

GSG-STELLARIS-
KRVMDK-ARM

Getting Started Guide
750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on May 15, 2006 updated on May 17, 2006
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application for
Stellaris™ Microcontrollers using
Keil's ARM® RealView®
Microcontroller Development Kit

Introduction
This Getting Started Guide explains how to use Keil's
(http://www.keil.com/) ARM RealView Microcontroller
Development Kit to create a multitasking Salvo application for
Luminary Micro's Stellaris™ Cortex-M3-based microcontrollers.

We will show you how to build the standard Salvo demo
application tut5. A complete project to build tut5 is included in
every Salvo distribution.

Building your own applications will be substantially similar.

For more information on how to write a Salvo application, please
see the Salvo User Manual.

Before You Begin
If you have not already done so, install the Keil ARM RealView
MDK tools. With the included µVision IDE you will be able to run
and debug this application on real hardware (e.g. a Stellaris
Development Kit).

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications for Stellaris™

http://www.keil.com/

 Getting Started Guide

2 GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

MCUs using Keil's ARM RealView Microntroller Development
Kit:

Salvo User Manual
Salvo Compiler Reference Manual

RM-STELLARIS-ARMRV

Creating and Configuring a New Project
Create a new µVision project using Project → New Project. In
the Create New Project window, navigate to your working
directory (we'll use \Pumpkin\Salvo\Examples\ARM\
Luminary_LM3S1XX\Luminary_DK-LM3S1XX\RVMDK\Tut\Tut5\

Lite) and enter a name for the project (we'll use tut5) in the File
Name field:

Figure 1: Creating the New Project

Click on Save to continue. The Select Devices for Target
'Target 1' window appears. Under the CPU tab select and expand
Luminary Micro:

 Getting Started Guide

GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

3

Figure 2: µVision Device Selection Window with

Luminary Micro LM3S101 Selected

Select LM3S101 and click on OK to continue. You'll be prompted
to copy and add target-specific startup code to the project. Select
Yes to continue:

Figure 3: Confirming Addition of Startup Code to Project

The file Startup.s will be added to the project.

C/C++ Options
Now let's setup the project's options for Salvo's pathnames, etc.
Choose Project → Options for Target 'Target 1' → C/C++ and
define any symbols you may need for your project in the
Preprocessor Symbols → Define area. In the Include Paths,
add a path to the current directory (.\) – Salvo needs this to find
its project-specific configuration file salvocfg.h (see below).
Next, add the path to Salvo's include directory
(C:\Pumpkin\Salvo\Inc is the default location). Lastly, add any
other include paths your project may require (e.g. to find board-
specific header files – in this example, ..\..\..\..):

 Getting Started Guide

4 GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

Figure 4: C/C++ Options for Target

Assembler Options
If your project's assembly code requires any defined symbols, add
them under the Asm tab:1

Figure 5: Asm Options for Target

Linker Options
Under the Linker tab be sure to select Use Memory Layout from
Target Dialog if the checkbox is available.2 Add --entry
Reset_Handler to the Misc controls box to ensure proper startup
at runtime:

 Getting Started Guide

GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

5

Figure 6: Linker Options for Target

Debug Options
You'll need to select the appropriate debugger. Keil's ULINK
debugger provides the ability to debug on real hardware over a
JTAG port. Under the Debug tab select the ULINK Cortex-M3
Debugger from the drop-down list and ensure it's selected via the
Use radio button:

Figure 7: Debug Options for Target

 Getting Started Guide

6 GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

Utilities Options
Under the Utilities tab select Use Target Driver for Flash
Programming pull-down. Selecting Update Target before
Debugging will streamline your debugging sessions:

Figure 8: Utilities Options for Target

Click on OK to finish configuring your project.

Groups
In order to manage your project effectively, we recommend that
you create a set of groups for your project. They are:

Header Files
Sources
Board Driver Library
Salvo Help Files
Salvo Configuration File
Salvo Source Files
Salvo Target-Specific Source Files
Salvo Library Files
Listings

For each group, choose Project → Components, Environment
and Books, and under Project Components → Groups add and
(re-)order the new group names3, and select OK. When finished,
your project window should look like this:

 Getting Started Guide

GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

7

Figure 9: Project Window with Groups

Compiler Selection
Lastly, you'll need to configure this project for use with Keil's
ARM RealView C compiler. Choose Project → Components,
Environment and Books, and under Folders/Extensions →
Select ARM Development Tools select Use RealView
Compiler:

Figure 10: Selecting the RealView C Compiler

Click on OK to finish configuring your project.

