9
h

THE AUSTRALIAN NATIONAL UNIVERSITY

FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

Development of WebScope3

Xiaobin Wang

(U4266538)

November 2007

This is the final report for the COMP6703 eScience Project (Semester 2, 2007)

TABLE OF CONTENTS

ACKNOWLEDGMENTS
ABSTRACT
Lo INEFOTUCTION. ...t b bbbt b bbbttt nb e 6
LLL OVBIVIBW . ..ot ettt ettt b et b et e bt b e bt b e eb e sb e sb e e e bt e bt e bt be s b b e s 6
OO R = - Yo (o | (010 o USSP PSRN 6
O O T o1 SRR 8
1.1.3 Statement OF SCOPE......ccviiieiiiise e sne e 8
1.1.4 Target Results and Project CUSIOMENS.........ccccevieiiereeieieiesie e 9
1.1.4.1 Target OULCOIMES......cciuiiieiiesieeiteseesieestee e sreesteesteestesseesteesbeeseeseesraesreesesseens 9
IO A @ 11 o 11 £SO USURPURSRTN 9
1.1.4.3 DeliVErables........ccooiiiiiiiie et 9
L.1.4.4 CUSEOMETS. . .ccuieeeei et ettt et et besb e bt bttt b ettt e bt bt e se e e e e e ebesbesbesbeene e 9
1.1.4.5 StAKENOIUETS.ot e 10
1.2 Introduction TO WEDSCOPE......cveiiiiieieiie ettt sttt sresrenne s 10
1.3 Introduction To WebScope With COOBE.........c.coevieieiiieci e 12
1.4 Key technologies INVOIVEd.............coiiiiiiiicecsee et 14
1.5 REPOI BIIET .. oottt bbb ra s 15
2. REQUITEMENT ANGAIYSIS.eiiiiieieie ettt esaestesbestesreeneeneeneans 16
2.1 SOftWare REQUITEMENTS.......ccviieieiieiecie sttt e e sa e tesresresbeeneens 16
2.2 OPEratiNG SYSIEIMoiiiiiicie e ettt e e st e et e besbeere e st eseeaesbesbesresteanas 16
R I a0 0T o[- SRRSO 16
2.4 CHENt REQUITEMENTS. .. .cviiiiiiesiiceee ettt sttt be et e te e e et e stesnenrennas 17
K TS Tox =T (1] 1T T 19
3.1 Planned TIMEtable.cooiiiiiiee et 19
3.2 ACHUAIL PrOQIESS. ...cuviviieie ettt ettt sttt ettt e s besbe e seeteete et e besaentenrearas 20
3.3 Gantt Charts of the TWo Timetables.........c..cov i 21
V)T o =TT SRR 22
4.1 Structure of WEDSCOPES... ..o 22
o TTo | I Y =T I T To o PSS 22
4.2.1 SYSTEM CONTEXL....uieitiiiieiie ittt iee sttt ettt st esta e be e e e sreesbeebesneesreenes 22
4.2.2 DOMAINS. ...eteriitiiteieie ettt se etk b e et b et b e bt et e s b st ekt s bt besbe b e besbe e ebeseene 24
4.3 DEtailed DESIGN....c..civiiiieci ettt e et re s 25
4.3.1 Communication Between PaCKagES.ccciveiveiieiivese it 25
4.3.2 DAtabase DESIGN.cceiieieiiieieie sttt sttt et ne s renre 25
4.3.3 WEDSCOPE3 DOMAIN. .. .eciiiiieiiiitisie ettt e st aesresresne e e eneas 26
4.3.4 dataAccessDOMAIN DOMEIN... ..o e 28
4.3.5 dataServerDomain DOMAIN........cccciiiiiiiiiiieie e e 29
4.3.6 graphicsDomMain DOMAIN........cccoiiiiiiiiici e ene 30

4.3.7 Mapping DOMAIN......ccccveiiieiese sttt e e estesaesresreerea 31

4.3.8 APPIEt DOMAIN... ..ottt ettt be e te e e e e nae e 31

T 1 0] 0] LT 0 1= a1 = £ o o TSP 33
6. Cognitive Walkthrough and Heuristic Evaluation............c..ccocoovviviienienene e 36
6.1 Cognitive WalKtNroUgh.........cooveiciecc e 36

6.2 HEUNISHIC EVAIUALION.ccuiiiiiiice et 36

7 =1 X T OSSR 38
T L UNIE TESE. ettt bbbtk b et b bt e e b e s bt et e e et e et e en et s 38

7.2 IMOTUIE TESL... ..ttt bbbt et e bt b bt be et sb et st eseenes 38

7.3 ACCEPLANCE TESL. .. uiiiieeitieieeie sttt e et e st et e e e et esse e be e beenbeeneesreenes 42

ST LT o = 1 (< 1S 43
8.1 WEDSCOPE3 DOMAIN.....ccuiiiiiiiiiciieiieiere sttt st et e st e st st sbesneanas 43

8.2 dataAccessDOMAIN DOMEIN........cciiiiiiiiiie e 43

8.3 dataServerDomain DOMAIN..........ccceiiiiriiiie et 44

8.4 graphicsDOmMaIN DOMAIN.......c.cccviiiieieiiie et besbeeneans 45

SRR Vo] o] 1 A o] o 1= V[SRS 47

8.6 Comparison between the WebScope3 and ESCoped SYStems.........ccceveveveienecvsesveennenn 47
8.6.1 Transformation from EScope4 to WEDSCOPES..........covvveiiiieieccse e 48

8.7 CONCIUSION. ..ttt bbb bbb ettt b et e seenes 50

9. FUTUFE WWOTK ..ot ettt 51
10. Summary of Contributions and CoNCIUSION............ccceiiiiiii i 52
10.1 Summary of CONtriDULIONS.........cccoiviiieicicc e 52

10.2 Personal SEAtEMENT..........coiiirieiiiee ettt ettt sb e st 52

10, RETEIENCE. ...ttt bbb bbbt bbbt bbb et b et 54
Appendix A: Cognitive Walkthrough Details............ccoevriiiiiiiiiiiiiseecee e 56
Appendix B: Heuristic EValUALION...........cccoviiiiiiecece e 64
Appendix C: Progress on the Servlet-based WebScope SYStem.........cccocvvevvvivvivninnesiesieeienns 70
APPENAIX D PFOJECT LOG. .. e tiieieiiieiiesiieiseeeeiesieie sttt sttt ste e esesseeseesaeseestesaesnessessessesseanens 73
Appendix E: Installation and Compilation GUIdE...........ccccvviiiiiiiiiiinieicieeee e 79

Acknowledgements

During the entire project, | have come across numerous problems and troubles.
However, 1 am never afraid of them because | can always receive help from my
supervisor and client, Dr. Henry Gardner. Henry is always ready to answer my
questions whenever 1I’m stuck, and give me encouragement whenever I make some
progress. His comprehensive knowledge and expertise is really a great help to me. |
think 1 have learned both how to do a project and how to work hard to achieve more
from him. | greatly appreciate everything Henry has done for me.

Dr. Raju Karia is another great help for me. He has introduced many of the latest Java
techniques to me. | have learned a lot from him.

| should also thank Mr. Ajith M. Jose, Mr. Le Ma, and Mr. Zhongshan Tan for their
hard working. The current WebScope3 project is the result of our joint work. No one
can achieve the final success on his own.

Abstract

This report outlines the development of the WebScope3 application for the eScience
project course COMP6703, at the Australian National University.

The core idea behind this project is retrieving nuclear fusion datasets from an
MDSPIlus based data server using a web browser. The use of the Java object/relational
package “Hibernate” to manage and cache the retrieved datasets is a highlight of this
project.

In this project what | have done is as follows:

® | have implemented the system using “Cooee”. Cooee is an independent branch
of the Echo2, EchoPointNG and Echo2 Extras source code to construct
AJAX-based user interfaces for Java programs. It is an ongoing project to
further develop the Echo code base into a highly robust web Ul framework.

® | have combined the former projects done by Mr. Le Ma and Mr. ZhongShan
Tan.

® | have added the following new features to the WebScope system:
B Metadata Query feature

B Java Applet graph-display mode.
B Dynamic Metadata Table

1 Introduction

1.1 Overview

1.1.1 Background

Currently nuclear fusion research is being performed at various locations of the world.
Millions of nuclear fusion datasets are generated as a result of various nuclear fusion
experiments happening at different research organizations. It is very important for the
researchers to share the datasets for mutual research benefits. The safe storage and
retrieval of fusion datasets is currently done using a data storage and management
system known as “MDSPIlus” [23].

For research purposes, several students supervised by Dr. Henry Gardner have worked
on “Scope projects” over the past two years. By the end of Semester 1 2007, there
were two versions of Scope: “EScope” and “WebScope”. The latter is considered to
be a web-based version of the former, with the intention of enhancing the universality
of its usage.

eScience Data Grid:

In general terms, a Data Grid can be thought of as a loose federation of networked
data stores which is supported by grid computing [7].

This concept has evolved because with the development of scientific and engineering
applications, the need to access large amounts of distributed data has become more
and more obvious.

EScope:

Researchers from different parts of the world can connect to a MDSPIlus and retrieve
the required datasets for their own research purposes. Special, client-side software
applications like “EScope” are used to retrieve datasets from MDSPlus. The
client-side applications plot the retrieved datasets as graphs or as statistical tables.

However, there are many limitations to this way of retrieving datasets from the
MDSPlus server.

No caching

No searching

Lack of flexibility in schemes

Cannot compare or combine different MDSPlus data stores

® Client-side software needs to be installed. No present web-based clients.

Noticing the deficiencies stated above, “WebScope” has been developed.

WebScope:

The project “WebScope” is a project to resolve the existing issues with the retrieval of
datasets from the MDSPIus server using EScope. Another highlight of “WebScope”
project is the use of Java object relational mapping solution “Hibernate” to solve the

caching issues with “EScope” data retrieval system.

At the time of the commencement of this project, there were two versions of
WebScope available. Their genealogy is shown in the figure below (Figure 1.1):

Shi Hu — Prototype WebScope

Ajith Mose - WebScope

Le Ma — WebScopel Zhongshan Tan — WebScope?2

Xiaobin Wang — WebScope3

Figure 1.1 The Genealogy of WebScope

As the current two versions of WebScope application [Le Ma 2006] [Zhongshan Tan
2006] both have their own advantages, the need to combine the two versions and
make an integrated version of WebScope application is obvious. That is, we should
use AJAX to develop the GUI to improve the responsiveness of the application and
add the dynamic metadata feature to the application to increase the functionality.

Having taken the reasoning above into account, Dr. Henry Gradner and Dr. Raju Karia
has decided to introduce that implementing the “WebScope” with Cooee. Cooee is a
Java implemetation of AJAX. | shall briefly describle both of the concepts below:

Ajax, shorthand for Asynchronous JavaScript and XML (Extensible Markup
Language), is a web development technique for creating interactive web applications.

The intent of Ajax is to make web pages respond to the exchange of small amounts of
data between the browser and the server, rather than reloading the entire web page
each time the user makes a change. This is meant to increase the web page's
interactivity, speed, and usability [2].

Cooee is a branch of the Echo2, EchoPointNG and Echo2 Extras [Nextapp 2005]
source code. It is an ongoing project to further develop this code base into a highly
robust web Ul framework. The project also aims to keep as much API compatibility
with the Echo code as possible to aid projects wishing to move from Echo2 to Cooee
[17].

1.1.2 Purpose
The main purposes of the current project are as follows:

® Combine the two versions of the WebScope project developed by Mr. Le
Ma and Mr. Zhongshan Tan respectively, which means that the new Web
Scope system should be able to generate dynamic metadata, allow users to
contribute metadata to the database, and make it possible for the web
clients and web servers to interact via Cooee.

® Add the following new features to the Web Scope system:

B Allow users to query metadata by keywords

B Display a list of metadata when a user logs on

B Amend the dynamic metadata feature of Le Ma’s version and display
dynamic metadata tables that a user has added

B Display user log information and metadata information in the main
screen.

B Provide user with two modes to plot graph: the Image Map (AJAX)
mode and the Java Applet mode.

® Review the software architecture of WebScope and define the
transformations needed to convert EScope to WebScope. Perhaps improve
the existing WebScope software architecture.

1.1.3 Statement of scope
The scope of the current WebScope project is not limited to adding features on the

basis of the current system. Some modification to the whole structure of the system
may be necessary.

1.1.4 Target results and project customers
1.1.4.1 Target outcomes
The “Development of Web Scope” project has five target outcomes:

e Migration from the existing Echo2 framework to Cooee.

e Adding the metadata and user-access log database tables to the Cooee version
of the WebScope application. This will make it possible for the application to
record user access log and will let the users contribute static metadata to the
database.

e Let the user “dynamically” contribute a customized table to the database and
display the table to the user in real time.

e Let the user query metadata by different keywords.

e Let the user switch between two graph-display modes: the Image Map (AJAX)
mode and the Java Applet mode.

