
 
 
 
 
 
 
 
 
 

Final Thesis 
 
 
 
 

Developing A Secure Web Service for License 
Management in StruSoft 

 
by 
 

Dave Alfanso Russell 
 

LITH-IDA-EX–05/019-SE 
 

2005-02-28 

 



 

Linköpings universitet 
Department of Computer and Information Science 

 
 
 
 
 
 
 
 

Final Thesis 
 
 
 
 

Developing A Secure Web Service for License 
Management in StruSoft 

 
by 
 

Dave Alfanso Russell 
 

LITH-IDA-EX–05/019-SE 
 
 

Supervisor: Yuxiao Zhao 
Department of Computer and Information Science 
Linköpings universitet 
 
Mats Ola Rasmusson 
Structural Design Software in Europe AB 
Box 30069, 200 61 Limhamn Malmö Sweden 
 

Examiner: Kristian Sandahl 
Department of Computer and Information Science 
Linköpings universitet 

 



 

Abstract 
 
As software increases in complexity and relies more on Internet and Web technology, the 
challenge of enabling interaction and communication between loosely coupled applications 
becomes increasingly vital. 
 
Distributed computing presents challenges to loosely coupled applications that require means 
with which to interact and communicate. There exist technologies that are aimed at solving 
these problems; Web service is one such technology. Web service is a relatively new and 
rapidly maturing technology in the area of distributed computing; it offers a standards-based 
way to exchange information in an interoperable manner. 
 
This thesis is done in partnership with StruSoft and attempts to provide a solution to their 
problem of distributed computing, by using Web service technology. The paper looks at 
distributed systems and various solutions to the problems associated with distributed 
computing. A comprehensive insight into Web service technology is provided, along with 
rationale as to why it is chosen for the project. In addition, there are guidelines as to how the 
necessary components of Web service are installed. 
 
Development of License Management Software is also a part of this thesis. The software 
offers a means with which to store and maintain data about customers and their licenses. 
 
Security is a major focus of this paper and thus extensively mentioned throughout. A detailed 
explanation of computer security is presented, along with the necessary configurations that are 
needed to make the Web service and the License Management Software more secure. 
 
Keywords: Web service, XML, SOAP, WSDL, Computer Security, Distributed Systems, 
Open Source, Tomcat, Axis and Software Development Life Cycle. 

 



 

Acknowledgements 
 
“No man is an island, no man stands alone.” In times when one embarks on an important 
project or drafts an important document such as a thesis paper this famous quote becomes 
startlingly true. 
 
It is with much pleasure that I conduct my thesis work as part of the VIP 
Energiberäkningssystem project at the Structural Design Software in Europe AB (StruSoft). 
Special thanks to Mats Ola who made it possible for me to make such a contribution and also 
for all the information made available. Thanks to Kristian for taking on the responsibility as 
an examiner and for all the valuable contribution during this period. Very special thanks to 
Yuxiao my supervisor, for invaluable help and guidance throughout. Finally, to family and 
friends that offered support, thank you all. 
 
Dave Alfanso Russell 
Linköping 
February 2005 

 



 

Table of Contents 
 
 
1 Introduction………………………………………………………………………….. 1 
 1.1 StruSoft………………………………………………………………... 1 
 1.2 VIP Energiberäkningssystem…………………………………………. 1 
   
2 Background…………………………………………………………………….......... 3 
 2.1 Distributed Systems…………………………………………………… 3 
 2.1.1 CORBA…………………………………………………. 4 
 2.1.2 JAVA RMI……………………………………………… 5 
 2.1.3 DCOM………………………………………………….. 5 
 2.2 Web Service…………………………………………………….......... 6 
 2.2.1 HTTP…………………………………………………… 7 
 2.2.2 XML…………………………………………………….. 7 
 2.2.3 Enter the Phase of Web Service….……………………. 9 
 2.2.4 SOAP…………………………………………………… 9 
 2.2.5 WSDL………………………………………………....... 10 
 2.2.6 UDDI…………………………………………………… 13 
 2.2.7 Web Service Stack……………………………………… 13 
 2.2.8 Web Service Tools……………………………………… 14 
 2.3 Security………………………………………………………………... 15 
 2.3.1 Secure System/Communication………………………… 15 
 2.3.1 Realizing Security………………………………………. 16 
   
3 Problem Formulation…………………………………………………………............ 18 
 3.1 StruSoft Mandates…………………………………………………….. 18 
 3.1.1 Non-Functional Requirements………….………………. 19 
 3.2 Design Decisions……………………………………………………… 19 
   
4 Development Environment………………………………………………………….. 22 
 4.1 Java configurations……………………………………………………. 22 
 4.1.1 Download……………………………………………….. 22 
 4.1.2 Installation and Set-up…………………………….......... 22 
 4.1.3 Test…………………………………………………........ 23 
 4.2 MySQL Configuration………………………………………………… 23 
 4.2.1 Download……………………………………………….. 23 
 4.2.2 Installation and Set-up…………………………….......... 23 
 4.2.3 Test…………………………………………………........ 24 
 4.3 Tomcat Configuration…………………………………………………. 24 
 4.3.1 Download……………………………………………….. 24 
 4.3.2 Installation and Set-up…………………………….......... 25 
 4.3.3 Test…………………………………………………........ 25 
 4.4 Axis Configuration………………………………………………......... 25 
 4.4.1 Download……………………………………………….. 25 
 4.4.2 Installation and Set-up…………………………….......... 26
 4.4.3 Test…………………………………………………........ 26
 4.5 Open Source…………………………….…………………….………. 27

 



 

 4.5.1 Historical View…………………………………………. 27
 4.5.2 Open Source Fundamentals…………………………….. 29
 4.5.3 Pros and Cons of Open Source…………………............. 31
 4.6 Development Tools……………………………………………………. 33
 4.6.1 The Apache Project……………………………………... 33
 4.6.2 MySQL…………………………………………………. 34
 4.6.3 Eclipse…………………………………………………... 34
   
5 Discussions……………………………..……………………………………………. 35
 5.1 Software Design………………………………………………………. 35
 5.1.1 Waterfall Model……………………………………........ 35
 5.1.2 Project’s Software Processes……………………............ 37
 5.2 License Server Architecture…………………………………………... 40
 5.3 Web Service Architecture……………………………………………... 41
 5.3.1 Why Service Oriented Approach……………………….. 41
 5.3.2 Service Oriented Approach Defined……………………. 41
 5.3.3 Service Oriented Approach Operations………………… 42
 5.4 Overall System Architecture………………………………………….. 43
   
6 Security Issues……………………………………………………………………….. 45
 6.1 Product Security………………………………………………………. 45
 6.1.1 License Server Security………………………………… 45
 6.1.2 Web Service Security…………………………………… 49
 6.2 Open Source Security…………………………………………………. 53
 6.2.1 Expert Opinions………………………………………… 53
 6.2.2 Further Open Source Precautions………………............. 57
   
7 Testing………………………………………………………………………….......... 58
 7.1 Scenario Description…..………………………………………………. 58
 7.2 Standalone Testing……………………………………………………. 59
 7.2.1 Evaluation………………………………………………. 60
 7.3 Network Testing………………………………………………………. 61
 7.3.1 Evaluation………………………………………………. 62
   
8 Delivery……………………………………………………………………………… 64
 8.1 StruSoft………………………………………………………………... 64
 8.2 Customer………………………………………………………………. 65
   
9 Conclusions…………………...……………………………………………………… 67
 9.1 Future work……………………………………………………………. 67
   
10 References…………………………………………………………………………… 69
   
11 Glossary……………………………………………………………………………… 71
   
 Appendix A License Server Screenshots……………………………………………. 74
 A.1 Adding Customer to Database………………………….. 74
 A.2 Search Database for Customer...………………………... 74

 



 

 A.3 Delete Customer from Database………………………... 75
 A.4 Web Service…………………………………………….. 76
 A.5 Email……………………………………………………. 76
   
 Appendix B Web Service WSDL……………………………………………………. 78
   
 Appendix C Related Documents……………………………………………………... 79
 C.1 System Overview……………………………………….. 79
 C.2 Project Overview……………………………………….. 79
 C.3 Final Project Proposal…………………………………... 80
 C.4 Project Time Table……………………………………… 80

 



1 Introduction 
 
The age of the Internet and the Web have meant that networks have become larger, very 
distributed and extremely decentralized [1]. The Internet and Web revolution that have taken 
place have resulted in the emergence of new programming or language environment, script 
language and new technologies all allowing for more complex applications. An application 
need not run entirely on a single user system. Through the use of Internet and Web technology 
a system can be developed in a loosely coupled manner, where the pieces can be 
independently distributed. 
 
As the revolution continues and the complexity of applications increases, the way information 
is exchanged between individuals, companies, and governments have and will continue to 
change. In spite of the changes that occur, users expect the information or service they require 
will be available in a reliable and secure manner. Complex applications in particular loosely 
coupled applications require that the pieces be able to communicate regardless of the 
underlying operation system or programming language environment. Simply put: there is a 
need for interoperability between connecting applications. 
 
This thesis is part of an ongoing system development project called VIP 
Energiberäkningssystem at the Structural Design Software in Europe AB (StruSoft). The 
intended goal is to allow StruSoft the freedom to build a system that is loosely coupled, 
interoperable and secure. The resulting solution should provide a scalable and extendable 
system over the Internet which lends itself to access from a wide variety of communication 
devices. 
 
1.1 StruSoft 
 
The first of July 2002, saw the birth of StruSoft as a company following their spin-off move 
from Skanska, which they have been apart of for close to twenty years [2]. 
 
The niche market of StruSoft is the building trade sector and they develop applications that 
target that audience. The applications developed comes in two flavours: applications that are 
exclusively owned and held in trust by StruSoft and others that are developed as consulting 
agreements [2]. 
 
Their main products are the WIN-Statik programmes, the FEM-Design series and IMPACT 
[3]. Along with the range of products the company also offers various services. The services 
are Coach, FEM-Design courses and program support and upgrades [4]. 
 
1.2 VIP Energiberäkningssystem 
 
VIP Energiberäkningssystem translates to VIP Energy Calculating System. VIP is a series of 
programs that are mutually compatible and integrated for the control and analysis of energy 
consumption. The entire series of programs utilize the same calculation module and climatic 
data to guarantee identical results regardless of where the calculation is performed [5]. 
 

1 



1 • Introduction 

The programs that make up the series are [5]: 
 

1. VIP+ - A complete standalone application for analysing energy consumption of 
detached houses. 

 
2. VIP WEB - A system that is highly adaptable to accept minimum input data for 

analysing and calculating results for a number of houses. 
 

3. VIP* - A project between StruSoft, Skanska, Cementa and LTH financed by SBUF 
and FORMAS/BICs for management of energy calculation and inner temperature of a 
property during the whole planning, building and management phase. 

.

 2



2 Background 
 
Connecting applications in a scalable, interoperable and secure manner is the main focus of 
this thesis, but prior to going into details, it is necessary to provide some background 
information on the important concepts of distributed systems and computer security. 
 
2.1 Distributed Systems 
 
The Internet and Web revolution, in addition the changes that followed brought to the surface 
the important concept of distributed system. So what is a distributed system? 
 
One humorous, simple but somewhat accurate description is “A distributed system is one in 
which the failure of a computer you didn’t even know existed can render your own computer 
unusable [6].” A more serious definition describes distributed systems as a collection of 
computers that communicate via a network and present themselves to the users as a single 
coherent system [7]. 
 
Four of the major solutions to the challenge of application-to-application communication in a 
distributed system (here in referred to as distributed computing) are CORBA, Java RMI, 
DCOM and Web Service. 
 
The remainder of the section gives a brief description of the first three. A detailed look at 
Web Service is presented in the next section entitled Web Service. 
 
Classification of Distributed System 
 
Before explaining the four major contributors to distributed computing, a brief look at how 
these systems could be classified is necessary. Computers use two kinds of data files when 
storing, transferring and/or accessing data: binary files and text files. One way in which 
distributed system can be classified is according to the type of file that is passed on the wire: 
binary versus text. 
 
Binary Files – At its simplest, binary files are streams of bits (1’s and 0’s). Applications uses 
proprietary format to represent information in binary form and this therefore means that these 
binary files can only be understood and created by certain programs. This introduces the one 
problem associated with binary files; their proprietary nature means they’re not easily 
understood by other programs. 
 
Text Files – This format also has streams of bits. The differing factor is that text files are 
grouped together in a structured way so that at any given time they represent numbers. These 
numbers are then further mapped to characters. This means that this format can be read by 
numerous applications and humans alike (with the aid of a text editor); therefore the sharing 
of information is easier. 
 
CORBA, Java RMI and DCOM all convert data to binary format before it is sent, making it 
crucial for an application or system that knows this binary format to be used on the receiving 
side. Web Service on the other hand uses text format and send text files on the wire. This 
makes Web service a very comfortable option when communicating between applications, as 

3 



2 • Background 

it uses a text format that is a standard and easily understood. It must be also said that binary 
files can also be sent when using Web Service [8]. 
 
2.1.1 CORBA 
 
The acronym CORBA stands for Common Object Request Broker Architecture. It is 
described as an open, vendor-independent framework that permits distributed computer 
applications to interoperate over networks. Fundamental to CORBA is the Internet Inter-ORB 
Protocol (IIOP). With the use of this protocol CORBA-based program can interoperate with 
another CORBA-based program, allowing for distributed, heterogeneous collection of objects 
to interoperate [9]. 
 
The Object Management Group (OMG) is responsible for defining the CORBA standard. 
 
CORBA Architecture 
 
Central to CORBA is the use of objects; it defines an architecture of distributed objects. The 
basic CORBA model is that of a request for service(s) of a distributed object [10]. 
 
All services offered are exposed by way of an interface and clients must invoke this Interface 
Definition Language (IDL) in order to use the service. 
 
With CORBA each object instance has a unique object reference. Clients use this reference to 
send their invocations to the Object Request Broker (ORB). The ORB is the service that 
implements the request to the remote object. It acts as a bus that finds the remote object, 
communicates the request, waits for the result(s) and then sends back the result(s) to the 
client. The ORB is independent of the programming language from the client and therefore 
the two can be different. 
 

OOBBJJEECCTT  
IIMMPPLLEEMMEENNTTAATTIIOONN  

CCLLIIEENNTT  

 
 

Figure 1: CORBA Architecture. 
 
Figure 1 graphically depicts a request. A client holds an object reference to a distributed 
object. The object reference is typed by an interface and sent via IDL. The Object Request 
Broker, or ORB, delivers the request to the object and returns any results to the client using 
IIOP. 
 
For a more detail look at CORBA, check the OMG home page [11]. 
 

IIDDLL  IIDDLL  
SSTTUUBB  

 
 

OOBBJJEECCTT  RREEQQUUEESSTT  BBRROOKKEERR 
RREEQQUUEESSTT  

SSKKEELLEETTOONN  

 4



2 • Background 

2.1.2 Java RMI 
 
The acronym RMI stands for Remote Method Invocation (RMI). Java RMI enables software 
developers to create distributed applications by facilitating object communication between 
distributed Java-based applications in which calls are made between Java Virtual Machines 
(JVMs). The protocol on which Java RMI relies is the Java Remote Method Protocol (JRMP). 
It is with this protocol that the Java RMI delivers connectivity and interoperability. 
 
Sun Microsystem is the company behind Java RMI. 
 
Java RMI Architecture 
 
Java is an object-oriented language and therefore objects form the base for Java RMI. The 
architecture is similar to that of CORBA in that it uses distributed objects. It is based on the 
important principle that the definition of behavior and the implementation of behavior be 
separate. This allows for a model that focuses on providing service [12]. 
 
The key to offering service in Java RMI is that services must be coded as Java interfaces. 
 
With objects playing such a central role in Java RMI there is a need for marshalling. The Java 
Object Serialization handles this functionality, which marshal and unmarshal parameters and 
return values. 
 

IINNTTEERRFFAACCEE  
SSEERRVVIICCEE  

 

CCLLIIEENNTT  SSEERRVVEERR  

SSEERRVVIICCEE  SSEERRVVIICCEE  
PPRROOXXYY IIMMPPLLEEMMEENNTTAATTIIOONN 

 
Figure 2: Java RMI Architecture. 

RMI

 
Figure 2 above illustrate RMI communication. A server implements a service and announces 
it through an interface. A client holds an object reference to a distributed object. The object 
reference is typed by an interface and sent to the JVM on the server. The servers JVM then 
delivers the request to the object and returns any results to the client using JRMP. 
 
If you wish to read more about Java RMI go to Sun’s Java RMI web site [12]. 
 

 5



2 • Background 

2.1.3 DCOM 
 
The acronym DCOM stands for Distributed Component Object Model. The DCOM solution 
enables applications to interact directly over a network [13]. It supports remote objects 
through the use of a protocol called Object Remote Procedure Call (ORPC). Through the use 
of this protocol applications can expose objects to computers across networks and others can 
communicate with these objects across network boundary. 
 
DCOM is Microsoft’s contribution to solving the problems of distributed computing. 
 
DCOM Architecture 
 
The concept of objects lends itself well to distributed computing and it is no surprise that 
fundamental to DCOM is the use of objects. It is comparable to CORBA in terms of offering 
a set of distributed services [14]. 
 
As with the previous two approaches DCOM also uses interfaces. A server object publishes 
the behavior that it offers through an interface. The client invokes the IDL when a behavior is 
called. 

CCLLIIEENNTT  SSEERRVVEERR  

CCOOMM  RRUUNNTTIIMMEE  
LLIIBBRRAARRYY  

CCOOMM  RRUUNNTTIIMMEE  
LLIIBBRRAARRYY  

 
 

Figure 3: DCOM Architecture. 

IIDDLL 

OOBBJJEECCTT  RRPPCC  
NNEETTWWOORRKK  PPRROOTTOOCCOOLL 

 
Figure 3 gives a simplified overview of the DCOM architecture.  A server offers a service by 
defining an interface. The client calls the method of the server by acquiring a pointer to the 
interface. The client then sends a call to the COM runtime, which communicates with the 
servers COM runtime. This communications take place over the ORPC. 
 
For further reading on DCOM visit the Microsoft page for DCOM [15]. 
 
2.2 Web Service 
 
Web Service is the latest contender in the distributed computing arena aimed at providing 
application-to-application communication across network boundaries. It should not go unsaid 
that the actual definition of Web service is a hot topic of discussion among industry experts, 
development communities and various computing organizations. However regardless of the 
arguments put forward the basic concept remains: Web service refers to the enabling of 
interaction between software in a platform and programming language neutral manner. 
 

 6



2 • Background 

Before delving into more detail about Web Service, it is important to take a brief look at two 
important building blocks: HTTP and XML. 
 
2.2.1 HTTP 
 
The acronym HTTP stands for Hypertext Transfer Text Protocol. Web Service is not specific 
to HTTP but the protocol is often the chosen transport protocol and it is referred to in many 
RFCs on Web Service. 
 
The birth of the HTTP protocol was synonymous with that of the Web and date to the early 
1990s. HTTP is used to control the delivery of hypertext data. It is a simple stateless 
response-request text-based protocol intended for sending and receiving text-based 
information. HTTP has become and still is the protocol of choice for the Web. The format of 
the HTTP packet includes a header followed by a body, which holds the data. HTTP 1.0 was 
the first version of the protocol and version 1.1 is the current version that extends the features 
of the previous by offering among other things stateful connection [16]. 
 
2.2.2 XML 
 
The acronym XML stands for eXtensible Markup Language. XML can be loosely thought of 
as a “watered-down” version of Standard Generalised Mark-Up Language (SGML); a 
simplified version if you wish. It is essentially a meta-language, allowing designers the ability 
to represent data in a self-describing manner. XML has a hierarchical structure and uses 
customised tags, allowing for definition transmission, validation and interpretation of data 
between applications and organisation [17]. 
 
XML is one of the fundamental building blocks on which Web Service is built, thus a clear 
understanding of XML is essential. Below is the exploration of four important aspects of 
XML: XML Syntax, XML Infoset, XML Namespace and XML Schema. 
 
XML Syntax 
 
The rules that govern XML are very simple but very strict. Central to XML is the concept of 
entities and tags. An entity is enclosed within a tag. All tags must be closed; tags are case 
sensitive and may contain attributes [18]. 
 
Code 1 shows a simple xml file. The first line of the document declares the files to be a XML 
file, this is called the XML declaration – it defines the version the document is using. The 
next line describes the root element – all XML document must have a root – “letter” – this is 
the dominant element in the document and there can only be one root. The syntax for 
comment is given on line 3. Lines 4 - 6 are referred to as child elements. Code 1 clearly shows 
the hierarchical nature of XML and also shows tags has a closing tag. 
 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<letter> 
     <!-- xml comment --> 
     <to>Alice</to> 
     <from>Bob</from> 
     <body>Just saying hi.</body> 
</letter> 

Code 1: XML syntax 

 7



2 • Background 

XML InfoSet 
 
The acronym InfoSet stands for Information Set. The XML InfoSet is used for describing the 
common set of items that are relevant across many XML specifications. It defines a consistent 
and rigorous set of terms that other specifications can use to refer to the information in a well-
formed (but not necessarily valid) XML document [19]. 
 
