
Using contracts and boolean queries to improve the 
quality of automatic test generation 

Lisa (Ling) Liu     Bertrand Meyer     Bernd Schoeller 

Chair of Software Engineering,  
ETH Zurich, Switzerland 

{ling.liu, Bertrand.Meyer, bernd.schoeller}@inf.ethz.ch 
 

Abstract. Since test cases cannot be exhaustive, any effective test case generation 
strategy must identify the execution states most likely to uncover bugs. The key issue 
is to define criteria for selecting such interesting states. 

If the units being tested are classes in object-oriented programming, it seems 
attractive to rely on the boolean queries present in each class, which indeed define 
criteria on the states of the corresponding objects, and — in contract-equipped O-O 
software — figure prominently in preconditions, postconditions and invariants. As 
these queries are part of the class specification and hence relevant to its clients, one 
may conjecture that the resulting partition of the state space is also relevant for tests. 

We explore this conjecture by examining whether relying on the boolean queries of 
a class to extract abstract states improves the results of black-box testing. The 
approach uses constraint-solving and proof techniques to generate objects that satisfy 
the class invariants, then performs testing by relying on postconditions as test oracles. 
The resulting strategy, in our experiments on library classes used in production 
software, finds significantly more bugs than random testing. 

1 Overview 

Unlike other approaches to improving program quality, in particular proofs, program 
testing focuses not on guaranteeing the absence of bugs but on uncovering bugs. This 
is by itself a very interesting goal since any bug removed is a significant improvement 
to a program. 

The effectiveness of a testing strategy is, as a result, defined by how likely it is to 
uncover bugs. We present a testing strategy for classes — object-oriented program 
units — that takes advantage of two of their distinctive properties: the presence of 
boolean queries as part of the interface of a class, and in some programming 
formalisms, the use of contracts to specify abstract properties of classes. 

The topic of this paper is, as a consequence, simple. We state a conjecture: that 
using contracts and queries will improve the effectiveness of testing strategies. Then 
we assess the validity of that conjecture by applying contract- and query-based testing 
through our automatic test environment, AutoTest [5], and measuring whether this 
improves AutoTest’s effectiveness in finding bugs.  

A characteristic of our testing work is that (rather than artificial examples, although 
one will be used to illustrate the concepts) it applies testing strategies and in particular 
the AutoTest tool to actual production software, in particular the EiffelBase library of 
fundamental data structures and algorithms, used daily in mission-critical production 
environments. Testing for us is then not just an academic pursuit but also a very 



practical attempt to find bugs in actual software. Along with the concepts we propose, 
the main concrete result of the study reported here is that it has enabled us to find and 
correct real bugs in software components that are in actual use, and hence provide a 
tangible benefit to the users of those components. 

1.1 Correctness and contracts 

The correctness of a program element is not an absolute property but is always 
defined with respect to a certain specification. In the “Design by Contract” approach 
[18], the specification is present in the text of classes (the program units of object-
oriented programming) in the form of invariants for classes, and preconditions and 
postconditions for routines1. Ascertaining the correctness of a class in languages that 
natively support such mechanisms —Eiffel [19] or Spec# [1] —, or in contract add-
ons to Java (such as JML [13, 14], iContract [12]) or UML (Object Constraint 
Language [23, 8]), means ascertaining that the implementations are consistent with 
the contracts: specifically, that every creation procedure (constructor) yields an object 
satisfying the invariant of its class, and that every exported routine, started in a state 
satisfying the invariant and the precondition, terminates in a state satisfying the 
invariant and the postcondition. 

Using testing we cannot prove such correctness for any realistic program, but we 
can uncover correctness violations — bugs — by finding inputs that will cause 
routine executions to violate an invariant or postcondition. 

1.2 Testing and program states 

Because the set of possible program execution states is inexhaustible, any practical 
testing strategy must identify a subset of interesting states, where “interest” is defined 
— in the negative mindset that characterizes the work of the tester, whose reward is to 
prove software incorrect — as likelihood to uncover bugs. Usually this is achieved 
through a partitioning approach which, using appropriate criteria, divides the state 
space into disjoint parts, then picks one state (or a few) from each such part, with the 
expectation that each selected state is somehow representative of that part. 

A common approach for such partitioning is to use white-box tests, based on an 
analysis of the implementation’s control flow, such as “path coverage” and “branch 
coverage”. This has two disadvantages. First, the tester needs access to the 
implementation, which may be an unrealistic requirement in the presence of 
information hiding. Second, the approach requires possibly complex computation to 
exercise specific branches or paths. 

1.3 Query-based testing 

The approach described here relies instead on a black-box testing strategy, based on  
contracts. Specifically: 

                                                            
1 “Routines” are called “methods” in Java and C++. This paper uses Eiffel terminology and 

notation. 



