	808	809	810
			811	813	814	815	816	818	819	820
			821	822	831	832	833	834	835	855
			856	857	858	859	860			

#### Table 1.17Print of element scope

See also:

SCOPE ELEMENT INCLUDE SCOPE ELEMENT CONFIRM SCOPE ELEMENT SAVE

# **PRINT SECTION**

### SUBCOMMAND:

... SECTION ( <SEC-name> ALL

#### **PURPOSE:**

To print the cross section data defined in the CREATE SECTION command, or inherited from the SIN-file by use of the READ SIN-DIRECT-ACCESS command.

### **PARAMETERS:**

<SEC-name> Name of cross section to be printed.
ALL Print all cross sections.

## **EXAMPLES:**

1 See Chapter 3.

# **PRINT SELECTION**

### SUBCOMMAND:

... SELECTION ( RESULTCASE CAPACITY-MODEL CODE

## **PURPOSE:**

To print the selections done by use of the SELECT command, or the default selections.

### **PARAMETERS:**

RESULTCASE	Print names of currently selected Resultcases
CAPACITY-MODEL	Print names of currently selected capacity Models
CODE	Print name and references of the currently selected Code of Practice.

## **EXAMPLES:**

-		ADT DODTON	
T	PRINI.	SELECTION	CAPACITY-MODEL

2 PRINT SELECTION CODE

See tables on the next page.

NOMENCLATURE:

#### Table 1.18 Currently selected Basic Capacity Models

NOMENCLATURE: CM-Name Basic Capacity Model name CM-Name CM-Name CM-Name CM-Name _____ Girders: DAG1 Stiffeners: DAS1.2DAS1.3DAS1.4DAS2.1DAS2.2DAS2.3DAS2.5DAS2.4 DAS1.1 DAS1.5 DAS2.4 Plates: DAP1.2 DAP1.3 DAP1.1 DAP1.4 DAP1.5 DAP1.6 DAP2.1 DAP2.2 DAP2.3 DAP2.4 DAP2.5 DAP2.6

#### Table 1.19 Currently selected Code of Practice

Code Code Refe	erenc	Nar es Re:	me of curr ference do	cuments	selected ation	des	ign code
Code	Code	Referenc	ces				
DNV	Det	norske Ve	eritas				
	a)	Veritas 1 Offshore	Rules for Installat	Classi: ions,	fication July 198	of 9.	Fixed
	b)	Veritas I Offshore	Rules for Units, Ju	Classi: ly 1989	fication 9.	of	Mobile
	C)	Veritas I Offshore July 1989	Rules for Units, Cl 9.	Classi: .assifio	fication cation N	of ote	Mobile 30.1
# **PRINT SUPERELEMENT**

#### SUBCOMMAND:

... SUPERELEMENT ( <Typ> <Idx> ALL

#### **PURPOSE:**

To print an overview of superelements inherited from the SIN-file by use of the READ SIN-DIRECT-ACCESS command.

#### **PARAMETERS:**

<typ></typ>	Superelement type number
<idx></idx>	Superelement index number
ALL	Print all superelements.

### **EXAMPLES:**

1 PRINT SUPERELEMENT 161 1

#### NOMENCLATURE:

Туре	Superelement	Туре
Index	Superelement	Index

TypeIndexDescription1611Elements: 887, Nodes: 608

# **1.9 READ**

### COMMAND:

READ SIN-DIRECT-ACCESS <prefix> <name>

#### **PURPOSE:**

To establish a link from the PLATEWORK database file to a direct access SESAM Results Interface file (SINfile), containing Finite Element analysis results from one or several superelements.

Note that you may have to use PREPOST to convert the FE-analysis results into the direct access format, if the results were created in another format by the analysis program.

After executing this command, the PLATEWORK database will contain the prefix and name of the SIN-file, enabeling automatic re-opening of the SIN-file in subsequent PLATEWORK sessions.

PLATEWORK will also transfer vital reference information, such as overview over superelements, resultcases, cross sections, materials etc. This information is referenced later on the use of the CREATE ASSEMBLY-OF-CAPACITY-MODELS COMMAND.

#### **PARAMETERS:**

<prefix> SIN-file prefix

<name> SIN-file name

#### NOTES:

#### 1 Select Code of Practice first

Before this command is entered, the user should use SELECT CODE. This will ensure that valid limitstate kinds will be assigned to the resultcases inherited from the FEM-analysis.

#### 2 Default limit-state kinds will be assigned to resultcases

The resultcases will be given default limit-state kinds as described under CREATE RESULTCASE. If required, CHANGE RESULTCASE can be used to modify the limit-states assigned.

#### 3 Combination resultcases can be inherited from the SIN-file

PREPOST /4/ has features for defining resultcase combinations. The combination definitions stored on the SIN-file by use of PREPOST, will be automatically inherited by PLATEWORK, provided that the definitions were stored on the SIN-file before the PLATEWORK READ-SIN-DIRECT-ACCESS command was entered.

#### 4 Multi-superelement FEM-analyses

Page 1-110 Date 01-JUN-1991

When the FE-model consists of several superelements, PLATEWORK will automatically read the superelement information for all superelements that have been retracked, i.e. superelement transformations and basic element and node data will be read.

#### 5 Cross sections

Beam cross section data stored on the SIN-file will automatically be inherited by PLATEWORK, as if created by use of the CREATE SECTION command. Note that if several superelements have cross section data, a new PLATEWORK cross section will be created for each cross section in every superelement.

#### 6 Materials

Material data stored on the SIN-file will automatically be inherited by PLATEWORK, as if created by use of the CREATE MATERIAL command. Note that if several superelements have material data, a new PLATEWORK material will be created for each material in every superelement.

#### **EXAMPLES:**

1 READ SIN-DIRECT-ACCESS SINDIR:SESTRA R100

See also:

SELECT CODE CHANGE SIN-DIRECT-ACCESS CREATE RESULTCASE

# 1.10 RUN

### COMMAND:

RUN CODE-CHECK-ANALYSIS

#### **PURPOSE:**

To run an analysis. The analysis is executed for the currently selected basic Capacity Models and Resultcases,

#### SUBCOMMANDS:

CODE-CHECK-ANALYSIS

Run a Code Check analysis. The Code Check analysis is executed for the currently selected Code of Practice

See also:

SELECT CODE SELECT CAPACITY-MODEL SELECT RESULTCASE.

# **1.11 SCOPE ELEMENT**

### SUBCOMMAND:

... ELEMENT

INCLUDE ... EXCLUDE ... CLEAR CONFIRM ... SAVE ...

### **PURPOSE:**

To limit the part of the FE-model that can be accessed, in order to

- Reduce CPU-time used and increase program response.
- Improve overview of model (eg. in the DISPLAY MESH command).
- Guide the program in finding correct solutions (e.g. when using the AUTOMATIC options in the CREATE ASSEMBLY-OF-CAPACITY-MODELS command).

The scope limits all functions in the program that access the scope objects (i.e. the elements), and can therefore also be used to guide the program in finding a correct solution faster than if the program worked on the full model.

INCLUDE	Include elements into a temporary scope
EXCLUDE	Exclude elements from a temporary scope
CLEAR	Clear the current temporary scope
CONFIRM	Confirm the current temporary scope
SAVE	Save the confirmed scope in the database

Version number	Date	Page
1.0	01-JUN-1991	1-113

# **SCOPE ELEMENT INCLUDE**

### SUBCOMMAND:

INCLUDE	SAVED	<scope-name></scope-name>
	SUPERELEMENT	<typ><idx></idx></typ>
	GROUP	<typ><idx> <start><stop><step></step></stop></start></idx></typ>
	PLANE	( ( <typ><idx><node>)*3 PICK <pick>*3</pick></node></idx></typ>
	TRAPEZOID	( ( <typ><idx><node>)*4 PICK <pick>*4</pick></node></idx></typ>
	TYPE	<element-type></element-type>

### **PURPOSE:**

To include elements into the current temporary scope. Note that the scope must be confirmed by use of SCOPE ELEMENT CONFIRM before the scope can be used. Note also that it is not possible to to include more elements into a confirmed scope, without turning off the confirmation first, by using SCOPE ELEMENT CONFIRM OFF.

SAVED	Include all elements in a previously saved scope.
<scope-name></scope-name>	Name of the saved scope.
SUPERELEMENT	Include all elements in a specific superelement.
<typ></typ>	Superelement type number
<idx></idx>	Superelement index number
GROUP	Include a group of elements in a specific superelement.
<typ></typ>	Superelement type number
<idx></idx>	Superelement index number
<start></start>	First element number in the group
<stop></stop>	Last element number in the group

Page 1-114	Date 01-JUN-1991	Version number 1.0
<step></step>	Step in element numbering	
PLANE	Include all elements lying in a plane	
<typ></typ>	Superelement type number	
<idx></idx>	Superelement index number	
<node></node>	Node number defining a point in the plane	
PICK	Pick a node using mouse or graphics cursor	
TRAPEZOID	Include all elements lying in the trapezoid plane and lying contouching the trapezoid border.	npletely inside or
<typ></typ>	Superelement type number	
<idx></idx>	Superelement index number	
<node></node>	Node number defining one of the 4 trapezoid corners	
PICK	Pick a node using mouse or graphics cursor	
TYPE	Include all elements of a given element type	
<element-type></element-type>	SESAM element type name, see table 1.20, page 1-115.	

### **EXAMPLES:**

- 1 SCOPE ELEMENT INCLUDE SUPERELEMENT 161 1
- 2 SCOPE ELEMENT INCLUDE GROUP 161 1 50 60 2
- 3 SCOPE ELEMENT INCLUDE TYPE BEAM-2NODES

Version number **1.0** 

Page 1-115

# Table 1.20SESAM element type names

**MEMBRANE-3NODES MEMBRANE-8NODES MEMBRANE-4NODES TRUSS-2NODES** MASS-1NODE MASS-2NODES **DAMPER-2NODES BEAM-2NODES** AXIAL-SPRING-2NODES AXIAL-DAMPER-2NODES SPRING-TO-GROUND DAMPER-TO-GROUND SOLID-20NODES SOLID-8NODES **BEAM-3NODES** SHELL-4NODES SHELL-3NODES SHELL-6NODES SANDWICH-6NODES SHELL-8NODES SANDWICH-8NODES SOLID-15NODES SOLID-10NODES SOLID-6NODES SOLID-4NODES **TRANSITION-18NODES** TRANSITION-15NODES **TRANSITION-12NODES** SPRING-2NODES AXISYMMETRIC-3NODES AXISYMMETRIC-4NODES AXISYMMETRIC-6NODES AXISYMMETRIC-8NODES PILE-SOIL-1NODE CONTACT-1+1NODE CONTACT-2+2NODES AXISYMMETRIC-CONTACT-3+3NODES **CONTACT-4+4NODES CONTACT-8+8NODES CONTACT-9+9NODES** SHELL-9NODES SOLID-21-T0-27-NODES

# SCOPE ELEMENT EXCLUDE

# SUBCOMMAND:

EXCLUDE	SAVED	<scope-name></scope-name>
	SUPERELEMENT	<typ><idx></idx></typ>
	GROUP	<typ><idx> <start><stop><step></step></stop></start></idx></typ>
	PLANE	( <typ><idx><node>)*3 PICK <pick>*3</pick></node></idx></typ>
	TRAPEZOID	( ( <typ><idx><node>)*4 PICK <pick>*4</pick></node></idx></typ>
	TYPE	<element-type></element-type>

### **PURPOSE:**

To exclude elements from the current temporary scope. Note that the scope must be confirmed by use of SCOPE ELEMENT CONFIRM before the scope can be used.

