

THE SIMULATOR OF
INDIVIDUAL

DYNAMIC
DECISIONS, SIDD
This document provides a broad overview of the SIDD program, and a

step-by-step introduction to amending the code. No formal programming
experience is assumed.

Introductory
Programming
Guide

J. van de Ven
November, 2013

1 | P a g e

The Simulator of Individual Dynamic
Decisions, SIDD

User Manual

Table of Contents
1 Introduction .. 2

2 Overview of the Program .. 2

2.1 Program structure ... 3

3 Set-up .. 12

3.1 System requirements .. 12

3.2 Loading the model onto a new computer .. 12

3.3 Creating a simulation base .. 13

4 Extending the Program ... 15

Introducing health status into the model ... 15

4.1 Defining and storing model parameters ... 15

4.2 Reading in new model parameters ... 16

4.3 Altering model grids to accommodate new characteristic ... 16

4.4 Alter expectations for utility maximisation .. 18

4.5 The direct influence of health on simulated decision making .. 20

4.6 Including health status when simulating a population through time 20

4.7 Debugging ... 20

Appendix A: Basic Rules of Syntax .. 22

Appendix B: The Utility Function .. 24

2 | P a g e

1 Introduction
This document provides an overview of programming code that underlies the Simulator of Individual
Dynamic Decisions (SIDD). SIDD is designed to implement a structural model of dynamic decisions,
focussing predominantly on the consumption/savings and labour/leisure margins. The structural
model upon which SIDD is based assumes that individuals make their decisions to maximise the
expected lifetime utility of their respective families. Importantly, SIDD is designed to solve lifetime
decisions, taking into account uncertainty associated with a wide range of characteristics.

The SIDD program is an advanced implementation of the dynamic programming models that are
increasingly popular in the economics literature. Unfortunately, any individual who would like to
contribute to this literature is currently faced with the massive technical over-head involved in
developing the programming routines that are necessary to implement the analytical approach. This
manual is written in the hope that progress in the related field might be accelerated by making the
source code that underlies SIDD accessible to a wider group of individuals.

Consistent with the above stated purpose, this manual does not discuss at length technicalities that
underlie the program’s implementation. Rather, the emphasis here is on supporting an individual to
amend the program code to consider issues that cannot be described by the existing model
structure. Anyone interested in technical details that underlie the program are referred to **.
Similarly, directions in practical use of the program in its existing form are provided in the User
Manual, which is a companion manual to this paper. The discussion that follows assumes that the
reader is familiar with each of these two publications.

This document has been kept deliberately brief to facilitate accessibility, with discussion divided into
3 sections. Section 0 provides an overview of the program structure, including a discussion of the
sorts of problems that it is currently well adapted for. Section 0 describes how to set the model up
on a new computer, ready for amending the programming code. Section 4 then describes how the
existing program code can be altered to extend the sorts of problems that it can be used to explore,
with reference to a practical example.

2 Overview of the Program
The SIDD program includes all of the files and folders necessary to simulate a population cross-
section forward and back in time on the basis of the assumed structural framework. Throughout this
document, SIDD is referred to as a “program” and not a “model” because our current interest is
confined to issues pertaining to the program code. Implementations of this code to specific social
contexts include the NIBAX model (a cohort specific specification for the UK, e.g. van de Ven, 2011),
the PENSIM model (a cohort specific specification for Ireland, e.g. Callan et al., 2009), and the LINDA
model (a cross-sectional model for the UK, e.g. ***). Projections derived from each of these models
are generated by the SIDD program.

SIDD is comprised of five types of file. Key model parameters and summary statistics are contained
in a series of Excel files, to aid their manipulation. Other model parameters are saved in text files,
denoted with a *.dat extension. All calculations are performed by a master executable file called
SIDD.exe, which delegates selected tasks to a series of dynamic link libraries (*.dll). Both the
executable file, and the dynamic link libraries are programmed in Intel Visual Fortran, which has the

3 | P a g e

advantages of being computationally efficient and accessible to people with little previous
programming experience. This document provides a brief guide to altering SIDD.exe and the
associated *.dll files.

The following

2.1 Program structure
The principal technical programming details that are assumed by the subsequent discussion are
summarised in Appendix A. It is recommended that you read Appendix A before proceeding if you
have little (or no) formal programming experience.

The programming code takes a modular form, and makes extensive use of programming
subroutines. Although it is beyond the scope of this document to provide a detailed description of
the workings of the program, this section provides a basic schematic of how the principal
subroutines of the program relate to one another, and what each subroutine does.

A full list of the subroutines of the SIDD program is reported in the table presented below. Figure 1
provides a pictorial schematic of how a typical simulation will run through the program code.

The model enters through the “MASTER” program module. MASTER passes first to the LOAD_DATA
module, which loads in model variables with calls to the library EXCEL.dll.

LOAD_DATA creates the subdirectory into which simulation output for the current run is saved. It
also allocates model parameters to a series of global variables (held in the GLOBAL_M and
GLOBAL_PARAMSTORE modules), a process that is partly undertaken through calls to the
COHORT_ALLOCATE subroutine. The model parameters are then checked by a call to the
CHECK_DATA subroutine, and any errors are reported by calling the REPORT_ERRORS subroutine.

MASTER then passes the program through to the GRIDS_MASTER subroutine, which organises calls
to each alternative part of the model, depending upon the parameters that have been set-up for the
simulation. A typical simulation will initially involve the following.

1) AXES_INIT will define the terms of the “grids” into which the state space of the considered
decision problem is divided

2) GRIDS_EVAL will organise the total storage space for outputs associated with the grids into a
series of segments, which are then passed to SOLVE_GRID

a. The model is set-up to permit all of the output to be saved into a single file (1.dat),
which is stored as a global variable throughout a single simulation. This helps to
reduce computation times, by limiting reading-writing to hard disk space. In context
of memory limitations, however, grid output can also be chopped up into a series of
files, each of which will span a given number of “ages”. The calculations necessary
to manage these details are performed here.

