
Frequently Asked Questions

about JBoss Cache

Release 3.0.0 Naga

iii

1. General Information ... 1

2. JBoss Cache - Core .. 3

3. Eviction Policies .. 11

4. Cache Loaders ... 13

5. Troubleshooting ... 17

iv

Chapter 1.

1

General Information

1.1. What is JBoss Cache?

JBoss Cache is a replicated and transactional cache. It is replicated since multiple JBoss

Cache instances can be distributed (either within the same JVM or across several JVMs

whether they reside on the same machine or on different machines on a network) and data

is replicated across the whole group. It is transactional because a user can configure a

JTA [http://java.sun.com/products/jta/] compliant transaction manager and make any cache

interaction transactional, and caches would participate in ongoing JTA transactions. Note

that the cache can also be run without any replication; this is the local mode.

JBoss Cache comes in two flavours: Core and POJO versions. The core library (using the

org.jboss.cache.Cache interface) is the underlying library that organises data in a tree-

like structure and handles all locking, passivation, eviction and replication characteristics

of data in the cache. The POJO library (using the org.jboss.cache.pojo.PojoCache

interface) is built atop the core library and allows introspection of objects in the cache

providing transparent coherence by using JBoss AOP. Note that the POJO edition of JBoss

Cache (often referred to as POJO Cache) comes with a separate set of documentation

(Users' Guide, FAQ, etc.) available on the JBoss Cache documentation website [http://

www.jboss.org/jbosscache/].

JBoss Cache is made available in one of four different packages:

• jbosscache-core

contains the core Cache library for users who do not wish to use the additional functionality

offered by POJO Cache.

• jbosscache-pojo

contains the core Cache library as well as POJO Cache extensions and dependencies.

1.2. Who are the JBoss Cache developers?

JBoss Cache has an active community of developers and contributors. The project was

founded by Bela Ban and is currently led by Manik Surtani. Jason Greene is the lead for the

POJO Cache subsystem, and other contributors both past and present include Ben Wang,

Harald Gliebe, Brian Stansberry, Vladimir Blagojevic, Mircea Markus, Jimmy Wilson, Galder

Zamarreño and Elias Ross.

1.3. What about licensing?

JBoss Cache is licensed under LGPL [http://www.gnu.org/licenses/lgpl.html], an OSI [http:/

/www.opensource.org/]-approved open source license.

1.4. Where can I download JBoss Cache?

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://www.jboss.org/jbosscache/
http://www.jboss.org/jbosscache/
http://www.jboss.org/jbosscache/
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.opensource.org/
http://www.opensource.org/
http://www.opensource.org/

Chapter 1. General Information

2

The JBoss Cache product download page [http://www.jboss.com/products/jbosscache/

downloads] has prebuilt binaries as well as source distributions. You can also grab

snapshots from the JBoss.org subversion repository. See the JBoss Cache development

[http://www.jboss.org/community/docs/DOC-10259] wiki page for details.

1.5. How do I build JBoss Cache from sources?

Read the README-Maven.txt file in the source root. Note that you will need a JDK >= 5.0,

and Apache Maven >= 2.0.6.

1.6. Which versions of the JDK are supported by JBoss Cache?

JBoss Cache is baselined on Java 5 and is tested on Java 5 and 6 VMs. If, for whatever

reason you have to use Java 1.4, you could build a retroweaved version of the core cache

library that is Java 1.4 compatible, using the simple instructions on this wiki page on building

and running JBoss Cache on Java 1.4. [http://www.jboss.org/community/docs/DOC-10263].

1.7. How do I know the version of JBoss Cache that I am using?

java -jar jbosscache-core.jar will spit out version details.

1.8. Can I run JBoss Cache outside of JBoss Application Server?

Absolutely! Even though JBoss Cache comes integrated with JBoss Application Server, it

can also be used in any other Java EE server such as BEA WebLogic, IBM Websphere or

Tomcat. It can also run in a standalone Java process, completely outside of an application

server. See the Users' Guide for more details.