SAVED	Exclude all elements in a previously saved scope.
<scope-name></scope-name>	Name of the saved scope.
SUPERELEMENT	Exclude all elements in a specific superelement.
<typ></typ>	Superelement type number
<idx></idx>	Superelement index number
GROUP	Exclude a group of elements in a specific superelement.
<typ></typ>	Superelement type number
<idx></idx>	Superelement index number
<start></start>	First element number in the group
<stop></stop>	Last element number in the group
<step></step>	Step in element numbering

Version number	Date	Page
1.0	01-JUN-1991	1-117

PLANE	Exclude all elements lying in a plane
<typ></typ>	Superelement type number
<idx></idx>	Superelement index number
<node></node>	Node number defining a point in the plane
PICK	Pick a node using mouse or graphics cursor
TRAPEZOID	Exclude all elements lying in the trapezoid plane and lying completely inside or touching the trapezoid border.
<typ></typ>	Superelement type number
<idx></idx>	Superelement index number
<node></node>	Node number defining one of the 4 trapezoid corners
PICK	Pick a node using mouse or graphics cursor
ТҮРЕ	Exclude all elements of a given element type
<element-type></element-type>	SESAM element type name, see table 1.20, page 1-115.

# SCOPE ELEMENT CANCEL

#### **PURPOSE:**

To cancel the current scope definition. The whole model becomes current. A new temporary scope may now be defined by using SCOPE ELEMENT INCLUDE.

# SCOPE ELEMENT CONFIRM

#### SUBCOMMAND:

... CONFIRM

DEFINED COMPLEMENT OFF

### **PURPOSE:**

To confirm the current temporary scope, and enable the scope for use.

#### **PARAMETERS:**

DEFINED	Confirm the elements in the current temporary scope, i.e. the elements referenced in previus SCOPE ELEMENT INCLUDE commands.
COMPLEMENT	Confirm the elements complement to the current tamporary scope, i.e. the complement set of elements to the elements referenced in previus SCOPE ELEMENT INCLUDE commands.
OFF	Turn off scope confirmation. The definition of the temporary scope is retained so it can be modified and re-confirmed for later use.

See also:

SCOPE ELEMENT INCLUDE SCOPE ELEMENT EXCLUDE SCOPE ELEMENT CANCEL SCOPE ELEMENT SAVE

# SCOPE ELEMENT SAVE

#### SUBCOMMAND:

... SAVE <scope-name> <Description>

#### **PURPOSE:**

Save the current confirmed element scope in the PLATEWORK database, for later reference in SCOPE ELE-MENT INCLUDE or SCOPE ELEMENT EXCLUDE commands.

A saved element scope can also be printed, by use of the PRINT SCOPE ELEMENT command.

#### **PARAMETERS:**

- <scope-name> Name of the saved element scope
- <Description> Description of the saved element scope

See also:

SCOPE ELEMENT INCLUDE SAVED PRINT SCOPE ELEMENT

# 1.12 SELECT

# COMMAND:

SELECT ( RESULTCASE ... CAPACITY-MODEL ... CODE ...

### **PURPOSE:**

To select Code of Practice, Resultcases and basic Capacity Models. The selection is significant in a Code Check analysis (only the selected Capacity Models and Resultcases are Code Checked). The selection is also significant for the PRINT and DISPLAY commands.

RESULTCASE	Select Resultcases
CAPACITY-MODEL	Select basic Capacity Models
CODE	Select current Code of Practice

# SELECT RESULTCASE

### SUBCOMMAND:

 $... RESULTCASE \left( \begin{array}{c} <\!\!RES\text{-name} \!\!> \\ ALL \end{array} \right) \left( \begin{array}{c} ON \\ OFF \end{array} \right)$ 

# **PURPOSE:**

To select resultcases for different purposes, such as Code Check analysis or Code Check results print.

#### **PARAMETERS:**

<res-name></res-name>	Name of Resultcase to be selected
ALL	All Resultcases are selected
ON	The specified Resultcase(s) is/are selected.
OFF	The specified Resultcase(s) is/are not selected.

# **EXAMPLES:**

1 SELECT RESULTCASE ALL ON

See also:

RUN CODE-CHECK-ANALYSIS PRINT CODE-CHECK-RESULTS PRINT SELECTION RESULTCASE

# SELECT CAPACITY-MODEL

### SUBCOMMAND:

```
 ... CAPACITY-MODEL \left( \begin{array}{c} <\!\! BCM\text{-name} \!\!> \\ ASSEMBLY <\!\! CMA\text{-name} \!\!> \\ ALL \end{array} \right) \left( \begin{array}{c} ON \\ OFF \end{array} \right)
```

# **PURPOSE:**

To select basic Capacity Models for different purposes, such as Code Check analysis or Code Check results print.

# **PARAMETERS:**

<bcm-name></bcm-name>	Name of basic Capacity Model to be selected
ALL	All basic Capacity Models are selected
ON	The specified basic Capacity Model(s) is/are selected.
OFF	The specified basic Capacity Model(s) is/are not selected.

### **EXAMPLES:**

- 1 SELECT CAPACITY-MODEL ALL OFF
- 2 SELECT CAPACITY-MODEL XMANG1 ON

See also:

RUN CODE-CHECK-ANALYSIS PRINT SELECTION CAPACITY-MODEL

# **SELECT CODE**

### SUBCOMMAND:

 $... CODE \left( \begin{array}{c} API \\ DNV \\ NPD \end{array} \right)$ 

**PURPOSE:** 

To select the current Code of Practice. Note that the selection is saved on the database and need not be specified in later PLATEWORK sessions using the same database.

### **PARAMETERS:**

API	Select American Petroleum Institute Code of Practice
DNV	Select Det norske Veritas Code of Practice
NPD	Select Norwegian Petroleum Directorate Code of Practice

See also:

RUN CODE-CHECK-ANALYSIS PRINT SELECTION CODE

# 1.13 SET

# COMMAND:

```
SET ( COMMAND-INPUT-FILE ...
DISPLAY ...
PLOT ...
PRINT ...
```

# **PURPOSE:**

Set or re-set global file/device environment characteristics.

COMMAND-INPUT-FILE	Define the name of a command input file containing PLATEWORK commands to be executed later by use of "#"
DISPLAY	Set display characteristics.
PLOT	Set plot file characteristics.
PRINT	Set print characteristics.

# SET COMMAND-INPUT-FILE

#### SUBCOMMAND:

... COMMAND-INPUT-FILE <prefix> <name>

#### **PURPOSE:**

To define the name of a command input file containing PLATEWORK commands to be executed later by use of the "#" command.

#### **PARAMETERS:**

<prefix></prefix>	Command input file prefix
<name></name>	Command input file name

# EXAMPLES:

1 SET COMMAND-INPUT-FILE INDIR: PLATEWORK_IN

See also:

#

# SET DISPLAY

### SUBCOMMAND:

... DISPLAY ( DESTINATION ... DEVICE ... WORKSTATION-WINDOW ...

# **PURPOSE:**

To set display characteristics.

DESTINATION	Set the destination of the graphics produced in the DISPLAY command.
DEVICE	Set the current screen display device type.
WORKSTATION-WINDOW	Set the size and position of the display window when using a workstation device.

# SET DISPLAY DESTINATION

#### SUBCOMMAND:

 $\dots$  Destination (  $\displaystyle \mbox{File} \\ \mbox{SCREEN}$ 

### **PURPOSE:**

To set the destination of the graphics produced in the DISPLAY command.

FILE	Direct the graphics in the DISPLAY command to a plot file.
SCREEN	Direct the graphics in the DISPLAY command to the screen. This is the default.

# SET DISPLAY DEVICE

# SUBCOMMAND:

... DEVICE

{ <Device-number> <Device-name>

# **PURPOSE:**

To set the current screen display device type.

<device-number></device-number>	GPGS-F device number.	
<device-name></device-name>	SESAM device name, one	of:
	TX4014-15-16-54 TX4105 TX4107-09-13-15 VT125 VT240 VT340 WESTWARD-3219 WESTWARD-3220 VAXSTATION-IJIS	(Tekronix b/w devices) (Tektronix 4105) (Tektronix colour devices) (Digital VT 125 screen) (Digital VT 240 screen) (Digital VT 340 screen)
	X-WINDOW	(XWindows window system)

# SET DISPLAY WORKSTATION-WINDOW

#### SUBCOMMAND:

... WORKSTATION-WINDOW <left> <right> <bottom> <top>

#### **PURPOSE:**

To pre-set the size and position of the graphics display window when using a workstation device.

<left></left>	Position of left display window border
<right></right>	Position of right display window border
<bottom></bottom>	Position of bottom display window border
<top></top>	Position of top display window border



Figure 1-19 Setting a workstation-window

# SET PLOT

# SUBCOMMAND:

 $\dots PLOT \quad \left( \begin{array}{c} FORMAT \\ FILE \end{array} \right)$ 

# **PURPOSE:**

To set plot file characteristics.

FORMAT	Set the type of plot file to be used
FILE	Set the prefix and name of the plot file.

# SET PLOT FORMAT

### SUBCOMMAND:

... FORMAT ( SESAM-NEUTRAL POSTSCRIPT

**PURPOSE:** 

To set the type of plot file format to be used in subsequent PLOT commands.

- SESAM-NEUTRAL SESAM Neutral format. This is the default format.
- POSTSCRIPTPostScript format (PostScript is a trademark of Adobe Systems Incorporated).<br/>Note that this requires access to a printer that accepts PostScript files.

# **SET PLOT FILE**

# SUBCOMMAND:

... FILE <prefix> <name>

### **PURPOSE:**

To set the prefix and name of the plot file to be used in subsequent PLOT commands. Previous plot file (if any) will be closed

#### **PARAMETERS:**

<prefix> Plot file prefix.

<name> Plot file name.

# **SET PRINT**

# SUBCOMMAND:

... PRINT ( DESTINATION ... FILE ... PAGE-ORIENTATION ...

### **PURPOSE:**

To set print characteristics.

DESTINATION	Set the print destination to screen or print file.
FILE	Set the prefix and name of the print file.
PAGE-ORIENTATION	Set the page orientation for the print file.

Version number	
1.0	

# SET PRINT DESTINATION

# SUBCOMMAND:

... DESTINATION  $\left( \begin{array}{c} \text{SCREEN} \\ \text{FILE} \end{array} \right)$ 

# **PURPOSE:**

To set the print destination to screen or print file.

### **PARAMETERS:**

FILE Direct print to the print file.

# SET PRINT FILE

# SUBCOMMAND:

... FILE <prefix> <name>

# **PURPOSE:**

To set the prefix and name of the print file.

#### **PARAMETERS:**

<prefix> Print file prefix.

<name> Print file name.

# **SET PRINT PAGE-ORIENTATION**

# SUBCOMMAND:

LANDSCAPE PORTRAIT ... PAGE-ORIENTATION

# **PURPOSE:**

To set the page orientation for the print file.

### **PARAMETERS:**

LANDSCAPE The print page is 132 characters wide

PORTRAIT The print page is 80 characters wide



Figure 1-20 Setting PORTRAIT and LANDSCAPE print page orientations

# 1.14 VIEW

### COMMAND:

VIEW	( FRAME
	PAN
	POSITION
	ROTATE
	( ZOOM

#### **PURPOSE:**

To control the appearance of the view, by specification of view angles, zoom and pan.

Note that the current view is redrawn each time the VIEW command is used, unless the DISPLAY OFF command has been used to suppress this.

#### **PARAMETERS:**

FRAME	Perform an automatic zoom to fit the current view within the, frame of the display
PAN	Pan (shift) the current view in the plane of the screen.
POSITION	Define the view angles by specifying a point in space which, together with the centre of the model's coordinate system, defines the direction of the user's observation.
ROTATE	Rotate view by specifying rotation angles.
ZOOM	Zoom in or out.