3) SOLVE_GRID organises the terms of the utility maximisation problem associated with each
age, and passes these to TM_GRID_CAL. It then re-packages output received from
TM_GRID_CAL for passing back to GRIDS_EVAL.

4) TM_GRID_CAL organises treatment of the optimisation problem at each grid intersection.
This subroutine first identifies a number of descriptive characteristics of the optimisation
problem. It then considers the optimisation problem of each grid abscissae in turn. Three

4 | P a g e

loops are used to loop over grid abscissae. The outer loop considers each possible discrete
state. The second loop considers each segment defined for net liquid wealth, and is
parallelised using OpenMP. The third loop considers each alternative continuous state
variable. Within the “state loops” referred to above, are a series of loops that are designed
to consider each potential decision alternatives between discrete options (e.g. full-
time/part-time/not employed), and within these “decision loops”, is a call to
CONTINUOUS_CHOICE, which optimises over continuous control variables. Finally,
TM_GRID_CAL packages calculated output, and returns it to SOLVE_GRID.

5) CONTINUOUS_CHOICE evaluates which continuous control variables require a solution. It
then initialises expectations vectors by calling EXPECTATIONS_UPDATE, identifies maximum
bounds on consumption via CONSUMPTION_BOUNDS, and passes the optimisation that is
now defined through to the routines in the OPTIMISATION module

6) After solving the lifetime decision problem under GRIDS_EVAL, the model passes to
SIM_POPULATION to simulate a reference population through time. SIM_POPULATION
works by looping over ages, starting with the highest simulated age and working backwards
to conduct the backward simulations, and then switching to start with the youngest
simulated age and working forwards for the forward simulations. The requirement to satisfy
incentive compatibility conditions complicates backward simulation, relative to forward
simulation.

a. Backward simulations start, for each individual, by initialising states at age aa from
aa+1 via STATE_AA_INIT. The decisions for the respective individual at age aa, given
their initialised state variables, are evaluated by DECISION_EVAL. Given an
individual’s state variables at age aa+1 and projected decisions at age aa,
PROJ_STATES_BACKWARD then projects states back to age aa. A loop is then used
to identify a combination of states and decisions at age aa that are mutually
consistent with the individual’s states at age aa+1.

b. Forward simulations require only a single call to DECISION_EVAL and then a call to
PROJ_STATES_FORWARD, for each individual at each age.

7) The model then passes to secondary analysis routines, typically controlled through
ANALYSIS_MASTER before returning to the MASTER program and exiting.

5 | P a g e

Table 2.1: Model components

File Module Subroutine Task
1_Master.F90 NA NA main program entry and exit point
1a_tester.F90 NA NA NA
2_data_input.F90 data_input loads in and re-packages model parameters
 load_data loads in model parameters
 check_data checks the loaded parameters for obvious inconsistencies
 report_errors reports any identified errors to the main program window
 cohort_allocate re-packages model parameters to the format required for the simulation
 update_xArr NA
2a_global.F90 defines model parameters passed as global variables
 global_m NA global variables storing a sample of definitional terms
 global_paramstore NA global variables storing model parameters
2b_simdata.F90 simulated_data defines global variables that store simulated panel
 NA global variables storing simulated panel data
 deallct_sim_data deallocates variables that store simulated panel data
 load_simpop allocates variables that store simulated panel data and loads in data for base

population
3_model_manage.F90 grids_calc high-level management of routines that are called by a given simulation
 grids_master a master subroutine that manages which other subroutines the model subsequently

calls
 geq_eval search routine to identify endogenous prices and returns for steady state solution to a

General Equilibrium
 intertemp_elas calculates intertemporal elasticity by perturbing rates of return
 Delta_lc sub-component used to evaluate intertemporal elasticity
3a_axes_init.F90 axes_init axes_su initialises the axes of the grids that are used to solve the lifetime decision problem
3d_estimn.F90 model_estn experimental module for estimating the model structure using the method of simulated

moments - not discussed further here
segment 1 of 6

6 | P a g e

Table 2.1: Model components (continued)

File Module Subroutine Task
3e_budget_balance.F90 budget_balance conducts a search to identify taxes that ensure budget balance between consecutive

simulations
 budget_search search routine for taxes
 budget_call evaluates budget balance for given tax rates
4_grids_manage1.F90 grids_comp grids_eval highest-level of subroutine for solving utility maximisations - cycles over grid

components
4a_global.F90 global variables used to solve the utility maximisation problem
4b_grids_manage2.F90 solve_grids solve_grid second highest level of subroutine for solving utility maximisations - cycles over

individual ages
4c_solve_master.F90 utility_maxn solves utility maximisation problem for individual grid abscissae
 tm_grid_cal

identifies existing state combination to assume for each utility maximisation problem
 inner_state evaluates existing values of continuous state variables
 emp_training_id calculates employment, leisure, and training combinations for individual (discrete)

decision options
4d_abscissae.F90 abscis abscissae determine weights and abscissae of Gauss-Hermite quadrature
4e_exp_prelim.F90 exp_prelim evaluates expectations over discrete state alternatives
 cont_prelim initialises global variables in relation to continuous states
 disc_prelim initialises global variables in relation to discrete states
 axes_prelim defines axes of grids for current solution problem
 disc_states defines existing discrete state variables
 disc_exp defines expectations concerning discrete state variables
4f_search_allcontinuous.F90 solve_continuous continuous_choice defines the terms required to solve over the continuous control variables, and passes

the problem to generic optimisation routines
segment 2 of 6

7 | P a g e

Table 2.1: Model components (continued)