In other words, it is a collection of information items that comprise a description of a 
particular XML document. An InfoSet is an abstract representation of chunks of an XML 
document that is characterized by certain properties. Any document that is well-formed and 
meets XML namespace constraints described in the Namespace specification has an InfoSet. 
A valid document my also have an InfoSet. 
 
Four of the Infoset described by the World Wide Web Consortium (W3C) in the 
recommendation are [19]: 
 

• Document Information Item – Always exactly one, which is the root. 
 
• Element Information Item – There is one element information item for each element in 

the document, this includes a unique document element. 
 
• Processing Instruction Information Item – There is one for each processing instruction. 
 
• Comment Information Item – There is one for each comment in the instance 

document, but not for comments in the Data Type Definition (DTD). 
 
XML Namespace 
 
XML namespaces provide a method to avoid the conflicts in naming of elements/attributes by 
different people. XML has an attribute call “xmlns” which can be used to specify a 
namespace. If this element is omitted, then the elements in the document belong to the default 
namespace. Format – xmlns: namespace-prefix=”qualifiedname”. 
 
Code 2 shows an example of using namespace. Code 2 uses code 1 but there are conflicts with 
the name of the child elements. In order to solve the conflicts, code 1 is given the namespace 
“code1” and when one wishes to use an element of code 1, the namespace to the element must 
be added – example “<code1:body>”. 
 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<brev xmlns:code1="http://code1"> 
     <to>Bob</to> 
     <from>Alice</from> 
     <code1:body>Just saying hi.</code1:body> 
</brev> 

Code 2: XML Namespace 
 
XML Schema 
 
XML schema (XSD) is used to define the type and structure of an XML document. Like 
DTD, XSD restricts well-formed XML documents. Compared to DTD however, XSD is a 

 8



2 • Background 

formal XML document and keeps the type inheritance in object-oriented way. An application 
can validate an XML document according to the XSD by using a XSD-supported parser. 
 
Code 3 gives an example of a XML schema that could be used to govern code 1. 
 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<schema xmlns="http://www.w3c.org/2001/XMLSchema"> 
     <complexType name=”letter”> 
         <element name=”to” type=”string”/> 
         <element name=”from” type=”string”/> 
         <element name=”heading” type=”string”/> 
         <element name=”body” type=”string”/> 
     </complexType> 
</schema> 

Code 3: XML Schema 
 
2.2.3 Enter the Phase of Web Service 
 
As said earlier in the section, Web service infrastructure is about enabling distributed 
computing in heterogeneous environements. 
 
A Web service is a modular, self-describing application that supports interoperable 
application-to-application communication over a network. It offers an interface that is 
described in text-based format - XML (namely WSDL). Other systems interact with the Web 
service via the WSDL regardless of operating system, programming language or environment 
over a protocol of choice, mainly HTTP. 
 
Web service should not be thought of as a specific technology; rather it is a collection of 
existing established and emerging communication protocol. The cornerstones of Web service 
are HTTP and XML, both of which are established protocol along with newly emerging 
protocols such as SOAP, WSDL and UDDI. In the remaining sections these three emerging 
protocols will be detailed. 
 
2.2.4 SOAP 
 
The acronym SOAP stands for Simple Object Access Protocol. SOAP is a XML based 
protocol that is simple and lightweight. It is used to facilitate information exchange in a 
decentralized distributed environment [20]. The protocol specification describes an extensible 
framework for passing parameters and commands (XML messages) between clients and 
servers. 
 
The World Wide Web Consortium (W3C) is responsible for the SOAP specification with the 
SOAP 1.1 being the current version (originally introduced in 2000). Version 1.2 has been 
proposed and is now recommended by W3C. SOAP sits at the Application layer in the 
protocol stack and offers an operating system, programming language and environment 
neutral XML based communication. 
 
It is important to note that SOAP does not define a transport protocol to use for sending 
SOAP messages, but provides some binding mechanisms. This is the task of the application 
developer. A developer can therefore choose from any of the many transport protocol 
including HTTP, SMTP and FTP. 

 9



2 • Background 

SOAP Messages 
 
SOAP provides an extensible framing mechanism for XML messages. All SOAP messages 
are XML documents which conform to a schema set forth by W3C [21]. They contain proper 
namespaces on all elements and attributes. SOAP messages consist of three sections: SOAP 
Envelope, SOAP Header and SOAP Body. Code 4 shows the syntax of a SOAP message. 
 

<soap:Envelope  
     xmlns:soap="http://www.w3.org/2003/05/soap-envelope" 
     soap:encodingStyle="http://www.w3.org/2003/05/soap- 
     encoding"> 
    <soap:Header> 
        <!-- extensible headers --> 
    </soap:Header> 
    <soap:Body> 
        <!-- payload --> 
        <soap:Fault> 
            <!-- fault body --> 
        </soap:Fault> 
    </soap:Body> 
</soap:Envelope> 

Code 4: SOAP syntax 
 
SOAP Envelope. This is the top or root element of the XML document representing the 
message. The element must be given the name “envelope” and is a required element in a 
SOAP message. Inside this element the document may declare namespaces. The element is 
the container for the SOAP header and SOAP Body. 
 
SOAP Header. This element is optional but if present it must be the first immediate child 
element in the SOAP message. The element name must be “header”. The intended purpose of 
the header is to encapsulate extension. Any additional functionality to be included in the 
protocol will be added to the header, and therefore will not affect the specification. This 
includes extensions that handle security and routing intermediaries. Use of extra functionality 
of the header has not been specified in the RFC, so to use extra functionality must be some 
agreement between the sender and receiver. 
 
SOAP Body. This element must be present in a SOAP message. As with other elements the 
name “body” must be used. The body is the location for application specific data. It contains 
the payload of the message. The payload of the message is serialized according to the chosen 
convention and encoding. A payload can specify any encoding it desires. If the header 
element is missing then the body is the first child. 
 
SOAP Fault. Carries error and/or status information and must be a child of the body if 
present. 
 
2.2.5 WSDL 
 
The acronym WSDL stands for Web Service Definition Language. With the prospect of 
application-to-application communication, there are unanswered questions. Having created a 
service that has been published, how does a potential user know what method to call, the 
parameter(s) to send if any, what return type to expect, the transport protocol to use and so 
forth? WSDL is the answer! 

 10



2 • Background 

WSDL is an arrangement for relating the Web service interface in XML. WSDL is to Web 
service what IDL is the CORBA. Web service definitions provide documentation for 
distributed systems and serve as a recipe for automating the details involved in application 
communication. The document produced as a result of the recipe is a platform and language 
neutral XML document. Simply put, a WSDL document says: This is service “A”. You can 
find me at endpoint “B”. To use me you need to do “C” and expect “D” in return. And so 
forth. 
 
WSDL Document 
 
An agreement of some sort must exist between a server and a client for the service(s) to be 
consumed. WSDL is where one would find most of these agreements. 
 
The document contains abstract elements that define components in a platform and language 
neutral manner [22]. The abstract elements of a WSDL document include: 
 

• Type – This element holds the data type definitions or schemas that are relevant to the 
exchanged message. WSDL prefers the use of XML schema but there is no restriction  

 
• Message – Consists of one or more logical parts. Its represents an abstract definition 

of the message to be transmitted. 
 
• Operation – Provides an abstract definition of each action support by the service. 
 
• Port Types –This is a collection of abstract operation. Basically, it is a grouping of all 

the methods that can be called. It gives the input (parameter) and the output (return 
value). 

 
Concrete elements binds abstract elements to concrete protocol, data format specification and 
endpoint. 
 

• Binding – Defines the message format and protocol for the operations and messages 
defined by a Port Type. Here it can only specify one protocol. 

 
• Port – It defines individual endpoints by specifying a single address for a binding. 

This is where the service is located. 
 
• Service – This is a grouping of related ports. It is important that none of the ports 

communicate with each other. 

 11



2 • Background 

Code 5 shows the basic structure of a WSDL document. 
 

<wsdl:definitions name="nmtoken" targetNamespace="uri"> 
    <import namespace="uri" location="uri"/> 
    <wsdl:documentation .... /> 
 
    <wsdl:types> 
           … 
    </wsdl:types> 

 
    <wsdl:message name="nmtoken"> 
           … 
    </wsdl:message> 

 
    <wsdl:portType name="nmtoken"> 
        <wsdl:operation name="nmtoken"> 
           <wsdl:input name="nmtoken" message="qname"> 
                   … 
           </wsdl:input> 
           <wsdl:output name="nmtoken" message="qname"> 
                   … 
           </wsdl:output> 
           <wsdl:fault name="nmtoken" message="qname"> 
                   … 
           </wsdl:fault> 
        </wsdl:operation> 
 
    </wsdl:portType> 
 
    <wsdl:binding name="nmtoken" type="qname"> 
          … 
    </wsdl:binding> 
 
    <wsdl:service name="nmtoken"> 
        <wsdl:port name="nmtoken" binding="qname"> 
                … 
        </wsdl:port> 
    </wsdl:service> 
</wsdl:definitions> 

Code 5: WSDL syntax 
 
Web Service Messaging 
 
Four different interaction scenarios between a client and a server of Web Service have been 
defined [22]. The four are as follows: 
  

1. One-Way – The endpoint receives a message. Client sends message. 
 
2. Response-Request – The endpoint receives a message and returns a response. This is 

the most common type where a client sends a request and the server replies. 
 
3. Solicit-Response – The style is the same as Response-Request where the endpoint 

sends a message and receives a response. Here it is the server that sends the message 
and awaits a response. 

 
4. Notification – The endpoint sends a message. Server sends message. 

 

 12



2 • Background 

2.2.6 UDDI 
 
The acronym UDDI stands for Universal Description Discovery and Integration. Up to this 
point, some important aspects of Web service has been discussed. Web service use WSDL 
documents to describe the service(s) on offer. A service requestor is then able to utilize the 
WSDL to establish communication with the service. It has also being stated that Web service 
communication builds on the SOAP protocol, which is transport protocol independent. This 
leads to the question: How does one find the Web service(s) being offered? To this question 
there exists no single answer. 
 
One possible way to find the location of a service (or endpoint), is to explicitly communicate 
the endpoint address (URL) to the application or the application’s developer(s). This could be 
done by: sending an email, writing applications that know the intended endpoint address, 
publish the information on a Web site and so forth. 
 
Another approach is to use UDDI. UDDI is a platform-independent framework for describing 
services, discovering businesses and integrating business service by using the Internet [23]. 
 
A good analogy of UDDI is that of a telephone directory. If you want to find a service simply 
check the telephone directory, it provides a listings of registered services. Like a telephone 
directory the UDDI has a concept of yellow pages; where a search can be performed by 
categories: location, industry or product. There is a white pages section where more detailed 
information on a service provider such as name, email address, location and so forth is given. 
There is also a green page that contains more technical information about the service. 
 
UDDI is intended to be used by providers, who wish to make their service(s) public in a 
standardized manner. If a service provider wants the service to remain private (possibly for 
security reasons), then it would be best suited to take the first approach of explicitly 
communicating the endpoint address. 
 
This thesis did not implement a UDDI as the service will only be offered to a limited 
customer-base. For this reason a more detailed explanation of UDDI will not be given but for 
further reading on UDDI see UDDI.org [23]. 
 
2.2.7 Web Service Stack 
 
With Web service being a relatively new technology, it is recommended that developers 
become familiar with the many layered and interrelated technologies that make up the Web 
Service stack (architecture). The Web service stack provides a visual representation of these 
layers and technologies. The technology can be created and used in many ways, thus there is 
no single concise way to represent the stack. The Web Service stack shown is figure 4 is taken 
from the W3C [24]. 
 

 13



2 • Background 

  
PPRROOCCEESSSSEESS    

DDIISSCCOOVVEERRYY,,  AAGGGGRREEGGAATTIIOONN……     
 MM    

 
 

Figure 4: Web Service Architecture Stack 
 
One cornerstone on which Web service is built is XML and this should be evident from 
viewing figure 4. At the lowest level of the stack there lies a myriad of Transport Protocols 
over which Web service messages are sent. All Web service messages are sent using SOAP, 
which runs over the transport protocol of choice. WSDL is used to describe the service(s) on 
offer. The stack also involves processes like discovery, which is handled by UDDI. All the 
components used within the Web service arena are built on XML. 
 
Much work and research have already taken place on Web service but much more is on going 
and some yet to come. The technology is still in its infant stage and is waiting for various 
proposals to be approved by the Internet governing bodies. There is a lot of focus around Web 
Service Security (WSS), XML Signature and XML Encryption among others. Security does 
not stop with Web Service and its related components; security in the various communication 
protocols is also a concern. 
 
The point is again made that, Web service is not a single technology but rather a collection of 
existing and emerging technologies to deliver services that are interoperable. 
 
2.2.8 Web Service Tools 
 
Although some of the protocols related to Web Service have only being around for a short 
time, there are already a number of implementations on the market. 
 
In the Java community, there is the Apache Axis project (originally donated by IBM) and the 
chosen tool for this thesis. IBM Web Service Toolkit is yet another implementation on offer. 
HP product e-Speak is a Java implementation of Web service. Sun Microsystems has 
available also a Web Service Development Pack. 
 

SS  
EE  
CC  
UU  
RR  
II  
TT  
YY  

AA  
NN  
AA  
GG  
EE  
MM  
EE  
NN  
TT  

CCOOMMMMUUNNIICCAATTIIOONNSS  PPRROOTTOOCCOOLL  
HHTTTTPP,,  SSMMTTPP,,  FFTTPP…… 

MMEESSSSAAGGEESS  

SSOOAAPP  EEXXTTEENNSSIIOONNSS  
SSEECCUURRIITTYY,,  TTRRAANNSSAACCTTIIOONNSS,,  RREELLIIAABBIILLIITTYY……  

  
SSOOAAPP  

DDEESSCCRRIIPPTTIIOONNSS   
WWEEBB  SSEERRVVIICCEE  DDEESSCCRRIIPPTTIIOONNSS  ((WWSSDDLL)) XX

MM
LL,,  
…… 

 14



2 • Background 

Microsoft’s latest platform .NET is their implementation of Web Service. One can also find 
toolkit is such language as C++ and Perl. 
 
Despite the fact that Web service is a relative newcomer to the market, it has without a doubt 
managed to catch the attention of the industry, which is evident with the support been 
gathered from small, medium to big industry players. 
 
2.3 Security 
 
An important requirement around which this thesis is centred is that of security. The security 
requirements arise from the fact that the application-to-application communication takes place 
across the Internet and the Web when using Web Service and this opens up possibilities of 
security breaches. This section serves to present terms and concepts that are important in the 
area of computer security. 
 
2.3.1 Secure System/Communication 
 
When communication between applications takes place across the boundaries of a trusted 
network or when using an insecure system, there exist no guarantee that the communication or 
system will behave as intended. The reality is that messages can be stolen as well as be 
partially or fully modified. There exists no certainty that communication takes place between 
intended parties. Therefore, security measures must be added to systems and/or 
communication when tasks are sensitive or safety crucial. 
 
Principles of Computer Security 
 
Any attempt to capture the notion of security must first cover Confidentiality, Integrity and 
Availability commonly referred to as the CIA of computer security [25]. 
 

1. Confidentiality – This is about ensuring that only authorized persons interpret 
protected information. This means that no more than the sender and intended 
receiver(s) should be able to understand the transmitted message. It does not mean that 
others are unaware of the message but rather that they cannot understand it if they 
were to access it. 

 
2. Integrity – Is aimed at protecting against modification of transmitted messages. 

Integrity guarantee that the content of the communicated message is not altered, either 
by accident or deliberately. 

 
3. Availability – As the name suggests is concerned with ensuring that information or 

resource is present when required. 
 
Principles of User Validation 
 
Making a system or communication secure does not end with CIA, it also involves tracking 
identity of users who requests service(s) [25]. The concepts fundamental to user validation 
includes: 
 

• Identification – This is about tying a user to a unique identity. The most common 
means is through username. 

 15



2 • Background 

• Authentication – Guarantees the identity of a party in a system or communication. 
Here both sender and receiver should be able to confirm the identity of the other party 
involved in the communication. Simply put are you who you say you are. 

 
2.3.2 Realizing Security 
 
There are numerous well established methods and systems developed that serves to fulfil the 
principles outlined in the earlier section. The remainder of this section will highlight only 
those that form a central part to the thesis. 
 
Cryptology 
 
The need for the security within computer systems and the communication between them has 
led the computer industry to the age-old solution of cryptology. Cryptology has today become 
a mainstream word whenever security is a need in systems and communication. 
 
It is a technique that allows a sender to mask data so that unauthorized user(s) can gain no 
information from viewing unauthorized data. The original message is distorted in such a way 
that it makes no sense to those unauthorized to view it. The act of making the data distorted is 
called encryption whilst the act of restoring data to its origin is called decryption. 
 
An important element in encryption and decryption is a key. An analogy typically used to 
explain this element is that of a physical lock and key. To make your home more secure you 
place a lock on the door to which there exists a key. Once you lock the door with this key only 
a person possessing the key can open the lock and enter your home. In cryptology a key is 
used for protection of data. A message is encrypted with a key and only those who have the 
key can decrypt the message. 
 
When encrypting and decrypting there is a choice of two types of algorithm: Symmetric and 
Asymmetric. With symmetric key cryptology the same key that is used to encrypt the data 
must be used to decrypt. This makes symmetric key cryptology the faster of the two as it 
requires less computation. It is also suited for encrypting large blocks of data. However, it 
presents a problem of key distribution; the receiver of the encrypted data needs the key that 
was used for encryption but when parties are located across system, how does the sender give 
the key to the receiver. Triple-DES is a popular symmetric algorithm. 
 
To solve the problem of key distribution one can use asymmetric key cryptology. This 
approach uses a pair of keys: a public key and a private key. The public key is known to 
everyone and the private key is secretly known only to the user. A sender uses the receiver’s 
public key to encrypt messages intended for the receiver and the receiver in turn uses the 
private key to decrypt. Because the receiver is the only one that knows the private key only 
the receiver can decrypt the message to its origin. RSA is a popular asymmetric algorithm. 
 
Message Digest 
 
Both symmetric and asymmetric algorithms offer Confidentiality but what of Integrity? For 
integrity a message digest must be introduced. This is in some case referred to as a 
“fingerprint.” 
 

 16



2 • Background 

A message digest is a function that ensures integrity of a message. It takes a message as input 
and generates a fix-sized block of bits, usually several hundred bits long that represent the 
fingerprint of the original message. The message digest is a one-way function. This means 
that it can generate a fingerprint from a message but given a fingerprint it is extremely 
difficult to generate the original message. 
 
Message digest algorithm available includes MD5 and SHA-512 [25]. 
 
Certificate 
 
With keys playing such a pivotal role in cryptology, it is important that trust be established 
around the authenticity of the key. How does one party know that the key being presented by 
another party is indeed from that party? This need for trust has led to the use of certificates. 
 
A certificate is used to identify the owner of a key. It gives information about the holder of the 
key such as: name, address, email address and country. It also carries information about the 
certificates expiry date. A certificate authority (CA) is used to issue and sign the certificate. 
When a certificate is signed by a CA it says to those viewing the party’s certificate that the 
party and the certificate is trustworthy. 
 
HTTP Basic Authentication 
 
Widely referred to as HTTP BASIC-AUTH, it is aimed at introducing a measure of security 
into the otherwise insecure HTTP protocol. The authentication scheme is based on the model 
of a client identifying and authenticating itself by means of a username and password. The 
server then performs a validation check of the credentials to see if it is allowed to enter the 
protected space. 
 
HTTP BASIC-AUTH scheme though adding security to the HTTP request is a non-secure 
method of filtering unauthorized access to protected areas on the HTTP server. It is based on 
the assumption that there is a trusted secure link between the parties [26]. It is insecure 
because the username and password submitted are sent in the clear. 
 
Transport Layer Security 
 
The Transport Layer Security (TLS) is a protocol that provides authentication and 
communication privacy between communicating applications over the internet. The protocol 
allows client/server applications to communicate in a manner designed to prevent tampering, 
eavesdropping and message forgery. 
 
TLS consists of two layers: TLS Handshake Protocol and the TLS Record Protocol. The TLS 
handshake Protocol allows parties to authenticate each other and negotiate encryption 
algorithm and keys. The TLS Record Protocol provides security with the chosen encryption 
method and provides mechanisms for preventing a message from being modified. 
 
TLS is often the protocol used when security needs to be added to existing protocols. For 
example to secure HTTP one runs HTTP over TLS, this result is commonly referred to as 
HTTPS. 