1.9. How can I migrate my application and configuration from using JBoss Cache 1.x to 2.x?

Look at this wiki page [http://www.jboss.org/community/docs/DOC-10246] for help.

1.10. What about from 2.x to 3.x?

JBoss Cache 3.x is API compatible with 2.x, although as far as possible you should refactor

your code not to use deprecated methods as these may disappear in future releases of

JBoss Cache.

JBoss Cache 3.x comes with an all new configuration format. Old 2.x configuration files will

still work, although you will get a warning in the logs about this. Again, as far as possible,

we recommend migrating your configuration file to the new format. Scripts are provided

with the JBoss Cache 3.x distribution to migrate configuration files (see config2to3.sh and

config2to3.bat).

Note that to take advantage of some of the new features in JBoss Cache 3.x, you need to

be using the new configuration format.

1.11. Where can I report bugs or problems?

Please report any bugs or problems to JBoss Cache User Forum [http://www.jboss.org/

jbosscache].

http://www.jboss.com/products/jbosscache/downloads
http://www.jboss.com/products/jbosscache/downloads
http://www.jboss.com/products/jbosscache/downloads
http://www.jboss.org/community/docs/DOC-10259
http://www.jboss.org/community/docs/DOC-10259
http://www.jboss.org/community/docs/DOC-10263
http://www.jboss.org/community/docs/DOC-10263
http://www.jboss.org/community/docs/DOC-10263
http://www.jboss.org/community/docs/DOC-10246
http://www.jboss.org/community/docs/DOC-10246
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache

Chapter 2.

3

JBoss Cache - Core

2.1. Using JBoss Cache 2 or 3 on JBoss AS 4.x

JBoss AS 4.x ships with JBoss Cache 1.4.x. To make use of new features, performance

improvements and bug fixes in newer releases, you can follow some of the steps outlined

on this wiki page [http://www.jboss.org/community/docs/DOC-10254].

2.2. Can I run multiple JBoss Cache instances on the same VM?

Yes. There are some scenarios where you may want to run multiple instances of JBoss

Cache. For example, you want to run multiple local cache instances with each instance

having its own configuration (e.g., different cache policy). In this case, you will need multiple

xml configuration files.

2.3. Can JBoss Cache run as a second level cache inside Hibernate?

Yes. Since Hibernate 3.0 release, you can configure it to use JBoss Cache as a second

level cache. For details, see Hibernate documentation, and also see this wiki page [http://

www.jboss.org/community/docs/DOC-10265].

2.4. What about using POJO Cache as a Hibernate cache?

It is not necessary to use POJO Cache for second level cache inside Hibernate because

Hibernate manages fine-grained fields in Java objects. Using POJO Cache won't provide

any advantage, and will be an unnecessary performance drawback.

2.5. How can I configure JBoss Cache?

You can configure the JBoss Cache through a configuration xml file or

programmatically using a org.jboss.cache.config.Configuration object, passed in to

the org.jboss.cache.CacheFactory instance.

2.6. Can I use a schema or DTD to validate my JBoss Cache configuration file?

As of JBoss Cache 3.x, yes. An XSD schema is provided in your jbosscache-core.jar file,

and is also available online, on http://www.jboss.org/jbosscache/jbosscache-config-3.0.xsd.

You can configure your IDE, text editor or XML authoring tool to use this schema to validate

your file.