1.1.4.2 Outputs

The target outputs for this “Development of WebScope3” project are the working

“WebScope” application and the final project report.

1.1.4.3 Deliverables

Deliverables are a superset of the outputs obtained as a result of the project.
The project deliverables are listed below:

® Source code of the Web Scope with Cooee application
® Final report of the system
® All the other documents related to the project

1.1.4.4 Customers

The project customers who are vital in ensuring the success of achieving target
outcomes are nuclear fusion researchers or scientists from different parts of the globe.

1.1.4.5 Stakeholders

The stakeholders of this project are described below.

StakeHolder Name Contact Details
Supervisor & Client | Dr. Henry Gardner Henry@cs.anu.edu.au
Supervisor Dr. Raju Karia rikaria@smartchat.net.au
Developer Xiaobin Wang | tommywang1981@gmail.com

1.2 Introduction to WebScope

“WebScope” is the system proposed by Dr. Henry Gardner and Dr. Raju Karia and
realised by several students in the eScience program at ANU. Figure 1.2 gives an
overview of the WebScope.

Client
e 4 i MDSPlus
Tom Cat Server
Weh
g Weh Server
Browser
Web | *
Network b "| Scope

o
*
s
ﬁ

Figure 1.2 High level structure of WebScope system
WebScope runs on a web server and waits for the client requests coming through web

browsers. It maintains a relational database called “HSQLBD” for storing the
retrieved datasets from the MDSPIlus server in the figure, but this could be any

10

relational database. All database interactions (storage and retrieval of datasets) are
handled using the Hibernate package, which is an object/relational persistence and
query service for Java.

WebScope works in the following way:
When a client request arrives at the “WebScope”, it returns a web GUI to the client.

1) The web-based MDSPIus data retriever application, “WebScope” runs on a Web
Server (Apache Tomcat) and accepts the client requests coming through web
browsers.

2) Upon receiving a client request the “Web Scope” checks for the client requested
data in the attached HSQL database. If the requested data set is available in the
database it is retrieved and sent to the client Web browser. If the requested data set is
not available in the database, it is retrieved from the MDSPIlus server and sent to the
client Web browser. A copy of the retrieved data set is stored in the data base for later
use, so that the later requests for the same data sets can be accomplished faster.

3) Using applets the retrieved data sets are plotted as graphs at the client Web
browser.

The benefits of using WebScope are given below

® Users need not install any specific software to retrieve and view the MDSPlus
data. They just needed to connect to the Web Server using a Java Applet- enabled
web browser.

® Users are not restricted to the data sets in the local relational database. If
requested data sets are not available in the database they are retrieved from the
MDSPlus server and shown to the client.

® The use of Hibernate makes the caching faster.

® The utilization of the resources at the client side is decreased dramatically
compared with the full EScope application.

11

1.3 Introduction to WebScope with Cooee

Compared with WebScope, WebScope with Cooee (which will be quoted as
“WebScope3” in the following context) does not change much in terms of software
architecture and the structure of the system. The main difference between
“WebScope” and “WebScope3” is that WebScope uses Java Servlet to create web
pages, while “WebScope3” uses Java Language in Cooee framework to develop
web-based applications. The technical change can provide users with a more
interactive, responsive, user-friendly, functional, stable, and beautiful GUI. In addition,
the “Dynamic Metadata” feature does not actually work in the WebScope application
in that dynamic tables cannot be stored and retrieved from database. It’s now
completed in WebScope3. The change from “WebScope” to “WebScope3” is shown
below:

Client
e 4 & MDSPlus
Tom Cat Server
Weh
& Weh Nerver
Browser

L

WebScope3 |¢—|

' Y

Network
NS S Y, .
= HSQLDB
4 E (Static/Dynamic
Data Caching T Metadata)
Server

Figure 1.3 High level structure of WebScope3 system

The main benefits of using “WebScope3™ are given below

® The interaction between the clients and servers are greatly improved because of
the Cooee technology. We do not need to reload the whole page when users
request a small change to a part of it. Because of the Ajax-based rendering engine,
only the requested part of a page is updated per users’ requests.

® In the period of development, the developer does not have to think in terms of

12

"page-based” applications and is able to develop applications using the
conventional object-oriented and event-driven paradigm for user interface
development.

® Users can not only read experiment data from the database, but also contribute
static/dynamic metadata to the server, which makes the application more
interactive, flexible and functional. For the dynamic metadata feature, users can
customize their own tables according to their requirements. New Java files and
Hibernate mapping files are generated for the customized tables and then the Java
files are compiled and the Java classes are loaded in runtime. Afterwards, the
table content is saved into database. This gives users more control on the system.

® Users have two modes to plot the graph data now: the Image Map mode and the
Java Applet mode. The former is quicker and simpler and the latter is more
functional and interactive. It’s up to the users to decide which mode suits them
best. The two modes make the WebScope3 system more flexible.

©h g WebSoupedi o Boaills Fiselos L
File Ediv Wies Gs Bashmarbs Tesls Ealp [+
it e LT T S p——— o e (L

W Catiing Diasied B Latant Meadlinss Lagin Fags VabSsepal

i B ~fATA THFO: [TOP, .OFPERATIONS, :DIANAG]
Ml O aleAL v
bl f'r'b:"_-;‘n‘:““" Graph Dats Info. Standsed Metsdata Tabls Complote Metadata Tabls Dynasmic Table Access Log

LEC ng
di i) rmRe

Y FLLCTL oS & lmags Mag o lavas Applet ~

i) LoG
a)-1) MORS

= OPERATIONS

AT

PR ' JaPT A 2 3 £
P TE

. &1 -

] DRAGTL
| OmiAOTL DL
| Defcom

- REEH IS

B HEEHE Y
Y LrART

Y A . foiid fhiit \
LRE- A
1 e Vaidl Jeail :
Y EROO_X3
LSIT b :
T
HE_FET_OR, \\

URLATE_OPER & A8 & A48 A A b 38 & -0M f D8 O @A 8 18 2 E@ § A8 4 48 4 EA # @a

1 W _TrRUS Contrtite Gratc Matadata Cuenry Matadata Create Dynamc Table
W] WAGMETSUMRLY
i] RF -

Tewpalarring date frem leocalhesn

Figure 1.4 The interface of the WebScope3 system

13

1.4 Hibernate

The key technologies involved in this project are Cooee and Hibernate. The former
one has been briefly discussed in Section 1.1.1. The following paragraph explains
what Hibernate is.

Hibernate is a Java-based object/relational mapping solution. It can dynamically
create database tables based on the information provided. It is much easier to retrieve
and store data using the Hibernate package than the existing ones. The dual layer
caching mechanism of Hibernate makes the data caching faster.

Hibernate

I

=ession Cache v
il
Il

=ession Cache i
1man
@

session Cache H
o Datahase

The main features of the Hibernate package described in its web site are listed below
[14]:

Hibernate is a powerful, ultra-high performance object/relational persistence and
query service for Java. Hibernate lets you develop persistent classes following
common Java idiom - including association, inheritance, polymorphism, composition
and the Java collections framework. The Hibernate Query Language, designed as a
minimal object-oriented extension to SQL, provides an elegant bridge between the
object and relational worlds. Hibernate also allows you to express queries using
native SQL or Java-based Criteria and Example queries. Hibernate is now the most
popular object/relational mapping solution for Java. The most important feature of
Hibernate for this proposal is that Hibernate uses HDLCA (Hibernate Dual-Layer
Cache Architecture). It maintains two levels of cache. One is session-level cache and
the other is JVM-level cache. The session-level cache serves one client or one session
at one time, it resolves circular/shared references and repeated requests for the same

14

instance in a particular session. The JVM-level cache resolves repeated requests for
different sessions using the same instance of JVM.

1.5 Report Overview

This report is divided into 11 major sections.

Section 1, Introduction, gives an overview of the project, as well as the expected
outcomes, outputs and the major deliverables of the project. Through this section
the customers and major stakeholders of the project are identified. It also gives a
brief introduction to Cooee.

Section 2, Requirement Analysis, describes detailed user requirements,
softwares and other tools needed to accomplish this project.

Section 3, Scheduling, describes the various phases involved in this project and
the number of days allotted for each phase.

Section 4, Modelling, also known as Designing, uses UML model to design the
structure of this software. It also defines the database structure.

Section 5, Implementation, describes the ideas and methods used to achieve the
functionalities of “WebScope” application with Cooee.

Section 6, Cognitive Workthrough, evaluates the usability of the WebScope3
system.

Section 7, Testing, tests the whole system to ensure that it’s working properly.

Section 8, Design Pattern Analysis, analyses the various domains of the
WebScope3 system and then applies the suitable patterns to each domain.

Section 9, Future Work, gives suggestions on further development.
Section 10, Conclusion, draws a conclusion from this project.

Section 11, Reference List, shows the various references used for accomplishing
the “WebScope” application with Cooee.

15

2. Requirement Analysis

2.1 Software Requirements

The main software and tools used for the development of “WebScope with Cooee” are
given below:

Apache TomCat 5.5
Hibernate3.0

JDK1.6

HSQLDB

MDSPlus server

FireFox & Internet Explorer
Eclipse 3.3.0

Cooee Framework 1.0.2

2.2 Operating system

The WebScope3 application is platform-independent. All we need to get this
application working is a browser with Java plug-in.

2.3 Languages

» Programming Language: Java combined with Ajax and OpenJFX

» Database Querying Language: HQL (Hibernate Query Language)

16

2.4 Client Requirements

No. Req. Name Description Priority
Mlgr_at!ng from the “WebScope3” should be migrated
R1 existing Echo2 from the existing Echo2 framework High
framework to Karora
to Karora Cooee.
Cooee
“WebScope3” should allow users to
R2 Using Web Browser conpect to th.e MDSPlus seryer and High
retrieve required datasets via web
browsers.
“WebScope3” should use the
benefits of Java object relational
R3 Using Hibernate mapping solution “Hibernate” to High
efficiently cache the datasets
retrieved from the MDSPlus server.
“WebScope3” should be able to plot
R4 Plotting Graph graphs based on the retrieved High
MDSPIlus datasets.
“WebScope3” should allow users to
RS Data download downloaq specific data in the f(?rm Medium
of text file, so that users can view
and analyses data off-line
Plotform “WebScope3” should be able to .
R6 . High
Independence work on all major platforms.
User details should be obtained
Getting and when users register. This
R7 displaying user information should be displayed to High
details the users themselves when they log
on.
“WebScope3” should have a
Tracking user mechanism to track every action of .
R8 activities users. The track log should also be Medium
displayed to users in real time.
“WebScope3” should provide users
Contributing static with a m_echanism to fill in the fields _
R9 metadata of a fixed metadata table and High
contribute the metadata to the
database.
R10 Displaying static “WebScope3” should allow users to High
metadata view all contributed static metadata

17

No. Req. Name Description Priority
R11 Querying static “WebScope3” should allow users to | Medium
metadata query all contributed static metadata

by different keywords.
R12 | Contributing dynamic | “WebScope3” should allow users to High
metadata dynamically create customized
metadata tables and contribute them
to database.
R13 | Displaying dynamic | “WebScope3” should allow users to High
metadata view all contributed dynamic
metadata
R14 | Providing two types | “WebScope3” should provide users High

of graph-displaying
methods

with both the Image Map and the
Applet methods to display graphs.

Table 2.1 Major requirements of “WebScope3”

18

3. Scheduling

3.1 Planed timetable

The initial planned timetable is as below: (Table 3.1)

Phase Date Expected Tasks Notes
Duration(days)
Choose and meet
v Understanding supervisor
requirements Understand
1 23" Jul ~ 21 v' Studying the new requirements
12" Aug techniques Decide tools and
v Studying the current install software on
Web Scope system the computer
Study old reports
Analyze existing
project
th Modeling and
2 13 ndAug B 21 Modeling design architecture
2" Sep .
for the new project
Learn various
software
rd « -
3 37thsg|2t 35 Implementation aDnOdC[())Sg:J%g-:-r?;tmg
Complete all
4 8" Oct ~ 1 Documentation and final documents
21% Oct report creation Write the final
report
5 22" Oct ~ 5 Preparation for final Edit slides for
28" Oct presentation final persentation

Table 3.1 Planned Timetable for “WebScope3” project

19

3.2 Actual progress

The actual timetable is as below:

Phase

Date

Expected

Duration(days)

Tasks

Notes

23" Jul ~
6" Aug

14

v" Understanding
requirements

v' Studying the new
techniques

v Studying the current
WebScope system

Choose and meet
supervisor
Understand
requirements
Decide tools and
install software on
the computer
Study old reports
Study old codes

7" Aug ~
20" Aug

14

Modeling

Analyze existing
project

Modeling and
design architecture
for the new project
Learn various
software

Perform some
experiment on the
existing
WebScope system

21 Aug ~
7" Sep

49

Implementation

Do coding, Testing
and Debugging

8" Oct ~
21% Oct

14

Documentation and final
report creation

Complete all
documents

Write the final
report

22" Oct ~
28" Oct

Preparation for final
presentation

Edit slides for
final persentation

Please refer to Appendix E for details of the actual progress per week.