 17



3 Problem Formulation 
 
Significant parts of the work done on this project fall into the realm of distributed computing. 
Aside from enabling distributed computing this thesis also implements a small prototype 
application. This chapter presents requirements set forth by StruSoft that forms the basis for 
the work done and provides a rational for choices made. 
 
3.1 StruSoft Mandates 
 
In an effort to have tight control over the VIP Energiberäkningssystem and those permitted to 
use it, StruSoft has decided to use a License Server to aid them in their efforts [Appendix 
C.3]. 
 
The License Server will maintain a list of customers authorized by StruSoft to run the system. 
To this end, there must be communication between the License Server and the VIP 
Energiberäkningssystem. This leads to the first clear requirement of the thesis: allow for 
interaction between the VIP Energiberäkningssystem and a License Server. 
 
The License Server will at all time be the property of StruSoft and therefore will be held in 
their position and run on their premises. The VIP+ system on the other hand will run at a 
client’s location [5]. Regardless of this physical decoupling of the system the requirement of 
interaction between the VIP Energiberäkningssystem and the License Server must always be 
present. With this requirement enters the need for a distributed computing solution that will 
allow for interaction between the VIP Energiberäkningssystem and the License Server. 
 
When a customer chooses to run the VIP Energiberäkningssystem the application will first 
communicate with the License Server. Based on the validity of the customer’s license the 
server would decide whether or not to allow this customer access to the VIP 
Energiberäkningssystem kernel. If a valid license is found then rights are granted to execute 
the request whereas if an invalid license is found, the access is denied. 
 
When a customer’s license is near the expiry date then this customer must be notified. This 
notification should be automatically send by the License Server. 
 
Asides from enabling the communication between the VIP Energiberäkningssystem and the 
License Server, a prototype of the License Server should also be developed. This 
implementation can take the form of a License Server with a traditional hardware lock or a 
database. If the database solution is chosen, one should be able to perform such actions as: 
adding a new customer to the server; deleting a customer and searching for customer(s). 
 
The system though primarily used on personal computers and notebook should lend itself 
easily to other communicating devices including Personal Data Assistant (PDA) and smart 
phones. 
 

18 



3 • Problem Formation 

3.1.1 Non-Functional Requirements 
 
The mandates given by StruSoft are clear and concise but within these mandates there are 
unwritten non-functional requirements. This section looks at these non-functional 
requirements. 
 

• Security – The requirement for security stems in part from StruSoft desire to have 
tight control over the system. Only those users or customers approved by StruSoft 
should be granted access to the system. 
The nature of distributed computing is such that applications communicate across the 
Internet and the Web but there exist no guarantee that the communication link 
established can be trusted. The fact that trust cannot be guaranteed has also prompted 
the need for establishing secure communication. 

 
• Expandability – At this moment StruSoft will only sell the VIP 

Energiberäkningssystem to a selected number of customers. One future goal for the 
system is that it be sold to all who wish to buy throughout Europe and eventually 
worldwide. With a vision to the future, the solution implemented must be flexible and 
lend itself easily to expansion and changes. 

 
• Interoperability – The reality that faces this and other commercial product is that a 

vendor has no control over their customer’s choice of operating system platform and 
programming language or environment. Therefore it is important that the solution 
present in this thesis be high interoperable. 

 
• Performance – The fact that the system extends beyond the bounds of StruSoft 

network means that the time taken to complete the interaction between the VIP 
Energiberäkningssystem and the License Server cannot be guaranteed. Though this is 
so, the interaction should be as short as possible as the most important thing is to 
allow the customer rights to run the VIP Energiberäkningssystem. 

 
3.2 Design Decisions 
 
Having received clear guidelines for the part this thesis plays within the overall project, 
decisions now need to be taken with regards to the way forward. This section gives an account 
of the choices made and why. 
 
The development of software – be it a simple standalone application or a complex distributed 
application – begins with the choice of a programming language. For this project, Java is the 
language for development. Java is chosen primarily due to the following reasons: 
 

• Java provides a programming language that is platform independent; write once run 
anywhere. It holds true only for Java, as language like C++ require the different 
executables for different platforms. With Java the byte code which is platform neutral 
can be transported to any platform. 

 
• The Java programming language and environment is freely available for download 

unlike language like C# which is bundled with Microsoft .NET that requires purchase. 
 

 19



3 • Problem Formation 

• The Java programming language is built with security in mind and it offers an array of 
security features [27]. 

 
Another decision that shapes the cornerstone of project is the choice of distributed computing 
solution. Web service comes out as the winner because: 
 

• Internet Standards - Web service is built upon open Internet Standards which 
includes: UDDI, WSDL, XML, SOAP, HTTPS, and SMTP. These standard protocols 
are within the public domain under the control of the organization like W3C. With 
XML at the heart of the protocols employed, Web Service offers a text-based data 
representation which provides readability. 

 
• Platform Neutral – Exactly because of the use of open Internet standards Web 

service is about giving a platform-neutral solution to distributed computing unlike 
CORBA, DCOM and Java RMI. 

 
• Interoperability – This result from the fact that Web service is built with Internet 

standard protocols. 
 
• Expandability/Scalability – Web service allows for handling of increased load, while 

managing investment in providing service. 
 
The two decisions taken previously would enable one to develop (if necessary) a prototype 
License Server and allow for the communication to the License Server and the VIP+ 
application, but there is a need to make one further decision: that of security. 
 
The project takes a twofold approach to meeting the security requirements: securing the 
communication link and securing the License Server. In order to secure the communication 
link between the VIP Energiberäkningssystem and the License Server, HTTPS and HTTP 
BASIC-AUTH is used to provide the user authentication and confidentiality. The second 
implementation of security was centred on the actual data exchanged between the client and 
the License Server. Before sending data on the wire it is first encrypted with the symmetric 
key algorithm and a fingerprint created. This accounts for Integrity. 
 
The actual implementation of the License Server must be decided before work could progress 
on the project. Implementation could be a traditional hardware lock or through a database. 
The decision is taken to implement the License Server as a database due to the following very 
important reasons: 
 

• Cost – A primary reason for choosing a database approach. The cost to StruSoft to 
obtain hardware lock of all the customers that use the system will increase as the 
customer base increase. And further more, some of the cost of this hardware must be 
passed on to the customer and thus would increase the final cost of the system. 

 
• Scalability – By using a database approach, StruSoft could easily manage a varying 

number of customers, be it tens or thousands. The primary requirement would be hard 
disk space. As the customer base increase and they expand into wider market it would 
be easier to realise this growth with a database rather than hardware lock – which 
would require the physical distribution of these locks introducing extra logistic 
problems. 

 20



3 • Problem Formation 

• Maintenance – The issue of maintenance is an important aspect of any application. 
Maintenance of hardware lock would require StruSoft to go to their customers’ 
locations which is a costly venture especially when a customer is in another country. 
With a database approach maintenance is a simpler task. 

 
To fully simulate communication there is a need for a Web server. This will allow for the 
implementation of a Web service and provide an endpoint address that the client’s application 
will use to communicate will the License Server. For this Apache Tomcat is used. 
 
The development tools and environment required for a database application, Web service 
implementation and a Web application is provided by the Apache Software Foundation and 
MySQL. The Apache Software Foundation provided the Web application or server – Tomcat 
and the Web service engine – Axis. The database application – MySQL was provided by the 
MySQL AB. (For more on Apache and MySQL see Chapter 4.6 Development Tools.) The 
reasons for selecting these solutions are: 
 

• Cost – First and foremost the Apache Software Foundation offers solutions that are 
free. 

 
• Open Source – With access to the source code one can modify the application to fit 

their needs. 
 
• Platform – All the solutions chosen requires a Java platform. The Java programming 

language and platform had already been chosen as the platform and language of 
choice. 

 
• Support – There is fabulous support available to users of Apache solutions not only 

from the Apache Software Foundation themselves but also from all from all the users. 
A benefit of using the open source solution from Apache is the support and 
contribution put forward by both users and developers. 

 
One could write all the code in a simple text editor, but as project size increases it is 
recommended that a development environment be used. For this project the Eclipse 
development environment is preferred. (For more on Eclipse see Chapter 4.6 Development 
Tools.) 

 21



4 Development Environment 
 
This chapter takes a close look at the development environment and gives a detailed 
explanation as to how the various components are installed and configured. It also chews over 
the open source solutions used, and the choices of development tools. One important note to 
be added is that all configurations that follow in this chapter were done for Microsoft 
Windows XP operating system. 
 
4.1 Java Configuration 
 
Central to this project is Java programming language and platform that all other components 
to be installed require. Therefore, it is the first piece that should be installed and configured. 
 
4.1.1 Download 
 
In order to have the Java platform, one must first get the Java 2 SDK Standard Edition (there 
is also an Enterprise Edition but for this project the Standard Edition is enough). Java 2 SDK 
Standard Edition can be downloaded from the Sun Microsystems Web site [28]. Navigate the 
pages and download the latest version of the Java 2 SDK that is on offer - the version 
downloaded for this thesis is version 1.4.2_05. 
 
4.1.2 Installation and Set-up 
 
To install Java, run the executable file downloaded. This requires no changes, unless one 
wishes to change the installation directory. If the installation directory is changed, then a note 
of such should be made of this new location. If no change is made then the Java 2 SDK would 
be installed in the root directory. 
 
In order to make Java 2 SDK known and readily accessible to all application on the system 
from any folder, certain Java files need to be added to the path setting. On the Windows 
taskbar click Start, Settings then Control Panel. Once the control panel opens; double click the 
System icon then select the Advance tab and click the Environment Variables button [29]. 
 
In the lower section named System Variables do the following: 
 

• Click new and create a variable called Java_HOME. The value field should be the 
location of the Java 2 SDK directory, for example C:\j2sdk1.4.2_05. 

 
• Create a second variable called CLASSPATH with the following values: 

.;%Java_HOME%\bin; %Java_HOME%\tools.jar; %Java_HOME%\lib 
 
• Select the variable called Path and add the following value to the end: 

;%Java_HOME%\bin 
 
After these tasks are complete click OK and exit control panel. This system should 
automatically update the path but for best result restart your system. 
 

22 



4 • Development Environment 

4.1.3 Test 
 
To test if the setup and configuration is successful, try executing a simple Java program that 
prints to the console. Use any text editor and create the following file then save it as 
Congrats.Java. Code 6 shows the content of the file, simply copy and paste. 
 

public class Congrats{ 
     public static void main ( String[] args ){ 
          system.out.println ( “Congratulations You Did It!” ); 
     } 
} 

Code 6: Simple Java program 
 
Open a command terminal and go to the directory where the Congrats.Java file is stored, then 
type the following: 
 

1. > Javac Congrats.Java 
 
2. > Java Congrats 

 
On the console you should see - Congratulations You Did It! 
 
4.2 MySQL Configuration 
 
The prototype License Server that will be created for the project requires the uses of a 
database and MySQL is the chosen database. 
 
4.2.1 Download 
 
To download the database visit the MySQL Website [30], navigate the pages and download 
the latest version on offer. At the time of writing, the latest version on offer is version 4.0. For 
easiest installation download the zip format of the installer version for Windows OS. 
 
4.2.2 Installation and Set-up 
 
Unzip the installer version downloaded to a temporary directory. Form this location run the 
SETUP.EXE to begin the installation process. The installer will choose to put the MySQL 
installation in the root directory but one could choose to change the location. 
 
(Optional) To make MySQL known and readily accessible to all application on the system it 
needs to be added to the path setting. On the Windows start bar click Start, Setting then 
Control Panel. Once the control panel opens double click the System icon then select the 
Advance tab and click the Environment Variables button. 
 
In the lower section named System Variables do the following: 
 

• Click new and create a variable called MYSQL_HOME. The value field should be the 
location of the MySQL directory, for example C:\mysql. 

 

 23



4 • Development Environment 

In order to use the MySQL database with Java, download the MySQL connector/J from the 
MySQL Website [31]. The latest version on offer at the time of writing is mysql-connector-
Java-3.0.15-ga. Unzip the file and do the following: 
 

• Copy the .jar file to %Java_HOME%\jre\lib\ext. This allows Java applications to 
connect to MySQL database. 

 
• An optional step is to add the jar file to the CLASSPATH of System Variables. 

 
MySQL can also be installed as a service that allows it to run each to Windows start-up. For 
this and further configurations consult the manual. 
 
4.2.3 Test 
 
To test if the installation was successful, open the command widow and enter: 
 

• > cd %MYSQL_HOME%\bin 
 
• > mysql –u root –p 
 
• mysql> show databases 

 
At this point the console should show tables similar to view 1. It is assumed that the MySQLd 
had started either manually or as a service. 
 
 +------------------------------+ 
 !            Database          ! 
 +------------------------------+ 
 !             mysql            ! 
 !              test            ! 
 +------------------------------+ 

View 1: MySQL Databases. 
 
Further look at MySQL security will be considered in Chapter 6.2 – Open Source Security. 
 
4.3 Tomcat Configuration 
 
Tomcat provides the project with a Web application or server that will allow for the 
implementing of Web Service engines. 
 
4.3.1 Download 
 
To get the Tomcat Web application, visit the Jakarta Tomcat Website [32]. Navigate the 
pages for the latest available binary version. At the time of writing this is version 5.0.28. 
Download the binary Windows Installer executable. 
 

 24



4 • Development Environment 

4.3.2 Installation and Set-up 
 
Run the executable binary file downloaded. During installation such things as: administration 
password and ports can be set. Also the user can choose the change installation directory. 
With the version of Tomcat installed, the program provides a convenient shortcut in the Start 
menu. 
 
Tomcat requires that variables be added to System Variables. So click Start, Settings then 
Control Panel. Once the control panel opens double click the System icon then select the 
Advance tab and click the Environment Variables button. 
 
In the lower section named System Variables do the following: 
 

• Create a new variable named CATALINA_HOME with value being the location of 
the Tomcat application example C:\Program\Tomcat 5.0. 

 
• Add Servlet to your CLASSPATH variable. Append to the end of the list - 

%CATALINA_HOME%\common\lib\servlet.jar. 
If you are not using servlet this is not necessary. 

 
4.3.3 Test 
 
To perform the test you must first start the Tomcat Server. There are two ways to do this: 
through the console or the start menu. The use of the console is recommended as it gives 
useful error information if any such occurs. Open a console window and go to 
%CATALINA_HOME%\bin then type “startup”. Open your favourite Web browser and type the 
following URL: http://localhost:8080/. At this point you should see the Tomcat home page 
which indicates that you have a connection to the Web server. To stop the server, type the 
word “shutdown” in the console window. 
 
With the server up and running and working properly one can choose to change the home 
page by creating a new page. 
 
Further look at Tomcat and how to add more security will be considered in Chapter 6.2 
entitled Open Source Security. 
 
4.4 Axis Configuration 
 
Axis provides the project with the Web service engine required and therefore the 
configuration of this component is vital to the success of the Web Service. Axis is an 
implementation of SOAP and provides developers with a framework on which to develop 
Web service it also provides a few tools that are useful example WSDL2Java and TCPmon. 
 
4.4.1 Download 
 
A copy of Axis can be downloaded from the Apache site on the Axis home page [33]. Locate 
the latest binary release on offer; at the time of writing this is Axis 1.1. Download the file in 
zip format. 
 

 25



4 • Development Environment 

4.4.2 Installation and Set-up 
 
Axis does not contain an executable file; unzip it to a folder of choice. To install Axis do the 
following: 
 

• Extract the content of the zip file to a local folder. Example create a directory called 
axis-1_1 in the root directory 

 
• Copy the entire axis-1_1\Webapps\axis directory to the directory 

%CATALINA_HOME%\Webapps. 
 
Having copied all necessary files, Axis needs to be added to the System Variables. Click 
Start, Settings then Control Panel. Once the control panel opens double click the System icon 
then select the Advance tab and click the Environment Variables button. 
 
In the lower section named System Variables do the following [34]: 
 

• Create a variable named AXIS_HOME with the value pointing to the Axis directory, 
example C:\ axis-1_1. 

 
• Create another variable named AXIS_LIB with the value pointing to 

%AXIS_HOME%\lib. 
 
• Again create a variable named AXISCLASSPATH and add the following values: 

%AXIS_LIB%\axis.jar; %AXIS_LIB%\commons-discovery.jar; 
%AXIS_LIB%\commons-logging.jar; %AXIS_LIB%\jaxrpc.jar; 
%AXIS_LIB%\saaj.jar; %AXIS_LIB%\log4j-1.2.8.jar. 

 
Save changes. For best result restart Windows. 
 
4.4.3 Test 
 
To test the functionality of Axis, start the Tomcat as before and open your favourite Web 
browser (at least one that works with Axis) and enter the URL http://localhost:8080/axis. If all 
went well you should see the Axis home page. Axis provides a link on the home page called 
“validate”. This is just a page used to check if all the components needed to run Axis is 
present. Some components are optional and these have not been provided in this configuration 
other components are required; all of which are provided. 
 
The happy axis page should now say that all required components are present. This means 
you are ready to unleash the power of Web service using Axis – “yu up to the time.” 
 
The Axis team recommends the use of Xerces as the XML parser but Java 2 SDK 1.4.2_05 
already has a XML parser. It is up to the individual to download Xerces. 
 

 26



4 • Development Environment 

4.5 Open Source 
 
Open source solutions forms a central part of the framework of this thesis and therefore it is 
import that a detail examination is given on this arena. 
 
4.5.1 Historical View 
Much of the development tools and environment used in this thesis are open source solutions 
and the origin of open source is of particular personal interest. This sub-section explores this 
area of interest; therefore readers with no such interest could proceed to the next sub-section. 
 
To trace the origin of Open Source there is a need to revisit the early days of computers. One 
could “go out on a limb” and claim that in the beginning everything was free: software that is. 
In the 1960s when vendors like International Business Machines (IBM) delivered their 
products, it came with software that could be freely distributed to others; it came with the 
source code and the right to modify the code. It was strongly believed that the value of the 
computer was in the hardware which was at the time extremely expensive and little thought 
was given to the cost of software. 
 
The operating systems and applications thou necessary ingredients for the operation of a 
computer were deemed less valuable than the hardware. Users were few and computer 
manufacturers actively encouraged users to share improvements to software as it was thought 
that this would help reduce support cost [35]. 
 
By the late 1960s there was a shift for the proprietary software. This meant that users were no 
longer allowed to redistribute, source code were no longer available and programs could not 
be modified [35]. During this shift in paradigm two groups were formed which today are seen 
as the roots of the current Open Source movement. They were UNIX and GNU project. In the 
early 1990s entered Linux. 
 
UNIX 
 
The year was 1965 when the Bell Labs, Massachusetts Institute of Technology (MIT) and 
General Electric (GE) decided to join forces on the Multiplexed Information and Computing 
Service (MULTICS) project. MULTICS was supposed to be third generation computer 
equipment with a new interactive, multi-user operating system [36, 37, 38]. 
 
In 1969 support was withdrawn from the project and thus marked the end of MULTICS. 
Though the support was withdrawn from the project, two developers Ken Thompson and 
Dennis Ritchie continued to develop a file system and write some programs for the GE645 
computer. Success came when a game called “Space Travel” original developed from the 
MULTICS project was ported to the DEC PDP-7 (Programmed Data Processor 4K memory 
for user programs). Thompson implemented the file system that was designed earlier and 
continued improving other requirements with the aim of achieving a working operating 
system. With the promise of developing a text-processing tool for the system, they received a 
new DEC PDP-11 computer which was shared with others. This was the birth of UNIX. 
 
The typesetting facilities of the PDP-11 gained momentum and soon it was being used outside 
the research group, this triggered the need for documenting the operating system. The result 
was the first edition UNIX Programmer’s Manual by Thompson and Ritchie, dated November 
3, 1971 [37]. 

 27



4 • Development Environment 

By the third edition in 1973 UNIX was now installed on sixteen sites (all within 
AT&T/Western Electric) but knowledge of the system was not extended beyond AT&T. 
October 1973 was the public unveiling of UNIX at a conference. There was an explosion in 
demand for the operating system but AT&T could not capitalize on this surging demand. This 
was because of an antitrust ruling in 1956 restricting them from pursuing software as a 
business. Therefore UNIX was distributed with no support. Without support the community 
of UNIX users had to help themselves by helping each other. The community started sharing 
ideas, programs, bug fixes and other information. 
 
One could say this is a significant point in Open Source: the creation of UNIX at the Bell 
Labs. UNIX was distributed in source code form. Users all created from it and in turn 
improved on others improvement with the only cost being the cost of distribution (and 
licensing). AT&T patent and licensing became inferior as the system simply became bigger 
and more widely used [36]. 
 
Over the years, many UNIX derivates followed. Some of them were based on original AT&T 
versions, others on the Berkeley Software Distribution (BSD) line. 
 
GNU Project 
 
In 1971, Richard Stallman began working at the MIT Artificial Intelligence lab and became 
involved in a software sharing community. As an AI lab staff, his job was to improve a 
timesharing operating system used at the lab called Incompatible Timesharing System (ITS). 
This software and others designed would gladly be made available to those interested, one 
would simply ask for the source code and they could in turn read it, edit or copy parts to make 
a new program [39]. 
 