File Module Subroutine Task
4g_valfn_evals val_fn_evals undertakes calculations necessary to evaluate value function calls
 expectations_update determines whether it is necessary to update expectations with reference to tax

function calls
 expectations_adjust updates expectations using tax function calls
 consumption_bounds determines bounds on consumption following update of expectations using tax

function calls
 val_eval evaluates value function
5_popn_genr.F90 popn_genr simulates population characteristics forward and backward through time
 sim_population master subroutine that initialises population variables and passes model to

subroutines that project these characteristics through time
 state_bounds defines maximum and minimum values for state variables
 decision_eval uses interpolation methods to identify decisions given a family's prevailing state

variables
 proj_states_forward projects individual characteristics forward one period, given their simulated decisions

and characteristics in the prevailing period
 ws_state_init initialises "working space" used to model retirement status back through time
 ws_state_update updates the "working space" used to project retirement status back through time to

ensure incentive compatibility
 state_aa_init initialises characteristics for age aa, when projecting backward from age aa+1
 proj_states_backward projects individual characteristics backward one period, given their simulated decisions

and characteristics in the prevailing period
 hh_size projects demographic characteristics forward one period
 hh_size2 updates demographic characteristics using stored lifetime vectors
 self_emp_innov updates innovations to match self-employment status to observed status in reference

period
 rp_dataload loads in reference population panel data
segment 3 of 6

8 | P a g e

Table 2.1: Model components (continued)

File Module Subroutine Task
5b_sim_globals.F90 sim_vars global variables for simulating population through time
6_analyses.F90 internal_analyses a set of subroutines that conduct secondary analyses on simulated panel data
 analysis_master master subroutine to determine which analysis routines are accessed
 analysis_calibn master subroutine to determine which set of statistics to produce to calibrate the

model parameters
 analysis_adult calibration statistics when adults are explicit - generates results reported through excel

file calibn.xls
 analysis_hilevel analysis routine to produce "high level" statistics reported in excel file

hi_level_statistics.xls
 ge_sum_stats generates a subset of the statistics reported in the file hi_level_statistics.xls
 analysis_deciles generates decile level statistics reported in file analysis_dec.xls
 cv_analysis generates Compensating Variations reported in file analysis_dec.xls
 tax_analysis generates statistics for analysis of tax function, as reported in tax_test.xls
 tax_analysis2 generates statistics for analysis of tax function, as reported in tax_test2.xls
 income_moments generates summary income moments reported in income_moments.xls
 DA1 generates summary statistics reported in file DA1.xls
6a_analysis_tools.F90 analysis_tools a set of routines that are useful for analysing data
 min_max_sort generates a vector that reports indices in ascending order of an input vector y
 var generates the variance of an input vector y
 weighted_mv generates the weighted mean and variance of a vector of input data vec
 cum_norm function for calculating the cumulative normal probability
 inv_cum_norm function for calculating the inverse of the cumulative normal distribution
 zero_invNorm search routine used to calculate the inv_cum_norm distribution
6b_sorting.F90 m_mrgrnk a set of routines that are useful (and efficient) for sorting vectors of numbers
segment 4 of 6

9 | P a g e

Table 2.1: Model components (continued)

File Module Subroutine Task
app_BusDekker.F90 BusDekker Implements the Bus Dekker algorithm to search for a zero of a function
 zero_search the Bus Dekker algorithm
 fn_zero a passing module for defining the function to be set to zero
app_Interpolation.F90 Interpolation a set of subroutines to interpolate over multiple dimensions
 interpln undertakes some basic checks before passing an interpolation problem on
 int_disgrid stripping out interpolation over discrete states
 interp_pass passes to interpolation, and then conducts extrapolation if necessary
 interp passes to linear or cubic interpolation methods
 interp_cubic cubic interpolation
 interp_lin linear interpolation
 interp_near nearest neighbour interpolation
 indxoff working subroutine for identifying off-sets
 getinteger converts values to integers
app_optimisation.F90 optimisation Contains a series of routines that are designed to optimise over multiple continuous

dimensions referring only to value function calls
 fn_minimise passes the optimisation problem to the relevant routine - NAG routines are suppressed

and can only be accessed if you have the necessary 3rd party license
 objfn defines the objective function for minimisation
 objfn2 implements adaptations required by a NAG routine
 objfn3 implements adaptations required by a NAG routine
 banana a standard test problem
 powell implements the Powell search routine, as described in Numerical Recipes
 brent implements the Brent search routine, as described in Numerical Recipes
 boundary_pnts identifies boundary points of linear projections through N dimensions
 chk_bound runs a check for boundary conditions on a specified linear projection
 fminsearch implements the simplex search method of Lagarias et al.
segment 5 of 6

10 | P a g e

Table 2.1: Model components (continued)

File Module Subroutine Task
app_other_tools.F90 other_tools a miscellaneous set of analytical routines
 time_given_agei_cohort

defines a series of temporal identifiers given age and birth cohort reference number
 age_given_time_cohort

defines a series of temporal identifiers given time and birth cohort reference number
 pension_exist identifies whether a pension could exist for an individual of given circumstances
 axis_defn defines axis identifiers
 randnorm generates a random draw from a normal distribution, based on a random draw from a

uniform distribution
 employment_id identifies employment status for individuals based on other characteristics
 csv_file_write1 writes output to disk in CSV format
 get_unit NA
 csv_data_append appends new data to a CSV output file
 i4_widths NA
 i4_log_10s NA
 hh_demog_annual generates demographics from transition probabilities and random draws
tax_coms.F90 tax_coms constructs vectors for communicating with dynamic link library files that compute tax

and benefits outputs
 tax_prep packs the vector to send to TAXES.dll
 tax_retn unpacks the vector retrieved from TAXES.dll
 part_tax_rate calculates participation tax rates

segment 6 of 6

11 | P a g e

Note: * denotes parallelised loop using OpenMP. Model entry and exit in red “Master”, looping conditions in blue, decision optimisations in red, communication with dll libraries in green