 
• Instead of relying on the implementation of a class, it uses its contracts and its 

boolean queries  to partition the state space. 
• The partitioning is aided by an insight into the structure of good contracts, the 

Boolean Query Conjecture, defined below. 
• Techniques from boolean constraint solving and program proving help reduce the 

resulting state space further. 
• Then we develop a test strategy - boolean query coverage  to achieve complete 

test coverage based on the outcomes of this reasoning. 
 
The main contributions of this paper are the following: 

 
1. New application of Design by Contract techniques to improve the testing 

process. 
2. A new method for partitioning program state, applied here to testing but (we 

think) with potential applications elsewhere, for example in model checking. 
3. The experimental validation of that method on concrete examples. 
4. New techniques for improving test coverage. 
5. The integration of constraint-solving and program-proving techniques in a 

testing framework. 
6. A technique for taking advantage of test results to improve not only test 

coverage but also class designs (through stronger invariants). 
7. Concretely, as noted, the detection through an automatic procedure (and 

subsequent correction), in actual production libraries, of real bugs, until now 
unsuspected and not found by any previous technique, manual or automatic. 

Section 2 presents the notion of boolean query and introduces the conjecture behind 
this work’s approach to testing, as well as the method for assessing the conjecture. 
Section 3 explains the overall strategy based on contracts, the notion of abstract state 
space, constraint satisfaction techniques, proof techniques, and the AutoTest 
framework. Section 4 describes the experimental study applying this strategy to a set 
of actual classes, and analyzes the result. Section 5 discusses related work, and 
section 6 discusses future work. 

2. The role of boolean queries 

The central issue of test case generation is, as noted above, to maximize the likelihood 
of uncovering bugs. If we are testing object-oriented software we should take 
advantage of the distinctive structure of O-O programs. 

2.1 Classes and object states 

A class is often an implementation of an abstract data type, providing all the 
operations, or “features”, on a certain type of run-time objects. These features are of 
two kinds [18]: 



• Commands modify the corresponding object: withdraw money (for a class 
representing bank accounts), open (for a class representing files), increase indent 
(for a class representing paragraphs in a text). 

• Queries return information about an object: current balance, number of 
characters, margin size. 

Both commands and queries can be exercised on a particular object through a “feature  
call” written, in most object-oriented languages, through dot notation, as in 
 my_account.withdraw (500) 
 b := my_account.balance 

2.2 Argumentless boolean queries 

Among queries, boolean queries are of particular interest, especially boolean queries 
without arguments. Examination of object-oriented libraries such as EiffelBase [17] 
and others indicates that 90% classes are equipped argumentless boolean queries. 
Examples include: 
• In a bank account class, is_overdraft. 
• In a paragraph class, is_justified. 
• In data structure classes, is_empty and (if the representation has limited capacity) 

is_full. 
• In a list class where lists have cursors indicating a current position of interest, 

is_before, is_after, off, is_first. 
The recommended Eiffel convention, whose very existence reflects the ubiquity and 
importance of such queries, is to give them names starting with is_. 

Such argumentless queries are generally part of the official interface of the 
corresponding classes. They intuitively seem, for a well-designed class, to reflect 
fundamental, qualitative properties of the state. For example a list may, or not, be 
empty; and it may, or not, have twenty-five elements. While the corresponding 
classes will typically have a query is_empty they will not, in general, offer 
has_twenty_five_elements. This is because the designer of the class intuitively 
thought of the second property (if he considered it at all) to reflect a circumstantial 
possibility for the state of a list, but understood the distinction between empty and 
non-empty lists as a critical division of the set of possible list states. 

Observation of well-written O-O software reinforces this intuition about the 
importance of argumentless queries, both externally (as part of the interface of 
classes) and internally (as part of their implementation): 
• Externally, boolean queries often serve as preconditions and appear in invariants. 

For example, the precondition of a routine to remove an item from a list is not 
is_empty; and the invariant will include properties such as is_before implies off. 

• Internally, the implementation of a routine to add an item to a list will proceed 
differently depending on whether the list is initially empty or not and (in an 
implementation based on an array but dynamically resizable) whether the current 
implementation is full or not. 

All this suggests that the distinction may also be useful when it comes to dividing 
the state space for purposes of testing the software. 