This software sharing community was hit hard in the early 1980s with a series of events. First, 
the computer that was used for ITS - PDP-10 series – was discontinued, making most of the 
programs designed for the ITS obsolete. Second, there was a mass exodus of AI staff from 
MIT. And third, with the 1980s came also proprietary software. The days of sharing and 
helping your neighbours were ending; owners of software forbid and obstruct sharing among 
users [39]. 
 
As the software sharing community disbanded, Richard Stallman decided that to the first re-
igniting the community there must be a free operating system. He decided to build an 
operating system compatible with UNIX and choose the name GNU. GNU was an acronym 
used in the hacker community that stands for “GNU’s Not Unix.” In developing the GNU 
system a decision was taken not to reinvent the wheel and simply adapt and use exiting pieces 
of free software where possible. Stallman achieved the initial goal of a free operating system. 
 
In January 1984 Richard Stallman quit his job at MIT and began writing GNU software. 
Work on GNU Emacs began September 1984, and in early 1985 it began to be usable, 
enabling text editing on UNIX systems [39]. 
 
With the passing years the GNU project has grown from strength to strength. The GNU 
project has given: the Copyleft Law, General Public License (GPL) and The Free Software 
Foundation. 
 
 

 28



4 • Development Environment 

Linux 
In 1991 Linus Torvalds a student at a Finnish university started to develop a UNIX 
compatible kernel [40]. Linus was dissatisfied with the fact that he couldn’t run UNIX on his 
PC with Intel 386 processor and therefore decided to rewrite UNIX to make it compatible. 
 
The design of Linux used a monolithic architecture. Linux was provided under the Copyleft 
law with the GPL license and others were invited to assist in the developing and improving of 
the kernel. With a large community of willing developers the Linux community grew rapidly. 
The Linux kernel was later combined with the GNU system (which was in need of a working 
kernel) to provide a complete operating system. 
 
With subsequent releases the Linux kernel has improved and extended and today Linux 
operating system is the fastest growing operating system [41]. 
 
Up to the Time 
 
Starting in the late 1990s interests in open source rocketed, with various large industry players 
embracing the concept and taking an active role in the community. 
 
1997 saw the announcement of Netscape's Mozilla project. Google Inc presented their search 
engine in 1998 running the first large scale installation of Linux operating system. In the same 
year The Open Group offered Linux certification to carry the UNIX name. Oracle and 
Informix vowed support for Linux. Existing open source project Apache received support 
from IBM. In August 2002 the UK government issued a policy document to promote the use 
of open source software in “central government departments and their agencies, local 
government, the evolved administrations as voluntary partners, and the wider public sector, 
e.g. non-departmental public bodies (NDPBs) and the National Health Service [42].” 
 
Major computer manufacturers started shipping computers with variants of the Linux 
operating system (for example IBM) and many companies turned to open source products 
from Internet Service Providers (ISP) - using SendMail – to publishers - using Open Office. 
These and other significant changes and trends have positioned open source community as a 
permanent stay and a major contender. 
 
4.5.2 Open Source Fundamentals 
 
So far a conscious effort has been made to give readers the origins of open source and where 
it is heading, but what of the definition and its core principles. 
 
Open source refers to those computer programs or operating systems for which the original 
source code is publicly available. Thus, users can examine the source code to see how things 
work and even modify it if they see fit. 
 
Inherent in the open source philosophy is freedom [39, 43]. 
  

1. The freedom to execute the program, for any purpose. 
 
2. The freedom to study how the program works, and modify it to your needs. 
 
3. The freedom to redistribute copies so you can help your neighbour. 

 29



4 • Development Environment 

4. The freedom to improve the program, and release your improvements to the public, so 
that the whole community benefits. 

 
There is more to Open Source than access to source code; there are distributions terms that 
must be complied with. The following are criteria for open source software [44]: 
 

1. Free Redistribution – The license shall permit any party to sell or give away the 
software as a component of an aggregate software distribution containing programs 
from several different sources. There shall be no royalty or other fee for sale of 
license. 
Rationale: This eliminates the appeal gain sales dollars in the short run and toss the 
long term gain. 

 
2. Source Code – Source code must be included in the program and the distribution 

should be in compiled form and source code. Where source code is not provided, there 
should be a means for downloading this with no more than reasonable reproduction 
cost – example downloading via Internet without cost. Intermediate forms of code 
such as those output by pre-processor are not allowed. Intentionally obfuscated source 
code is not allowed. 
Rationale: Allow for program evolution. Making evolution of program easy requires 
that modification be made easy. 

 
3. Derived Works – Modification must be allowed along with derived works, and the 

distribution of these works is under the same terms as the license of the original 
software. 
Rationale: People should be able to experiment with and redistribute modifications, 
this will allow for evolution. 

 
4. Integrity of The Author’s Source Code – The license permits the restriction of 

source code from being modified. This is only permitted if the distribution of the 
source allows “patch files” with the source code for modifying the program at build 
time. Distribution of software built from modified source code must be explicitly 
permitted. Derived works may be required to carry a different name or version number 
from the original. 
Rationale: All have the right to know who is responsible for the software they are 
using. 

 
5. No discriminating Against Person or Groups – The discrimination against any 

person or group of persons is not permitted by the license. 
Rationale: This prevents any open source license from barring anybody out of the 
process. 

 
6. No discriminating Against Fields of Endeavours – There should be no field of 

endeavour that is restricted from making use of the program. 
Rationale: This clause is intended to prohibit license traps that prohibit open source 
from being used commercially. 

 
7. Distribution of License – All rights attached to the program must apply to those 

whom the program is redistributed without the need for additional license. 
Rationale: This clause keeps the software as open source always. 

 30



4 • Development Environment 

8. License Must Not Be Specified To A Product – The rights of a program must not 
depend on the program’s being part of a particular software distribution. The program 
is removed from the original distribution and used or redistributed; all parties to whom 
the program is redistributed should have the same right as with the original software. 
Rationale: This clause forecloses yet another class of license traps. 

 
9. License Must Not Restrict Other Software – No restrictions should be placed on 

other software distributed along with the license software. 
Rationale: Allows distributors of open source software the right to make choices about 
their own software. 

 
10. The License Must Be Technology-Neutral* – License must not be restricted to an 

individual technology or style of interface. 
Rationale: This provision is aimed specifically at licenses which require an explicit 
gesture of assent in order to establish a contract between licensor and licensee. 

 
4.5.3 Pros and Cons of Open Source 
 
Open source has now reach “prime time” and has tremendous support for industry and 
governments alike. The question remains, why do individuals, organizations and government 
alike choose or at least consider open source? The answer to this question can be seen in the 
benefits that are offered. But, not everyone will choose open source product because they too 
come with shortcomings. This section looks at open source and examines its pluses and 
minuses. 
 
Some of the major gains from open source product are as follows: 
 

• Lower Total Cost of Ownership (TCO) – Total cost of ownership refers to the cost 
involved in acquiring the product (transport or distribution), actual product price and 
management of the product. With open source, one can acquire certain products for no 
more than distribution cost; for example the cost of downloading the product from the 
Internet. Management cost will be incurred regardless of whether a product is open 
source or not as someone needs to be responsible for the maintaining and updating of 
the product. There is also extensive support for open product. 

 
• Customisation – Every individual, organization and government have distinctive 

needs. Software on the other hand tend to be sold on a as is basis, with the hope that 
all can find what they are looking for in the product. If one is unhappy with software 
then he or she can adjust setting made available by the software, beyond this there is 
usually no recourse. 
Open source allows users (those with knowledge and understanding of the source 
code) to adjust the product to suite the users. With this ability one can go beyond the 
settings offered by the product in the cases where they are deemed insufficient. This 
ability of customisation leads to evolution of the product. 
 

• Encourages Software Re-Use – The criteria of open source rely heavily on and 
encourage software re-use and freedom to re-use source code (see previous sub-
section for more details). Open source development permits programmers to cooperate 
freely with minimum legal obstacles. 

 31



4 • Development Environment 

Developers are given freedom to re-use existing code. The approach of not reinventing 
the wheel was taken by Richard Stallman [39] when he was developing the GNU 
system. 
 

• Decreases Vendor Lock-In – Individuals, organizations and governments no longer 
have to be tied to a vendor. Most open source products are built on industry standard 
and uses industry standard and formats, therefore one is not tied to proprietary 
standards and format and this makes it easier to switch product without major efforts. 
There is no need to wait on source-vendor to provide update to source code, as one is 
free to adjust and adapt source code. 
Scenario: Ability to freely change vendor with databases. MySQL database is a 
popular open source database the uses Standard Query Language (SQL), if a project 
has MySQL as it database and wishes to change, it becomes a matter of finding and 
replacement MySQL with another database that used SQL; say for instance Oracle 
DB. 

 
Having discussed some of the reason why one would go down the open source road it is now 
time to give a few arguments for why one could or should be vary of this path. The follow are 
arguments as why not to use open source products. 
 

• Learning Curve – When using new software there will be a learning curve; time 
spent learning how to use the product and this is no different from open source 
software. This is no different for open source products than for commercial software 
products.  

 
• Language – Communication is a major building block for open source project. More 

often than not the parties involved in the project are based in different regions, even 
countries. This importance of this communication also brings into play one setback: 
the language. 
Often the language of open source development is English but this is not the language 
of all involved in the development. It is not uncommon that not all member of open 
source project is a native English speaker and therefore language would become a 
barrier. This could lead to communication difficulties. This leaves many talented and 
expert developers out of the loop, as they might be uncomfortable in English. 

 
• Configuration – This is one area where some open source products fall behind the 

commercial counterparts. It can sometimes be a challenge to get an open source 
product up and running; as it could be difficult to configure. Installation often requires 
technical knowledge of sorts, an example would be Axis – this requires knowledge of 
Java, HTTP and a little XML where configuration is needed. Commercial products are 
often easier to use as they often come with user interface and normally require less 
prior knowledge and expertise. 

 
• Bad Guys – There is an increased security concern when using open source products. 

This I refer to as the “bad guy” effect. “Bad guys” are individual (both male and 
female) that set out to maliciously attack other users. 
The bad guy effect is particularly real when using open source product because all 
have access to the source code and freedom to study and modify the code. The bad 
guys with malicious intent and time can study the code to the point where they become 
very familiar with the flow of the program and all its underlying function. With such 

 32



4 • Development Environment 

in-depth knowledge they become aware of any pitfall or shortcomings of the product. 
Armed with such knowledge they set out to attack other users of the product by 
exploiting the shortcomings they are aware of. 

 
4.6 Development Tools 
 
An important component in any software project is the tool(s) used in the development 
process. Within the confines of this section a concise introduction is given on the 
development tools used for this project. 
 
4.6.1 The Apache Project 
 
The Apache Project’s main endeavour is to provide a HTTP (Web) server. The project is a 
joint software development effort aimed at producing a robust, commercially approved, 
feature-fulled and freely available source code implementation of a Web server. It is a 
collaboration of developers the world over with communication, planning and development of 
the server and its related documentation is done using the Web and Internet. The volunteers 
are known as the Apache Group and alongside them stand hundreds of users that contribute 
ideas, codes and documentation to the project [45].  
 
With very large support from the industry and the wide use of the server, Apache server is the 
number one server on the Internet and the most widely used. This survey was done by 
Netcraft [46]. The popularity of the Apache project and the wide support made it and 
attractive choice for this project along with the other benefits of open source (see chapter 
4.5.3, Pros and Cons of Open Source). Tomcat and Axis provides the Web server and Web 
Service engine respectively both of which are provided by the Apache project. 
 
Tomcat – This is a free, open source JSP/Servlet container that is used in the implementation 
of Java Servlet and Java Server Pages technologies [47]. The Java Community Process of Sun 
developed the specification for the Java Servlet and Java Server Pages. Developers the world 
over cooperate in the development of Tomcat; this includes Apache, Sun and various 
companies and individuals. It is released under the Apache Software License [48] both in 
binary and source versions. The implementation is available for use in Web servers, 
development tools and to create Web sites. 
 
Axis – This is considered by most as the Web service engine. It is an implementation of the 
SOAP submission to W3C [20]. SOAP (therefore Axis) is designed as a protocol for 
exchanging XML based information in a decentralized, distributed environment. For a 
detailed explanation of SOAP see chapter two section four, SOAP. 
 
Axis also includes the implementation of Web Service Invocation Framework (WSIF). WSIF 
enables developers to interact with the WSDL descriptions rather than work directly with 
SOAP APIs. It allows for stubless or fully dynamic invocation of a Web service, by 
examining the WSDL at runtime. Because WSIF is closely based upon WSDL, it can invoke 
any service described with WSDL. 
 

 33



4 • Development Environment 

4.6.1 MySQL 
 
“The MySQL (R) software delivers a very fast, multi-threaded, multi-user, and robust SQL 
(Structured Query Language) database server. MySQL Server is intended for mission-critical, 
heavy-load production systems as well as for embedding into mass-deployed software. 
MySQL is a registered trademark of MySQL AB. [49]” 
 
MySQL AB was established in Sweden and is the company of the MySQL founders and main 
developers. Developers are all employed by MySQL. The company is described as a “virtual 
company” with people in a dozen countries around the world. Communication with partners, 
supporters and users is done primarily via the Internet. 
 
The MySQL database software is Dual Licensed. One can choose to use MySQL database as 
an Open Source/Free Software product under the terms of the GNU General Public License or 
can purchase a standard commercial license from MySQL AB [49, 50]. 
 
Some important values of MySQL that is dedicated to open source are: 
 

• MySQL should be available and affordable to all. 
 
• Partners share values and mindset. 
 
• MySQL works against software patents. 
 
• And importantly MySQL AB and its employees subscribe to the Open Source 

philosophy and support the Open Source community. 
 
4.6.1 Eclipse 
 
The Eclipse Platform is described by Eclipse Foundation as “a kind of universal tool platform 
[51]”, this is because the Eclipse platform relies a lot on internationalization. It is an 
Integrated Development Environment (IDE) that can be used to develop an array of 
applications including Web sites, embedded Java program, C++ programs and Enterprise 
JavaBeans. With all these capabilities inherit in Eclipse, the statement used by the foundation 
to describe the Eclipse Platform is: “… an IDE for anything and for nothing in particular. 
[52]” 
 
Eclipse is very generic though it comes with a lot of built-in functionality. The full capability 
of Eclipse is seen through the ability to extend the Platform to work with new content types, 
do new things with existing content types and to make the generic specific [52]. Plug-ins are 
used to discover, integrate and run modules. For the most part Eclipse uses Java SDK and has 
no dependence on the underlying operating system. 

 34



5 Discussions 
 
The system delivered at the end of the thesis can be thought of as a combination of 
applications, thus adding a level of complexity to the development process. The three 
components that makes up the system are: a prototype License Server, client-side code and 
the all important Web service. It is important to give a clear and concise view of the steps 
involved in developing such a system and the resulting architecture. This chapter provides 
exactly this. 
 
5.1 Software Design 
 
Central to the development of the system is the principle software engineering. This section 
examines the software process employed during the project. 
 
Software engineering is a discipline which is concerned with all aspects of software or 
information systems production from the beginning stages of specification straight through to 
maintenance of system after it is delivered to the user [53]. As a discipline, software 
engineering has structured models for software development. The software development 
model that is used for this system is the Waterfall Model. 
 
5.1.1 Waterfall Model 
 
This software development model is commonly referred to as: Classic Life Cycle Model, 
Linear Sequential Model or Software Development Life Cycle Model. 
 
Figure 4 give a graphical representation of the activities involved in the Waterfall model. The 
figure resembles that of a waterfall, with each component in the model cascading into the 
next, thus the name Waterfall. The arrows on the left of each component that flows upwards 
depict the fact that at any stage of the development cycle one can perform testing or 
verification and if there are shortcomings it is possible to loop backwards to the previous 
component to re-evaluate with a view of correcting errors. 
 
 

35 



5 • Discussions 

PPRROOJJEECCTT  PPLLAANNNNIINNGG,,  
FFEEAASSIIBBIILLIITTYY SSTTUUDDYY

RREEQQUUIIRREEMMEENNTTSS  AANNAALLYYSSIISS

SSYYSSTTEEMM  DDEESSIIGGNN  

CCOODDEE  GGEENNEERRAATTIIOONN  

TTEESSTTIINNGG,,  IINNTTEEGGRRAATTIIOONN  
AANNDD IIMMPPLLEENNTTAATTIIOONN 

 
 

Figure 4: The Waterfall Model 

MMAAIINNTTEENNAANNCCEE  

 
The components identified in the model are by no means universal. Various organisations, 
institutions, individuals and texts present these components differently. But whether the 
model is given with different name or even more or less components with different names, the 
activities in the components above will be present. 
 

• Project planning, Feasibility study – Every project must in some shape or form 
begin with this activity. Here a high-level view of the intended project is established 
and the goals determined. This stage is most important as it gives a system view of the 
project and a subset of the requirements. It is here where the life-cycle feasibility is 
performed. 
The feasibility study is critical as it forms the basic of deciding as to whether or not 
the project or system is realistic with the resources available. Here a decision could be 
taken to rethink the overall project or to abort the project all together. 

 
• Requirements analysis – If a decision is taken to proceed with the project in 

whatever form, than the next step is to perform an in-depth requirements analysis. In 
this phase an analysis is carried out on the end-user (customer’s) information needs. 
The project goals are defined in terms of the intended functions and operations of the 
system. The main purpose of this level is to find the needs and define the problem that 
needs to be solved. 
By the end of this stage a document that specifics the recommendation of the system 
should be available. An understanding of the nature of the program(s), understanding 
of the domain for the system, specific function and interface requirements and 
performance of the system are attended at this stage. 

 
• System Design – At this stage the documentation produced in the prior stage is 

examined and used to describe the system’s overall structure. An in-depth and 

 36



5 • Discussions 

complete specification of the system architecture, business rules, process diagram, 
pseudo code, draft user’s manual and test plans are produced. 
Much care must be taken here as this is a pivotal point is the development process, 
error here can be very costly. Here a logical system is present that fulfils all the needs 
of the user. 

 
• Code Generation – Here the logical system is taken to another level and the real code 

is generated: a complete, verified set of program components. The effect put in at the 
design phase directly affects this stage; if the design stage was thorough and concise 
then the code generation should not be very complication. The “right” programming 
language are platform is use to develop the code. 

 
• Testing, Integration and Implementation – Once code has being written the testing 

begins. There are a myriad testing methodologies and testing tools available for 
unearthing the bugs that are in the code written. 
If the system included several components then all the pieces are carefully put together 
over several stages. 
A fully functioning operational system is the result. This includes such objectives as 
program and data conversion, installation, and training. 

 
• Maintenance – At this stage the system has be delivered to the end-users (customer) 

and being used accordingly. Until the system goes obsolete and is removed there 
exists a need for on-going maintenance of the system. 
Any changes introduced into the system, corrections, updates are handled at this stage. 
Change is inevitable and unavoidable therefore a system should be written to handle 
changes as smoothly as possible. 
Maintenance could take one back to any stage of the life cycle and back. It is a very 
necessary and important phase. 

 
5.1.2 Project’s Software Processes 
 
Having set the stage with the previous sub-section, it is now time to discuss the software 
processes of this project. 
 
Knowing that this development is apart of a larger, even more exciting and ground breaking 
project as well as a Master’s thesis, it is important that a disciplined approach be taken for the 
start. Therefore, an attempt is made to adhere to the phases set forth in the development 
process under the Waterfall model. 
 
With this sub-section, an attempt is made to describe the work in terms of the development 
life cycle of the Waterfall model. Figure 5 shows the development process of project, it 
closely resembles figure 4 of the Waterfall model except for an additional phase at the bottom 
of the falls and some of the flows upwards. 
 
 

 37



5 • Discussions 

PPRROOJJEECCTT  PPLLAANNNNIINNGG,,  
FFEEAASSIIBBIILLIITTYY SSTTUUDDYY

RREEQQUUIIRREEMMEENNTTSS  AANNAALLYYSSIISS

SSYYSSTTEEMM  DDEESSIIGGNN  

CCOODDEE  GGEENNEERRAATTIIOONN  

TTEESSTTIINNGG,,  IINNTTEEGGRRAATTIIOONN  
AANNDD IIMMPPLLEENNTTAATTIIOONN 

MMAAIINNTTEENNAANNCCEE  

 
 

Figure 5: Development life cycle of this Project 

HHAANNDD--OOVVEERR  

 
With each phase goes particular activities and the following explains the activities carried out 
within each phase. The project’s development life cycle unfolds as follows: 
 

Project planning, feasibility study – This phase marks the beginning of the project. 
The first activity within this phase is gaining an overview of the project. For such 
information contact with StruSoft is necessary. Information from StruSoft gives a 
clear picture of the overall system (for an overview of the system, please see Chapter 
1.2, VIP Energiberäkningssystem). See Appendix C for a copy of the System 
Overview provided by StruSoft. 
The next activity in this phase is to form a high-level view of the paper’s intended 
contribution. That is to say; get a system view of the project and the subset 
requirements. Once again, StruSoft provided the necessary information. See Appendix 
C for a copy of the Project Overview provided by StruSoft. 
The Project Overview offers great freedom as to the focus of the paper. After 
discussion with my supervisor, a decision is taken to focus on solving the problem 
presented by distributed computing. Other possible areas that are available included: 
e-commerce Web site development and mobile device coding. 
As with any project of this nature, there is a need to provide all parties involve with an 
idea of the duration of the project and the various activities involved. To this end, a 
project time table was created. See Appendix C for a copy of the Project Time Table. 
 