Figure 2.1: Schematic of program code

Master

load_data

EXCEL.dll

check_data

grids_master

grids_eval

solve_grid

discrete
states loop

disc_states

disc_exp

non-wealth
loop*

wealth loop inner_state

disc decision
loop

cont_choice

fn_minimise

minimisation
routine

sim_population

exp_update TAXES.dll

anal_master

Master

EXCEL.dll save output

rp_dataload

loop back
over ages

ws_state_init

state_aa_init

proj_state_b

decisn_eval

loop forwd
over ages

decisn_eval

proj_state_f

12 | P a g e

3 Set-up

3.1 System requirements
SIDD is designed to operate on desktop workstations that use Intel processors and the Microsoft
“Windows” operating system. The model will run on minimal system specifications: a 32 bit
operating system, with a single core processor, and 4 GB of RAM. The types of problem that the
model can be used to explore are very limited on this minimum specification, however, and we
recommend the following system specifications: 64 bit operating system, with 12 physical cores,
24GB of RAM and 1TB of hard disk space.

Microsoft Excel is required to analyse summary statistics reported by the model. The model is
programmed in the Intel Visual Fortran environment, currently available in the form of Intel Parallel
Studio XE, or Intel Fortran Studio XE.

3.2 Loading the model onto a new computer
The model is delivered as a single zip folder. The folder includes two subdirectories: FORTRAN, and
MODEL. The FORTRAN subdirectory includes the programming code for the ANALYSIS, EXCEL, SIDD,
and TAX routines of the model. The MODEL subdirectory includes all of the files that are required to
run the model.

The MODEL subdirectory contains two subdirectories in addition to a set of model files. The
subdirectory BASE_FILES contains a separate subdirectory for each "base" specification that you
create with the model in which files that are required for the respective base specification are stored
(as discussed in the section concerned with “FORM 0” that we return to below). The subdirectory
SIMULATIONS will contain a separate subdirectory for each simulation that you run, in which are
stored the panel data generated by the model, model parameters, and excel simulation output.

Please follow these steps when installing the model on a new computer:

1. Extract the zipped files from the compressed folder to a subdirectory of your choosing,
maintaining the directory structure that we have included with the zipped file

2. In the FORTRAN subdirectory, open up the EXCEL subdirectory, and double-click on
EXCEL.sln

a. This should open the Visual Studio program environment
3. If you can see the “solution explorer” window, then select the purple box

a. If you cannot see the window, then open it through the “View” drop-down menu
4. In the “Project” drop-down menu at the top of Visual Studio, select “Properties”
5. In the “Configuration” drop-down menu select “All configurations”
6. In the “Platform” drop-down menu select “All platforms”
7. Under the “Configuration Properties”, select the “General” category
8. Against the “Output Directory”, enter the file location that you have saved the model into

a. eg: “c:\myfiles\model_lab\model\”
9. Under the “Configuration Properties”, select the “Debugging” category
10. Against “Command”, enter the location of the file “SIDD.exe”; eg:

“C:\MyFiles\MODEL_LAB\MODEL\SIDD.EXE”

13 | P a g e

11. Against “Working Directory”, enter the same text as under (8)
12. Press the “Apply” button, and then the “Ok” button
13. Under the “File” drop-down menu select “Save All”
14. Under the “Build” drop-down menu select “Configuration Manager”
15. Under the “Active Solution Configuration” select “complete”
16. Under the “Active Solution Platform” select “x64” and press the “Close” button1
17. Under the “Build” drop-down menu select “Rebuild Solution”

You should then see some text like:

1>------ Rebuild All started: Project: EXCEL, Configuration: Complete x64 ------
1>Deleting intermediate files and output files for project 'EXCEL', configuration
'Complete|x64'.
1>Compiling with Intel(R) Visual Fortran Compiler XE 14.0.1.139 [Intel(R) 64]...
1>CSV_IO.f90
1>comEXCEL.f90
1>0_dll_entry.f90
1>Linking...
1>Starting pass 1
...
1> ImageHlp.lib(imagehlp.dll)
1> ImageHlp.lib(imagehlp.dll)
1>Finished pass 2
1>
1>Build log written to
"file://C:\MyFiles\MODEL_LAB\FORTRAN\EXCEL\x64\Complete\BuildLog.htm"
1>EXCEL - 0 error(s), 0 warning(s)
========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

18. Redo steps (2) to (17) for the remaining model components, in the following order:
a. TAXES
b. ANALYSIS
c. SIDD

The above ensures that the programming files are all present and working

3.3 Creating a simulation base
The model starts with data reported by the Wealth and Assets Survey for a population cross-section
of reference adults. The model parameters have been calibrated to match the model to a wide
range of summary statistics calculated from survey data sources, with the calibration structured
around the year in which the reference population was observed (see van de Ven and Lucchino,
2013, for details). The model comes packaged, ready to project the circumstances of the population
cross-section forward and backward through time, to build up a complete life history for each
reference individual. It is recommended that this be done, and that the associated data should be
defined as the “base” for subsequent simulations. This can be done by following the steps 19 to 29
below

19. Open the MODEL subdirectory, and then open “job file.xls”
20. Ensure that you allow macros to work in Excel

a. please ask your system administrator if you require assistance with this

1 If running a 32 bit environment then select “Win32” here.

14 | P a g e

21. Press ALT+F8
22. Select “SIDD” and press the RUN button
23. Press the “RUN EXISTING JOB FILE” button

This version of the model currently runs in around 9 hours on the recommended system defined in
Section 3.1 – the associated simulation creates a new set of base data for analysis, using the full
model specification.