See also:

DISPLAY OFF DISPLAY MESH DISPLAY CAPACITY-MODELS

# **VIEW FRAME**

# **PURPOSE:**

Perform an automatic zoom to fit the current view within the frame of the display.

See also:

DISPLAY OFF DISPLAY MESH DISPLAY CAPACITY-MODELS VIEW ZOOM VIEW PAN

# **VIEW PAN**

#### SUBCOMMAND:

... PAN <pick_from> <pick_to>

#### **PURPOSE:**

Pan (shift) the current view in the plane of the screen. The view is shifted by defining a vector in the plane of the screen. The vector is defined by picking the "from" and the "to" positions, see below.

#### **PARAMETERS:**

<pick_from></pick_from>	Pick (using mouse or cross-hair) a point on the screen to define the "from" position.
<pick_to></pick_to>	Pick (using mouse or cross-hair) a point on the screen to define the "to" position.

# **EXAMPLES:**

1 See Chapter 3.

See also:

DISPLAY OFF DISPLAY MESH DISPLAY CAPACITY-MODELS VIEW ZOOM VIEW FRAME

# **VIEW POSITION**

#### SUBCOMMAND:

... POSITION <x-model> <y-model> <z-model>

#### **PURPOSE:**

Define the view angles by specifying a point in space. The imaginary line from this point towards the origin of the model's coordinate system defines the direction of the user's observation.

Note that this command is independent of any previously entered rotations, and can therefore be used to "reset" the viewing direction.

#### **PARAMETERS:**

<x-model></x-model>	x-coordinate in the model's coordinate system
<y-model></y-model>	y-coordinate in the model's coordinate system
<z-model></z-model>	y-coordinate in the model's coordinate system

#### **EXAMPLES:**

1 See Chapter 3.

See also:

DISPLAY OFF DISPLAY MESH DISPLAY CAPACITY-MODELS VIEW ROTATE VIEW FRAME

Page 1-142		Date 01-JUN-1991			Version number 1.0
VIEW ROT	ATE os:				
ROTATE (	(TO UP DOWN LEFT RIGHT CLOCKWISE	<angle-x> <angle-y> <angle-z: <angle-x-screen> <angle-x-screen> <angle-y-screen> <angle-y-screen> <angle-y-screen></angle-y-screen></angle-y-screen></angle-y-screen></angle-x-screen></angle-x-screen></angle-z: </angle-y></angle-x>	>	( Screen mode)	
	(X-AXIS Y-AXIS Z-AXIS	<angle-x-model> <angle-y-model> <angle-z-model></angle-z-model></angle-y-model></angle-x-model>	)	(Space mode)	

#### **PURPOSE:**

Rotate view by specifying rotation angles. Note that this command operates in two basic modes, screen mode and space mode.

Screen mode (TO,UP,DOWN,LEFT,RIGHT & CLOCKWISE alternatives): Here, all angles are relative to the screen axes, which remains fixed, no matter how many rotations are entered. The angles should be interpreted such that it is the observer (the user) that revolves around a stationary model.

The origin of the screen axis system lies in the centre of the screen. The x-axis is horizontal and points from the origin towards the right hand side of the screen. The y-axis is vertical and points from the origin towards the top of the screen. The z-axis is horizontal and points from the origin and out of the screen (towards the user).

Space mode (X-AXIS,Y-AXIS & Z-AXIS alternatives). Here, all angles are relative to the model axes, which follow the rotations. The angles should be interpreted such that it is the model coordinate system that rotates relative to the observer.

ТО	<angle-x> <angle-y> <angle-z> This alternative is independent of all previously entered rotations. At the execution of this command, the program first re-initializes the rotations, such that the model and screen axes overlap. Then, the x,y and z rotations specified by the user are applied, in the same order.</angle-z></angle-y></angle-x>
UP	<angle-x-screen> Rotate the view position <angle-x-screen> degrees UP, relative to the screen x-axis, from the current position.</angle-x-screen></angle-x-screen>
DOWN	<angle-x-screen> Rotate the view position <angle-x-screen> degrees DOWN, relative to the screen x-axis, from the current position.</angle-x-screen></angle-x-screen>
LEFT	<angle-y-screen></angle-y-screen>

Version number 1.0	Date P 01-JUN-1991 1-	² age 143
	Rotate the view position <angle-y-screen> degrees LEFT, relative to the screen y-axis, from the current position.</angle-y-screen>	
RIGHT	<angle-y-screen> Rotate the view position <angle-y-screen> degrees RIGHT, relative to the screey-axis, from the current position.</angle-y-screen></angle-y-screen>	een
CLOCKWISE	<angle-z-screen> Rotate the view position <angle-z-screen> degrees CLOCKWISE, relative to a screen z-axis, from the current position.</angle-z-screen></angle-z-screen>	the
X-AXIS	<angle-x-model> Rotate the model coordinate system <angle-x-model> around the model x-axis.</angle-x-model></angle-x-model>	
Y-AXIS	<angle-y-model> Rotate the model coordinate system <angle-x-model> around the model y-axis.</angle-x-model></angle-y-model>	
Z-AXIS	<angle-z-model> Rotate the model coordinate system <angle-x-model> around the model z-axis.</angle-x-model></angle-z-model>	

# **EXAMPLES:**

1 See Chapter 3.

See also:

DISPLAY OFF DISPLAY MESH DISPLAY CAPACITY-MODELS VIEW POSITION VIEW FRAME
## **VIEW ZOOM**

### SUBCOMMAND:

... ZOOM  $\left( \begin{array}{c} IN \\ OUT \end{array} \right) < pick> < pick>$ 

### **PURPOSE:**

To zoom the current view in or out.

### **PARAMETERS:**

- IN Zoom out by pointing to two diagonal corners in a square on the screen. The part of the view within the square will then be enlarged and fitted within the whole screen, causing an illusion of movement towards the model.
- OUT Zoom out by pointing to two diagonal corners in a square on the screen. The current view will then be compressed and fitted within the smaller square, causing an illusion of movement away from the model.

### **EXAMPLES:**

1 See Chapter 3.

See also:

DISPLAY OFF DISPLAY MESH DISPLAY CAPACITY-MODELS VIEW FRAME

# 1.15 #

### COMMAND:

#  $\begin{pmatrix} <NumCom>\\ ALL \end{pmatrix}$ 

### **PURPOSE:**

To execute the PLATEWORK commands in a command input file previously set by use of the SET COMMAND-INPUT-FILE command.

### **PARAMETERS:**

<numcom></numcom>	Number of main PLATEWORK commands to be executed.
ALL	Execute all PLATEWORK commands in the command input file.

### **EXAMPLES:**

1 # ALL

See also:

SET COMMAND-INPUT-FILE

# 1.16 EXIT

### **PURPOSE:**

To close all files opened by the program, cancel display windows and terminate execution of PLATEWORK.

Version number	Date	Page
1.0	01-JUN-1991	A-1

# **Appendix A Tutorial Examples**

# A 1 Simple, stiffened panel

This example describes a simple, stiffened panel modelled in PREFEM, optimized in BPOPT, equations solved in SESTRA and finally Code Checked in PLATEWORK.

Page	Date	Version number
A-2	01-JUN-1991	1.0

# A 1.1 The model



Figure A-1 Main model geometry

Version number	Date	Page
1.0	01-JUN-1991	A-3

The model consists of a simple panel with 1 girder, 4 stiffeners, and 6 plates as shown in figure A-1. The girder is modelled with an I-section and the stiffeners are modelled with a L-section, see figure A-2.



Figure A-2 Girder and stiffener cross sections

Date 01-JUN-1991

Version number 1.0

### A 1.1.1 Boundary Conditions

The panel is simply supported along its outer boundaries. The in-plane boundary conditions are illustrated in figure A-3.



Figure A-3 In-plane boundary conditions

### A 1.1.2 Loads

Four basic external loads are applied.



Figure A-4 Loadcase 1

•



Figure A-5 Loadcase 2



Figure A-6 Loadcase 3



Figure A-7 Loadcase 4

### A 1.1.3 Units

Length unit	: mm
Load unit, edge loads	: N/mm
Load unit, surface loads	$: N/mm^2$
Stress unit	: N/mm ²

### A 1.1.4 Material

Linear elastic material

Young's Modulus	$: E=2.1*10^{5}$
Poisson's ratio	: v=0.3

# A 1.2 Modelling in PREFEM

In this section, PREFEM /7/ commands for creating the model are shown:

%% %% OPENED DATE: 18-MAY-1991 14:12:19 %% %% PROGRAM: SESAM PREFEM VERSION: 5.5-01 8-JUN-1990 1.0 01-JUN-1991 A-7 %% COMPUTER: VAXSERVER 3900 SVMS INSTALLATION: VSS LOKE %% USER: CA ACCOUNT: VSS11391 응응 88 8 -----% ! PREFEM COMMAND INPUT FILE T % ! CREATION OF A SIMPLE FE-MODEL FOR USE IN PLATEWORK. ! 8 1 % ! STIFFENED PANEL: ! 8! = 5000 MMLENGTH IN X-DIRECTION: 2000+3000 1 LENGTH IN Y-DIRECTION: 1250+2500+1250 = 5000 MM Ŷ ! 1 8! 1 GIRDER ! 8! 2 STIFFENERS IN EACH GIRDER SPACING ! 8! 4 LOADCASES ! _____ Ŷ GENERATE SURFACE PAN 1 3 1 3 1 4 1 3 END CARTESIAN 0.0 0.0 0.0 2000.0 0.0 0.0 3000.0 0.0 0.0 END 0.0 1250.0 0.0 0.0 2500.0 0.0 0.0 1250.0 0.0 END SET NUMBEROF-ELEMENTS PANJ22 5 END END PROPERTY THICKNESS ALL-SURFACES-INCLUDED 25.0 END END PROPERTY MATERIAL MAT1 ELASTIC 2.1E5 0.3 7850.0 0.0 0.0 END END CONNECT MATERIAL MAT1 ( ALL-SURFACES-INCLUDED ALL-LINES-INCLUDED ) END PROPERTY SECTION GIR I 420.0 300.0 22.0 12.0 300.0 22.0 1.0 1.0 STF L 160.0 12.0 90.0 12.0 1.0 1.0 POSITIVE END END CONNECT SECTION GIR PANJ* SECTION GIR END END CONNECT SECTION STF PANI* END PROPERTY ECCENTRICITY-BEAM ALL-LINES-INCLUDED CALCULATED-NEGATIVE-Z-OFFSET END END SET ELEMENT-TYPE SURFACE ALL-SURFACES-INCLUDED SHELL-4NODES END END

Date

Page

Version number

Date 01-JUN-1991 Version number 1.0

SET ELEMENT-TYPE LINE ( PANI&2 PANI&3 ) BEAM-2NODES END END SET ELEMENT-TYPE LINE ( PANJ2* ) BEAM-2NODES END END PROPERTY BOUNDARY-CONDITION PANJ1* FIX FREE FIX FIX FIX FIX GLOBAL END END PROPERTY BOUNDARY-CONDITION PANJ3* FREE FREE FIX FIX FIX FIX GLOBAL END END PROPERTY BOUNDARY-CONDITION PANI&1 FREE FIX FIX FIX FIX FIX GLOBAL END END PROPERTY BOUNDARY-CONDITION PANI&4 FREE FREE FIX FIX FIX FIX GLOBAL END END PROPERTY LOAD 1 LINE-LOAD PANJ3& GLOBAL -1000.0 600.0 0.0 END MIDDLE-SURFACE-SHELL-ELEMENT LINE-LOAD PANI&4 GLOBAL 600.0 -800.0 0.0 END MIDDLE-SURFACE-SHELL-ELEMENT NORMAL-PRESSURE ALL-SURFACES-INCLUDED -0.004 END MIDDLE-SURFACE END END PROPERTY LOAD 2 LINE-LOAD PANJ3& GLOBAL -1000.0 -600.0 0.0 END MIDDLE-SURFACE-SHELL-ELEMENT LINE-LOAD PANI&4 GLOBAL -600.0 -800.0 0.0 END MIDDLE-SURFACE-SHELL-ELEMENT NORMAL-PRESSURE ALL-SURFACES-INCLUDED +0.007 END MIDDLE-SURFACE END END PROPERTY LOAD 3 LINE-LOAD PANJ3& GLOBAL LINEAR-2POINTS-VARYING PANP31 -1800.0 PANP34 400.0 -600.0 0.0 END MIDDLE-SURFACE-SHELL-ELEMENT LINE-LOAD PANI&4 GLOBAL -600.0 LINEAR-2POINTS-VARYING PANP14 -1200.0 PANP34 600.0 0.0 END MIDDLE-SURFACE-SHELL-ELEMENT NORMAL-PRESSURE ALL-SURFACES-INCLUDED -0.015 END MIDDLE-SURFACE END END PROPERTY LOAD 4 LINE-LOAD PANJ3& GLOBAL LINEAR-2POINTS-VARYING PANP31 -1800.0 PANP34 400.0 -600.0 0.0 END MIDDLE-SURFACE-SHELL-ELEMENT