In particular, it follows from the last comment — about features being internally 
relevant to the implementation — that argumentless boolean queries may be our best 
bet when we are doing black-box testing and trying to guess the kind of properties 
actually used in decision branches of the implementation. A query such as is_empty 
is, in the end, nothing else than a predicate — a boolean expression — as used by the 
control structure of programs to select between branches of conditional expressions 
and to decide whether to terminate loops. Since testing strategies must partition the 
state space into representative categories, they use such predicates for the partitioning; 
for example white-box testing relies on predicates used in tests, such as c in if c then 
a else b end, to generate a test with c true to exercise a and one with c false to 
exercise b. If our intuition is correct that boolean queries reflect qualitatively 
important properties of the object state, then it may be useful to use them, rather than 
arbitrary predicates, to partition the state space. This possibility is particularly 
attractive in black-box testing, where we don’t have access to the internal structure of 
the code, and cannot, as a result, directly know which boolean expressions, such as c  
above, actually appear in tests governing the control structure. In light of the above 
observations, argumentless queries are our best bet. 

2.3 The conjecture 

The preceding observations lead to the conjecture behind the present work: 
 

Boolean Query Conjecture: The argumentless boolean queries of a well-
written class yield a partition of the corresponding object state space that 
helps the effectiveness of testing strategies. 

 
“Well-written” is a subjective term, but we will assume the following: 

• The class indeed includes boolean queries reflecting important abstract properties 
of the corresponding objects. 

• Routines are equipped with contracts, in particular preconditions. Our main 
experimentation target is the EiffelBase libraries [17], which indeed is equipped 
with contracts.  

• The contracting style is on the “demanding” side [18]: routines try to limit their 
functionality to the required minimum by enforcing reasonableness conditions on 
their clients. 

2.4 Assessing the conjecture 

The Boolean Query Conjecture is of a heuristic nature and, as such, not amenable to a 
formal proof. To assess its validity, we simply: 
• Extend an existing tool for automatic test generation, AutoTest, to take advantage 

of partitioning based on argumentless boolean queries. 
• Compare the effectiveness of the resulting testing strategy — how many buggy 

routines it finds, and the quality of its routine coverage — with the effectiveness 
of the original AutoTest using a random strategy for black-box testing.  



3. Using contracts and proof techniques 

3.1 Basic definitions 
 
In the rest of this discussion the term query will be used as a shorthand for “exported 
argumentless boolean query”, since these are the only kinds of queries of interest for 
the discussion. The following definitions will be useful. 

Boolean abstraction function: A boolean abstraction function is a vector <q1, 
q2, …, qn> of  queries. 

Abstract object state: An abstract object state is the vector <v1, v2, …, vn> 
containing the result of evaluating the queries of a boolean abstraction function 
<q1, q2, …, qn> in a concrete state s of a particular object, with vi = qi (s) for all i ∈ 
1..n. 

If a class has n queries, the number of abstract object states for an instance of the class 
is 2n. Note that usually only a subset of these possible abstract states makes sense, 
since a useful state should satisfy the class invariant. 

As a simple example of these concepts, consider the following Eiffel class, adapted 
from actual (generic) stack classes in EiffelBase:  
 

Listing 1. Class INT_STACK 

 
The features “is_empty” and “is_full” are queries. The vector <is_empty, is_full> 
makes up the boolean abstraction function for the class. The set of abstract object 
states is {<0, 0>, <0, 1>, <1, 0>, <1, 1>}) (using 0 for False and 1 for True). 

Such an abstract state space will usually be too large to be practically tractable. 
With a language supporting the inclusion of class invariants, and classes that take 
advantage of this mechanism, we can reduce that size significantly by excluding 
states that do not satisfy the invariant. For example a stack cannot (with capacity> 0,  



as also ensured by the invariant) be both empty and full, so we can remove <1, 1> 
from the above state space. The following definition generalizes this observation:   

Reachable abstract object state. An abstract object state is reachable if it 
satisfies the class invariant. 

3.2 Query-based testing 

The general strategy for query-based testing, represented by figure 1, will involve the 
following elements, detailed in subsequent sections: 
• Find the exported argumentless boolean queries. 
• (Section 3.3 below.) Use a boolean constraint solver (SICStus) to generate all 

possible abstract object states that satisfy the clauses of the class invariant 
involving only these queries — ignoring any invariant clauses involving other 
features of the class, such as the integer attributes count and capacity in the above 
example, since this is beyond the reach of a boolean constraint solver. 

• (3.4) Use a theorem prover (Simplify) to prune abstract object states that do not 
satisfy the invariant (including the previously ignored clauses, such as those 
involving count and capacity in the example. 

• (3.5) Use a forward testing approach (part of the AutoTest tool), attempt to cover 
all the resulting abstract object states. In this process, any routine execution that 
violates a contract element uncovers a bug and hence marks a success of the 
strategy. 

• (3.6) All the previous steps are automatic. After they have been run, it is useful to 
perform a manual inspection to determine how many of the abstract object states 
have been covered. For each state that has not been covered, you should inspect 
the specification to determine whether each uncovered state makes sense or not. 
If not, this may lead, if you have access to the original class or may make 
suggestions to its developers, to strengthening its invariant. On the other hand if 
you find out that the state is logically meaningful, you may have to adapt the 
testing strategy, adding manual tests if necessary, to extend coverage. 