24. Re-open “job file.xls”
25. Press ALT+F8
26. Select “SIDD” and press the RUN button
27. Enter “age18_all” into the text-box with the title “name of run to adopt as new base”
28. Enter “base_2006_age18_all” into the text-box with the title “directory name for new base”
29. Press the “CONVERT RUN TO NEW BASE” button

Excel will then work away for a short while, after which you should receive a message confirming
that the new base has been created. If you look in the “base_files” subdirectory, you should now
see a new subdirectory with the name “base_2006_age18_all”, which includes all of the files
defining the base simulation specification.

To test that the model set-up has been successfully completed:

30. Re-open “job file.xls”
a. This file has been changed since step (24), so that it now references the new base

model directory by default.
31. Press ALT+F8
32. Select “SIDD” and press the RUN button
33. Press the “SET UP NEW SIMULATION” button
34. Type “test” in the text-box with the title “Simulation Name”
35. Press the “ENTER” button
36. Tick the box to direct the model to calculate “statistics for equivalised income deciles”
37. Tick the box to indicate that “comparative statistics with the population base” should be

evaluated
38. Press the “ENTER AND RUN” button
39. Press the “LAUNCH MODEL” button

The model should then run through once again, in around 6-7 hours. This time, however, the
simulations will project only forward through time, taking the population characteristics back in time
from the base specification”. When the model is complete, please open the analysis_dec.xls file that
is created in the “test” simulation directory, and check that all of the statistics reported in the
“differences with base” sheet are close to zero.

15 | P a g e

4 Extending the Program
This section provides a very brief overview of the steps that are involved when introducing a new
feature into the model structure. There is no substitute for “hands-on” experience in this regard,
and you should allow plenty of time for experimentation in your first few attempts. Although the
model structure has been specifically adapted to facilitate the introduction of new features, the
structure is complex, and it is therefore exceedingly easy to introduce errors into the framework.
Furthermore, once errors have been introduced, they can be very difficult to identify at a later date,
and can contaminate simulation results in highly unexpected ways. It is therefore essential that you
exercise extreme care whenever adjusting the program structure.

The steps involved to include a new feature in the model, depend upon the feature of interest.
Features become increasingly difficult to implement when they alter the uncertainty that people
face, or the decisions that they have available. To cover all of the potential issues that you might
encounter is well beyond the scope of this introduction. We consequently focus here on a realistic –
albeit fairly simple – example. The objective of providing this example is to provide the reader with
clues about where they should look in the existing code to guide them in the implementation of
more complex structures.

Introducing health status into the model
Suppose that you wanted to introduce a new characteristic to represent the health status of a
reference person into the model. We first need to define what “health status” is to mean in the
model. To keep things simple, suppose that we are only interested in two alternative health states
(good and bad), where transitions between them are random, and the existing state influences non-
discretionary family expenditure.

Introducing this type of model characteristic involves 7 key steps:

1) Save the existing model structure as a “Draft Model”
2) Define model parameters and store them in associated excel files
3) Read model parameters into the program
4) Alter model grids to accommodate the new characteristic
5) Alter expectations for utility maximisation problem
6) Implement the direct influence of the new characteristic on the decision problem
7) Allow for the new characteristic when projecting the population through time
8) De-bugging model alterations

The first of these steps is important to ensure against some form of critical error during the re-
programming process, and to provide a sound basis for comparison during the debugging process.
Each of the alternative steps of the analysis is discussed in turn.

4.1 Defining and storing model parameters
Suppose that there are 10 model parameters that the model will require to simulate our definition
of health status. The 10 parameters could be added to the end of the existing parameters in column
AS of sheet “input” in file “Job File.xls”, along with descriptions in column AR.

16 | P a g e

TIP: make sure that you save the new model parameters into both the “input” and “inputA”
worksheets of “job file.xls” when you are finished. Otherwise, you risk losing the parameters when
someone runs the model macro in future work.

Note that storage of model parameters is not always so straight-forward. It may require you to add
worksheets to existing input files, or add new Excel files entirely. This task can consequently become
fairly complex, despite the simplicity of the example provided here. You are advised, in complex
cases, to look for existing parameters that are similar to those that you are interested in adding, and
use the associated code to infer how the task could be dealt with.

4.2 Reading in new model parameters
Scrolling to the top of the “job file.xls”, you will note that there are comments in the first row of
each column of variables stored in the “input” sheet. These comments define the global variables
into which the relevant parameters are stored by the model – “cohort_par” in our case. We now
need to ensure that our new parameters are loaded into cohort_par.

Open the solution for SIDD in the Visual Studio programming environment. Open file
“2_data_input.F90”, and ensure that the cursor is at the top of the file, and then do a word search
for “cohort_par”. You should find a line of code that looks like this:

allocate(cohort_par(60))

We need to increase the length of cohort_par so that it accommodates the new variables that we
have added to Job file.xls. The length of cohort_par must be equal to (or greater than) the index of
the last row that you reference in “Job File.xls” minus 1 (as the first row of the Excel file is ignored by
the program).

It is now advisable that you check the code by doing the following:

1. save the revised model code,
2. build the solution in the “debug” configuration,
3. clear all break points
4. add a break point at the line in “2_data_input.F90”: call check_data()
5. set the debugger running to the breakpoint (press F5)
6. check that your new model parameters are at the bottom of the cohort_par vector as

expected.

