
 The Millikan oil-drop experiment: a measurement of e 
 
Purpose 
To demonstrate the quantization of electric charge and to determine the 
electronic charge e. 
 
Key concepts 
 Terminal velocity 

Viscosity; Stokes law 
Brownian motion 
 

References 
A copy of Millikan’s original paper is available in the lab. It is well worth reading: 
Physical Review, Volume 32, pp 349-397 (1911).   

 
Introduction 
The oil-drop experiment is one of the classic experiments in physics. For the first 
time, it showed that electric charge is not a continuous quantity but comes only in 
integer multiples of the basic charge quantum e. The first measurement, 
published by Millikan in 1911, determined the value of e with a precision of 0.2%. 
This measurement also led to the first accurate determination of the mass of the 
electron (from the previous measurement of e/m by Thomson) and Avogadro’s 
number NA from earlier electrolysis measurements of the Faraday F=NAe.  

 
The idea of the experiment is very simple.  Our experiment uses microspheres of 
polystyrene instead of oil drops, but is otherwise very similar to Millikan’s original 
experiment.   
1. First measure the terminal velocity of a droplet falling under the influence of 
gravity. Competition between gravity and the viscous drag force exerted by the 
air enables the size of the sphere to be determined.   
 
2.  Then measure the terminal velocity of a charged droplet in the presence of an 
electric field E.  This permits a measurement of the additional electric force qE 
acting on the droplet, and thus the charge q. 
 
Consider the forces acting on a spherical droplet of radius r and density ρ falling 
with velocity v through air with density ρair.  

 
 
 
 
 
 
 

 
 

Velocity vg 

Fdrag=6πηrv 
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The total downward force acting on the droplet is  

 .   (1) 

The buoyant force Fbuoyant is simply the weight of air displaced by the droplet 
while the drag force on a sphere moving slowly in a viscous fluid is given by 
Stokes’ Law Fdrag = 6πηrv where η is the viscosity of the air.  

  
When the acceleration is zero, v becomes the terminal velocity vg and  

.    (2) 

So, by measuring the velocity vg we can determine the radius of the droplet: 
 

.     (3) 

 
You should also be able to show (by integrating equation 1) that, after a droplet is 
released, its velocity increases as  

   ,     (4) 

where the time T to reach 63% of the final vg is . 

 
The value of viscosity η at a temperature T (in oC) can be found in the CRC 
Handbook, for example and expressed as  

 
ηT = 1.824(1 + .005(T- 20oC))×10-5 SI units (kg/m/s).     (5) 

 
Before you begin your experiment, calculate the time it will take for a 1 µm 
diameter sphere to fall a distance of 1 mm and how long it will take for such 
a sphere to reach terminal velocity.  This will be useful in selecting which 
spheres to observe in your experiment.  
 
Now consider the case where there is an electric charge q on the drop and there 
is an electric field E present, causing the droplet to rise at terminal velocity v↑ .  

 
 
 
 
 
 
 
 
 
 

FE=qE 

F=mg 

Fdrag 

velocity v↑

Fbuoyant 
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In this case, the electric force qE can be written as  

  .  (6) 

Finally we have  

.    (7) 

 
When the electric field is reversed, so that the electrostatic force and particle 
velocity point down, you can show that  
 

,    (8) 

 
where is the velocity measured when the electrostatic force is down. 
 
The experiment thus consists of measuring terminal velocities of the polystyrene 
spheres (our “droplets”) as they move under the influence of gravity alone (  ) 

and with applied electric fields ( or , depending on the direction of E). 
 

 
Apparatus  
 A sketch of the apparatus is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

This is a modern version of the experiment.  You will observe the spheres using 
a video camera and make velocity measurements by observing their motion on a 
video monitor. 
 
The main part of the apparatus consists of two aluminum plates separated by a 
circular lucite ring. This ring separates the plates by a distance 0.750 in.   A 
solution of microspheres is squirted into a container attached to the upper plate, 

↓v

gv

↑v ↓v

video camera 

high intensity lamp 

Top view: 

Side view: 
HV supply 

atomizer 

Spheres appear between plates 

Switch 
Box 
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and the spheres fall through a small 0.5 mm diameter hole into the viewing 
volume. The central region between the plates where the spheres appear is 
illuminated by a high intensity lamp, and the video camera is focused on this 
region. The spheres appear as faint light objects against a dark background.  

 
The experiment is strongly affected by vibrations and by convection currents in 
the air. To minimize these effects, the apparatus is mounted on a heavy metal 
base-plate and an infra-red (heat) absorbing glass is placed at the end of the 
lamp to avoid heating the air in the gap. Be careful not to touch the glass - it gets 
very hot!  

 
A variable high voltage (up to 7.5 kV) is applied between the plates.  The 
switches that are attached to the base plate allow three different configurations: 
1)  both plates shorted together,  2)   upper plate at positive potential with respect 
to the lower plate , and 3)  the upper plate at negative potential with respect to 
the lower plate.   The high voltage is fed through a large series resistor that limits 
the current if you happen to touch the apparatus.  Nonetheless, this is not 
advised!  The potential difference can be varied by means of a large 
potentiometer knob and its value determined using a DVM (where 1 volt 
accurately corresponds to 1 kV potential difference).    In normal operation, both 
switches in the right-hand switchbox, which controls the polarity should be moved 
together.   The labels “positive” and “negative” refer to the potential of the top 
plate relative to the bottom plate.  (What does this imply about the force on 
negatively charged particles?)  The switch in the left-hand switchbox shorts the 
plates together when you are measuring the free-fall velocity .  When you wish 
to apply high voltage, leave this switch in the “operate” position.  Ask your 
instructor if you are confused about how these switches operate. 
 
 
Procedure 
 
The video monitor has several equally spaced horizontal lines marked on its 
surface. You will need to calibrate the distances between these lines using a 
ruler situated at the center of the plates.   A photograph of the monitor taken with 
the ruler in place is provided at the end of this section of the manual. Note that 
the 1/64” scale is shown.  Use this photograph to calibrate the apparatus. 
 
 There are three adjustments on the camera: an adjustable iris to vary the overall 
light intensity reaching the CCD camera, a zoom ring, and a focusing ring.  The 
zoom ring is set at maximum magnification.  The focus ring is locked in place so 
that the region at the center of the plates is in focus.  Do not change the zoom 
or focus settings of the camera, as these will change the magnification and 
hence the calibration!    Translating the entire camera using the micrometer on 
the based will not change the magnification.  Use this micrometer to adjust the 
focus during the experiment.    The iris can also be adjusted at any point during 

gv
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the experiment.  It is often advantageous to have the iris nearly closed.  This 
increases the depth of focus. 

   
BEFORE proceeding:  Make sure that you have correctly calculated the time 
that you expect for a 1 µm diameter sphere to fall one division on the monitor.   
The diameter of the spheres that we are using is approximately 1 µm.  Ignore all 
objects on the monitor with free-fall velocities that deviate more than 20% or so 
from this value!    Next, calculate the times that you expect for a charged sphere 
(1 e) to move one division under positive (electrostatic force pointing up, Eq. 7) or 
negative (electrostatic force pointing down, Eq. 8) potentials.   Assume a 
potential of 1 kV.    Make sure that you have read the rest of this write-up and 
have prepared an Excel spreadsheet to perform your analysis.    
 
The solution of spheres is in a small vial taped to the side of the apparatus.  
Remove the lid of the vial and place the small tube from the atomizer into the 
solution.   Give the atomizer 2 – 3 puffs.  You should see the spheres appear on 
the monitor.  Wait one or two minutes before applying a voltage.   

 
Set the polarity switch so that negatively charged spheres will move upward.  
Start with 1 kV.  Ignore the spheres that move very rapidly when you turn on the 
voltage.   They have a large charge.  The spheres receive their electric charge 
due to triboelectricity (friction), as they are squirted into the air.  With practice, it 
is possible to keep a single sphere within the field of view for many minutes by 
either letting it fall under gravity alone with the plates shorted or by applying 
positive or negative voltages.  
 
Obviously, for maximum sensitivity, you want to select the spheres with the 
smallest charge on them, i.e. the ones that move the slowest when the electric 
field is turned on.   Do not waste your time trying to measure spheres with very 
large (more than 5e) charges.    Use a stopwatch to measure the time a sphere 
takes to pass between the lines on the monitor (e.g. tE/division), and then to 
measure the time it takes to fall under gravity alone (tg/division).  Estimate the 
uncertainty in these time measurements. It is especially useful if you can 
continue to observe a single drop for two or three consecutive upward and 
downward excursions.  For the downward excursions, you should make 
some of your measurements with the plates shorted (to measure vg) and 
others at “negative” potential (to measure v↓).   You will probably notice that 
the spheres exhibit Brownian motion, which is due to thermal agitation.  This 
makes it difficult sometimes to keep a sphere within the field of view for extended 
periods, so you must choose whether it is best to make more measurements 
over short distances or to make fewer but more accurate measurements over 
greater distances.   If you find that the spheres rapidly drift out of your field of 
view, then it is likely that the apparatus is not level. 

 
You will find the voltage of 1 kV convenient for measuring charges of 1e,  
2e (use two divisions on the monitor), and (if you use all four divisions on the 
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monitor) 3e.  You can then decrease the voltage to 500 V to measure charges of 
3e to 5e.   Note that you can use either positive or negatively charged spheres.  
In analyzing the data, it is only important to know whether a sphere is moving up 
or down.   Think carefully about your data collection strategy.   In particular, make 
sure that you cover a range of charges, and that timing errors (probably on the 
order of 1 sec for this apparatus) do not wash out the effects of quantization.  
One hint:  make sure that your data collection time for a given sphere is at least 
20 seconds and use an appropriate number of divisions on the monitor.  Data on 
highly charged spheres tends to be less useful.  The idea is to collect a large 
number of drops over a range of charges 1 – 5e so that you can clearly see the 
effects of quantization.     
 
You will need measurements on at least 15 – 20 separate spheres with a range 
of charges to reach a conclusive result. Do not forget to make a note of the air 
temperature during each lab period. 
 
Data analysis 
  
The density of the spheres is 1.05 g/cm3.   

 
For each sphere that you observe, determine the velocity vg and its uncertainty, 
then determine the radius r of the sphere using Eq. 3.   If you have made several 
measurements on the same drop, you can average them to determine vg.   
 
Now determine the velocities  and  for each of your measurements with 
positive and negative potentials respectively.   Note that the charge on a sphere 
can change between measurements and hence these measurements should be 
tabulated individually (do not average them).    It is very unlikely that the charge 
will change while an electric field is applied.   
 
An important correction to your data 
 
Now it seems that you are ready to calculate the charge q on each of the spheres 
using Eqs. 7 and 8.  However, the expression given for ηT in equation 5 is slightly 
wrong in the present situation! The expression for the drag force 6πηrv (Stokes’ 
Law) actually applies to streamline motion in a uniform fluid, but in this 
experiment, the radii of the spheres are typically just a few times the mean free 
path of air molecules and this “graininess” of the air reduces the effective 
viscosity. Taking this into account, the relevant value for the air viscosity can be 
written as 

 ,   (9) 

 
where r is the radius of the sphere in m, a = 8.1×10-8 m,  and P is the air pressure 
in atmospheres. The length a/P is close to the mean free path of the air 

↑v ↓v
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molecules. (In fact, Millikan used his data to determine the value of a directly, by 
inspecting the small, systematic variations in his derived values of q as a function 
of r. For your experiment, however, it will be sufficient to use this corrected value 
of η).   
 
Substituting Eq. 9 into the expression for the sphere radius r (Eq. 3) and squaring 
we obtain an expression for the correct radius rcorr: 

. 

This can be rewritten as a quadratic equation 

 , 

which has a solution correct to first order 

 .   (9) 

 
For each sphere, determine its radius rcorr using this equation, make the 
correction to the air viscosity, and then determine the charge q on the sphere 
using Eqs. 7 and 8.  
 
At this stage, you should be able to see the effects of charge quantization in your 
data. A useful way to look at this is to order your values for q in ascending order, 
and then to Insert _Chart _Column in your Excel sheet). 

 
Finally, assign a value of the integer number of charges on each sphere and 
determine a best value for the charge e.   A quick way to do this is to simply 
assign an integer value ni to each data point qi “by eye” and then determine e 
from a weighted average of .   

 
A better approach uses a chi-squared analysis.  Let  

 
     (10) 

 
be the result of dividing a measured charge qi by e.  If your data were “perfect,” yi 
would be an integer.  The difference  represents the deviation 
of yi from the ideal value.  The function ROUND(yi,0)  evaluates the nearest 
integer to yi  and is available in Excel.   The best choice of e minimizes 
 

 ,   (11) 

 
where .    You can implement this process in Excel by choosing 10 or 
so test values for e and finding the minimum in .  If your weighting is correct, 
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Photograph of the monitor with a ruler (1/64” scale) placed at the center of 
the plates.  Zoom ring is at maximum.  Use this to calibrate the apparatus. 

you can then use the scheme in Appendix A.10 (the “  rule”) to estimate the 
error in e.  You will probably find that the error estimated in this way is a few 
percent. There may, however, be systematic errors in the experiment.  Discuss 
the possible systematic errors. 
 
A note on error analysis 

 
A simple means of estimating the uncertainty in q due to measurement errors in 
vg is to simply to replace the value of vg in your Excel worksheet by the value 
vg+∆ vg and to see by how much the final result for q varies (remembering that ∆ 
vg/ vg = ∆ tg/ tg).  Similarly, you can determine the effect of uncertainties in v↑ or v↓  
due to timing errors.   You can then assume that errors in q due to uncertainties 
in vg and v↑  (or v↓) add quadratically.  
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Measurement of e/m for electrons 
 
Purpose 
The object of the experiment is to obtain a value of e/m for electrons from a 
measurement of their deflection in a uniform magnetic field.  The first 
measurement of this quantity by J. J. Thomson, over 100 years ago, was crucial 
to acceptance of the idea of electrons as particles. Evaluation of the systematics 
is key to this experiment.  Quantitatively examine the effect of the Earth’s field 
and low anode voltage (< 200 V) on your results.  
 
Key concepts 
 Lorentz force 

Helmholtz coils  
Electron gun 

  
Introduction 
When a charged particle moving with velocity v passes through a magnetic field 
B, it experiences a force ev x B where e is the particle’s charge.  Since this force 
is perpendicular to the direction of motion, it is a centripetal force and, if the 
magnetic field is uniform, the trajectory of the particle will be a helix, in general.  If 
v is perpendicular to B, the trajectory is circular and we have: 

, 

where r is the radius of the circle.  
 
Electrons originating from a heated filament and accelerated across a potential 
difference V between the filament and a positive plate will have a final kinetic 
energy given by ½ mv2 = eV assuming that they are emitted with negligible 
energy. Thus 

. 

If these electrons are then allowed to enter a uniform magnetic field, the velocity 
v can be eliminated from these equations, giving a relation 

. 

 
The principle of this experiment is to measure V as a function of (rB)2. 
 
 
The apparatus 
The apparatus consists of an evacuated spherical glass vessel containing an 
electron gun and acceleration electrodes.  The electron gun consists of an 
indirectly heated barium oxide-coated cathode, a Wehnelt cylinder for focusing 
the beam and an anode with a hole in it, through which the electrons eventually 
emerge with energy eV. 
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After being accelerated, electrons emerge from a hole in the anode into a region 
which is free of electric fields. They travel at constant velocity in this region.  To 
make the electron paths visible, the tube contains a small amount of a noble gas 
that becomes ionized and glows when electrons pass through it.   
  
The diameters of the electron orbits resulting from application of a magnetic field 
can be determined by reference to a "ladder" which is placed vertically in the 
tube. The rungs on the ladder are separated by 20 mm.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The coils providing the deflecting magnetic field are configured as  "Helmholtz 
coils", with coil separation equal to the coil radius, RC.  You should be able to 
show (using Biot-Savart) that the magnetic field at a distance x along the axis of 
a coil with radius RC and carrying a current I is given by  

, 

 
where N is the number of turns on the coil. 
 

Anode at +V 

Wehnelt cylinder (at 
negative potential) 

Electron 
beam 

 Heater Electron beam 

 

Electron 
gun 
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If two coils are separated by a distance d, the field at the center is then given by  

  . 

 
When d = RC (the Helmholtz coil configuration), it is easy to show that ∂B/∂x = 0 
(obviously) and, more importantly, that the second derivative ∂2B/∂x2 =0 at the 
center. The result is that the field is very nearly uniform over an extensive volume 
near the center, as shown in the diagram below. (Note the suppressed zero on 
the vertical axis). 

 
Procedure 
First measure the Helmholtz coils so that you can determine the magnetic field 
for a given current, i.e. determine the constant k in the relation B=kI.  There are 
124 turns on each coil.  Given that the radius of the coils is equal to the 
separation, what is the best way to measure the diameter? 
 
Is the earth’s magnetic field likely to affect your results?  According to NOAA 
geophysical data the magnitude of the field in Minneapolis is 0.56 × 10-4 Tesla, 
and points mostly downward with a small component north.  Find the field 
components and write them in your logbook.   Good information source is 
http://www.ngdc.noaa.gov/geomag-web/?id=declinationFormId#igrfwmm 
Compare the maximum horizontal component of the earth’s field with the field 
you expect when a current of several amperes is passed through the Helmholtz 
coils. Orient your apparatus to either minimize the effect or measure the effect. 
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This could include taking some data with and against the field or calculating the 
effect of a sideways or downward pointing field.  This is an important systematic 
error. 
You might want to do all this for the Pre-Lab and be prepared ahead of time. 
 
The apparatus includes a unit that provides three of the power supplies that you 
will need: one that supplies the heater potential, one the negative (beam 
focusing) potential to the Wehnelt cylinder, and one that supplies up to 300 V to 
the anode. Connect all the grounds at the power supply and at the base of the 
apparatus (the cathode), then single wires should go to the appropriate 
connectors on the apparatus.  There is a separate current supply for the 
Helmholtz coils.  For maximum accuracy, use separate multimeters to measure 
the anode potential and coil current, rather than those attached to the supplies. 
 
To begin, turn the anode supply to maximum (∼300V) and then turn the heater 
supply to 6 – 7 V.  You should see the heater light up and, after a short time the 
cathode should be hot enough for you to see an observable electron beam. The 
cathode has a finite lifetime, and so the heater potential should always be 
kept at a minimum, only enough to produce an observable electron beam. 

 
Turn on the current to the Helmholtz coils (making sure that they are connected 
correctly) and align the tube so that the beam forms a circle, not a spiral which 
occurs when the beam and magnetic field are not precisely perpendicular. Vary 
the Wehnelt voltage to see the effect on the beam.  Adjust the Wehnelt voltage in 
order to produce the narrowest beam possible. 
 
Take a series of measurements of the anode potential V and coil current I for 
each rung of the ladder.  Repeat some measurements to estimate errors. You 
should use parallax to determine where the beam actually passes a given rung, 
i.e. there are actually two rungs at each diameter, separated by a small distance. 
View directly along these rungs to ensure that your measurements have no 
dependence on viewing angle.  
 
Results and Systematics 
Now determine e/m from your data in two different ways: (1) calculate e/m and its 
uncertainty for all measurements and form a weighted average.  (2) Rewrite the 
formula for e/m so it represents a slope (or inverse slope), then fit using LSQ-fit, 
making sure that the largest errors correspond to the vertical axis.  Look at your 
results and see if certain groups of points are systematically higher or lower, or 
seem to have a different slope.  If they do, you should try to fit them separately 
and then quantify the differences.  This is how we look for systematic errors, e.g 
do your individual values of e/m show any dependence on orbit radius r, or on 
the potential V? If groups of points seem to be different, then give the data points 
different symbols and try fitting their slopes separately.  Reevaluate your 
assigned error and then combine the slopes in a weighted average.  A plot of 
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vs. I can be revealing.   Use this to determine if there are any background 
magnetic fields that might be affecting your measurement of e/m.   
Photo-electric effect: a determination of h. 
 
Purpose           
To determine Planck’s constant using the photoelectric effect, in which light 
removes electrons from a metallic electrode.  
 
Key concepts 

Photons 
 Monochromator 
 Diffraction grating 
Photoemission 
 Stopping potential 
 Work function 

  
Introduction 
The photoelectric effect was first observed a little over 100 years ago; it is the 
emission of electrons from a surface when exposed to short wavelength light. 
The effect was not explainable using the wave theory of light, which was 
prevalent at the time.  In 1905, however, Einstein explained the effect, based on 
Planck's quantum theory of light emission and absorption. It is readily 
understandable in terms of the complete absorption of incident photons each 
with energy hν, where ν  is the frequency of the light beam.  This energy is 
transferred to electrons in the surface, which results in a linear relationship 
between the energy of the absorbed light photon and the maximum energy of the 
emitted electron. 
 
For many years the experiment to check this prediction was carried out by 
applying a retarding potential between the anode and cathode of a vacuum tube 
and measuring the voltage needed to bring the current of photo-emitted electrons 
to zero.  This was a difficult measurement because it not only required 
measurement of a very small current but, more importantly, the current did not go 
to zero at a well-defined potential. 
               
With the development of very sensitive solid-state amplifiers (integrated circuits), 
another technique became possible.  In the equipment used in the present 
experiment, electrons knocked out of a cathode (-) strike a wire ring anode (+).  
As this ring charges up, its potential decreases relative to the cathode and 
electrons need greater and greater energies to overcome this potential 
difference. Eventually, when the potential difference equals the maximum energy 
of the photo-emitted electrons (the stopping potential), no more electrons are 
collected, causing the potential to stop increasing.   A photocell similar to the one 
used in the experiment is on the lab-bench.  The large metallized surface is the 
cathode, and the ring is the anode.    

V
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Measuring the stopping potential is not so simple! A voltmeter typically measures 
potential by measuring the current developed across a large resistance.  
However, if a typical digital voltmeter (DVM) input resistance of a few MΩ were 
placed directly across the anode-cathode system (capacitance C∼10-20 pF), the 
time constant RC of the system would be a small fraction of a millisecond. Unless 
the photocurrent charging time were very much less than this, charge leakage 
from the anode would be so large that the anode potential could never reach the 
stopping potential. Modern field-effect transistors have input resistances up to 
∼1014Ω.  Using such a transistor to make a unity gain amplifier or buffer makes it 
possible to have such a very large input resistance, but with a low resistance at 
the output of the circuit, i.e. the DVM is buffered or separated from the input 
circuit.  The output voltage is the same as the input voltage, but the voltmeter 
resistance does not affect the time constant of the circuit.  Here, an integrated 
circuit operational amplifier which uses a field effect transistor is used to provide 
such a buffer.  You will learn more about this type of circuit in Physics 4051. 

 

 
 
Figure 1. Schematic of a typical circuit diagram for reading out photoelectrons 
 
In the present experiment light photons of various energies E = hν = hc/λ  are 
provided by a small incandescent bulb. Various wavelengths can be selected by 
a monochromator, which consists of a diffraction grating and some mirrors.  
The experiment consists of, first, calibrating the monochromator, i.e. determining 
the relationship between wavelength and monochromator dial reading, and then 
shining known wavelengths on to the photocathode of the photocell and 
measuring the corresponding stopping potentials. 
 
