
TP Lex and Yacc – The Compiler Writer’s Tools for Turbo Pascal

Version 4.1 User Manual

Albert Gräf

Department of Musicinformatics

Johannes Gutenberg-University Mainz

ag@muwiinfa.geschichte.uni-mainz.de

April 1998

Contents

1 Introduction 2

2 TP Lex 5

2.1 Usage . 5

2.2 Options . 5

2.3 Description . 5

2.4 Lex Source . 6

2.5 Regular Expressions . 7

2.6 Start Conditions . 9

2.7 Lex Library . 10

2.8 Implementation Restrictions . 10

2.9 Differences from UNIX Lex . 11

3 TP Yacc 12

3.1 Usage . 12

3.2 Options . 12

3.3 Description . 12

3.4 Yacc Source . 13

1

3.5 Definitions . 13

3.6 Grammar Rules and Actions . 15

3.7 Auxiliary Procedures . 18

3.8 Lexical Analysis . 18

3.9 How The Parser Works . 20

3.10 Ambigious Grammars . 25

3.11 Error Handling . 31

3.12 Yacc Library . 31

3.13 Other Features . 32

3.14 Implementation Restrictions . 33

3.15 Differences from UNIX Yacc . 33

1 Introduction

This document describes the TP Lex and Yacc compiler generator toolset. These tools are de-
signed especially to help you prepare compilers and similar programs like text processing utilities
and command language interpreters with the Turbo Pascal (TM) programming language.

TP Lex and Yacc are Turbo Pascal adaptions of the well-known UNIX (TM) utilities Lex and
Yacc, which were written by M.E. Lesk and S.C. Johnson at Bell Laboratories, and are used with
the C programming language. TP Lex and Yacc are intended to be approximately “compatible”
with these programs. However, they are an independent development of the author, based on
the techniques described in the famous “dragon book” of Aho, Sethi and Ullman (Aho, Sethi,
Ullman: Compilers : principles, techniques and tools, Reading (Mass.), Addison-Wesley, 1986).

Version 4.1 of TP Lex and Yacc works with all recent flavours of Turbo/Borland Pascal,
including Delphi, and with the Free Pascal Compiler, a free Turbo Pascal-compatible compiler
which currently runs on DOS and Linux (other ports are under development). Recent informa-
tion about TP Lex/Yacc, and the sources are available from the TPLY homepage:

http://www.musikwissenschaft.uni-mainz.de/~ag/tply

For information about the Free Pascal Compiler, please refer to:

http://www.freepascal.org

TP Lex and Yacc, like any other tools of this kind, are not intended for novices or casual pro-
grammers; they require extensive programming experience as well as a thorough understanding
of the principles of parser design and implementation to be put to work successfully. But if you

2

are a seasoned Turbo Pascal programmer with some background in compiler design and formal
language theory, you will almost certainly find TP Lex and Yacc to be a powerful extension of
your Turbo Pascal toolset.

This manual tells you how to get started with the TP Lex and Yacc programs and provides
a short description of these programs. Some knowledge about the C versions of Lex and Yacc
will be useful, although not strictly necessary. For further reading, you may also refer to:

• Aho, Sethi and Ullman: Compilers : principles, techniques and tools. Reading (Mass.),
Addison-Wesley, 1986.

• Johnson, S.C.: Yacc – yet another compiler-compiler. CSTR-32, Bell Telephone Laborato-
ries, 1974.

• Lesk, M.E.: Lex – a lexical analyser generator. CSTR-39, Bell Telephone Laboratories, 1975.

• Schreiner, Friedman: Introduction to compiler construction with UNIX. Prentice-Hall, 1985.

• The Unix Programmer’s Manual, Sections ‘Lex’ and ‘Yacc’.

Credits

I would like to thank Berend de Boer (berend@pobox.com), who adapted TP Lex and Yacc to
take advantage of the large memory models in Borland Pascal 7.0 and Delphi, and Michael Van
Canneyt (Michael.VanCanneyt@fys.kuleuven.ac.be), the maintainer of the Linux version of the
Free Pascal compiler, who is responsible for the Free Pascal port. And of course thanks are due
to the many TP Lex/Yacc users all over the world for their support and comments which helped
to improve these programs.

Getting Started

Instructions on how to compile and install TP Lex and Yacc on all supported platforms can be
found in the README file contained in the distribution.

Once you have installed TP Lex and Yacc on your system, you can compile your first TP
Lex and Yacc program expr. Expr is a simple desktop calculator program contained in the
distribution, which consists of a lexical analyzer in the TP Lex source file exprlex.l and the
parser and main program in the TP Yacc source file expr.y. To compile these programs, issue
the commands

lex exprlex

yacc expr

3

That’s it! You now have the Turbo Pascal sources (exprlex.pas and expr.pas) for the expr

program. Use the Turbo Pascal compiler to compile these programs as follows:

tpc expr

(Of course, the precise compilation command depends on the type of compiler you are using.
Thus you may have to replace tpc with bpc, dcc or dcc32, depending on the version of the
Turbo/Borland/Delphi compiler you have, and with ppc386 for the Free Pascal compiler. If you
are using TP Lex and Yacc with Free Pascal under Linux, the corresponding commands are:

plex exprlex

pyacc expr

ppc386 expr

Note that in the Linux version, the programs are named plex and pyacc to avoid name clashes
with the corresponding UNIX utilities.)

Having compiled expr.pas, you can execute the expr program and type some expressions to
see it work (terminate the program with an empty line). There is a number of other sample TP
Lex and Yacc programs (.l and .y files) in the distribution, including a TP Yacc cross reference
utility and a complete parser for Standard Pascal.

The TP Lex and Yacc programs recognize some options which may be specified anywhere
on the command line. E.g.,

lex -o exprlex

runs TP Lex with “DFA optimization” and

yacc -v expr

runs TP Yacc in “verbose” mode (TP Yacc generates a readable description of the generated
parser).

The TP Lex and Yacc programs use the following default filename extensions:

• .l: TP Lex input files

• .y: TP Yacc input files

• .pas: TP Lex and Yacc output files

As usual, you may overwrite default filename extensions by explicitly specifying suffixes.

If you ever forget how to run TP Lex and Yacc, you can issue the command lex or yacc

(resp. plex or pyacc) without arguments to get a short summary of the command line syntax.