2.7. What is the difference between the different cache modes?

JBossCache has five different cache modes, i.e., LOCAL , REPL_SYNC , REPL_ASYNC ,

INVALIDATION_SYNC and INVALIDATION_ASYNC . If you want to run JBoss Cache as a

single instance, then you should set the cache mode to LOCAL so that it won't attempt

to replicate anything. If you want to have synchronous replication among different JBoss

Cache instances, you set it to REPL_SYNC . For asynchronous replication, use AYSNC_REPL

. If you do not wish to replicate cached data but simply inform other caches in a cluster

http://www.jboss.org/community/docs/DOC-10254
http://www.jboss.org/community/docs/DOC-10254
http://www.jboss.org/community/docs/DOC-10265
http://www.jboss.org/community/docs/DOC-10265
http://www.jboss.org/community/docs/DOC-10265
http://www.jboss.org/jbosscache/jbosscache-config-3.0.xsd

Chapter 2. JBoss Cache - Core

4

that data under specific addresses are now stale and should be evicted from memory, use

INVALIDATION_SYNC or INVALIDTAION_ASYNC . Synchronous and asynchronous behavior

applies to invalidation as well as replication.

Note that ASYNC_REPL and INVALIDATION_ASYNC are non-blocking. This can be useful when

you want to have another JBoss Cache serving as a mirror or backup and you don't want to

wait for confirmation that this mirror has received your messages.

2.8. How does JBoss Cache's replication mechanism work?

JBoss Cache leverages JGroups [http://www.jgroups.org] for network communications. A

JGroups configuration section is present in your JBoss Cache configuration.

A user can configure the cluster of JBoss Cache instances by sharing the same cluster

name (cluster name). There is also an option of whether to populate the cache data upon

starting a new instance in the ClusterConfig attribute.

Note that once all instances join the same replication group, every replication change is

propagated to all participating members. There is no mechanism for sub-partitioning where

some replication can be done within only a subset of members, unless you use the Buddy

Replication features. See the Users' Guide for more details on this.

2.9. I run a 2 node cluster. If the network dies, do the caches continue to run?

Yes, both will continue to run, but depending on your replication mode, all transactions or

operations may not complete. If REPL_SYNC is used, operations will fail while if REPL_ASYNC

is used they will succeed. Even if they succeed though, caches will be out of sync.

2.10. Can I plug in library X instead of JGroups to handle remote calls and group communications?

At this stage the answer is no. We do have an abstraction layer between the communication

suite and JBoss Cache in the pipelines, and this may appear as a feature at some stage

in the future.

2.11. Does the cache need to replicate to every other instance in the cluster? Isn't this slow if the

cluster is large?

Replication need not occur to every node in the cluster. This feature - called Buddy

Replication - allows each node to pick one or more 'buddies' in the cluster and only replicate

to its buddies. This allows a cluster to scale very easily with no extra impact on memory or

network traffic with each node added.

See the Users' Guide for more information on Buddy Replication, and how it can be used

to achieve very high scalability.

2.12. I'm using Buddy Replication. Do I need to have some form of session affinity?

Session affinity relates to returning to the same cache instance for the same data being

used. While this is strictly not a requirement for Buddy Replication, it is greatly recommended

to minimize moving state around a cluster.

http://www.jgroups.org
http://www.jgroups.org

5

2.13. If I have the need for different configuration properties (e.g., CacheMode and

IsolationLevel), do I simply need to create multiple org.jboss.cache.Cache instances

with the appropriate configuration?

Yes. All the above mentioned properties are per cache instance. Therefore you will need

separate org.jboss.cache.Cache instances.

2.14. Isn't this expensive from a networking standpoint, i.e., needing to create sockets for each

org.jboss.cache.Cache instance?

Yes, it can be. For such cases it is recommended that you configure your cache using the

JGroups Multiplexer, which allows several caches to share a single JGroups channel. Please

see the Users' Guide for details on how to configure the JGroups Multiplexer.

A faster and more efficient approach is to use a shared transport in JGroups. Please see

the JGroups documentation [http://www.jgroups.org] for more details on how to do this.

2.15. Does the ClusterName configuration element have any relation to the JBoss AS cluster

PartitionName ?

Yes. They are both JGroups group names. Besides the notion of a channel in JGroups, it

also can partition the channel into different group names.