Procedure: 
 
A.  Calibration of the monochromator 
Look inside the monochromator to see how it operates (top swings open). The 
angle of the diffraction grating to the incident light beam is adjusted by means of 
a multi-turn dial.  Calibration consists of determining the relationship between dial 
reading and the wavelength of the light emerging from the output slit.  You are 

discharge 
button
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provided with a mercury lamp, which provides several sharp lines of well-known 
wavelengths: 
 
 

         yellow              579.05 nm                   
 yellow           576.96                      
 bright green     546.07                     
 blue             491.60               
 bright blue     435.84      
 faint blue       434.75 

           faint blue         433.92 
           violet                407.78 
                              violet                404.66 
 
1. Find the photodiode and make sure that the front of the enclosure tube is  
    protected with a rubber stopper. 
 
2.  We will be using a separate spectroscopic Hg lamp with its own power supply.   
    The supply that powers the fancy DVM is labeled “Photoelectric Effect  
    Apparatus”.   Toggle the detector (not Lamp) switch on the power supply to  
    “on” and also the power push button on the DVM.  Do it now because it     
     takes 20 minutes for the DVM to warm up.  
 
3. Turn the metal knob above the input slit to make a slit width of            
    approximately 0.5 mm. 
  
4. Turn on the Hg light and adjust the light position and the input mirror to             
    focus an intense beam of light on the slit.   
 
5. Remove the photoelectric detector assembly (keep it upright) and          
    insert the eyepiece. 
 
6. Find a bright line.  Move the eyepiece to obtain a sharp image and put                   
    the cross hairs in the X orientation. 
  
7. Obtain dial readings for as many of the Hg lines listed above as possible.     
    Make a graph of dial reading vs. wavelength λ.  The points should lie on a   
    smooth line which is almost straight. Using the Excel workbook LSQ Fit, fit  
    these data to a straight line.  You should include the errors on your dial     
    reading, but you are assuming that the error on the line’s wavelength is  
    negligible.  Since LSQ-fit only handles errors in y, the dial reading should be      
    on the y-axis. Using the results of your fit, you will be able to  
    determine the wavelength that corresponds to a given dial setting.   
 
If you encounter some difficulty in assigning dial settings to the wavelengths 
given above, you will probably find it helpful to first plot data only for the most 
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intense lines, then add other data when the overall trend is seen.  The relative 
intensities of the lines can be found either in the CRC Handbook of Chemistry 
and Physics or at http://physics.nist.gov/PhysRefData/ASD/lines_form.html 
The spectrum you want is Hg I. 
 
B. Measure electron energy as a function of incident wavelength.  
 
1. Set up the DVM as follows. Voltage range should be set to   

Stopping Potential -2 – 0V and current ranges to 10-13. 

2. Set the current amplifier to zero as follows: first disconnect the ‘A’, ‘K’ and 
‘down arrow’ (GROUND) cables from the back panel of the apparatus.  Press 
the phototube signal button in to calibrate setting.  Adjust the current 
calibration knob until the current reads zero. Press the phototube signal 
button again to get back to the measure setting.  

3.   Replace the Hg lamp with the incandescent lamp. Adjust the lamp position 
and input mirror so that the light beam is narrow and focused on the slit.  

 
4.  Set the monochromator for a wavelength in the green (~ 530 nm). Remove 

the eyepiece and hold a piece of white paper over the exit port of the 
monochromator.  Verify that you see a bright green spot (square in shape) 
centered on the exit port.   Adjust the focus on the entrance slit so that the 
spot is as bright as possible.  Now put the detector in place on the exit port.  
Connect the detector to the digital voltmeter.   

 
 5.  Reconnect the ‘A’, ‘K’ and ‘down arrow’ (Ground) cables to the back of        

the apparatus. 
 
 6.  Adjust the voltage adjust knob until the current on the ammeter is      

zero, meaning that the photoelectrons are no longer getting to the anode.  
 
 7.  Make these stopping voltages versus wavelength measurements over as 

wide a range of wavelengths as possible, with some measurements close to 
the threshold wavelength.  It may be more efficient to first select a new 
voltage differential and then adjust the wavelength dial until you once again 
get a zero current, but there are many ways to do it.  Record your 
methodology as well as your data.   

 
8. Widen the slit width to 2 mm and repeat steps 6-7. You have enough time in 
    this lab to do at least two complete stopping potential curves. Two or more 
    curves allow you (a) determine whether the energy of the ejected electrode 
    depends on light intensity and (b) get a handle on the systematics of the  
    experiment.   
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C. Analysis. 
 
Plot stopping potential vs. 1/λ.   Determine the slope of this graph and compare it 
with the accepted value of Planck’s constant (in eV-s). Use LSQ fit and make 
sure to put the data with the largest error on the y-axis so LSQ-fit can properly 
evaluate the fit and the χ-squared.  
 
Find the work function of the photocathode by properly evaluating the intercept of 
your fit.  Look online for typical work functions and make a guess as to what the 
photocathode material must be.  We don’t actually know what it is for sure, we 
want you to look it up and give some possible options.  
 
Explore your systematics.  Make sure you make a chi plot for your fit and 
evaluate whether the fit is linear, if you have outliers or problems at the ends of 
your fit where your calibration may no longer be applicable.  Explain any 
systematic effects that you find.  Did you underestimate or overestimate your 
errors?  If so, you should go back and evaluate whether a reasonable change in 
your input errors really would affect your fit or not.  Evaluate the differences 
between the low intensity and high intensity runs and state whether your 
experiment depends on intensity within the errors that you have actually 
assigned (i.e. how many sigma do the two results differ?)  Since you already 
know that it should not, according to Einstein, then finding out that they differ by 
20 sigma is a big clue that your errors were underestimated.  Go back and fix 
your analysis. 
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Excitation and ionization energies of helium 
 
Purpose 
To observe and measure the energy level spectrum of the helium atom using an 
electron beam of variable energy. 
 
Key Concepts 
 Excitation 
 Ionization 
 Selection rules 
 Metastable states 

Singlet and triplet states 
 

Introduction 
The early understanding of the quantum nature of atoms came from the study of 
spectroscopy and the need to explain the line spectra emitted by excited atoms.  
The Bohr model of electrons moving in planetary orbits around a nucleus gave a 
quantitative description of the spectra observed in hydrogen or any other 
(ionized) atom containing only a single electron. The frequency ν of the observed 
radiation is related to the energy difference ∆E between discrete energy levels 
through ∆E = hν. Although the Bohr model fails completely for even the next 
simplest atom, helium, the existence of discrete energy levels of atoms was 
established.   
 
It follows that the transfer of energy to atoms by any means should occur in 
discrete amounts.  One such means is via collisions with an electron beam.  At 
low energies, an electron with energy E0 can scatter elastically from an atom and, 
since the electron is so light, transfer negligible energy, ∼ (me / Matom)E0 
(depending on scattering angle) to the atom. However, if the incident electron 
energy is greater than the energy difference (∆Emn = Em – En) between two 
discrete energy states of the atom, m and n, then this amount of energy can be 
absorbed in an inelastic collision.  The final electron energy will be E0 – ∆E. 
   
 

 
 
 
 
 
 
 
 
 
 
 

Efinal = E0 – (Em – En) 
E0 Em 

En 

Atom absorbs energy (Em – En) 

Incident electron 
Electron loses energy (Em – En) 
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So, if an incident electron has just enough energy to excite the atom, usually 
from the ground state, it follows that its final energy will be very small. If the 
appearance of these very low energy electrons can be detected as the incident 
energy is gradually increased, it should be possible to identify those incident 
energies where inelastic collisions occur, and thus to identify the discrete energy 
levels of the atom. That is the aim of this experiment.  

 
The first observation of atomic energy levels through electron excitation was 
made by Franck and Hertz in 1914, and led to a Nobel Prize in 1925. Their 
classic experiment was done with mercury vapor and was able to show multiple 
excitations of a specific energy level of mercury. Your experiment will use helium 
gas and is of a form actually used by Hertz in 1923; it should allow you to identify 
several different levels of the helium atom, which can then be correlated with 
spectroscopic data. 
 
 
The apparatus 
The apparatus consists of a spherical glass bulb that contains helium gas at very 
low pressure and an “electron gun” to shoot a divergent beam of electrons into 
the gas.  A large diameter wire ring inside the bulb is arranged so that it cannot 
be hit directly by electrons from the source. This ring is used as a collector 
electrode to detect low energy electrons or positive ions resulting from inelastic 
collisions in the gas.  
 
The electron gun consists of a hot filament from which electrons are emitted 
thermally.  They are accelerated through a potential difference V towards a 
cylindrical anode.  Most electrons strike the anode and are collected as part of 
the anode current, but some pass through the cylinder and emerge, with kinetic 
energy eV, into the spherical region of the glass bulb.  The inner surface of the 
glass bulb is coated with a thin layer of conducting material and is electrically 
connected to the anode so that the region is essentially field-free. Non-interacting 
electrons and those that scatter elastically hit the conducting surface and add to 
the anode current. 
 
The collector ring is connected through a shielded coaxial cable to a sensitive 
picoammeter to measure the small currents.  In order to complete the circuit, the 
shielding of the coaxial cable needs to be connected to the ground of the power 
supply. This is done by using a BNC Tee connector at the input of the 
picoammeter and a BNC cable connected to ground. The meter and the 
anode/inner glass wall are set at a potential of + or -1.5 V relative to ground by 
means of a battery.  The electron gun arrangement therefore “floats” at a 
negative potential relative to the anode and ground.  The diagram below shows 
how the electrical connections should be made.  F3 and F4 are connections to 
the filament and C5 is an additional electrode, called a Wehnelt cylinder, which 
helps to focus the beam and limit the region of the filament over which electrons 
are emitted.  
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 When the battery is connected at a potential of +1.5 V with respect to the anode 
and walls, the collector ring acts as a shallow potential well and only those 
electrons with kinetic energy < 1.5 eV will be captured on it.  Higher energy 
electrons will merely be deflected slightly before they hit the outer wall.  
 
 
 
   
 
 
 
Determination of the excitation potentials of helium 
Connect the apparatus as indicated in the diagram.  Do not exceed 3V potential 
difference across the filament terminals F3 and F4; excessive filament current 
will considerably shorten its lifetime.  Set the filament voltage to 2.0 V by 
adjusting the potentiometer connected to the 3V output of the power supply.  Use 
a voltmeter to measure the filament voltage.  You should see the filament 
glowing; give it a few minutes to warm up and reach equilibrium before taking 
data seriously.  
 
Connect the 10-turn potentiometer across the output terminals of the voltage 
supply.   You will take measurements for voltage ranges from 0 – 50 V 

Energy 

Low energy electron attracted 
 to collector electrode 
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(measured with the voltmeter).    For the lower voltages, set the power supply to 
about 25 V and use the potentiometer to vary the voltage.  For voltages from 25 
V to 50 V, set the power supply to 50 V.  Use the potentiometer for all fine 
adjustments.   First do a quick scan of collector current vs. anode potential. You 
should be able to locate two separate regions where peaks in the current occur; 
these are the signals you’re looking for.  Make a note of the relevant voltage 
ranges.  It is likely that the collector current fluctuates due to pickup of 
electromagnetic noise – the ring is an excellent antenna. You can reduce the 
pickup considerably by carefully covering the glass sphere with some aluminum 
foil and connecting this to ground potential on the power supply. 

 
Take a very careful set of measurements to accurately map out the structure – 
take fewer points where the data are smoothly varying and many more over the 
region of the structure. The resolution of your apparatus is demonstrated by the 
width of the excitation peaks. Decide what is the best spacing between data 
points in those regions (probably 0.1 V spacing through the peaks and 0.5 or 1 V 
between the structures).    It is best to take data while changing the voltage 
monotonically.   

 
Your data should look something like the sketch below. Not the change in slope 
of the current after the first series of excitations. Why does this occur? 
 
 
 
 
 
 
 
 
 
 
 
Important Note: The peak corresponding to the second excitation energy E1’ is 
generally small and sits on a rising current which can distort your estimate of E1’.  
In practice, it appears as a “shoulder” and not a “peak.”  To obtain a best value, 
you will have to subtract a linear background estimated from the current vs 
energy below the peak.  In order to determine this background slope, you will 
need to take several points before the shoulder.   Make sure that you do this! 

 
 
 
 
 
 
 
 

Collector 
current (pA) 

Electron energy (eV) E1  E2 ..          E1
’ 

Dashed line 
subtracted 

Subtract this 
dashed line 

Peak 
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In practice, the excitation peaks are smeared due to two effects: the finite energy 
spread of thermionically emitted electrons (their average energy is 2kT ∼0.2eV at 
2000K), and the fact that electrons are emitted from different points along the 
cathode, across which there is a total potential difference of 3V (although the 
Wehnelt cylinder which is connected to the negative side of the filament, reduces 
this effect considerably).    
 
From your data you should be able to obtain accurate values for several 
excitation energies E1, E2,… and also the higher E1’,…etc. The higher set of 
excitations is produced by electrons that undergo two separate inelastic 
interactions:  after exciting one atom to a higher energy level, an electron still has 
enough energy to excite another atom. 
 
A small complication – contact potential difference 
The difference E1’ - E1 represents the actual first excitation energy. You will 
notice that this is different from E1.  This is because of the contact potential that 
arises whenever different metals are connected. The metal of the cathode is 
different to that of the anode.  Also, the electrons are emitted from a point on the 
filament where the potential is not zero.  Obviously, the contact potential can be 
found by comparing the value (E1’-E1) with E1 and the appropriate correction 
made to E2, E3, etc. Note that, apart from E1’, the upper potentials are not simple 
repeats of the lower ones, since the first energy loss of the electron can occur at 
any of the excitation potentials, making the incident electron energy spectrum 
more complicated in the upper excitation region. 

 
Direct determination of the ionization potential.  
Reverse the battery in its holder.  The collector should now collect only positive 
ions and the current should be in the opposite sense. Again, do a preliminary 
run-through to estimate how the current varies up to a maximum of about 25 V.  
Your data should exhibit a shoulder before the onset of a significant ionization 
current, as shown schematically below. 
 
 
 
 
 
 
 
 
 

This shoulder is due to the presence of metastable states of the helium atom.  
These are excited states that, because of certain selection rules, are unable to 
decay rapidly back to lower energy states via photon emission, which normally 
occurs very rapidly in ∼10-8 s.  If a first inelastic electron collision results in such a 

Current 

Electron energy  E1 

Onset of direct 
ionization 
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metastable state, the atom may remain in that state for a very long time, and so a 
second electron only needs to provide a small additional energy in order to ionize 
the atom.  (If the shoulder begins at energy E1, what does this say about the 
lowest excited state of the helium atom?) 
 
Determine a precise value for the ionization energy of helium by an appropriate 
extrapolation. Construct an energy level spectrum of the helium atom: 
 
 
 
 
 
 
 
 

Using the relationship  

, 

you can also predict the wavelengths of light which should be emitted as the 
atom de-excites to lower energy states.  Compute the expected wavelengths 
corresponding to the peaks that you observed.   One or two of these wavelengths 
appear in the table below, which compiles all of the optically active transitions for 
singly ionized helium (i.e. those transitions which result in the emission of light.)  
The letters W, M, S refer to the strength of the lines: weak, medium, strong).     
 

    λ (nm) strength    λ (nm) strength λ (nm) strength 
      32.0      W    402.6      M    1031      W 
    51-52       S    412.1      W    1083      S 
      52.2      S    438.8      W    1197      M 
      53.8      S    447.1      S    1253      W 
      58.4      S    447.2      M    1279      M 
      59.1      M    471.3      M    1297      W 
    257.7      M    492.1      M    1508      W 
    281.8      W    501.6      S    1700      S 
    294.5      W    504.8      W    1869      S 
    301.3      M    587.6      S    1909      M 
    318.8      W    667.8      S    1954      W 
    382.0      W    706.5      S    2058      S 
    388.9      S    718.1      M    2112      M 
    396.5      W    946.3      W   

 
Some quantum mechanics of the helium atom 
The structure of the hydrogen atom and its emission spectra can be predicted 
exactly by solving the Schroedinger equation. However, the presence of an extra 
electron in even the next simplest atom, helium, has profound consequences: the 
problem is now a 3-body problem that must include the repulsive potential 
between the electrons as well as the electron-nucleus interactions, and 
sophisticated perturbation theory is required to obtain a solution.  In addition, the 
relative orientation of the electron spins has very important consequences. 

Ground state energy 
E1 E2

 
 

EI 

Energy 
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The ground state of helium contains two electrons in the n=1 shell and the 
electron spins must be opposed (Pauli principle).  The ground state is described 
by the notation 1s2, i.e. two electrons with n=1, l=0. Where the angular 
momentum l = 0, 1, 2, 3… is represented by symbols s, p, d, f… 
 
 
 
 
 
 
In contrast, the first excited state 1s12s1 has one electron in the n=2 shell, but 
this electron can have one of two possible orientations, either spin up or spin 
down.  If the two electron spins are antiparallel, the total spin is S=0, called a spin 
singlet state of the atom, but if they are parallel the total spin is S=1, called a 
triplet state because of the three possible values of mS =+1, 0, -1. The triplet 
energy levels are slightly lower than the singlet levels. Since the relative 
orientation of the electron spins generally does not change during a transition 
(the ∆S=0 rule), transitions between triplet and singlet states do not occur with 
significant probability. So in helium, there are essentially two independent 
emission spectra, one corresponding to transitions between triplet states 
exclusively, and one corresponding to singlet transitions. There are essentially no 
such selection rules for excitation by transfer of kinetic energy from incident 
electrons. 

 
Of course, the excited states can also have orbital angular momentum; e.g for 
n=2,  l = 1 is allowed, in addition to l = 0.   The corresponding 1s2p states are 
split slightly.  Since the photon has one unit of angular momentum, all transitions 
involving a photon require the additional selection rule ∆l =±1.  
 
The diagram below shows what we expect of the lowest energy levels of helium, 
along with the possible radiative transitions.  The splitting of the triplet levels has 
been considerably exaggerated. 
 
 
 
 
 
 
 
 
 

1s12s1 

l=0              l=1          l=2          l=0          l=1          l=2    
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Blackbody radiation: a spectroscopic study 
   
Purpose 
To investigate the emission of electromagnetic radiation from the filament of an 
incandescent lamp as a function of the filament temperature.  Show that the 
power goes as the fourth power of temperature and measure hc/k or find 
Planck’s constant h. 
 
Key concepts 
 Line spectrum 
 Continuous spectrum 
 Spectrometer 
 Stefan-Boltzmann law 
 Wien's law 
 
Introduction 
Planck's derivation in 1900 of an expression for the continuous spectrum of 
radiation emitted from a small hole in a heated cavity (the blackbody spectrum) 
motivated the development of quantum physics. He assumed that the radiation 
was emitted by oscillators located within the walls of the cavity. He found that, by 
assuming that oscillators with a natural frequency ν are able to emit radiation 
only with quantized energies hν, 2hν, 3hν…., he could explain the observed 
blackbody spectrum, something the earlier, purely classical Rayleigh-Jeans Law 
was unable to do. The fundamental constant h became known as Planck's 
constant.  With this assumption, and using the classical statistics previously 
developed by Boltzmann, the mean energy of such a quantized harmonic 
oscillator at temperature T is: 

 
where k is Boltzmann's constant, which can be determined from the universal 
gas law. Then, including a factor for the density of states with wavelengths 
between λ and λ+dλ that can exist in the cavity and using the fact that ν=c/λ, the 
intensity of emitted radiation (energy /unit area/unit time) at a given wavelength 
and temperature is given by: 

 
This blackbody intensity is the maximum that can be emitted by a hot body.  In 
practice, the intensity emitted by a hot body is less than this.  It is given by the 
blackbody intensity multiplied by an emissivity factor ε(λ, T) which is a number 
less than 1, and which is both temperature and wavelength dependent.  
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It is easy to show that the spectrum I (λ, T) has a characteristic peak at a 
wavelength λmax which varies inversely with absolute temperature. 
 

 
This is known as the Wien displacement law; it quantifies the way in which the 
color of a very hot object varies from red to white to blue as it is heated to higher 
temperatures. Integrating the blackbody spectrum over all wavelengths yields the 
total power radiated by an area A at temperature T: 

 
where the constant σ = 2π5k4/15c2h3  = 5.67×10-8 W/m2K4 is called the Stefan-
Boltzmann constant.  Such behavior had been established experimentally about 
ten years before Planck's theoretical explanation of the phenomenon.  
 
In this experiment you will study how the blackbody spectrum emitted by the 
tungsten filament of an incandescent light bulb varies as a function of 
temperature.  The temperature of the bulb is determined by measuring its 
resistance, which varies with T in a known manner.  In general, measurements of 
visible and near infrared wavelengths are difficult to perform with a constant or 
uniform response.  The equipment used here is no exception.  You will find that 
the response of the spectrometer is very wavelength dependent, falling quite 
rapidly at longer wavelengths.  As a consequence, you will only be able to verify 
the temperature dependence implied by Planck's law at fixed wavelengths.  You 
will not be able to verify the exact form of Wien's law, but you can see it 
qualitatively in action. However, the Stefan-Boltzmann law can be verified by 
measuring the electrical power dissipated in the bulb as a function of 
temperature. 
    
The spectrometer 
The miniature spectrometer, which measures intensity versus wavelength, 
(Ocean Optics, USB4000) is actually incorporated into a plug-in card for a PC.  A 
silica fiber optic cable is used to transmit incident radiation to the PC card where 
it is dispersed by a reflection diffraction grating with 6000 lines/cm, and the 
resulting spectrum detected in a linear CCD (charge coupled device) array.  This 
is a light-sensitive 2-dimensional array containing many pixels, each of which 
stores a charge proportional to the number of photons incident on it, i.e. 
proportional to the product of light intensity and integrating time. After the pre-set 
integration time, the CCD array is scanned electronically and the output of each 
channel is passed through an ADC (analog to digital converter) before being 
displayed on the monitor.  The sensitivity depends on wavelength, and this 
particular device covers a spectral range of 350 nm in the near ultraviolet to 950 
nm in the near infra-red, although the efficiency falls significantly at the higher 
wavelengths. The spectrometer has a resolution of a few nm. The integration 
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time of the CCD array can be easily increased or decreased to accommodate a 
wide range of intensity levels. 
 
Procedure: 
 
A.  Initial check-out of the spectrometer system. 
 
NOTE: THE FIBER OPTIC IS VERY THIN. KEEP IT A STRAIGHT AS 
POSSIBLE, AVOIDING ANY KINKS. 

1.  Run the data acquisition program, SpectraSuite by Ocean Optics, , which 
can be found under Start/All Programs/Ocean Optics or on the Windows desktop.  
A screen shot of the program with a spectrum of the room lights is shown below. 
 
 
 

 
 
 
 

 
 

Cursor Wavelength 
( ) 
 

Cursor Intensity 
( ) 

 
 

   

Start Data Acquisition 
 

Pause Data Acquisition 
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Become familiar with the principal operations that you'll need, shown below.  
(More detailed instructions can be found in the user manual in the 
U:\pub\OceanOptics folder.) 
 

 
 
Select Scope Mode by clicking on the “S” in the “Processing” options.  You will 
need to remove the background dark current which comes from thermal 
activation of electrons in the CCD.  To do this, check the box labeled Electrical 
Dark Correction, which is in the line just below the main toolbar.   Ask your 
instructor if you cannot figure out how to do this.  DO NOT use the other “dark 
spectrum” subtraction features!   