4.3 Altering model grids to accommodate new characteristic
The dimensions of the grids upon which the behavioural solutions of the model are based are
initialised in the file “3a_axes_init.F90”. Comments at the top of subroutine AXES_SU are provided
to aid you when you introduce new characteristics into the model. Specifically, you should note
that:

! n_grid(t,1,i) - denotes no of points
! n_grid(t,2,i) - denotes minimum
! n_grid(t,3,i) - denotes maximum

! states stacked in following order:
! cash on hand (w)
! human capital / persistent wage innovation (y)

17 | P a g e

! temporary wage innovation (e)
! individual effect on wages - constant (iw)
! Occupational Pension (s)
! (s) also used for generic pension annuity from earliest pensionable age
! Private Pension (p)
! Own business wealth (ob)
! BSP (cp1)
! S2P (cp2)
! ISA (isa)
! ...
! training (t)
! birth cohort
! wage offer (household / cohort member)
! wage offer (spouse - where modelled explicitly)
! ...
! self-employment
! retirement (wage penalty)
! students at entry to simulation
! default PP participation state
! Personal Pension contribution rate when this is discrete
! pension takeup (receipt) flag
! education
! na (a)
! nk (k)
!
! This ordering is structured around the following rules:
!
! 1) continuous variables at top, discrete variables at bottom
! 2) index of continuous variables from top, with exception of training and birth
cohort
! training switches between a continuous and discrete state variable
! birth cohort is discrete in grid solutions, and continuous in population
simulations
! 3) index of discrete variables from bottom, with exception of wage offer
! which is not explicitly generated in solution
! 4) hence, add new continuous variables above training, and new discrete
! variables below wage offer(s) (indicated by ...)

We should therefore add our new (discrete) characteristic below “wage offer”, at the point in the list
indicated by “…”, just above “self-employment” in the current structure.

TIP: when adding in a new characteristic it is useful to take note of two alternative factors – (i) any
previously implemented statistic that has similar properties to the new statistic, and (ii) the statistic
that is immediately below (above) the new statistic for discrete (continuous) variables in the list of
modelled variables that is provided above. Often these two factors coincide, which is the case in the
current context. We are modelling health status in a very similar way to self-employment – both are
discrete states, and both are being modelled exogenously. The “flag” to enable self-employment
status is defined in the global vector semp_par(1) – searching for this flag will often help to minimise
the risk of missing required alterations to implement a new characteristic in the code.

Search for semp_par(1) in the current file, and you should find:

 if (semp_par(1).gt.0.5) then
 !*** self employment

 ii = ii + 1_4
 n_grid(i,1,ii) = 2.0

18 | P a g e

 n_grid(i,2,ii) = 0.0
 n_grid(i,3,ii) = 1.0
 end if

We need to add in the following statistics for our new characteristic, just above the code referred to
above:

! n_grid(t,1,i) - denotes no of points
! n_grid(t,2,i) - denotes minimum
! n_grid(t,3,i) - denotes maximum

This will involve adding in the code:

 if (cohort_par(61).gt.0.5) then
 !*** health status

 ii = ii + 1_4
 n_grid(i,1,ii) = 2.0
 n_grid(i,2,ii) = 0.0
 n_grid(i,3,ii) = 1.0
 end if
where I have assumed that cohort_par(61) refers to a flag that turns health status on (1) or off (0) in
the model. Furthermore, note that the lifetime is divided into “working” and “retired” segments. As
health status is likely to apply to both segments of life, it will be necessary to add the above code for
both of these segments, which should be evident in the region of code that is referred to above.

4.4 Alter expectations for utility maximisation
Close all of the open model files in the solution (by not the solution itself). As the program code
extends over 1000’s of lines, knowing precisely where to go in every context is not very practical. It
is more useful, therefore, to know how to find the places in the code that you are looking for. This
detail was provided to us in the previous stage, with the identification that our new characteristic is
closely aligned with the modelling of self-employment in the program.

It is now useful to search for all instances in the code where self-employment is treated. Hold
CTRL+F to obtain the “find dialog box”. Type “semp_par(1)” into the textbox, and ensure that
“Entire solution” is in the “Look in” menue.

You should scrutinise each case and consider whether it is relevant to our case as well. The first of
these cases is in “2_data_input.F90”, and looks like:

 if (semp_par(1).gt.0.5) then
 ! self employed

 max_ndim = max_ndim + 1_4
 max_prob = max_prob * 2.0
 end if

This indicates that we need to adjust global variables concerning the maximum number of
dimensions (max_ndim) and the maximum number of alternative cases to consider for evaluating
individual expectations (max_prob) for our new characteristic. This could be done in our case by
including:

19 | P a g e

 if (cohort_par(61).gt.0.5) then
 ! health status

 max_ndim = max_ndim + 1_4
 max_prob = max_prob * 2.0
 end if

Enter this just prior to the self-employment code, following the order convention set out in the
comment provided above (page **).

The next relevant case is found in file “4e_exp_prelim.F90”, in subroutine “disc_prelim”, where
discrete states are initialised in the routine that solves for utility maximising decisions. The code
here is:

 !***
 ! self-employment axis
 !***
 if (semp_par(1).gt.0.1_8) then
 ! self-employment possible

 semp_axis_am1 = 1_4
 if (current_age.eq.nint(model_par(5))) then
 ! if at forced retirement age (next year must be retired)

 semp_axis_a = 0_4
 semp_pts_a = 1_4
 else

 semp_axis_a = 1_4
 semp_pts_a = 2_4
 end if
 else

 semp_axis_am1 = 0_4
 semp_axis_a = 0_4
 semp_pts_a = 1_4
 end if
 disc_axes_a = disc_axes_a + semp_axis_a
 nexp_d = nexp_d * semp_pts_a

We should reflect this code for our case, again appearing just above the self-employment code as:

 !***
 ! health status axis
 !***
 if (cohort_par(61).gt.0.1_8) then
 ! health status possible

 health_axis_am1 = 1_4
 health_axis_a = 1_4
 health_pts_a = 2_4
 else

 health_axis_am1 = 0_4
 health_axis_a = 0_4
 health_pts_a = 1_4
 end if
 disc_axes_a = disc_axes_a + health_axis_a

20 | P a g e

 nexp_d = nexp_d * health_pts_a

Two key points are of note here. First, we have add a series of new variables here, defined as
health_***. It is necessary to do a supplementary search on the relevant semp_*** variables to
ensure that the health related variables are all worked into the model properly.