 

 
Fig. 1. Overview of class testing procedure 



3.3 Generating abstract state through boolean constraint solving 

Acquiring all reachable abstract object states requires the support of a boolean 
constraint solver and theorem prover. As noted above, the first step is to collect all the 
exported, argumentless boolean queries from the class interface; this can be done in 
several ways (parsing of the class of just its official interface documentation, 
reflection, or data from the IDE). The next step is to strip down the class invariant to 
those clauses that only involve these queries, temporarily dropping any other clauses, 
for example those involving count or capacity. 

This allows feeding the resulting simplified invariant into a boolean constraint 
solver. We have chosen the SCIStus solver [24] for that purpose. The result is to 
obtain all possible abstract object states; in the simple example above, after feeding 
SICStus variant clause “is_empty => not is_full”,  we would get { <0, 1>, <1, 0>, <0, 
0>}. Note that <1, 1> is not a member of that set since the constraint solver takes 
advantage of the invariant clause not is_empty or not is_full to remove it as 
inconsistent. 

For an actual class, FIXED_LIST, the number of applicable queries is 9, resulting 
in an abstract state space with 512 elements. Contraint solving reduces this number 
considerably, to 224. 

3.4 Pruning the state space through theorem proving 

The resulting abstract state space may still includes states that do not make sense. 
This is not the case in the simple INT_STACK example, since the three states that 
survive the previous step are all reachable, but often happens in larger cases; for 
example, in the FIXED_LIST class of EiffelBase, boolean constraint solving does not 
eliminate a state in which “not before and not after and off” holds. 

To prune the state space from such spurious cases violating the invariant, the 
strategy next applies theorem proving. The theorem prover reintroduces the invariant 
clauses ignored by the previous step to reduce the state of the state space. The proof 
tool we use is Simplify [6]. Simplify accepts a sequence of first order formulas as 
input, and attempts to prove each one. Simplify does not implement a decision 
procedure for its inputs: it can sometimes fail to prove a valid formula. But it is 
conservative in that it never claims that an invalid formula is valid. As a result, the 
invariant clauses are encoded as facts and definitions in Simplify; the acquired 
abstract states are encoded as formulas. Then Simplify is used to prove the negation 
of each formula is valid. If Simplify can prove it, the corresponding abstract state is 
unreachable and can be removed from the abstract state sets that should be covered by 
the testing procedure. For the INT_STACK example, the facts, definitions and 
formulas fed to Simplify are as follows: 

facts:  
(BG_PUSH   (>= count 0) ) 
(BG_PUSH   (<= count  capacity) ) 
(BG_PUSH   (>  capacity 0) ) 

definitions:  
(DEFPRED (is_empty) (EQ count 0)) 
(DEFPRED (is_full) (EQ count capacity)) 

formulas: 



 1. (NOT (AND (NOT (is_empty)) (NOT (is_full)))) 
 2. (NOT (AND (NOT (is_empty)) (is_full) ) ) 
 3. (NOT (AND (is_empty) (NOT (is_full)) ) ) 

These three formulas cannot be proved valid by Simplify, hence they may be 
reachable and should be covered by the test cases.  

 Adding this step is quite effective: for example, in the FIXED_LIST case, it 
reduces the state space from 224 elements to 64. 

3.5 Forward testing 

The previous steps give us a set of abstract states that can be used as a criterion for 
test coverage according to the following definition:  

Boolean query coverage. A set of tests for a class satisfies boolean query 
coverage if and only if the execution of these tests can cover all the 
reachable abstract object states for that class. 

 
This sets the stage for the testing effort: try to achieve boolean query coverage by 
covering as many as possible of the abstract object states determined through 
application of the preceding techniques. 

For the testing effort we rely on AutoTest [5], a testing tool that uses contracts to 
perform automatic test generation and bug detection. AutoTest uses a forward testing 
[16] process. 

The forward testing process attempts to explore all abstract object states. The 
process first creates some objects via different creation procedures and acquires a set 
of abstract object states of these objects. Starting from these initially acquired abstract 
object states, it executes all exported routines in these abstract object states to explore 
more abstract states. It repeats this step until it either finds no new abstract object 
states or reaches a predefined threshold (of number of calls, or testing time). Listing 2 
describes the procedure more precisely. 

 
Listing 2. Forward Testing 

 



To formalize this process it is useful to rely on the following notion (adapted from 
[15]: 

Object state machine. Consider a class C; let EC be its set of exported commands 
and S be the set of corresponding object states. The object state machine for C is 
defined by the subset I ⊆ S of initial object states (as produced by creation 
procedures) and the transition function t: S×EC → S describing the effect of C’s 
commands. 