4

2 TP Lex

This section describes the TP Lex lexical analyzer generator.

2.1 Usage

lex [options] lex-file[.l] [output-file[.pas]]

2.2 Options

-v “Verbose:” Lex generates a readable description of the generated lexical analyzer, written
to lex-file with new extension .lst.

-o “Optimize:” Lex optimizes DFA tables to produce a minimal DFA.

2.3 Description

TP Lex is a program generator that is used to generate the Turbo Pascal source code for a
lexical analyzer subroutine from the specification of an input language by a regular expression
grammar.

TP Lex parses the source grammar contained in lex-file (with default suffix .l) and
writes the constructed lexical analyzer subroutine to the specified output-file (with default
suffix .pas); if no output file is specified, output goes to lex-file with new suffix .pas. If any
errors are found during compilation, error messages are written to the list file (lex-file with
new suffix .lst).

The generated output file contains a lexical analyzer routine, yylex, implemented as:

function yylex : Integer;

This routine has to be called by your main program to execute the lexical analyzer. The
return value of the yylex routine usually denotes the number of a token recognized by the lexical
analyzer (see the return routine in the LexLib unit). At end-of-file the yylex routine normally
returns 0.

The code template for the yylex routine may be found in the yylex.cod file. This file
is needed by TP Lex when it constructs the output file. It must be present either in the
current directory or in the directory from which TP Lex was executed (TP Lex searches these
directories in the indicated order). (NB: For the Linux/Free Pascal version, the code template
is searched in some directory defined at compile-time instead of the execution path, usually
/usr/lib/fpc/lexyacc.)

5

The TP Lex library (LexLib) unit is required by programs using Lex-generated lexical an-
alyzers; you will therefore have to put an appropriate uses clause into your program or unit
that contains the lexical analyzer routine. The LexLib unit also provides various useful utility
routines; see the file lexlib.pas for further information.

2.4 Lex Source

A TP Lex program consists of three sections separated with the %% delimiter:

definitions

%%

rules

%%

auxiliary procedures

All sections may be empty. The TP Lex language is line-oriented; definitions and rules are
separated by line breaks. There is no special notation for comments, but (Turbo Pascal style)
comments may be included as Turbo Pascal fragments (see below).

The definitions section may contain the following elements:

• regular definitions in the format:

name substitution

which serve to abbreviate common subexpressions. The {name} notation causes the corre-
sponding substitution from the definitions section to be inserted into a regular expression.
The name must be a legal identifier (letter followed by a sequence of letters and digits; the
underscore counts as a letter; upper- and lowercase are distinct). Regular definitions must
be non-recursive.

• start state definitions in the format:

%start name ...

which are used in specifying start conditions on rules (described below). The %start keyword
may also be abbreviated as %s or %S.

• Turbo Pascal declarations enclosed between %{ and %}. These will be inserted into the output
file (at global scope). Also, any line that does not look like a Lex definition (e.g., starts with
blank or tab) will be treated as Turbo Pascal code. (In particular, this also allows you to
include Turbo Pascal comments in your Lex program.)

6

The rules section of a TP Lex program contains the actual specification of the lexical ana-
lyzer routine. It may be thought of as a big CASE statement discriminating over the different
patterns to be matched and listing the corresponding statements (actions) to be executed. Each
rule consists of a regular expression describing the strings to be matched in the input, and a
corresponding action, a Turbo Pascal statement to be executed when the expression matches.
Expression and statement are delimited with whitespace (blanks and/or tabs). Thus the format
of a Lex grammar rule is:

expression statement;

Note that the action must be a single Turbo Pascal statement terminated with a semicolon
(use begin ... end for compound statements). The statement may span multiple lines if the
successor lines are indented with at least one blank or tab. The action may also be replaced by
the | character, indicating that the action for this rule is the same as that for the next one.

The TP Lex library unit provides various variables and routines which are useful in the
programming of actions. In particular, the yytext string variable holds the text of the matched
string, and the yyleng Byte variable its length.

Regular expressions are used to describe the strings to be matched in a grammar rule. They
are built from the usual constructs describing character classes and sequences, and operators
specifying repetitions and alternatives. The precise format of regular expressions is described in
the next section.

The rules section may also start with some Turbo Pascal declarations (enclosed in %{ %})
which are treated as local declarations of the actions routine.

Finally, the auxiliary procedures section may contain arbitrary Turbo Pascal code (such as
supporting routines or a main program) which is simply tacked on to the end of the output file.
The auxiliary procedures section is optional.

2.5 Regular Expressions

Table 1 summarizes the format of the regular expressions recognized by TP Lex (also compare
Aho, Sethi, Ullman 1986, fig. 3.48). c stands for a single character, s for a string, r for a regular
expression, and n,m for nonnegative integers.

The operators *, +, ? and {} have highest precedence, followed by concatenation. The |

operator has lowest precedence. Parentheses () may be used to group expressions and overwrite
default precedences. The <> and / operators may only occur once in an expression.

The usual C-like escapes are recognized:

• \n denotes newline

7

Expression Matches Example

c any non-operator character c a

\c character c literally *

"s" string s literally "**"

. any character but newline a.*b

^ beginning of line ^abc

$ end of line abc$

[s] any character in s [abc]

[^s] any character not in s [^abc]

r* zero or more r’s a*

r+ one or more r’s a+

r? zero or one r a?

r{m,n} m to n occurrences of r a{1,5}

r{m} m occurrences of r a{5}

r1r2 r1 then r2 ab

r1|r2 r1 or r2 a|b

(r) r (a|b)

r1/r2 r1 when followed by r2 a/b

<x>r r when in start condition x <x>abc

Table 1: Regular expressions.

8

• \r denotes carriage return

• \t denotes tab

• \b denotes backspace

• \f denotes form feed

• \nnn denotes character no. nnn in octal base

You can also use the \ character to quote characters which would otherwise be interpreted
as operator symbols. In character classes, you may use the - character to denote ranges of
characters. For instance, [a-z] denotes the class of all lowercase letters.