Figure 6 give a simple view of the various activities involved in this stage. 

 
 

Figure 6: Flow of activities within project planning and feasibility study phase. 

TTHHEESSIISS  FFOOCCUUSS TTIIMMEE  TTAABBLLEE PPRROOJJEECCTT  OOVVEERRVVIIEEWW  TTHHEESSIISS  OOVVEERRVVIIEEWW  

 38



5 • Discussions 

Requirements analysis – At this stage a more detailed analysis of the intended system 
has to be performed. Having a thesis overview is not enough to proceed; a more 
detailed description of what functions and operations were to be performed by the 
system is needed. For such information contact is once again made with StruSoft. 
After the analysis is carried out, a document with a concise definition of the needs of 
StruSoft and detailed information about the problem to be solved is created. See 
Appendix C for a copy the Final Project Proposal provided by StruSoft. 
Within this step there is a need to revise requirements presented in the previous stage 
and therefore the need for an upward flowing arrow is seen in figure 5. 
 
System Design – This stage starts with a discussion between my supervisor, my 
examiner and myself. Here, process diagram of the overall flow of the system is 
presented and test scenarios discussed. Further requirements are imposed (thus the 
upward flow in figure 5), these requires mainly focus on security. It is also this stage 
where a lot of decisions are taken about the way forward; decision such as choice of 
programming language and platform. 
At the end of this phase, the overall architecture of the system is agreed on and 
presented to StruSoft for approval. Section 4 of this chapter gives the overall 
architecture of the system. 
 
Code Generation – It is at this phase that all the requirements and needs get 
converted to computer codes. Here all code generated are either Java or XML. 
During the coding additional requirements were imposed by StruSoft that made it 
necessary to revise documents from the “Requirements Analysis” phase. In figure 5 an 
arrow upward from “Code Generation” to “Requirements Analysis” shows this event. 
 
Testing, Integration and Implementation – The work done on the project produce 
codes for a server-side application, client-side codes and a Web service. These codes 
are first individually debugged and tested to ensure that all function as intended with 
no programming errors. During the debugging and testing stage errors found are 
corrected. 
Once individual components are error-free, all pieces are brought together to form a 
single system and testing of the system is performed. 
The system is implemented and presented to StruSoft 
 
Maintenance – After demonstrating the system at StruSoft, recommendations are 
made for updates. This recommended meant the certain section of codes needed to be 
rewritten. The arrow in figure 5 that flows from “Maintenance” to “Code Generation” 
accounts for this recommendation. 
 
Hand-Over – This phase is introduced because my involvement in the project ends 
and therefore the all codes, documents and manual produced are handed over. 

 

 39



5 • Discussions 

5.2 License Server Architecture 
 
The creation of a License Server is an important requirement of the project. Recall that 
StruSoft had the following requirements: 
 

• A prototype License Server should be created that holds the license of all customers. 
 
• Implementation could use hardware or database solution. 
 
• One should be able to add, delete and search for customer. 
 
• When a customer license near the expiry date, the server should notify the customer by 

email, send a BBC to StruSoft and write an entry to a log file. 
 
• License Server determines if customers has rights to run VIP Energiberäkningssystem. 

 
A database solution is used to implement the License Server, which is created with the Java 
programming language (see Chapter 3.2, Design Decisions). Figure 7 below gives a view of 
the architecture of the License Server. 
 

GGRRAAPPHHIICCAALL  UUSSEERR  
IINNTTEERRFFAACCEE  

 
 

Figure 7: Architecture of License Server. 
 
The “backbone” of the License Server application is a MySQL database. The database is at 
the bottom tier of the system. Through the use of the database, the server is able to store 
customer and license information, this information can later be deleted and also a search can 
be performed to find information stored. 
 
The License Server application also makes uses of log files. The system uses log file to store 
information about emails sent. The log files for email store data about: the customer id and the 
date and time the email was sent. A log file is also kept for the Web service. This log stores 
data about which customer connection to the server and the date and time they connect. 
 

 
MMYYSSQQLL  

CCOORREE  SSYYSSTTEEMM  IIMMPPLLEEMMEENNTTAATTIIOONN  
EEMMAAIILL  IINNTTEERRNNEETT  

WWEEBB  
SSEERRVVIICCEE  

LLOOGG  
FFIILLEESS 

 40



5 • Discussions 

In middle tier lies the core implementation of the License Server. At this level the system 
interacts with the underlying database and performs required database operations; write, read 
and search. All log operations are coded here. It is at this level of the tier where the email 
operations also take place, once triggered the system while perform weekly checks of all 
customer license and generate email automatically to customers where necessary. The core is 
where all interaction with the VIP Energiberäkningssystem occurs – via the Web service of 
course. It is within the core where implementation of cryptology techniques and user 
verification can be found. Last and not least there is an interaction with the user interface. 
 
The top tier of the application holds the Graphical User Interface (GUI). The GUI gives user a 
familiar menu-drive approach to the system. Using the GUI one has the ability to add a new 
customer to the database; to delete a customer from the database and to search for 
customer(s). It allows users to start and or stop the email operators; view the logs for both 
Web service and for email and also to monitor the Web service. A help menu is also available 
with documentation as to how to use the system. For screen shots of the GUI see appendix a. 
 
5.3 Web Service Architecture 
 
The second and most important piece of the project is the creation of a Web service; for this 
Tomcat and Axis are used. (For more on Design Decisions see Chapter 3.2.) 
 
The best and simplest architecture for implement this Web service solution is the Service 
Oriented Approach (SOA). 
 
5.3.1 Why Service Oriented Approach 
 
“The only absolute certainty in life/time is ... CHANGE. Life's/time's only constant 
...CHANGE. Soh nuh fight it, work wid it, and embrace it” (The later part of the quote is 
written in Jamaican Patios but is not the part what is important, so there is no need to translate 
entirely.) Within the words of this quote one can find the reason for choosing SOA: “change.” 
 
Most business’s main aim is to make revenue grow by introducing a product and or service - 
new or improved. They have to do this in a global marketplace that is ever changing and 
dynamic and therefore a business must increase their quickness to respond to changing 
conditions. The challenges presented by the ever changing business environment requires IT 
solutions that are based on a SOA. SOA lends itself to change easily and is extensible and 
scalable. 
 
5.3.2 Service Oriented Approach Defined 
 
For the concept of service oriented architecture to be clearly understood, the term “service” 
must be put into perspective. A service is a function that is well defined and self contained 
that achieves a desired result. 
 
SOA is basically an assortment of services. Services communicate with each other, this 
communication can involve either simple data passing or it could involve two or more 
services coordinating some activity. The goal of the architecture is to achieve loose coupling 
among interacting software agents. 
 

 41



5 • Discussions 

The definition of SOA introduces the concept of agents. What are agents? An agent can be 
defined as a concrete piece of software or hardware that sends and receives units of data. The 
concept of agents can be further broken down into: Requestor and Provider. A provider agent 
is the one responsible for implementation of the logics of a service – owns the service. 
Requestor agents wish to use or exchange message with those services provided by the 
provider. 
 
The SOA is not a new thing. One can look at other distributed solutions starting with Object 
Request Brokers (ORBs) based on the CORBA specification or the use DCOM. For more on 
CORBA and DCOM, see Chapter 2.1, Distributed System. 
 
5.3.3 Service Oriented Approach Operations 
 
The sub-section before introduced two roles that are important to the operations in a SOA. A 
third roles needs to be introduced: service broker or simply broker. The broker stores 
information about all services within a particular Web service. 
 
The roles or players in SOA (and in Web service in general) – Provider; Requestor and 
Broker – performs three basic operations. The operations are: publish; find and bind. Figure 8 
shows the three roles and their operations. 
 

PPRROOVVIIDDEERR  

 
 

Figure 8: Service Oriented Approach Web Service Model 
 
In SOA the Provider publishes the Web service to the broker. Information about the Web 
service is registered, this includes: the location of the Web service; the transport protocol to 
be used; the name of function and parameters and return types. The Requestor finds the Web 
service required by using or contacting the Broker. The Broker gives the requestor the service 
description it has for the service. After getting the service description there no further contact 
between the Requestor and the Broker. The Requestor then uses the information gained to 
contact or interact with the Provider. 
 
The three roles identified do not have to involve three separate components. A component can 
play any or all of these roles. 

RREEQQUUEESSTTOORR  BBRROOKKEERR  

PPUUBBLLIICC  BBIINNDD

FFIINNDD

 42



5 • Discussions 

CCLLIIEENNTT  

 
 

Figure 9: Project’s Service Oriented Approach Model 
 
The SOA model for the project is shown in figure 9. The figure shows the job of Requestor 
and Broker being undertaken by the Client. In this scenario, the Provider - Server has a 
service that it offers to select few Requestors – Clients. Here there is no need for the Provider 
to publicly publish the service description via a third party broker. The Provider makes the 
service description privately available the Requestor - Client. The Client uses the find 
operation to retrieve the service description locally. The service description is when used to 
bind with the Provider –server and invoke or interact with the Web service implementation. 
 
5.4 Overall System Architecture 
 
The two pervious sections gave the architecture of the License Server and the Web service 
respectively. This section is aimed at giving an integrated view of the system as a whole. 
Figure 10 shows the different pieces: License Server, Web service and client application 
working together. 
 

 
Figure 10: System Architecture 

 
To explain the system with more clarity lets look at a scenario where a customer of StruSoft 
has the VIP Energiberäkningssystem and wishes to perform energy calculations. 
 
When the VIP Energiberäkningssystem is launched, the system first checks to see if the 
customer has a valid license or permit. The check is performed examining the license that 
resides locally or via interaction with the License Server. Let’s look at the case where the 
License Server is contacted, which is located at StruSoft. Interaction between the VIP 
Energiberäkningssystem and the License Server takes place via the Web or Internet. 
 
 

WWEEBB  
OORR  

IINNTTEERRNNEETT  

WWEEBB  SSEERRVVIICCEE  WWEEBB  SSEERRVVIICCEE  

CCLLIIEENNTT  
LLIICCEENNSSEE  SSEERRVVEERR  

VVIIPP  

 SSEERRVVEERR  RREEQQUUEESSTTOORR  

FFIINNDD

BBIINNDD

BBRROOKKEERR  

  
PPRROOVVIIDDEERR  

PPUUBBLLIISSHH

 43



5 • Discussions 

These are the steps that take place: 

1. Firstly, the VIP Energiberäkningssystem triggers the communication by starting up the 

 
. Secondly, the Web service on the Client interacts with the Web service on the server 

 
. Thirdly, the server’s Web service takes the question to the License Server. The 

 
. Next, the server’s Web service returns the answer it has received from the License 

 
. In the fifth and final step, the client’s Web service delivers the answer to the VIP 

 

Web service. The application asks the question: Is the license of this customer valid? 

2
over the Web or Internet using a particular transport protocol, example HTTP. 

3
License Server performs various operations to provide an answer to the question. If 
the customer has a valid license then permission is granted otherwise it is denied. If 
the customer license near the expiry dates a warning message sent. Possible answers 
are: ACCEPT REJECT or NOTICE. 

4
Server to the client’s Web service. 

5
Energiberäkningssystem. Based on the response received the system acts accordingly. 

 44



6 Security Issues 
 
It is common to find applications and systems that are built without any regard for security, in 
other cases security becomes an afterthought and is added when everything else is in place 
and working. It is frequent that security holes are reported or the applications and sites are 
hacked then action is taken to introduce security. The practise of putting security on the 
backburner may result from: the developers lack of knowledge about security; security is seen 
as an expensive venture with no obvious financial returns; or security seen merely as an 
inconvenience, example requiring users to remember passwords. 
 
A major focus of this thesis is security. The security needs results from the fact that 
communication between the loosely coupled applications occurred over the Web and Internet. 
This introduces a risk of possible security breach, which can lead to extensive and extensive 
damages. This chapter looks at the measures that are present in system to combat security 
breaches and also highlight the views of some industry experts as it pertains to open source 
security. 
 
6.1 Product Security 
 
The previous Chapter on System Discussion showed the final system can be thought of as 
three separate pieces: the License Server, the Web service and the client-side. In looking at 
the security implemented within the product it is useful to separate the two and examine the 
security that is implemented in each. 
 
6.1.1 License Server Security 
 
The License Server is essence to the success of the overall system as it holds the customer and 
license information. Any breach in security would leak information that could be used by 
malicious individuals or organization to: perform operations with the VIP 
Energiberäkningssystem with valid customer id; delete a customer’s license from the system, 
modify a license – example extending the life time of a license; or creating a license. 
 
Obviously such undesired treats should be prevented or at least made unfeasible. A security 
breach could result in not only monetary loss for StruSoft but also the loss of their customers’ 
confidence and damage to their reputation. 
 
The treats posed to the License Server cannot be ignored, and they are not ignored. The server 
is build with a strong focus on security from the very first stage. Figure 11 shows a view of 
the License Server architecture with security added. 
 

45 



6 • Security Issues 

GGRRAAPPHHIICCAALL  UUSSEERR  
IINNTTEERRFFAACCEE  

 
Figure 11: Security and the License Server 

 
The image of the padlock had become associated with security and in figure 11 the padlock 
has the same meaning and is placed that the points within the License Server where security 
feature are inherent. Each of these padlocks will be examined in further detail to give a 
complete understanding of the security that is present in the License Server. No claims are 
made to say that the measures implemented are complete and full-proof but they offer a level 
of security that would otherwise not be available. 
 
Database – MySQL 
 
A database management system allows multiple users to access the database at the same time. 
This means that the License Server can interact with MySQL while authorized personnel at 
the company uses the command prompt to interact with the database. 
 

• Restricting Unauthorized Access – With the offer of multiple users come the 
problem of unauthorized access to sensitive information in the database. MySQL 
provides a security and authorization subsystem. This enables the creation of accounts 
and the ability to specify account restrictions. 
The project makes use of the security and authorization subsystem for MySQL by 
using a user account. When any database action is to be performed username and 
password must first provided. If an incorrect username and or password are provided 
access to the MySQL database is denied. 
By using the security and authorization subsystem of MySQL the system ensures that 
only authorized applications and individuals can perform database operations. This 
allows for: confidentiality and user validation, two important requirements of security. 

 
Log Files 
 
A log file captures information on actions that have occurred. The log is able to capture such 
information as security failures, performance errors and application bugs and more.  
 

 
MMYYSSQQLL  

CCOORREE  SSYYSSTTEEMM  IIMMPPLLEEMMEENNTTAATTIIOONN  
EEMMAAIILL  IINNTTEERRNNEETT  

LLOOGG  
FFIILLEESS 

WWEEBB  
SSEERRVVIICCEE  

 46



6 • Security Issues 

• Vital Security Information – Logs provides a very effective way for analysing 
activities. Analysis can yield vital information, for example, the Web service 
maintains log files listing of every request made to the server. With log file analysis 
tools, it's possible to get a good idea of where visitors are coming from – IP address, 
who is requesting the service – customer ID, and what time they requested the service. 
From a security prospective this information is vital because any attempt to interact 
with the License Server via the Web service is recorded. In the event that an invalid or 
unauthorized attempt was made, say a malicious hacker tried to hack the system, this 
attempt would be written to the log whether or not it was successful. 
Log files are often implanted as read-only; this would prevent the content of the log 
from being modified and thus ensuring its integrity. 

 
A log does not directly offer any of the CIA of security nor does it offer user validation. 
Nonetheless it provides a means by which one can check to see if any of the fore mentioned 
are being violated. It also provides a means by which one can track malicious users or 
hackers. In cases where the IP address is recorded in the log, the address can be use to trace 
the origins of the user or hacker. 
 
Core Implementation 
 
In Chapter 2.3.2, Realizing Security, it is noted that the age old solution of cryptology is the 
means by which CIA of computer security is attained. The core implementation of the system 
relied heavily of cryptographic techniques to deliver security. The module is written in Java. 
The Java platform, both the language and library extensions, provides an excellent foundation 
for writing secure applications [54]. 
 
The security implementations makes an attempt to provide CIA and user validation. 
 

• User validation – The user validation at this level deals with the application 
interaction with the MySQL database. The core module has to validate itself to the 
database by providing a username and a password. 

 
• Confidentiality – The module guarantees confidentiality by using symmetric key 

cryptology. Here, the application shares a unique key with each individual user that it 
uses to encrypt and decrypt all messages being sent to and received from that user. 
When the License Server receives the question – “Is this customer valid?” it first 
checks the database to see if the customer has a valid license and prepare the 
approximate response. To guarantee the confidentially of the response the server then 
encrypt the message with an agreed upon symmetric algorithm. This ensures that only 
the intended user with knowledge of the symmetric key can decrypt and read the 
answer. 
 

• Integrity – Integrity ensures that unauthorized modification is prevented. This 
introduces the concept of a message digest (sometimes called fingerprint). 
To ensure integrity of the message, the system uses copy of the encrypted result and 
passes it through a message digest algorithm. This fingerprint produce will later be 
used on the client side to guarantee the integrity of the message. 
 

• Availability – To make the service available we provide a Web server - Tomcat. 
Users can take advantage of the service via the Internet. 

 47



6 • Security Issues 

 
 

Figure 12: Implementing Confidentiality and Integrity. 
 
Figure 12 gives a view of the how CI of CIA is implemented in the system. First the License 
Server checks the validity of a customer’s license and creates a message. The message is then 
encrypted with a symmetric key algorithm. A copy of the encrypted cipher is then passed 
through a message digest algorithm to create a fingerprint of the message. The resulting 
fingerprint is then added to the encrypted message and sent to the client. 
 
On the client-side, the operations need to be reversed. First, the fingerprint and the encrypted 
message must be separated. A copy is created of the encrypted message and a fingerprint 
produced. If the new fingerprint matches the one sent then the encrypted message is decrypted 
with the user’s copy of the symmetric key. Once the answer is received, the VIP 
Energiberäkningssystem will act accordingly. 
 
Graphical User Interface 
 
Some might think why place security at the GUI level? The GUI is the point at which users 
interact with the underlying License Server and therefore it needs to protect the License 
Server for accidental or deliberate acts. 
 

• Input Validation – Not all inputs from users can be trusted. Input could be from 
malicious users, so all inputs must be filtered (validated) before being accepted and 
used by the system. This means that the program should determine what is considered 
legal input and reject anything that does not match this definition [55]. 
Particular emphasis is paid to this principle of secure software. All inputs that are 
accepted by the License Server GUI are validated before use otherwise an error 
message is given when the input is invalid. 
An example of input validation performed by the License Server is the submitting of 
an Email address when a new customer is being added. Code 7 show the extract of the 
code that is used to validate all email addresses. 
Further validation could be performed to ensure a more rigid adherence to rules of a 
particular individual, company or institution. With the above code the License Server 
ensures that all codes received have a standard email format, example 
davru088@student.liu.se or 123xy@someaddress.com. 
 

EENNCCRRYYPPTTEEDD 
MMSSGG

AACCCCEEPPTT  
OORR  

RREEJJEECCTT  
OORR  

NNOOTTIICCEE  
EENNCCRRYYPPTTEEDD 

MMSSGG

SSYYMMMMEETTRRIICC  
AALLGGOORRIITTHHMM 

MMEESSSSAAGGEE    
SSEENNTT  

OORRIIGGIINNAALL  
MMEESSSSAAGGEE    

MMEESSSSAAGGEE  
DDIIGGEESSTT 

 48



6 • Security Issues 

 
// validate email address 
if ( ! email.equals("") ){ 
     if ( !email.startsWith(".") ){ 
        Pattern format = Pattern.compile( "^([a-zA-Z0-9_\\.\\-]) 
                +\\@(([a-zA-Z0-9_\\-])+\\.)+([a-zA-Z]){2,3}$" ); 
        if ( !format.matcher(email).find() ){ 
           dowrite = false; 
           errmsg += "\nInvalid Email Format!"; 
        } 
     } else { 
        dowrite = false; 
        errmsg += "\nCannot Email Start With '.'"; 
     } 
} else { 
     dowrite = false; 
     errmsg += "\nInvalid Email Address!"; 
} 

Code 7: Email Validation 
 
Secure software development practices that involve the user(s) get tremendous consideration 
at the development stage. Users are not unnecessarily required to provide security information 
[56]. This eliminates the need for repeated login. Users are always not prompted to make 
security decisions [56]. All security decisions are taken by the License Server. 
 