Version number	Date	Page
1.0	01-JUN-1991	A-9

```
LINE-LOAD PANI&4 GLOBAL -600.0 -400.0 0.0 END
MIDDLE-SURFACE-SHELL-ELEMENT
NORMAL-PRESSURE ALL-SURFACES-INCLUDED +0.015 END MIDDLE-SURFACE
END
END
MESH ALL
WRITE 10
SET GRAPHICS EYE-DIRECTION 0.0 0.0 1.0
 END
END
 SET GRAPHICS PRESENTATION BEAM-ELEMENT OUTLINE-SECTION
END
 END
SET GRAPHICS SIZE-SYMBOLS SECTION-FACTOR 1.0
 END
END
END
SET GRAPHICS SIZE-SYMBOLS BOUNDARY-CONDITION-SYMBOLS 4.0
END
END
END
 ,
<del>%</del>
%% CLOSED DATE: 18-MAY-1991 14:13:11
88
```

## A 1.3 Analysis in SESTRA

In this section, SESTRA /8/ direct input for static analysis of the model is shown:

```
INAM X82M
ITOP
       10.
                                                           1.00E-05
CMAS
         Ο.
                    Ο.
                          Ο.
RETR
         3.
              1.
RSEL
         1.
                                           1.
RNAM X82M
                    SIN
Ζ
```

# A 1.4 Code Checking in PLATEWORK

In this section, PLATEWORK commands for post processing the model are shown:

```
%%
%% OPENED DATE: 19-MAY-1991 11:37:25
%%
%% PROGRAM: SESAM PLATEWORK VERSION: D1.0-02 11-APR-1991
```

Date 01-JUN-1991

Version number 1.0

%% COMPUTER: VAXSERVER 3900 SVMS INSTALLATION: VSS LOKE %% USER: CA ACCOUNT: VSS11391 88 %_____ % First set up some DISPLAY & PRINT characteristics %_____ SET DISPLAY DEVICE X-WINDOW SET DISPLAY WORKSTATION-WINDOW 28 120 8 100 SET PRINT PAGE-ORIENTATION PORTRAIT SET PRINT DESTINATION FILE 8-----% Read the SESAM direct access result file created by SESTRA 8...... READ SIN-DIRECT-ACCESS X82M R10 8-----% Display the mesh and create a plot file %_____ DISPLAY MESH LABEL NODE-NUMBERS ON SET PLOT FILE X82M MESH PLOT ,

Version number	Date	Page
1.0	01-JUN-1991	A-11



Figure A-8 Plot of mesh read from SIN-file

Date 01-JUN-1991

Version number 1.0

```
SELECT CODE API
,
CREATE ASSEMBLY-OF-CAPACITY-MODELS X82M
 NODES
 10 1 25
 10 1 53
 10 1 70
 10 1 42
 GIRDERS AUTOMATIC
 STIFFENERS AUTOMATIC
 PLATES AUTOMATIC
 MATERIALS AUTOMATIC
8-----
                       -----
% Display the Capacity Models and create another plot file
8-----
                    DISPLAY CAPACITY-MODELS
SET PLOT FILE X82M CM
PLOT
```



Figure A-9 Plot of Capacity Models created

Version number Date Page 01-JUN-1991 1.0 A-13 8-----% Print some Capacity Models to a separate print file ° SET PRINT FILE X82M CM PRINT CAPACITY-MODEL X82MG1 PRINT CAPACITY-MODEL X82P2.2 1 19-MAY-1991 13:39 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 1 Basic Capacity Model Dimensions SUB PAGE: 1 Capacity Model: X82MG1 Type : GIR Corner coordinates X1 = 2.000E+03 Y1 = 0.000E+00 Z1 = 0.000E+00 X2 = 2.000E+03 Y2 = 5.000E+03 Z2 = 0.000E+00 Material parameters fp = 2.040E+02 E = 2.100E+05 fy = 3.400E+02ny = 3.000E-01Plate geometry Ly = 5.000E+03lx1 = 2.000E+03lx2 = 3.000E+03t1 = 2.500E+01t2 = 2.500E+01lya = 1.667E+03Stiffener section hws = 1.480E+02 tws = 1.200E+01 bfs = 9.000E+01 tfs = 1.200E+01 afs = 0.000E+00 efs = 3.900E+01 Girder section hwg = 3.980E+02 twg = 1.200E+01 bfg = 3.000E+02 tfg = 2.200E+01 afg = 0.000E+00 efg = 0.000E+00 Girder parameters Lty = 5.000E+03 kg = 1.000E+00 mg = 8.000E+00 GTYP = 0 GSTF = 0

Page <b>A-14</b>	Page         Date           A-14         01-JUN-1991						on num	nber 1.0	
19-MAY-1	.991 13:39 PROGRA	M: SESAM	PLATEWO	RK D1.0-02	2 11-APR-19	991 P	AGE:	2	
	Basic	Capacity Mo	odel Dimer	nsions		SUB P	AGE:	1	
Capacity Type	Model: X82MO : OSP								
Corner of X1 X2 X3 X4 Material fy ny Plate ge Lx lya Stiffene hws tfs Girder s hwg tfg	<pre>coordinates = 0.000E+00 = 5.000E+03 = 0.000E+00 . parameters = 3.400E+02 = 3.000E-01 cometry = 5.000E+03 = 1.667E+03 er section = 1.480E+02 = 1.200E+01 section = 3.980E+02 = 2.200E+01</pre>	Y1 = 0.0 Y2 = 0.0 Y3 = 5.0 Y4 = 5.0 fp = 2.0 Ly = 5.0 t = 2.5 tws = 1.2 twg = 1.2	000E+00 000E+03 000E+03 040E+02 000E+03 500E+01 200E+01	Z1 = Z2 = Z3 = Z4 = E = lxa = bfs = bfg =	0.000E+00 0.000E+00 0.000E+00 2.100E+05 2.500E+03 9.000E+01 3.000E+02				
<pre>% % Create % Here, % This s % Note t % API cc % , SELECT , CREATE</pre>	e 5 result combin a similar set of implifies the Co hat Capacity Mod ombinations CODE API RESULTCASE API1 COMBINATION	ations. combinatio de Check ar el loads ha	ons is cre nalysis an ave not be	eated for nd the res een create	each Code. sult presen ed yet.	ntatio	n.	-	
CREATE	END RESULTCASE API2	'API RESULT	TCASE 2' S	STATIC ST	ORM				

COMBINATION 2 1.0 0.0 END CREATE RESULTCASE API3 'API RESULTCASE 3' STATIC STORM COMBINATION 3 1.0 0.0 END CREATE RESULTCASE API4 'API RESULTCASE 4' STATIC STORM COMBINATION 4 1.0 0.0 END CREATE RESULTCASE API5 'API Combination 1' STATIC STORM COMBINATION 1 0.5 0.0 3 0.3 0.0 4 0.2 0.0 END §_____ % DNV combinations 8...... SELECT CODE DNV CREATE RESULTCASE DNV1 'DNV RESULTCASE 1' STATIC E-ULS COMBINATION 1 1.0 0.0 END CREATE RESULTCASE DNV2 'DNV RESULTCASE 2' STATIC E-ULS COMBINATION 2 1.0 0.0 END CREATE RESULTCASE DNV3 'DNV RESULTCASE 3' STATIC E-ULS COMBINATION 3 1.0 0.0 END CREATE RESULTCASE DNV4 'DNV RESULTCASE 4' STATIC E-ULS COMBINATION 4 1.0 0.0 END CREATE RESULTCASE DNV5 'DNV Combination 1' STATIC E-ULS COMBINATION 1 0.5 0.0 3 0.3 0.0 4 0.2 0.0 END oo % NPD combinations 8......

SELECT CODE NPD CREATE RESULTCASE NPD1 'NPD RESULTCASE 1' STATIC ULS COMBINATION 1 1.0 0.0 END CREATE RESULTCASE NPD2 'NPD RESULTCASE 2' STATIC ULS COMBINATION 2 1.0 0.0 END CREATE RESULTCASE NPD3 'NPD RESULTCASE 3' STATIC ULS COMBINATION 3 1.0 0.0 END CREATE RESULTCASE NPD4 'NPD RESULTCASE 4' STATIC ULS COMBINATION 4 1.0 0.0 END CREATE RESULTCASE NPD5 'NPD Combination 1' STATIC ULS COMBINATION 1 0.5 0.0 3 0.3 0.0 4 0.2 0.0 END 8 % Now create Capacity Model loads in all basic and combination resultcases &_____ , SELECT RESULTCASE ALL ON CREATE LOAD-ON-CAPACITY-MODEL AUTOMATIC ALL §_____ % Print some of the recently created Capacity Model loads oo SET PRINT FILE X82M CMLOADS PRINT LOAD-ON-CAPACITY-MODEL X82MP2.2 ALL ,

Version number				Date			Page	
1.0 01-JUN-1			01-JUN-1991		A-17			
19-MAY-19	991 13	:43 PROGRAM	1: SESAM	PLATEWORK 1	D1.0-02 11-2	APR-1991	PAGE: 1	
		Capacit	ry Model Loa	ads		SUB	PAGE: 1	
NOMENCLA	FURE:							
Res-Name Type fx1 fx2 fy1 fy2 fxy plat Mbend pdf1	ResResultcase nameTypeStatic or real/imaginary load componentfx1Normal stress*plate thickness (x direction)fx2Normal stress*plate thickness (x direction)fy1Normal stress*plate thickness (y direction)fy2Normal stress*plate thickness (y direction)fxyIn-plane shear stress*plate thicknessplatLateral plate loadMbendBeam bending momentpdf1Lateral plate deflection							
Capacity Type	Model	: X82MP2.2 : PLT						
Res-Name	Туре	fx1 fx2	fy1 fy2	fxy	plat	pdfl	pbst	
1	S	-7.755E+02 -7.577E+02	-4.701E+02 -4.503E+02	2.886E+02	-4.000E-03			
2	S	-1.126E+03 -1.120E+03	-9.000E+02 -1.029E+03	-3.150E+02	7.000E-03			
3	S	-1.233E+03 -4.552E+02	-4.642E+02 -1.879E+02	-6.323E+01	-1.500E-02			
4	S	-1.281E+03 -4.155E+02	-4.475E+02 -9.358E+02	-1.616E+02	1.500E-02			
API1	S	-7.755E+02 -7.577E+02	-4.701E+02 -4.503E+02	2.886E+02	-4.000E-03			
API2	S	-1.126E+03 -1.120E+03	-9.000E+02 -1.029E+03	-3.150E+02	7.000E-03			
API3	S	-1.233E+03 -4.552E+02	-4.642E+02 -1.879E+02	-6.323E+01	-1.500E-02			
API4	S	-1.281E+03 -4.155E+02	-4.475E+02 -9.358E+02	-1.616E+02	1.500E-02			
API5	S	-1.037E+03 -6.242E+02	-4.760E+02 -5.138E+02	9.301E+01	-3.500E-03			
DNV1	S	-7.755E+02 -7.577E+02	-4.701E+02 -4.503E+02	2.886E+02	-4.000E-03			
DNV2	S	-1.126E+03 -1.120E+03	-9.000E+02 -1.029E+03	-3.150E+02	7.000E-03			
DNV3	S	-1.233E+03 -4.552E+02	-4.642E+02 -1.879E+02	-6.323E+01	-1.500E-02			