 
Find how to operate the cursor by clicking on the spectrum.  The current cursor 
position and the corresponding intensity are displayed at the very bottom in the 
“Wavelength” window and the (red) number shown to the right of it.  (Note: you 
may also enter a number directly in the “Wavelength” window to move the cursor 
to a specific position.)  Using the Pause and Start Data Acquisition buttons can 
allow you to “freeze” the acquired data. 
 
Learn how the Integration Time function permits you to effectively change the 
scale in a controlled way as the radiation intensity changes. 
 
Note that the fluctuating signal that you observe is actually due to the statistics of 
photon counting; the "average over N spectra" and "boxcar" features may help 
you to obtain a best estimate of relative intensity.  (The latter feature takes an 
average over several adjacent channels, so be careful if the spectrum is varying 
non-linearly in the region of concern). 

  
2.  Check the calibration of the spectrometer (which should already be 
satisfactory) by observing the light emitted by the fluorescent lamps in the lab.  
These work by generating an alternating high voltage across a glass tube 
containing a small amount of mercury and a low-pressure noble gas (usually 
argon) which acts to start an electrical discharge. The argon is easily ionized, the 
gas heats and the mercury vaporizes.  Mercury atoms are excited by electron 
collision in the discharge and emit both UV and visible light when they de-excite. 
The UV emission at 253.7 nm causes further excitation of the phosphor coating 
of the tube, which glows as it emits visible light. The overall spectrum thus 
consists of light emitted by the phosphor superimposed on the characteristic 
spectrum of mercury.  The strongest visible wavelengths emitted by mercury are: 
435.8 nm, 546.1 nm, 577.0 nm, 579.1 nm, plus two less intense lines at 365.0 
nm and 404.7 nm.  Since the yellow doublet is broadened by phosphor, you may 
not get as good a calibration check as the thin minor lines in the blue/purple. 
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Draw a sketch of the spectrum in your logbook and clearly label the peaks, noting 
if they are in the right place or not.  
      
Since the pure Hg spectrum looks blue, manufacturers can choose different 
phosphors (which are generally complex metal oxides) to enhance different parts 
of the spectrum, e.g., cool white, warm white, etc.   Take a look at 
http://www.gelighting.com/na/business_lighting/education_resources/learn_about
_light/distribution_curves.htm and see if you can determine which bulbs are 
installed in room 62.  Write your best guess in the logbook. 
 
3. The light source you will investigate is the filament of a 7.5 W incandescent 
light bulb. You need a way to measure its temperature as you heat it up. Since its 
resistance changes as a function of temperature, you need to determine the 
constant of proportionality that will allow you to measure temperature by 
measuring resistance. The temperature dependence of the resistivity ρ of the 
tungsten filament has been determined in a separate experiment. Between room 
temperature and 4000K, it is given to a precision of better than 1% by: 

 
where T is the absolute temperature in Kelvin. From this you can find an 
expression for T which depends on the ratio of the filament's resistance at 
temperature T to its resistance at room temperature. This requires you to 
measure the resistance of the filament at room temperature, a step which is best 
carried out using an ordinary ohmmeter and the room thermometer mounted on a 
wall in the lab.  Make sure that the filament is cool when you measure the room-
temperature resistance.  Note that the process of measuring the resistance will 
heat the filament somewhat, so be careful. 
 
B. Investigating the Planck spectrum 
 
1. As mentioned earlier, the measured spectral intensity Imeas can be written as a 
product of the blackbody spectrum IBB multiplied by two wavelength dependent 
factors: εdet (λ) which incorporates the wavelength dependence of the detector, 
and εem (λ,T) which is the emissivity of the filament material.  Since the 
temperature dependence of the emissivity is very small, only a few percent over 
the range of temperatures you will investigate, it can be safely ignored 

 
At the temperatures and wavelengths relevant to your experiment, the factor 
ehc/λkT is always very much larger than 1 and so the measured spectrum can be 
written as 

Taking logarithms, this becomes 
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where f(λ) is a function only of wavelength. By plotting ln (Imeas) vs T-1 for a known 
wavelength, the factor hc/k, which involves three fundamental constants, can be 
determined.  Thus, your experiment involves measuring the intensity and the 
temperature of the filament for a series of temperatures and wavelengths. 

  
2. To make the measurements, you will position the fiber in a stable position to 
observe the light bulb and cover the entire apparatus with a black cloth to shield 
it from the room light.  The bulb will get very hot, so KEEP THE FIBER AT 
LEAST 2 CM AWAY FROM THE BULB AT ALL TIMES or it will melt. Set up 
two accurate digital meters to determine the current through the filament (in 
series) as you apply a voltage (measured across the bulb) from the power supply 
for each applied potential.  The power supply for the bulb provides a variable 
potential up to 400 V.  Increase the potential slowly to minimize thermal shock to 
the filament, and DO NOT EXCEED 200 V or you will burn up the filament very 
rapidly. At high power, this lamp is very bright; shield it from your eyes. 
 
3. Decide whether it is better to take a series of measurements with the filament 
temperature increasing or decreasing (why should this matter?)   Decide what 
range of temperatures you expect to cover (remembering that the intensity will 
vary over a very large range). It is suggested that you adjust the intensity to vary 
by a factor of about 2, roughly, between adjacent measurements.  This should 
give you measurements at about 10 or more different temperatures.  By varying 
the Integration Time, you will be able to keep the maximum of the observed 
spectrum between 1000 and 60,000 counts per channel.   Make sure that you do 
not saturate the CCD, which will occur at about 65,000 counts per channel.  
Decide how you will average your data with either the Average or Boxcar 
features.    Do not forget to click on the setting Correct for Electrical Dark; this 
takes an average over several pixels that are shielded from light and then 
subtracts this average from all pixels.   Finally, make sure that the apparatus is 
completely shielded from room lights.  This is particularly important for 
measurements at the lowest filament temperatures.  Photographic cloth is 
available for this purpose, but make sure that it does not touch the bulb.  
 
4(a) Choose a set of 4 fixed wavelengths that you will be using throughout the 
entire experiment. For each filament temperature that you choose, you will 
measure the relative intensity at each of these wavelengths in the spectrum. As 
described earlier, the response of the spectrometer is a strong function of 
wavelength.  There are two important factors that determine this response.  One 
factor is the quantum efficiency of the CCD array that falls rapidly at longer 
wavelengths, i.e., long wavelength photons have insufficient energy to knock out 
an electron from a given pixel (the photoelectric effect).  The second factor is the 
blazing of the diffraction grating; in order to maximize the amount of light 
diffracted into the first order of diffraction, and not have the light dispersed 
through many orders, the grooves are given a special shape. This grating is 
blazed to maximize the light intensity diffracted from the center of the visible 
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region.  It is also responsible for the structure: additional peaks that appear in the 
measured spectra.   
 
4(b) Sketch (or photograph and paste into logbook) a picture of the spectrum at 
one of your temperatures and clearly mark where your 4 chosen wavelengths lie 
on the sketch.  If you find that one of your chosen wavelengths sits on the 
structure, rather than the continuum, pick a different wavelength. For best results 
choose 4 wavelengths that sit on the leading edge of the blackbody curve, not at 
the higher wavelengths where the curve falls sharply due to inefficiency.  

 
4(c) At each temperature, produce a table giving voltage V, current I, the 
integration time factor, and the relative intensities at the four fixed wavelengths.  
Do not rush your measurement.  It takes some time for the temperature to 
stabilize, so make sure that the readings are not still drifting when you are taking 
the data. Look carefully at the spectrum at each temperature and, ignoring the 
spectral features, see if you can find the broad maximum of the underlying 
continuum blackbody spectrum and write that number down in the last column.  
λmax is supposed to be the wavelength of the maximum of the underlying 
spectrum, not the wavelength of the highest peak, so you need to be aware of 
the entire spectrum. Go back to your sketch of the spectrum and mark on it 
where you chose λmax for that temperature. 
 

V(volt) I(amp) Int. Time    I(λ1)   I(λ2)   I(λ3)   I(λ4) λmax 
        

 
Then make a summary table giving various quantities that you will need for 
further analysis, i.e., power, relative intensities corrected for differing integration 
times.  You can choose how to make these tables – maybe you want it all in one 
table with corrected values right after the uncorrected ones. 
 

V(volt) I(amp) Power 
(watt) 

  R 
(Ω) 

 T 
(K) 

  I(λ1) 
(corr.) 

  I(λ2) 
(corr.) 

  I(λ3) 
(corr.) 

  I(λ4) 
(corr.) 

         

 
5.  Plot λmax as a function of 1/T by hand, right in your logbook. Since the 
wavelength dependence of the detector and grating is not given, this cannot be 
very quantitative, so don’t worry about error bars. Is it linear? If so, find the slope 
and determine the correction factor needed to make it match Wien’s 
Displacement Law. If not linear, which part of the curve has the right slope? Does 
your analysis show that long wavelengths are inefficiently sampled? Finally, look 
up the temperature of the sun and mark that on your plot.  Is it the right color (λ)?  
 
6. The next part is quantitative and requires proper error analysis.  Make a log-
log plot of temperature vs. power to find how the power dissipated varies with the 
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temperature of the filament.  Discuss the source of any possible deviations from 
the Stefan-Boltzmann law. 
 
7. After correcting relative intensities for the integration time at each temperature, 
plot intensity (I) vs. 1/T for each wavelength on a semi-log plot and determine the 
factor hc/k. Use the least squares fitting program available on the lab computers. 
Assuming that c and k are well-known from other experiments, this allows you to 
find Planck’s constant.  Remember that you must manipulate any equations such 
that the vertical axis contains the variable with the dominant error, since LSQfit 
cannot use x-axis errors in its fit.   
 
C. Suggestions for some further investigations, if you have time. 
 
1.  Measure the temperature at various points in a candle flame. You are now in 
a position to measure the temperature of any hot object. From the data you have 
already taken, choose two wavelengths λ1 and λ2 where you have already 
measured the relative intensities at a known filament temperature, T0, say.  The 
ratio of these intensities is 

 
where the ε factors represent the emissivity and detector efficiency factors at the 
two wavelengths. 
 
Now, if you measure the ratio R12 of the intensities at the same two wavelengths 
but at another (unknown) temperature T, and then take a ratio of the ratios, the 
unknown ε factors cancel out and so the unknown temperature T can be found 
from  

 
e.g., if the wavelengths λ1 and λ2 are 600 and 800 nm respectively, then 

 
Use a lens to give you a magnified image of the flame and then use the fiber 
optic cable to sample the temperature at various points in the image.  
 
2.  Look at the spectrum of light from low pressure discharge tubes such as a 
sodium lamp, observing how the spectrum changes as the tube warms up.  Look 
at the sky, the sun, white light reflected from various colored objects, etc., etc. 
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High-Resolution Spectroscopy of Hydrogen and Sodium 
 
Purpose 
To calibrate a diffraction grating spectrometer; to use this for very accurate 
measurements of visible lines of hydrogen and sodium spectra and to analyze 
these in terms of elementary atomic theory. 
 
Key concepts 
 Spectrometer 
 Diffraction grating  

Atomic energy spectra 
Rydberg constant  Balmer series 

 Fine structure 
 
Introduction 
One of the most effective ways of investigating the structure of atoms is by 
studying their emission and absorption of electromagnetic radiation. The 
absorption of energy by an atom increases the energy in its electron system.  
When the atom returns to a lower energy state, the energy released is emitted as 
electromagnetic radiation, i.e. photons.  If the atoms are not very close, as in a 
gas at low pressure, only certain discrete atomic energy levels exist, so that the 
emitted photons have well-defined energies which correspond to the difference 
between the initial energy Ei and the final energy Ef of the atom, i.e., ∆E = EI – Ef  
= hν = hc/λ where ν and λ are the frequency and wavelength of the photon.  h is 
Planck’s constant. 
 
Niels Bohr showed that the energy levels in the simplest atom, hydrogen, have 
values = -hcR∞ /n2 where n is an integer.  R∞  is known as Rydberg’s constant:   

,   (1) 
and m and e are the mass and charge of an electron.  The energies of the 
emitted photons are then 

,   (2) 

 
where n1  and  n2  are integers representing the order of the energy levels, 
starting with n1 = 1 for the lowest energy. 
 
Equation 2 is strictly correct only for a hydrogenic atom with an infinitely massive 
nucleus.  For the real hydrogen atom, we must use the reduced mass of the 
electron in Eq. 1 rather than the bare mass.  Then Eq. 2 becomes 

,   (3) 
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where  
 

   m-1,  (4) 

 
where M is the mass of the proton.   
 
The spectra of heavier atoms are much more complex and Bohr’s theory fails 
completely to explain them.  Nevertheless, the Bohr’s theory was seminal in our 
first understanding of quantum mechanics.  

 
Principle of the spectrometer 
       
In this experiment, a diffraction grating is used to separate light waves of different 
wavelengths.  This is a flat square of glass covered with a thin layer of plastic 
having a great many fine, parallel grooves on the surface.  As shown in Fig. 1, 

light from a source T is focused by a concave mirror M1 
through a narrow slit S1.  

These rays are made parallel by mirror M2 
and reach the grating G at an angle φ 

with respect to a line perpendicular to G.  Waves reflected (diffracted) at an angle 
θ produce constructive interference when the relationship   sinθ + sinφ = mλ/d 
is satisfied.  Here d is the distance between grooves on the grating and m is an 
integer, the order number. This particular instrument is constructed so that m = 1. 
 
The mirror M3 collects the light leaving G at the angle θ and concentrates it on 
the slit S2. Light which passes through S2 enters a photomultiplier tube P, in 
which it is converted into an electrical signal which can be observed on an 
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oscilloscope.  Just before the light rays reach S2 
a small fraction of them are 

reflected upward and pass through a magnifying lens so the color of the light can 
be noted by the observer. 
 
The grating can be rotated about an axis which lies in the plane of its front 
surface. This rotation changes both angles θ and φ,  but as can be seen from the 
diagram, they are related by the equation 
 
                θ - φ = α (a constant);                                

                             
i.e., the angle α between the incident and reflected beams stays constant. 
Simple manipulation then gives the condition for constructive interference as 

.
 
 

 
 
Since α is a small angle (8.400 in this instrument), there is a nearly linear 
relationship between sin φ and the wavelength of the light reaching the detector.  
The grating rotation mechanism is designed so that the dial reading is 
proportional to sin φ (although there is a zero offset of several turns). 
 
Since, in general, the dimensions of the spectrometer, including the value of d, 
are not accurately known, it is customary to calibrate the instrument using the 
well-known wavelengths of several strong lines in the spectrum of light from a 
mercury arc.  From this information one can obtain a relation between dial 
reading and λ which can then be used in the study of other spectra. 
 
Procedure: 
 
A.  Calibration of the spectrometer using the Hg spectrum 
 
Turn on the Hg arc and place it so that the mirror M1 focuses light from the Hg 
tube on slit S1.   Make sure that the source is well-focused on the slit.   There is 
no need to adjust the slit width, which should be at zero on the scale.  The high 
voltage supply for the photomultiplier tube should be set at -600 volts.  The 
output signal can be observed with an oscilloscope.  (The signal will have a 
frequency of 120 Hz).  Turn up the scope gain for maximum sensitivity, i.e., so 
that the signal is clearly visible, and you are able to detect the faintest lines. 
 
Start with the grating rotator all the way out (fully counterclockwise).  Decide 
whether to use inches or mm (toggle button) and stick with it! Slowly turn the 
handle clockwise.  After a few turns, you should see a very large signal on the 
oscilloscope.  If the light source is properly focused, the observed waveform 
should have a maximum amplitude of a few volts, and you should be able to 
determine the position on the digital readout.  Make sure that you have the focus 
optimized.   If you look in the eyepiece, the color of the observed line should 

 35 



match that of the Hg source.  This dial reading, which we will call D0, corresponds 
to the angle at which the line perpendicular to the grating is centered between M2 
and M3.   In this case, light from the entrance slit is imaged directly onto detector.   
Record the dial reading corresponding to D0 (or zero the digital reading, if you 
want to define D0  as the origin) 
 
Now rotate the handle clockwise until you reach the first diffracted peak. Record 
the position for each peak that you find.  You should find about 12 lines.    
 
When very strong lines are found (the easiest to see is probably the famous 
green line at 546.07 nm), look through the eyepiece and record their color next to 
the dial setting.  It will be very helpful to record the approximate signal strength of 
each line, using the oscilloscope, so that you can first identify the strongest 
spectral lines with the known spectrum.   Having these benchmarks available 
will be invaluable if you accidently reset the digital readout or bump the 
spectrometer.  Also, if you leave for the day and return at a later time to 
finish the experiment, you should check a couple of the strong lines to 
make sure that the calibration has not changed 
 
You should find strong Hg spectrum lines at the following wavelengths 
(measured in air in units of nm): 
 

         yellow              579.05 nm                   
 yellow           576.96                      
 bright green     546.07                     
 blue             491.60               
 bright blue     435.84      
 faint blue       434.75 

           faint blue         433.92 
           violet                407.78 
                              violet                404.66 
 
The list of lines given above is a good start, but not enough to get a good 
calibration for this lab where high resolution is essential.  You MUST go to either 
http://physics.nist.gov/PhysRefData/ASD/lines_form.html (the spectrum you want 
is Hg I) or use The CRC Handbook of Chemistry and Physics. A total of 25 to 30 
lines may be found in the Hg spectrum.  (You may find some additional faint lines 
from argon.  Why?) Make sure you also choose some lines in the UV where your 
eyes won’t do much good, but the oscilloscope will.   Plot a graph of λ vs. dial 
setting on millimeter graph paper for as many of the Hg lines that you can 
observe.  An iterative approach is useful.  Start with the strong lines and sketch 
the λ vs. dial setting plot first.  A second pass through the range with the sketch 
to guide you will help you find the fainter lines. If some points do not fall on the 
straight line, check their dial reading again.  Do this promptly so that your data 
can be checked for errors in measurement or analysis.  Start by fitting the data to 
a line using LSQ fit.  The line will actually have a slight curvature, which you 
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should be able to observe by looking at the plot of the deviations χi.    You must 
therefore fit a second order polynomial to the curve.  A fitting program LSQfit_2D 
is available on the lab PCs.  Ask your instructor if you cannot figure out how to 
use it properly.  If D is your dial setting, you will be fitting to an equation  

 
, 

 
and you will be obtaining values (with uncertainties) for a, b, and c. See the hint 
at the end of this lab write-up for a simpler way to compute the 
uncertainties. Note that your data points all lie between 350 and 580 nm.  Is 
there any advantage to shifting your origin by subtracting a constant, such as 450 
nm, from each of your wavelengths before doing the fit?  Think about how your 
dial reading error is being incorporated in the fit: a half-tic uncertainty is really the 
same whether the dial reads 10 or 800. 
 
Caution!   It usually takes an entire lab period to get familiar with the equipment 
and do the calibration and understand the error propagation.  If you are coming 
back a week later to start part B, you will need to do the calibration once more in 
case other users have changed settings. It should not be hard just to take a few 
data points and run it through the same program again; if your data is the same, 
you can just use the fit from before.   

 
 

B.  The hydrogen spectrum. 
 
Place the hydrogen tube in place of the Hg source (make every effort to put the 
thin region of the tube at the same position as the Hg source) and determine the 
dial readings corresponding to at least four lines from the H spectrum.  From the 
calibration information obtained above, calculate λ for each H line.   
 
Note that these are the wavelengths measured in air.   The original reference 
wavelengths for Hg were also obtained in air.   Air has an index of refraction  
n = 1.00029.  In an experiment of this precision, we need to account for the fact 
that the wavelength in air is different from that in vacuum!  By using the relation 
 

, 
 
determine the vacuum wavelength for each of the four transitions.  This is the 
wavelength that you would use to determine the frequency  of the emitted light. 
These lines are members of the "Balmer Series," corresponding to the energy 
levels with n1 = 2 and n2 = 3, 4, 5, and 6.  To confirm this, calculate the ratio of 

 to  which should be the same for each of your wavelengths. Obtain 

a best value for the hydrogenic Rydberg constant RH (with an uncertainty) by 
calculating a weighted average.  Compare with the predicted value from Eq. 4.   

vacλ
ν
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C.  The sodium spectrum. 
 
Place the sodium source in position and let it warm up for 10 minutes or 
so.  The light is red at first and will become more orange when the tube gets 
hot.  The reason for this is that sodium has too low a saturated vapor pressure at 
room temperature and it must be heated before it can maintain a discharge.  
Rather than simply heating the sodium, this is achieved by adding a "starter" gas, 
neon, which easily produces a discharge.  This heats the initially solid sodium 
until its vapor pressure increases sufficiently to maintain the discharge.  Since 
the ionization energy of neon is 21.6 eV and that of sodium is 5.1 eV, practically 
all of the final discharge current is due to sodium ions, and the excitation of the 
neon becomes negligible. Sodium lights are often used for street lighting, and 
their initial red color is due to the neon starter gas 
 
Locate all the visible Na lines and determine their wavelengths. Check that the 
doublets are well-resolved by looking through the eyepiece while changing the 
width of the input slit (set it back to the nominal setting of zero when you are 
done). From the average doublet separation, calculate the energy difference 
between the two levels and compare your result with the expected value of 2.1 
meV.  Consider the accuracy and reproducibility of your data and include in your 
calculation of average doublet separation only those line pairs which are clearly 
doublets.   [Note that you can reduce the error in your measurement of the 
doublet splitting by considering only the change between the two lines and 
then evaluating the corresponding separation .  Why is this better than 
calculating the wavelengths of each of the two lines from the full calibration and 
then taking their difference? See HINT at end of write-up.]  
  
The sodium spectrum is a relatively simple one, since the atom has eleven 
electrons, ten of which form a spherically symmetric "closed shell" of charge 
surrounding the nucleus.  The relevant energy levels are due to states of the one 
remaining electron, which is sometimes called the valence electron since it is 
responsible for chemical binding.  The fine structure that you measure in this 
experiment is due to the fact that the electron has spin and a corresponding 
magnetic moment.  This magnetic moment can have either of two different 
orientations in a magnetic field (corresponding to “spin up” or “spin down”). The 
corresponding energy difference between these two states is ∆E = 2 µBB where 
µB is the magnetic moment in Bohr magnetons, 9.274×10-24 J/T and B is the 
magnetic field experienced by the electron in the atom.  All excited levels of the 
atom have this doublet fine structure.  The splitting is more than an order of 
magnitude greater in sodium than in hydrogen). 
 
 
 
 
 

D∆
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D.  Determination of the grating groove spacing, d. 
  

 
 
 
 
 
 
 
 
 

 
 
The mechanism which rotates the diffraction grating is shown above: as the 
handle is turned, it drives a long screw which in turn pushes a lever.  This lever  
is rigidly attached to a point below the center of the grating.  At dial setting D0, 
determined earlier, the grating angle p is 0o and the angle of incidence φ equals 
the angle of reflection θ.  The length of the lever is 3.875 inches, so that for any 
other dial setting D, the grating angle p is given by: (check your units!)  
 

. 