Table 3.2 Actual Timetable for “WebScope3” project

20

3.3 Gantt charts of the two timetables

Planned Timetable

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

!ﬂu”\} I| I| I| I

m]"'ﬂlm"
P

1
8 B
g8 o
a2 %

ol ok
.!ﬂ l;’..l';:'-"

Figure 3.1 Planned Timetable Gantt Chart

Actual Progress
Phase 1
Phase 2

Phase 3

Phase 4

Phase 5

|_-\“:]'i:.v!:-|~|"‘l:I IlIIIII|I

yil qE
Lol
sttt

g % ¢
Figure 3.2 Actual Progress Gantt Chart

From the Gantt charts above, we can see that the first two phases of the actual
progress took 1 week shorter respectively than planned, but the Implementation phase
took two weeks longer. This is because | devoted more than 40 hours per week on the
project, and with the help of Dr. Henry Gardner and Dr. Raju Karia, the Modeling
phase went quite smoothly. Therefore, we had more time to add more features and
functions to the WebScope3 system, which resulted in the longer Implementation
phase. In addition, more than 2 weeks were spent on experimenting with new
technologies such as the JavaFX scripting language. Although these technologies have
not been applied in the WebScope3 system, the experience we have gained is quite
valuable.

21

4. Modeling

4.1 Structure of WebScope3

The structure of WebScope3 is shown in Figure 1.3:

The structure of the WebScope3 system is largely the same as that of the WebScope?2
system.

4.2 High Level Design

4.2.1 System Context

User

User details, Logon info,
Used Info, Data graph,Data server Spedification,
Dala info, Log info, experiment selgction,
Metadata

ernfo, Metadals; nection & OF
info request, Node path MDSPlus
HSQLDB
Query, User info, WebSc:opeS Server
ratadata, log infe Mode data

ached Cached Nodg data,
nide data Mappingjfile

Cache
Server

Figure 4.2 Context Diagram of “WebScope3”

There are four existing actors interacting with “WebScope3”.

22

® User:

1. A user inputs user login information (user email and password) at the login
screen. After verification, the system sends back user information to the user.

2. A static metadata table will be shown to the user. The user specifies which data
server to connect with server name, server port, experiment name and shot name.
Then, the system sends data of the specified experiment, in the form of tree.

3. The user clicks to select a tree node that he/she wants to view. The system
sends two type of expression of the tree node. One is the graph which is
converted from binary code of the specified tree node. The other is data
information such as numbers of point in the tree node and the text file which
enables the user to download and analyze the data. The user can also contribute
static/dynamic metadata to the database. In addition, the user can query metadata
with different keywords.

® MDSPlus:

The WebScope3 system needs to connect to a MDSPlus server to work. A
particular experiment will be opened and a node path is sent to the server to
request specific data. The MDSPIlus server will send back the data required.

® Caching Server

1. The WebScope3 system sends data to the caching server in two possible
formats: binary file and text file. The caching server stores the data.

2. When some data is required, the system sends a request to caching server to
retrieve cached data. The caching server then returns the data to the system.

® HSQLDB

1. The WebScope3 system sends user information, metadata and log information
to HSQLDB, where these kinds of information are saved.

2. When a certain kind of information is required, the WebScope3 system sends a

request to the database to retrieve user information, metadata or log information.
The database then returns the required information to the system.

23

4.2.2 Domains

The WebScope3 system consists of four main domains, which are described below:

Domain Name

Main Responsibility

WebScope3

Provides Ajax-based Web User Interface to users.

databaseAccessDomain

Provides an interface for the WebScope3 system to interact
with the Hibernate mapping solution to read and write
information from the HSQLDB database.

dataServerDomain

Provides an interface for the WebScope3 system to retrieve
datasets from the MDSPIus server.

Graphics Provides a series of classes to draw the data graph.
Provides a container to run the WebScope3 system and the
Web Server .
associated database.
Java Provides the programming platform.

Table 4.2 Domain Description

The relationships between domains have been illustrated in the figure below (Figure

4.3):

| R S e e A [o M [Y [08) 08 (L e e [[i A [A [e A
| |
] | |
|
_____________________________ |

I WebScope3 I
| - il , — |

| 1
| | r ————— Tm———== 3 <<realized>> | |
| : = : e JAVA :
| | |
| | | |
I] | —_—
e | I : s | | L :
11 |
Web GUI Web Server Data Server Database Access Graphics
S e 1 T T T
|] | | P =—=———== |
| | |
] 4 |] | sl 1
<<realized>> B r <<rpalized>> <<rpalized>> =<raalized>> <<realized>>
AJAX o TomCat MDSPlus Hibernate HSQLDE
T T
PPN} | | P
I |
Tl 1 &
<<realized>> <<roalized=>>

IE

FireFox

Figure 4.3 Domain Chart

24

4.3 Detailed Design

4.3.1 Communication between packages

The figure below (Figure 4.4) illustrates the communication between packages in the
WebScope3 system:

graphicsDomain

Mode Data Geaph

Query, User Info,
dataAceessDomain Metadata, Lag Info WebScopal hiote et Caph Dpiidrem WebScope3
User Infa, 4—(raph
] Metadata, Log Info .

Tree info, Tree with

+ MNades,
Node Path . 4e Data

—

dataServerDomain

Figure 4.4 Communication between packages

4.3.2 Database Design

The database design for WebScope3 is based on the designs for Mr. Le Ma’s
WebScope and Mr. Zhongshan Tan’s WebScope2. To meet the new requirements, |
have combined their ideas and worked out a new database design. The major change |
have made to their design is that the NODE and NODEPATH tables have been
removed because of the new graph plotting method. The detailed database design for
WebScope3 is shown below:

25

Table Name Explanation

USERS Stores the personal details of users.
LOGINFO Keeps a log of user activities.
Stores the static metadata information contributed by
METADATAINFO users. Metadata information is related to the experiment

data to which the metadata information is added.

Keeps the dynamic metadata table information. Note that
only the table names, column numbers and column
DYNAMICTABLEINFO names are stored. The column values are stored in the
dynamic tables. This design is to facilitate the dynamic
creation of java classes and Hibernate mapping files.

Table 4.1 Database Design

All interactions with the database are handled with the help of java object relational/
mapping solution “Hibernate”. Java persistent classes were created to represent the
database tables and the details of those classes were entered into the Hibernate
mapping file (“Mapping.hbm.xml”). Hibernate dynamically creates the tables
corresponding to the information provided in the mapping file, and performs various
actions. The Appendix C shows the mapping file used by Hibernate package.

All the tables in the database use an Id field as the primary key and the values to these
fields are dynamically generated by the Hibernate package.

The METADATAINFO table and LOGINFO table both have foreign keys referring to
the USERS table.

4.3.3 WebScope3 Domain

The WebScope3 domain provides the Ajax-based Web User Interface to users. The
structure of this domain is exactly the same as that of the WebScope2 domain in the
WebScope2 system developed by Mr. Zhongshan Tan. However, the PlotDataServer

class has been greatly changed to provide the newly required features.

The figure below (Figure 4.5) illustrates the classes in the WebScope3 domain and
their relationships:

26

WebScopestarviat
Lapplication:Application

1 belongs to

balongs 10

RegisterSorcen
has
fuser Lisems

fuseramacSiring
Lamail:Siring fedndars
fpaisword : Bling

Fresearchinea: Siring o
FarganisalioncSiring !
address: Sting

ourrenDatecDate

has LeginScreen renders
e mail: String
1 Hpassword: Siing o

1' .
belongs o UserinfoScroen 0. bete

Fusehlame E-nl,nrwg

has

Application befangs 1o has |emadSiring UsES Style

Tl o e e e organization: Stirg

l-education:Siring 0.0
L L l-addrmess: Sinng

-oreaionDate:Siring
1| bekegsio UBES

hidongs 1o

Connaclon3arean

has kv nr ame Siring rentars
s i i
axpariment: Siring
0.1 pehotNumberint

GraphOptions.
FdataSarver DalaSarverFacade RGBT
| rodeDsata: GraphDatalnlorace | i set by sats [Tire:
| shotFileddress: Siring 'E””:'Cd“hr.in,"'“
hias (AL GHpCIE aCate 0. 1 | detauhiBorder Boolean

e THod Lnicebumtsar-Bocsean

. Himage Imagetlap

Figure 4.5 WebScope3 domain

The state machine of the WebScope3 domain is shown in the figure below (Figure

4.6):

[userReqistar]
| LoginScreen [i

[usarLagln] [eginButtenClicked)

%_ [registerButtanClickead)
UserinfoScresn | — [userﬁegis.tflrad]
o

[conneciButionClicked]

MDSPiusConnected]

MainScrean

Figure 4.6 webscope3 Domain State Chart

27

4.3.4 dataAccessDomain Domain

In addition to the original User class in the dataAccessDomain domain of the
WebScope2 system developed by Mr. Zhongshan Tan, 3 extra static classes, the
DynamicTablelnfo class, the Loglnfo class, and the MetaDatalnfo class, have been
added.

The DynamicTablelnfo class maps the DynamicTables table in the HSQLDB database
via Hibernate. It stores the names of the dynamic tables, their number of columns and
the names of the columns. However, the values of the columns are not stored here, but
in the dynamically generated tables in the database. Therefore, the DynamicTablelnfo
class can be regarded as the manager or record of the dynamic tables.

The Loglnfo class maps the Loglinfo table in the HSQLDB database via Hibernate. It
keeps a track of the access log of every user. Therefore, it has a Users foreign key.

The MetaDatalnfo class maps the MetaDatalnfo table in the HSQLDB database via
Hibernate. It stores the static metadata information that users contribute to the
database. It also has a Users foreign key together with a LoglInfo foreign key.

The figure below (Figure 4.7) illustrates the classes in the dataAccessDomain domain
and their relationships:

Loginfo Users
=id - long -id long
-sessionStart | Date Fusername ; String
Fserver | String i linked to hasa lemail: String
-port :int -password @ String
Laxparimeant ;| String Lorganisation @ Siring
=shot - int -education ; String
-nodePath ;- String Faddress - Siring
-hevelata ; String -oreationdate ; Date
has a has a
DynamicTablelnfa
Fid : bong
MetaDatalnfo HableName : String
5d - long HotalColumns @ int
-sesslonStart : Date rcolumnName : String
-metaDataMame : String FdynamicClassMame : String
is lipked to [MetaDataValue - String is linked |
-mefaExplanation - String

metakeyword ; String
-server @ Siring
-gxperiment ;| Siring
-port : ink

=shiot : int

-nodePath ; String

Figure 4.7 dataAccessDomain Domain

28

Moreover, classes are dynamically added to this domain at runtime if dynamic tables
are contributed. The names of the classes and their attributes are consistent with the
information stored in the DynamicTables table in HSQLDB database.

4.3.5 dataServerDomain Domain

dataServerDomain domain here is inherited from the dataServerDomain domain of
the WebScope2 system. It provides an interface for the WebScope3 system to retrieve
datasets from the MDSPlus server.

Most classes in DataServer domain in WebScope2 system reuse dataServerDomain in
EScope4 which is developed by Dr. Henry Gardner. Moreover, some additional
classes are included in the domain. They are DataServerCache class, CacheThread
class and TextFileMaker class.

® DataServerCache class is the class for caching data into local server rather
other retrieving data from MDSPIlus server every time.

® CacheThread class is the class in which a respective thread runs, which is on
the purpose of enhance the performance and usability. Data can be
downloaded while the system plot graph to user.

® TextFileMaker class converts binary file to text file, which enables users to
download text file format of data to view and analysis off-line. Also, it has
the caching function; any downloaded text file is cached for the later use.

The figure below (Figure 4.8) illustrates the classes in the dataServerDomain domain
and their relationships:

29

data

LEUE S

DataServprFacade
i 5 ; CacheThread

DataSemerCache

ik

TextFilehaker

MDSMessage

<<interface=>

MDSDescriptorlnterface

1
4
I
1

MDSDescriptor

MDSTree

MDSTreeNode

o= H

Figure 4.8 dataServerDomain Domain [1]

4.3.6 graphicsDomain Domain

The graphicsDomain Domain is currently inherited from the graphicsDomain domain
of the WebScope2 system. However, this domain is being re-written. It provides a

series of classes to draw the data graph.