Page	Date	Version number
A-18	01-JUN-1991	1.0

DNV4	S	-1.281E+03	-4.475E+02	-1.616E+02	1.500E-02	 
		-4.155E+02	-9.358E+02			
DNV5	S	-1.037E+03	-4.760E+02	9.301E+01	-3.500E-03	 
		-6.242E+02	-5.138E+02			
NPD1	S	-7.755E+02	-4.701E+02	2.886E+02	-4.000E-03	 
		-7.577E+02	-4.503E+02			
NPD2	S	-1.126E+03	-9.000E+02	-3.150E+02	7.000E-03	 
		-1.120E+03	-1.029E+03			
NPD3	S	-1.233E+03	-4.642E+02	-6.323E+01	-1.500E-02	 
		-4.552E+02	-1.879E+02			
NPD4	S	-1.281E+03	-4.475E+02	-1.616E+02	1.500E-02	 
		-4.155E+02	-9.358E+02			
NPD5	S	-1.037E+03	-4.760E+02	9.301E+01	-3.500E-03	 
		-6.242E+02	-5.138E+02			

Version numberDatePage1.001-JUN-1991A-19

%-----% Display some of the basic and combination loads.
% Send plots to separate plot files.
,
,
DISPLAY LOAD-ON-CAPACITY-MODEL X82MG1 3 NORMAL
SET PLOT FILE X82M LODG1R3
PLOT



Figure A-10 Plot of girder load

### DISPLAY LOAD-ON-CAPACITY-MODEL X82MP2.2 2 NORMAL SET PLOT FILE X82M LODP22R2 PLOT



Figure A-11 Plot of plate load



Figure A-12 Plot of stiffener load

Date 01-JUN-1991

Version number 1.0

% Run API Code Check. % Select API resultcases first. oo SELECT CODE API SELECT RESULTCASE ALL OFF SELECT RESULTCASE API1 ON SELECT RESULTCASE API2 ON SELECT RESULTCASE API3 ON SELECT RESULTCASE API4 ON SELECT RESULTCASE API5 ON RUN CODE-CHECK-ANALYSIS oo______ % Run DnV Code Check. % Select DnV resultcases first. SELECT CODE DNV SELECT RESULTCASE ALL OFF SELECT RESULTCASE DNV1 ON SELECT RESULTCASE DNV2 ON SELECT RESULTCASE DNV3 ON SELECT RESULTCASE DNV4 ON SELECT RESULTCASE DNV5 ON RUN CODE-CHECK-ANALYSIS % Run NPD Code Check. % Select NPD resultcases first. %_____ SELECT CODE NPD SELECT RESULTCASE ALL OFF SELECT RESULTCASE NPD1 ON SELECT RESULTCASE NPD2 ON SELECT RESULTCASE NPD3 ON SELECT RESULTCASE NPD4 ON SELECT RESULTCASE NPD5 ON RUN CODE-CHECK-ANALYSIS oo % Print a full documentation of the 3 worst failures in each code check. % Also plot UCmax in the worst resultcase for each code check. SELECT RESULTCASE ALL ON SELECT CODE API

1.0				Date	1 age
				01-JUN-1991	A-23
SET PRI DEFINE PRINT C	NT FILE X SORTING MA ODE-CHECK	32MAPI RES AX-ENTRIES -RESULTS S	SULTS SUNLIMITED SUMMARY		
19-MAY-1	991 13:43	PROGRAM:	SESAM PLATE	WORK D1.0-02 11-APR	-1991 PAGE:
		API Code Summary T	Check Results Cable		SUB PAGE:
NOMENCLA	TURE :				
Status UCmax Res-Name L-stat Phas Capacity	-Model	Check sta Maximum o Resultcas Phase and Phase and	atus of all Unity Cr se name se Limit-state gle	iterion factors	
	MOUCT	Basic Cap	bacity model na	ne	
Гуре	Houer	Basic Cap Basic Cap	acity Model ha	ne pe	
Fype Sortin Sortin	ng Paramete g Order	Basic Cap Basic Cap er: UCMAX : DECREA	acity Model Ha bacity Model ty ! Max E ASING ! Max V ! Min V	ne pe ntries: UNLIMITED alue : UNLIMITED alue : UNLIMITED	+ ! ! !
<pre>Type Fype Sortin Status **-PB</pre>	ug Paramete ug Order UCmax 5.14	Basic Cap Basic Cap er: UCMAX : DECREA Res-Nam API2	acity Model Ha pacity Model ty ! Max E ASING ! Max V ! Min V ! Min V me L-stat Phas STORM	ne pe ntries: UNLIMITED alue : UNLIMITED alue : UNLIMITED Capacity-Model X82MP2.2	+ ! ! ! + Type  PLT
Type  Sortin Sortin  status  **-PB **-LB **-LB **-LB **-LB **-LB **-LB **-LB **-LB **-LB **-LB **-LB **-LB **-LB **-LB **-LB **-LB	UCmax 5.14 3.39 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05	Basic Cap Basic Cap er: UCMAX : DECREA Res-Nam API2 API2 API2 API2 API1 API1 API1 API1 API1 API1 API2 API2 API2 API2 API2 API2 API2 API2	Acity Model Ha bacity Model ty ! Max E ASING ! Max V ! Min V Min V ! Min V Min V ! Min	ne pe ntries: UNLIMITED alue : UNLIMITED alue : UNLIMITED Capacity-Model X82MP2.2 X82MP2.2 X82MS2.2 X82MS2.2 X82MS2.2 X82MS2.1 X82MS2.1 X82MS2.1 X82MS2.1 X82MS2.1 X82MS2.1 X82MS2.1 X82MS2.1 X82MS2.1 X82MS2.1 X82MS2.1 X82MS2.1	+ ! ! + PLT PLT STF STF STF STF STF STF STF STF STF ST

Page A-24		Date 01-JUN-1991				ersion num	ber 1.0	
19-MAY-1	.991 13:43	PROGRAM: S	ESAM	PLATEWORI	K D1.0-02	11-APR-1991	PAGE:	2
		API Code C	heck Re	sults				
		Summary Ta	ble			SU	B PAGE:	2
Status	UCmax	Res-Name	L-stat	Phas	Capacity-	Model Typ	e	
**-LB	2.03	API1	STORM		X82MS1.2	STF	-	
**-LB	2.03	API2	STORM		X82MS1.2	STF		
**-LB	2.03	API3	STORM		X82MS1.2	STF		
**-LB	2.03	API4	STORM		X82MS1.2	STF		
**-LB	2.03	API1	STORM		X82MS1.1	STF		
**-LB	2.03	API5	STORM		X82MS1.2	STF		
**-PB	1.98	API3	STORM		X82MP1.2	PLT		
**-PB	1.93	API5	STORM		X82MP2.2	PLT		
**-PB	1.75	API4	STORM		X82MP1.2	PLT		
**-PB	1.67	API1	STORM		X82MP2.2	PLT		
**-LB	1.52	API4	STORM		X82MG1	GIR		
**-LB	1.52	API5	STORM		X82MG1	GIR		
**-LB	1.52	API1	STORM		X82MG1	GIR		
**-LB	1.52	API3	STORM		X82MG1	GIR		
**-LB	1.52	API2	STORM		X82MG1	GIR		
**-PY	1.49	API3	STORM		X82MP2.2	PLT		
**-PB	1.12	API5	STORM		X82MP1.2	PLT		
**-PB	1.07	API2	STORM		X82MP2.1	PLT		
OK-PB	0.92	API4	STORM		X82MP2.1	PLT		
OK-PB	0.57	API3	STORM		X82MP2.1	PLT		
OK-PB	0.56	API2	STORM		X82MP1.1	PLT		
OK-PB	0.55	API1	STORM		X82MP1.2	PLT		
OK-PB	0.52	API2	STORM		X82MP1.3	PLT		
OK-PB	0.47	API3	STORM		X82MP1.3	PLT.		
OK-PB	0.46	API2	STORM		X82MP2.3	PLT		
OK-PB	0.41	APII	STORM		X82MP2.3	PLT.		
OK-PB	0.39	API3	STORM		X82MPI.I	PLT.		
OK-PB	0.37	API5	STORM		X82MP2.1	PLT		
OK-PB	0.34	AP14	STORM		X82MP1.1	PLT		
OK-PB	0.32	API5	STORM		X82MP1.3	PLT		
OK-PI	0.31	AP14 ADIE	SIORM		XO2MP2.3	PLI T.T.		
OK-PB	0.29	APIS	SIORM		X82MP1.1	PLI		
OK-OPBE	0.28	APIZ	STORM		X82MU	USP		
OK-PB	0.27	AP14 ADIE	SIORM		XO2MP1.3	PLI T.T.		
OK-DA	0.20	AF10 ADT0	GTORM DIOKM		XQ2MIF2.3	РШІ П		
OK-DD	0.24	AFIS ADT1	GTORM DIOKM		XQ2MPZ.3	РШІ П		
OK-PB	0.22	APII ADT1	STOKM STOKM		AOZMIPI.J	בער היינים אינים איני אינים אינים אינ		
	0.21	APII ADI4	STOKM STOKM		XOZMPIL.I	PLI		
OK-OPBE	0.21	AF14 ADTO	STOKM STOKM			USP		
	0.10	APIS			XOZMO	USP		
OK-DA OV-OARR	0.17	APIJ ADT1	GTORM DIOKM			רפט שינת		
OK-OPRE	0.17	APT1	STORM		X82MO			

Version number Date Page 1.0 01-JUN-1991 A-25 DEFINE SORTING MAX-ENTRIES 3 PRINT CODE-CHECK-RESULTS FULL 19-MAY-1991 13:43 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 3 API Code Check Results Full Table SUB PAGE: 1 NOMENCLATURE: Plate Plate parameter name PlatePlate parameter namedimensionGeometric dimension valueMaterialCapacity Model material parameterMat-ValueMaterial parameter valueCM-LoadCapacity Model loadLoad-ValueLoad valueUC-FactorUnity Criterion factor UC-Factor Unity Criterion factor UC-Val Unity Criterion factor value +------! Sorting Parameter: UCMAX ! Max Entries: 3 ! ! Sorting Order : DECREASING ! Max Value : UNLIMITED ! ! Min Value : UNLIMITED ! ! +-----+

Page A-26	Date 01-JUN	N-1991			Version num	ber 1.0
19-MAY-1991 13:4	3 PROGRAM: SESAM	PLATEW	IORK D1.0-	02 11-APR-19	991 PAGE:	4
	API Code Check Full Table	Results			SUB PAGE:	2
<pre>+ ! Capacity Model ! Resultcase Nam ! Code Check Sta +</pre>	: X82MP2.2 e : API2 tus: **-PB	! ! !	Type Limit-Sta	: PLT te: STORM	-+ ! ! !	
Plate dimens	ion Material Ma	at-Value	CM-Load	Load-Value	UC-Factor	UC-Val
<pre>lx = 3.000 ly = 2.500 t = 2.500 Plate parame PTYP = 0 PSTF = 0 PDEF = 0 wa = -1.000 wp = -1.000</pre>	E+03 fy = 3 E+03 fp = 2 E+01 E = 2 ny = 3 ter E+00 E+00	3.400E+02 2.040E+02 2.100E+05 3.000E-01	<pre>fx1 =   fx2 =   fy1 =   fy2 =   fxy =   plat =   pdf1 =   pbst =</pre>	-1.126E+03 -1.120E+03 -9.000E+02 -1.029E+03 -3.150E+02 7.000E-03 	UCmax = UCinplS = UCinplU = UCWeWa = UCstrsS = UCplatU =	5.14 5.14 0.87 0.70 0.39 0.02