 
Now consider the two situations illustrated below, with dial settings D0 and D: 
 
 
 
 
 
 
 
 
 
In both cases, corresponding to dial settings D0  and some other value of D, 
respectively, the paths of the incident and reflected rays are the same and so the 
angle α =8.40o between them is the same.  But the angles of incidence and 
reflection are changed when the grating is rotated through an angle p.  From the 
second diagram, it follows that the angle p = α/2 + φ where φ is the angle of 
incidence. So now we can determine φ for any dial setting D using this 
expression and the one above.  Inserting the value of φ into the diffraction 
equation gives a value for the number n of grooves per cm: 
 

. 

α/2 θ 

φ 

Grating rotated 
through angle p 

 

D0 Diffraction 
grating

3.875in

p

D

D0 Diffraction 
grating

3.875in

p

D
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A Useful Hint for Error Propagation 

 
Consider the calibration equation given above:     𝐷𝐷 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑏𝑏2 
 
Since our goal is to write a formula for λ as a function of the dial reading D, we 
will also need a formula for the uncertainty in wavelength σλ.  Naïvely we could 
invert the formula above and perform the standard procedure for propagating 
errors given in the appendix.  However since the error σλ has four contributions 
(from σD,  σa,  σb, and  σc), each of which requires a separate differentiation, you 
would quickly find that the standard method of error propagation is very tedious 
and time consuming.  A more clever method is useful in this case. 
 
Instead of inverting quadratic equation above, consider performing the error 
propagation as if D was the dependent variable, i.e. you should do an implicit 
differentiation:    𝜎𝜎𝐷𝐷2 = 𝜎𝜎𝑎𝑎2 + 𝑏𝑏2𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝜆𝜆2𝑏𝑏2 + ⋯   You will find that this formula is 
trivial to solve for .  However be careful with the logic of your final formula.  Ask 
yourself if it makes sense; i.e. would you expect that having an error on 𝑎𝑎 
improves the error from D?  Obviously not.  You should fix the equation to reflect 
a more reasonable formula (perhaps some minus signs are really plus signs).  
You may argue that this treatment is not rigorous, and you would be right.  
However the procedure here results in the correct formula as you may verify for 
yourself by consulting any textbook on error analysis. 
 
Now consider the formula for the energy splitting of the doublets in the sodium 
spectrum:        
                   Δ𝐸𝐸 = ℎ𝑐𝑐Δ𝜈𝜈 = ℎ𝑐𝑐 � 1

𝜆𝜆1
− 1

𝜆𝜆2
� 

 
Again if you naively use your error propagation formula for λ you will likely find 
that your error on ∆E is actually greater than ∆E itself.  The reason for this is that 
the error on D from 𝜎𝜎𝑎𝑎 should have no effect on a relative splitting in wavelength, 
since 𝜎𝜎𝑎𝑎 represents an error in the offset.  However, performing the error 
propagation on ∆E will result in a contribution from 𝜎𝜎𝑎𝑎 regardless.   Let us start by 
making the approximation:      

          Δ𝐸𝐸 ≈ ℎ𝑐𝑐 ∆𝜆𝜆
𝜆𝜆
2 

In addition, we may assume that the error on ∆E is completely due to the error on 
∆λ and ignore the contribution from 𝑏𝑏 (indeed this term is negligible in 
comparison).  Now let us again consider our calibration equation for the dial 
reading D and write: 
                                                Δ𝐷𝐷 = 𝑏𝑏Δ𝑏𝑏 + 2𝑐𝑐𝑏𝑏Δ𝑏𝑏 
 
We may now perform the error propagation for ∆λ considering the contributions 
from 𝜎𝜎𝑏𝑏, 𝜎𝜎𝑐𝑐, 𝜎𝜎Δ𝐷𝐷, and 𝜎𝜎𝜆𝜆.  Again you will likely want to do the derivatives implicitly 
and make the logical corrections to the signs in the final formula. 
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X-ray crystallography: A determination of Avogadro’s 
number from crystal lattice spacing  
 
 
Purpose 
This experiment will introduce you to the basic techniques of X-ray 
crystallography.  You will make an accurate determination of the lattice spacing 
of some simple crystals and use your data to determine Avogadro’s number.  
 
Key concepts 
 K, L, M...radiation 
 Bremsstrahlung 
 Bragg diffraction 
 Spectrometer 
 Unit cell 
 
Introduction 
 
 X-rays have wavelengths comparable to the interatomic distances in solids, i.e. 
of the order of 0.1 nm.  In 1912, von Laue first suggested that the interference 
phenomena which occur when a beam of X-rays is incident on the regular 
structure of crystals could be used to investigate that structure.  The technique 
was further developed by W.H. and W.L. Bragg.  Nowadays, the extremely 
complex structure of biological molecules are investigated using these same 
basic techniques. 
 
The basic Bragg scattering law can be obtained particularly simply in 2-
dimensions.  First, consider diffraction of X-rays from a single plane of atoms; 
clearly, if the angle of incidence is equal to the angle of reflection (the law of 
reflection for light) then all scattered rays are in phase, corresponding to 
constructive interference.  But then consider scattering from planes of atoms 
separated by a distance d; in this case, constructive interference occurs only 
when the path difference between waves scattered from adjacent planes is an 
integral number of wavelengths.  From the diagram below, it should be clear that 
this condition can be written as 

               2dsinθ = nλ 
where λ is the X-ray wavelength and the integer n  is called the order of 
diffraction.  
 
 
 
 
 
 

θ θ 

d Path 
difference:  
d sinθ 
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Note that the angle θ is measured from the crystal plane, not from the normal as 
is customary when considering light. Also note that the X-rays are scattered 
through an angle 2θ. 
 
Production of X-rays 
 
X-rays are produced by bombardment of a target by a beam of electrons. (In this 
experiment the target is molybdenum).  The resulting X-ray spectrum has two 
distinct components: a continuous bremsstrahlung spectrum which is 
characteristic of the incident beam energy, and several discrete spectral lines 
which are characteristic of the target material. 
  
Bremsstrahlung is radiation produced by the deceleration of electrons in the very 
strong electric fields near the target nuclei.  Its intensity is dependent upon the 
target material, but the shape of the spectrum depends only on the primary 
electron energy E0.  The maximum possible X-ray energy E0 = hν = hc/λ.  If the 
electrons were accelerated through a potential V so that they have energy 
E0=eV, then the corresponding minimum X-ray wavelength is given by λ = c/ν = 
hc/eV.  The continuous spectrum extends to longer wavelengths corresponding 
to smaller fractions of the incident energy being radiated away. 
  
In contrast, a discrete spectrum is emitted when electrons from higher shells 
replace inner-shell electrons which have been knocked out of the target atoms by 
the incident electrons.  The highest energy X-rays, called K X-rays, occur from 
electron transitions to final n=1 atomic states while L X-rays correspond to 
transitions to n=2 states. A further classification occurs depending upon which 
higher shell the occupying electron comes from; in the case of molybdenum the 
only significant discrete components are called Kα and Kβ, corresponding to 
transitions from n=2 to n=1 and from n=3 to n=1 states, respectively.  This is 
shown schematically below: 
 
  
 
 
 
 
 
 

 
 

The Kα and Kβ lines of molybdenum have wavelengths 0.0711 and 0.0631nm.  
(Actually these lines have fine structure due to spin-orbit interactions but this 
splitting is not easily resolved).  It is these characteristic lines that you’ll use in 
this experiment.  The Kβ line is about 5 times weaker than the Kα and may be 
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reduced by a much larger factor using selective filtering.  In particular, a 
zirconium absorber placed in the beam has a very strong absorption edge at λ = 
0.069 nm with the result that wavelengths below this are selectively absorbed. 

 
Bragg diffraction 
 
There are three principal methods used in X-ray diffraction studies.  The method 
due to Laue (1912) uses the continuous component of the spectrum incident 
upon a carefully aligned single crystal; from the observed interference pattern, 
which is generally recorded photographically, the overall crystal structure can be 
inferred.  In the powder method, the target is in the form of many small crystals 
oriented in random directions; X-rays are diffracted into cones at well-defined 
angles depending upon the crystal lattice parameters.  In the present experiment, 
you will use the rotating crystal technique along with the equation for Bragg 
scattering to determine crystal lattice spacing.  Photographic recording is again 
possible, but you will use a Geiger counter to detect individual scattered X-rays.  
This makes it possible to use very low X-ray intensities (for safety reasons). 
 
The experiment and procedure 
 
There is a sign-in notebook next to X-ray apparatus. If you or your group 
members are going to be using this machine, you must always sign-in at the 
beginning of this lab. 
 
The LEYBOLD X-ray apparatus (#554 800) has many components and comes 
with software to automate data collection. Take some time to identify the source 
of the X-rays, the central crystal target stage and the sensor arm, which has the 
detector (a Geiger tube which counts the number of scattered X-rays). 
 

 
The LEYBOLD  X-Ray apparatus: A) is the display and control panel (Note: For this experiment, the 
controls will be adjusted using computer software.); B) is the X-ray source ( a Molybdinum X-ray 
tube); C) is the target stage; and D) is the sensor arm.  
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 Locate the crystals available for diffraction. They are NaCl, LiF, and KBr. Pick 
which one you will use for the first round of data collection. 
 
Turn on the X-Ray machine and open the apparatus software, XRay.exe, found 

on the desktop.  
 
When placing a crystal on the target stage inside the X-Ray apparatus, it is 
important to secure the crystal so it does not fall during data collection. To secure 
the crystal, loosen the stage and lower it a little bit, enough so that the crystal can 
fit under the lip of the black mount that the stage is connected to. Take your 
chosen crystal and place it on the target stage. (When handling a crystal, grab it 
only by the short sides and make sure to use gloves; the moisture of your 
hands will damage the crystals otherwise.) Gently raise the stage to secure the 
crystal between it and the lip of the mount.  

 
 
Whenever a crystal is placed or rearranged on the stage, the goniometer will 
need to be calibrated. This is to ensure that the detector is in the best location to 
detect x-rays. In order calibrate the apparatus, go to the software and click the 

“Settings” button (it has a picture of a hammer).  
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 In the Settings menu, you will notice many different inputs. Ignore these for now 
and click the “Crystal Calibration” button at the bottom of the window.

  
 
In the new menu, you will set the parameters for the calibration search.  Select 
your crystal from the first drop down menu and make sure the Mo-tube is 
selected for the anode. Make sure the doors to the X-ray tube and crystal are 
closed. Once everything is set, hit the “Start Search” button. Once the calibration 
is done (and if it is successful), hit the Adopt button to return to the Settings 
window.  (If the calibration is not successful, try rearranging the crystal by either 
turning it 90 degrees or flipping it over. If this doesn’t work, consult your TA.) 
 
Back in the Settings window, notice the different parameters that can be adjusted 
for data collection. These parameters determine how the X-ray apparatus will 
collect data. The Goniometer section lists which arms will be adjusted during 
data collection. The crystal is located on the target arm and the GM tube is 
located on the sensor arm. This experiment requires a 2:1 coupled motion 
between the sensor and target so make sure coupled is selected.  
 
In the Parameters section, there are six items that can be adjusted. U is the 
 Mo-tube Voltage and this should always be set to 35keV. I is the Mo-tube 
current this should be set to 1mA. With the goniometer in coupled mode, βmin, 
βmax, and Δβ all refer to the angle of the target arm. βmin and βmax determine  
the range of angle measurements. For now, use a range of 0 to 45 degrees. If 
you want to later change it, go ahead. Δβ is the step size of the target arm angle. 
When looking for peaks, it is important to have a step size as small as possible in 
order to get the most accurate shape of the peak. Δt is the step time; this is the 
amount of time the sensor will stay at each step. The longer the sensor stays at 
each step, the more accurate the count rate will be for that step. For our 
purposes, a step time of 1 or 2 seconds is plenty accurate.     
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Once you have set the parameters, close both doors to the apparatus and hit the 
Scan button. The X-ray tube will turn on and the sensor will start collecting data. 
Close the Settings window to return to the histogram of the data. The histogram 
and table in the X-ray Apparatus software will update as the data is being taken.  
The display on the X-ray machine also shows the count rate and angle of one of 
the arms (°T stands for target arm angle and °S stands for sensor arm angle). 
When the data collection is done, be sure to save the file for future reference. 
Copy the data from the table into Excel in order to complete error analysis. 
 
 
Repeat this process for the two other crystals.  
 
You should be able to locate 3 or 4 orders of diffraction in each case for each of 
the two X-ray wavelengths. Take enough data points so that you can produce a 
plot showing the detected intensity as a function of angle for each crystal.    
 
Repeat one of the data runs with a zirconium filter in front of the collimator to see 
its effect. 
 
Some points to consider: 
 
 (i) What is the best way to determine the center of a peak? By estimating 
the angle at which maximum counting rate occurs, or by estimating the positions 
of the two half-maxima where the counting rate changes most rapidly? 
 
 (ii) If your counting rates are low, have you done the obvious thing of 
checking the alignment of the crystal by eye? Could one face of the crystal be 
better than another (less damaged)?  

 (iii) How do you know that zero scattering-angle corresponds to zero on 
the angle scale? Such an offset would result in your calculations of d having a 
dependence on angle. This is an example of a systematic error. Is there 
evidence in your data for such an error?   

 

Imagine that you are off by 0.3o, then θmeasured = θtrue+0.30   Since 2d sinθ = nλ, 
you know the ratios between orders: sinθ1/sinθ2 = ½ and sinθ2/sinθ3=2/3 and so 
on.  Thus, you can use this knowledge to find a correction angle θC, either for one 
ratio (left), or by adjusting the correction to minimize χ2 in your fitting program 
(right).  The equations can be reduced to an expression for θc by using the trig 
identity for sin (a+b). 
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Data analysis 
 
 For each crystal construct the following table: 
 

2θmeas θBragg δθBragg    N     λ    dcalc     δd 
 
 

      

  
δθBragg and δd are the uncertainties (standard deviations) in your measurement of 
the scattering angle and in the value of d derived from this measurement.  You 
should differentiate the Bragg equation to determine how, in fact, δd 
depends on δθBragg. 

 
What is your best estimate of the lattice spacing of each crystal?  This should be 
derived by taking a weighted mean of all the measurements taken for each 
crystal.   

 
Determining Avogadro’s number 
 
Avogadro’s number can be determined by a variety of means. However, X-ray 
crystallography provides the most accurate determination. 
 
 

 
Each of the crystals you have measured is an alkali halide; these have cubic 
structures.   The drawing above shows the face-centered cubic crystal structure 
of sodium chloride.  On the left is shown the conventional unit cell of the 
crystal; it represents the periodicity of the crystal lattice.  Notice that, if this is 

Na
Cl

2d

2d

Na
Cl

2d

2d
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considered part of a much larger crystal, the volume of the conventional unit cell 
contains four NaCl molecules.   To see this, consider just the Na atoms in the 
figure and count the number of atoms that occupy a cube of volume 8d3,  
accounting for the fact that the atoms are shared with adjacent cubes.   For 
example, the atoms in the center of each face are shared between two cubes.   

 
Now, you can calculate the volume occupied by 1 mole of the crystal (molecular 
weight/density) and then determine Avogadro’s number.   
 
The table below gives some relevant data taken from the CRC Handbook of 
Physics and Chemistry 
 

      Atom       Atomic Weight 
         Li 
         F 
        Na 
        Cl 
         K 
         Br 

          6.941 
        18.998 
        22.990 
        35.453 
        39.098 
        79.904 

 
So that you don’t have to measure the density of your samples, you can look 
them up: the CRC Handbook gives the specific gravities of NaCl, KBr, and LiF as 
2.165, 2.745, and 2.635, respectively. 
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Semiconductors:   
Band Gap of Germanium and the Hall Effect 
 
Purpose 
To determine the band gap of pure germanium (Ge) and to measure the carrier 
concentration and carrier type in doped Ge using the Hall effect. 
 
Key concepts 
 Semiconductors 
 Band gap 
 Doping 
 Hall Effect 
 
References 
Eisberg and Resnick, Quantum Physics of Atoms, Molecules, Solids,   
  Nuclei, and Particles (New York:  Wiley, 1985); Section 13.9. 
Kittel, Solid State Physics, 7th ed. (New York:  Wiley, 1995), Chapters 7 and 8. 
 
Introduction 
Semiconductors are ubiquitous in everyday life.  They form the building blocks of 
integrated circuits and are the basis for most lasers (such as those in CD players, 
laser pointer, etc.).    It is hard to believe that the technological potential of 
materials such as Si and Ge were essentially ignored until the 1930’s.   In part 
this was due to the fact that the physicists had not yet developed the means to 
understand the physics of semiconductors.  This changed with the development 
of quantum mechanics and solid state physics, but an equally important factor 
has been the growth of materials science as a research discipline.  It is now 
possible to grow and process semiconductor materials in all sorts of ways.    
 
As the name implies, semiconductors are “poor” conductors.  Unlike genuine 
insulators such as glass, they can carry a current.  The typical density of current 
carriers, however, is orders of magnitude smaller than the electron density in a 
metal.  More importantly, the density of carriers depends strongly on temperature 
as well as the presence of impurities.    The utility of semiconductors derives in 
large part from our ability to control their properties by introducing impurities, a 
process known as doping.   
 
The unique properties of semiconductors come from the way in which the 
electronic states of the material are filled.  In a metal such as Cu, the highest 
energy level occupied by electrons sits in the middle of a large number of 
available states as shown in Fig. 1(a).   The presence of these nearby empty 
states allows the metal to carry a current easily.   
 
In a semiconductor, there is a gap Eg that separates the filled states from the 
empty states of lowest energy.  Fig. 1(b) shows the situation for a semiconductor 
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Fig. 1:  Filled and empty electronic states for (a) a metal, (b) a semiconductor at zero 
temperature, and (c) a semiconductor at non-zero temperature.  The black and white circles 
in (c) represent a small number of thermally excited electrons and holes, which are able to 
carry current.  Eg is the energy gap between the valence and conduction bands. 
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such as pure germanium (Ge).  The filled states below the gap are referred to as 
the valence band, and the states above the gap are known as the conduction 
band.  It can be shown rigorously that a filled band cannot carry an electrical 
current. This is a consequence of the Pauli exclusion principle.  This means that 
in order for current to flow in a semiconductor, it is necessary to add electrons to 
the conduction band OR to remove electrons from the valence band.   The 
simplest means to accomplish this is by increasing the temperature.   
 
At non-zero temperature, some electrons, represented by the black circles in Fig. 
1(c), are thermally excited from the valence band to the conduction band.  The 
number of electrons in the conduction band is very small, but they are free to 
move because of the large number of empty states.  Similarly, the holes formed 
in the valence band due to the absence of electrons, which are shown by white 
circles in Fig. 1(c), can also carry a current.   Appealing to elementary statistical 
mechanics, we would expect the number of mobile carriers to be an exponential 
function of the ratio .    The actual result for the number of carriers is 

    ,     (1) 
 
where the function f(T) varies with temperature as T3/2.   
 
In a simple transport experiment, we measure the conductivity σ, or resistivity 

.  We expect the conductivity to be proportional to the number of carriers, 
with an extra factor µ, known as the mobility, that accounts for how difficult it is 
for the electrons to move through the material.  It can be shown that  
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    ,    (2) 
 
where is nearly independent of temperature at room temperature.  There are 
a lot of details that go into Eq. 2, but the result is very simple:  the conductivity of 
a pure (also known as intrinsic) semiconductor depends exponentially on the 
ratio .   
 
The first part of this experiment is devoted to measuring the band gap Eg of 
germanium (Ge).  Although the technological importance of Ge is now minor 
relative to Si (used in electronics), the gallium arsenide family of semiconductors 
(used in high-speed electronics, semiconductor lasers, and red photodiodes),  
and the gallium nitride family (used for blue laser diodes and the high-intensity 
photodiodes that are now replacing conventional light-bulbs), Ge played an 
important historical role in the development of semiconductor technology.   
Germanium was the first semiconductor to be grown in large and very pure 
crystals, and it was used in the first transistors fabricated in the 1940’s and 50’s.  
It is still used today for particle detectors and in some special electronic devices.  
One of the reasons that silicon is superior to Ge for most electronic applications 
is its larger band gap.    The band gap also plays a major role in determining the 
optical properties of semiconductors.   
 
Procedure (Band Gap Measurement) 
 
The equipment is very sensitive, so you will see warnings throughout. Please pay 
attention to them.  Since hooking it up the wrong way causes chips and 
ammeters to blow, please have the TA check your circuit before turning it on.  
 
The apparatus consists of several parts.  The pure Ge crystal is mounted on a 
fiberglass circuit board.  Electrical leads are soldered to the ends of the crystal 
and a heater and thermometer are mounted on the circuit board so that they are 
in good thermal contact with the crystal.  Make sure that you are using the 
correct circuit board, which should have the part number 586851.  The 
circuit board should be plugged into the “Base Unit” (part number 586850), which 
includes connectors for the current, voltage, heater, and thermometer leads.  The 
principle of the experiment is very simple:  a current flows through the sample, 
and you will measure the current and voltage across the sample as a function of 
the temperature, which you will change by adjusting the heater power. 
 

0σ
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Fig. 2:  Schematic diagram of the experiment.  For this part of the experiment you can 
ignore the dial labeled COMP as well as the two terminals labeled T and B.  

Heater
VTherm

Set to 2 mA (full 
counterclockwise)

Ge
V

I

Phillips
PM2525

Leybold 521 50
Supply

Ge Crystal faces
towards you!

On/OffCOMP

Heater
Switch

+12 V
HP6234A 

T

B

L

R

Heater
VVTherm

Set to 2 mA (full 
counterclockwise)

Ge
V

II

Phillips
PM2525

Leybold 521 50
Supply

Ge Crystal faces
towards you!

On/OffCOMP

Heater
Switch

+12 V
HP6234A 

T

B

L

R

THE CIRCUIT BOARD AND CONNECTORS ARE FRAGILE AND MUST BE 
PLUGGED IN PROPERLY, WITH THE Ge CRYSTAL VISIBLE THROUGH THE 
HOLE IN THE BASE UNIT.  DO NOT USE FORCE!  If you have any doubt 
about how to do this, please ask an instructor!  Make sure that the current 
adjustment knob is set all the way counterclockwise (at 2 mA) before the 
board is plugged in.  The knob should remain at this position throughout 
the first part of this experiment. 

Hook up the leads as shown in Fig 2.   Turn on the HP 6234A power supply.  
Once you have verified that the output of this supply is at +12 V, turn on the 
power switch on the Base Unit itself.   Verify that a current of 1.8 – 2.0 mA is 
flowing through the crystal.  You should measure a voltage drop of about 1 V.   
 
Now turn on the power supply for the heater.    The heater coil on the circuit 
board is protected by a relay.    Set the voltage knob on the heater power supply 
to 10 V. Rotate the current knob on the power supply about 30 degrees from the 
full counterclockwise position, and then hit the Heater button on the base unit.  
Then, quickly set the current to 0.1 A.  The red light will fade or go out, but the 
heater coil and thermistor (a resistor that we use as a thermometer) will still be 
connected.     
 