2.16. When using multiple JGroups based components [cluster-service.xml, cache (multiple

instances)], what is the correct/valid way to configure those components to make sure my

multicast addresses don't conflict?

There are two parameters to consider: multicast address (plus port) and the group name.

At minimum, you will have to run components using a different group name. But whether to

run them on the same channel depends upon whether the communication performance is

critical for you or not. If it is, then it'd be best to run them on different channels.

2.17. Does JBoss Cache support cache persistence storage?

Yes. JBoss Cache has a cache loader interface that supports cache persistence. See below

for more FAQs on cache loaders.

2.18. Does JBoss Cache support cache passivation/ overflow to a data store?

Yes. JBoss Cache uses the cache loader to support cache passivation/ overflow. See

documentation on how to configure and use this feature.

2.19. Is JBoss Cache thread safe?

Yes, it is thread safe.

2.20. Does JBoss Cache support XA (2PC) transactions now?

No, although it is also on our to do list. Our internal implementation does use a procedure

similar to 2PC to coordinate a transactions among different instances, but JBoss Cache is

not an XA resource.

http://www.jgroups.org
http://www.jgroups.org

Chapter 2. JBoss Cache - Core

6

2.21. Which transaction managers are supported by JBoss Cache?

JBoss Cache supports any TransactionManager that is JTA [http://java.sun.com/products/

jta/] compliant such as JBoss Transactions [http://www.jboss.org/jbosstm/].

While JBoss Cache does ships with a dummy transaction manager

(org.jboss.cache.transaction.DummyTransactionManager), we do not recommend

using this for production. It is not thread safe, and is intended for internal testing only.

2.22. How do I set up the cache to be transactional?

You either use the default transaction manager that ships with JBoss AS or you have

to implement the org.jboss.cache.transaction.TransactionManagerLookup interface,

and return an instance of your javax.transaction.TransactionManager implementation.

The configuration property TransactionManagerLookupClass defines the class to be used

by the cache to fetch a reference to a transaction manager. It is trivial to implement this

interface to support other transaction managers. Once this attribute is specified, the cache

will look up the transaction context from this transaction manager.

The org.jboss.cache.transaction.GenericTransactionManagerLookup class that

ships with JBoss Cache is able to detect and bind to most popular transaction managers.

See the GenericTransactionManagerLookup javadocs for more information.

2.23. How do I control the cache locking level?

JBoss Cache lets you control the cache locking level through the transaction isolation

level. This is configured through the attribute IsolationLevel . The transaction isolation

levels correspond to database isolation levels, namely, NONE , READ_UNCOMMITTED ,

READ_COMMITTED , REPEATABLE_READ , and SERIALIZABLE . Note that these isolation levels

are ignored if optimistic locking is used. For details, please refer to the user manual.

As of JBoss Cache 3.x, when using the MVCC locking scheme, only READ_COMMITTED and

REPEATABLE_READ are supported. Any other isolation level provided will either be upgraded

or downgraded accordingly.

2.24. How does JBoss Cache lock data for concurrent access?

In JBoss Cache 2.x, by default pessimistic locking is used to lock data nodes, based on the

isolation level configured. We also offer optimistic locking to allow for greater concurrency at

the cost of slight processing overhead and performance. See the documentation for a more

detailed discussion on concurrency and locking in JBoss Cache.

In JBoss Cache 3.x, optimistic and pessimistic locking are deprecated in favour of MVCC

(multi-version concurrency control), which is far more efficient than either optimistic or

pessimistic locking. For a detailed discussion on our MVCC implementation, see this blog

entry [http://jbosscache.blogspot.com/2008/07/mvcc-has-landed.html] and this wiki page

[http://www.jboss.org/community/docs/DOC-10272].