INTERMEDIATE CODE CHECK RESULTS:

Parameter		Value	Parameter		Value	Parameter		Value	
UCmax	=	5.137E+00	UCinplS	=	5.137E+00	UCinplU	=	8.667E-01	
UCWeWa	=	6.950E-01	UCstrsS	=	3.861E-01	UCplatU	=	2.408E-02	
FSSLS	=	1.250E+00	FSULS	=	1.500E+00	sigx1	=	-4.506E+01	
sigx2	=	-4.478E+01	sigyl	=	-3.600E+01	sigy2	=	-4.118E+01	
tauxy	=	-1.260E+01	fxe	=	7.592E+01	fye	=	5.449E+01	
taue	=	1.541E+02	kx	=	4.000E+00	ky	=	2.871E+00	
ktau	=	8.118E+00	feqb	=	3.289E+01	fxs	=	3.508E+01	
fys	=	3.013E+01	fxys	=	1.413E+02	beta	=	4.024E+00	
fxu	=	1.480E+02	fyu	=	1.284E+02	fxyu	=	1.662E+02	
We	=	5.792E+00	Wa	=	8.333E+00	fxb	=	1.799E+01	
fyb	=	1.580E+01	feqt	=	3.327E+01	feqc	=	6.301E+01	
platu	=	4.360E-01	Wp	=	2.012E+01				

Version number Date Page 1.0 01-JUN-1991 A-27 19-MAY-1991 13:43 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 5 API Code Check Results Full Table SUB PAGE: 3 +-----+ ! Capacity Model : X82MP1.2 ! Type : PLT ! ! Resultcase Name : API2 ! Limit-State: STORM ! ! Code Check Status: **-PB ! 1 +------Plate dimension Material Mat-Value CM-Load Load-Value UC-Factor UC-Val _____ lx = 2.000E+03 fy = 3.400E+02 fx1 = -1.287E+03 UCmax = ly = 2.500E+03 fp = 2.040E+02 fx2 = -1.504E+03 UCinplS = t = 2.500E+01 E = 2.100E+05 fy1 = -1.312E+03 UCinplU = ny = 3.000E-01 fy2 = -8.159E+02 UCWeWa = 3.39 3.39 0.79 0.37 fxy = 1.976E+01 UCstrsS = Plate parameter 0.37 PTYP = 0plat = 7.000E-03 UCplatU = 0.02 PSTF = 0pdfl = ----PDEF = 0pbst = ---wa = -1.000E+00wp = -1.000E+00

INTERMEDIATE CODE CHECK RESULTS:

Paramete	er	Value	Paramete	er	Value	Paramete	er	Value
UCmax	=	3.390E+00	UCinplS	=	3.390E+00	UCinplU	=	7.860E-01
UCWeWa	=	3.665E-01	UCstrsS	=	3.692E-01	UCplatU	=	1.814E-02
FSSLS	=	1.250E+00	FSULS	=	1.500E+00	sigxl	=	-5.150E+01
sigx2	=	-6.017E+01	sigyl	=	-5.249E+01	sigy2	=	-3.264E+01
tauxy	=	7.903E-01	fxe	=	7.976E+01	fye	=	1.186E+02
taue	=	2.343E+02	kx	=	2.690E+00	ky	=	4.000E+00
ktau	=	7.900E+00	feqb	=	4.851E+01	fxs	=	5.361E+01
fys	=	4.086E+01	fxys	=	1.680E+02	beta	=	3.219E+00
fxu	=	1.493E+02	fyu	=	1.784E+02	fxyu	=	1.805E+02
We	=	2.545E+00	Wa	=	6.944E+00	fxb	=	9.313E+00
fyb	=	1.110E+01	feqt	=	4.114E+01	feqc	=	6.025E+01
platu	=	5.788E-01	Wp	=	1.609E+01			

Page <b>A-28</b>	Date 01-JU	UN-1991			Version num	ber 1.0
19-MAY-1991 13:43	PROGRAM: SESAI	M PLATEN	NORK D1.0-	02 11-APR-1	991 PAGE:	6
	API Code Checl Full Table	k Results			SUB PAGE:	4
<pre>+ ! Capacity Model ! Resultcase Name ! Code Check Statu +</pre>	: X82MS2.2 : API4 s: **-LB	!	Type Limit-Sta	: STF te: STORM	-+ ! ! -+	
Stiffener sectior	Material I	Mat-Value	CM-Load	Load-Value	UC-Factor	UC-Val
hws = 1.480E+ tws = 1.200E+ bfs = 9.000E+ tfs = 1.200E+ afs = 0.000E+ efs = 3.900E+ Plate dimension lx = 3.000E+ ly1 = 2.500E+ ly2 = 1.250E+ t1 = 2.500E+ t2 = 2.500E+	02 fy = 01 fp = 01 E = 01 ny = 00 01 Stiffener p Ly = 03 ks0 = 03 ks0 = 03 ksp = 01 msp = 01 SEND = STYP =	3.400E+02 2.040E+02 2.100E+05 3.000E-01 parameter 5.000E+03 3.000E+03 1.000E+00 8.000E+00 6.000E-01 1.600E+01 Continous 0	<pre>fx1 = fy1 = fy2 = fxy = plat = Mbend =</pre>	-5.129E+02 -4.129E+02 -6.632E+02 -3.016E+02 1.500E-02 3.452E+06	UCmax = UCcbU = UCbcbU = UCtfbU = UCpdtw = UCcdtw = UCcbftf = UCcbftf = UClasup = UCsreq = UCsreq1 =	3.05 0.15 0.20 0.03 0.24 0.21 0.54 0.40 3.05 0.12 0.00

INTERMEDIATE CODE CHECK RESULTS:

Paramete	er	Value	Paramete	er	Value	Paramete	er	Value
UCmax	=	3.048E+00	UCcbU	=	1.494E-01	UCbcbU	=	2.031E-01
UCtfbU	=	1.958E-01	UCpbU	=	2.623E-02	UCpdtw	=	2.427E-01
UCcdtw	=	2.150E-01	UCpbftf	=	5.389E-01	UCcbftf	=	4.024E-01
UClasup	=	3.048E+00	UCsreq	=	1.214E-01	UCsreql	=	0.000E+00
FSSLS	=	1.250E+00	FSULS	=	1.500E+00	sigx	=	-1.934E+01
sigyl	=	-1.652E+01	sigy2	=	-2.653E+01	tauxy	=	-1.206E+01
beta1	=	4.024E+00	beta2	=	2.012E+00	Cx1	=	4.353E-01
Cx2	=	7.470E-01	bel	=	1.088E+03	be2	=	9.338E+02
Ae	=	2.813E+04	ZS	=	1.546E+02	zp	=	1.185E+01
Iez	=	4.385E+07	re	=	3.948E+01	Wep	=	3.699E+06
Wes	=	2.835E+05	Wpl	=	6.253E+05	J	=	1.371E+05
Cw	=	1.644E+08	Is	=	3.662E+07	IC	=	7.540E+06
P	=	-9.617E+05	Ftw	=	5.655E+05	Fwi	=	2.284E+05
Mbend	=	3.452E+06	ms	=	1.600E+01	lambda	=	5.839E-01
ks	=	6.000E-01	PEe	=	2.805E+07	PFu	=	9.654E+06
Mu	=	9.640E+07	B1	=	1.000E+00	PTe	=	1.440E+07
PTFe	=	1.000E+07	PTFu	=	7.369E+06	Mup	=	1.975E+08
Fxyu	=	1.931E+02	Rdtw	=	1.233E+01	etapdtw	=	5.082E+01
etacdtw	=	5.738E+01	Rbftf	=	7.500E+00	etapbft	=	1.392E+01
etacbft	=	1.864E+01	RLb	=	3.000E+03	etaL1L2	=	9.842E+02
RIs	=	-5.321E+06	RIl	=	0.000E+00	etaIe	=	4.385E+07

____

,

SET PLOT FILE X82MAPI R2UCMAX DISPLAY CODE-CHECK-RESULTS API2 UCmax PLOT



Figure A-13 Plot of API Code Check results calculated

SELECT CODE DNV SET PRINT FILE X82MDNV RESULTS DEFINE SORTING MAX-ENTRIES UNLIMITED PRINT CODE-CHECK-RESULTS SUMMARY

Version number 1.0		Date 01-JUN-1991	Page <b>A-31</b>
19-MAY-1991 13:43	PROGRAM: SESAM	PLATEWORK D1.0-02 11-APR-1991	PAGE: 1
	DNV Code Check R Summary Table	esults SUB	PAGE: 1
NOMENCLATURE:			
Status UCmax Res-Name L-stat Phas Capacity-Model Type	Check status Maximum of all U Resultcase name Resultcase Limit Phase angle Basic Capacity M Basic Capacity M	nity Criterion factors -state odel name odel type	
+ ! Sorting Paramete ! Sorting Order ! +	er: UCMAX : DECREASING	! Max Entries: UNLIMITED ! ! Max Value : UNLIMITED ! ! Min Value : UNLIMITED !	
Status UCmax	Res-Name L-sta	t Phas Capacity-Model Type	:
**-PB 1.87 **-PB 1.48 **-PB 1.39 **-PB 1.15	DNV2 E-ULS DNV2 E-ULS DNV4 E-ULS DNV3 E-ULS	X82MP2.2       PLT         X82MP1.2       PLT         X82MP2.2       PLT         X82MP1.2       PLT         X82MP1.2       PLT	
**-PB 1.14 **-PB 1.10 **-PB 1.09	DNV5 E-ULS DNV1 E-ULS DNV4 E-ULS	X82MP2.2 PLT X82MP2.2 PLT X82MP1.2 PLT	
OK-PB 1.00 OK-PB 0.90	DNV3 E-ULS DNV2 E-ULS	X82MP2.2 PLT X82MP2.1 PLT	
OK-PB         0.88           OK-PB         0.86           OK-LB1F         0.82	DNV4 E-ULS DNV5 E-ULS DNV1 E-ULS	X82MP2.1 PLT X82MP1.2 PLT X82MG1 GIR	
OK-LB1P 0.81 OK-LB1F 0.76 OK-LB1F 0.74	DNV2 E-ULS DNV5 E-ULS DNV3 E-ULS	X82MG1 GIR X82MG1 GIR X82MG1 GIR	
OK-LB1P         0.72           OK-PB         0.70	DNV3 E-ULS DNV3 E-ULS	X82MG1 GIR X82MP2.1 PLT	
OK-PIF2         0.67           OK-PB         0.66           OK-LB1S         0.65	DNV2 E-ULS DNV2 E-ULS DNV3 E-ULS	X82MS1.2 STF X82MP1.3 PLT X82MS1.1 STF	
OK-LB1P     0.65       OK-LB1P     0.65       OK-LB1S     0.65	DNV2 E-ULS DNV4 E-ULS DNV1 E-ULS	X82MS1.1 STF X82MS1.1 STF X82MS1.1 STF	
OK-LB1S         0.65           OK-LB1S         0.65           OK-LB1S         0.65	DNV1 E-ULS DNV5 E-ULS DNV3 E-ULS	X82MS1.2 STF X82MS1.1 STF X82MS1.2 STF	