The thermistor can be read with a voltmeter and has a calibration: 
    ,            (3)  
where V is the voltage (in volts).  You can assume that this calibration is exact 
(within 2 K or so), but you will find that there are other systematic errors that 
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Fig. 3:  (a) An n-type semiconductor.  The 
charge carriers are negatively charged 
electrons in the conduction band.  (b)  A p-type 
semiconductor, in which the carriers are 
positively charged holes in the valence band. 
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affect your experiment.  Make sure that the thermistor is reading properly.  With 
0.1 A going through the heater, you should find a temperature slightly above 
room temperature.    Note that if you reduce the heater current all the way to 
zero, the thermometer and heater will become disconnected.  To reconnect 
them, repeat the procedure described in the previous paragraph.  You will also 
find that the heater is automatically disconnected when the sample temperature 
exceeds approximately 420 K.   If this happens, wait a few minutes before 
repeating the procedure of the previous paragraph.  Do not exceed a heater 
current of 2.5 Amps!   
 
Decide how you should take data to verify Eq.  2 and measure the band gap Eg 
of Ge.  Is it better to take data while warming or cooling?  How long should you 
wait at each temperature?   The temperature will never be completely stable, and 
so you will always have to take data while it is drifting.  However, you should wait 
at least 2 minutes at each setting for it to settle. Estimate the errors in the 
temperature and the voltage at each point.   How should your data points be 
distributed?  Make sure to take at least 15 points over the temperature range of 
the experiment.   Figure out a way to plot your data so that they are linear on a 
semi-logarithmic scale (while you are doing the experiment!). 
 
Decide how you should analyze your data to determine the band gap of 
germanium.  Compare with values in the literature.    To what extent does Eq. 2 
describe the temperature dependence of the conductivity?   Determine the 
resistivity  of your sample at room temperature and at 420 K.  Remember that it 
is the resistivity (not the resistance) which is a fundamental property of a 
material.   The dimensions of the Ge crystal are: length = 20.0 mm, width = 10.0 
mm, thickness = 1.0 mm.    How does the resistivity of your Ge sample compare 
with that of a good metal, such as Cu, at room temperature? Explain. 
 

Doped Semiconductors and the 
Hall Effect 
 
Controlling the conductivity of a 
semiconductor by adjusting the 
temperature is tedious and 
impractical for making useful 
devices.  In practice, the electronic 
properties of pure semi-conductors 
are modified by doping with 
impurities.  For example, adding a 
small amount of phosphorus to Ge 
has the effect of adding electrons to 
the conduction band, as shown in 
Fig. 3(a).   In this case, the impurity 
is called a donor, and the resulting 
semiconductor is called n-type.   

ρ
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Fig. 4:  A current flowing to the right may be due to either 
negatively charged carriers drifting with velocity v towards 
the left or positively charged carriers drifting towards the 
right. 
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Fig. 5:  The geometry of a Hall effect experiment.  The magnetic field B is pointing up and the 
current is flowing to the right.  The forces shown are for negatively charged carriers, for which 
VH is positive when B is positive.   
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Boron, however, has the effect of removing electrons from the valence band, and 
it is called an acceptor.  In this case, the resulting semiconductor is called p-type.  
The holes remaining in the valence band are shown in Fig. 3(b).   
 
The difference between the effect of donors and acceptors on charge transport is 
illustrated in Fig. 4.   The case of donor impurities is easy to understand:  the 
electrons added to the conduction band can now carry a current.    The effect of 
acceptors is slightly more subtle.  In this case, electrons are removed from the 
valence band, and the holes that are left behind can conduct a current.  The 
holes, which correspond to the absence of electrons, behave like positive charge 
carriers!   If a voltage is applied as shown in Fig. 4, a current flows to the right, 
but this can be thought of as either negative charge carriers flowing to the left or 
positive charge carriers flowing to the right.  Can we tell the difference between 
the two cases, and is it possible to measure the number of charge carriers?    
 

The answer to both of 
these questions is “yes” 
and involves the use of a 
magnetic field to measure 
the Hall effect.  Consider 
the case of an n-type 
semiconductor, shown in 
Fig. 5.   A current flows to 
the right, so negatively 
charged electrons flow 
towards the left with a 
velocity v.    Suppose that 
a magnetic field is applied 
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Fig. 6:  Connections for the Hall effect measurement.  Be careful to ensure that your leads 
are hooked up with the correct polarity.  
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in the direction shown.  Using the right-hand rule, you should be able to show 
that there is a force evB on the electrons in the direction shown, and that they will 
therefore move towards the front edge of the rectangular sample, which will 
become negatively charged with respect to the back edge.  Of course, this 
process cannot go on forever, as eventually there will be an electrostatic force 

 that builds up and exactly cancels the force due to the magnetic 
field, where VH is the voltage shown in the figure, and w is the width of the 

sample.  (Recall that , and we will assume here that the electric field 

E is constant.)  Equating the two forces,  
    ,                          (4) 
which would allow us to determine the drift velocity of the carriers.   The velocity 
is related to the current by , where A = wt  is the cross-sectional area of 
the sample and n is the density (number per unit volume) of carriers.  
Substituting for v in Eq. 4, and rearranging, we find  

     .      (5) 

 
Repeat the analysis of Fig. 5 for the case of positively charged carriers flowing to 
the right, for which the direction of the current is the same.   You will find that the 
magnetic Lorentz force points in the same direction as in Fig. 5, but the voltage 
VH  will be negative, so that  

     ,     (6) 

where p is the number of positively charged  carriers per unit volume.  Note the 
minus sign.  Eqs. 5 and 6 therefore allow us to measure the density of carriers 
from a measurement of the Hall voltage VH, provided that the current, magnetic 
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field and thickness of the sample are known.  Just as importantly, we can 
determine the sign of the charge carriers!   For the geometry of Fig. 5, a positive 
value of VH when B is positive indicates that the charge carriers are electrons, 
while if VH  is negative when B is positive, then the charge carriers are positively 
charged holes.    Note that this distinction is possible only because the Lorentz 
force depends on the charge and velocity of the carriers.  
 
Procedure (Hall Effect) 
   
There are two doped Ge crystals mounted on boards labeled 586852 and 
586853.    One of these is n-type (negatively charged electrons are carriers) and 
the other is p-type (positively charged holes are carriers).  You must determine 
the carrier density and sign for each crystal.  The four terminals on the base unit 
labeled L, R, T, and B are connected to the crystal.  These correspond to left, 
right, top and bottom in Fig. 5, provided that the Ge crystal is facing you as 
shown in Fig. 6.   Insert the card with one of the doped crystals into the base 
unit.  Be very gentle, and make sure that the crystal faces through the hole in the 
base unit.  If you have any problem with either removing the previous card or 
inserting the new one, please ask an instructor for assistance.   Remember to 
note which card you are measuring in your lab book!  Hook up the leads, using 
the Phllips voltmeter between contacts T and B to measure VH.    You must be 
very careful to ensure that the polarity of your current and Hall voltage leads is 
correct!  For all of the instruments provided, red terminals are positive.  Set the 
current flowing through the crystal to 20 mA as measured with an ammeter.   
Adjust the knob labeled “COMP” so that  in zero magnetic field.  Do this 
before inserting the sample into the magnet.  This compensates for small 
deviations from the ideal geometry of Fig. 5.    Leave the heater and thermometer 
leads disconnected for this part of the experiment.   
 
The post on the base unit fits into a hole underneath the magnet.  Make sure that 
the surface of the crystal is parallel to the pole pieces of the magnet, so that the 
current path is perpendicular to the magnetic field.  A magnetic field sensor can 
be slid into the magnet next to your crystal, with the flat face of the sensor 
parallel to the slab of Ge.   Be careful.  The magnetic field sensor is very 
fragile.  Before inserting the field sensor, you need to set the “zero.”  To do this, 
place the sensor at least 12 inches from the magnet, turn the dial on the meter to 
“Zero” and then hit the button labeled “Hold Reset.”   The meter will flash “Auto” 
while it is zeroing sensor.  This will take several seconds.  When it is done, set 
the dial back to “Measure,” and then the sensor is ready to use.    There is a 
piece of tape on the sensor, and you should use this to make sure that the 
sensor always faces the same direction.  Unfortunately, you do not know which 
orientation of the sensor corresponds to a positive magnetic field.  The meter 
attached to the field sensor will read either positive or negative, but this may not 
correspond to the direction of the magnetic field defined as positive in Fig. 5.   A 
coil of hook-up wire is provided, which can be connected to the power supply.   
Since you will know which way current flows in this coil, your right hand can then 
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be used to determine the direction of the magnetic field which corresponds to a 
positive reading on the sensor.   The direction of the field should be switched by 
reversing the leads at the magnet power supply.  Do this only when the supply is 
turned off.   Do not rotate the magnet or change any connections on the magnet.   
Finally, the default setting for the field sensor is in units of Gauss, and there are 
104 Gauss per Tesla.   
 
Now determine the carrier density for each of the two crystals, labeled 586852 
and 586853.   To change the crystals, first slide the field sensor out of the 
magnet and then remove the base unit from the magnet.  Reverse this procedure 
after inserting the new card. The thickness of each crystal is 1.0±0.1 mm.  
Approximately 10 data points evenly distributed between -1.5 kilo-Gauss and 
+1.5 kilo-Gauss will suffice.  Does VH depend linearly on magnetic field?  Does 
the slope of VH vs. B reverse when you change the crystal?  Which crystal is n-
type and which is p-type?  Make a small table in your lab book indicating the 
serial number of each crystal, the carrier density, and whether it is n-type or p-
type. 
 
How do the carrier densities you found for the two Ge crystals compare with that 
for copper, in which there is approximately 1 free electron per Cu atom? 
 
Can you guess how the magnetic field sensor used in this experiment works?   
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Counting statistics and radioactive decay 
 
Purpose 
To use a Geiger counter to investigate the random statistics of radioactive decay 
and to study the Poisson and Gaussian distribution functions which describe 
them.  The half-life of the nucleus 80Br will be measured after its production by 
neutron activation. 
 
Key Concepts 
 Geiger counter 
 Statistical fluctuations 
 Poisson distribution 
 Gaussian (normal) distribution 
 Radioactive decay 
 Half-life 
 
Introduction 
The topic of statistics will be covered in lectures and is also presented in an 
Appendix to this lab manual. However, in case you are not yet familiar with that 
material, we will give an abbreviated discussion here. You will also need to refer 
to the appendix for further details.  

 
The observation of a random process, such as the decay of radioactive atoms, 
will produce results that have a well-defined distribution about the average rate of 
decay if a large number of observations are made.  In this experiment it is 
instructive to compare the observed data with two distribution equations:  the 
Poisson distribution and the Gaussian (or Normal) distribution.  For the 
observations to be described by either equation, a fundamental requirement is 
that the events being observed be both independent and random.  This is 
certainly true of the decay of atomic nuclei.  
 
Poisson Distribution 
For data to be described by the Poisson equation it is necessary that a large 
number of events may occur but that, on average, only a small fraction of the 
possible total occur during any one observation.  In this experiment, where you 
will count the number of decays in a given time interval, this condition is satisfied 
because the radioactive material contains many millions of active nuclei but the 
time of one observation is short compared with the half-life.  In addition, the 
detector intercepts only a small fraction of the radioactive decay products. 
 
The Poisson distribution gives the probability P(x) of observing x events when the 
average (mean) number of events per observation is x . 

                                           
 

The probability P(x) should be multiplied by the total number of observations to 
obtain the number of times that x events is expected to be observed. 
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The calculation of P(x) is not difficult if x  is a fairly small number.  Since the 
factorial of zero is one, then P(0) = e - x .  Thus, P(1) = P(0) x  and  P(2) = ½ P(1)
x  and P(3) = 1/3 P(2) x , etc.   Using this step-by-step process avoids the need 
for very large or very small numbers. Alternatively, you can find the function in 
the Excel library of functions, and allow the computer to do the calculations for 
you. 
   
Gaussian Distribution 
If the average number of counts observed in each run is more than about 10, the 
calculation of P(x) gets rather tiresome.  For averages greater than this value, the 
Poisson distribution can be replaced by the Gaussian or "Normal" distribution, 
which has the equation 

 

 
The evaluation of this expression requires the specification of two numbers: the 
average number of events per observation (counts per run) which is x , and also 
the standard deviation σ, which describes the spread of the distribution on both 
sides of the average.  The Gaussian distribution is symmetric about the average 
rate.  This is not true of the Poisson distribution, which is very asymmetric for 
small values of x . 
       
The standard deviation σ, is the square root of the average of the square of the 
deviations from the average of all data points.  That is, it is the R.M.S. deviation 
from the average.  For randomly occurring events the ideal value of σ is . 
       
To make a comparison of a set of data with the theoretical Gaussian distribution, 
it is usually worthwhile to group the data into intervals before plotting a graph of 
the distribution.  For example, one can plot the number of runs resulting in 90 to 
94 counts per run, the number of runs resulting in 95 to 99 counts, etc.  In this 
case the interval is 5 units.  On the same graph, one then plots the theoretical 
Gaussian curve with an adjustment or normalization so that the area under the 
curve will be the same as the area under the graph of actual data.  This 
normalization is obtained by multiplying the values of G(x) by N∆, where N is the 
total number of runs and ∆ is the width of the interval described above. 
       
It is interesting to compare the spread in data with the ideal distribution, which 
predicts that 31.7% of the data should deviate more than 1σ from the mean. 
 
Plateau Curve of Geiger Counter 
 
Before using a Geiger counter, it is necessary to determine the proper operating 
voltage.  If the voltage is too low the counter will be inefficient, but if it is too high, 
it will go into breakdown mode.   The Geiger counter is connected to a unit 
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“Model 500 Nuclear Scaler” which contains both a high voltage supply and a 
scaler.  We no longer use the scaler function, so just treat this like a fancy power 
supply. The counts from the Geiger counter are recorded using the NI PCI6259 
DAQ card connected to the computer. To avoid damaging the tube, follow these 
steps in the order listed (and also be careful of damaging the thin window of the 
counter).  
 
1.  Before pressing the power switch on the Model 500, set the high voltage knob 
to 200 volts or lower. Then turn on the electric power by pushing the POWER 
switch. 
 
2. Open the RadCounterInterface program on the computer desktop.  This is 
your scaler. You can choose a time interval over which you will accumulate 
counts.  When you hit START, it will accumulate counts for that time interval.  
Choose a filename and location for your data to be saved.  STOP stops the run. 
 
3.  The radioactive sources are kept in a safe to which only the instructors have 
access. Use an appropriate source such as 137Cs (which emits both βs and γs) to 
check out the operation of the Geiger counter.  Place the source below the 
counter, choose an infinite time interval and push START. Raise the high voltage 
until the read-out indicates that βs are being detected.  The voltage at which 
counts are first observed is the “threshold voltage”. 
  
4.  Gradually increase the voltage at about 10 or 20-volt intervals.  At each 
voltage take a half-minute run.  Plot a graph of counting rate vs. voltage; this 
should show a “plateau” where the counting rate stays fairly constant with 
increasing voltage. This plateau is not perfectly flat; the counting rate actually 
increases slightly with increasing voltage. Set the voltage ~20 V above the 
beginning of the plateau, but not more than 60 V.   

 
5. Record your plateau curve and label your operating voltage in your logbook. 
This is the voltage you will use for the rest of the lab. 

 
6. With no source present, take a few one-minute runs to determine the 
“background” counting rate caused by cosmic-rays and other stray radiation. 
 
When raising the high voltage be sure to monitor the count rate. If the rate 
starts to rise very quickly, back off the voltage.   Never exceed the high 
voltage value that causes the counting rate to become more than 10 per 
cent larger than the rate on the plateau.  Excessive voltage applied to a 
counter tube will ruin it immediately. 
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Procedure: 
 
Part A. Statistical Fluctuations in Counting Rates 
Since the decay of any individual atom is unpredictable, the number of counts 
recorded in a given time will fluctuate about the mean or average value.  To 
obtain information about such fluctuations, perform the following steps. 
 
1. Using a radiation source, determine a source position that will give a counting 
rate of 1 - 2 counts per second.   Check that you have the right counting rate 
before proceeding with the experiment! 

 
2.  Set the time interval to one second and take data for 300 time intervals.  Many 
of these one-second intervals will have zero counts. Determine how many counts 
occur during the first 30 one-second intervals, the first 100 and all 300 intervals.   
 
3. For each of the sets of intervals, plot a graph having the number of counts per 
interval, x, along the x-axis and the number of times each x was observed along 
the y-axis.  On each graph also plot the predictions of the Poisson distribution 
P(x) multiplied by the total number of intervals (30,100 or 300). 
 
4.  For the three sets of data, how well do they fit with expectations?  Find the 
reduced chi-squared to see how well your data matches the Poisson distribution.  
What is the confidence level of your fit? The definition of chi can be found in the 

appendix:  and where yi_fit = P(x) in this case.  How many 

degrees of freedom are there in P(x)?  In carrying out this analysis, make sure 
you understand the distinction between the uncertainty in a given bin (which is 
the square root of the number of events in that bin) and the standard deviation of 
the distribution (which should be the square root of the mean).   
 
5.  Find a source location that will produce 20 to 30 counts per second and 
repeat the above procedure to compare your results with those expected of a 
Gaussian distribution.  With these higher counting rate data a better graph results 
if you group the data along the number of counts axis into groups of three or four 
and plot the total number of observations in that group.  For each Gaussian use 

 as the standard deviation. Again, use a chi-squared test to determine how 
well your data fit to the underlying probability distribution, this time G(x). Draw 
some conclusions about the shape of the distribution as a function of the length 
of the run. 
 
Part B.  Study of the Decay of 80Br 
Two good references on this subject are "Introductory Nuclear Physics" by 
Halliday, pp 95-96 and "Nuclear Physics", Kaplan, p 445 
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When 79Br is irradiated with slow neutrons some of the neutrons are absorbed to 
form 80Br. 96% of the 80Br nuclei decay to 80Kr by the emission of 2 MeV β-rays.  
(The other 4% emit 0.87 MeV positrons, which are not of interest in this 
experiment.)  In the neutron absorption process some of the 80Br nuclei are left in 
an excited state which decays more slowly than does the ground state because 
of the need for a large change in angular momentum.  A 80Br nucleus that was 
formed in the excited state first emits low energy γ-rays as it drops to its ground 
state and then decays to 80Kr by the emission of a 2 MeV β-ray which is 
indistinguishable from the β-ray emitted from a 80Br that was originally formed in 
its ground state.  However, we can determine what fraction of the 80Br nuclei 
were formed in the excited state by observing the two decay rates in the 
emission of these β-rays. A simplified schematic of these processes is shown 
below.  
 
 
 
 
 
 
 
 
 

                                             79Br                         80Br                            80Kr 
  
1.  First read the whole set of instructions, decide what data are needed, and 
how it should be recorded.  This part of the experiment will take you 3 hours and 
cannot be stopped and restarted during that time.  The usual procedure is to do 
the first part of the lab week 1, including planning for steps 2-8 below. Then be 
ready to start Bromine data at the beginning of lab on week 2.  
 
2.  Obtain the background counting rate of your counter by making two or three 
2-minute runs with no source near the counter.  Then place a freshly irradiated 
sample of NaBr close to the counter tube and take a series of 2-minute runs 
lasting at least 3 hours.  Finally check the background rate again.  
   
The irradiation must be carried out by the lab instructor and is accomplished by 
placing the sample inside a Pu-Be neutron source.  This is a common source of 
neutrons for the laboratory, in which α-particles emitted in Pu decay interact 
strongly with 9Be in the reaction:  

 
  9Be   +  4He   →   12C   + n  + 5.76 MeV  
 
The TA then removes the sample, now containing some fraction of 80Br, and 
brings it to you. Make sure you know the time that the TA removed the sample 
from irradiation, in order to be able to complete step 7. It is advisable to get an 
instructor to begin irradiation of the source several hours before your lab 

excited state 
 
ground state 
 

n 
β 
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session begins so that it is available near the beginning of the regularly 
scheduled lab period.  
 
3.  Your data will consist of three separate components as illustrated in the 
diagram below. 

 
 
 
 
 
 
 
 

 
 
4. Subtract the background counts from the results of each run and make a semi-
log of the net counting rate as a function of time.  The decay rate should be rapid 
at first, when most of the β-rays come from the 80Br originally in the ground state, 
and slower later, when the rate is determined by the decay from the high angular 
momentum excited state of 80Br. 

 
5. Do a least squares fit to the exponential decay for times between 1.5 to 3 
hours, where the fast decay has become negligible.  Then subtract this slow 
decay data from the total to leave only the fast component. Do a least squares fit 
to this fast component. 
 
 6.  Compare your results for the two half-lives to the expected values, which can 
be found in the CRC Handbook or on the Web at http://nucleardata.nuclear.lu.se 
 
7. What fraction of the 80Br atoms were in the excited state at the end of the 
irradiation period?   Make sure that you read the notes below carefully. 
 
8. Your final plot should include all the components shown in the sketch above. 
 
Some notes on radioactive decay 
 
All individual atom of a radioactive isotope have the same probability to decay in 
a given time.  This implies that the total activity, or rate of decay dN/dt is 
proportional to the number of radioactive nuclei N present in the sample at time t.  
Thus 

  , 

 
where τ is s a constant.  When integrated, this gives the number of atoms as a 
function of time: 

logN 

t 

Total 
Fast decay 
Slow decay 
Background 
 

Time t after end of irradiation 
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where N0  is the number of atoms present in the sample at time t=0. It should be 
simple to show that τ  is the mean life of the isotope; this is related to the half-life 
t1/2 by t1/2  = τ.ln2.  
 
What you actually observe in this experiment is a decay rate dN/dt. 
By differentiation of the expression for N(t) above 
 

                                              , 

and so  

, 

 
giving the number of radioactive nuclei present initially.   
How does the sample of 80Br atoms increase during neutron irradiation?  These 
atoms are produced at a rate proportional to the neutron flux φ and decay at the 
rate shown by the equation above.  So at any time t the net rate of production is 
given by  

 
where k is a constant.  Integrating this gives 

 
which reaches about 2/3 of its final rate after about one mean-life.    
  

N 

t 
t=τ 
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Compton scattering using a scintillation counter 
 
Purpose 
To introduce the scintillation counter as a tool of γ ray spectroscopy. 
To calibrate a scintillation counter using standard γ sources; to study Compton 
scattering and to determine the mass of the electron.  
 
Key concepts 
 Scintillation 
 Photomultiplier 
 Compton effect 
 Photoelectric effect 

Multichannel analyzer 
 
 
Introduction 
 
1. Scintillation counter and the multichannel analyzer 
The scintillation counter is a widely used detector of charged particles.  It 
consists of a scintillating medium coupled to a photomultiplier tube (PMT). The 
passage of a charged particle through the scintillator excites and ionizes the 
material which then emits small flashes of visible light, or scintillations, as it de-
excites. This visible light is, in turn, detected in the photomultiplier tube where the 
flash of light is turned into a burst of electrons and amplified by a very large 
factor. In this experiment the charged particles which are detected are actually 
secondary electrons produced in the scintillator by the interaction of γ rays 
through Compton scattering, the photoelectric effect, or pair production. 
 
Several materials scintillate.  The first use of a scintillation counter was by 
Rutherford in his classic experiments which demonstrated the existence of the 
atomic nucleus: α particles scattered from gold foils were detected by their 
scintillations produced in a zinc sulphide screen.  In those days, the scintillations 
were actually detected by eye by looking at the screen with a microscope.  
Nowadays, scintillators come in many forms, from inorganic crystals to plastics, 
and also as liquids and gases.  They are used in many fields, from medicine to 
oil-prospecting to particle physics.  The scintillation process is relatively 
inefficient: in the most efficient scintillators, only one visible photon (∼3 eV) is 
emitted for every 100 eV of primary energy deposited, approximately. 
 