6.1.2 Web Service Security 
 
It has been alluded to earlier that Web service introduces increased security risk to the system. 
This is because the communication between loosely coupled applications takes place across 
the boundaries of a trusted network. This introduces the risk that messages can be read by 
unauthorized users, modified by unauthorized users, deleted or lost. The applications cannot 
guarantee that they communicate with the intended application. 
 
The first measure taken to make the Web service more secure is to keep it private. The idea 
behind this is, by not publicly advertising the existence of the Web service this would in turn 
reduces possibility of attacks. In other words, the more public the existence of a service, the 
more people knows about the service and therefore the higher the likelihood of an attack or 
attempted attack. This by no means says that malicious users cannot obtain or find the address 
of the Web service rather it is made more difficult. Also those who know of the Web service 
could also have malicious intent. 
 
This means that further measures need to be introduced to further secure the Web service. To 
combat the security risks introduced by using Web Service, the system used HTTP BASIC-
AUTH and HTTPS. 
 
HTTP BASIC-AUTH – This is a simple mechanism used in HTTP to protect Web resources 
from unauthorized access. To access resources protected by HTTP BASIC-AUTH, an 
application or individual must provide a username and a password. 
 
At invocation time the Web service uses HTTP as the transport protocol, this means that 
BASIC-AUTH can be used to restrict Web Service access. To use HTTP BASIC-AUTH the 
Web server must be configured with a list of valid users and resources that a user can access. 

 49



6 • Security Issues 

The Web server used for the project was Tomcat. The changes necessary for HTTP BASIC-
AUTH to work with Tomcat will now be given. 
 
Step 1: Define user credentials – To add new user credentials, from the 
%TOMCAT_HOME%\conf directory edit “tomcat-users.xml” and add a new user as shown in 
code 8. 
 

<tomcat-users> 
… 
  <!-- Define new user name and password with the role --> 
 
      <user name="wsuser" password="wspwd" roles="wsuser" /> 
</tomcat-users> 

Code 8: Define new User Credentials 
 
Save changes to the files. Adding these lines to the file creates a new user. 
 
Step 2: Define security constraint – Having defined a new role, it is time to assign security 
constraint to the roles. To add a security constraint, edit “Web.xml” in 
%TOMCAT_HOME%\Webapps\axis\WEB-INF and insert the lines shown in code 9 immediately 
before the end of the element <Web-app>. 
 

…     
<Security-constraint> 
   <Web-resource-collection> 
      <Web-resource-name>Protected</Web-resource-name> 
      <!-- specify the directory for restricted Web Service  
           application --> 
      <url-pattern>/axis/*</url-pattern> 
   </Web-resource-collection> 
   <auth-constraint> 
      <!-- specify the role name of new user added in step 2 --> 
      <role-name>wsuser</role-name> 
   </Web-resource-collection> 
   <auth-constraint> 
</security-constraint> 
 
<!-- Define the Login Configuration for this Application --> 
<login-config> 
   <auth-method>BASIC</auth-method> 
   <realm-name>Protected Web Service</realm-name> 
</login-config> 

Code 9: Define Security Constraint 
 
For the changes to take effect Tomcat must be restarted. Any attempt to access a URL that 
includes the axis directory, for example, the URL http://localhost:8080/axis/ will cause the 
browser to request authentication of the user. The users must then enter a valid username and 
password. 
 
Step 3: Java client program accessing the Web service – Code 9 shows a sample Java 
client program that uses BASIC-AUTH.  

 50



6 • Security Issues 

 
import org.apache.axis.client.Call; 
import org.apache.axis.client.Service; 
import Javax.xml.namespace.QName; 
   
public class WSClient { 
 public static void main(String[] args) { 
  try { 
    String endpoint =  
           "http://localhost:8080/axis/EchoService.jws"; 
    Service service = new Service(); 
    Call call = (Call) service.createCall(); 
    call.setTargetEndpointAddress( new Java.net.URL(endpoint) ); 
    call.setOperationName(new QName("echoString")); 
        
    call.setUsername("wsuser"); 
    call.setPassword("wspwd"); 
 
    String ret = (String) call.invoke(new Object[] {"Hello!"}); 
    System.out.println("Sent 'Hello!', got '" + ret + "'"); 
  } catch (Exception e) { 
    System.err.println(e.toString()); 
  } 
 } 
} 

Code 9: Client code invoking Web service with HTTP BASIC-AUTH [34] 
 
By using HTTP BASIC-AUTH, the Web service has been equipped with user validation. 
 
HTTPS – Using BASIC-AUTH allows user validation. But, is user validation enough for the 
security of the system? What security is offered to the message while it is on the wire? The 
answer is none. BASIC-AUTH only validates users at the point of entry but once the message 
is sent there is no further protection added. To add security to the message while it is on the 
wire, HTTPS is used. 
 
Secure socket layer (SSL) is a technology which allows Web browsers and Web servers to 
communicate over a secure connection. This means that the data being sent are encrypted by 
one side, transmitted, and decrypted by the other side before being processed. This is a two-
way process, meaning that both the server and the browser encrypt all messages before 
sending out data. 
 
To develop a secure Web Service application using Axis and HTTPS do the following: 
 
Step 1: Create SSL Certificate - The SSL certificate is used for authenticating and 
encrypting data. To create a SSL certificate use the Java “keytool” utility. It generates a self-
signed certificate. To create a SSL for Tomcat using keytool execute the following from the 
command line: 
 

%Java_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA  
 

Upon executing the command a new file called “.keystore” is created in the home directory. 
To complete the operation a password (default password is “changeit”) and other certificate 
information (company, contact name, country, etc) must also be entered. Enter a password for 
the key store when prompted. 

 51



6 • Security Issues 

Step 2: Configure Web server for SSL - Edit the “server.xml” file located in the 
'%TOMCAT_HOME%\conf' directory by uncommenting the lines shown in code 10. 
 

<!-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 --> 
    <Connector port="8443" maxThreads="150" minSpareThreads="25"  
               maxSpareThreads="75" enableLookups="false"  
               disableUploadTimeout="true" acceptCount="100"        
               debug="0" scheme="https" secure="true" 
               clientAuth="false" sslProtocol="TLS" /> 

Code 10: Client code invoking Web service with HTTP BASIC-AUTH [57] 
 
After changing these configuration, you must restart Tomcat, and you should have a working 
HTTPS. You should now be able to connect to the URL https://localhost:8080/axis/. 
 
Step 3: Java client program for accessing the Web Service using HTTPS - Code 11 shows 
a sample Java client program that uses HTTPS.  
 

import org.apache.axis.client.Call; 
import org.apache.axis.client.Service; 
import Javax.xml.namespace.QName; 
   
public class WSClient { 
 public static void main(String [] args) { 
  try { 
    String endpoint =  
           "https://localhost:8443/axis/EchoService.jws"; 
    System.setProperty("Javax.net.ssl.trustStore",  
    "C:\\Documents and Settings\\Administrator\\.keystore"); 
    Service service = new Service(); 
    Call call = (Call) service.createCall(); 
    call.setTargetEndpointAddress( new Java.net.URL(endpoint) ); 
    call.setOperationName(new QName("echoString")); 
 
    String ret = (String) call.invoke(new Object[] {"Hello!"}); 
    System.out.println("Sent 'Hello!', got '" + ret + "'"); 
  } catch (Exception e) { 
    System.err.println(e.toString()); 
  } 
 } 
} 

Code 11: Client code invoking Web service with HTTPS [34] 
 
When code 11 is compiled and executed, the data sent between the two applications are 
encrypted using the RSA asymmetric key algorithm. 
 
Figure 13 shows both HTTP BASIC-AUTH and HTTPS working together to add a level of 
security to Web service. 
 

 52



6 • Security Issues 

 
Figure 13: HTTP BASIC-AUTH and HTTPS 

 
By using both HTTP BASIC-AUTH and HTTPS the Web service attempts to ensure 
Confidentiality using RSA cryptographic technique and to prevent unauthorized access to 
Web resources. 
 
6.2 Open Source Security 
 
The popularity of open source solutions today has re-opened the door and re-kindled flame on 
a lot of issues that are related to open source. One issue that is being hotly debated is that of 
security. The central boiling point is the fact that open source exposes source code to 
everyone. This section examines the views of industry experts about the impact of open 
source on security. 
 
6.2.1 Expert Opinions 
 
Many individuals and companies have had (and still do) something to say about security and 
open source. Here only a few opinions are presented. 
 
Bruce Schneier [58] – A world-renowned cryptographist and security expert argues in favour 
of open source. From his point of view, “…open source (is) necessary for good security… 
Public security is always more secured than proprietary security.” He continues by saying “It's 
true for cryptographic algorithms, security protocols, and security source code. For us, open 
source isn't just a business model; it's smart engineering practice.” 
 
Using public algorithms and protocols are central to cryptology, as it allows others to examine 
the algorithms and protocols to ensure they are correct. Schneier argues that open source is 
vital, because security has nothing to do with functionality. Take for instance two algorithms, 
one insecure and the other secure, and both work perfectly; never crashing, encrypting and 
decrypt as desired with efficiency. The only true way to tell the good cryptography is for the 
algorithm to be examined by experts. Open source offers this, having an algorithm examined 
by expert – and accepted – gives confidence in the algorithm’s security. Schneier makes the 
claim that “a proprietary algorithm, no matter who designed it and who was paid under NDA 
to evaluate it, is much riskier than a public algorithm.” 
 
The monetary value involved in security cannot be understated. Do you pay to develop your 
own in-house security protocols or do you use publicly available protocols? As an example 
take the Internet IP security protocol (IPSec) and Microsoft’s Point-to-Point Tunnelling 
Protocol (PPTP). IPSec is an open source implementation that has been subject to public 
scrutiny from the start. The result, based on years of public analysis, is a strong protocol that 
is trusted by many. On the other hand, Microsoft’s PPTP to do much the same thing but they 

WWEEBB  
SSEERRVVIICCEE  

WWEEBB  
SSEERRVVIICCEE HHTTTTPPSS  

BBAASSIICC  
AAUUTTHH  

 53



6 • Security Issues 

invented their own authentication protocol, their own hash functions, and their own key-
generation algorithm. PPTP was released with Windows NT and Windows 95 for use with 
their Virtual Private Network (VPN) products. Upon publishing their protocol it was found 
that PPTP was severely flaw. Here again, the point is made that the only way to tell a good 
security protocol is to have experts evaluate it in the open. 
 
A sentiment echoed by Schneier is that a smart security engineer should insist on open source 
code for anything related to security. He goes on to say that one of the greatest benefits of the 
open source is the positive-feedback effect. The open source model is by no means perfect, 
but is considered by Schneier to be superior to the other option. 

For a detail read on Schneier’s view of open source read his Crypto-Gram Newsletter date 
September 15, 1999 [58]. 
 
Michael H. Warfield's [59] – Is a senior researcher at Internet Security Systems Inc. He is a 
Unix systems engineer, Unix consultant, security consultant, and network administrator on the 
Internet for well over a decade. Michael has been involved in computer security for over 23 
years. In his paper "Musings on open source security" he defended open source security. 
 
Michael started his article by making reference to the cryptographic circles. He makes the 
argument that, similar to cryptography where the security of an algorithm should not depend 
on its secrecy the same is true for security software in general. The view of security through 
secrecy is largely a myth. 
 
In order for software to be secure there is a guideline that should be followed. He gives the 
following guideline: 
 

• “Secure systems require quality software utilizing secure coding techniques 
implemented and installed in a manner consistent with security guidelines and policy.” 

 
The article attacks some of the myths that surround open source software. He explains that: 
 

1. The nature of open source makes it necessary, not optional, to have control in open 
source software. This results for the large and diverse development teams that are 
normally involved. 

 
2. Some are of the opinion that though codes are made available it is not examined. This 

is of course not the case; example in point is Pretty Good Privacy (PGP) where after 
the release of version 2.6 someone reported an error in the code which was then 
corrected. 

 
3. Instead of saying hackers are going to find all the security holes in open source 

software the real myth is that security holes in closed source will not be found. 
 
Another argument put forth was that the quality of code in open source software was better. 
This resulted for a sense of personal accountability exists in open source development that 
doesn’t exist in closed source. An open source programmer puts his or her reputation on the 
line with every line of code he writes. Poor code quality can result in ridicule or worse. In 
contact to closed source where the identity is kept secret, the mistakes and foul-ups are not 
attributed to a programmer but to the company that released the software. 

 54



6 • Security Issues 

 
The article goes on further to make claims that, open source promotes secure coding 
techniques. This he says is as a result of a programmer’s involvement in a community of 
developers that exchange ideas, thoughts, critiques and solutions. This exposes an open source 
programmer to new ideas and cutting-edge theory regarding coding practice and security.  
 
Michael believes that, fear is a driving factor. People fear what is known and embodied in the 
open source model, and choose to embrace what is hidden, unknown, and uncertain in the 
closed source model. With the view that at least no one knows what the source code is under 
the hood. 
 
Vincent Rijmen – The developer of the popular Advanced Encryption Standard (AES) 
encryption algorithm. Vincent believes that the open source provides a superior means of 
making security vulnerabilities more easily detected and patched. This results not only for the 
fact that the code is examined by thousands, but more importantly, because open source force 
people to write clear code, and to adhere to standards [55]. 
 
 
To this point only those with arguments in favour of open source have been presented, but 
what for those who are not convinced by these arguments and believe that open source is not 
secure, simply not totally convinced. The following are some such persons: 
 
Kenneth Brown [60] – He is president of the Alexis de Tocqueville Institution (ADTI). In his 
paper entitled “Opening the Open Source Debate” Kenneth dismissed idea behind most of 
open source. The paper made particular reference to open source licensing, mainly GPL. 
Kenneth makes the following analogy; source code is to software like a map is to buried 
treasure, given the source code the software can be created. 
 
One of the arguments put forward in the paper looks at the economic damage of open source. 
The paper states that, the fight by GPL to commonplace exchange of open source and 
proprietary systems has the potential to harmfully impact the research and development 
budgets of companies. He reasons that, where ownership of intellectual property is affected 
and with no rights to own the product generated by research and development programs, 
dollars spent on research and development would be at risk as well and such program could 
become obsolete. 
 
Any widespread acceptance of GPL copyleft policy would present a radical change to an 
industry sector responsible for billion dollars in sales annually worldwide. Kenneth further 
argues that open source with GPL can coexist status quo. GPL open source is a “gift that 
keeps taking” and therefore has no place with traditional open source and close source. 
Kenneth describes Stallman as “an extremist and fanatic… a fallen hero in the open source 
world…” 
 
Important points made by the article can be summarised as follows: 
 

• Open source would change the incentive to develop software and would result in a 
corresponding change in the quality and efficiency of the software. 

 
• The GPL open source community is headed for doom. The future that is in store for 

GPL is either some form of change or discontinuity. 

 55



6 • Security Issues 

 
• The use of open source GPL software by the government is an area of national 

concern (national security concern that is) and therefore such use in the public domain 
(for example by government) is extremely risky. 

 
• Reverse engineering is a bad idea that threatens the software industry. 
 
• The courts have yet to weigh in on the General Public License. Without legal 

interpretation, the use of the GPL could be perilous to users in a number of scenarios. 
 
Ian Tien [61] – In a paper entitled “Open Source and Assurance” Ian looked at open source 
and discussed the pros and cons. He presented the following as some of the problems that 
plague open source security. 
 
The paper was of the view that, the lack of infrastructure is the major barrier to open source 
security. System security is a holistic art. Open source system cannot provide the security 
assurance because of the lack of automated tools to rigorously test huge volumes of complex 
codes. 
 
Accountability is missing for open source. Ian raises the point that individuals and institutions 
cannot risk using ill-fated and untested software that provides no accountability, warranties or 
liability and some uses of open source are unprepared to support security issues in their 
software. 
 
Another limitation of open source is its lack of infrastructure. Open source community cannot 
easily compete with proprietary designs that often come with architects, analysis tools and 
automated testing environments. 
 
The paper makes the claim that bugs are located and fixed at a faster rate in proprietary 
software than in open source. This argument is based on the fact that the open source relies on 
volunteer networks which operate at a slow pace. 
 
Ian argues that there are benefits in security by obscurity. There are some vulnerabilities that 
cannot be defended, possibly due to economic reason maybe, and therefore the only security 
against these types of vulnerabilities is security through obscurity. 
 
Fred Schneider – Is a professor and expert in the computer industry. Fred doesn't believe that 
open source helps security, with the view that there is no reason to believe that the many eyes 
inspecting source code would be successful in identifying bugs that allow system security to 
be compromised. Schneider further states that bugs in the code are not the dominant means of 
attack [55]. 
 

 56



6 • Security Issues 

6.2.2 Further Open Source Precautions 
 
This short sub-section accounts for further measures that can be taken to secure the open 
source solutions, in particular, it focuses on the MySQL database. 
 
Installing the MySQL database creates several accounts. Theses default accounts (ghost 
accounts) are a potential security risk if not removed. To remove ghost accounts go to 
%MySQL_HOME%\bin and do the following: 
 

• Open MySQL 
o C:\www\mysql\bin> mysql -u root –p 

• Display all accounts. 
o mysql> SELECT User, Host, Password FROM mysql.user; 

• Select the 'mysql' database. 
o mysql> USE mysql; 

• Delete all initial accounts, except root@localhost. 
o mysql> DELETE FROM mysql.user WHERE User = '' OR Host = '%'; 
o mysql> DELETE FROM mysql.db WHERE User = ''; 
o mysql> FLUSH PRIVILEGES; 

• Exit.  
• mysql> quit; 

 
MySQL accounts that do not have passwords should either be removed or assigned 
passwords. The root@localhost does not have a password and therefore must be assigned on 
to do this type the following: 
 

• mysql> SET PASSWORD FOR 'user_name'@'host_name'=PASSWORD('new_pass'); 
 
The changes recommended remove ghost account and sets a password for the root@localhost 
account, both of which are possible security holes. 

 57



7 Testing 
 
The project started with an aim of finding a solution to the problem of a loosely coupled 
system. Web service is used in order to provide an answer. By using Web service, the aim is 
to provide a solution application-to-application interaction that has secure and 
interoperability. 
 
At this point there is one question that has gone unanswered; what happens when the system 
is built and tested? This chapter describes two scenarios under which the system is tested. The 
scenarios focused on testing the interaction between the VIP Energiberäkningssystem and the 
License Server. By performing these tests knowledge is gained as to whether or not the Web 
service and the License Server do indeed work. 
 
7.1 Scenario Description 
 
This scenario depicts the standard way in which the system is intended to run. 
 
A customer has purchased a copy of the VIP Energiberäkningssystem to run as a standalone 
application – VIP+. The system is installed and along with the system the customer receives a 
Customer ID and a unique fingerprint and a key for cryptographic purposes. 
 
When the application starts it checks for the existence of a valid fingerprint. At pre-defined 
interval the application must interact with the License Server to determine if the customer’s 
license is still valid. If the License Server validates the customer then the application will 
execute as intended, but if the Server rejects the customer the applications will not execute. 
 
When the application requires interaction with the License Server, the application then uses 
Web service to send a request to the License Server. The License Server performs the action 
required by the service and returns a response using Web service. 
 
To simulate the above scenario, two separate testing environments are created. The test 
environments were: testing on a standalone system and testing in a network environment. 
 
In an attempt to create a close to realistic working environment, there is a need to populate 
databases with test data of customers. With the help of the GUI that accompanied the License 
Server application two databases are created and populated. One database houses information 
on Customer, example name, address and customer id. The other database stores the license 
detail for each customer, example expiration date. 
 
During the test phase the database stores information on thirty five to fifty customers at any 
given time. Some customers have licenses that were valid; some had invalid licenses while 
others held no licenses. 
 

58 



7 • Testing 

7.2 Standalone Testing 
 
Standalone environment is built around a notebook running Windows XP on an Intel Pentium 
4 2.9 GHz processor with 512 MB of RAM. The in order to run the system Java 2 SDK 1.4 is 
installed to provide the platform on which to install the other components. MySQL database is 
also installed. Tomcat is used to provide the Web server and Axis 1.1 provides the Web 
service engine. 
 
The system used at this stage of testing is the same system with which the project was 
developed. Throughout each step of development the pieces are tested individual once created 
but no account will be made of this early modular test. The test here therefore refers to those 
conducted under the scenario described above. Under the standalone environment tests were 
conducted for a period of one week with an average of twenty tests day. 
 
Additional measures are also taken to make the database more secure by deleting ghost 
accounts and assigning password to the remaining account. 
 
Under this test environment, HTTP is the chosen protocol used to transport the Web service 
messages. 
 