The figure below (Figure 4.9) illustrates the classes in the current Graphics domain

and their relationships:

30

graphics GraphicsFacade
<= inner classs= 5
—
GrphMowseHandler <=
raphOptions[nCraphifs GraphMediator _. [GraphDatalnGraphics
[j “'/‘7 7 A .
weabsiractzs | P - x'f'l ’1 AN
A / \ k
GraphDecorator - r / | %
{= ~ / | LY
—~ 7 / § ‘\
< i I %
& © / S,
Dicaw AxisTicksX Drraw AxisTicksY
.'I 1 \‘\
['. N
-ll II \-.
[W Ay
W 1 J
Dipaw AxisTicks DirawCross Hair DirawlLabels Diraw W ave form
<<abstract==

Figure 4.9 graphicsDomain Domain [1]

4.3.7 Mapping Domain

In addition to the two mapping files hibernate.cfg.xml and UserinfoMapping.hbm.xml
which are inherited from the WebScope2 system, one more static mapping file
MetadataStuffMapping.hbm.xml is added. It maps the MetaDatalnfo class, the
Loglinfo class and the DynamicTablelnfo class in dataAccessDomain domain to the
corresponding HSQLDB table, which are the MetaDatalnfo table, the Loginfo table
and the DynamicTables table respectively.

Moreover, more mapping files are dynamically added to this domain at runtime if
dynamic tables are contributed to the database.

4.3.8 Applet Domain

This domain is responsible for plotting the dataset in the Java Applet mode of the
WebScope3 system. It’s not loaded unless the Java Applet mode is enabled. It consists
of four classes: the GraphOptions class, the GraphPanel class, the RetrieveMainFrame
class, and the SimpleTableModel class. The figure below (Figure 4.10) illustrates the
relationship between the 4 classes.

31

RetrieveMainFrame

graphPane: GraphPanel
tablebdodel: SimpleTable
Iladel

JbInitdvoid

reftesh GraphPanel)void
reftesh TextPane()woid
reftesh TPanel():void
setiode() void

SimpleTableModel

1 Has

EBelongs to 1
GraphPanel

1 Has

EBelongs to 1
Eelongs to 1
GraphOptions 1
Has

Figure 4.10 Applet Domain

32

5. Implementation

Since the number of technologies used for the development of “Web Scope” is high,
the whole Implementation phase was divided into six sub phases. The details of these
sub phases are given below:

Sub Phase Name

Activities Involved

1. Migrating from Echo2
to Cooee

Implement the WebScope3 system using the Cooee
framework instead of the Echo2 framework.

2. Adding
MetaDatalnfo, Loglnfo,
and DynamicTablelnfo
tables

Add the classes MetaDatalnfo, Loginfo, and
DynamicTableInfo to the databaseAccessDomain of the
WebScope2 system, and add the new mapping file
MetadataStuffMapping.hbm.xml ~ which provides the
related Hibernate mapping information.

3. Tracking user
activities and displaying
real-time user activity
log

Keep a record of the nodes a user has accessed and show
this record to the user in the form of a Loginfo table. The
Loglnfo table is refreshed every time a tree node is clicked
on.

4. Enabling users to

contribute static
metadata to the
HSQLDB database.
Displaying static
metadata

Static metadata includes four parts: Metadata name,
Metadata value, Metadata Explanation, Metadata keyword.
A static metadata is bound to a tree node and the user who
has contributed to the metadata, which means that the
metadata table includes the tree node information and the
user name. Two types of static metadata tables are
displayed to users in the main screen of the WebScope3
system, the Standard Metadata Table and the Complete
Metadata Table. A simplified metadata table is displayed to
users on the user information screen, too.

5. Enabling wusers to
query static metadata by
keywords

Users are able to query static metadata by different
keywords. Metadata can be queried by server, by
experiment, by shot, by node path, by metadata name, by
metadata value, or by user.

6. Enabling wusers to

contribute dynamic
metadata to the
HSQLDB database.
Displaying dynamic
metadata

Dynamic metadata does not have a standard format. Users
can create their own tables and contribute them to the
database. This is realized in the way below:

1. Generate Java files and add related Hibernate mapping
files based on users’ inputs. Table names, column
numbers and column names are recorded in the form
of a DynamicTablelnfo table.

2. Compile the Java files to produce class files

33

3. Load the class files dynamically and contribute the
dynamic tables to the database.

4. Load the class files dynamically to retrieve and display
the table information.

7. Providing users with | Users are able to choose which method can best meet their
two graph displaying | needs. As the Applet method is relatively slow to load and
methods: Image Map | provides a more powerful way to display the graph, it is up
and Applet to the users to decide which method to use.

® Test the software by various possible use

® Test the software under all possible conditions (such
as the MDSPIlus is not working, the connection is
interrupted while interacting)

8. Testing

Table 5.1 Sub-phases and activities involved

Generally speaking, the whole implementation process went smoothly. However, | did
meet some problems during this process.

First of all, migrating from the existing Echo2 framework to the Cooee framework
meant that | needed to update every class and change the “include” information. In
addition, I had to change the form files and resource information, or the WebScope3
system would simply not load without throwing out any exception. This was a bit
confusing as | got no information from debugging. Fortunately, 1 came across the
form and resource files by accident and the issue was resolved after some
modification.

Secondly, adding the MetaDatalnfo, Loglinfo, and DynamicTableinfo tables to the
WebScope3 system is not as simple as copying Le Ma’s table files to ZhongShan
Tan’s source folder. As some of the variables and information in Le Ma’s tables were
never used in Zhongshan Tan’s version, | made some necessary changes to the tables
to fit them to the WebScope3 system.

The dynamic metadata part of the WebScope3 system took me a lot of time as this
feature was not really implemented in any of the previous version of WebScope. | had
to completely re-write this feature in Zhongshan’s version. During this process, the
following problems puzzled me a lot:

® Hibernate does not load a single mapping file twice even if you tell it to do this.
To workaround this problem, | had to make a mapping file for every dynamic
table.

® \\e should save an instance of a class object using the save method of the Session
class instead of saving the class object directly.

34

In addition, it is not difficult to write a Java Applet and make it plot the graph for a
dataset. However, it took me quite a long time to send objects from the WebScope3
system to the applet. The problem was that the HTTPConnection provided by the
getActiveConnection() method of the WebRenderServlet class in the Cooee package
did not work as expected. Whenever an object was written into the outputstream
retrieved from this connection, the whole system froze. After spending about two
weeks testing the various parameters and combinations of other methods, | finally
worked around this issue by using a socket connection instead.

I also needed to take into account the cooperation between the two graph-displaying
modes (The Image Map mode and the JAVA Applet mode). This is because the most
currently selected node should be plotted on the screen in the proper mode when a
new graph node is selected from the tree or users click on the radio button to switch
between modes. To make this work, | chose to update the data for both modes in the
background whenever a new graph node is clicked.

A lot of testing was involved as almost every possible exception had been thrown out

during the developing process of the dynamic metadata feature. For details, please
refer to Chapter 7.

35

6. Cognitive Walkthrough and Heuristic Evaluation

6.1 Cognitive Walkthrough

“The cognitive walkthrough is a formalized way of imagining people’s thoughts and
actions when they use an interface for the first time.” [8] The cognitive walkthrough
includes three major steps:

® Set up tasks and detailed task sequence

® Go through the tasks and check the points raised by Clayton Lewis and John
Rieman [8]

® Conclude the walkthrough.

The purpose of this walkthrough is to ensure the usability of the features in a program
and to find potential usability problems which may prevent novice users from using
the program properly.

The WebScope3 system gets a very high mark in the cognitive walkthrough.
Therefore, we can conclude that our system is easy to use from the perspective of a
first-time user. This is because | paid quite a lot of attention to web page layout when
designing the pages and tried to put everything where they were supposed to be. Dr.
Henry Gardner also provided me with many valuable suggestions and advice, which
helped a lot in making the WebScope3 application easy to use and understand.

The detailed information about this cognitive walkthrough has been included in
Appendix A (See P58/59).

6.2 Heuristic Evaluation

Heuristic evaluation [22] is a usability engineering method for finding the usability
problems in a user interface design so that they can be attended to as part of an
iterative design process.

In general, more than one evaluator is required in the heuristic evaluation process as
the usability problems that a single individual can find are quite limited. However, as
we do not have enough hands to perform a comprehensive heuristic evaluation, |
myself acted as the only evaluator.

In this evaluation, 10 heuristics are used to check the usability. The following
problems have been found:

36

® Users do not have full control and freedom in some part of the system (See
Appendix B, Page 63)
® No help documentation has been provided to users (See Appendix B, Page 67).

The first problem has been largely resolved. However, the second problem remains
unresolved due to the limitation of time. I’ve listed this problem in the Future Work
section (Chapter 9).

In comparison with the cognitive walkthrough, I believe that a heuristic evaluation
can help to find more usability problems because it takes both expert users and novice
users into account. In addition, as no special use cases are used, every possible
operations are performed, which means that a heuristic evaluation can cover more
parts of the system.

For details, please refer to Appendix B.

37

7. Testing

Testing is always important as it can help to ensure the functionality and usability of a
system. Three testing methods are carried out in this case, which are unit test, module
test and acceptance test respectively.

7.1 Unit Test

Unit test is a method used to check whether or not the individual units of a system are
working properly. A unit is the smallest testable part of a system, which is a method in
the WebScope3 system.

Unit tests were carried out whenever a new method was added to the WebScope3
system. All possible types of inputs to a method were tested to ensure that the method
was able to return the expected outputs in all situations.

Thanks to the continuous unit test on the thousands of methods, the system can work
fine without any visible problems now.

7.2 Module Test

Module test is a method used to check whether or not a collection of individual units
of a system can work together properly. The collection of units can be a class or a
package. Here, | describe a module test which was preferred on packages.

The WebScope3 system consists of 8 packages, which are listed below:

The databaseAccessDomain package
The mapping package

The dataServerDomain package

The graphicsDomain package

The sharedDatalnterfaces package
The sharedInterfaces package

The webscope3 package

The applet package

Among the packages above, the sharedDatalnterfaces package and the
sharedInterfaces package are used for design pattern purpose and only provide
abstract classes and interfaces. Therefore, there is no need to perform module test on

38

these two packages. In addition, the mapping package does not include any java files.
It’s used to work with the databaseAccessDomain package to communicate with
Hibernate. Therefore, these two packages are tested as a single package.

The details of the module test have been included in the table below (Table 7.1~Table

7.5):

databaseAccessDomain
& mapping Test Plan

Test Result

Plan 1: add a Users table

Step 1: Instantiate the Users class in
dataAccessDomian;

Step 2: Evaluate the Users instance and then
save it back to the Users table in the
database.

Expected output:
The Users instance should appear in the
database.

After performing the 2 steps and
querying the Users table in the
database, it’s confirmed that the Users
instance has been successfully saved
in the database.

Result: Test passed

Plan 2: add a Metadatalnfo table

Step 1: Instantiate the Metadatalnfo class in
dataAccessDomian;
Step 2: Evaluate the Metadatalnfo instance
and then save it back to the Metadatalnfo
table in the database.

Expected output:
The Metadatalnfo instance should appear in
the database.

After performing the 2 steps and
querying the Metadatalnfo table in the
database, it’s confirmed that the
Metadatalnfo instance has been
successfully saved in the database.

Result: Test passed

Plan 3: add a Loglnfo table

Step 1: Instantiate the LoglInfo class in
dataAccessDomian;

Step 2: Evaluate the Loglnfo instance and
then save it back to the Loginfo table in the
database.

Expected output:
The Loglnfo instance should appear in the
database.

After performing the 2 steps and
querying the Loginfo table in the
database, it’s confirmed that the
Loglnfo instance has been
successfully saved in the database.

Result: Test passed

Plan 4: add a DynamicTableInfo table

After performing the 2 steps and
querying the DynamicTablelnfo table

39

Step 1: Instantiate the DynamicTablelnfo
class in dataAccessDomian;

Step 2: Evaluate the DynamicTablelnfo
instance and then save it back to the
DynamicTablelnfo table in the database.

Expected output:
The DynamicTablelnfo
appear in the database.

instance should

in the database, it’s confirmed that the
DynamicTablelnfo instance has been
successfully saved in the database.

Result: Test passed

Table 7.1 databaseAccessDomain Module Test

dataServerDomain Test Plan

Test Result

Plan 1: Retrieve a data tree from the
MDSPlus server

Step 1. Instantiate the dataServerFacade
class.

Step 2: Retrieve a data tree from the
MDSPlus server.

Step 3: Instantiate a Cooee tree and show
the data tree in the main screen of the
WebScope3 system.

Expected output:

A data tree should appear in the main screen
and the names of the tree nodes should be
exactly the same as those in the MDSPlus
server.

After performing the 3 steps, a data tree
is shown in the left pane of the main
screen. The names of the tree nodes are
consistent with those in the MDSPlus
server.

Result: Test passed

Plan 2: Retrieve the data of a tree node
from the MDSPlus Server

Step 1. Instantiate the dataServerFacade
class.

Step 2: Retrieve the data of a tree node from
the MDSPlus server.

Step 3: Plot the data in the graph pane of the
main screen.