A schematic diagram of a scintillation counter is shown in figure 1. The scintillator 
in our experiment is a 2 in. diameter by 2 in. long crystal of sodium iodide (NaI) 
containing about 0.1% Thallium (Tl). One side of the crystal is placed against the 
glass face of the photomultiplier tube while the other sides of the crystal are 
surrounded by a light-tight seal to keep out room light (and also to keep out 
moisture, since NaI is highly hygroscopic). 
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Figure 1. Schematic diagram of a scintillation counter 
 
On the inner surface of the phototube's glass face is a thin photocathode where 
the visible scintillation photons knock out electrons via the photoelectric effect. 
About 10-20% of the incident photons are able to knock electrons into the 
vacuum of the photomultiplier tube.  These electrons are focused and 
accelerated across a potential of 100 V, typically, to an electrode called a 
dynode.  Each incident electron has enough energy to knock out several 
additional electrons from the dynode surface. The number of these secondary 
electrons is proportional to the incident electron energy, i.e. to the accelerating 
voltage. This amplification process is then repeated at 12 successive dynodes in 
this particular photomultiplier tube so that, e.g. if the secondary emission factor at 
each dynode is 3 to 5 secondaries/incident electron, then the initial burst of 
photoelectrons will be amplified by a factor 312 to 512, or about 106 to 108, 
depending upon the high voltage supplied to the tube.  This signal may be further 
amplified or shaped for analysis by the subsequent electronic circuitry. 

 
The amount of visible light produced in the scintillator is proportional to the 
energy deposited by the electron, and the amplification process in the 
photomultiplier tube is also linear so that the output signals are proportional to 
the electron energy. Each signal is passed to a multichannel analyzer in which 
it is sorted according to its amplitude and assigned a channel number 
proportional to this amplitude.  The number of signals collected in each channel 
is stored in the analyzer memory and displayed on the computer screen. The 
horizontal scale on the display shows channel numbers and the vertical scale 
shows the number of counts in each channel, so that, over time, the screen 
builds up a histogram corresponding to the spectrum of energies deposited in the 
scintillator.  The input to the analyzer is automatically shut off during the analysis 
process, typically about 1 ms per signal, resulting in "dead time".  This dead time 
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is subtracted from the real clock time to give the actual "live time".  Both live time 
and real time are displayed on the analyzer screen. 
 
2. γ-ray interactions in matter 
At the energies typical of nuclear γ-decay, up to a few MeV, the principal 
processes through which γ-rays interact with matter are Compton scattering and 
the photoelectric effect.  In the latter, all of the primary γ-ray energy is passed on 
to the knock-on electron and so mono-energetic γ-rays produce only mono-
energetic secondary electrons, ideal for scintillation spectroscopy. (Actually, not 
all of the primary γ-ray energy is transferred to the knock-on electron, because 
some of the primary energy is needed to overcome the electron binding energy in 
the atom. However, the ionized atom is promptly neutralized by an electron from 
the crystal and releases this extra binding energy in the form of X-rays which are 
rapidly absorbed by nearby atoms which then eject electrons in turn, so that no 
energy is lost). 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Compton scattering 
 
 

The Compton process, illustrated in Figure 2, is more complicated.  In such an 
interaction between a photon of energy E0 and an electron, the photon is 
scattered with an energy Eγ  which depends on its scattering angle θ 

 

 
and the scattered electron has energy  

You should be able to derive these relationships!  (Note that the original classic 
experiment of Compton, which provided one of the earliest verifications of the 
particle-like behavior of the photon, was done in 1920 using X-rays.  That 
experiment showed a characteristic increase in the wavelength of X-rays 

θ 

e- 

E0 

Eγ 

 67 



scattered at various angles from the incident beam.  In the case of the much 
shorter wavelength γ-rays, it is more appropriate to use energy rather than 
wavelength as the relevant photon property.) 
 
Why have we chosen to use a NaI scintillation counter for this experiment?  This 
is the most commonly used scintillator for γ-spectroscopy because of iodine's 
high Z! The probability for the photoelectric effect to occur is roughly proportional 
to Z5  while that for Compton scattering, where only a fraction of the initial γ 
energy is transferred to an electron,  is proportional to Z (i.e. to the number of 
electron targets in the material).  The result is that the photoelectric effect is 
strongly enhanced in a high Z material.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3  a) Spectrum of recoil electron energies from interaction of mono-
energetic  photons in matter;  b) as observed in a detector with finite energy 
resolution. 
 
Of course, in general, a beam of mono-energetic γ-rays incident on the 
scintillation crystal will interact via both Compton and photoelectric effects, so 
that the resulting spectrum of knock on electrons will contain both components.  
(At the γ energies used in this experiment, pair production is not important 
because of its threshold at 2mec2 = 1.02 MeV, and, in any case, its probability is 
very small compared to the other processes).  Figure 3a shows the electron 
energy spectrum produced by mono-energetic γ-rays in an idealized scintillation 
counter with perfect resolution.  The photo-peak obviously corresponds to 
electrons produced with the primary γ-ray energy E0 while the continuous energy 
spectrum is due to Compton-scattered electrons which have a maximum energy  

(when the photon is scattered at 1800).  In figure 3b, the effect of finite detector 
resolution becomes apparent: the photo-peak is smeared with a σ of 5%, 
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typically, and the Compton edge becomes less distinct. The finite resolution is a 
consequence of photon statistics: a 1 MeV electron produces about 104 visible 
photons in the scintillator, about half of which will reach the photocathode of the 
phototube, and about 10% of which will actually produce an electron at the 
photocathode. So there are about 500 electrons available for amplification in the 
tube.  These are random processes and so the standard deviation σ on the 
number N of these photoelectrons is given by  and the relative standard 

deviation is then   which is about 5%. 

  
In addition to an electronic noise signal which is apparent in Figure 3b, actual 
spectra often show a "backscatter" peak which is due to photons which do not 
come directly from the source.  If there is a significant amount of material 
surrounding the source or if the source itself contains any significant amount of 
backing, a small fraction of the photons may Compton-scatter from this material 
and lose most of their energy before reaching the scintillator.  A broad peak 
occurs in the energy of these scattered photons because most will be scattered 
over a range of very large angles, near 1800.  (At what energy does this 
backscatter peak occur?) 
 
From the discussion so far, it is clear that the spectrum produced by γ-rays can 
be quite complicated, especially if several different mono-energetic γ-rays are 
present.  To minimize backscattering, the amount of material surrounding source 
and detector should be minimized. It is also important to remember that a γ-ray 
can scatter several times inside the scintillator.  A Compton scatter followed by a 
photoelectric conversion in the scintillator will also lead to a full-energy peak.  
The size of the detector is an important consideration.  Obviously a very large 
scintillator will absorb all of the energy of an incident γ-ray, even if it makes many 
Compton scatters before disappearing in photo-electric conversion; in that case 
the output spectrum would contain only a full-energy peak without the Compton 
continuum.  
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Procedure: 
 
A. Turn on your equipment 
 
Our PMT is provided with an Ortec Scinitpack 296 base with a built-in High 
Voltage supply and pre-amplifier.  It is powered via an external Ortec 114 power 
supply.  Make sure the tiny on/off button on the base is pushed in and the Ortec 
114 is on.  We also boost and shape the signal with an additional preamp. The 
preamp (Ortec 451 Spectroscopy Amplifier) is located in the NIM crate.  Turn on 
the NIM crate and the preamp.  Typical settings to start with for the preamp are: 
  
Fine Gain = 1.0 
Coarse Gain = 20 
Left Slider (output) = POS 
Right Slider (input) = POS 
 
Connect the "UNIPOLAR" output from the preamp to the input of the “Ortec 
EASY MCA” and connect the MCA to the computer using the USB cable. The 
Ortec MCA has 2048 channels and input range of 0 to 10 V. 
 
 
B. Calibration of the scintillation counter  
 
First you must relate channel number on the analyzer display to photon energy, 
using standard sources of known energies.  This process is known as 
"calibration". A plot of the positions (channel numbers) of the full energy peaks 
vs. photon energies should be linear.   
 
0.  Start the Ortec MAESTRO software which is found under:  
           All Programs / MAESTRO / MAESTRO for Windows.  
     Select the detector in the pull down menu on the top right; it should read  
     something like: "0001 SPA-MXP-010 MCB 130." Hit the "Go" button to acquire   
     data. You should see counts accumulating on the display.  This is due to the  
     ubiquitous γ-ray background arising from the small amounts of radioactive    
     uranium, thorium and potassium present in the earth. These have half-lives  
     longer than the age of the earth and still exist in measurable quantities,  
     typically a few parts per million.  
 
1. Eventually, you will be investigating Compton scattering of γ-rays from a 

strong 137Cs source.  These have an energy of 0.6616 MeV and represent the 
maximum energy you will be concerned with.  Place a small (few µCi) 137Cs 
source a few cm from the scintillator and adjust the preamp gain 
(amplification) of the system so that the full energy peak occurs near the top 
of the scale.   Use the cursor to estimate the position of the center of the 
0.6616 MeV peak.  Record the gain settings.   Make sure the dead-time stays 
below a few percent during your calibration; if the data rate is too high and 
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pulses pile up on top of one another, there may be significant distortion in the 
recorded spectra.  (It is also interesting to observe the pulses from the 
scintillation counter directly on an oscilloscope before they are analyzed.  If 
you don't know how to do this, ask an instructor to demonstrate).  

 
2. Select sources of lower energy than the 137Cs and again find the channel 

numbers corresponding to the full energy peak. Some useful sources in 
addition to 137Cs(0.662 MeV), are 22Na(0.511, MeV), 133Ba(.081, .276, .303, 
.356, .384 MeV, and 241Am(.060MeV).  In practice, the higher energy 133Ba 
peaks cannot be used reliably with this detector because they all merge 
together.   (The 0.081 MeV peak is o.k.) 

 
3. Make a plot of channel number vs energy.  This completes the calibration of 

the detector.  Make sure that you have recorded all the analyzer settings 
that you have used.  When you come back for the second week of lab, you 
will need to make sure that the settings are the same.  You can always check 
your calibration using one of the reference sources.   

 
A. A study of Compton scattering 
 
The aim will be to record the spectra of 137Cs photons scattered from a target at 
various scattering angles. From these spectra, you can find the energy of the 
scattered photons and also the number of scattered photons.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Set-up for Compton scattering experiment. 
 
 
 
1. Install the strong 137Cs in the lead housing.  This must be done by an 

instructor who has access to the key.   The source currently has a strength 
of about 0.3 milli-Curie and should be treated with care.  It is safe within its 
housing, but it is still preferable to stay at least a couple of feet away from it. 
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2. Use a cylindrical target of aluminum and record spectra for a wide range of 

scattering angles.  You must record data with the target in place and with the 
target removed.  Subtract the background (obtained with the target removed) 
to find the effect of the target alone.  Note that you must measure the 
background at each scattering angle and with the same lifetime (i.e. length of 
run) as used for the run with the target in place.  Make sure that you record 
the lifetime at each angle.  Store your data for each scattering angle on the 
adjacent computer.  It is easiest to do the background subtraction in Excel, 
although instructions are also provided for doing it on the MCA. 
 
You want to minimize the number of photons that travel directly from the 
source to the detector (without scattering).  These contribute to the 
background, which can be much larger than the scattering signal.   Think 
about how you can place lead shielding to minimize this background.   You 
may need to rearrange the shielding at each angle.  
 
Make sure that you always place the target at the same position and that the 
distance from the target to the detector is always the same!  Give some 
thought as to how you should determine the energy of the photo-peak and its 
uncertainty.   

 
3. The expression given earlier for the energy of the recoil photon in Compton 

scattering can be inverted and written as  

 
In your data, the position of the photo-peak gives the scattered photon 
energy.      By plotting 1/Eγ  against cosθ, determine the rest energy of the 
electron. 

 
4. Determine whether your data support a quantum-mechanical calculation    

of the process, versus a classical calculation by measuring the angular 
distribution of the scattered photons - i.e. the probability of scattering versus 
scattering angle by following the procedure below. 

 
 
In any scattering process, the angular distribution of the scattered particles gives 
very important information about the nature of the interaction. The solid line in the 
figure below shows the predicted shape of the angular distribution (or differential 
cross-section) of Compton scattered photons at 0.662 MeV, as given by Klein 
and Nishina who performed the original quantum mechanical calculation of this 
fundamental process in 1929. In contrast, the dashed line is the classical 
calculation of electromagnetic radiation scattered by electrons (Thomson 
scattering) – it goes like (1+cos2θ). 

 72 



 
 

 
  
 
 
 
 
 
 
 
 
 
  
  

 
 
Determine the relative scattering probability from the numbers of scattered 
photons that you have recorded at each scattering angle. The efficiency of the 
NaI crystal varies as a function of energy.  
          Eγ (MeV)        Rel. eff.(%)  Photo-fraction (%) 

  0.10  100    97 
    0.20    96    84  
    0.30    80    68  

 0.40    69    55 
    0.50    62    45 
    0.60    56    38 

   0.66     54    35  
 

The relative efficiency is the probability that a γ-ray will interact inside the 2” 
diameter crystal and the photo-fraction is the fraction of gammas with deposited 
energies in the full energy peak (the rest are in the Compton continuum). Thus 
only 54% of the 0.662 MeV gammas interact at all and only 35% of those that do 
will deposit all of their energy. The product of efficiency and photo-fraction gives 
the probability that an incident photon of a given energy will actually produce an 
electron with energy in the photo-peak. 

 
Determine the actual number of photons scattered into your detector by first 
finding the number of gammas in the photo-peak at each scattering angle and 
using the efficiency data. This is proportional to the differential cross-section.  
(Remember to normalize your data to the same lifetimes!). Come up with a way 
to compare your data with the theoretical differential cross section curves shown 
above to show whether you agree with Thomson or Klein-Nishina scattering 
cross sections.  Either plot theory and experiment on the same graph or try 
finding the residuals (difference between theory and experiment as a function of 
angle).   
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Zeeman Effect 

 
Read about the Zeeman effect in a standard textbook (such as Eisberg and 
Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles).   
The following discussion is a summary, but it is not meant to serve as a self-
contained explanation.  You MUST complete the reading for his lab, including all 
of the background sections of this write-up, before your first lab period. 
 
Suppose that we wish to measure the magnetic moment of an atom.  We 
consider only the z-component of the magnetic moment, where z is the same 
axis used to define the total angular momentum J; i.e. 𝐽𝐽𝑧𝑧 assumes one of the 
quantized values  𝐽𝐽𝑧𝑧 = 𝑚𝑚𝐽𝐽ℏ, where 𝑚𝑚𝐽𝐽 = −𝐽𝐽,−𝐽𝐽 + 1, … . ,0, … . 𝐽𝐽 − 1, 𝐽𝐽.    
The z-component of the magnetic moment of the atom in any of these states is 

                                  𝜇𝜇𝑧𝑧 = 𝑔𝑔𝐽𝐽𝑚𝑚𝐽𝐽  
𝑒𝑒ℏ
2𝑚𝑚

= 𝑔𝑔𝐽𝐽𝑚𝑚𝐽𝐽𝜇𝜇𝐵𝐵, 
where 

𝜇𝜇𝐵𝐵 =
𝑒𝑒ℏ

2𝑚𝑚𝑒𝑒
= 9.27 × 10−24 J/T = 5.79 × 10−5  eV/T    

is the Bohr magneton  and 𝑔𝑔𝐽𝐽 is the Landé g-factor.   The evaluation of the Landé 
g-factor requires a full understanding of the addition of angular momentum in 
quantum mechanics, which we will not review here.  In general, 
 

𝑔𝑔𝐽𝐽 =  1 +  
𝐽𝐽(𝐽𝐽 + 1) − 𝐿𝐿(𝐿𝐿 + 1) + 𝑆𝑆(𝑆𝑆 + 1)

2𝐽𝐽(𝐽𝐽 + 1)
, 

 
where J, L, and S are the total, orbital, and spin angular momentum of the 
electronic state of the atom. Thus, given J, L, and S, we can predict the allowed 
values of the magnetic moment of the atom. 
 
We now place the atom in a magnetic field 𝑩𝑩 = 𝐵𝐵0�̂�𝑧, and so the magnetic energy 
of the atom is  

𝐸𝐸 = −𝝁𝝁 ⋅ 𝑩𝑩 = −𝜇𝜇𝑧𝑧𝐵𝐵0 = −𝑔𝑔𝐽𝐽𝑚𝑚𝐽𝐽𝜇𝜇𝐵𝐵𝐵𝐵0. 
Each atomic level is therefore split into 2𝐽𝐽 + 1 components, corresponding to the 
2𝐽𝐽 + 1 possible values of 𝑚𝑚𝐽𝐽.  The energy separation between adjacent levels is 
Δ𝐸𝐸𝑍𝑍 = 𝑔𝑔𝐽𝐽𝜇𝜇𝐵𝐵𝐵𝐵0, where Δ𝐸𝐸𝑍𝑍 is known as the Zeeman splitting.  This is the Zeeman 
effect. 
 
We now consider one case in which the Zeeman effect is easy to understand 
from a semi-classical perspective.  Suppose that the total spin S of the atomic 
state is zero.  This occurs for atoms with two valence electrons in a spin singlet 
state, and in this situation, 𝐽𝐽 = 𝐿𝐿 and 𝑔𝑔𝐽𝐽 = 1.    The magnetic moment of each 
state is then 𝜇𝜇𝑧𝑧 = 𝑚𝑚𝐽𝐽𝜇𝜇𝐵𝐵, which is exactly the magnetic  moment that one would 
derive for a Bohr atom, in which the electrons travel in classical circular orbits 
about the nucleus with quantized angular momentum 𝑚𝑚ℏ.   In this picture, the 
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Fig. 1:  Energy level diagram for 
the normal Zeeman effect, 
showing the nine allowed optical 
transitions between the 1D2 and 
1P1 states and their splitting in a 
magnetic field.   

electron orbit can be treated as a current loop, so that  𝜇𝜇𝑧𝑧 = 𝐼𝐼𝐼𝐼𝑟𝑟2 = 𝑒𝑒
𝑇𝑇

 𝐼𝐼𝑟𝑟2,  where 
𝑇𝑇 = 2𝐼𝐼𝑟𝑟 𝑣𝑣⁄   is the period of circular orbit of radius r.  Using the fact that 𝐿𝐿 =
𝑚𝑚𝑒𝑒𝑣𝑣𝑟𝑟 = 𝑚𝑚𝐽𝐽ℏ, for the Bohr atom, you can show that µz = 𝑚𝑚𝐽𝐽𝜇𝜇𝐵𝐵 and that the 
Zeeman splitting between adjacent levels is Δ𝐸𝐸𝑍𝑍 = 𝜇𝜇𝐵𝐵𝐵𝐵0.  This case (the Zeeman 
effect for atoms with a total electron spin of zero) is known for historical reasons 
as the Normal Zeeman Effect. 
 
Detection of the Normal Zeeman Effect 
 
The original observation of the Zeeman effect in 1897 was a triumph of high 
resolution optical spectroscopy.   The actual splittings between the levels at a 
relatively large magnetic field (~0.2 T) are only of the order of 10−5eV, which is in 
the microwave region of the spectrum.  Before the 1940’s, there were no sources 
of microwave radiation powerful enough to observe the Zeeman effect directly.   
Zeeman’s approach was to observe the optical radiation emitted by the transition 
between two different atomic states.  In our version of the experiment, the atom 
in question is cadmium, which has two valence electrons.  In the subsequent 
discussion, the multi-electron states of the atom are denoted in spectroscopic 
notation:   

2S+1LJ, 
where we shall use the convention of referring to L by letter (S, P, D, etc. for  

L = 0, 1. 2, …) 
The two valence electrons in Cd may be either 
in a state of total spin 0 (a singlet) or total spin 
1 (a triplet).   The Normal Zeeman Effect is 
observed in transitions between two singlet 
states, and we consider that between the 1D2 
(S= 0, L=2, J=2) and 1P1 (S=0, L=1, J=1) 
states.  The 1D2 state is higher in energy by 
1.926 eV.  Because the selection rule Δ𝐿𝐿 = ±1 
is satisfied, this transition is optically allowed 
and leads to emission at a wavelength of 
643.8 nm, which is in the red part of the visible 
spectrum.    
 
In the presence of a magnetic field, the 1D2 
state splits into five separate levels, and the 
1P1 state splits into three, as shown in Fig. 1, 
in which each of the levels is labeled by its 
𝑚𝑚𝐽𝐽 value.  The arrows show the optical 
transitions that satisfy the selection rule 
Δ𝑚𝑚𝐽𝐽 = 0, ±1.   There are nine such transitions.  
The energy 𝐸𝐸𝛾𝛾of the photon emitted in each 
allowed transition is obtained from the 
difference of the total energies: 𝐸𝐸𝛾𝛾 = 𝐸𝐸0 +
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Fig. 2:  Schematic of a single ray (with the angle of incidence 𝜃𝜃grossly exaggerated) 
incident on the Fabry-Perot etalon.  You should show that the exiting rays will 
interfere constructively when 𝑚𝑚𝑏𝑏 = 2𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃, where n is the index of refraction of 
the etalon and m is an integer. 

𝐸𝐸𝑍𝑍,𝑖𝑖 − 𝐸𝐸𝑍𝑍,𝑓𝑓𝑓𝑓,  where 𝐸𝐸0 =  1.926 eV is the difference in the energies of the 1D2 and 
1P1 states in zero magnetic field, and 𝐸𝐸𝑍𝑍,𝑖𝑖and 𝐸𝐸𝑍𝑍,𝑓𝑓 are the Zeeman energies of the 
initial (upper) and final (lower) states.  We see that only three spectral energies 
appear: 𝐸𝐸0 − 𝜇𝜇𝐵𝐵𝐵𝐵0, 𝐸𝐸0,  𝑎𝑎𝑛𝑛𝑎𝑎 𝐸𝐸0 + 𝜇𝜇𝐵𝐵𝐵𝐵0, corresponding to Δ𝑚𝑚𝐽𝐽 = +1, 0, and− 1.   In 
other words, the 643.8 nm line splits into three lines when a magnetic field is 
applied.  The splitting is extremely small relative to the optical transition energy 
𝐸𝐸0.  In a field of 0.1T, 𝜇𝜇𝐵𝐵𝐵𝐵0 𝐸𝐸0⁄ = 3 × 10−6.  In order to resolve the Zeeman effect, 
we therefore need to resolve a splitting that is only a few parts per million.  We do 
this using a unique and powerful tool, which is the Fabry-Perot etalon. 
 