The expressions in a TP Lex program may be ambigious, i.e. there may be inputs which
match more than one rule. In such a case, the lexical analyzer prefers the longest match and,
if it still has the choice between different rules, it picks the first of these. If no rule matches,
the lexical analyzer executes a default action which consists of copying the input character to
the output unchanged. Thus, if the purpose of a lexical analyzer is to translate some parts of
the input, and leave the rest unchanged, you only have to specify the patterns which have to be
treated specially. If, however, the lexical analyzer has to absorb its whole input, you will have
to provide rules that match everything. E.g., you might use the rules

. |

\n ;

which match “any other character” (and ignore it).

Sometimes certain patterns have to be analyzed differently depending on some amount of
context in which the pattern appears. In such a case the / operator is useful. For instance,
the expression a/b matches a, but only if followed by b. Note that the b does not belong to
the match; rather, the lexical analyzer, when matching an a, will look ahead in the input to
see whether it is followed by a b, before it declares that it has matched an a. Such lookahead
may be arbitrarily complex (up to the size of the LexLib input buffer). E.g., the pattern a/.*b

matches an a which is followed by a b somewhere on the same input line. TP Lex also has a
means to specify left context which is described in the next section.

2.6 Start Conditions

TP Lex provides some features which make it possible to handle left context. The ^ character
at the beginning of a regular expression may be used to denote the beginning of the line. More
distant left context can be described conveniently by using start conditions on rules.

Any rule which is prefixed with the <> construct is only valid if the lexical analyzer is in
the denoted start state. For instance, the expression <x>a can only be matched if the lexical

9

analyzer is in start state x. You can have multiple start states in a rule; e.g., <x,y>a can be
matched in start states x or y.

Start states have to be declared in the definitions section by means of one or more start state
definitions (see above). The lexical analyzer enters a start state through a call to the LexLib

routine start. E.g., you may write:

%start x y

%%

<x>a start(y);

<y>b start(x);

%%

begin

start(x); if yylex=0 then ;

end.

Upon initialization, the lexical analyzer is put into state x. It then proceeds in state x until
it matches an a which puts it into state y. In state y it may match a b which puts it into state
x again, etc.

Start conditions are useful when certain constructs have to be analyzed differently depending
on some left context (such as a special character at the beginning of the line), and if multiple
lexical analyzers have to work in concert. If a rule is not prefixed with a start condition, it is
valid in all user-defined start states, as well as in the lexical analyzer’s default start state.

2.7 Lex Library

The TP Lex library (LexLib) unit provides various variables and routines which are used by
Lex-generated lexical analyzers and application programs. It provides the input and output
streams and other internal data structures used by the lexical analyzer routine, and supplies
some variables and utility routines which may be used by actions and application programs.
Refer to the file lexlib.pas for a closer description.

You can also modify the Lex library unit (and/or the code template in the yylex.cod file)
to customize TP Lex to your target applications. E.g., you might wish to optimize the code of
the lexical analyzer for some special application, make the analyzer read from/write to memory
instead of files, etc.

2.8 Implementation Restrictions

Internal table sizes and the main memory available limit the complexity of source grammars
that TP Lex can handle. There is currently no possibility to change internal table sizes (apart

10

from modifying the sources of TP Lex itself), but the maximum table sizes provided by TP Lex
seem to be large enough to handle most realistic applications. The actual table sizes depend
on the particular implementation (they are much larger than the defaults if TP Lex has been
compiled with one of the 32 bit compilers such as Delphi 2 or Free Pascal), and are shown in
the statistics printed by TP Lex when a compilation is finished. The units given there are “p”
(positions, i.e. items in the position table used to construct the DFA), “s” (DFA states) and
“t” (transitions of the generated DFA).

As implemented, the generated DFA table is stored as a typed array constant which is
inserted into the yylex.cod code template. The transitions in each state are stored in order.
Of course it would have been more efficient to generate a big CASE statement instead, but
I found that this may cause problems with the encoding of large DFA tables because Turbo
Pascal has a quite rigid limit on the code size of individual procedures. I decided to use a
scheme in which transitions on different symbols to the same state are merged into one single
transition (specifying a character set and the corresponding next state). This keeps the number
of transitions in each state quite small and still allows a fairly efficient access to the transition
table.

The TP Lex program has an option (-o) to optimize DFA tables. This causes a minimal
DFA to be generated, using the algorithm described in Aho, Sethi, Ullman (1986). Although
the absolute limit on the number of DFA states that TP Lex can handle is at least 300, TP
Lex poses an additional restriction (100) on the number of states in the initial partition of the
DFA optimization algorithm. Thus, you may get a fatal integer set overflow message when
using the -o option even when TP Lex is able to generate an unoptimized DFA. In such cases
you will just have to be content with the unoptimized DFA. (Hopefully, this will be fixed in a
future version. Anyhow, using the merged transitions scheme described above, TP Lex usually
constructs unoptimized DFA’s which are not far from being optimal, and thus in most cases
DFA optimization won’t have a great impact on DFA table sizes.)

2.9 Differences from UNIX Lex

Major differences between TP Lex and UNIX Lex are listed below.

• TP Lex produces output code for Turbo Pascal, rather than for C.

• Character tables (%T) are not supported; neither are any directives to determine internal
table sizes (%p, %n, etc.).

• Library routines are named differently from the UNIX version (e.g., the start routine takes
the place of the BEGIN macro of UNIX Lex), and, of course, all macros of UNIX Lex (ECHO,
REJECT, etc.) had to be implemented as procedures.

11

• The TP Lex library unit starts counting line numbers at 0, incrementing the count before a
line is read (in contrast, UNIX Lex initializes yylineno to 1 and increments it after the line
end has been read). This is motivated by the way in which TP Lex maintains the current
line, and will not affect your programs unless you explicitly reset the yylineno value (e.g.,
when opening a new input file). In such a case you should set yylineno to 0 rather than 1.

3 TP Yacc

This section describes the TP Yacc compiler compiler.

3.1 Usage

yacc [options] yacc-file[.y] [output-file[.pas]]

3.2 Options

-v “Verbose:” TP Yacc generates a readable description of the generated parser, written to
yacc-file with new extension .lst.

-d “Debug:” TP Yacc generates parser with debugging output.

3.3 Description

TP Yacc is a program that lets you prepare parsers from the description of input languages by
BNF-like grammars. You simply specify the grammar for your target language, augmented with
the Turbo Pascal code necessary to process the syntactic constructs, and TP Yacc translates
your grammar into the Turbo Pascal code for a corresponding parser subroutine named yyparse.