Page <b>A-32</b>			Date 01-JUN-1991		Ver	sion numbe 1.0	r D
19-MAY-1	1991 13:43	PROGRAM:	SESAM P	LATEWORK D1.0-02 11-AP	PR-1991	PAGE:	2
		DNV Code	Check Resu	lts			
		Summary 1	Table		SUB	PAGE:	2
Status	UCmax	Res-Nam	ne L-stat P	has Capacity-Model	Туре		
OK-LB1P	0.65	DNV4	E-ULS	X82MS1.2	STF		
OK-LB1S	0.65	DNV5	E-ULS	X82MS1.2	STF		
OK-LB1S	0.65	DNV1	E-ULS	X82MS2.1	STF		
OK-LB1P	0.65	DNV2	E-ULS	X82MS2.1	STF		
OK-LB1S	0.65	DNV1	E-ULS	X82MS2.2	STF		
OK-LB1S	0.65	DNV5	E-ULS	X82MS2.1	STF		
OK-LB1P	0.65	DNV4	E-ULS	X82MS2.1	STF		
OK-LB1S	0.65	DNV3	E-ULS	X82MS2.1	STF		
OK-LB1P	0.65	DNV2	E-ULS	X82MS2.2	STF		
OK-LB1S	0.65	DNV5	E-ULS	X82MS2.2	STF		
OK-LB1P	0.65	DNV4	E-ULS	X82MS2.2	STF		
OK-LB1S	0.65	DNV3	E-ULS	X82MS2.2	STF		
OK-PB	0.63	DNV2	E-ULS	X82MP1.1	PLT		
OK-PB	0.60	DNV1	E-ULS	X82MP1.2	PLT		
OK-PB	0.60	DNV3	E-ULS	X82MP1.3	PLT		
OK-PB	0.60	DNV2	E-ULS	X82MP2.3	PLT		
OK-PB	0.54	DNV1	E-ULS	X82MP2.3	PLT		
OK-PB	0.48	DNV3	E-ULS	X82MP1.1	PLT		
OK-PB	0.48	DNV5	E-ULS	X82MP2.1	PLT		
OK-PB	0.47	DNV4	E-ULS	X82MP1.1	PLT		
OK-PB	0.39	DNV4	E-ULS	X82MP1.3	PLT		
OK-PB	0.39	DNV5	E-ULS	X82MP1.3	PLT		
OK-PB	0.37	DNV5	E-ULS	X82MP1.1	PLT		
OK-PB	0.32	DNV4	E-ULS	X82MP2.3	PLT		
OK-PB	0.31	DNV1	E-ULS	X82MP1.3	PLT		
OK-PB	0.31	DNV5	E-ULS	X82MP2.3	PLT		
OK-PB	0.28	DNV1	E-ULS	X82MP2.1	PLT		
OK-PB	0.26	DNV1	E-ULS	X82MP1.1	PLT		
OK-PB	0.23	DNV3	E-ULS	X82MP2.3	PLT		

E-ULS

Version number 1.0		Date 01-JUN-1991	Page <b>A-33</b>
DEFINE SORTI PRINT CODE-C	NG MAX-ENTRIES 3 HECK-RESULTS FULL		
19-MAY-1991 1	3:43 PROGRAM: SESAM	PLATEWORK D1.0-02 11-APF	R-1991 PAGE: 3
	DNV Code Check I Full Table	Results	SUB PAGE: 1
NOMENCLATURE:			
Plate dimension Material Mat-Value CM-Load Load-Value UC-Factor UC-Val	Plate parameter name Geometric dimension Capacity Model mate: Material parameter of Capacity Model load Load value Unity Criterion fact Unity Criterion fact	e value rial parameter value tor tor value	
+Park ! Sorting Park ! Sorting Ord !	ameter: UCMAX er : DECREASING	! Max Entries: 3 ! Max Value : UNLIMITED ! Min Value : UNLIMITED	+ ! ! !
Page Date Version number 01-JUN-1991 A-34 1.0 19-MAY-1991 13:43 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 4 DNV Code Check Results Full Table SUB PAGE: 2 +-----+ ! Type : PLT ! ! Capacity Model : X82MP2.2 ! Resultcase Name : DNV2 ! Limit-State: E-ULS ! ! Code Check Status: **-PB ! Т +-----Plate dimension Material Mat-Value CM-Load Load-Value UC-Factor UC-Val _____ ny = 3.000E-01fy2 = -1.029E+03 UCplat = 0.11 Plate parameter fxy = -3.150E+02PTYP = 0plat = 7.000E-03PSTF = 0pdfl = ----PDEF = 0pbst = ---wa = -1.000E+00wp = -1.000E+00

INTERMEDIATE CODE CHECK RESULTS:

Parameter Value Parameter Value Parameter Value UCmax = 1.869E+00 UCpbs = 1.869E+00 UCpbu = 8.952E-01 UCplat = 1.117E-01 eta0 = 6.000E-01 etap = 6.600E-01 sigx1 = -4.506E+01 sigx2 = -4.478E+01 sigy1 = -3.600E+01 sigy2 = -4.118E+01 tauxy = -1.260E+01 sigex = 7.614E+01 sigey = 5.796E+01 taue = 1.541E+02 Cx = 4.012E+00 Cy = 3.054E+00 Ctau = 8.118E+00 VonMise = 4.844E+01 lambda = 2.932E+00 sigescr = 3.928E+01 sigeucr = 8.199E+01 etas = 1.233E+00 etau = 5.908E-01 platu = 9.496E-02 Version number Date Page 01-JUN-1991 1.0 A-35 19-MAY-1991 13:43 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 5 DNV Code Check Results Full Table SUB PAGE: 3 +-----+ ! Type : PLT ! ! Capacity Model : X82MP1.2 ! Resultcase Name : DNV2 ! Limit-State: E-ULS ! ! Code Check Status: **-PB ! 1 +-----+ Plate dimension Material Mat-Value CM-Load Load-Value UC-Factor UC-Val lx =2.000E+03fy =3.400E+02fx1 =fx1 =-1.287E+03UCmax =ly =2.500E+03fp =2.040E+02fx2 =-1.504E+03UCpbs =t =2.500E+01E =2.100E+05fy1 =-1.312E+03UCpbu = 1.48 1.48 0.86 ny = 3.000E-01fy2 = -8.159E+02 UCplat = 0.02 fxy = 1.976E+01Plate parameter PTYP = 0plat = 7.000E-03PSTF = 0pdfl = ----PDEF = 0pbst = ---wa = -1.000E+00wp = -1.000E+00

INTERMEDIATE CODE CHECK RESULTS:

ParameterValueParameterValueParameterValueUCmax =1.476E+00UCpbs =1.476E+00UCpbu =8.576E-01UCplat =2.449E-02eta0 =6.000E-01etap =6.600E-01sigx1 =-5.150E+01sigx2 =-6.017E+01sigy1 =-5.249E+01sigy2 =-3.264E+01tauxy =7.903E-01sigex =8.564E+01sigey =1.447E+02taue =2.343E+02Cx =2.888E+00Cy =4.879E+00Ctau =7.900E+00VonMise =5.674E+01lambda =2.398E+00sigescr =5.824E+01sigeucr =1.002E+02etas =9.742E-01etau =5.660E-01platu =4.330E-01

Page Date Version number 01-JUN-1991 A-36 1.0 19-MAY-1991 13:43 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 6 DNV Code Check Results Full Table SUB PAGE: 4 +-----+ ! Type : PLT ! ! Capacity Model : X82MP2.2 ! Resultcase Name : DNV4 ! Limit-State: E-ULS ! ! Code Check Status: **-PB ! Т +-----Plate dimension Material Mat-Value CM-Load Load-Value UC-Factor UC-Val _____ ny = 3.000E-01fy2 = -9.358E+02 UCplat = 0.26 Plate parameter fxy = -1.616E+02PTYP = 0plat = 1.500E-02PSTF = 0pdfl = ----PDEF = 0pbst = ---wa = -1.000E+00wp = -1.000E+00

INTERMEDIATE CODE CHECK RESULTS:

 Parameter
 Value
 Parameter
 Value
 Parameter
 Value

 UCmax =
 1.386E+00
 UCpbs =
 1.386E+00
 UCpbu =
 7.595E-01

 UCplat =
 2.551E-01
 eta0 =
 6.000E-01
 etap =
 6.600E-01

 sigx1 =
 -5.123E+01
 sigx2 =
 -1.662E+01
 sigy1 =
 -1.790E+01

 sigy2 =
 -3.743E+01
 tauxy =
 -6.462E+00
 sigex =
 1.119E+02

 sigey =
 7.251E+01
 taue =
 1.541E+02
 Cx =
 5.897E+00

 Cy =
 3.820E+00
 Ctau =
 8.118E+00
 VonMise =
 4.726E+01

 lambda =
 2.550E+00
 sigescr =
 5.167E+01
 sigeucr =
 9.427E+01

 etas =
 9.146E-01
 etau =
 5.013E-01
 platu =
 8.910E-02

Version number	Date	Page
1.0	01-JUN-1991	A-37

SET PLOT FILE X82MDNV R2UCMAX DISPLAY CODE-CHECK-RESULTS DNV2 UCmax PLOT



Figure A-14 Plot of DnV Code Check results calculated

SELECT CODE NPD SET PRINT FILE X82MNPD RESULTS DEFINE SORTING MAX-ENTRIES UNLIMITED PRINT CODE-CHECK-RESULTS SUMMARY

Page <b>A-38</b>		I	Date 01-1111N-1991		Ver	sion number 1.0
19-MAY-1991	13:43	PROGRAM: SI	ESAM PLATEWOF	RK D1.0-02 11-APR-	1991	PAGE: 1
		NPD Code C	heck Results		CIID	
		Summary 1a	DIE		205	PAGE: I
NOMENCLATUR	E:					
Status		Check stat	ıs			
UCmax		Maximum of	all Unity Crite	erion factors		
Res-Name		Resultcase	name			
L-stat		Resultcase	Limit-state			
Phas		Phase angle	e			
Capacity-Mo	del	Basic Capa	city Model name			
Туре		Basic Capa	city Model type			
+				· · · · · · · · · · · · · · · · · · ·	-+	
! Sorting P	aramete	er: UCMAX	! Max Entr	cies: UNLIMITED	!	
! Sorting O	rder	: DECREAS.	ING ! Max Valu	ie : UNLIMITED	!	
! +			! Min Valu	ie : UNLIMITED	! - +	
+					т	
Status UC	max	Res-Name	L-stat Phas	Capacity-Model	Туре	
**-PB	1.42	NPD2	ULS	X82MP2.2	PLT	
**-PB	1.12	NPD2	ULS	X82MP1.2	PLT	
**-PB	1.05	NPD4	ULS	X82MP2.2	PLT	
OK-PB	0.87	NPD3	ULS	X82MP1.2	PLT	
OK-PB	0.86	NPD5	ULS	X82MP2.2	PLT	
OK-PB	0.83	NPD1	ULS	X82MP2.2	PLT	
OK-PB	0.82	NPD4	ULS	X82MP1.2	PL'I'	
OK-LBIF	0.82	NPDI		X82MG1	GIR	
OK-LBIP	0.81	NPD2		X82MG1	GIR	
OK-LBIF	0.76	NPD5		X82MG1	GIR	
OK-PB	0.76	NPD3	ULS	X82MP2.2	PLT	
OK-LBIF	0.74	NPD3	ULS	X82MG1	GIR	
OK-TRIL	0.72	NPD4 NDD2	ULS	X82MGL	GIR	
OK-PB	0.68	NPD2 NDD4		XOZMPZ.I	РЦІ ртт	
OK-LD OK-CIE1	0.07		ULIS III.Q	X82MG2 1	г Ц І С Т Г	
OK-BILI OK-PIL	0.00	NDUC	ULI P.	X82MG1 1	OIL CLLC	
OK-I.R1 D	0.65	NPD4	III.S	X82MS1 1	STE	
OK-I.R1C	0 65	NDUS	III.S	X82MS1 1	STE	
OK-I.R1 D	0 65	NDDO	III.S	X82MS1 1	STE	
OK-LB19	0 65	NPD1	IILS	X82MS1 1	STE	
OK-I.R1C	0 65		III.S	X82MS1 2	STE	
OK-I.R1 D	0 65	NDDO	III.S	X82MS1 2	STE	
OK-LB1S	0.65	NPD3	ULS	X82MS1.2	STF	