Fabry-Perot Etalon 
 
The Fabry-Perot etalon is discussed extensively in Hecht’s Optics and 
Melessinos’ Experimental Modern Physics.  You should read the relevant 
sections of those books or an equivalent introduction to this useful device.   The 
etalon in our experiment is a single quartz plate of thickness 3.00 mm and index 
of refraction n = 1.4519 at 509 nm and n = 1.4560 at 644 nm.   The two surfaces 
of the etalon are polished so that they are exactly parallel.   A lens with a 
relatively long focal length (in our case 100 mm) is placed in front of the etalon so 
that light rays converge at a very small angle 𝜃𝜃 relative to the optical axis.  The 
two surfaces of the etalon are coated so that the internal reflectivity is of order 
90%.  This means that each ray incident on the etalon will undergo many internal 
reflections.  At each reflection, a small amount of light is transmitted, and the 
interference pattern that we observe is due to the superposition of these 
transmitted rays, which are focused to a point by a second lens 
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Fig. 3:  llumination and imaging system for the Fabry-Perot etalon (from Hecht, Optics, 3rd 
Ed.).  Parallel rays from the source are focused through the etalon using a long focal length 
lens.  Each incident ray generates a family of parallel exiting rays, which are imaged to a point 
by the imaging lens.   All rays of a given 𝜃𝜃are imaged to a circle, and a bright circular fringe 
appears when the interference is constructive.  In our experiment, we use two lenses before 
the etalon and three lenses after the etalon, one of which is the adjustable focusing lens on 
the camera. The CCD sensor inside the camera sits at the focal plane. 
 

You should show that all of the transmitted rays generated by the same incident 
ray in Fig. 2 will interfere constructively when the condition 
 
    𝑚𝑚𝑏𝑏 = 2𝑛𝑛𝑛𝑛 cos 𝜃𝜃     (1) 
 
is satisfied, where m is an integer.   If the incoming beam has cylindrical 
symmetry, then each incident ray in Fig. 2 is focused to a point on a circle of 
radius 𝑟𝑟 = 𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝜃𝜃, where feff  is the effective focal length of the imaging system 
(see Fig. 3).  As we will see below, we do not need to know feff.   The important 

point is that the interference pattern generated by the etalon is a series of circles.   
 
 Using the small angle expansion for cos 𝜃𝜃, we can rewrite Eq. 1 as  
 
    𝑚𝑚𝑏𝑏 = 2𝑛𝑛𝑛𝑛 �1 − 𝜃𝜃2

2
�     (2) 

 
Note that the center of the circular pattern (𝜃𝜃 = 0), will in general correspond to a 
large  (~2 × 104) but non-integer value of m, which we will call 𝑚𝑚0: 
     𝑚𝑚0 = 2𝑛𝑛𝑛𝑛

𝜆𝜆
.     (3) 
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As 𝜃𝜃 increases, m decreases by 1 for each fringe.   We will index each visible 
fringe starting from the center of the pattern with an integer p, with p=1 
corresponding to the first visible fringe.  (In other words p increases by 1 while m 
decreases by 1 for each fringe.)   You should now show that  
 
    𝑟𝑟𝑝𝑝+12 − 𝑟𝑟𝑝𝑝2 = 2𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓2 /𝑚𝑚0,      (4) 
 
where 𝑟𝑟𝑝𝑝 and 𝑟𝑟𝑝𝑝+1 are the radii of consecutive fringes.  In other words, the 
difference in the squares of the radii of adjacent fringes is a constant for a given 
wavelength.   
 
As a tool for measuring an absolute wavelength, the Fabry-Perot etalon is almost 
useless, because we have no idea what m0 is.  The etalon, however, is a very 
powerful tool for measuring extremely small changes in wavelength, and this is 
exactly what we need in order to measure the Zeeman effect.  Because  𝑚𝑚0 is so 
large, a very small change in wavelength leads to a measurable shift in the 
radius of a fringe.    A change in 𝑏𝑏 of 𝑏𝑏/𝑚𝑚0, or approximately 1 part in 20,000, will  
cause the circular fringe pattern to grow by one complete fringe.  In addition, the 
width of each fringe is reduced by the multiple reflections which occur inside the 
etalon.   The reduction factor, which is known as the finesse (see Hecht for an 
extensive discussion), is approximately 30 for the reflectivity of the coatings used 
in our etalon.  This means that it is possible to resolve changes in wavelength of 
the order of 𝑏𝑏/ℑ𝑚𝑚0, where ℑ is the finesse.  The resolution for our etalon is thus 
of the order of a few parts per million, a precision that is much better than can be 
achieved by an ordinary grating spectrometer of moderate length.   
 
We now consider the interference fringes that are created by two waves of nearly 
identical wavelengths 𝑏𝑏𝑎𝑎 and 𝑏𝑏𝑏𝑏.   Each wavelength produces its own set of 
concentric fringes.  We will assume that the difference Δ𝑏𝑏 = 𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑎𝑎in the two 
wavelengths is so small that the spacing between the a and b fringes of the same 
index m in Eq. (2) is less than the spacing between two fringes of different 
orders.  By writing out Eq. 2 for each of the two wavelengths, making judicious 
use of the extremely good approximations   𝑚𝑚 ≈ 𝑚𝑚0 and 𝑏𝑏𝑎𝑎 ≈ 𝑏𝑏𝑏𝑏, and then using 
Eq. 4, you can (and should) show that 
 

1
𝜆𝜆𝑏𝑏
− 1

𝜆𝜆𝑎𝑎
= 1

2𝑛𝑛𝑛𝑛

𝑟𝑟𝑝𝑝,𝑏𝑏
2 −𝑟𝑟𝑝𝑝,𝑎𝑎

2

𝑟𝑟𝑝𝑝′+1,𝑎𝑎
2 −𝑟𝑟𝑝𝑝′,𝑎𝑎

2 = 1
2𝑛𝑛𝑛𝑛

𝑟𝑟𝑝𝑝,𝑏𝑏
2 −𝑟𝑟𝑝𝑝,𝑎𝑎

2

𝑟𝑟𝑝𝑝′+1,𝑏𝑏
2 −𝑟𝑟𝑝𝑝′,𝑏𝑏

2 = 1
2𝑛𝑛𝑛𝑛

𝛿𝛿
ψ

,   (5) 

 
or   

 
Δ𝐸𝐸 = −ℎ𝑐𝑐 Δ𝜆𝜆

𝜆𝜆2
= ℎ𝑐𝑐

2𝑛𝑛𝑛𝑛
𝛿𝛿
ψ

,      (6) 
where 𝛿𝛿  is the difference in the squares of the radii for any pair of a and b fringes 
of the same order p,  ψ is the difference in the squares of the radii of any two a 
fringes or any two b fringes of two consecutive orders 𝑝𝑝′ and 𝑝𝑝′ + 1, and 𝐸𝐸 =
ℎ𝑐𝑐/𝑏𝑏 is the energy corresponding to the photon wavelength of interest.     Δ𝐸𝐸 is 
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the energy splitting of interest (the Zeeman splitting in this experiment).  Note 
that Eq. 4 implies that you can pick any values of p and p’ that you wish.  In 
practice, one usually picks 𝑝𝑝′ = 𝑝𝑝 or 𝑝𝑝′ = 𝑝𝑝 − 1.   In the case of our etalon, we 
know n and t, and we can measure the radius of each fringe.  The units of 
measurement do not matter, because the radii appear only in the dimensionless 
ratio 𝛿𝛿/𝜓𝜓.  In this experiment, the fringe patterns will be recorded with a CCD 
camera and you can measure the radii using any technique that you wish.   To 
keep all algebra manageable, measure energies in units of eV, and remember 
that ℎ𝑐𝑐 = 1.24 × 10−4 eV ⋅ cm. 
 
We should pause at this point to consider one “real life” limitation that impacts the 
application of the above derivation.  The assumption that all rays are imaged to a 
radius 𝑟𝑟 = 𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝜃𝜃, where 𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓 is independent of r, applies only to an ideal imaging 
system.  This assumption breaks down in the presence of spherical aberrations, 
which cause the effective focal length to decrease for rays further from the optical 
axis. As a result, deviations from Eqs. 4 and 5 will be observed as the fringe 
index p increases.    This is the reason why one should use 𝑝𝑝′ = 𝑝𝑝 or 𝑝𝑝′ = 𝑝𝑝 − 1 
in applying Eq. 5.  The analysis works best for the fringes nearest the center 
of the pattern. 
 
The analysis described above is unambiguous provided that the separation 
between a and b fringes is always smaller than the separation between fringes of 
different orders. In the case of the anomalous Zeeman Effect discussed below, it 
is possible to violate this condition at the highest magnetic fields available with 
our magnet.    
 
Selection Rules and Polarization 
 
For the case of the normal Zeeman Effect described above, we expect to see 
each circular fringe of the Fabry-Perot etalon split into three fringes as the 
magnetic field increases from zero.   We have not yet considered, however, the 
direction (relative to the magnetic field) along which light from each transition is 
emitted, nor the polarization state of the emitted light. These are somewhat more 
advanced topics, relying on knowledge of both the quantum mechanical wave 
functions associated with each state and the corresponding electric dipole 
moments associated with each transition.    
 
For an electric dipole transition with Δ𝑚𝑚 = ±1  the photon associated with the 
transition carries away exactly one unit of angular momentum oriented either 
parallel or anti-parallel to the magnetic field, which defines the z-axis.   When 
viewed along the direction of the magnetic field (�̂�𝑧 in Fig. 4) the electric field of 
the classical electromagnetic wave associated with the photon will rotate either 
clockwise or counter-clockwise relative to the observer.    This is just circularly 
polarized light, with the polarization vector rotating in the y-z plane.  
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Fig.  4:  Representation of the polarization states of the radiation emitted by the three 
transitions in the normal Zeeman effect.   All three lines are observed when the source 
is observed along an axis perpendicular to the magnetic field (transverse Zeeman 
effect).  Only two lines are observed in emission along the magnetic field direction 
(longitudinal Zeeman effect). 

What about the Δ𝑚𝑚 = 0 transition?  In this case, the dipole moment producing the 
emitted light oscillates parallel to the magnetic field, and so any electric field of 
the associated wave must be parallel to the magnetic field.   From Maxwell’s 
equations, however, we know that the polarization of the wave must be 
perpendicular to the direction of the propagation.  This means that the Δ𝑚𝑚 = 0 
transition cannot be observed along the direction of the magnetic field!  In other 
words, only two lines will appear when the emission is observed along the 
direction of the magnetic field.  One line is right circularly polarized and the other 
is left circularly polarized.  The splitting between the two lines is Δ𝐸𝐸 = 2𝜇𝜇𝐵𝐵𝐵𝐵0.  
The Zeeman effect observed in this geometry is known as the longitudinal 
Zeeman effect. 
 
Now suppose that we observe the light emitted in a direction perpendicular to the 
magnetic field (i.e., we are viewing the system along the x-axis in Fig. 4 when the 
magnetic field is along the z-axis).    This is the transverse Zeeman effect.  Now 
the Δ𝑚𝑚 = 0 transition, for which the light is linearly polarized along the z-direction, 
can be observed.  The two Δ𝑚𝑚 = ±1 transitions are also observable, but in this 
case the x-component of the oscillating electric field cannot propagate in the x-
direction, and so the light emitted is linearly polarized in the  𝑦𝑦� direction.  There 
are now three visible lines, and the central (Δ𝑚𝑚 = 0 ) line is twice as bright as the 
other two. 
 
Fig. 4 also introduces some spectroscopy jargon. Transitions with |Δ𝑚𝑚| = 1 are 
denoted 𝜎𝜎 transitions, while those with Δ𝑚𝑚 = 0 are called 𝐼𝐼 transitions.  Only the 
two 𝜎𝜎 transitions are observed when the emission is viewed along the magnetic 
field axis, and one line will be right circularly polarized (we call it 𝜎𝜎+) and the 
other (denoted 𝜎𝜎−) left circularly polarized.  When viewed along an axis 
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Fig. 5:  Energy level diagram for the anomalous Zeeman effect.  Note that the 
splittings in the upper and lower states are not the same, and so nine distinct lines 
should appear in the optical spectrum. 

perpendicular to the field, all three transitions are observable.  For the geometry 
of Fig. 4, the 𝐼𝐼 transition is horizontally polarized while the two 𝜎𝜎 transitions are 
vertically polarized. 
 
In the experiment, you will use a polarizer and quarter-wave plate to verify the 
polarization states of each of the lines for the cases of the transverse and 
longitudinal Zeeman effects.   
 
Anomalous Zeeman Effect 
 
In many modern physics textbooks, the Zeeman effect is introduced in the 
context of two electron spin states, and hence it may be frustrating that we have 
not yet introduced spin into the discussion.  
 
Shortly after Zeeman’s original discovery in 1897, it was observed that for certain 
allowed transitions, more lines appeared in the presence of a magnetic field than 
expected based on the argument presented above.  Moreover, the smallest 
observed splittings were found to be ½ of the expected value.  Because no 
classical description described these observations, they were denoted the 
Anomalous Zeeman Effect.   The anomalies were resolved over twenty years 
later when spin was discovered and a full quantum mechanical treatment of 
angular momentum was developed.  In modern language, the anomalous 
Zeeman Effect occurs when the total spin is not zero.  
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In Cd, the anomalous Zeeman effect appears in the spectrum of the 3S1  
(2S + 1 = 3, L = 0, J = 1) to 3P2  (2S+1 = 3, L = 1, J=2) transition.  Remember that 
the letter “S” in spectroscopic notation refers to the L=0 angular momentum state, 
and not the total spin, which is 1 in each of these states.  The energy level 
diagrams for these transitions are shown in Fig. 5.   
 
Exercise:  Compute the Landé g-factor for each of the two levels in Fig. 5, and 
then determine the energy levels in the presence of a magnetic field (relative to 
the zero-field energy of the 3S1→3P2 transition).  You should find 9 distinct 
spectral lines in the presence of a magnetic field, with a splitting between 
adjacent lines that is Δ𝐸𝐸 = 𝜇𝜇𝐵𝐵𝐵𝐵0

2
 , exactly half of the value you found for the normal 

Zeeman effect.   
 
In practice, the anomalous Zeeman effect is harder to analyze than the normal 
effect.  First the splitting between adjacent levels (the one we really care about) 
is only ½ as large for a given value of the magnetic field.  On the other hand, the 
splitting between the highest and lowest levels (labeled 1 and 9 in Fig. 5) is twice 
as large as the maximum splitting in the case of the normal effect.  This causes 
the different orders of interference of the Fabry-Perot to “cross,” resulting in a 
very messy spectrum. 
 
There are two quantitative measurements that are possible with our apparatus.  
In the longitudinal geometry, only the Δ𝑚𝑚𝑗𝑗 ± 1 transitions are observable.  These 
form two bands, just as in the longitudinal normal Zeeman effect, but each band 
contains three lines.  The Δ𝑚𝑚𝑗𝑗 = +1  band contains the lines 1, 2, and 3 in Fig. 5, 
while the Δ𝑚𝑚𝑗𝑗 = −1 band contains lines 7,8, and 9.  Although the individual lines 
cannot be resolved at low field, one can measure the splitting between the 
centers of the two bands (lines 2 and 8).  Show that this splitting should be 
Δ𝐸𝐸 = 3𝜇𝜇𝐵𝐵𝐵𝐵0.  
 
With our apparatus, which is limited to about 0.55 T in magnetic field, and our 
optics, there is one practical way to resolve the smallest splitting in Fig. 5, which 
is Δ𝐸𝐸 =  𝜇𝜇𝐵𝐵𝐵𝐵0/2 between adjacent levels.  In the transverse geometry, with the 
polarizer set to detect only the Δ𝑚𝑚 = 0 transitions (lines 4, 5, and 6) in Fig. 5, one 
can set the field to the maximum value and just barely resolve the three 
individual lines that make up this band.   
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Equipment 
 
The magnet:  The two coils of the electromagnet are wired in parallel.  The leads 
are color-coded and should not be reversed.  Please do not touch any of the 
wiring for the magnet.   (Doing so will change the calibration of the magnet.)  The 
leads are connected to a power supply through an aluminum box that contains a 
protection relay.  To turn on the magnet, simply plug in the 12V supply to the box 
(the green power light will come on) and then press the red button labeled “latch.”  
You will see an amber light turn on, after which the magnet current is controlled 
by the dial on the large power supply, which has a power switch on the back.   
The current going through the magnet is monitored by the voltage across a 0.050 
Ω series resistor that is also inside the aluminum box.  This shunt voltage is read 
out by a voltmeter.  The magnetic field B (in Tesla) is related to the shunt voltage 
V (in Volts) by 
 
𝐵𝐵 = 1.004𝑉𝑉 + 0.006 →  for V <  0.5 V 
 
𝐵𝐵 = 0.531𝑉𝑉 + 0.235 →  for 0.5 < V < 0.65 V. 
 
With one exception discussed below, you will always use the magnet at voltages 
less than 0.5 V, and hence you will use the first calibration equation.  The 
uncertainty in the magnetic field is of the order of 5% of the actual field.   Note 
that the magnet saturates at very high fields, and this is why the second 
calibration equation is provided.  You will also notice that if the magnet is left on 
at high current for an extended period of time, it will become extremely hot.  
Avoid keeping the current above 8 A (0.4 V on the shunt resistor) for more 
than a few minutes or so at a time.  If the magnet gets too hot, a thermostat 
will open the relay coil in the aluminum box, and you will not be able to start the 
magnet again until it cools down. 
 
The magnet is on a rotary table, allowing you to rotate between the longitudinal 
and transverse configurations.  Make sure you rotate the bearing on which 
the magnet sits.  DO NOT MOVE THE LEGS supporting the table.  Also, 
make sure you do not twist any wires when rotating the table, which only 
needs to move through an angle of 90 degrees and back.  
 
The lamp:  A Cd discharge lamp is mounted in the center of the magnet.  Note 
that light from the lamp is emitted both along the axis of the magnetic field 
(through holes bored in the pole pieces) and perpendicular to the magnetic field.   
 
The optics:  We first consider the optics that are in the light-tight box on the 
table.  Lift the curtain on one side of the box to view them. Light from the 
cadmium lamp is collected by two lenses, one of which is built into the housing 
(the long black cylinder) that contains the Fabry-Perot etalon.  The light then 
passes through the etalon plate (which is fixed inside the housing).   The lenses 
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Fig. 6:  The quarter-wave plate and the two optical band-pass filters.  The red filter 
slips into the etalon housing while the 508 nm interference filter can be put on the 
optical rail just behind the polarizer.   Note that only one of the two filters should be 
in place at a time.   

after the etalon, including the focusing ring on the camera, image the interference 
pattern onto the CCD chip inside the camera, where the image is collected and 
sent to the computer.  
 
All of the optics discussed so far are mounted to an optical rail.   You will be able 
to focus the interference pattern using the focusing ring on the camera.  
Otherwise, do not move any of the optics inside the light-tight box (except 
for the red color glass filter discussed in the following paragraph).  If any of the 
lenses are moved, the apparatus will need to be realigned.  A polarizer is in a 
mount outside the box.   There is a lever on the mount to rotate the polarizer.  
The mount is calibrated from -90 degrees to + 90 degrees. 
 
Two optical band-pass filters are provided in order to select one of the two 
different atomic transitions used in the experiment.  The red filter, which slides 
into a slot in the etalon housing, passes light at 644 nm and should be in place 
when studying the normal Zeeman effect.  The 508 nm interference filter slides 
into the rail at the position shown in the drawing, and it should be in place when 
studying the anomalous Zeeman effect.  Note that only one of these filters 
should be in place at a time.  Otherwise, no light will be transmitted!   As with 
any optic, please take care not to touch the surfaces of these filters with your 
fingers. 
 
Finally, you are provided with a quarter waveplate (labeled λ/4), that you will use 
when studying the selection rules discussed above.   Please read up on the use 
of a quarter-wave plate and polarizer to detect circularly polarized light before 
coming to the lab.  The optical axes of the waveplate are in the horizontal and 
vertical directions.  You can select either right or left circularly polarized light by 
adjusting the polarizer to ±45 degrees. 
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Software 
 
Instructions for using software to record and save images from the camera will be 
provided next to the experiment.    On the desktop of your computer you will find 
a program called ZeemanLab.vi.  When this program is started it opens a video 
capture window.  The live video feed from the camera is on the left side of the 
screen. Figure 8 shows a screenshot of what you can expect to see for a sample 
lab.  You can adjust the gain and integration time to obtain a viewable image.  By 
default, these controls are set at a high level, and so you should see the ring 
pattern expected upon opening the program.  If the circular fringes are too bright, 
they will be artificially broadened, in which case you should reduce the gain so 
that none of the fringes appear to be "saturated."    Finally, the program gives 
you the option of integrating many frames, which will help to increase the signal 
to noise ratio when the images are dim.  Keep in mind that the goal is to get 
fringes that are sharp and well-resolved.  Do not waste time trying to  
get the brightest image possible. 
   
When you hit the "Capture" button, a negative grayscale image will appear in the 
right-hand window of the program.  The fringes are now black on a white 
background.  Use the "Pan" and "Zoom" features to select an area containing the 
three or four innermost fringes in zero field.  A zoom setting of 1.8 is probably 
suitable for viewing the first three or four fringes.  Outside of this region, spherical 
aberrations will influence your results (in a bad way) as discussed above.  There 
are also two sliders that allow you to set the maximum (black) and minimum 
(white) levels for the image, enhancing the contrast.   Once you have a centered 
image with well-resolved fringes, you can hit the "accept image" button. 
 
The program will now return to a main window, where you will be able to print 
and save the interference pattern as well as to center the fringes on a circular 
coordinate system and record their diameters.  This provides one way (but by no 
means the only one) by which you can measure the diameter of each 
circle.  Make sure you have saved and printed each image that you intend to 
analyze and that you have recorded in your lab book the shunt voltage (i.e. 
magnetic field), wavelength, geometry (longitudinal or transverse to field), 
and polarizer setting that goes with each saved image.   
 
Procedure 
 
To get started, put the magnet in the proper orientation, with the magnetic field 
perpendicular to the optical rail.  This also allows for the most light to reach the 
detector.   Make sure that the red color glass filter is in place (it slides into a slot 
in the etalon housing).  Drop the curtain on the side of the light-tight box.  Make 
sure that the 508 nm filter and the quarter-wave plate are NOT in the set-up.  
Set the polarizer at either positive or negative 45 degrees.  Turn on the Cd 
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lamp and let it warm up for a minute or so.   Start up the camera program as 
described above.  In the video capture window, you should see a series of 
concentric rings, which are the interference fringes of the Fabry Perot etalon.   
 
If you do not see anything on the display: 
 
1) Make sure that the gain and intensity controls in the program are turned all the  
    way up. 
2) Check that the camera is operating correctly.  For example, if you open the  
     curtain on the light-tight box, you should see the display on your screen turn  
     bright.  If not, check all connections and the software.  If you are still stumped,  
     ask a TA for assistance. 
3) If the camera is working abut you still do not see fringes, it is almost certain  
     that either something is blocking the optical path between the cadmium lamp  
     and the camera OR that both filters are in place.   
  
If the image is slightly blurry, try adjusting the focusing ring on the front of the 
camera.  Otherwise do not touch anything on the lenses.  If you see a pattern 
that is either significantly off-center or blurry, then the apparatus needs to be 
realigned.  Consult a TA.   
 
You are more likely to see that your fringes are “too bright,” and under these 
conditions they will appear to be broader than they actually are due to saturation 
of the pixels on the CCD.  If this happens, reduce the gain in the software so that 
the fringes are no longer saturated. 
 
Once you see a normal fringe pattern: 
 
Turn on the magnet power supply and increase the current so that the voltage 
across the series resistor reads 0.5 V.  This corresponds to a magnetic field of 
approximately 0.5 T.  As you increase the field, you should see each fringe “split” 
into three concentric fringes.  If you do not see this: 1) check that the polarizer is 
at 45 degrees or 2) go back to the magnet instructions and make sure it is 
powered up properly. 
 