TP Yacc parses the source grammar contained in yacc-file (with default suffix .y) and
writes the constructed parser subroutine to the specified output-file (with default suffix .pas);
if no output file is specified, output goes to yacc-file with new suffix .pas. If any errors are
found during compilation, error messages are written to the list file (yacc-file with new suffix
.lst).

The generated parser routine, yyparse, is declared as:

function yyparse : Integer;

This routine may be called by your main program to execute the parser. The return value of
the yyparse routine denotes success or failure of the parser (possible return values: 0 = success,
1 = unrecoverable syntax error or parse stack overflow).

12

Similar to TP Lex, the code template for the yyparse routine may be found in the yyparse.cod
file. The rules for locating this file are analogous to those of TP Lex (see Section TP Lex).

The TP Yacc library (YaccLib) unit is required by programs using Yacc- generated parsers;
you will therefore have to put an appropriate uses clause into your program or unit that contains
the parser routine. The YaccLib unit also provides some routines which may be used to control
the actions of the parser. See the file yacclib.pas for further information.

3.4 Yacc Source

A TP Yacc program consists of three sections separated with the %% delimiter:

definitions

%%

rules

%%

auxiliary procedures

The TP Yacc language is free-format: whitespace (blanks, tabs and newlines) is ignored,
except if it serves as a delimiter. Comments have the C-like format /* ... */. They are
treated as whitespace. Grammar symbols are denoted by identifiers which have the usual form
(letter, including underscore, followed by a sequence of letters and digits; upper- and lowercase
is distinct). The TP Yacc language also has some keywords which always start with the %

character. Literals are denoted by characters enclosed in single quotes. The usual C-like escapes
are recognized:

• \n denotes newline

• \r denotes carriage return

• \t denotes tab

• \b denotes backspace

• \f denotes form feed

• \nnn denotes character no. nnn in octal base

3.5 Definitions

The first section of a TP Yacc grammar serves to define the symbols used in the grammar. It
may contain the following types of definitions:

13

• start symbol definition: A definition of the form

%start symbol

declares the start nonterminal of the grammar (if this definition is omitted, TP Yacc assumes
the left-hand side nonterminal of the first grammar rule as the start symbol of the grammar).

• terminal definitions: Definitions of the form

%token symbol ...

are used to declare the terminal symbols (“tokens”) of the target language. Any identifier
not introduced in a %token definition will be treated as a nonterminal symbol.

As far as TP Yacc is concerned, tokens are atomic symbols which do not have an innert
structure. A lexical analyzer must be provided which takes on the task of tokenizing the
input stream and return the individual tokens and literals to the parser (see Section Lexical
Analysis).

• precedence definitions: Operator symbols (terminals) may be associated with a precedence
by means of a precedence definition which may have one of the following forms

%left symbol ...

%right symbol ...

%nonassoc symbol ...

which are used to declare left-, right- and nonassociative operators, respectively. Each prece-
dence definition introduces a new precedence level, lowest precedence first. E.g., you may
write:

%nonassoc ’<’ ’>’ ’=’ GEQ LEQ NEQ

/* relational operators */

%left ’+’ ’-’ OR

/* addition operators */

%left ’*’ ’/’ AND

/* multiplication operators */

%right NOT UMINUS

/* unary operators */

A terminal identifier introduced in a precedence definition may, but need not, appear in a
%token definition as well.

14

• type definitions: Any (terminal or nonterminal) grammar symbol may be associated with
a type identifier which is used in the processing of semantic values. Type tags of the form
<name> may be used in token and precedence definitions to declare the type of a terminal
symbol, e.g.:

%token <Real> NUM

%left <AddOp> ’+’ ’-’

To declare the type of a nonterminal symbol, use a type definition of the form:

%type <name> symbol ...

e.g.:

%type <Real> expr

In a %type definition, you may also omit the nonterminals, i.e. you may write:

%type <name>

This is useful when a given type is only used with type casts (see Section Grammar Rules
and Actions), and is not associated with a specific nonterminal.

• Turbo Pascal declarations: You may also include arbitrary Turbo Pascal code in the defini-
tions section, enclosed in %{ %}. This code will be inserted as global declarations into the
output file, unchanged.

3.6 Grammar Rules and Actions

The second part of a TP Yacc grammar contains the grammar rules for the target language.
Grammar rules have the format

name : symbol ... ;

The left-hand side of a rule must be an identifier (which denotes a nonterminal symbol).
The right-hand side may be an arbitrary (possibly empty) sequence of nonterminal and terminal
symbols (including literals enclosed in single quotes). The terminating semicolon may also be
omitted. Different rules for the same left-hand side symbols may be written using the | character
to separate the different alternatives:

15

name : symbol ...

| symbol ...

...

;

For instance, to specify a simple grammar for arithmetic expressions, you may write:

%left ’+’ ’-’

%left ’*’ ’/’

%token NUM

%%

expr : expr ’+’ expr

| expr ’-’ expr

| expr ’*’ expr

| expr ’/’ expr

| ’(’ expr ’)’

| NUM

;

(The %left definitions at the beginning of the grammar are needed to specify the precedence
and associativity of the operator symbols. This will be discussed in more detail in Section
Ambigious Grammars.)

Grammar rules may contain actions – Turbo Pascal statements enclosed in { } – to be
executed as the corresponding rules are recognized. Furthermore, rules may return values, and
access values returned by other rules. These “semantic” values are written as $$ (value of the
left-hand side nonterminal) and $i (value of the ith right-hand side symbol). They are kept on
a special value stack which is maintained automatically by the parser.

Values associated with terminal symbols must be set by the lexical analyzer (more about
this in Section Lexical Analysis). Actions of the form $$:= $1 can frequently be omitted, since
it is the default action assumed by TP Yacc for any rule that does not have an explicit action.

By default, the semantic value type provided by Yacc is Integer. You can also put a
declaration like

%{

type YYSType = Real;

%}

into the definitions section of your Yacc grammar to change the default value type. However,
if you have different value types, the preferred method is to use type definitions as discussed in
Section Definitions. When such type definitions are given, TP Yacc handles all the necessary

16

details of the YYSType definition and also provides a fair amount of type checking which makes
it easier to find type errors in the grammar.

For instance, we may declare the symbols NUM and expr in the example above to be of type
Real, and then use these values to evaluate an expression as it is parsed.