 Getting Started Guide

8 GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

Adding your Source File(s) to the Project
Now it's time to add files to your project. Choose Project →
Components, Environment and Books, and under Project
Components → Groups select Sources. Click on Add Files,
navigate to your project's directory, select the files your application
requires, and Add, then Close. Your Project Files window should
look like this:

Figure 11: Adding Source Files to the Project

When finished, select OK.

Note In an attempt to minimize the unnecessary duplication of
source files, those that are shared across multiple Salvo projects
are often located in higher-level (parent) directories above the
project directories. Therefore when adding source files to a group
like the Sources group, you may need to navigate to multiple
folders to select the desired files.

In the above example, the Sources files in Figure 11 are located in
the parent directory of the project directory.

Adding Salvo-specific Files to the Project
Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries
(Salvo Lite, LE and Pro), or with the Salvo source code files
(Salvo Pro only) as nodes in your project.

 Getting Started Guide

GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

9

Adding a Salvo Library
For a library build – e.g. what you would do when evaluating
Salvo via Salvo Lite – the Salvo freeware library for the Luminary
Micro LM3Sxxx is salvofarmrvcm3-t.lib.4 Choose Project →
Components, Environment and Books, and under Project
Components → Groups select Salvo Library Files. Click on
Add Files, navigate to the \Pumpkin\Salvo\Lib\ARMRV directory,
select salvofarmrvcm3-t.lib and Add, then Close. Your
Project Files window should look like this:

Figure 12: Adding Salvo Libraries to the Project

When finished, select OK.

Note When browsing to add files to a group via the Add Files
button, use the Files of type setting to see files other than source
(*.c) files.

You can find more information on Salvo libraries in the Salvo
User Manual and in the Salvo Compiler Reference Manual
RM-STELLARIS-ARMRV.

Adding Salvo's salvomem.c
Every Salvo project requires Salvo's salvomem.c source file.
Choose Project → Components, Environment and Books, and
under Project Components → Groups select Salvo Source
FIles. Click on Add Files, navigate to the \Pumpkin\Salvo\Src
directory, select salvomem.c and Add, then Close. Your Project
Components window should look like this:

 Getting Started Guide

10 GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

Figure 13: Adding Salvo Source Files to the Project

Adding Target-specific Salvo Source Files
Additionally, your project will require target-specific source files.
These include the files for user hooks to target-specific hardware.
The files in \Pumpkin\Salvo\Src\ARMRV provide pre-defined user
hooks and the Salvo context switcher5 for Keil's ARM RealView
compiler:

salvohook_interrupt_cm3.c

To add these files to your project, choose Project →
Components, Environment and Books, and under Project
Components → Groups select Salvo Target-Specific Source
Files. Click on Add Files, navigate to the
\Pumpkin\Salvo\Src\ARMRV directory, select the *.c files listed
above and Add, then Close. Your Project Components window
should look like this:

 Getting Started Guide

GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

11

Figure 14: Adding Salvo Target-specific Source Files to

the Project

When finished, select OK.

The salvocfg.h Header File
A salvocfg.h header file is required for every Salvo project. You
can create your own salvocfg.h or copy an existing one and
modify it accordingly. Place it in the project's directory (part of the
project's include paths – see C/C++ Options).

The salvocfg.h for this project contains only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OST

#define OSEVENTS 1
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 0
#define OSTASKS 4

Listing 1: Example salvocfg.h for a Salvo Lite Library
Build

Note The settings above are for this particular example project.
The settings for your projects will vary depending on which
libraries you use, how many tasks and events are in your
application, etc.

For your convenience, you'll want your project's salvocfg.h to
be easily accessible. Choose Project → Components,
Environment and Books, and under Project Components →

 Getting Started Guide

12 GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

Groups select Salvo Configuration File. Click on Add Files,
navigate to your project's directory, select salvocfg.h and Add,
then Close. Your Project Components window should look like
this:

Figure 15: Adding the Configuration File to the Project

When finished, select OK.

Lastly, you'll need to add any board driver files your application
requires to the Board Driver Library folder. These files are
usually provided as part of Keil's ARM RealView MDK or with
your target hardware. In this example, pdc.c and its header file
pdc.h are provided by Luminary Micro for the Stellaris
Development Kit and are located in the Salvo Examples tree
several levels up from the project directory – hence the
..\..\..\.. include path (see C/C++ Options). The DriverLib.lib
library is part of Keil's ARM RealView MDK installation.

 Getting Started Guide

GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

13

Your project window should now look like this:

Figure 16: Project Window for a Library Build

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for editing, etc. Additional often-used files like header
or listing files can be added to their appropriate groups.

Modifying the Startup.s file
The default startup code in Startup.s is populated primarily with
default handlers that will trap errant vectors.