We can talk of abstract or concrete object state machines, based on this definition, by 
choosing S to be the set of abstract or concrete states.  

The class testing procedure records all exercised abstract object states and 
transitions. This means that developers can examine the result of a test campaign to 
determine if the class under testing exhibits unexpected behavior, or to assess the 
completeness of a test suite. 

For INT_STACK, the extracted abstract object state machine is as follows. 
 
Queries:                                              Command set EC: 
1. is_empty                                         pop, push  
2. is_full                                        
                                                           Transition function t: 
Set of states S:                                    <1, 0>      push    <0, 0>   
 {<1, 0>,  <0, 0> , <0, 1>}                    <0, 0>      pop      <1, 0> 
                                                            <0, 0>      push    <0, 1> 
Initial states I:                                      <0, 1>      pop      <0, 0> 
 <1, 0>                                                 <0, 0>      pop      <0, 0> 
                                                            <0, 0>      push     <0, 0> 
 

Applying AutoTest’s forward testing to class INT_STACK will cover all reachable 
abstract object states. This may seem to be because of the simple nature of this 
academic example, but in fact a very encouraging result of our experiments is that 
AutoTest’s automated strategy yields a very high initial coverage, 80% or higher, of 
the abstract object state space for all the actual (production) library classes we have 
tried. As described in the next section, we then perform a manual inspection of the 
results to examine uncovered states, and improve the invariants as a result of this 
inspection; in all of our experiments so far this has enabled us in the end to reach 
100% boolean query coverage.  

3.6 Inspecting the specification 

At the end of the process it is useful to inspect the results, in particular to examine 
boolean query coverage. If an abstract state has not been covered, possible actions 
are: 
• Add manual tests that will exercise the corresponding states. (AutoTest has the 

possibility of including manual tests along the automatically generated ones.) 
• If it appears that the states are not possible, reinforce the class invariants to 

exclude them. 



 
As noted earlier, our experiments so far have yielded excellent coverage of the 
abstract state. But as an example of the second case, we found that in class 
FIXED_LIST 32 states, out of the 64 remaining from previous reductions of the 
abstract state space, seemed unreachable because a particular property relative to the 
query extendible seems to be missing. Adding the corresponding invariant clause 
achieves total coverage. 

4. Experimental setup and study results 

 
4.1 Choice of library 
 
To examine the Boolean Query Conjecture with the above strategy, we performed a 
number of tests of classes from the EiffelBase library. EiffelBase is particularly 
interesting in several respects: 
• It is not an academic example but a production library, used — in its successive 

incarnations since its first version almost twenty years ago — in numerous 
applications, in particular, currently, in large, mission-critical systems handling 
billions of dollars of investments or large-scale missile simulations. 

• In spite of this background it still has bugs. 
• These bugs arise only in remote, uncommon cases, and are only found through 

systematic testing by AutoTest, which has taken EiffelBase as one of its primary 
experimental targets. Obviously, all EiffelBase bugs found so far by AutoTest, 
including the ones uncovered by present study, have now been corrected. 

• EiffelBase is a showcase of object-oriented techniques and in particular makes 
extensive use of contracts. 

 
  4.2 Choice of target classes 
 
For the present study, we used INT_STACK, our toy example (for reference 
purposes), and four important classes of the EiffelBase library:  LINKED_LIST, 
BINARY_TREE , ARRAYED_SET and FIXED_LIST. 

The size of these classes, in terms of number of routines (and ignoring attributes) is 
as follows: 
• LINKED_LIST: 89 routines. 
• BINARY_TREE: 93 routines. 
• ARRAYED_SET: 70 routines. 
• FIXED_LIST: 82 routines. 
 
Of these, 27 come from the top-level class ANY, which is the one of the ancestors of 
the classes given. (All Eiffel classes inherit from ANY). AutoTest tests all routines, 
whether defined in the class itself or inherited. Indeed, as the classes given are pretty 
deep in the inheritance hierarchy, many of their routines are inherited. 



 

4.3 The testing environment 

The AutoTest tool, the centerpiece of our testing work and responsible for the forward 
testing step (3.5), is a testing environment which takes care of both test case 
generation and test oracles. Test cases are generated by systematically calling all the 
routines of the selected classes and any classes on which they rely; test oracles (the 
mechanisms to determine whether a test is successful) are entirely provided by routine 
postconditions and invariants. More precisely: 
• A precondition violation for a routine directly called by AutoTest indicates that 

the test is not interesting; AutoTest minimizes such occurrences through 
constraint solving and proof techniques as used in this article.  