Version number	Date	Page
1.0	01-JUN-1991	

PLATEWORK D1.0-02 11-APR-1991 PAGE:

2

2

19-MAY-1991 13:43 PROGRAM: SESAM

OK-PB

OK-PB

OK-PB

OK-PB

OK-PB

OK-PB

OK-PB

0.28

0.24

0.24

0.23

0.21

0.20

0.17

NPD5

NPD4

NPD1

NPD5

NPD1

NPD1

NPD3

ULS

ULS

ULS

ULS

ULS

ULS

ULS

NPD Code Check Results Summary Table SUB PAGE: Status UCmax Res-Name L-stat Phas Capacity-Model Type _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0.65 STF OK-LB1S NPD5 ULS X82MS1.2 OK-LB1P 0.65 NPD4 ULS X82MS1.2 STF OK-LB1S 0.65 NPD1 ULS X82MS2.1 STF OK-LB1S 0.65 NPD1 ULS X82MS2.2 STF OK-LB1S 0.65 NPD5 ULS X82MS2.1 STF OK-LB1P 0.65 NPD4 ULS X82MS2.1 STF STF OK-LB1P 0.65 NPD2 ULS X82MS2.1 OK-LB1P 0.65 NPD2 ULS X82MS2.2 STF OK-LB1S 0.65 NPD5 ULS X82MS2.2 STF OK-LB1P 0.65 NPD4 ULS X82MS2.2 STF STF OK-LB1S 0.65 NPD3 ULS X82MS2.2 NPD5 ULS PLTOK-PB 0.65 X82MP1.2 OK-PB 0.53 NPD3 ULS X82MP2.1 PLTOK-PB 0.50 NPD2 ULS X82MP1.3 PLT0.48 OK-PB NPD2 ULS X82MP1.1 PLTOK-PB 0.46 NPD1 ULS X82MP1.2 PLTOK-PB 0.46 NPD3 ULS X82MP1.3 PLT0.46 PLTOK-PB NPD2 ULS X82MP2.3 OK-PB 0.41 NPD1 ULS X82MP2.3 PLTOK-PB 0.37 NPD3 ULS PLTX82MP1.1 OK-PB 0.36 NPD5 ULS X82MP2.1 PLT0.35 OK-PB NPD4 ULS X82MP1.1 PLT0.29 NPD4 ULS OK-PB X82MP1.3 PLTOK-PB 0.29 NPD5 ULS PLT

X82MP1.3

X82MP1.1

X82MP2.3

X82MP1.3

X82MP2.3

X82MP2.1

X82MP1.1

X82MP2.3

PLT

PLT

PLT

PLT

PLT

PLT

PLT

Page <b>A-40</b>	Date 01-JUN-	1991	Ver	sion number 1.0
DEFINE SORTIN PRINT CODE-CH	IG MAX-ENTRIES 3 HECK-RESULTS FULL			
19-MAY-1991 13	3:43 PROGRAM: SESAM	PLATEWORK D1.0-02	11-APR-1991	PAGE: 3
	NPD Code Check R Full Table	esults	SUB	PAGE: 1
NOMENCLATURE:				
Plate dimension Material Mat-Value CM-Load Load-Value UC-Factor UC-Val	Plate parameter name Geometric dimension Capacity Model mater Material parameter v Capacity Model load Load value Unity Criterion fact Unity Criterion fact	value ial parameter alue or or value		
+	motor, UCMAY		+	
! Sorting Orde	er : DECREASING	! Max Value : UNLI	S : MITED !	
!		! Min Value : UNLI	MITED !	

+----+

Version number Date Page 01-JUN-1991 1.0 A-41 19-MAY-1991 13:43 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 4 NPD Code Check Results Full Table SUB PAGE: 2 +-----+ ! Type : PLT ! ! Capacity Model : X82MP2.2 ! Resultcase Name : NPD2 ! Limit-State: ULS 1 ! Code Check Status: **-PB ! 1 +-----+ Plate dimension Material Mat-Value CM-Load Load-Value UC-Factor UC-Val lx = 3.000E+03fy = 3.400E+02fx1 = -1.126E+03UCmax =ly = 2.500E+03fp = 2.040E+02fx2 = -1.120E+03UCpbs =t = 2.500E+01E = 2.100E+05fy1 = -9.000E+02UCpbu = 1.42 1.42 0.68 ny = 3.000E-01fy2 = -1.029E+03 UCplat = 0.04 Plate parameter fxy = -3.150E+02PTYP = 0plat = 7.000E-03PSTF = 0pdfl = ----PDEF = 0pbst = ---wa = -1.000E+00wp = -1.000E+00

INTERMEDIATE CODE CHECK RESULTS:

Parameter Value Parameter Value Parameter Value UCmax = 1.418E+00 UCpbs = 1.418E+00 UCpbu = 6.794E-01 UCplat = 3.538E-02 gammam = 1.150E+00 sigx1 = -4.506E+01 sigx2 = -4.478E+01 sigy1 = -3.600E+01 sigy2 = -4.118E+01 tauxy = -1.260E+01 sigex = 7.614E+01 sigey = 5.796E+01 taue = 1.541E+02 kx = 4.012E+00 ky = 3.054E+00 ktau = 8.118E+00 VonMise = 4.844E+01 lambda = 2.932E+00 sigke = 3.928E+01 sigku = 8.199E+01 sigked = 3.416E+01 sigkud = 7.130E+01 platd = 1.978E-01

Page <b>A-42</b>	Date 01-JUN-1991		Version number 1.0
19-MAY-1991 13:43	PROGRAM: SESAM PLAT	EWORK D1.0-02 11-APR-1	991 PAGE: 5
	NPD Code Check Results Full Table		SUB PAGE: 3
<pre>+ ! Capacity Model ! Resultcase Name ! Code Check Statu +</pre>	: X82MP1.2 : NPD2 s: **-PB	! Type : PLT ! Limit-State: ULS !	-+ ! ! !
Plate dimensic	n Material Mat-Value	CM-Load Load-Value	UC-Factor UC-Val
lx = 2.000E+ly = 2.500E+t = 2.500E+Plate parametePTYP = 0PSTF = 0PDEF = 0wa = -1.000E+vm = 1.000E+	03 fy = 3.400E+0 03 fp = 2.040E+0 01 E = 2.100E+0 ny = 3.000E-0 r 00	fx1 = -1.287E+03  fx2 = -1.504E+03  fy1 = -1.312E+03  fy2 = -8.159E+02  fxy = 1.976E+01  plat = 7.000E-03  pdf1 =  pbst =	UCmax = 1.12 UCpbs = 1.12 UCpbu = 0.65 UCplat = 0.02

INTERMEDIATE CODE CHECK RESULTS:

Parameter Value Parameter Value Parameter Value UCmax = 1.120E+00 UCpbs = 1.120E+00 UCpbu = 6.509E-01 UCplat = 2.360E-02 gammam = 1.150E+00 sigx1 = -5.150E+01 sigx2 = -6.017E+01 sigy1 = -5.249E+01 sigy2 = -3.264E+01 tauxy = 7.903E-01 sigex = 8.564E+01 sigey = 1.447E+02 taue = 2.343E+02 kx = 2.888E+00 ky = 4.879E+00 ktau = 7.900E+00 VonMise = 5.674E+01 lambda = 2.398E+00 sigke = 5.824E+01 sigku = 1.002E+02 sigked = 5.064E+01 sigkud = 8.717E+01 platd = 2.966E-01 Version number Date Page 01-JUN-1991 1.0 A-43 19-MAY-1991 13:43 PROGRAM: SESAM PLATEWORK D1.0-02 11-APR-1991 PAGE: 6 NPD Code Check Results Full Table SUB PAGE: 4 +-----+ ! Type : PLT ! ! Capacity Model : X82MP2.2 ! Resultcase Name : NPD4 ! Limit-State: ULS 1 ! Code Check Status: **-PB ! 1 Plate dimension Material Mat-Value CM-Load Load-Value UC-Factor UC-Val lx =3.000E+03fy =3.400E+02fx1 =fx1 =1.281E+03UCmax =ly =2.500E+03fp =2.040E+02fx2 =-4.155E+02UCpbs =t =2.500E+01E =2.100E+05fy1 =-4.475E+02UCpbu = 1.05 1.05 0.58 ny = 3.000E-01fy2 = -9.358E+02 UCplat = 0.08 Plate parameter fxy = -1.616E+02PTYP = 0plat = 1.500E-02PSTF = 0pdfl = ----PDEF = 0pbst = ---wa = -1.000E+00wp = -1.000E+00

INTERMEDIATE CODE CHECK RESULTS:

Parameter Value Parameter Value Parameter Value UCmax = 1.052E+00 UCpbs = 1.052E+00 UCpbu = 5.765E-01 UCplat = 7.622E-02 gammam = 1.150E+00 sigx1 = -5.123E+01 sigx2 = -1.662E+01 sigy1 = -1.790E+01 sigy2 = -3.743E+01 tauxy = -6.462E+00 sigex = 1.119E+02 sigey = 7.251E+01 taue = 1.541E+02 kx = 5.897E+00 ky = 3.820E+00 ktau = 8.118E+00 VonMise = 4.726E+01 lambda = 2.550E+00 sigke = 5.167E+01 sigku = 9.427E+01 sigked = 4.493E+01 sigkud = 8.197E+01 platd = 1.968E-01



Figure A-15 Plot of NPD Code Check results calculated

EXIT %% %% CLOSED DATE: 19-MAY-1991 12:40:53 %%

Version number	Date	
1.0	01-JUN-1991	A-1

## **Appendix A References**

- 1 PLATEWORK, Theoretical Manual Veritec Report no. 90-3062 Revision 1-1, May 1991
- PLATEWORK, Maintenance Manual Veritas Sesam Systems A.S Report 91-7022 June 1, 1991.
- 3 SESAM Interface File
  - FEM, Input Interface File, File Description Veritas Sesam Systems A.S Report 89-7012 November 13., 1989
  - b SIF, Results Interface File, File Description Veritas Sesam Systems A.S Report 88-7001 Revision 1, August 1, 1989
  - c SIFTOOL, SESAM Interface File Toolkit, Programmer's Manual Veritas Sesam Systems A.S Report 89-7003 Revision 1, May 1, 1989
- PREPOST, Utility Program for SESAM Postprocessing, User's Manual Veritas Sesam Systems A.S Report, 89-7002 Revision 2, February 15, 1990
- 5 POSTFEM, General Finite Element Graphics Postprocessor, User's Manual Veritas Sesam Systems A.S Report 80-7007 Revision 1, November 15, 1989
- 6 POSTFRAME, Postprocessor for Frame Structures, User's Manual Veritas Sesam Systems A.S Report 90-7015 Revision 0, March 1, 1990

Page A-2

- PREFEM, Preprocessor for General Finite Element Programs, User's Manual Veritas Sesam Systems A.S Report 87-3166 Revision 1, March 1, 1989
- 8 SESTRA, Super Element Structural Analysis, User's Manual Veritas Report 87-3166 Revision 1, March 1, 1989