2.25. How do I enable Optimistic Locking or MVCC in JBoss Cache?

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://www.jboss.org/jbosstm/
http://www.jboss.org/jbosstm/
http://jbosscache.blogspot.com/2008/07/mvcc-has-landed.html
http://jbosscache.blogspot.com/2008/07/mvcc-has-landed.html
http://jbosscache.blogspot.com/2008/07/mvcc-has-landed.html
http://www.jboss.org/community/docs/DOC-10272
http://www.jboss.org/community/docs/DOC-10272

7

Please see the configuration section of the Users' Guide for details.

2.26. Can I use the cache locking level even without a transaction context?

Yes. JBoss Cache controls the individual node locking behavior through the isolation level

semantics. This means even if you don't use a transaction, you can specify the lock level

via isolation level. You can think of the node locking behavior outside of a transaction as if

it is under transaction with auto_commit on.

2.27. With replication (REPL_SYNC/REPL_ASYNC) or invalidation (INVALIDATION_SYNC/

INVALIDATION_ASYNC), how often does the cache broadcast messages over the

network?

If the updates are under transaction, then the broadcasts happen only when the transaction

is about to commit (actually during the prepare stage internally). That is, it will be a batch

update. However, if the operations are not under transaction context, then each update

will trigger replication. Note that this has performance implications if network latency is a

problem.

2.28. How can I do a mass removal?

If you do a cache.removeNode("/myroot"), it will recursively remove all the entries under

"/myroot".

2.29. Can I monitor and manage the JBoss Cache?

Yes, using a JMX console such as the one shipped with JBoss AS or Java 5's jconsole

utility. See the chapter titled Management Information in the JBoss Cache Users' Guide

for more details.

2.30. Can I disable JBoss Cache management attributes?

Yes, you can. See the section on configuration in the JBoss Cache Users' Guide.

2.31. What happened to jboss-serialization.jar?

As of JBoss Cache 2.0.0, the dependency on JBoss Serialization has been dropped since

most of the benefits of JBoss Serialization are available in updated Java 5 VMs. Since JBoss

Cache 2.0.0 is baselined on Java 5, there was no need to provide these benefits separately.

2.32. Does JBoss Cache support partitioning?

Not right now. JBoss Cache does not support partitioning that a user can configure to

have different set of data residing on different cache instances while still participating as a

replication group.

This is on the roadmap though, so do keep an eye on JBCACHE-60 [http://jira.jboss.org/jira/

browse/JBCACHE-60] if you are interested.

2.33. Does JBoss Cache handle the concept of application classloading inside, say, a Java EE

container?

http://jira.jboss.org/jira/browse/JBCACHE-60
http://jira.jboss.org/jira/browse/JBCACHE-60
http://jira.jboss.org/jira/browse/JBCACHE-60

Chapter 2. JBoss Cache - Core

8

Application-specific classloading is used widely inside a Java EE container. For example, a

web application may require a new classloader to scope a specific version of the user library.

However, by default JBoss Cache is agnostic to the classloader. In general, this leads to

two kinds of problems:

• Object instance is stored in cache1 and replicated to cache2. As a result, the instance

in cache2 is created by the system classloader. The replication may fail if the system

classloader on cache2 does not have access to the required class. Even if replication

doesn't fail, a user thread in cache2 may not be able to access the object if the user thread

is expecting a type defined by the application classloader.

• Object instance is created by thread 1 and will be accessed by thread 2 (with two different

classloaders). JBoss Cache has no notion of the different classloaders involved. As a

result, you will have a ClassCastException . This is a standard problem in passing an

object from one application space to another; JBoss Cache just adds a level of indirection

in passing the object.

To solve the first kind of issue JBoss Cache uses a CacheMarshaller . Basically, this allows

application code to register a classloader with a portion of the cache tree for use in handling

objects replicated to that portion. See the CacheMarshaller section of the Users' Guide for

more details.

To solve the second kind of issue, you can use the the UseLazyDeserialization

configuration option in JBoss Cache, which wraps your objects in a Marshalledvalue

wrapper. The MarshalledValue serializes and deserializes your object on demand,

ensuring the proper thread local context class loader is used each time.