%left ’+’ ’-’

%left ’*’ ’/’

%token <Real> NUM

%type <Real> expr

%%

expr : expr ’+’ expr { $$:= $1+$3; }

| expr ’-’ expr { $$:= $1-$3; }

| expr ’*’ expr { $$:= $1*$3; }

| expr ’/’ expr { $$:= $1/$3; }

| ’(’ expr ’)’ { $$:= $2; }

| NUM

;

(Note that we omitted the action of the last rule. The “copy action” $$:= $1 required by
this rule is automatically added by TP Yacc.)

Actions may not only appear at the end, but also in the middle of a rule which is useful to
perform some processing before a rule is fully parsed. Such actions inside a rule are treated as
special nonterminals which are associated with an empty right-hand side. Thus, a rule like

x : y { action; } z

will be treated as:

x : y $act z

$act : { action; }

Actions inside a rule may also access values to the left of the action, and may return values
by assigning to the $$ value. The value returned by such an action can then be accessed by
other actions using the usual $i notation. E.g., we may write:

x : y { $$:= 2*$1; } z { $$:= $2+$3; }

which has the effect of setting the value of x to

2*(the value of y)+(the value of z).

17

Sometimes it is desirable to access values in enclosing rules. This can be done using the
notation $i with i ≤ 0. $0 refers to the first value “to the left” of the current rule, $-1 to the
second, and so on. Note that in this case the referenced value depends on the actual contents
of the parse stack, so you have to make sure that the requested values are always where you
expect them.

There are some situations in which TP Yacc cannot easily determine the type of values (when
a typed parser is used). This is true, in particular, for values in enclosing rules and for the $$

value in an action inside a rule. In such cases you may use a type cast to explicitly specify
the type of a value. The format for such type casts is $<name>$ (for left-hand side values) and
$<name>i (for right-hand side values) where name is a type identifier (which must occur in a
%token, precedence or %type definition).

3.7 Auxiliary Procedures

The third section of a TP Yacc program is optional. If it is present, it may contain any Turbo
Pascal code (such as supporting routines or a main program) which is tacked on to the end of
the output file.

3.8 Lexical Analysis

For any TP Yacc-generated parser, the programmer must supply a lexical analyzer routine
named yylex which performs the lexical analysis for the parser. This routine must be declared
as

function yylex : Integer;

The yylex routine may either be prepared by hand, or by using the lexical analyzer generator
TP Lex (see Section TP Lex).

The lexical analyzer must be included in your main program behind the parser subroutine
(the yyparse code template includes a forward definition of the yylex routine such that the
parser can access the lexical analyzer). For instance, you may put the lexical analyzer routine
into the auxiliary procedures section of your TP Yacc grammar, either directly, or by using the
the Turbo Pascal include directive ($I).

The parser repeatedly calls the yylex routine to tokenize the input stream and obtain the
individual lexical items in the input. For any literal character, the yylex routine has to return
the corresponding character code. For the other, symbolic, terminals of the input language, the
lexical analyzer must return corresponding integer codes. These are assigned automatically by
TP Yacc in the order in which token definitions appear in the definitions section of the source
grammar. The lexical analyzer can access these values through corresponding integer constants
which are declared by TP Yacc in the output file.

18

For instance, if

%token NUM

is the first definition in the Yacc grammar, then TP Yacc will create a corresponding constant
declaration

const NUM = 257;

in the output file (TP Yacc automatically assigns symbolic token numbers starting at 257; 1 thru
255 are reserved for character literals, 0 denotes end-of-file, and 256 is reserved for the special
error token which will be discussed in Section Error Handling). This definition may then be
used, e.g., in a corresponding TP Lex program as follows:

[0-9]+ return(NUM);

You can also explicitly assign token numbers in the grammar. For this purpose, the first
occurrence of a token identifier in the definitions section may be followed by an unsigned integer.
E.g. you may write:

%token NUM 299

Besides the return value of yylex, the lexical analyzer routine may also return an additional
semantic value for the recognized token. This value is assigned to a variable named yylval and
may then be accessed in actions through the $i notation (see above, Section Grammar Rules
and Actions). The yylval variable is of type YYSType (the semantic value type, Integer by
default); its declaration may be found in the yyparse.cod file.

For instance, to assign an Integer value to a NUM token in the above example, we may write:

[0-9]+ begin

val(yytext, yylval, code);

return(NUM);

end;

This assigns yylval the value of the NUM token (using the Turbo Pascal standard procedure
val).

If a parser uses tokens of different types (via a %token <name> definition), then the yylval

variable will not be of type Integer, but instead of a corresponding variant record type which is
capable of holding all the different value types declared in the TP Yacc grammar. In this case,
the lexical analyzer must assign a semantic value to the corresponding record component which
is named yyname (where name stands for the corresponding type identifier).

E.g., if token NUM is declared Real:

19

%token <Real> NUM

then the value for token NUM must be assigned to yylval.yyReal.

3.9 How The Parser Works

TP Yacc uses the LALR(1) technique developed by Donald E. Knuth and F. DeRemer to
construct a simple, efficient, non-backtracking bottom-up parser for the source grammar. The
LALR parsing technique is described in detail in Aho/Sethi/Ullman (1986). It is quite instructive
to take a look at the parser description TP Yacc generates from a small sample grammar, to get
an idea of how the LALR parsing algorithm works. We consider the following simplified version
of the arithmetic expression grammar:

%token NUM

%left ’+’

%left ’*’

%%

expr : expr ’+’ expr

| expr ’*’ expr

| ’(’ expr ’)’

| NUM

;

When run with the -v option on the above grammar, TP Yacc generates the parser descrip-
tion listed below.

state 0:

$accept : _ expr $end

’(’ shift 2

NUM shift 3

. error

expr goto 1

state 1:

$accept : expr _ $end

expr : expr _ ’+’ expr

20

expr : expr _ ’*’ expr

$end accept

’*’ shift 4

’+’ shift 5

. error

state 2:

expr : ’(’ _ expr ’)’

’(’ shift 2

NUM shift 3

. error

expr goto 6

state 3:

expr : NUM _ (4)