• If a routine gets executed (its precondition was satisfied), any violation of the 
class invariant, the routine’s postcondition, or the precondition of another routine 
that it calls indicates a buggy routine to be added to the output of the AutoTest 
run. 

 
In the last case, AutoTest performs a minimization step that finds, if possible, a 
shorter sequence leading to the same incorrect result; this enables using the shorter 
sequence, and hence maximizing efficiency, for debugging, and for later regression 
testing.  

AutoTest has a sophisticated testing architecture making it possible to perform a 
large number of such automatic routine executions, recovering if any of them fails, 
and presenting the test results in convenient HTML format. When detecting a bug — 
a sequence of execution that leads to a violation of a postcondition or other contract 
element  

Although primarily an automatic testing tool, AutoTest is also a general testing 
environment supporting the addition of manually selected test cases, and automating 
the testing process, in particular regression testing. AutoTest is being more closely 
integrated with the EiffelStudio environment so that in the future, for example, users 
will have the choice, when an execution fails, of having the faulty call sequence 
automatically integrated, after minimization, in the regression test suite. 

4.4 Study results 

We applied AutoTest to the result of performing the constraint solving and theorem 
proving steps described above on the selected classes. We also applied plain 
AutoTest, not taking advantage of these steps, to the same class, and compared the 
results for number of routines that contain bugs and routine coverage (the number of 
routines exercised). The following table shows the results. 

 
 
 
 



Table 1. Comparison of boolean query testing with random testing 

Routine 
coverage 

Buggy routines Tested Class Boolean 
queries 

Testin 
time 

(mins.) 

LOC 

BQT RT BQT RT 
INT_STACK 2 2 444 100%  100%   1               0 

LINKED_LIST 14 20 1909 97%      87%   3               2 
BINARY_TREE 20 14 1507 97%      91%  10              6 

ARRAYED_SET 11 9 2565 100%    96%   3               1 
FIXED_LIST 9 45 1856 99%      94%   5               5 

 
Where LOC denotes “lines of code”, BQT denotes “boolean query testing” and RT 
denotes “random testing”.  Boolean query testing denotes the testing procedure that 
satisfies boolean query coverage. 

4.5 Evaluation 

The number of classes to which we have applied the strategy is still too small to 
warrant statistically significant conclusions, but the number of buggy routines found 
and the high routine cover show the worth of boolean query testing. The high routine 
coverage of boolean query testing show that it is effective in constructing interesting 
target object states. For example, for the LINKED_LIST class, the routines item, last, 
replace that are covered by boolean query testing but not random testing require target 
object states “not off”, “not is_empty” and “writable” separately. The higher buggy 
routines discovered by boolean query testing also provide an evidence for its 
effectiveness in computing interesting object states. For example, in class 
ARRATED_SET, the buggy routine that is discovered by boolean query testing not 
random testing require an target object state “not off unless after”. To get this object 
state a routine call sequence <make (n), put (o), forth> should be execute, where n >0, 
o is any object that is not Void. 

Since we are studying production-grade software; any buggy routine identified is a 
major result. In this respect the techniques described here have already proved their 
worth by enabling us to detect and correct heretofore unsuspected bugs, and hence 
improve the reliability of real software systems. 

5 Related Work 

The following work is relevant to the discussion of the testing strategy presented in 
this paper. 

5.1 Construction of Abstract States 

Queries and boolean predicates have been used to generalize concrete states [2, 26, 
27]. Xie et al. gave a black-box abstraction method that uses public observers that 



return non-void values to generalize concrete object state machine into observable 
object state machine and infer this abstract machine through unit testing [26].  This 
approach cannot bound concrete object states to a finite abstract object states, as a 
result, cannot achieve abstract state coverage in testing. Ball et al. presented a white-
box boolean predicate abstraction approach that uses all predicates appearing in 
program to generalize concrete program states into a set of abstract program states, 
and gave the upper bound and lower bound of these abstract states. This approach 
cannot infer all abstract states of a program that satisfy its specification since it is a 
white-box method. Therefore, it cannot statically decide the exact bound of satisfiable 
abstract states. Yorsh et al. make use of the boolean predicate abstraction approach to 
find a proof for a program rather than detecting real errors. 

Our object state abstraction approach is a black-box method and uses contracts and 
proof techniques to infer all abstract object states that satisfy class contracts. This 
abstraction process is independent of testing and can be done statically. Moreover, it 
also provides a way to inspect class contracts. Because our abstraction approach maps 
concrete object states to finite reachable abstract states, we can direct our class testing 
procedure to completely explore these states. 