Once you have well-resolved fringes and can see the splitting, you are ready to 
begin taking data.  Turn the magnet current back to zero. 
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Data Collection and Analysis 
 
Your instructor will tell you which of the following parts to complete.  Ask! 
 
I.  Testing the Fabry-Perot Etalon:  Keep the red color glass filter in place.  At 
zero magnetic field, capture and save an image of the fringe pattern following the 
instructions above.   Use these data to test whether or not Eq. 4 is valid.   Use 
the four rings closest to the center. 
 
II.  Transverse Normal Zeeman Effect 
A. Keep the magnet in the transverse orientation.  With the polarizer at 45 
degrees and the red color glass filter in place, record and save images of the 
interference pattern for four or five magnetic fields between 0 and 0.5 T.    For 
each field, record the diameters of the fringes for the first three orders of 
interference.   As discussed above, you will usually carry out the analysis using 
the first two orders (i.e. the first two rings in zero field).  If the first fringe is too 
close to the center, however, you will not be able to see all three Zeeman-split 
lines at high field.  In that case, use the second and third orders for your analysis.   
B.  Plot 𝑎𝑎2 (the square of the diameter of each fringe) as a function of the 
magnetic field.  Determine the uncertainty in 𝑎𝑎2.   
C.  Using Eq.  6, determine the normal Zeeman splitting as a function of 
magnetic field. 
D.  Determine (with an uncertainty) the Bohr magneton. 
E.  With the magnet at high field (shunt voltage of 0.50 V), record the Fabry-Perot 
fringe pattern for polarizer settings of 0 degrees (vertical), 45 degrees, and 90 
degrees (horizontal).  Do not adjust the optics between images.  Save these 
images, making absolutely sure to keep track of which image goes with each 
polarizer setting. Given that there are three lines total for each order of 
interference, which ones appear and which ones are missing for each polarizer 
setting?  In your lab book, compare the patterns and explain the differences. 
 
III.  Longitudinal Normal Zeeman Effect. 
Rotate the magnet 90 degrees so that the magnetic field is parallel to the optical 
rail.  Light from the Cd lamp will now go through the holes in the pole pieces.  
View the interference pattern on the screen.  Note that you can look at the screen 
while rotating the magnet in order to optimize the alignment.  If the fringes are 
dim, try increasing the gain.  Make sure the number of frames to average is set to 
the maximum value.   
Put the quarter-wave plate in place between the magnet and the polarizer 
and set the polarizer at 0 degrees (vertical). 
A. Into how many components does each fringe split as the magnetic field 
increases? 
B.  Repeat IIA – D, recognizing that you have a different number of Zeeman split 
lines for each order of interference.   
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C.  With the magnet at high field (shunt voltage of 0.50 V), record and save the 
interference patterns for polarizer settings of -45 degrees, 0, and +45 degrees.  
How many fringes appear in each case?  Discuss in the context of the selection 
rules discussed above. 
 
IV.  Longitudinal Anomalous Zeeman Effect 
Remove the quarter-wave plate and red color glass filter.  Insert the 508 nm 
interference filter between the polarizer and the light-tight box.  
A.   You are still in the longitudinal geometry, and so you can only observe the 
Δ𝑚𝑚𝑗𝑗 = ±1 transitions in Fig. 5.   As the field increases, you will see each fringe 
split into two bands, as for the normal Zeeman effect.  Each of these bands, 
however, now consists of three individual lines as discussed above, but you will 
not be able to resolve these at low field.  Note also that as you increase the field, 
the upper band from the first order fringe will start to overlap with the lower band 
from the second order fringe.  Make sure you take data at fields below the value 
at which this starts to happen. 
B.  Pick an appropriate magnetic field and determine the splitting between the 
two bands using Eqs. 5 and 6.  How does this compare with the same splitting 
measured for the normal Zeeman effect?   
 
V.  Transverse Anomalous Zeeman Effect (somewhat tricky) 
Rotate the magnet back to the transverse configuration, with the magnetic field 
perpendicular to the optical rail.  The interference pattern will be much brighter.  
Turn down the gain if necessary. 
 
In this geometry, it is possible to resolve the smallest splitting between the levels 
in the anomalous Zeeman effect.  This is Δ𝐸𝐸 = 𝜇𝜇𝐵𝐵𝐵𝐵0

2
, and can be considered the 

most direct evidence for spin.    
A.  Set the polarizer at 90 degrees (horizontal).  For this polarizer setting, only 
the three central lines (the Δ𝑚𝑚𝑗𝑗 = 0 transitions) out of each group of nine are 
visible (see Fig. 5).  Set the magnetic field to the highest possible value.  This is 
the ONLY time you should do this, and make sure to use the “high-field” 
calibration to convert shunt voltage to magnetic field.   Record and save an 
image, making sure that gain setting on the camera is appropriate and that you 
average sixty frames.  You should now resolve (barely) three lines within each of 
the first few fringes on the screen.  Save the image and set the magnetic field 
back to zero. 
B.  Analyze the data using Eqs. 5 & 6.  Determine the splitting between adjacent 
fringes and compare with the expected value of Δ𝐸𝐸 = 𝜇𝜇𝐵𝐵𝐵𝐵0

2
. 

Assuming Δ𝐸𝐸 = 𝑐𝑐𝜇𝜇𝐵𝐵𝐵𝐵0, what do you find for the constant s? 
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Photon counting statistics  
 
Purpose 
  To measure photons by a SiPM detector and explore different distribution 
functions  
 
Key Concepts 
 Photons 
 Oscilloscope  
 Analog and Digital Signals 
 Poisson distribution 
 Gaussian (normal) distribution 
 
 
Introduction 
 In this lab, the quantized nature of single photons along with the 
phenomena of single photon events will be studied. Afterward, different 
distribution functions will be investigated. Two different ways will be employed to 
observe the events of single photons. One way is plotting the behavior on an 
oscilloscope and the other is digitizing the signal and evaluating a histogram of 
events. In the first part of this lab, you should learn all the basic functions of an 
oscilloscope and then use the oscilloscope to display the signal from the 
detector. In the second part, control software will be employed to examine 
histograms of the photon events. Finally, analysis of the data from the histograms 
and error analyses will be carried out.  
 

The topic of statistics will be covered in lectures and is also presented in 
an Appendix to this lab manual. However, in case you are not yet familiar with 
that material, we will give an abbreviated discussion here. 

 
 The observation of a random process, such as the detection of single 

photons, will produce results that have a well defined distribution about the 
average detection rate if a large number of observations are made. In this 
experiment it is instructive to compare the observed data with two distribution 
equations:  the Poisson distribution and the Gaussian (or Normal) distribution.  
For the observations to be described by either equation, a fundamental 
requirement is that the events being observed be both independent and random.  
This is true for the pulsed light emitted by the LED.  

 
Poisson Distribution 
      For data to be described by the Poisson equation it is necessary that a 
large number of events may occur but that, on average, only a small fraction of 
the possible total occur during any one observation.  In this experiment, where 
you will count the number of photons in a given time interval, this condition is 
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satisfied because the LED creates many pulses of photons, but the detector 
detects only a small fraction of the photons emitted. 
 
 
      The Poisson distribution gives the probability P(x) of observing x events 
when the average (mean) number of events per observation is M 
 

                                            

 

P(x) =
M xe−M

x!
.  

 
      The probability P(x) should be multiplied by the total number of 
observations to obtain the number of times that x events is expected to be 
observed. 
      The calculation of P(x) is not difficult if M is a fairly small number. 
Since the factorial of zero is one, P(0)=e-M.  Then P(1) =P(0)M, P(2)=P(1)M/2, 
P(3)=P(2)M/3, etc.   Using this step-by-step process avoids the need for 
very large or very small numbers. Alternatively, find the function in the Excel 
library of functions, and allow the computer to do the calculations for you. 
   
Gaussian Distribution 
      If the average number of counts observed in each run is more than about 
10, the calculation of P(x) gets rather tiresome.  For averages greater than 
this, the Poisson distribution can be replaced by the Gaussian or "Normal" 
distribution, which has the equation 

 

G(x) =
1

σ 2π
exp −

(x − M)2

2σ2

 

 
 

 

 
 . 

 
The evaluation of this expression requires the specification of two numbers: 
the average number of events per observation (counts per run) which is M, and 
also the standard deviation, σ, which describes the spread of the distribution on 
both sides of the average.  The Gaussian distribution is symmetric about the 
average rate.  This is not true of the Poisson distribution, which is very 
asymmetric for small values of M. 
      The standard deviation, σ, is the square root of the average of the 
square of the deviations from the average of all data points.  That is, it is 
the R.M.S. deviation from the average.  For randomly occurring events the 
ideal value of σ is M . 
      To make a comparison of a set of data with the theoretical Gaussian 
distribution it is usually worthwhile to group the data into intervals before 
plotting a graph of the distribution.  For example, one can plot the number of 
runs resulting in 90 to 94 counts per run, the number of runs resulting in 95 
to 99 counts, etc.  In this case the interval is 5 units.  On the same graph, 
one then plots the theoretical Gaussian curve with an adjustment or 
normalization so that the area under the curve will be the same as the area 
under the graph of actual data.  This normalization is obtained by multiplying the 
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values of G(x) by N∆ , where N is the total number of runs and  ∆ is the width of 
the interval described above. 
      It is interesting to compare the spread in data with the ideal distribution 
which predicts that 31.7% of the data should deviate more than 1σ from the 
mean. 
 
 
The Equipment: 

This experiment consists of 6 major pieces of equipment: the LED source, 
the Silicon Photo Multiplexer (SiPM), the SP5600 Power Source and 
Amplification Unit (PSAU), the Digitizer, an oscilloscope and a computer. A brief 
and proper description of their functions follows.  

 The LED source produces pulses of light. This light is transmitted through 
a fragile fiber optic cable, where it is detected by the SiPM detector, which 
consists of 100 Avalanche PhotoDiodes. Be very careful with the fiber optic 
cable. The SiPM detector will translate the detected photons into an analog 
signal; specifically, when a photodiode of the detector detects a photon, it will 
emit an electron as an electric signal. Sometimes, the detector may detect more 
than one photon at once, in which case, it will emit the corresponding number of 
electrons. The results from all photodiodes of the detector are combined to form 
the output analog signal.  

The detector is connected to the PSAU which provides two main 
functions: supply power to the detector and amplify the signal of the detector. 
From here, the signal can go to two places: the oscilloscope or the Digitizer. You 
will first be examining the signal with the oscilloscope. In the second part of the 
lab, the signal will be sent to the Digitizer, which will digitize the detector signal 
and then send it to the computer.  
 The Control Software is another key component of this experiment. The 
Control Software is a Graphic User Interface (GUI) that controls the PSAU and 
the Digitizer. It is also here that signals from the Digitizer are displayed.  
 
 
 
Part One  
 As mentioned previously, in this part, you will be working with an 
oscilloscope to display the detector signal of photon events. Oscilloscopes are 
powerful tools that are commonly used in most lab settings. A wealth of 
knowledge about the behavior of a signal can be displayed on the monitor. Two 
main types of oscilloscopes are analog and digital oscilloscopes. This section will 
give a brief introduction to digital and analog signals along with the functions of 
the oscilloscope that you will be using.  

In this lab, you are investigating the signal produced by a detector struck 
by photons. For this SiPM detector, the produced signal is an analog signal, 
which means it can take on a variety of values. Analog signals contain a lot of 
information. In contrast, a digital signal is a stream of 1’s and 0’s, usually 
encoded as a high voltage value (1) or a low voltage value (0). As a result, there 
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is less information in a digital signal. That being said, digital signals tend to be 
much faster and easier to work with as compared to analog ones.  
 

The main function of an oscilloscope is to give a visual display of signals. 
How this happens depends on what type of oscilloscope you are working with. 
For the analog oscilloscope in this lab, a CRT is used to shoot electrons at 
screen made of phosphorous. When an electron strikes this screen, the 
phosphorous will glow for a second or two. This is a (relatively) long amount of 
time and allows for many signal cycles to be displayed at once, creating the 
display of the signal. 

  Explore the capabilities of the oscilloscope by connecting the 
oscilloscope to the function generator. Connect the output terminal of the function 
generator to the “CH1” input of the oscilloscope. Turn on the function generator 
and create your signal. For now, use a sine wave. Select any frequency you 
want. Next, turn on the oscilloscope and try to display the signal on the graph. In 
order to optimize your display, you will need to use the adjustment knobs. The 
section labelled “Vertical” allows you to control which signals are displayed and it 
allows you to control the vertical parameters of the displayed signal (e.g. the 
scaling of the axis (“VOLTS/DIV”) and the position.) Similarly, the horizontal axis 
scale can be adjusted with the “A and B” dial. What variable is represented by 
the horizontal axis? What is the range of scale factors for the horizontal axis and 
for the vertical axis? Sketch the graph of your signal in your lab notebook. Try 
other frequencies and signal types (e.g. Square or Triangle).  

 
 
Now that you know some of the capabilities of the oscilloscope, you can 

now investigate the behavior of the SiPM detector with it. This will be mostly the 
same as before, with one major change. Unfortunately, when the oscilloscope 
tries to display and analog signal, some of the information of a signal can be lost. 
Here’s why.  You may have noticed the “Trigger” section of the oscilloscope. In 
order for the oscilloscope to produce a continuous graph of the signal, it needs a 
reference point from which to start displaying the signal. This is usually done by 
setting a certain voltage threshold. Once the signal reaches that threshold, the 
oscilloscope will start to display the signal. This is the trigger. The problem with 
this is that an analog signal can take on different voltage amplitudes between 
different signal cycles (for example, the amplitude could be 2.00 Volts a certain 
part of one cycle and 1.8 Volts for the same part during the next cycle.) This 
behavior can confuse the oscilloscope. Here, it is useful to have a digital signal, 
which, for a certain cycle section, will have the same voltage value for different 
cycles.  
 
Procedure 

Display the detector signal on the oscilloscope. First, make sure that the 
CH0-signal from the PSAU is connected to CH 1 of the oscilloscope and that the 
CH0 TRIG-signal is connected to CH2.Turn on all equipment. 
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Before opening the SiPM Control Software, you will need to copy a 
version of it to your desktop. This will allow you to save data later. Locate the 
“SiPM Stuff” folder on the desktop. Create a copy of this folder onto your desktop 
and rename that folder. Inside this new folder, you will find the 
SiPMkit_ControlSoftware.exe file. Open this file. Remember, whenever you open 
the control software, open it from this location.  

The Control Software oversees everything except the LED intensity 
amplitude. We won’t use most of the features of this software, but take a minute 
to find the controls that will be used (e.g. bias voltage, gain.)  

The bias voltage is the operating voltage for the SiPM detector. In order to 
get the best data, the operating voltage needs to be optimized. (Too high of a 
voltage will create a lot of noise within the detector.)   

The initial signal from the detector is actually very weak and hard to 
measure. This is where the Gain comes in. The Gain is a multiplication factor that 
is applied to the signal in order to be measured more easily. Be careful. There is 
a limit to how much gain a detector can handle. For this lab, this won’t be an 
issue because the gain can only be set as high as 50, which is more than enough 
for our purposes.  

The LED amplitude dial controls the intensity of the light pulses emitted by 
the LED Driver. As you will demonstrate, the LED intensity plays a major role in 
the photon detection.  

Note: You cannot adjust parameters for a particular device unless that 
device has been “Started” within the program. For now, set the CommPort to 6( 
or whichever one has the PSAU USB  connected to it) and run the software by 
clicking the button with the single white arrow near the top of the screen (if you 
see a black arrow instead, then the program is already running.)  

Important:  When you are finished using the program, press the “Stop 
Program” button in the bottom right corner of the interface.  Do not press the red 
octagon button near the top of the window. This will cause connection issues 
between the computer and PSAU. 

Now, Start the PSAU. If you get a connection error, restart the program 
and try again. If the problem persists, consult your TA. Once the PSAU has 
started, press the green ch0 button in order to initialize the detector. Now the 
bias voltage and the gain of the detector can be adjusted. For now, set the bias 
voltage to 70.3 and set the gain to 35.  

You should see two signals on the oscilloscope display. If you don’t see a 
certain signal, press that channel’s respective button inside the section labeled 
“MODE.” If the button is illuminated, that means the signal is being displayed. If 
you still don’t see the signal, try adjusting the vertical position of that channel 
using the knobs at the top of the “Vertical” section. If you still don’t see the signal, 
consult your TA.  

Now you will adjust the settings on the oscilloscope in order to see the 
display of the signal. Adjust the horizontal scale to its lowest value.  

In the section labeled “Trigger,” set CH2 as the trigger. You may want to 
readjust to voltage scale of CH2 so the entire pulse can be seen on the display. 
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Next, adjust the voltage scale for CH1. A display similar to Figure 1 should 
appear on the monitor.  
 

 
 
Figure 1: Example display from the oscilloscope  
 
 

If you experience that the signal for CH1 is a bit dim, the signal can be 
brightened by turning off the display of CH2.  

You should now notice that there are bands between peaks for the 
detector signal. What do these bands represent? They represent distinct photon 
events. For instance, the first band represents a single-photon event. This means 
the detector measured one single photon. The second band corresponds to the 
detector measuring two photons at once. The third band means three photons 
simultaneously, etc. You may notice that some of the peaks appear brighter on 
the display than others. A brighter peak means there were more events of that 
kind (i.e. the detector registered that event more frequently), a dimmer peak 
means there were less events of that kind. 

Now, adjust the bias voltage, the gain, and the LED amplitude and record 
how the display changes. First, investigate the effects of LED intensity. What 
happens if the LED intensity is 0? Try it and record what the oscilloscope 
displays. Sketch the display in your lab notebook. Then, investigate the effects of 
LED intensity for a range of values between 3 and 5.4 on the LED knob. Record 
these effects. Also, using your phone, take a picture of the display. Paste these 
pictures into your lab notebook. You may  paste however many you want, but 
have at least one from the low end of the range, one from the middle part, and 
one from the high end. 

Set the LED intensity so you see 6 or 7 strong bands. Now, adjust the bias 
voltage and gain and then record their effects. For the bias voltage, use a range 
69.5 - 72 volts. For the gain, use a range 25 - 40. Also, take photos of these new 
displays and paste them into your lab notebook. You don’t need all of them for 
instance, just a few of the more interesting ones. In total, you should have at 
least 10 photos in your lab notebook. 
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Part Two 

In this section, you will use the Digitizer to evaluate the signal from the 
SiPM detector. Make sure the CH0 port on the PSAU is connected to the CH0 
port of the Digitizer. Also, double check that there is a cable connecting the TRIG 
IN port of the Digitizer to the TRIGGER OUT port of the LED driver. Now, start 
the Control Software and run the program. 

Like before, start the PSAU and press the green ch0 button in that section. 
Set bias voltage to 70.4, the gain to 35, and the LED amplitude to about 3.  Now, 
start the Digitizer and press the green ch0 button in that section as well. Before 
adjusting any parameters, let’s examine the Digitizer section.  

As mentioned previously, the Digitizer will transform the analog signal 
from the SiPM detector into a digital one. In the Digitizer section of the Control 
Software, you can control how the Digitizer does this by adjusting the Trigger, 
Gate, and Baseline parameters. For now, make sure the Trigger Mode switch is 
set to “external.” 

The converted SiPM signal is displayed on a graph on the right side of the 
interface. You will notice that there are tabs at the top of this section. These tabs 
allow you to view different types of graphs of the signal. For now, select the 
“wave: tab”. Does this graph look familiar? It is the same type of graph as one 
appears in the oscilloscope. The difference is that you only see one or two cycles 
of the signal at a time where as with the analog oscilloscope, you saw many 
cycles at once. Record what you see and sketch this display in your lab 
notebook.  Before moving on, set the “pregate” value in the Digitizer section to 
some value over 50. Now, select the “Histogram” tab. 
 

As you may know, a histogram is a recording of how many times a certain 
event happens. The display you see now records the number of events that have 
a certain ADC charge.  There are many peaks in this graph. These peaks are 
Poissonian and each peak represents a number of photon events, except for the 
0th peak. The 0th peak represents instances where the detector fired, even 
though there was no photon detected. The 1st peak represents single-photon 
events, the second peak represents double-photon events, etc. You can save an 
image of the histogram by pressing the “Print Display” button. You can name the 
file using the text directly above that button. The .bmp will be saved to the folder 
named “pictures” inside the folder you created on the desktop.If you plan to save 
more than one display, make sure to change the file name each time. Otherwise, 
the old file will be overwritten by the new one. In your lab notebook, paste a copy 
of the histogram. Similarly, you can save the histogram data by using the Save 
button located next to the text field labelled “Histo File Name.” These files will be 
added to the “data” folder. 
Note: For histograms, it is usually helpful to collect data for an extended period 
of time in order to get good statistics. For our purposes, 30 seconds represent a 
good amount of time.  
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If it helps, you can remove the shaded area of the graph by right clicking 
the small box labelled “plot one” (the black one with the 3 white triangles.) Go to 
Fill Base Line and select None. 

 
Now, adjust the bias voltage, gain, and LED intensity in the same manner 

as you did while exploring the detector behavior using the oscilloscope. Start with 
LED amplitude set to 0 and record what you see. Either Sketch or Print this 
image into your lab notebook. Compare this to the oscilloscope display you had 
for the same settings and record this in your lab notebook. Then, record about 10 
graphs from for the range of LED amplitude values from 2 to 5. Make sure to 
note the number of peaks, the relative strength of each peak, and any underlying 
trends. If it helps, you can change the scale of the x or y axis by right clicking on 
that axis, deselecting the autoscale property, and then setting your own upper or 
lower limit.  

Compare three of your graphs (one from the low end of the range, one 
from the middle, and one from the high end.) What differences do you notice 
between them? Is the higher intensity graph still Poissonian? If not, what other 
type of graph does it look like? Make sure to paste the images of these graphs 
into your lab notebook. 

Now that you have a general feeling of how the LED intensity affects the 
SiPM signal, investigate how the gain and the bias voltage affect the histograms. 
For each of the three intensity values you compared, investigate effects of the 
bias voltage (range 69.5-72) and gain (25-40.) Record these effects and paste a 
few of the graphs into your lab notebook. Record the displays of what you feel 
are the optimal settings for each LED-intensity. Paste these results in your lab 
notebook. Make sure to have all of these displays in your lab notebook before 
you start the analysis section.  Note: The histogram will not record events with 
ADC counts greater than 23000.  

 
 
Analyses 

 Analyze the histograms of the three LED intensities you compared 
previously. The low intensity graph should be described by a Poisson distribution. 
Quantitatively confirm this by plotting the data into Excel and fitting a Poisson 
distribution to it. What is your value for M, the average number of counts per 
detection? Paste a graph of your fit into your lab notebook.  

The high intensity graph should be described by a Gaussian distribution. 
Quantitatively confirm this by fitting a Gaussian function to your data. What is 
your value for σ? Is the mid-intensity graph described by a Poissonian or a 
Gaussian function? Fit your data to both a Poisson function and a Gaussian 
function and compare your fits. Which one yields a better fit? Paste both fits into 
your lab notebook. Record your values for M and σ. 

Something to consider: When trying to fit to a Poisson distribution, are all 
of the data points from your histogram necessary? 
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