. reduce 4

state 4:

expr : expr ’*’ _ expr

’(’ shift 2

NUM shift 3

. error

expr goto 7

state 5:

expr : expr ’+’ _ expr

’(’ shift 2

NUM shift 3

. error

21

expr goto 8

state 6:

expr : ’(’ expr _ ’)’

expr : expr _ ’+’ expr

expr : expr _ ’*’ expr

’)’ shift 9

’*’ shift 4

’+’ shift 5

. error

state 7:

expr : expr ’*’ expr _ (2)

expr : expr _ ’+’ expr

expr : expr _ ’*’ expr

. reduce 2

state 8:

expr : expr ’+’ expr _ (1)

expr : expr _ ’+’ expr

expr : expr _ ’*’ expr

’*’ shift 4

$end reduce 1

’)’ reduce 1

’+’ reduce 1

. error

state 9:

expr : ’(’ expr ’)’ _ (3)

. reduce 3

22

Each state of the parser corresponds to a certain prefix of the input which has already been
seen. The parser description lists the grammar rules wich are parsed in each state, and indicates
the portion of each rule which has already been parsed by an underscore. In state 0, the start
state of the parser, the parsed rule is

$accept : expr $end

This is not an actual grammar rule, but a starting rule automatically added by TP Yacc. In
general, it has the format

$accept : X $end

where X is the start nonterminal of the grammar, and $end is a pseudo token denoting end-of-
input (the $end symbol is used by the parser to determine when it has successfully parsed the
input).

The description of the start rule in state 0,

$accept : _ expr $end

with the underscore positioned before the expr symbol, indicates that we are at the beginning
of the parse and are ready to parse an expression (nonterminal expr).

The parser maintains a stack to keep track of states visited during the parse. There are
two basic kinds of actions in each state: shift , which reads an input symbol and pushes the
corresponding next state on top of the stack, and reduce which pops a number of states from the
stack (corresponding to the number of right-hand side symbols of the rule used in the reduction)
and consults the goto entries of the uncovered state to find the transition corresponding to the
left-hand side symbol of the reduced rule.

In each step of the parse, the parser is in a given state (the state on top of its stack) and
may consult the current lookahead symbol , the next symbol in the input, to determine the parse
action – shift or reduce – to perform. The parser terminates as soon as it reaches state 1 and
reads in the endmarker, indicated by the accept action on $end in state 1.

Sometimes the parser may also carry out an action without inspecting the current lookahead
token. This is the case, e.g., in state 3 where the only action is reduction by rule 4:

. reduce 4

The default action in a state can also be error indicating that any other input represents a
syntax error. (In case of such an error the parser will start syntactic error recovery, as described
in Section Error Handling .)

Now let us see how the parser responds to a given input. We consider the input string 2+5*3

which is presented to the parser as the token sequence:

23

State Stack Lookahead Action

0 NUM shift state 3
3 0 reduce rule 4 (pop 1 state, uncovering state 0,

then goto state 1 on symbol expr)
1 0 + shift state 5
5 1 0 NUM shift state 3
3 5 1 0 reduce rule 4 (pop 1 state, uncovering state 5,

then goto state 8 on symbol expr)
8 5 1 0 * shift 4
4 8 5 1 0 NUM shift 3
3 4 8 5 1 0 reduce rule 4 (pop 1 state, uncovering state 4,

then goto state 7 on symbol expr)
7 4 8 5 1 0 reduce rule 2 (pop 3 states, uncovering state 5,

then goto state 8 on symbol expr)
8 5 1 0 $end reduce rule 1 (pop 3 states, uncovering state 0,

then goto state 1 on symbol expr)
1 0 $end accept

Table 2: Parse of NUM + NUM * NUM.

NUM + NUM * NUM

Table 2 traces the corresponding actions of the parser. We also show the current state in
each move, and the remaining states on the stack.

It is also instructive to see how the parser responds to illegal inputs. E.g., you may try to
figure out what the parser does when confronted with:

NUM +)

or:

(NUM * NUM

You will find that the parser, sooner or later, will always run into an error action when
confronted with errorneous inputs. An LALR parser will never shift an invalid symbol and thus
will always find syntax errors as soon as it is possible during a left-to-right scan of the input.

TP Yacc provides a debugging option (-d) that may be used to trace the actions performed
by the parser. When a grammar is compiled with the -d option, the generated parser will print
out the actions as it parses its input.

24

3.10 Ambigious Grammars

There are situations in which TP Yacc will not produce a valid parser for a given input language.
LALR(1) parsers are restricted to one-symbol lookahead on which they have to base their parsing
decisions. If a grammar is ambigious, or cannot be parsed unambigiously using one-symbol
lookahead, TP Yacc will generate parsing conflicts when constructing the parse table. There
are two types of such conflicts: shift/reduce conflicts (when there is both a shift and a reduce
action for a given input symbol in a given state), and reduce/reduce conflicts (if there is more
than one reduce action for a given input symbol in a given state). Note that there never will be
a shift/shift conflict.

When a grammar generates parsing conflicts, TP Yacc prints out the number of shift/reduce
and reduce/reduce conflicts it encountered when constructing the parse table. However, TP
Yacc will still generate the output code for the parser. To resolve parsing conflicts, TP Yacc
uses the following built-in disambiguating rules:

• in a shift/reduce conflict, TP Yacc chooses the shift action.

• in a reduce/reduce conflict, TP Yacc chooses reduction of the first grammar rule.

The shift/reduce disambiguating rule correctly resolves a type of ambiguity known as the
“dangling-else ambiguity” which arises in the syntax of conditional statements of many pro-
gramming languages (as in Pascal):

%token IF THEN ELSE

%%

stmt : IF expr THEN stmt

| IF expr THEN stmt ELSE stmt

;

This grammar is ambigious, because a nested construct like

IF expr-1 THEN IF expr-2 THEN stmt-1

ELSE stmt-2

can be parsed two ways, either as:

IF expr-1 THEN (IF expr-2 THEN stmt-1

ELSE stmt-2)

or as:

25

IF expr-1 THEN (IF expr-2 THEN stmt-1)

ELSE stmt-2

The first interpretation makes an ELSE belong to the last unmatched IF which also is the
interpretation chosen in most programming languages. This is also the way that a TP Yacc-
generated parser will parse the construct since the shift/reduce disambiguating rule has the
effect of neglecting the reduction of IF expr-2 THEN stmt-1; instead, the parser will shift the
ELSE symbol which eventually leads to the reduction of IF expr-2 THEN stmt-1 ELSE stmt-2.