HTTP BASIC-AUTH and HTTPS are added to HTTP to provide a measure of security to the 
Web resources and the data on the wire. HTTP BASIC-AUTH provided user validation while 
HTTPS offered encryption. The License Server also added another layer of security before 
sending a message or response to the client. 
 
Before a client is permitted to use the service offered, the client is first required to 
authenticate itself. Failure to do so results in denial of the service. Also, HTTPS is used to 
ensure that all messages sent between the two parties are encrypted and thus private (this 
includes the user credentials). Prior to sending a message the License Server performs 
encryption as well as creating a message digest, after which the result is then sent over 
HTTPS. 
 
The client-side code refers only to the pieces of codes that would later be integrated in the 
VIP system and used to perform Web service call and hand-over an answer to the VIP 
Energiberäkningssystem. 
 
Within this test environment where the system is evaluated on a single machine, the address 
used to represent the Web server and simulate interaction over the Web or Internet is 
localhost. The address of the License Server is therefore http://localhost:8080. 
 
The system is then tested in the following stages: 
 

1. Interacting between the License Server and the VIP Energiberäkningssystem. 
 
2. Using HTTP BASIC-AUTH. 
 
3. Using HTTP BASIC-AUTH and HTTPS 

 

 59



7 • Testing 

7.2.1 Evaluation 
 

1. Interacting between the License Server and the VIP Energiberäkningssystem. 
 

The first aim of testing is to determine whether or not it is possible to achieve the desired 
result of interaction between the License Server and the VIP Energiberäkningssystem. At 
first, the VIP Energiberäkningssystem was unable to communicate with the Server. After 
several attempts and restarting of the system, the database and the Web server, 
communication between the two was achieved. From this point forth there has been a one 
hundred percent connectivity rate between the two applications. 
 
To test the correctness of the License Server’s response, a mix of customer data is sent by 
client. In all case the Server responded with the correct answer. Table 1 shows how the 
License Server reacts to customer data. 
 

CCUUSSTTOOMMEERR  DDAATTAA  PPEERRMMIISSSSIIOONN  GGRRAANNTTEEDD  
Valid Customer ID + Valid License YES – 100% 
Valid Customer ID + Invalid License NO – 100% 
Invalid Customer NO – 100% 

 
Table 1: License Server Decision 

 
A valid customer is one that has purchased a license to run the VIP system and the data 
about the customer can be found in the License Server database. A valid license is one 
where the date of the license has not expired. 
 
When a valid client with a valid license requests permission the Server grants permission 
to the client. If the client is valid but the license is not, then permission will be denied. If 
the client is invalid permission is also denied. 
 
2. Using HTTP BASIC-AUTH. 
 
After achieving the first milestone, it is now time to add additional security to the system. 
BASIC-AUTH provides simple user validation and attempts to prevent unauthorized 
access to the Web service. 
 
Once the appropriate changes are made in the client and Web server, the system is then 
tested using BASIC-AUTH. The results are very satisfying. No problems are encountered 
during this stage. Access to resources protected by BASIC-AUTH is denied unless a 
correct username and password is provided. 
 
The system continued to function as before with interaction between the two applications 
yielding the expected results when given mixed customer data. 
 
3. Using HTTP BASIC-AUTH and HTTPS 
 
HTTPS can be used in two ways; server-side authentication or server-side/client-side 
authentication. In server-side authentication the server authenticates itself to the client 
during the initial handshake process by showing its certificate. While in server-side/client-

 60



7 • Testing 

side authentication both parties authenticates themselves to each other by showing 
certificates. 
 
This final layer of security ensures the wire encryption. After making the changes to 
accommodate HTTPS, the results are mixed. 
 
When HTTPS is used with server-sided authentication the system continued to function. It 
is possible for the VIP Energiberäkningssystem to communicate with the License Server 
using HTTPS. The applications are able to interact in a very secure manner. 
 
The result is not the same when server-side/client-side authentication is used. Once server-
side/client-side authentication is added interaction between the two applications seize. The 
problem resulted from the Web server’s refusal to accept the client’s certificate. Attempts 
to recreate the certificates do not solve the problem. 
 
At the end of testing, achieving interaction with HTTPS using server-side/client-side 
authentication is not possible. 
 

7.3 Network Testing 
 
Testing is also conducted within a network environment; a small home network. The network 
consists of two computers, both Intel base processors.  
 
The server is a personal computer with Windows XP as the operating system running an Intel 
III 500 MHz processor having 128 MB of RAM. As server, the machine needed to run the 
License Server application. Therefore Java 2 SDK 1.4 is installed to provide the platform. 
MySQL database is also installed. After doing this, the License Server is functional as a 
standalone application. To enable client application(s) to local the server, Tomcat is used to 
provide a Web server and Axis 1.1 gives the Web service engine needed for application-to-
application communication. 
 
The client machine is a notebook running Windows XP with an Intel Pentium 4 2.9 GHz 
processor with 512 MB of RAM. Java 2 SDK 1.4 is installed to provide the platform on 
which the client code would run. And once again Axis 1.1 is installed to provide the Web 
service engine. The client-side code is then placed on the notebook. 
 
The client-side codes do not include the actual VIP Energiberäkningssystem. It refers to lines 
of code to be integrated into the VIP system that would perform Web service calls and hand-
over response and control to the VIP Energiberäkningssystem. 
 
The network had an ADSL connection to the Internet, an ADSL modem and a hub. 
 
Network testing is conducted for a period of one week, again with an average of twenty tests 
day. 
 
Once again security is at the forefront and measures are taken to make the database more 
secure by deleting ghost accounts and assigning a password to the remaining account. 
 
HTTP is the protocol chosen to transport the Web service messages. With HTTP BASIC-
AUTH and HTTPS a layer of security is added to HTTP. HTTP BASIC-AUTH provided user 

 61



7 • Testing 

validation while HTTPS offered encryption. Firstly, HTTPS is used to ensure that all 
messages sent between the two parties are encrypted and thus private (this includes the user 
credentials). Next, before a client is permitted to use the service on offer the client is required 
to authenticate itself. Failure to do so results in denial of the service. Thirdly, before sending a 
message the License Server performs encryption as well as creating a message digest, the 
result is then sent over HTTPS. 
 
In order for the applications to communicate within the network, both the client and the server 
need a unique IP address. Address is issued by the DHCP server within the ADSL modem. 
The address of the Web server was the most important as it is with this address that the client 
would locate and interact with the service. 
 
Testing is once again carried out in the following stages: 
 

1. Interacting between the License Server and the VIP Energiberäkningssystem. 
 
2. Using HTTP BASIC-AUTH. 
 
3. Using HTTP BASIC-AUTH and HTTPS 

 
7.3.1 Evaluation 
 
Most of the results in all three categories mirrors the results obtained during Standalone 
Testing, with one exception. 
 

1. Interacting between the License Server and the VIP Energiberäkningssystem. 
 
Once again the first and foremost goal of testing is to determine whether it was possible to 
achieve application-to-application communication between the License Server and the 
VIP Energiberäkningssystem. Communication between the two worked without any 
problems; there is a one hundred percent connectivity rate between the two applications. 
 
Extensive testing is performed on the License Server to determine its response to incorrect 
data. In all case where incorrect or invalid data is sent the License Server acted 
accordingly. 
 
Table 1 show that in all instances where a license is invalid or where a customer is invalid, 
access to the service was denied. In case where a valid client with a valid license request 
permission the Server grants permission to the client. 
 
2. Using HTTP BASIC-AUTH. 
 
Communication between the applications works as desired and all data sent between the 
two are encrypted, however there is a need for additional security. BASIC-AUTH 
provided simple user validation that is aimed at preventing unauthorized access to the 
Web service. 
 
Then communication is tested using BASIC-AUTH no problems are encountered. Access 
to resources protected by BASIC-AUTH is denied, unless a correct username and 
password is provided. 

 62



7 • Testing 

 
The system continued to function as before with interaction between the two applications 
yielding the expected results when giving mixed customer data. 
 
3. Using HTTP BASIC-AUTH and HTTPS 
 
BASIC-AUTH sends user credentials in the clear and offers no additional security to the 
communication process. HTTPS is used to ensure on the wire privacy. The necessary 
changes were made to facilitate the use of HTTPS. It is here where results differed from 
those in Standalone Testing. 
 
With one-way authentication (server-sided authentication) the system continues to 
function. It is possible for the VIP Energiberäkningssystem to interact with the License 
Server using HTTPS offering a more secure communication. 
 
The difference between the results comes when testing using two-way authentication 
(server-side/client-side authentication) is performed. With two-way authentication, the 
applications do interact with each other. 
 
The fact that HTTPS two-way authentication functions in this scenario and not in 
Standalone Testing could be attributed to various reasons. One reason could be the fact 
that with Network Testing the certificates are housed on separate machines while with 
Standalone Testing both certificates are on the same machine. So failure could be from the 
fact that the system is not able (for unknown reasons) read or switch between both 
certificates when required. 

 
 
Testing conducted under the above mentioned two scenarios shows that Web service does in 
fact provide application-to-application interaction, but is these tests enough? Frankly, no! 
 
The system needs move rigorously large scale testing. This includes testing scenarios were 
several users connect to the Web service simultaneously. This would provide valuable 
information on Web service’s ability to handle a large number of simultaneous ongoing 
connections. Also, test needs to be conducted where the Web service is exposed to different 
communication/connection speed. How will the Web service respond if the connection speed 
was reduced? 
 
These and other similar tests should be conducted before the system that uses Web service is 
placed on the market. 

 63



8 Delivery 
 
The effort put forth in this assignment does not stand by itself; it is part of a much larger, 
groundbreaking and existing project. The result of the work carried out during this thesis will 
therefore closely examined with a view of integrating the solution or the premise on which the 
solution was based into the wider project. Before this thesis can be considered complete, there 
need to be an explanation as to how the solutions developed are ported to StruSoft machines 
and also consider what needs to take place on the customer side; this includes software update 
and configuration changes. 
 
8.1 StruSoft 
 
Solutions presented at the end of the thesis are developed on an IBM ThinkPad running 
Windows XP and needs to be ported to StruSoft’s computers. Several issues must be 
considered and addressed at this critical stage, some of the main issues include: 

 
• Installation – This is a very important step. There needs to be a clean, clear and quick 

process to get the software up and running. The first step in adoption is the installation 
and testing of the solutions by StruSoft to determine whether they meet necessary 
criteria. 
Detailed explanations about how to install the necessary components are given in 
Chapter 4, Development Environment. Once these instructions are followed (and 
installation manuals read) there should be very little or no problem getting all the 
necessary components in place. Additional configuration relating to security should 
also be carried out, for this, visit Chapter 6 on Security Issues. Follow the instructions 
to have a more secure system. 
Full source code for the License Server application will be handed over to StruSoft. To 
get the License Server up and running simply compile and execute the source code. 
The License Server application provides among other things a graphical user interface 
to certain database activities and it can be used to input data for testing. 
All necessary files for Web service will also be made available. For speed and 
simplicity a Java code is written that handled the deploying and un-deploying of the 
service. 
A running License Sever and Web service depends upon the installation process, once 
this process is correctly done, StruSoft can then perform testing on the two as they see 
fit. 
 

• Integration – How to fit the solutions into the overall project? What are the activities 
that are necessary for integration? 
The License Server is developed as a standalone application and therefore need not be 
integrated with any other software. It provides the project with a means by which 
customer information and license information are maintained using an underlying 
database. The application also performs email, logging and Web service functionality. 
These functionalities are carried out independent of other software and therefore there 
is no need for the License Server to interact with other components in the system. 
The Web service on the other hand must be integrated into existing software. The 
client-side codes generated must be integrated into the VIP Energiberäkningssystem, 
as the codes provide the means by which the VIP Energiberäkningssystem interacts 
with the License Server to determine whether or not to run the system. 

64 



8 • Delivery 

The integration requires that certain lines of codes be placed within the codes for the 
VIP Energiberäkningssystem. Once this is done the two applications can interact using 
the Web service. 

 
• Functionality – Will the solutions continue to work when ported to a different 

machine, there could be a difference in operation systems for example? 
One of the major benefits gained from choosing the Java platform is that it gives the 
project platform independence. Java gives the project a “write once run anywhere” 
feel. This means that if there is a change in the underlying operating system there will 
be no effect on the solutions present. 
If the operating system is different then StruSoft need only to follow the instructions 
provided by the various user manuals as to how to install Java and the other 
components on that system. There exists manual and extensive resource on how to 
install the required component on several different operating systems. Once all the 
components are installed and configured as instructed the License Server and Web 
service will function in the correct manner. 
There is also no restriction on the database used. A decision can be made to the change 
the database; this would only require changes in a few lines of codes. All database 
operations are performed with SQL which has no relation to the underlying database. 
Web service as examined before is built using industry standard protocol and therefore 
it offers platform independence as well. 

 
• Scalability – Bearing in mind that development was done in a single user environment 

and when integrated into the bigger project, will it fit into a multiple user 
environment? 
Though the system is developed and tested primarily in a single user environment, it 
has in no way affected the scalability of the final result. Web Service offers a business 
solution that is extremely scalable. One of the most important features of Web service 
is its scalability. 

 
Because most of the component used to generate the solutions for this project is platform 
independent and relied on industry standard the process of delivery to StruSoft is for the most 
part getting the installation and configurations correct. 
 
8.2 Customers 
 
In order for the system to function in its totality, consideration must be given to the client-
side. The client-side changes needed are not as many but nonetheless very important. These 
changes are: 

 
• Code Update – In order for the VIP Energiberäkningssystem to communicate with the 

License Server the client-side codes generated must be added to the VIP system. This 
is a simple but very important requirement. 

 
• Installation- On the client-side only two components are required, Java platform and 

Axis. Installation of Java is no different but there are differences in the Axis 
installation. 
In order for the application to use Axis the following needs to be redistributed [62]: 
 
 axis.jar 

 65



8 • Delivery 

 commons-logging.jar 
 commons-discovery.jar 
 log4j.jar or simply use the logging facilities that is shipped with Java1.4. 
 xerces XML Parser or crimson that is shipped with Java1.4. 

 
Set the class path to these files and restart the system. It is also possible to place these 
files in the applications home directory without setting the class path but this approach 
is less preferred. 

 
Once the necessary changes are made and the installation complete, it should be possible to 
run the VIP Energiberäkningssystem. The application will now be able to interact with the 
License Server via Web service technology. 

 66



9 Conclusions 
 
StruSoft has embarked on a project that involves the development of a complex and loosely 
coupled system. The software required applications to communicate beyond the boundaries of 
a single network. This paper makes two contributions to the project. 
 
The first contribution is the use of Web Service technology to present a solution to the 
problem faced by loosely coupled distributed application. Web Service is a relatively new 
technology that allows sharing of services between communicating applications. Not only is 
Web Service used but, the technology is used in a secure manner. Testing showed that it is 
possible to use this technology to solve the problem faced by distributed applications. The 
results demonstrated that with Web Service the project benefited from a solution that is 
scalable, interoperable and secure while allowing loosely coupled applications to interact. 
 
The second contribution made by this thesis is the development of a License Server 
application and client-side code. The application solves some very important needs of 
StruSoft and allowed a controlled environment where customer and license data can be stored 
and maintained. Testing confirmed that all the functionalities required have been built into the 
application. And further non-functional requirements such as security were also built into the 
application. 
 
Web Service is definitely not the answer to all distributed computing problems, but they 
definitely solve the problem presented within this project. The result gained from testing gave 
evidence that Web Service application-to-application communication can take place in a 
secure manner. 
 
The thesis also relied heavily on open source tools and solutions. It showed that open source 
solutions can be used to deliver solutions that are secure. There is no clear decision on the use 
of open source, in the end it boils down to making an informed decision. The final decision on 
open source will not be in for some time yet as the industry will continue to debate the topic; 
of this I am sure. 
 
9.1 Future Works 
 
The project uses the Java programming language and platform to provide a platform neutral 
solution. The client-side code generated during this thesis must be incorporated into the VIP 
Energiberäkningssystem in order for the application to interact with the License Server. The 
fact is the client-side code is written in a different language from the VIP 
Energiberäkningssystem. The process of incorporating the two is not difficult but it is 
certainly not the most ideal. It would be much more appropriate and efficient if the client-side 
code was converted to the language of the VIP system. This would therefore remove the need 
to install Java SDK on the client-side. 
 
The security solutions implemented within the License Server application and the client-side 
uses the Java security class. If the decision is taken to convert the client-side code future work 
must then be done to determine how and if it is at all possible to encrypt and decrypt message 
on both application using the same key and encryption algorithm but different language. This 
would certainly be an interesting venture. 
 

67 



9 • Conclusions 

The security measures incorporated into the entire system are thought to be enough but the 
question remains, how much security is secure enough? It would also be an area that could be 
looked at, adding future security to the system. XML encryption and XML Digital Signature 
are just two possibilities. 
 
Last but not least, the use of UDDI as the popularity of the system becomes a reality. Apart 
from excitement about the growth of the system, it would also be interesting to see how 
additional Web Service technology can be used to bring the system to a wider audience. 

 68



10 References 
 
[1] Vivek Chopra, Zaev Zoran; Gary Damschen, Chris Dix, Patrick Cauldwell, Rajesh 

Chawla, Kristy Saunders, Glenn Olander, Francis Norton, Tony Hong, Uche Ogbuji, 
Mark A. Richman, “Professional XML Web Service”, Wrox Press Inc., ISBN 1-
861005-09-1 

[2] http://www.strusoft.com/OmStruSoft/OmStruSoft.asp?link=About%20StruSoft 2004-
12-06 

[3] http://www.strusoft.com/produkter/produkter.asp?link=Products 2004-12-06 
[4] http://www.strusoft.com/tjanster/tjanster.asp?link=Services&Hilite=0 2004-12-06 
[5] Mats Ola Rasmusson, VIP Energiberäkningssystem StruSoft 2004-06-24 
[6] Leslie Lampart, DEC SRC 1980 
[7] http://www.hrm.uct.ac.za/uct-year2000/glossary.htm 2004-12-07 
[8] Kurt Cagle, Dave Gibbons, David Hunter, Nikola Ozu, Jon Pinnock, Paul Spencer, 

“Beginning XML”, Wrox Press Inc., ISBN 1-861003-41-2 
[9] http://www.omg.org/gettingstarted/corbafaq.htm 2004-12-07 
[10] http://Java.sun.com/developer/onlineTraining/corba/corba.html 2004-12-07 
[11] http://www.corba.org 2004-12-07 
[12] http://Java.sun.com/products/jdk/rmi/ 2004-12-07 
[13] http://www.cisco.com/univercd/cc/td/doc/product/voice/evbugl4.htm 2004-12-07 
[14] http://searchvb.techtarget.com/sDefinition/0,,sid8_gci213883,00.html 2004-12-08 
[15] http://www.microsoft.com/com/ 2004-12-09 
[16] Feilding et. Al, ”http/1.1”, http://www.rfc-editor.org/rfc/rfc2616.txt 2004-12-08 
[17] http://www.wmo.ch/Web/www/WDM/Guides/Internet-glossary.htm 2004-12-08 
[18] Elliotte Rusty Harold, “XML Bible” 2nd Edition, Wiley Publishers, ISBN 0-7645-

4760-7 
[19] http://www.w3.org/TR/xml-infoset/ 2005-02-02 
[20] Box, D et al., “Simple Object Access Protocol (SOAP) 1.1”, W3C Note May 8, 2000, 

http://www.w3c.org/TR/SOAP/ 2004-12-08 
[21] http://www.w3.org/2003/05/soap-envelope 2004-12-08 
[22] http://www.w3.org/TR/wsdl 2004-12-08 
[23] UDDI.org, UDDI Technical White Paper, URL: 

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf, 2000. 2004-12-09 
[24] http://www.w3.org/TR/ws-arch 2005-01-26 
[25] Gollmann, Dieter, “Computer Security”, John Wiley & Sons Ltd, 2002, ISBN 0-471-

97844-2 
[26] http://www.w3.org/Protocols/HTTP/1.0/draft-ietf-http-spec.html, 2004-12-09 
[27] http://Java.sun.com/developer/onlineTraining/Security/Fundamentals/Security.html, 

Security 2004-12-09 
[28] http://Java.sun.com. 2004-12-14 
[29] http://www.cs.ucsb.edu/~teliot/Path_and_Classpath.htm Setting the PATH and 

CLASSPATH on Windows XP 2005-01-06 
[30] http://dev.mysql.com/downloads/index.html 2004-12-15 
[31] http://www.mysql.com/products/connector/j/ 2004-12-15 
[32] http://jakarta.apache.org/tomcat/index.html 2004-12-14 
[33] http://ws.apache.org/axis/index.html. 2004-12-15 
[34] Installing and deploying Web applications using xml-axis, Version 1.1 
[35] http://www.disinfopedia.org/wiki.phtml?title=Open_Source_Software, Open Source 