Secondly, the suppression of the self-employment related variables here will not apply for our health
related variables, and we therefore need to exercise special care in ensuring that the health related
variables are fully worked into the “retired” component of the modelled life course. The best way to
do this is to look for another model characteristic that applies to the retired lifetime, and is also
similar to our health status. Birth cohort might suffice for this purpose, though it would be
necessary to exercise a great deal of care in this regard.

Following each of these threads of enquiry through to their respective conclusions (making extensive
use of key-word searches), will substantively address this remaining programming issues required to
set-up the utility maximisation problem to take account of the new health characteristics. Note that
you should not pursue key word searches into files names commencing with “5” or “6”, which
concern population simulation and analysis respectively.

4.5 The direct influence of health on simulated decision making
This aspect of amending the program is usually particular to the subject of interest. In some cases, it
will involve altering the assumed preference relation, in others it will involve adapting expectations
only. In our case, it would involve altering the way that the case available for immediate
consumption is evaluated. This can be found by identifying where disposable income is evaluated in
when describing model expectations. As displayed in Figure 2.1, this is implemented through
subroutine EXPectations_UPDATE, found in file 4g_valfn_evals.F90. Searching for “tax_prep” (the
module that packages tax inputs, as noted in Table 2.1) in file 4g_valfn_evals.F90, will identify where
disposable income is evaluated, and will permit the necessary adjustments to non-discretionary
expenditure to be implemented. Implementation of these model changes will often require a bit of
experimentation, an issue that is returned to in Section 4.7 below.

4.6 Including health status when simulating a population through time
The process of implementing a model change in the subroutines that project micro-data through
time usually mirrors that described above for identifying utility maximisation decisions. Key word
searches on related variables will identify most of the points in the code that require attention,
subject to key issues that are specific to the particular subject of interest (and are therefore usually
easily identified).

4.7 Debugging
It is crucially important that any amendments to the model code be thoroughly debugged, after they
are implemented. A typical cycle of debugging will involve the following:

1. Attempt to build the revised model code in the “Debug” configuration
a. This step will often reveal a series of errors that are identified by the internal

compiler.
b. Resolve all issues reported by the compiler

21 | P a g e

2. Delete all break points
3. Run the code through the debugger, adopting a very small grid specification to ensure

sensible run-times
a. This step will often result in the code running a part-way through before it

encounters a problem, either due to a critical error (e.g. a division by 0.0), or
tripping one of the checks that have been programmed into the structure of the
model.

b. Resolve all issues identified in this way until the model runs all the way through to
solve for the complete simulated lifetime.

4. Build the revised model code in the “complete” configuration.
5. Re-run the model, with the new features suppressed.
6. Compare results against the immediately preceding version of the model, saved as a “Draft

Model”, prior to altering the model code.
a. These results should be identical. If not, then it is possible to track down unintended

complications by running the same problem simultaneously through two debuggers,
one using the new code, and the other using the Draft Model code.

7. Re-run the model with the model alteration implemented
a. If possible, it is best to start with an allowance that should suppress any effects on

the simulation. In our case, for example, this could be achieved by setting non-
discretionary costs of health status to zero. Any disparities can, again, be identified
by comparing simulations under the revised and Draft Model codes.

b. Ensure that projected effects of the model are broadly sensible.

22 | P a g e

Appendix A: Basic Rules of Syntax
• The Fortran code that is provided with the model is organised into four broad structures,

which can usefully be thought of as containers.
• The largest container is the “solution”, which is a set of files that comprise the basic building

blocks that Fortran uses to generate program files
o The “ANALYSIS solution” can be opened by double-clicking on the file “analysis.sln”

in the “FORTRAN\ANALYSIS\” subdirectory.
• The second largest container is the “source file”, into which code is written.

o You can browse through the source files of a solution via the “Source Files” folder of
the “Solution Explorer” (which can be seen by selecting “Solution Explorer” from the
“View” menu of Visual Studio)

o To add a new source file to a solution:
 right click on the Source Files folder

• select “add”, “new item”
• select “Fortran Free-form File (.f90)”
• make up a name for the file toward the bottom
• and press the “Add” button

• Each source file can contain one, or a number, of MODULEs.
o A MODULE is predominantly a container to organise a number of SUBROUTINEs.

 e.g. MODULE AA might contain SUBROUTINEs AA1 and AA2; and MODULE
BB might contain SUBROUTINEs BB1 and BB2

 a slight complication arises in relation to “global variables”, which is
returned to below.

• Most MODULEs are organised as follows:
o MODULE AA

 This line denotes the start of the MODULE with the name AA
o IMPLICIT NONE

 This line is necessary to avoid easy programming errors – do a google search
on it for further detail

o CONTAINS
 This line notes that the SUBROUTINES that follow are contained within the

MODULE
o **** SUBROUTINEs then appear here ****
o END MODULE AA

 This line denotes the end of the module
• All of the program computations are undertaken by code that is organised within a series of

SUBROUTINEs.
o e.g. SUBROUTINE AA1(x, y) takes a series of inputs x, performs a number of

calculations, and then returns a series of outputs y.
 We would execute this subroutine by entering the following code: call