The reduce/reduce disambiguating rule is used to resolve conflicts that arise when there is
more than one grammar rule matching a given construct. Such ambiguities are often caused by
“special case constructs” which may be given priority by simply listing the more specific rules
ahead of the more general ones.

For instance, the following is an excerpt from the grammar describing the input language of
the UNIX equation formatter EQN:

%right SUB SUP

%%

expr : expr SUB expr SUP expr

| expr SUB expr

| expr SUP expr

;

Here, the SUB and SUP operator symbols denote sub- and superscript, respectively. The
rationale behind this example is that an expression involving both sub- and superscript is often
set differently from a superscripted subscripted expression (compare xni to xi

n). This special
case is therefore caught by the first rule in the above example which causes a reduce/reduce
conflict with rule 3 in expressions like expr-1 SUB expr-2 SUP expr-3. The conflict is resolved
in favour of the first rule.

In both cases discussed above, the ambiguities could also be eliminated by rewriting the
grammar accordingly (although this yields more complicated and less readable grammars). This
may not always be the case. Often ambiguities are also caused by design errors in the grammar.
Hence, if TP Yacc reports any parsing conflicts when constructing the parser, you should use
the -v option to generate the parser description (.lst file) and check whether TP Yacc resolved
the conflicts correctly.

There is one type of syntactic constructs for which one often deliberately uses an ambigious
grammar as a more concise representation for a language that could also be specified unambi-
giously: the syntax of expressions. For instance, the following is an unambigious grammar for
simple arithmetic expressions:

%token NUM

26

%%

expr : term

| expr ’+’ term

;

term : factor

| term ’*’ factor

;

factor : ’(’ expr ’)’

| NUM

;

You may check yourself that this grammar gives * a higher precedence than + and makes
both operators left-associative. The same effect can be achieved with the following ambigious
grammar using precedence definitions:

%token NUM

%left ’+’

%left ’*’

%%

expr : expr ’+’ expr

| expr ’*’ expr

| ’(’ expr ’)’

| NUM

;

Without the precedence definitions, this is an ambigious grammar causing a number of
shift/reduce conflicts. The precedence definitions are used to correctly resolve these conflicts
(conflicts resolved using precedence will not be reported by TP Yacc).

Each precedence definition introduces a new precedence level (lowest precedence first) and
specifies whether the corresponding operators should be left-, right- or nonassociative (nonasso-
ciative operators cannot be combined at all; example: relational operators in Pascal).

TP Yacc uses precedence information to resolve shift/reduce conflicts as follows. Precedences
are associated with each terminal occuring in a precedence definition. Furthermore, each gram-
mar rule is given the precedence of its rightmost terminal (this default choice can be overwritten
using a %prec tag; see below). To resolve a shift/reduce conflict using precedence, both the

27

symbol and the rule involved must have been assigned precedences. TP Yacc then chooses the
parse action as follows:

• If the symbol has higher precedence than the rule: shift.

• If the rule has higher precedence than the symbol: reduce.

• If symbol and rule have the same precedence, the associativity of the symbol determines the
parse action: if the symbol is left-associative: reduce; if the symbol is right-associative: shift;
if the symbol is non-associative: error.

To give you an idea of how this works, let us consider our ambigious arithmetic expression
grammar (without precedences):

%token NUM

%%

expr : expr ’+’ expr

| expr ’*’ expr

| ’(’ expr ’)’

| NUM

;

This grammar generates four shift/reduce conflicts. The description of state 8 reads as
follows:

state 8:

*** conflicts:

shift 4, reduce 1 on ’*’

shift 5, reduce 1 on ’+’

expr : expr ’+’ expr _ (1)

expr : expr _ ’+’ expr

expr : expr _ ’*’ expr

’*’ shift 4

’+’ shift 5

$end reduce 1

’)’ reduce 1

. error

28

In this state, we have successfully parsed a + expression (rule 1). When the next symbol is
+ or *, we have the choice between the reduction and shifting the symbol. Using the default
shift/reduce disambiguating rule, TP Yacc has resolved these conflicts in favour of shift.

Now let us assume the above precedence definition:

%left ’+’

%left ’*’

which gives * higher precedence than + and makes both operators left-associative. The rightmost
terminal in rule 1 is +. Hence, given these precedence definitions, the first conflict will be resolved
in favour of shift (* has higher precedence than +), while the second one is resolved in favour of
reduce (+ is left-associative).

Similar conflicts arise in state 7:

state 7:

*** conflicts:

shift 4, reduce 2 on ’*’

shift 5, reduce 2 on ’+’

expr : expr ’*’ expr _ (2)

expr : expr _ ’+’ expr

expr : expr _ ’*’ expr

’*’ shift 4

’+’ shift 5

$end reduce 2

’)’ reduce 2

. error

Here, we have successfully parsed a * expression which may be followed by another + or *

operator. Since * is left-associative and has higher precedence than +, both conflicts will be
resolved in favour of reduce.

Of course, you can also have different operators on the same precedence level. For instance,
consider the following extended version of the arithmetic expression grammar:

%token NUM

%left ’+’ ’-’

%left ’*’ ’/’

29

%%

expr : expr ’+’ expr

| expr ’-’ expr

| expr ’*’ expr

| expr ’/’ expr

| ’(’ expr ’)’

| NUM

;

This puts all “addition” operators on the first and all “multiplication” operators on the
second precedence level. All operators are left-associative; for instance, 5+3-2 will be parsed as
(5+3)-2.

By default, TP Yacc assigns each rule the precedence of its rightmost terminal. This is a
sensible decision in most cases. Occasionally, it may be necessary to overwrite this default choice
and explicitly assign a precedence to a rule. This can be done by putting a precedence tag of
the form

%prec symbol

at the end of the corresponding rule which gives the rule the precedence of the specified symbol.
For instance, to extend the expression grammar with a unary minus operator, giving it highest
precedence, you may write:

%token NUM

%left ’+’ ’-’

%left ’*’ ’/’

%right UMINUS

%%

expr : expr ’+’ expr

| expr ’-’ expr

| expr ’*’ expr

| expr ’/’ expr

| ’-’ expr %prec UMINUS

| ’(’ expr ’)’

| NUM

;

Note the use of the UMINUS token which is not an actual input symbol but whose sole purpose
it is to give unary minus its proper precedence. If we omitted the precedence tag, both unary
and binary minus would have the same precedence because they are represented by the same
input symbol.