69 

http://www.strusoft.com/OmStruSoft/OmStruSoft.asp?link=About%20StruSoft
http://www.strusoft.com/produkter/produkter.asp?link=Products
http://www.strusoft.com/tjanster/tjanster.asp?link=Services&Hilite=0
http://www.hrm.uct.ac.za/uct-year2000/glossary.htm
http://www.omg.org/gettingstarted/corbafaq.htm 2004-12-07
http://java.sun.com/developer/onlineTraining/corba/corba.html
http://www.corba.org/
http://java.sun.com/products/jdk/rmi/
http://www.cisco.com/univercd/cc/td/doc/product/voice/evbugl4.htm
http://searchvb.techtarget.com/sDefinition/0,,sid8_gci213883,00.html
http://www.microsoft.com/com/
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.wmo.ch/web/www/WDM/Guides/Internet-glossary.htm
http://www.w3.org/TR/xml-infoset/
http://www.w3c.org/TR/SOAP/
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-arch
http://www.w3.org/Protocols/HTTP/1.0/draft-ietf-http-spec.html
http://java.sun.com/developer/onlineTraining/Security/Fundamentals/Security.html
http://java.sun.com/
http://www.cs.ucsb.edu/~teliot/Path_and_Classpath.htm
http://dev.mysql.com/downloads/index.html
http://www.mysql.com/products/connector/j/
http://jakarta.apache.org/tomcat/index.html
http://ws.apache.org/axis/index.html
http://www.disinfopedia.org/wiki.phtml?title=Open_Source_Software


10 • References 

Software 2004-12-16 
[36] Peter H. Salus, ”A Quarter Century of UNIX”, Addison-Wesley Professional, 1994 

ISBN 0-201-54777-5 
[37] http://www.bell-labs.com/history/unix/ 2004-12-16 
[38] http://www.opensource.org/docs/history.php 2004-12-16 
[39] www.gnu.org/gnu/thegnuproject.html 2004-12-16 
[40] http://www.linux10.org/history/ 2004-12-16 
[41] http://www.qsl.net/kd2bd/linux.html 2005-01-03 
[42] http://www.e-envoy.gov.uk/assetRoot/04/00/28/41/04002841.pdf 2005-01-06 
[43] http://www.fsf.org/gnu/thegnuproject.html 2005-01-03 
[44] http://www.opensource.org/docs/definition.php 2005-01-05 
[45] http://apache.org. 2004-12-14 
[46] http://www.netcraft.co.uk/survey/ 2004-12-14 
[47] http://jakarta.apache.org/tomcat/ 2004-12-14 
[48] http://www.apache.org/licenses 2004-12-15 
[49] MySQL Reference Manual for version 4.0.21. 
[50] http://www.fsf.org/licenses/ 2004-12-16 
[51] http://www.eclipse.org/ 2005-01-06 
[52] http://www.eclipse.org/whitepapers/eclipse-overview.pdf Eclipse Platform Technical 

Overview 2005-01-06 
[53] Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, “Fundamentals of Software 

Engineering”, Prentice Hall, Second Edition, ISBN 0-13-305699-6 
[54] http://ibm.com/developerWorks Java Security, Part 1: Crypto basics” 2004-10-06 
[55] David A. Wheeler, “Secure Programming for Linux and Unix HOWTO”, 

http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.html 2004-10-
10 

[56] Razvan Peteanu, “Best Practices for Secure Development”, 
http://members.home.net/razvan.peteanu 2004-10-10 

[57] SSL Configuration HOW-TO, http://jakarta.apache.org/tomcat/tomcat-4.0-doc/ssl-
howto.html 2004-09-15 

[58] Bruce Schneier, Crypto-Gram Newsletter, September 15, 1999 
http://www.schneier.com/crypto-gram-9909.html 2005-01-12 

[59] Michael H. Warfield's "Musings on open source security 
http://www.br.fgov.be/SCIENCE/INFORMATICS/doc/ramparts.html 2005-01-12 

[60] Kenneth Brown, “Opening the Open Source Debate” 2002, 
http://parrhesia.com/old_opensource_whitepaper.pdf, 2005-01-12 

[61] Ian Tien, ”Open Source and Assurance” 
http://www.cs.cornell.edu/courses/cs513/2002fa/opt1.soln.it33.pdf 2005-01-12 

[62]  “Client Side Axis” http://ws.apache.org/axis/Java/client-side-axis.pdf 2005-01-18 

 70

http://www.bell-labs.com/history/unix/
http://www.opensource.org/docs/history.php
http://www.gnu.org/gnu/thegnuproject.html
http://www.linux10.org/history/
http://www.qsl.net/kd2bd/linux.html
http://www.e-envoy.gov.uk/assetRoot/04/00/28/41/04002841.pdf
http://www.fsf.org/gnu/thegnuproject.html
http://www.opensource.org/docs/definition.php
http://apache.org/
http://www.netcraft.co.uk/survey/
http://jakarta.apache.org/tomcat/
http://www.apache.org/licenses
http://www.fsf.org/licenses/
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://ibm.com/developerWorks
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.html
http://members.home.net/razvan.peteanu
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/ssl-howto.html
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/ssl-howto.html
http://www.schneier.com/crypto-gram-9909.html
http://www.br.fgov.be/SCIENCE/INFORMATICS/doc/ramparts.html
http://parrhesia.com/old_opensource_whitepaper.pdf
http://www.cs.cornell.edu/courses/cs513/2002fa/opt1.soln.it33.pdf
http://ws.apache.org/axis/java/client-side-axis.pdf


11 Glossary 
 
Axis  Axis is an implementation of the SOAP submission to W3C. 
 
BASIC-AUTH Basic Authentication. Used to introduce a measure of security into 

the otherwise insecure HTTP protocol.  
 
CIA Confidentiality, Integrity and Availability. Three fundamental 

principles of computer security. 
 
Copyleft  Policy or law applied to open source product. 
 
CORBA Common Object Request Broker Architecture. It is described as an 

open, vendor-independent framework that permits distributed 
computer applications to interoperate over networks. 

 
DCOM Distributed Component Object Model. The DCOM solution 

enables applications to interact directly over a network 
 
DES Digital Encryption Standard. Symmetric key algorithm used for 

encrypting and decrypting messages. 
 
ECLIPSE The Eclipse Platform is a kind of universal tool platform, an IDE 

for anything and for nothing in particular. 
 
GNU GNU’s Not Unix. An open source project that offers a complete 

operating system and accompanying software. 
 
GPL General Public License. License use for distribution of open 

source products. 
HTTP Hypertext Transfer Text Protocol. HTTP is a transport level 

protocol that often carries SOAP messages. 
 
HTTPS  HTTP with security. See TLS. 
 
IDE Integrated Development Environment. Set of development tools 

such as editors, debuggers and executing environment all tied 
together in a single software. 

 
IDL Interface Definition Language. The method used to expose 

services that are put on offer a service provider. 
 
IIOP Internet Inter-ORB Protocol. Allows CORBA-based program can 

interoperate with another CORBA-based program. 
 
IPSec Internet Protocol Security. A specification for encryption of 

messages. 
 
Java  A platform neutral programming language and environment. 
 

71 



11 • Glossary 

LINUX  Open source, freely available operating system. 
 
MD5 Message Digest 5. Algorithm for generating the fingerprint of a 

message. Used for Integrity. 
 
MySQL The MySQL software delivers a very fast, multi-threaded, multi-

user, and robust Structured Query Language database server. 
 
OMG Object Management Group. OMG is responsible for defining 

CORBA standard. 
 
ORB Object Request Broker. The ORB acts as a bus that finds the 

remote object, communicates the request, waits for the result(s) 
and then sends back the result to the client. 

 
RSA Rivest Shamir Adelman: name after its founders. Asymmetric key 

algorithm used for encrypting and decrypting of messages. 
 
RMI Remote Method Invocation. Enables software distributed 

computing by facilitating object communication between 
distributed applications in which calls are made between objects. 

 
SHA-512 Secure Hash Algorithm 512. Algorithm used for creating 

fingerprint of a message. 
 
SOAP Simple Object Access Protocol. SOAP is a XML based protocol 

that is simple and lightweight used to facilitate information 
exchange in a decentralized distributed environment 

 
SMTP Simple Mail Transport Protocol. Used for sending and receiving 

messages, commonly used for email communication. 
 
SOA Service Oriented Architecture. This is basically an assortment of 

services that communicate with each other. 
 
TLS Transport Layer Security. Provides authentication and 

communication privacy between communicating applications over 
the internet. 

 
UDDI Universal Description Discovery and Integration. It is a platform-

independent framework for describing services, discovering 
businesses and integrating business service by using the internet 

 
UNIX  Open source operating system. 
 
W3C World Wide Web Consortium. One of the governing bodied of the 

Web that sets standards and polices the Web. 
 

 72



11 • Glossary 

WSDL Web Service Definition Language. WSDL provides documentation 
for distributed systems and serve as a recipe for automating the 
details involved in application communication. 

 
WSIF Web Service Invocation Framework. WSIF is a Java API for 

invoking Web Service. 
 
WSS Web Service Security. Specification  for encrypting Web Service 

messages. 
 
XML eXtensible Markup Language. It is a meta-language, allowing 

designers the ability to represent data in a self-describing manner. 

 73



A License Server Screenshots 
 
The License Server application provides a graphical user interface for performing certain 
database operations as well as allowing a user to view the logs, start and stop email process 
plus monitoring of the Web service. 
 
A.1 Adding Customer to Database 
 
Shot 1 show the view of the interface that is provided when a customer is to be added to the 
database. Strict input validation is performed on all entered. Once completed the user is added 
to the database, a symmetric key created and license information stored. 
 

 
 

Shot 1: Add Customer 
 
A.2 Search Database for Customer 
 
Shot 2 show the view of the screen presented when a user wishes to search the database. 
 
A wide search can be performed on all customers by leaving the fields blank or a more 
specific search performed by filling in data such as Customer ID. 

74 



Appendix A • License Server Screenshots 

 
 

Shot 2: Search Database 
 
A.3 Delete Customer from Database 
 

 
 

Shot 3: Delete a Customer 
 

 75



Appendix A • License Server Screenshots 

Shot 3 gives the interface that is shown when a delete operation is performed. The delete 
interface is similar to that of query. But here the user is asked to click two separate buttons, 
the first click will show the customer(s) that are identified for deletion and the second will 
delete the customer(s). The use of two buttons is an attempt to ensure that the user wants to in 
fact delete customer(s). 
 
A.4 Web Service 
 
The screen shot provided by shot 4 shows the Web service functionality incorporated into the 
License Server GUI. One can choose to view the Web service log or monitor to on going Web 
service traffic. 
 

 
 

Shot 4: Web Service Screen 
 
A.4 Email 
 
The application perform an on going check of customer database to ensure that license are up 
to date and where a customer license is coming to an end then the application informs the 
customer. The menu allows the user to start and or stop an email process. It is also possible to 
view the email log to see a listing of all customers that was sent an email. Shot 4 shows the 
menu and a view of the email log. 

 76



Appendix A • License Server Screenshots 

 
 

Shot 4: Email Screen 

 77



B Web Service WSDL 
 
Below is a sample of a WSDL file that describes the service used for this project. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions targetNamespace=" urn:licenseServer" xmlns:impl=" 
urn:licenseServer" xmlns:intf=" urn:licenseServer" 
xmlns:apachesoap="http://xml.apache.org/xml-soap" 
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" 
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns="http://schemas.xmlsoap.org/wsdl/"> 
   <wsdl:message name="checkLicenseRequest"> 
      <wsdl:part name="custId" type="xsd:string"/> 
   </wsdl:message> 
 
   <wsdl:message name="checkLicenseResponse"> 
      <wsdl:part name="checkLicenseReturn" type="xsd:base64Binary"/> 
   </wsdl:message> 
 
   <wsdl:portType name="LicenseServer"> 
      <wsdl:operation name="checkLicense" parameterOrder="custId"> 
         <wsdl:input name="checkLicenseRequest"  

          message="impl:checkLicenseRequest"/> 
         <wsdl:output name="checkLicenseResponse"  

           message="impl:checkLicenseResponse"/> 
      </wsdl:operation> 
   </wsdl:portType> 
 
   <wsdl:binding name="licenseServerSoapBinding" type="impl:LicenseServer"> 
      <wsdlsoap:binding style="rpc"  

  transport="http://schemas.xmlsoap.org/soap/http"/> 
      <wsdl:operation name="checkLicense"> 
         <wsdlsoap:operation soapAction=""/> 
 
         <wsdl:input name="checkLicenseRequest"> 
            <wsdlsoap:body use="encoded"  
                  encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
                  namespace=" urn:licenseServer"/> 
         </wsdl:input> 
 
         <wsdl:output name="checkLicenseResponse"> 
            <wsdlsoap:body use="encoded"  
                  encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"   
                  namespace=" urn:licenseServer"/> 
         </wsdl:output> 
 
      </wsdl:operation> 
   </wsdl:binding> 
 
   <wsdl:service name="LicenseServerService"> 
      <wsdl:port name="licenseServer"  

      binding="impl:licenseServerSoapBinding"> 
         <wsdlsoap:address location="  

        http://localhost:8080/axis/services/licenseServer"/> 
      </wsdl:port> 
   </wsdl:service> 
</wsdl:definitions> 

78 



C Related Documents 
 
The documents provided in this section are an extract from actual email contact that took 
place between myself and StruSoft and the university. Original emails were in Swedish and 
therefore a translation was performed. 
 
C.1 System Overview 
 
Extract from email that served to give an overview of the system. 
 
VIP is a series of programs that are mutually compatible and integrated for the control and 
analyst of energy consumption. The entire series of programs utilize the same calculation 
module and climatic data to guarantees identical results regardless of where calculation is 
performed. 
VIP+  A complete standalone application for analysing energy consumption of 
detached houses. 
VIP WEB A system that is highly adaptable to accept minimum input data for analysing 
and calculating results for a number of houses. 
VIP* VIPSTAR a project between StruSoft, Skanska, Cementa and LTH-financed by 
SBUF and FORMAS/BIC for handling of energy calculation and inner temperature for 
property during the whole planning, building and management phase. 
 
C.2 Project Overview 
 
Extract from email the described the project. 
 
Quick description of VIP system: 

• GUI is separate from calculating kernel. 
• GUI generates as output a XML file. 
• Between the GUI and the calculating kernel is a pre-processor that handles the XML 

file. 
• Converts the output XML file into a VIP data file. 
• Pre-processor then starts the calculating kernel and converts the results into a data 

file or html file with detailed results. 
• Results are also stored in a database. 

 
Possible areas of work for thesis: 

• Communication technique between different devices and technology, example PDA 
and mobile devices. 

• E-Commerce. 
• Direct access to calculating kernel. 
• Offline running of input data. 
• Structural handling of XML file and menu files. 

 

79 



Appendix C • Related Documents 

C.3 Final Project Proposal 
 
Extract from email the described the final proposal of the project. 
 
StruSoft is at present developing a ground breaking and exciting product. This product will 
enable its customers (individuals, groups, companies, etc) to perform energy calculations 
and determine the energy consumption of a room, apartment, house, building or complex. 
There is no such product available on the market at the moment! At its heart is an Energy 
Calculating Module (ECMod).  The system uses a Web interface that produces an XML file. 
A Pre-processor reads and converts the XML file to a binary file and passes it to the ECMod, 
which performs the necessary calculations. The Pre-processor is expected to interact with a 
License Server that will determine whether or not to run a request based on the validity of 
the customers license.  
 
The product could and will be scattered across different sites, as the Pre-processor, Web 
server and other components could be at the client site BUT the License Server MUST reside 
at StruSoft. 
 
The intent of this Masters thesis is to develop and implement a prototype Web service plus 
License Server and allow components to interact regardless of where components are 
physically located. 
 
Requirements and comments 
 
• Pre-processor MUST communicate with License Server (once per week for example). 
• Communication must guarantee security. 
• License Server implementation can be (1) a traditional License Server with hardware lock 

or (2) a database. 
• Information as to who is running the Pre-processor and where, COULD be capture. 
• License Server issues notification when license near expiration date. 
• System must be extensible with the possibility to add component. 
• The License Server should/ will be developed as part of this thesis (if database approach 

is chosen). 
 
C.4 Project Time Table 
 

WEEK ACTIVITY MILESTONE TASK 
1 Background study  1 
2    
3    
4  Problem formulation, 

components identified 
 

5 Configuration Required components installed 
and configured. 

2 

6 
[15/10 - 2004] 

Meet the University 
supervisor and examiner. 
 
Develop packages: 

 Security 

Agree on design issues and the 
way ahead for the thesis paper. 

3 
 
 
 
4 

 80



Appendix C • Related Documents 

7  Database 
 File handling 

Functional packages for 
handling the mentioned issues 
should be complete and working 

 

8 GUI programming  5 
9  Functional prototype that with a 

GUI that ties the functionality of 
the packages amount other WS 
functions (developed later). 

 

10 Create Web service 
 XSD 
 WSDL 
 SOAP 
 Other pieces 

 6 

11  Achieve the coupling of system. 
(Possibly adding WS function to 
GUI). 

 

12 Develop client side 
module - C++ OR Java 

The piece needs for the client 
should be developed and 
working – WS + C++ OR Java. 

7 

13 Prototype  8 
14  Fully functional prototype.  
15 Meet the University 

supervisor and examiner. 
 
Begin thesis writing 

Agree on content of paper… 9 
 
 

10 
16    
17    
18  Draft of final paper.  
19 Update paper   
20  Final version of thesis paper.  

 

 81



 

 

Avdelning, Institution 
Division, Department 
 
  
Institutionen för datavetenskap 
581 83 LINKÖPING 

 Datum 
Date 
2005-02-28 

 
Språk 
Language 

 Rapporttyp 
Report category 

 ISBN 
 

 Svenska/Swedish 
X Engelska/English 

  Licentiatavhandling 
 Examensarbete 

 ISRN   LITH-IDA-EX--05/019--SE    

 
     

  C-uppsats 
 D-uppsats 

 Serietitel och serienummer 
Title of series, numbering 

ISSN 
 

    Övrig rapport 
 ____

  
 

    
URL för elektronisk version 
http://www.ep.liu.se/exjobb/ida/2005/dt-d/019/ 

  

 
Titel 
Title 

Developing A Secure Web Service for License Management in StruSoft.  
 

Författare 
 Author 

Dave Alfanso Russell 
 

 
Sammanfattning 
Abstract 
As software increases in complexity and relies more on Internet and Web technology, the challenge 
of enabling interaction and communication between loosely coupled applications becomes 
increasingly vital. 
 
Distributed computing presents challenges to loosely coupled applications that require means with 
which to interact and communicate. There exist technologies that are aimed at solving these 
problems; Web service is one such technology. Web service is a relatively new and rapidly 
maturing technology in the area of distributed computing; it offers a standards-based way to 
exchange information in an interoperable manner. 
 
This thesis is done in partnership with StruSoft and attempts to provide a solution to their problem 
of distributed computing, by using Web service technology. The paper looks at distributed systems 
and various solutions to the problems associated with distributed computing. A comprehensive 
insight into Web service technology is provided, along with rationale as to why it is chosen for the 
project. In addition, there are guidelines as to how the necessary components of Web service are 
installed. 
 
Development of License Management Software is also a part of this thesis. The software offers a 
means with which to store and maintain data about customers and their licenses. 
 
Security is a major focus of this paper and thus extensively mentioned throughout. A detailed 
explanation of computer security is presented, along with the necessary configurations that are 
needed to make the Web service and the License Management Software more secure. 

 
Nyckelord 
Keyword 
Web service, XML, SOAP, WSDL, Computer Security, Distributed Systems, Open Source, Tomcat, 
Axis and Software Development Life Cycle. 

82 



   
 

83 

På svenska 
 
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – 
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår. 

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, 
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för 
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten 
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av 
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, 
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ 
art. 

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i 
den omfattning som god sed kräver vid användning av dokumentet på ovan 
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan 
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära 
eller konstnärliga anseende eller egenart. 

För ytterligare information om Linköping University Electronic Press se 
förlagets hemsida http://www.ep.liu.se/
 
 
In English 
 
The publishers will keep this document online on the Internet - or its possible 
replacement - for a considerable time from the date of publication barring 
exceptional circumstances. 

The online availability of the document implies a permanent permission for 
anyone to read, to download, to print out single copies for your own use and to 
use it unchanged for any non-commercial research and educational purpose. 
Subsequent transfers of copyright cannot revoke this permission. All other uses 
of the document are conditional on the consent of the copyright owner. The 
publisher has taken technical and administrative measures to assure authenticity, 
security and accessibility. 

According to intellectual property law the author has the right to be 
mentioned when his/her work is accessed as described above and to be protected 
against infringement. 

For additional information about the Linköping University Electronic Press 
and its procedures for publication and for assurance of document integrity, 
please refer to its WWW home page: http://www.ep.liu.se/

 
© [Dave Alfanso Russell] 

http://www.ep.liu.se/
http://www.ep.liu.se/

	For a detail read on Schneier’s view of open source read his