Expected output:
A correct graph should be plotted which
illustrates the retrieved tree node.

After performing the 3 steps, a graph is
plotted in the graph pane of the main
screen and the graph is correct.

Result: Test passed

Table 7.2 dataServerDomain Module Test

40

graphicsDomain Test Plan

Test Result

Plan: Plot and return a graph image

Step 1: Instantiate the GraphicsFacade class
Step 2: Retrieve a tree node from the
MDSPIlus server and set the proper graph
data using the GraphicsFacade instance.

Step 3: Plot and return the graph image.

Expected output:
The proper graph should be returned and
shown in the graph pane of the main screen.

After performing the 3 steps, the
expected graph appears in the graph
pane of the main screen.

Result: Test passed

Table 7.3 graphicsDomain Module Test

applet Test Plan

Test Result

Plan: Load the applet and plot a tree node

Step 1: Load the Java Applet in the main
screen of the WebScope3 system.

Step 2: Retrieve a tree node from the
MDSPIlus server and transfer the data to the
applet using a Socket connection.

Step 3: Plot the tree node.
Expected output:

The applet should get the data and plot the
proper tree node.

After performing the 3 steps, the
applet is loaded correctly and the
proper tree node is plotted.

Result: Test passed

Table 7.4 applet Module Test

webscope3 Test Plan

Test Result

Testing the webscope3 domain includes too
many tasks, most of which are duplicated
with those mentioned above. Therefore, the
detailed process of testing this domain has
been omitted.

After various tests, the webscope3
domain is proved to be working

properly.

Table 7.5 webscope3 Module Test

41

7.3 Acceptance Test

Acceptance test is a method used to check whether or not a system is acceptable to
users and all the required features have been implemented. As | have a very clear
requirement list, it’s relatively easy to perform this test (Thanks to Dr. Henry
Gardner!). The details have been included in the table below (Table 7.2):

No. Reqg. Name Priority | Implemented
Migrating from the existing Echo2 .
Rl E1J‘rame£\a/vork to Karora C?)oee High Yes
R2 Using Web Browser High Yes
R3 Using Hibernate High Yes
R4 Plotting Graph High Yes
R5 Data download Medium Yes
R6 Plotform Independence High Yes
R7 Getting and displaying user details High Yes
R8 Tracking user activities Medium Yes
R9 Contributing static metadata High Yes
R10 Displaying static metadata High Yes
R11 Querying static metadata Medium Yes
R12 Contributing dynamic metadata High Yes
R13 Displaying dynamic metadata High Yes
R14 Providing two types of graph-displaying High Yes
methods

Table 7.2 Acceptance Test

42

8. Design Patterns

“In software engineering, a design pattern is a general repeatable solution to a
commonly occurring problem in software design. ” [21]

A design pattern is not a piece of code or an actual implementation of functions, but
an abstract description or template used to improve the modularization of software.
Although programs can work fine without implementing any design pattern, it is
important to introduce design patterns to every software project because they can
make the structure of software clearer and make it easier for programmers to maintain
or update the software in the future.

However, this does not mean that the more design patterns we use, the better our
system will be. We should analyze the software and find out the purpose of each
domain first before deciding which design patterns we will apply.

Here 1 will analyze the packages/domains of the WebScope3 system individually and
describe which design patterns should be used.

8.1 WebScope3 Domain

The WebScope3 domain is responsible for user interaction. It’s the bridge between
users and the database. Please refer to 4.3.3 for details of the structure of this domain.
Most of the classes included in this domain are related to the various screens of the
GUI, such as the ConnectionScreen class, the LoginScreen Class, the PlotDataScreen
class, the RegisterScreen class, and the UserinfoScreen class. The Application class
and the WebScope3Servlet class are required by the Cooee framework, and the
structure of the current layout is compulsory. | decide to leave the WebScope3
Domain as it is, otherwise the Cooee framework will not be able to work properly.

8.2 dataAccessDomain Domain

The dataAccessDomain domain is responsible for mapping the tables in the relational
database via Hibernate. For details of this domain, please refer to 4.3.4. As only four
classes are included in this domain and all of them need to communicate with classes
in other domains, applying design patterns to this domain may make it less efficient.
Therefore, no design patterns have been used on the dataAccessDomain domain.

43

8.3 dataServerDomain Domain

The dataServerDomain domain is responsible for the communication between the
WebScope3 system and the MDSPlus server. Therefore, it is good to make this
domain a black box, which means that the only visible parts of this domain should be
two interfaces, one for the WebScope3 system and one for the MDSPIlus server, from
the perspective of the other domains. For this purpose, the Fagade design pattern has
been applied on this domain. The image below (Figure 8.1) illustrates the structure of
the Facade pattern:

data

c<usess>
DataS E I ! _| MDSMessage
rataServerFacade + -~ ~—_——— -~ | TToT= i

B sk ! CacheThread

<<interface>>

MDSDescriptorlnterface)

DataSererCache

T
i
|

MDSDescriptor

TextFilehaker

i
1 o i
: MDSTree MDSTreeNode

LU RS>

GraphData

—-—-.h-—-—-—-—
A
=
v
W

1
1
|
1
1
|
1
1
I
1
|
1
1
|
1
1
|
1
1
|
1
|
1
1
|
1
1
|
1
1
|
1
|
1
1
|
1
1
|
1
1
|

Figure 8.1 Facade Pattern [1]
To implement the Fagade design pattern, we should complete the following tasks:

® Create a Fagade class for the dataServerDomain domain

® Associate the Facade class with an interface, which contains the signatures of all
the methods which represent the services the dataServerDomain domain can
provide

® The dataServerDomain domain can only be visited or called via the Fagade class.
All the other classes in this domain are supposed to be invisible to other domains.

In order to meet the requirements above, the DataServerFacade class was created and

it works as the Fagade class. This class implements the interface
DataServerFacadelnterface, which is located in the sharedinterfaces package.

44

The DataServerFacadelnterface interface contains the methods below:

public void connect(String serverAddrCPort) throws IOException;
public void disconnect() throws IOException;

public void open(String experiment, int shot) throws IOException;
public void close() throws I0Exception;

public void constructTree(Tree tree) throws IOException;

public void getDataDownload(ContentPane contentPane, GraphDatalnterface
graphData, String nodePath);

public String getSPES();

public boolean isConnected();

public boolean isOpen();

public String getExperiment();

public int getShot();

public GraphDatalnterface getPlotData(String path);

YVVVVVYYVY

YVVVVVYVY

The methods above are all the services the dataServerDomain domain provides, and
they are all realized in the DataServerFacade class. Every access to the
dataServerDomain domain is attempted via the DataServerFacade class now.

8.4 graphicsDomain Domain

The graphicsDomain domain is responsible for plotting the dataset in the ImageMap
mode. For details of this domain, please refer to 4.3.6. The interactions between this
domain and the other domains are relatively simple: getting the dataset from other
domains, and returning an image file which contains the data graph.

Therefore, the Facgade design pattern is applied on this domain. The GraphicsFacade
class works as the Facgade class and it implements the GraphicsFacadelnterface
interface, which contains the methods below:

> public void setGraphData(GraphDatalnterface data);

» public AwtimageReference generatelmage(int width, int height);

> public void setGraphOptions(GraphOptionsinterface gO);

> public void applyGraphOptions();

All the services the other domains can expect from the graphicsDomain domain are
the 4 methods above. All the other parts of this domain are invisible to them.

According to the designing of the dataset graph layout, four different tasks need to be
finished before a single image can be generated, which are as follows:

45

Draw axis ticks

Draw centered message
Draw labels

Draw wave form

YV VYV

To chain these classes together and make it easier to add new features in the future,
the Decorator pattern is applied here.

In object-oriented programming, the decorator pattern is a design pattern that allows
new/additional behavior to be added to an existing method of an object dynamically
[21].

The abstract class GraphDecorator is created and it works as the abstract decorator.
All the four classes DrawAxisTicks, DrawCentredMessage, DrawlLabels, and
DrawWaveform extend the GraphDecorator class. If some new features are added in
the future, the only thing we need to do is to create a new class implementing the new
feature and make it extend the GraphDecorator class.

In addition, as there are many parallel classes in this domain and the communication
between classes are quite frequent, it is necessary for us to regulate the
communication. Otherwise, this domain will be difficult to read or maintain. To
address this potential problem, the Mediator pattern is applied, too.

The mediator pattern is a software design pattern that provides a unified interface to
a set of interfaces in a subsystem [21].

The image below (Figure 8.2) illustrates the structure of the Decorator and Mediator
patterns:

<IN Clasie=
GraphMowseHandle r

graphics ‘GraphicsFacade

raphOptionsinGraphifs GraphMediator - [GraphDatalnGraphics

/7

= T
\ oA A T
<=ahstracess ff o AT _':;\. ,
o | B
- ¥ ! | by
‘GraphDecorator P e ! | \
- / ! | \
= - A ! 1
L .-
o

S

s I'.I Y

o [
P #
&

Draw AxisTicksX DewAxisTicksY
|'I- II| \\\
—— \f \
Y ¥

Dieaw AxisTicks DirawCross Hair DrawlLahels Diraw W ave form

<cabstracts> ‘ ‘

Figure 8.2 Decorator and Mediator Patterns [1]

46

The GraphMediator class is created and it works as the mediator. The communication
among the classes in the graphicsDomain domain is realized via the GraphMediator
class. This way, it’s easier and more efficient to manage the communication between
classes in this domain.

8.5 applet Domain

The applet domain is not loaded on the server side. It’s only called when the Java
Applet mode is activated on the client side, and this domain can only communicate
with the other parts of the WebScope3 system via a socket connection. Therefore, it is
not necessary for us to apply the Facade pattern on it.

In addition, as this domain is very simple, currently no other design patterns have
been considered for this domain.

8.6 Comparison between the WebScope3 and EScope4 systems

Actually, the structure of the WebScope3 system is quite like that of the EScope4
system. The table below describes the corresponding parts of these two systems:

WebScope3 EScope4
dataServerDomain dataServerDomain
graphicsDomain graphicsDomain
Webscope3 guiDomain

databaseAccessDomain

Mapping

Applet

Table 8.1 Comparison between WebScope3 and EScope4
The EScope4 system does not have counterparts for the databaseAccessDomain and
mapping domains because it does not need to interact with Hibernate. The applet

domain is not needed in this system, either.

Due to the similarity in the structures, almost the same design patterns are applied on

47

these two systems. However, there are still some differences. For example, the Fagade
pattern is applied on the guiDomain domain of the EScope4 system. However, no
patterns are applied on its WebScope3 counterpart, which is the webscope3 domain.
This is because of the requirement of the Cooee framework.

8.6.1 Transformation from EScope4 to WebScope3

When designing the WebScope3 system, the EScope4 system is used as the reference
due to the reasons below:

® Both of the systems are used to explore nuclear fusion data.
® The structures of the two systems can be very similar due to the similarity in
functionality.

The probable differences between these two systems are as follows:

® The EScope4 system uses a Java application as its GUI, while the GUI of the
WebScope3 system is based on web pages.

® The WebScoped4 system requires communicating with Hibernate and an
additional cache server is used to ensure the transmission efficiency, while the
EScope4 system does not need these.

I -transfer data to -obtain data from

gui data

G grEaghIcE D =obtain data from

-obtain graphics from

I -transfer data to

graphics

Figure 8.3 Structure of the EScope4 system

Therefore, the following steps are used to transform the structure of the EScope4
system to the WebScope3 system:

Step 1: Add some new domains

As the WebScope4 system requires communicating with Hibernate, a databaseAccess
domain should be added to map the Hibernate tables. This domain only interacts with

48

the gui domain as it only collects input information from the GUI and return stored
information as required.

In addition, a mapping domain should be added to store the corresponding Hibernate
mapping files. This domain only interacts with the databaseAccess domain.

As we need to provide users with a Java applet method to display graph data, a Java
applet domain is also necessary and it only interacts with the gui domain.

This way, the initial structure of the WebScope3 system should be like this (Figure
8.4):

databaseAc
cessDomai mapping
n

-acoess Hibernate through

-interact with

—

applet gui data

get data from sand graph o -transfer data to -obtain data from

- et hics ©
PIOVIGR arRpnics & -obtain data from

-obtain graphics from

-transfer data to

graphics

-

Figure 8.4 Initial structure of the WebScope3 system
Step 2: Modify the existing domains
The gui domain should be replace with the webscope3 domain to provide users with a
web-based GUI. Both the structure of this domain and the classes inside the domain
are modified as per the requirements of the Cooee framework.
We can keep the structure of the graphics domain. However, almost all of the classes
inside this domain should be modified as we are now providing graphics to a web

application based on Cooee.

The dataServerDomain can be kept as it was. However, some new classes should be
added to provide the additional cache server.