Nearly all Salvo applications will make use of Salvo's time
services (e.g. OS_Delay()), normally via an IRQ handler.
Therefore you must modify the vector table in Startup.s to
invoke your application's interrupt handlers so that OSTimer() is
called.

In this example, the IRQ handler (SysTick_irq_handler(), in
the project's timer.c) is used to call Salvo's OSTimer() at a fixed
rate of 100Hz. Therefore you must edit your project's Startup.s
file to add the SysTick handler vector. E.g. replace

 DCD Default_Handler ; PendSV Handler
 DCD Default_Handler ; SysTick Handler
 DCD Default_Handler ; GPIO Port A

with

 Getting Started Guide

14 GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

 DCD Default_Handler ; PendSV Handler
 EXTERN SysTick_irq_handler
 DCD SysTick_irq_handler ; SysTick Handler
 DCD Default_Handler ; GPIO Port A

in Startup.s. Repeat this procedure for every IRQ handler in your
application.

Building the Project
With everything in place, you can now build the project using
Project → Build Target or Project → Rebuild all target files.
The build results can be seen in the Output window:

Figure 17: Build Results for a Library Build

Note The µVision projects supplied in the Salvo for Stellaris
distributions contain additional help files in each project's Salvo
Help Files group.

Testing the Application
You can test and debug this application using the optional ULINK
JTAG interface. After building the project, select Flash →
Download. This will erase, program and then verify your
application on the target.6 Select Flash → Start/Stop Debugging
Session. This will begin your debugging session, where you can
run your application, set and clear breakpoints, watch variables,
etc:

 Getting Started Guide

GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

15

Figure 18: Single-stepping with ULINK

Example Projects
Example Salvo projects for use with the Stellaris Development
Board, Keil's ARM RealView compiler and Keil's µVision3 IDE
can be found in the

C:\Pumpkin\Salvo\Examples\ARM\Luminary_LM3S1XX\
 Luminary_DK-LM3S1XX\RVMDK

directories of every Salvo for Stellaris family distribution. Salvo
Lite and LE example projects are built using Salvo libraries. Salvo
Pro example projects are built using Salvo libraries and the Salvo
source code.

1 Enable Arm/Thumb interworking is a bug in µVision and will be fixed in a

future release. Stellaris Cortex-M3 parts run only in Thumb2 mode and
therefore have no need for an ARM interworking veneer.

2 This option is greyed out in the evaluation version of the Keil RealView MDK
toolset.

3 Groups can be renamed in this window.
4 This Salvo Lite library contains all of Salvo's basic functionality. The

corresponding Salvo LE and Pro libraries are salvolarmrvcm3[-|i]t.lib.
5 Salvo Pro only.

 Getting Started Guide

16 GSG-STELLARIS-KRVMDK-ARM Building a Salvo Application for Stellaris™ Microcontrollers using
Keil's ARM® RealView® Microcontroller Development Kit

6 Once your target is successfully programmed you can start program execution

immediately without entering the µVision debugger, e.g. by pressing the
Stellaris Development Kit's reset button.

	Building a Salvo Application for Stellaris™ Microcontrollers using Keil's ARM® RealView® Microcontroller Development Kit
	Introduction

	For more information on how to write a Salvo application, please see the Salvo User Manual.
	Before You Begin
	Related Documents

	Salvo User Manual
	Salvo Compiler Reference Manual RM˚STELLARIS˚ARMRV
	Creating and Configuring a New Project
	C/C++ Options
	Assembler Options
	Linker Options
	Debug Options
	Utilities Options
	Groups
	Compiler Selection

	Adding your Source File(s) to the Project
	Adding Salvo-specific Files to the Project
	Adding a Salvo Library

	You can find more information on Salvo libraries in the Salvo User Manual and in the Salvo Compiler Reference Manual RM˚STELLARIS˚ARMRV.
	You can find more information on Salvo libraries in the Salvo User Manual and in the Salvo Compiler Reference Manual RM˚STELLARIS˚ARMRV.
	
	Adding Salvo's salvomem.c
	Adding Target-specific Salvo Source Files
	The salvocfg.h Header File

	A salvocfg.h header file is required for every Salvo project. You can create your own salvocfg.h or copy an existing one and modify it accordingly. Place it in the project's directory (part of the project's include paths – see C/C++ Options).
	Lastly, you'll need to add any board driver files your application requires to the Board Driver Library folder. These files are usually provided as part of Keil's ARM RealView MDK or with your target hardware. In this example, pdc.c and its header file p
	Modifying the Startup.s file
	Building the Project
	Testing the Application
	Example Projects