AA1(x,y)
• To use (call) SUBROUTINE XX from within SUBROUTINE YY, either:

o the two SUBROUTINEs must be organised within the same MODULE, or
SUBROUTINE YY must be given access to the MODULE containing SUBROUTINE XX
 e.g. in the above example SUBROUTINE AA1 could call AA2 by default, but

would need to be given access to MODULE BB to call BB1 (or BB2)
• Each SUBROUTINE must be organised as follows (based on the above example):

o SUBROUTINE AA1(x, y)
 This line denotes the start of the subroutine, and the variables that are used

as inputs and outputs – if the subroutine takes in no explicit inputs, and
produces no explicit outputs, then we write “SUBROUTINE AA1()”

23 | P a g e

o USE BB
 This line gives SUBROUTINE AA1 access to the SUBROUTINEs contained in

MODULE BB
 This line is only required if you want to access SUBROUTINES (or global

variables) stored in MODULE BB
o IMPLICIT NONE

 This line is necessary to avoid easy programming errors – do a google search
on it for further detail

o real (8) :: x, y
 This line of code refers to the “type definitions”, and usually covers a

number of lines.
 A “type definition” tells fortran the explicit nature of the data that each

variable contains.
 The variables that you will most commonly require will be limited to real(8)

(a number with a decimal point) and integer(4) (a whole number without
any decimals) types.

• A variable cc is assigned a real type by; real(8) :: cc
• A variable cc is assigned an integer type by; integer(4) :: cc
• If cc is a matrix of real numbers with dimension (5,4) (5 rows and 4

columns), then it is assigned by; real(8) :: cc(5,4)
 You must assign types to all of the variables that are included as inputs and

outputs to a given subroutine (e.g. x and y in the example here)
 You must also assign types to all of the variables that you use within the

subroutine, and which are discarded after the subroutine is complete
• Variables discarded after a subroutine is complete are commonly

referred to as “local variables”.
o **** You then add in programming code to undertake your desired calculations

here ****
o END SUBROUTINE AA1

 This line denotes the end of your subroutine

The above covers just about everything you will need in relation to program structure. There is,
however, one final complication. Fortran requires each variable that is used in any subroutine to be
assigned a type (real / integer above). In most cases, the variables that you use will either be explicit
inputs / outputs of a subroutine, or will be “local variables” that you don’t mind discarding after your
desired computations within the subroutine are complete. Nevertheless, there are a number of
variables that you might want to make common to a range of subroutines, without needing to
repeatedly pass these variables as explicit inputs to each subroutine. Examples in relation to tax and
benefits calculations include the number of adults and children in a household, the employment
status of adult household members, measures of gross income, and so on. This is achieved in the
code using “global variables”.

• You will find in the set of source files included with the TAX program, one called
“2_global.F90”.

• If you open this file, then you will see that it includes a module named “global_tax”.
o The MODULE global_tax includes a series of variable type definitions, and no

subroutines.

24 | P a g e

o The variables defined within this module are referred to as “global variables”. This is
because it is possible to share them between alternative subroutines without the
need for explicit declarations.

• The global variables defined in MODULE global_tax are assigned values within the
SUBROUTINE initialise_taxinputs (see Figure 1), found in the source file “1_TaxTools.f90”

o Note that SUBROUTINE initialise_taxinputs is given access to the global variables by
the “USE global_tax” declaration at line 23

• Any SUBROUTINE that subsequently requires access to the global variables need only include
the declaration “USE global_tax” in its second line of code (as outlined above for
SUBROUTINE structure)

Appendix B: The Utility Function
This has two components to it. Within-period utility u is a function of total household consumption
ci,t adjusted for effective household size θi,t and leisure time represented by li,t.

represents the consumption-equivalent of leisure and ε the elasticity of substitution between
consumption and leisure.

()
()

1
1 1/ 1 1/

, , 1 1/1/
, ,

, ,

, =i j i j
i t i t

i j i j

c c
u l l

ε ε
εεα

θ θ

− −
−

     +           
 (1)

Within-period utility enters into an intertemporal utility function in the manner represented below.
Intertemporal discounting takes a quasi-hyperbolic form, where δ is the long-run discount factor,
and β is the excess short-run discount factor. When β = 1, preferences are time consistent, which
implies that – for any given set of circumstances – the same decisions will maximise expected
lifetime utility, regardless of when the decisions are made. That is, if an individual could commit to
savings and employment decisions that take their evolving circumstances into account for any future
age, then they will make the same decisions regardless of their current age. With 0 < β < 1,
intertemporal preferences exhibit myopia, which means that people would like to be more patient in
the future than will actually be the case. The model assumes that people are ‘sophisticatedly’
myopic, in the sense that they are aware of their own self-control problems and react to them. This
can result, for example, in a preference to lock savings away in a pension rather than a bank
account, to avoid the temptation of spending the savings prematurely.

γ is relative risk aversion, and φj-t,t is the probability of surviving j years, given survival to age t. ζa and
ζb represent the warm glow utility derived from leaving a positive bequest w+

i,t+1.

()()
γ

γ
γγ

ζζφ
θ

φδβ
θ

−
−

+
+

−

−

−
+=

−

−










































+−+










+










= ∑

1
1

/11
1,,

1

,
,

,
,

1

1

,
,

,
, 1,, tibattjji

ji

ji
ttj

T

tj

tj
tti

ti

ti
ti wl

c
uEl

c
uU (2)

	1 Introduction
	2 Overview of the Program
	2.1 Program structure

	3 Set-up
	3.1 System requirements
	3.2 Loading the model onto a new computer
	3.3 Creating a simulation base

	4 Extending the Program
	Introducing health status into the model
	4.1 Defining and storing model parameters
	4.2 Reading in new model parameters
	4.3 Altering model grids to accommodate new characteristic
	4.4 Alter expectations for utility maximisation
	4.5 The direct influence of health on simulated decision making
	4.6 Including health status when simulating a population through time
	4.7 Debugging

	Appendix A: Basic Rules of Syntax
	Appendix B: The Utility Function