49

The new structure of the WebScope3 system should be like this (Figure 8.5):

databaseAc
cessDomai mapping
n

-acoess Hibernate through

-interact with
I get data from sand graph o -transfer data to -obtain data from
dataServer
applet wabscopel . . Domain

" id b
proves QIRpTNS & -obtain data from

-obtain graphics from
-transfer data to

graphicsDo
main .

Figure 8.5 Updated structure of the WebScope3 system

And now, the transformation has been completed.

8.7 Conclusion

After analyzing the domains one by one and choosing the proper design patterns for
each domain, the WebScope3 system is now more flexible, maintainable, efficient,
and readable. Although it takes me some time to complete the design pattern analysis,
it is worthwhile as this analysis can help to make the future work easier.

With the development of the WebScope system, more and more design patterns will

be introduced in the future, which can help to guarantee the health and correctness of
the system.

50

9. Future Work

The following work may be done in the future to make the WebScope3 system better:

Currently, applet is used as an alternative graph-displaying method. However, as
the Java Applet technology is not as popular as it was, we may introduce some
more up-to-date technology, such as the JavaFX scripting technology. This way,
the graph-displaying part of the WebScope3 system will be more beautiful,
responsive and interactive.

We may introduce the user priority concept to the WebScope3 system. Currently,
every user possesses the same priority, which may not be ideal for some
organizations. Some user management/user priority features may be added in the
future.

We are saving user details in plain text, which is definitely not safe. Some
encrypting technology should be used to save this information in encrypted text
to make the system more secure.

Users cannot delete metadata (both static metadata and dynamic metadata) from
the database. This feature could be added in next version of the WebScope
system.

The HSQLDB database is not efficient enough. Actually, it does not really save
tables in the database, but keeps a list of scripts so that tables are “written” to the
database every time the HSQLDB database starts up. Apparently, with the
increasing of tables in the database, it will be slower and slower for the HSQLDB
to start up. Some other database should be used to avoid this from happening.

The WebScope3 system is not yet as powerful as the Escope system. Therefore,
some more work should be done to improve the functionality, such as multiple
graphs.

Some help topics may be added to the WebScope system.

51

10. Summary of Contributions and Conclusion

10.1 Summary of Contributions

The following contributions have been made to the WebScope systems:

® | have combined the WebScopel and WebScope2 systems, which involved
adding the following features to the AJAX-based WebScope?2 system:
- Static metadata contribution
- Static metadata displaying
- User activity log

® | have migrated from the Echo2 framework to the Cooee framework.

® | have added the new features below: (See Chapter 5)
- Metadata Query
- Users can now switch between the Image Map and the Java Applet

graph-display modes

- Aworking dynamic metadata contribution/displaying feature

® | have studied the JavaFX script and concluded that it does not quite fit the
requirements. Therefore, we need to continue to use Applet. (See Appendix D)

® A Cognitive Walkthrough and a Heuristic Evaluation have been performed to
ensure the usability of the WebScope3 system. (See Chapter 6)

® Unit tests, module tests and acceptance tests have been performed to ensure the
functionality and availability of the WebScope3 system. (See Chapter 7)

® The metadata query and metadata displaying table features have also been added
to the older Java Servlet-based WebScopel system.

In summary, WebScope3 provides a web-based interface to a fusion eScience data
grid which includes dynamic metadata. As well as providing new functionality for the
support of distributed exploration and management of data from nuclear fusion
experiments, WebScope3 can serve as a prototype “Grid Portal” for other eScience
applications.

10.2 Personal Statement

During the developing process of the WebScope3 system, | have met various
problems and learned many useful techniques.

First of all, I have learned how to efficiently understand the code of others. To achieve

this, it is better for me to ignore the details at the very beginning and get a general
idea of what each class is doing.

52

Secondly, | have learned how to get useful information from all available resources.
Whenever I’'m stuck, | am able to get help from my supervisors and the Internet.
Asking for help is never a shame.

I have also realized the importance of making plans and keeping a record of actual
progress, which can help me clearly know what I’m doing and what | should do.

53

11. Reference

[1] Henry Gardner, Gabrile Manduchi, Design Patterns for e-Science, Springer
Verlag, 2007, ISBN 978-3-540-68088-8.

[2] Dave Crane, Eric Pascarello with Darren James, AJAX IN ACTION,
Dreamtech Press, 2006, ISBN 81-7222-657-6.

[3] David Flanagan, Java Examples in a Nutshell, O'REILLY, 2001, ISBN
7-5083-0665-4.

[4] Ajith Mannanakunnel Jose, Development of Web Scope, the final report for
the COMP6703 eScience Project (Semester2, 2005) course,
http://escience/project/05S2/AjithJose/FinalReport.doc . Last accessed 20 October
2007.

[5] Le Ma, Development of Web Scope, the final report for the COMP6703
eScience Project (Semester2, 2006) course,
http://escience/project/06S2/report/LeMa_report.pdf . Last accessed 20 October
2007.

[6] Zhongshan Tan, Use of Echo2 in Web Scope, the final report for the
COMP6703 eScience Project (Semester2, 2006) course,
http://escience/project/06S2/report/ZhongshanTan_report.pdf . Last accessed 20
October 2007.

[7] Henry J. Gardner, Raju Karia, Gabrile Manduchi, A Web-Based, Dynamic
Metadata Interface to MDSplus, To be published.

[8] Clayton Lewis, John Rieman, Task-Centered User Interface Design, 1993.

[9] Marilyn Hughes Blackmon, Peter G. Polson, Muneo Kitajima, Clayton Lewis,
Cognitive Walkthrough for the Web.

[10] The java doc for EchoPointNG,
http://docs.rakeshv.org/java/echopointng/allclasses-noframe.html . Last accessed
20 October 2007.

[11] Apache Ant 1.7.0 Manual, http://ant.apache.org/manual/ . Last accessed 20
October 2007.

[12] Apache Tomcat Manual, http://tomcat.apache.org/ . Last accessed 20 October
2007,

54

http://escience/project/05S2/AjithJose/FinalReport.doc
http://escience/project/06S2/report/LeMa_report.pdf
http://escience/project/06S2/report/ZhongshanTan_report.pdf
http://docs.rakeshv.org/java/echopointng/allclasses-noframe.html
http://ant.apache.org/manual/
http://tomcat.apache.org/

[13] The java doc for the Karora Cooee project,
http://www.karora.org/projects/cooee/apidocs/ . Last accessed 20 October 2007.
[14] The Hibernate official website, http://www.hibernate.org/ . Last accessed 20
October 2007.

[15] The HSQLDB official website, http://hsgldb.org/ . Last accessed 20 October
2007,

[16] Java Servlet Technology, http://java.sun.com/products/servlet/index.jsp . Last
accessed 20 October 2007.

[17] The Karora official website, http://www.karora.org/ . Last accessed 20
October 2007.

[18] The Echo2 official website, http://www.nextapp.com/platform/echo2/echo/ .
Last accessed 20 October 2007.

[19] Servlet Essentials, http://www.novocode.com/doc/servlet-essentials/ . Last
accessed 20 October 2007.

[20] The Chinese version of the Java Servlet tutorial,
http://www.bc-cn.net/Article/web/jsp/jc/200409/72 3.html . Last accessed 20
October 2007.

[21] The Wikipedia home page, http://www.wikipedia.org/ . Last accessed 20
October 2007.

[22] How to Conduct a Heuristic Evaluation,
http://www.useit.com/papers/heuristic/heuristic evaluation.html . Last accessed
20 October 2007.

[23] MDSPLUS home page, http://www.mdsplus.org/ . Last accessed 20 October
2007,

55

http://www.karora.org/projects/cooee/apidocs/
http://www.hibernate.org/
http://hsqldb.org/
http://java.sun.com/products/servlet/index.jsp
http://www.karora.org/
http://www.nextapp.com/platform/echo2/echo/
http://www.novocode.com/doc/servlet-essentials/
http://www.bc-cn.net/Article/web/jsp/jc/200409/72_3.html
http://www.wikipedia.org/
http://www.useit.com/papers/heuristic/heuristic_evaluation.html
http://www.mdsplus.org/

Appendix A: Cognitive Walkthrough details

A.1 Tasks

A.1.1 Task details

The detailed tasks involved in this walkthrough have been listed in the table below

(Table 6.1):

Task Name

Task Description

Action Sequence

Task1:
Display the
graph for a
random
experiment on
the screen

Plotting graphs for the
experiment data retrieved
from the MDSPlus server
is one of the main
features of the
WebScope3 system. This
task is intended to test the
usability of the graph
plotting feature.

. Click the

Launch a web browser and open the
page
http://HOSTNAME:8080/WebScope3
lapp

Input the email address of an existing
user account and the corresponding
password.

. Click the “Login” button.
. Click the “Go to connection page” at

the user information page.

. Specify the server name, the port

number, the experiment name and the
shot number at the connection page.
“Connect to MDSPlus
Server” button.

Expand the experiment tree in the left
pane at the main page. Click on one of
the experiments. If the experiment
contains experiment data, the graph
will then be plotted in the right pane.

Task 2:
Contribute
static metadata
to the database

The WebScope3 system
allows users to interact

with the database by
contributing static
metadata. The static

metadata is bound to the
experiment data. Thus,
users can add their

Launch a web browser and open the
page
http://HOSTNAME:8080/WebScope3
lapp

Input the email address of an existing
user account and the corresponding
password.

. Click the “Login” button.

56

comments and notes with
this feature. This task is
intended to test the
usability of the static
metadata feature.

10.

Click the “Go to connection page” at
the user information page.

Specify the server name, the port
number, the experiment name and the
shot number at the connection page.
Click the “Connect to MDSPlus
Server” button.

Expand the experiment tree in the left
pane at the main page. Click on one of
the experiments.

In the right pane, click the “Contribute
static metadata” button under the
experiment graph.

In the pop-up window pane, fill in the
Metadata Name, Metadata Value,
Metadata Explanation, and Metadata
Keyword fields.

Click the “Submit Metadata” button in
the window pane, and the metadata
will be stored in the database as long
as all the provided information is
valid. Warning information will be
given if some of the information is
invalid.

Task 3:
Contribute
dynamic tables
to the database

If the static metadata
cannot meet the
requirements of users,
they can also create
customized metadata
table and contribute these
information to the
database with the
dynamic metadata table
feature. This task is
intended to test the
dynamic table feature.

Launch a web browser and open the
page
http://HOSTNAME:8080/WebScope3
lapp

Input the email address of an existing
user account and the corresponding
password.

Click the “Login” button.

Click the “Go to connection page” at
the user information page.

Specify the server name, the port
number, the experiment name and the
shot number at the connection page.
Click the “Connect to MDSPlus
Server” button.

In the right pane of the main page,
click the *“Create dynamic table”
button under the experiment graph.

In the “Create Dynamic Table”
window pane, specify the Table Name

57

10.

11.

and Number of Columns. Then, click
the “Submit” button.

In the “Save Dynamic Table Column
Names” window pane, specify the
names of each column. Then, click the
“Submit Column Name” button.

In the “Save Dynamic Table Column
Values” window pane, specify the
values of each column. Then, click the
“Submit Column Value” button.

In the “Success” window pane, click
the “Finish” button to complete this
process.

Note that warning information will be
given if some of the fields are incorrectly

filled in.
Task 4: Although a list of | 1. Launch a web browser and open the
Query a static | contributed static page
metadata metadata is given, it will http://HOSTNAME:8080/WebScope3
be better for users to /app
query the static metadata | 2. Input the email address of an existing
using the query feature. user account and the corresponding
The static metadata can password.
be queried by server, by | 3. Click the “Login” button.
experiment, by shot, by | 4. Click the “Go to connection page” at
node path, by metadata the user information page.
name, by metadata value, | 5. Specify the server name, the port
or by user. This task is number, the experiment name and the
intended to test the shot number at the connection page.
usability of the query|6. Click the *“Connect to MDSPIus
feature. Server” button.
7. In the right pane of the main page,
click the “Query Metadata” button.
8. In the “Query” window pane, fill in
the Keyword field and select a
querying method in the “Query by”
dropdown list.
9. Click the “Query” button.
10. Click the “OK” button in the “Query

Results window pane” to complete
this process.

Table A.1 Cognitive Walkthrough Tasks

58

A.1.2 Potential users

The potential users are physical scientists who do research in the nuclear fusion field.
They may not be computer experts. However, they will understand the interface and
features easily.

A.2 Walkthrough Results

The four questions that we are using to walkthrough the action sequences of each task
are listed in the table below (Table 6.2):

Q1 Will users be trying to produce whatever effect the action has?

Q2 Will users see the control (button, menu, switch, etc.) for the
action?

03 Once users find the control, will they recognize that it produces
the effect they want?

04 After the action is taken, will users understand the feedback they

get, so they can go on the next action with confidence?