5.2 Black-Box Test Coverage Criteria 

Category-Partition (CP) [22] is a common black-box test strategy. Each category 
defines a major property of the parameter or condition of a function/routine and 
partitioned into a series of distinct choices. A set of choices from all the categories is 
combined into a test frame, where each category contributes with, at most, one 
choice.  These test frames are templates used to derive test cases. To apply CP, we 
need to consider the approach to combining choices. There are three combing 
approaches: all combination, base choice and each choice, where all combination 
derives all combinations of choices as test frame. Hence all combination partitions the 
whole input domain and is the most expensive and effective combining approach. 
boolean query coverage is essentially a Category-Partition strategy used for 
generating object states. This strategy takes every boolean query as a category and 
defines all possible combinations among the values of these boolean queries. 
Therefore, it partitions the whole object sate space and is a most effective CP strategy 
for generating object states.  

Because of the easiness of automation, random testing [7, 9, 10] is practically 
widely adopted black-box test strategy. The studies in [7, 9] show that random testing 
could be more cost-effective than partition testing (assuming that its cost is lower than 
that of partition testing) with respect to the probability of detecting at least one 
failure. Comparing to random testing, boolean query coverage can also be 
implemented automatically and detects more object state related bugs.  
 

5.3 Test Case Generation and Automatic Testing 

To cover all reachable abstract object state space, we mainly use the forward 
testing and complement this process with random testing and manual testing. All of 



these testing strategies have been implemented in Eiffel automatic unit testing tool 
AutoTest. 

Automatic class testing is more practical when class specification are embedded 
into the program as formal or semi-formal contracts. TestEra[20] is a contract-based 
software test tool targeting Java source code and specification written in Alloy [11] (a 
structural modeling language based on first-order logic). Due to the impedance 
mismatch between the specification and the implementation language the testing 
process is not fully automatic and there is a higher barrier for the developer to provide 
the specification since he has to learn a new language. This automatic testing tool 
does not adopt object state abstraction approach, while uses model checking 
technique to generate the test inputs that satisfy a function’s precondition.  

The Korat tool [3] uses a function’s precondition on its input to automatically 
generate all (nonisomorphic) test cases up to a given small size. Korat constructs test 
cases by setting the field values directly not by invoking routines as done in our 
forward testing strategy.  

Another tool, Check’n’Crash [4], does not use specifications but uses an external 
static verifier (ESC/Java2) to calculate a precondition to describe the conditions that 
might result in a failure. It then uses a constraint solver to generate instances that 
satisfy this precondition. Since their approach assumes no specifications, they use a 
heuristic to filter expected failures from unexpected ones. 

AutoTest [5] implements fully automatic class testing based on contracts. Without 
intervention from a user, AutoTest generates tests, executes tests and verifies test 
results. This testing tool is configurable. Testers can configure the testing strategies 
(random, forward and manual), then AutoTest can execute these selected testing 
strategies automatically.   

Our testing procedure includes two fully automatic testing processes. The first is 
using forward testing to explore most abstract object states. If there are some abstract 
object states that cannot be covered then tester complement some test cases encoded 
in manual test case form and execute AutoTest to cover all abstract object states and 
construct abstract object state machine. The second is an automatic test oracle that 
uses contracts embedded in the class under test. 

6. Future Work 

The results presented here are particularly promising but require further work, in 
particular: 
• Application to many more example classes. Potentially we should process all 

EiffelBase classes. 
• Application to software that is more representative of user programs: EiffelBase 

is a general-purpose library, but we must also apply the approach to typical 
commercial software in various application areas. 

• Closer evaluation of the results, in particular with respect to the time needed to 
find bugs (for the whole strategy, including testing but also the preparatory stages 
of constraint solving and proof), not just the number of bugs eventually found. 

• Integration of the techniques, to the extent that will appear justified, in the 
AutoTest framework, so that it can take advantage of the best combination of 



various software reliability techniques, from constraint solving and model 
checking to proofs as well as tests. 

Acknowledgements 

We thank Joseph N. Ruskiewicz for his help with Simplify and constructive 
comments. We also thank Stephanie Balzer, Andreas Leitner, Ilinca Ciupa and 
Manuel Oriol for their feedback and many invaluable technical discussions. We also 
thank Eric Bezault for providing Gobo Eiffel which served us as a great platform to 
build our tools on. 
 
References 
 
[1] M. Barnettl, K. Rustan, M. Leinol, W. Schultel, The Spec#  programming system: An 

overview, in: M. H. Gilles Barthe, J.-L. Lanet, T. Muntean (Eds.), Construction and 
Analysis of Saft, Secure, and Interoperable Smart Devices: International Workshop, 
CASSIS 2004, Springer Berlin / Heidelberg, Marseille, France, 2004. 

[2] T. Ball, A theory of predicate-complete test coverage and generation, in: 3rd International 
Symposium on Formal Methods for Components and Objects, 2004, pp. 1-22. 