30

3.11 Error Handling

Syntactic error handling is a difficult area in the design of user-friendly parsers. Usually, you
will not like to have the parser give up upon the first occurrence of an errorneous input symbol.
Instead, the parser should recover from a syntax error, that is, it should try to find a place in
the input where it can resume the parse.

TP Yacc provides a general mechanism to implement parsers with error recovery. A special
predefined error token may be used in grammar rules to indicate positions where syntax errors
might occur. When the parser runs into an error action (i.e., reads an errorneous input symbol)
it prints out an error message and starts error recovery by popping its stack until it uncovers a
state in which there is a shift action on the error token. If there is no such state, the parser
terminates with return value 1, indicating an unrecoverable syntax error. If there is such a state,
the parser takes the shift on the error token (pretending it has seen an imaginary error token
in the input), and resumes parsing in a special “error mode.”

While in error mode, the parser quietly skips symbols until it can again perform a legal
shift action. To prevent a cascade of error messages, the parser returns to its normal mode of
operation only after it has seen and shifted three legal input symbols. Any additional error found
after the first shifted symbol restarts error recovery, but no error message is printed. The TP
Yacc library routine yyerrok may be used to reset the parser to its normal mode of operation
explicitly.

For a simple example, consider the rule

stmt : error ’;’ { yyerrok; }

and assume a syntax error occurs while a statement (nonterminal stmt) is parsed. The parser
prints an error message, then pops its stack until it can shift the token error of the error rule.
Proceeding in error mode, it will skip symbols until it finds a semicolon, then reduces by the
error rule. The call to yyerrok tells the parser that we have recovered from the error and that
it should proceed with the normal parse. This kind of “panic mode” error recovery scheme
works well when statements are always terminated with a semicolon. The parser simply skips
the “bad” statement and then resumes the parse.

Implementing a good error recovery scheme can be a difficult task; see Aho/Sethi/Ullman
(1986) for a more comprehensive treatment of this topic. Schreiner and Friedman have developed
a systematic technique to implement error recovery with Yacc which I found quite useful (I used
it myself to implement error recovery in the TP Yacc parser); see Schreiner/Friedman (1985).

3.12 Yacc Library

The TP Yacc library (YaccLib) unit provides some global declarations used by the parser routine
yyparse, and some variables and utility routines which may be used to control the actions of

31

the parser and to implement error recovery. See the file yacclib.pas for a description of these
variables and routines.

You can also modify the Yacc library unit (and/or the code template in the yyparse.cod

file) to customize TP Yacc to your target applications.

3.13 Other Features

TP Yacc supports all additional language elements entitled as “Old Features Supported But not
Encouraged” in the UNIX manual, which are provided for backward compatibility with older
versions of (UNIX) Yacc:

• literals delimited by double quotes.

• multiple-character literals. Note that these are not treated as character sequences but repre-
sent single tokens which are given a symbolic integer code just like any other token identifier.
However, they will not be declared in the output file, so you have to make sure yourself that
the lexical analyzer returns the correct codes for these symbols. E.g., you might explicitly
assign token numbers by using a definition like

%token ’:=’ 257

at the beginning of the Yacc grammar.

• \ may be used instead of %, i.e. \\ means %%, \left is the same as %left, etc.

• other synonyms:

– %< for %left

– %> for %right

– %binary or %2 for %nonassoc

– %term or %0 for %token

– %= for %prec

• actions may also be written as = { ... } or = single-statement;

• Turbo Pascal declarations (%{ ... %}) may be put at the beginning of the rules section.
They will be treated as local declarations of the actions routine.

32

3.14 Implementation Restrictions

As with TP Lex, internal table sizes and the main memory available limit the complexity of
source grammars that TP Yacc can handle. However, the maximum table sizes provided by TP
Yacc are large enough to handle quite complex grammars (such as the Pascal grammar in the
TP Yacc distribution). The actual table sizes are shown in the statistics printed by TP Yacc
when a compilation is finished. The given figures are ”s” (states), ”i” (LR0 kernel items), ”t”
(shift and goto transitions) and ”r” (reductions).

The default stack size of the generated parsers is yymaxdepth = 1024, as declared in the TP
Yacc library unit. This should be sufficient for any average application, but you can change the
stack size by including a corresponding declaration in the definitions part of the Yacc grammar
(or change the value in the YaccLib unit). Note that right-recursive grammar rules may increase
stack space requirements, so it is a good idea to use left-recursive rules wherever possible.

3.15 Differences from UNIX Yacc

Major differences between TP Yacc and UNIX Yacc are listed below.

• TP Yacc produces output code for Turbo Pascal, rather than for C.

• TP Yacc does not support %union definitions. Instead, a value type is declared by specifying
the type identifier itself as the tag of a %token or %type definition. TP Yacc will automatically
generate an appropriate variant record type (YYSType) which is capable of holding values of
any of the types used in %token and %type.

Type checking is very strict. If you use type definitions, then any symbol referred to in
an action must have a type introduced in a type definition. Either the symbol must have
been assigned a type in the definitions section, or the $<type-identifier> notation must
be used. The syntax of the %type definition has been changed slightly to allow definitions of
the form

%type <type-identifier>

(omitting the nonterminals) which may be used to declare types which are not assigned to
any grammar symbol, but are used with the $<...> construct.

• The parse tables constructed by this Yacc version are slightly greater than those constructed
by UNIX Yacc, since a reduce action will only be chosen as the default action if it is the only
action in the state. In difference, UNIX Yacc chooses a reduce action as the default action
whenever it is the only reduce action of the state (even if there are other shift actions).

33

This solves a bug in UNIX Yacc that makes the generated parser start error recovery too
late with certain types of error productions (see also Schreiner/Friedman, Introduction to
compiler construction with UNIX, 1985). Also, errors will be caught sooner in most cases
where UNIX Yacc would carry out an additional (default) reduction before detecting the
error.

• Library routines are named differently from the UNIX version (e.g., the yyerrlab routine
takes the place of the YYERROR macro of UNIX Yacc), and, of course, all macros of UNIX
Yacc (YYERROR, YYACCEPT, etc.) had to be implemented as procedures.

34