Table A.2 Walkthrough Questions

The actual walkthrough of the action sequences listed in Table 6.1 and the results have
been listed in the table below (Table 6.3):

Tla;k Seqlugnce o1 Q2 03 Q4
1 1 Yes Yes Yes Yes
1 2 Yes Yes Yes Yes
1 3 Yes Yes Yes Yes
1 4 Very likely | Very likely Yes Yes
1 5 Yes Yes Yes Yes
1 6 Yes Yes Yes Yes

59

7 Yes Yes Yes Yes
1 Yes Yes Yes Yes
2 Yes Yes Yes Yes
3 Yes Yes Yes Yes
4 Very likely | Very likely Yes Yes
5 Yes Yes Yes Yes
6 Yes Yes Yes Yes
7 Very likely | Very likely Yes Yes
8 Yes Yes Yes Yes
9 Yes Yes Yes Yes
10 Yes Yes Yes Yes
1 Yes Yes Yes Yes
2 Yes Yes Yes Yes
3 Yes Yes Yes Yes
4 Very likely | Very likely Yes Yes
5 Yes Yes Yes Yes
6 Yes Yes Yes Yes
7 Very likely | Very likely Yes Yes
8 Yes Yes Yes Yes
9 Very likely Yes Very likely Very likely
10 Very likely Yes Very likely Very likely
11 Yes Yes Yes Yes
1 Yes Yes Yes Yes
2 Yes Yes Yes Yes

60

4 3 Yes Yes Yes Yes
4 4 Very likely | Very likely Yes Yes
4 5 Yes Yes Yes Yes
4 6 Yes Yes Yes Yes
4 7 Very likely | Very likely Yes Yes
4 8 Yes Yes Yes Yes
4 9 Yes Yes Yes Yes
4 10 Yes Yes Yes Yes
Table A.3 Action Sequence Walkthrough
A.3 Summary

Most of the actions needed to complete the tasks above are obvious and
straightforward, which can be concluded from the very high mark we’ve got from the
walkthrough. However, sometimes it may not be that easy to find the buttons/controls
for a certain control if the user is not very familiar with the interface. To resolve these
issues, some changes have been made to the layout of the WebScope3 system. Some
examples are given below:

The main screen of the WebScope3 system was too long and we needed to scroll
down the screen to find features such as “contribute static metadata”, “query
metadata”, and “create dynamic table”. Although this may be a convenient and direct
way to show the users which information is needed for each feature, it may cause
problems for users who are not familiar with the program layout to find these features
(See Figure A.1). To resolve this potential problem, the three features mentioned
above are no longer put on the screen in the original way. Instead, three buttons have
been added to the screen to trigger these features. This way, we do not need to scroll
down the screen to find any feature and everything fits in the main screen now (See
Figure A.2).

61

File Elit View Gs Esslmardr Teals Halp

o - - B D) B [E s eedben 000 TSt we ¥ @ o [IGL
W Gening Sneened [Lavest Heallines | | Login Page |] Ralfespel:

=

'.E'i'iii
§§%a

;
§

aloaTa INFO: [TOF, .OPERATIONYS, :DIANAG]

Contribute Metadata to Database:

Matadata Mame: | |

Mietadats Vakee: |

Matadata Dxplanation: |

Mabadaba Kaywerd: |

Submit Metadata Clear

Query Motadata:

| Kaywerd: ||

Ciwiery by -

Query

Create table dynamically

Trasalerving data Crem localhast..

Figure A.1. Original Main Screen Layout

File Elit View Gs Esslmardr Teals Halp

W Gening Sneened [Lavest Heallines | | Login Page |] Ralfespel:

=

'.E'i'iii
§§%a

;
§

[= I
o - - B D) B [E s eedben 000 TSt we ¥ @ o [IGL
joaTA IEFO: [TOF, .OPERATIONYS, :DIANALG]
Graph Dabta Infe, Standard Mebadata Table Complele Mabadata Table Dyname Table Access Log.
® Image Map () Java Applat]
o
o
o
o
]
-
Contnbube STatc MMetadata Quiry Metadata Create Dynamic Table

Trasalerving data Crem localhast..

Figure A.2. New Main Screen Layout

62

As some additional features will be added to the WebScope system in the future, it is
important that we pay more attention to the layout of the application. To further

investigate the usability problems, | have also performed a Heuristic Evaluation on
the WebScope3 system. Detailed information has been included in Appendix B.

63

Appendix B: Heuristic Evaluation

B.1 Ten Usability Heuristics

These are ten general principles for user interface design [22].

Visibility of system status
The status of the system should always be visible, which means that users should
be informed of what’s going on and what information is required to proceed.

Match between system and the real world
System should follow real-world conventions and work in the style that is
familiar to users. This involves the establishment of a good mental model.

User control and freedom
Users should have control on the system under all conditions. They should be
able to undo/redo their actions, too.

Consistency and standards
The same words and terms should be used to describe the same features or
functions.

Error prevention

The system should be design carefully to prevent potential errors or careless
mistakes. Confirmations should be presented to users before they commit an
action.

Recognition rather than recall

The system should not require users to remember the state of the system or
certain information provided in another part of the system. Every piece of
required information should be retrievable whenever users need them.

Flexibility and efficiency of use

Some advanced options or features, such as shortcut or batched actions, should be
provided to expert users to improve the efficiency of the system. This way, the
system will be suitable for both novice users and expert users.

Aesthetic and minimalist design

Everything included in a screen or a dialogue box should be closely relevant to
the actions users are performing. The irrelevant information in a screen or a
dialogue box may distract the users’ attention and cause confusion.

64

® Help users recognize, diagnose, and recover from errors
Error messages should be clear and informative. It will always be good to provide
users with a possible solution to the problem they’ve encountered.

® Help and documentation
Help topics should be provided to cover the common problems which may occur
and FAQ’s.

The principles above are used as the check list during this Heuristic Evaluation.

B.2 Evaluation Results

As mentioned above, | will use the ten usability heuristics to evaluate the WebScope3
system.

B.2.1 Visibility of system status

Every screen of the WebScope3 system provides users with the necessary information
about what the screen is for and what information is required to proceed to next
screen.

Every button and text box is accompanied with corresponding explanation. The titles
of the dialogue boxes can clearly show their purposes.

Therefore, 1 don’t think the system has any visibility issues.

B.2.2 Match between system and the real world

The layout of the screens in the WebScope3 system is designed in the convention
adopted by most of the popular websites. Thus, users will not find it odd to work in
this system. For example, the data tree is put to the left of the main screen, which is a
common way used in most operating systems (See Figure A.2). Another example is
that the login box in the login screen should also be quite familiar to users as similar
login boxes can be seen everywhere (See Figure B.1).

Email:

Password: | |

Login E Register as a new user

65

Figure B.1. Login Dialogue Box

Therefore, the system matches the real-world very well.

B.2.3 User control and freedom
I do find some problems about user control and freedom in the WebScope3 system:

® Users do not have the option to log out and log in with another account once they
reach the main screen.

® Users cannot cancel the action if they click the “Create dynamic table” button.
They have to complete a new dynamic table (See Figure B.2).

Create Dynamic Table

Table Name: | |

Number of Columns: | |

Submit Clear

Figure B.2. Create Dynamic Table Dialogue Box

® Once users have contributed some metadata to the database, they do not have the
option to undo this action. That is, they cannot delete metadata from the database.

The problems above may cause some potential usability issues. Currently, the second
problem has been fixed.

B.2.4 Consistency and standards

The same words/terms are used to describe the same features in the WebScope3
system. Therefore, we can say that the WebScope3 system is consistent.

B.2.5 Error prevention

When the WebScope3 system was designed, considerations were taken to prevent
potential problems caused by careless mistakes. For example, the system is divided
into 4 consecutive screens: the login screen, the user information screen, the database
connection screen and the main screen. Users will not be able to proceed to the next
screen unless they provide the correct information, which can be considered as an
interlocking mechanism. Many potential errors have been prevented with this

66

mechanism.

B.2.6 Recognition rather than recall

The WebScope3 system does not require users to remember any information. Instead,
all the information they are looking for can be found somewhere in the screen.

For example, when a new dynamic table is created, users are required to input the
name of the columns in the new table. Then, users are required to input the values of
each column. These two inputs happen in two different dialogue boxes and it is
possible that the users may have forgotten what the name for each column is. To
prevent this issue, the WebScope3 system shows the column names to users when
they are required to input the column values (See Figure B.3 & Figure B.4).

Save Dynamic Table Column Names

Column 0 [z

Column 1 |c2

Column 2 [c3

Submit Column Mame

Clear

Figure B.3. Save Dynamic Table Column Names Dialogue Box

Save Dynamic Table Column Values

c1 |

c2 |

c3

Submit Column Value

Clear

Figure B.4. Save Dynamic Table Column Values Dialogue Box

67

B.2.7 Flexibility and efficiency of use

As the interface and features of the WebScope3 system is relatively simple, no
additional accelerator is provided to expert users. However, it will be import to take
this into account in the future when the WebScope system gets more and more
complicated.

B.2.8 Aesthetic and minimalist design

As is shown in the figures above, no unnecessary information is included in the
dialogue boxes or screens. Therefore, the WebScope3 system meets the requirement
of this principle.

B.2.9 Help users recognize, diagnose, and recover from errors

The error messages thrown out when users make mistakes are quite informative.
Examples are given in the figures below:

Invaild Input (%

Keyword can not be empty!

Ok

Figure B.5. Empty Query Keyword Error Message

Create Dynamic Table

Table Name: |Sdfs |
Number of Columns: [d |
Submit Clear

E3

Invaild Input

Table column number input must be an Integer!

ok

Figure B.6. Invalid Dynamic Table Column Number Error Message

68

Save Dynamic Table Column Names

Column 0 [zal

Column 1 [col2

Column 2 [col]

Invaild Input

Different columns must have different names. Please check the
names of Column 0 and Column 2

Submit Column Name Clear r

Figure B.7. Invalid Column Name Error Message

B.2.10 Help and documentation

Currently, no help topics or documentation are provided to users. We may add these in
the future to further improve the usability of the system.

B.3 Conclusion

The WebScope3 system can meet the requirements of most of the principles. However,
there are still some problems and the usability can be further improved.

® Users do not have full control and freedom in some part of the system.
® No help documentation has been provided to users.

The first problem has been resolved. However, the second one requires some future
work.

69

Appendix C: Progress on the Servlet-based WebScope

system

In addition to the Cooee-based WebScope3 system, some additional work has been
done on the Servlet-based WebScope system (Mr. Le Ma’s version) to improve its
functionality. The major progress is that two new features have been added.

C.1 Metadata Table

A metadata table has been added to the User Information screen. This way, users will
be able to get a list of metadata before connecting to the MDSPIlus server. The screen
shots below (Figure C.1 & Figure C.2) illustrate the change:

Welcome, wang

ot Botvrw: e rrifilly Ingped i 1o e wyate

Bvrnanal Detaidy
User Kamwr wumg
Emmd S5 oy

Ok barw in g s M D5 Cosnect Pags

Som O 14 2010528 EST 2047

Figure C.1. Original User Information Screen

70

o

Pils Bl Tiew 8 jesmarin fesln iy
da - 5 e R T e e T | e e ap——— I S
W Sariing Suaried [Latean Meallismn Lagia Vg Wabl sl
Welcome, wang
Wy b spcc vt ogged cnne S rruem
Prrromad [ketaily
Ui Nomw =gy
Emad AZS6ETE R ek m
.. . I-
Edwates Grmdose et
ek harw se gu m AEGE i "
Berier Euperimest Shi Misle Pail Alstndats Nams Mewsdits Vil Used
X T w161 SIGNALS ot e meT ey
5ol T ks 1T SIGNALS b i]
hd T3] . i1 SIONALS S .) g
X T ek ITE1E EMRGALS TRTRAMVEZ UTOY iy 'R ey
bl T3 redam L - : resg [-
Hil“lhi =t 54 e L] FAERA R S S oA 8 e PSS ok =

Figure C.2. Updated User Information Screen

C.2 Metadata Query Feature

A metadata query feature has been added on the Node Selection screen. Metadata can
be queried by server, experiment, shot number, node path, user, metadata name, or
metadata value. In addition, a link has been provided for every search result, which

can lead users to the related graph data. The images below illustrate the changes:

o

file Boi Tow G foimwin fesin o

da - 5 AR T T ot eI S —— TS S S———— e R . T
M Satiing Siaried | Latean Meuliamn || Lagis Tgn || | Wibbospd

Hetrived Nodes from AMD5Ples Semver

STEMLT -

[Bwmilend |

Noden Detadh
Experenms Name nias
Shot Nabey 1T6LS
RS Lok O

Pleass weleii the spproprivie seds and click ils duwaload bufivn iv view ihe dais vivded 17615 sdam

Feie

Figure C.3. Original Node Selection Screen

71

bla b Do § femain Pl bl Qo
*“F'.QEE;‘Q?"."”—;"“‘ et it "ﬂ"n

e Sattineg Tarvad [Latent Beslliskr | | Lages Pas || BsiSvaged

Pivsas trbert e sppeepriain bels 3o chick the thrmliend Ipsies b vhes S ot pborrd 17605 whin

Guery Matsdt
T
Figure C.4. Updated Node Selection Screen

Bite i Tesr S psimwim Tl [[=

64 BB e AT,

e ity Srariad B Latent Weslliner || Lo Pups || WsiSeaal -

The results of querying 127.0,0.1 by server are Mated bebow:

1
-

Figure C.5. Query Results Screen

72

Appendix D: Project Log

> 23" Jul ~ 29" Jul

Understand the general idea of the WebScope project. Contact Dr. Henry Gardner to
get some clarification.