[3] C. Boyapati, S. Khurshid, D. Marinov, Korat: Automated testing based on Java predicates, 
in: Proceedings of the ACM SIGSOFT International Symposium on Software Testing and 
Analysis (ISSTA’02), ACM Press, 2002, pp. 123-133. 

[4] C. Csallner, Y. Smaragdakis, Check ‘n’ crash: combining static checking and testing, in: 
ICSE’05: Proceedings of the 27th international conference on Software Engineering, ACM 
Press, New York, NY, USA, 2005, pp. 422-431. 

[5] I. Ciupa, A. Leitner, Automatic testing based on design by contract, in: Proceedings of 
Net.ObjectDays 2005 (6th Annual International Conference on Object-Oriented and 
Internet-based Technologies, Concepts and Applications for a Networked World), 2005, pp. 
545-557. 

[6] D. Detlefs, G. Nelson, and J. B. Saxe, Simplify: A theorem prover for program checking. 
Technical Report HPL-2003-148, HP Labs, 2003. 

 http://research.compaq.com/SRC/esc/Simplify.html. 
[7] J. Duran and S. Ntafos, An evaluation of random testing, IEEE Transactions on Software 

Engineering, , July 1984, SE-10:438 – 444. 
[8] A. Hamie, Towards verifying Java realization of OCL-constrained design models using 

JML, in: Proceedings of 6th IASTED International Conference on Software Engineering 
and Applications, ACTA Press, MIT, Cambridge, MA, USA, 2002. 

[9] D. Hamlet and R. Taylor, Partition testing does not inspire confidence, IEEE  Transac   
tions on Software Engineering, December 1990, 16 (12):1402–1411.  

[10] R. Hamlet, Random testing, in: J. Marciniak, editor, Encyclopedia of Software 
Engineering, Wiley, 1994, pp. 970-978. 

[11] D. Jackson, Alloy: Alightweight object modeling notation, ACM Trans. Soft. Eng. 
Methodology, 11(2) (2002) pp. 256-290. 

[12] R. Kramer, iContract - the Java ™ design by contract ™ tool, in: Proceedings of Object-
Oriented Language and Systems, IEEE Computer Society, Washington, DC, USA, 1998, pp. 
295-307. 

[13] G. T. Leavens, A. L. Baker, Enhancing the pre- and postcondition technique for more 
expressive specifications, in: World Congress on Formal Methods, 1999, pp.1087-1106. 



[14] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, D. R. Cok, How the design of jml 
accommodates both runtime assertion checking and formal verification, in: FMCO 2002, pp. 
262-284. 

[15] D. Lee and M. Yannakakis, Principles and methods of testing finite state machines - A 
survey, in: Proc. The IEEE, 1996, pp. 1090-1123. 

[16] L. Liu, A. Leitner and J. Offutt, Using contracts to automate forward class testing, 
submitted to Journal of System and Software. 

[17] B. Meyer, Reusable Software: The Base Object-Oriented Libraries, Prentice Hall, 1994. 
[18] B. Meyer, Object-Oriented Software Construction, 2nd Edition, Prentice Hall, 1997. 
[19] B. Meyer, Eiffel: The Language, Prentice Hall, 1991, revised edition in progress at 

http://se.ethz.ch/~meyer/ongoing/etl/, 2006.. 
[20] D. Marinov, S. Khurshid, TestEra: A novel framework for automated testing of Java 

programs, in: Proc. 16th IEEE International Conference on Automated Software 
Engineering (ASE), 2001, pp. 22-34. 

[21] J. W. Nimmer and M. D. Ernst, Invariant inference for static checking: An empirical 
evaluation, in: FSE 2002, pp. 11-20. 

[22] T. J. Ostrand and M. J. Balcer, The Category-Partition method for specifying and 
generating functional test, Comm. ACM, vol. 31, no. 6, pp. 676-686, 1988. 

[23] M. Richtersl, M. Gogolla, On formalizing the UML object constraint language OCL, in: 
M. L. L. Tok Wang Ling, Sudha Ram (Eds.), 17 International Conference on Conceptual 
Modeling (ER), Springer Berlin / Heidelberg, Singapore, 1998. 

[24] SICStus Prolog User’s Manual, http://www.sics.se/sicstus/docs/latest/pdf/sicstus.pdf. 
[25] J. Whaley, M. C. Martin and M. S. Lam, Automatic extraction of object-oriented 

component interface, ISSTA 2002, pp. 218-228. 
[26] T. Xie and D. Notkin, Automatic extraction of object-oriented observer abstractions from 

unit-test executions, in: ICFEM 2004, pp. 290-305. 
[27] G. Yorsh, T. Ball and M. Sagiv, Testing, abstraction, theorem proving: better together! 

ISSTA 2006, pp. 145-156. 
 