> 30" Jul~ 5" Aug

Study Ant, NetBeans, Eclipse, Apache Tomcat, Java Servlets, Echo2, Cooee and
Hibernate. Prepare for the actual project. Install required programs on my laptop to
establish a developing Environment for the WebScope3 project.

> 6" Aug ~ 12" Aug

Get the Le Ma’s copy of code. Compile and run it on my laptop. Read the codes and
get familiar with the coding style.

Problem found:

Le Ma’s code cannot retrieve graph information from the local MDSPIlus Server.
However, it works with the ephebe server.
> 13" Aug ~ 19" Aug

Modify Le Ma’s copy of code according to Henry’s requirements. The following
features have been added:

1. A metadata table is displayed on the page just after a user logs on his account.

2. The metadata query feature has been realized. Metadata can be queried by server,
experiment, shot, node path, metadata name, metadata value and user. There is a
link beside every query result which can lead the user to the actual graph.

> 20" Aug ~ 26™ Aug

Get Zhongshan Tan’s copy of code. Compile and run it on my laptop. Compare it with
Le Ma’s. The following feature has been added to Zhongshan’s version:

73

Migrate Zhongshan’s version from Echo?2 to Karora-Cooee.

Contribute metadata to the database and display the metadata table on the user
information screen and the data plotting screen.

Record access log of users and display a user log table on the data plotting screen.
Metadata querying feature has also been realized. Metadata can be queried by
server, experiment, shot, node path, metadata name, metadata value and user.
There is a link beside every query result which can lead the user to the actual
graph.

Note:

Zhongshan’s copy can work fine with the local MDSPIus Server

>

27" Aug ~ 2" Sep

Add the dynamic metadata feature to the new Karora-Cooee version of the WebScope
system. This includes:

no

Dynamically create .java files.

Dynamically compile the .java files and create .class files.

Dynamically add table information to the Hibernate mapping file
Dynamic.hbm.xml

Contribute dynamic table to the HSQL database.

Problem found:

Although Le Ma’s version does create .java files, compile them and create .class files,
and add the table information to the file Dynamic.hbm.xml, NO dynamic table is
contributed to the database because:

>

The column names in the HTML output do not match.

Le Ma tried to save a Class object using the “save” method of the “session” class,
which is not right. A new instance should be created for the Class object and we
should save the new instance instead.

Although table information is added to the Hibernate mapping file
Dynamic.hbm.xml correctly, the table is not loaded as expected during runtime.
To resolve this issue, | use the “addResource” method of the “Configuration”
class to re-add the mapping file.

3" Sep ~ 9" Sep

Modify the source code so that canonical file path is used instead of absolute path.

74

Study the new scripting technology OpenJFX and try to find out a way to load
OpenJFX scripts in the Cooee framework. Write the report draft.

Problem found:

OpenJFX scripts cannot be loaded directly in the Cooee framework. However, | can
insert a HTML panel using the DirectHTML class of Cooee, load a Java Applet using
HTML language, and then load the OpenJFX script in the applet. Maybe | can find a
more direct way to achieve this.

> 10" Sep ~ 16" Sep

Continue studying the OpenJFX technology and try to make it work with the Cooee
framework. Continue writing the report. As | still have many questions on OpenJFX, |
am currently trying to plot the graphs with a Java Applet instead of a OpenJFX script.

Problem found:

1. It seems that we cannot bypass Java Applet if we would like to load a OpenJFX
script in the Cooee framework. The problem is that if Java Applet is involved, we
will need the full version of JRE on the client side to load the WebScope3
program, which does not meet the requirement of Dr. Henry. One of the main
reasons that we try adopting OpenJFX is that only a minimum version of JRE is
required on the client side to run OpenJFX script.

2. OpenJFX script cannot be loaded in Cooee framework. | have performed some
thorough research on the OpenJFX and Karora website and found that there are
two possible ways to load a OpenJFX script in a web page:

® ViaJava Applet
® ViaJava Web Start

For the Java Applet method, two examples have been found.

® | oad the OpenJFX script with the FXMain class
® | oad the OpenJFX script with the ScriptEngine class.

However, | have tried all the methods above without any success. | have posted
some questions in the forums of the two websites mentioned above and
somebody suggested that we use JFreeChart(http://www.jfree.org/jfreechart/)
instead. Here is the demo: http://demo.nextapp.com/Demo/app

3. | cannot find a way to make a OpenJFX script communicate with Cooee. The
communication is required because we have to change the graph every time a new

75

tree node is clicked.

> 17" Sep ~ 23" Sep

After discussing with Dr. Henry Gardner, the OpenJFX technique has been abandoned
as it cannot meet our needs. Instead, a new requirement has been issued that we
should provide users with two methods of graph-displaying: the Image Map method
and the Applet method. A radio button has been added on the Graph pane in the main
screen of the system and the graph-displaying method can be switched from one to
another by a single click on the radio button. I’m also writing up the report draft
during this week.

Problem found:

1. I’m currently using the URL class to create a URLConnection connection and
retrieve a OutputStream from this connection. However, it seems that | cannot get
the nodedata object in the Applet which is written using the writeObject method of
the ObjectOutputStream class in the main program. An “Invalid stream header”
error is always received. | have not been able to resolve this issue.

2. Although only one graph-displaying method is working at any time, I still need to
inform both methods of the node-clicking event and update the graph information
of them whenever a tree node is clicked on. Otherwise, 1 will not be able to get the
proper graph when switching between the graph-displaying methods.

> 24" Sep ~ 30" Sep

A cognitive walkthrough has been performed during this week. The report draft is
being written and the communication problem between the WebScope3 system and
the Java Applet has been resolved now. Some application bugs have been resolved,
too.

Problem found:

I was convinced that the method | was testing during the last week was not correct.
Therefore, | searched on the web and the Cooee website trying to find another way to
get an HTTP connection.

After reading the Cooee javadoc thoroughly, | found a class called WebRenderServlet
which could be used to simulate a servlet in the Cooee framework. I tried calling the
getActiveConnection() method of this class to get an HTTP connection and then
retrieving an outputstream from this connection. The process went smoothly until |

76

tried writing something into this stream. The whole application froze and no error
messages were thrown out in the GUI or in the TomCat terminal.

I thought that this might be because | was not writing the right type of data into the
stream. | tried writing a string, a char, an integer into the stream to no avail. | also
tried using the DataOutputStream, BytearrayOutputStream, BufferedOutputStream
and all the other available sub-classes of the OutputStream class. The same issue
persisted no matter what | did. No one knew what was happening even on the Cooee
website.

After testing and struggling for more than 40 hours, | gave up on the
WebRenderServlet class and picked up the Socket method again. To prevent the
socket server from freezing the whole application when waiting for the client to
connect, | learned to create a thread for each socket connection. The applet works fine
after all.

> 1% 0ct ~ 7" Oct

A Heuristic Evaluation has been performed and the results have been written up.
Some changes have been made to the layout of the WebScope3 system according to
the results. The design pattern analysis has been partially finished. The report has also
been modified according to Dr. Henry’s advice/feedback.

Some of the problems found in the Heuristic Evaluation cannot be resolved for the
time being due to the limitation of time. | have included these problems in the Future
Work section of the report.

> 8" Oct~ 14" Oct

The design pattern analysis has been finished and written up in the report. | have been
writing up the report and now a good draft can be handed in. | have also performed a
thorough test on the WebScope3 system and written up the results in the report.
Modification has been made to the codes according to the results. Some bugs in the
code and the report have been fixed.

> 15" Oct ~ 21 Oct

Prepare for the talk on the COMP6444 lecture. Modify the report as per Dr. Henry’s
suggestions.

77

> 22" 0ct ~ 28" Oct

Prepare for the final presentation. Modify the report as per Dr. Henry’s suggestions.
Test the WebScope3 system again in both Windows and Linux environments. Some

bugs have been fixed.

78

Appendix E: Installation and Compilation Guide

E.1 Prerequisites:

The WebScope3 system requires JRE on the clients and Apache Tomcat running on
the server. The paragraphs below describe the steps to install JRE on the clients and
Tomcat on the server:

E.1.1 Install JRE 5.0 or later versions on the clients

® On the clients, download Java 2 Standard Edition Runtime Environment (JRE),
release version 5.0 or later, from http://java.sun.com/j2se .

® Install JRE according to the instructions shipped with the installation package.

® Set an environment variable named JAVA_HOME to the path where JRE is
installed. e.g. c:\Program Files\j2sdk5.0 (Windows) or /usr/local/java/j2sdk5.0
(Unix/Linux).

E.1.2 Install Apache Tomcat5.0 or Later

® Download Apache Tomcat version 5.0 or later from the link below:
http://tomcat.apache.org/

® Unzip the downloaded installation package to required location. The symbolic
name "$CATALINA_ HOME" will be used to refer to the full path of the
installation directory for convenience purpose.

To run Tomcat:
B Tomcat can be started by executing the following commands:

$CATALINA_HOME\bin\startup.bat (Windows)
$CATALINA_HOME/bin/startup.sh (Unix/Linux)

B Afterwards, the default web application shipped with Tomcat will be
available at the web address below:
http://localhost:8080/

To shut down Tomcat:
B Tomcat can be shut down by executing the following command:

$CATALINA HOME\bin\shutdown (Windows)

79

http://java.sun.com/j2se
http://tomcat.apache.org/
http://localhost:8080/

$CATALINA_HOME/bin/shutdown.sh (Unix)

E.2 Installation of WebScope3:

To install the WebScope3 system on a server equipped with Apache Tomcat, please
use the following steps:

1. Obtain the file WebScope3_all_in_one.zip.

2. Unzip this file and you will get the file WebScope3.war.

3. Copy the file WebScope3.war to the folder below:
$CATALINA_HOME\webapps (Windows)
$CATALINA_HOME/webapps (Unix/Linux)

4. Run Tomcat.

5. Run the HSQLDB database with the commands below:

(Windows)

java -Xmx256m —cp $CATALINA_HOME\webapps\WebScope2\WEB-INF\lib
hsqgldb.jar org.hsgldb.Server -database.0 hdb -dbname.0 hdb

(Unix/Linux)

java -Xmx256m —cp $CATALINA_HOME/webapps/WebScope2/WEB-INF/lib
hsqgldb.jar org.hsgldb.Server -database.0 hdb -dbname.0 hdb

6. WebScope3 is installed and can be accessed from the clients via the link below:

http://SERVER HOST NAME:8080/WebScope3/app

NOTE: Please replace the SERVER_HOST_NAME part with the proper IP
address or host name of the server.

E.3 Compilation of the WebScope3 source code:

To compile the WebScope3 source code, please use the following steps:

1. Obtain the file WebScope3_all_in_one.zip.

2. Unzip this file and you will get the file apache-ant-1.7.0-bin.zip.

3. Install Apache Ant according to the user manual from the link below:
http://ant.apache.org/manual/

4. Set Environment variables using the commands below:

(Windows)

80

http://server_host_name:8080/WebScope3/app
http://ant.apache.org/manual/

set ANT_HOME=(Ant installation path)
set JAVA_HOME=(Java path)
set PATH=%PATH%; ANT_HOME \bin

For example:

set ANT_HOME=c:\ant

set JAVA_HOME-=c:\java\jdk1.5.0_01
set PATH=%PATH%;c:\ant\bin

(Unix/Linux)

export ANT_HOME=(Ant installation path)
export JAVA_HOME=(Java path)

export PATH=${PATH}:{ANT_HOME}/bin

For example:

export ANT_HOME=/usr/local/ant

export JAVA_HOME-=/usr/local/java/jdk1.5.0_01
export PATH=${PATH}:{ANT_HOME}/bin

5. Unzipping the file WebScope3 all_in_one.zip also gives you the file
WebScope3_src.rar. Unzip this file to a desired folder/directory. You should see
the folder WebScope3_src.

6. Open a command terminal and change the current directory to the folder
WebScope3_src.

7. Run the command “ant” (without the quotation marks).

NOTE: This command will create the file WebScope3.war and copy it to the webapps
directory in the default installation path of Apache Tomcat. However, it may not work
on your side as the installation path of Apache Tomcat may not match the default
directory. If this happens, please manually copy the file WebScope3.war to the proper
directory as instructed in D.2.

81