2.34. Does JBoss Cache currently support pre-event and post-event notification?

Yes. A boolean is passed in to each notification callback identifying

whether the callback is before or after the event. See the

org.jboss.cache.notifications.annotations.CacheListener annotation for details.

2.35. How do I implement a custom listener to listen to cache events?

See the Users' Guide on this subject.

2.36. Can I use UseRegionBasedMarshalling attribute in JBoss Cache in order to get around

ClassCastExceptions happening when accessing data in the cache that has just been

redeployed?

Yes, you can. Originally, cache Marshalling was designed as a workaround for those

replicated caches that upon state transfer did not have access to the classloaders defining

the objects in the cache.

On each deployment, JBoss creates a new classloader per the top level deployment artifact,

for example an EAR. You also have to bear in mind that a class in an application server is

defined not only by the class name but also its classloader. So, assuming that the cache is

9

not deployed as part of your deployment, you could deploy an application and put instances

of classes belonging to this deployment inside the cache. If you did a redeployment and try

to do a get operation of the data previously put, this would result on a ClassCastException.

This is because even though the class names are the same, the class definitions are not.

The current classloader is different to the one when the classes were originally put.

By enabling marshalling, you can control the lifecycle of the data in the cache and if on

undeployment, you deactivate the region and unregister the classloader that you'd have

registered on deployment, you'd evict the data in the cache locally. That means that in the

next deployment, the data won't be in the cache, therefore avoiding the problem. Obviously,

using marshalling to get around this problem is only recommended when you have some

kind of persistence backing where the data survives, for example using CacheLoaders, or

when JBoss Cache is used as a second level cache in a persistence framework.

To implement this feature, please follow the instructions indicated in the example located

in the CacheMarshaller section of the Users' Guide. It's worth noting that instead of a

ServletContextListener , you could add this code into an MBean that contained lifecycle

methods, such as start() and stop() . The key would be for this MBean to depend on the

target cache, so that it can operate as long as the cache is up and running.

10

Chapter 3.

11

Eviction Policies

3.1. Does JBoss Cache support eviction policies?

Yes. JBoss Cache currently supports multiple eviction policies such as LRU, MRU, and

FIFO. Users can also plug in their own eviction policy algorithms. See user guide for details.

3.2. Does JBoss Cache's eviction policy operates in replication mode?

Yes and no. :-)

The eviction policy only operates in local mode. That is, nodes are only evicted locally. This

may cause the cache contents not to be synchronized temporarily. But when a user tries to

obtain the cached contents of an evicted node and finds out that is null (e.g., get returns

null), it should get it from the other data source and re-populate the data in the cache. During

this moment, the node content will be propagated and the cache content will be in sync.

However, you still can run eviction policies with cache mode set to either REPL_SYNC or

REPL_ASYNC . Depending on your use case, you can set multiple cache instances to have

their own eviction policy (which are applied locally) or just have selected instances with

eviction policies activated.

Also note that, with cache loader option, a locally evicted node can also be persisted to the

backend store and a user can retrieve it from the store later on.

3.3. Does JBoss Cache support Region ?

Yes. JBoss Cache has the notion of region where a user can configure the eviction policy

parameters (e.g., maxNodes or timeToIdleSeconds)

A region in JBoss Cache denotes a portion of tree hierarchy, e.g., a fully qualified name (

org.jboss.cache.Fqn). For example, a user can define /org/jboss and /org/foocom as

two separate regions. But note that you can configure the region programmatically now, i.e.,

everything has to be configured through the xml file.

3.4. I have turned on the eviction policy, why do I still get "out of memory" (OOM) exception?

OOM can happen when the speed of cache access exceeds the speed of eviction policy

handling timer. Eviction policy handler will wake up every wakeUpInterval milliseconds (or

wakeUpIntervalSeconds seconds, prior to 3.x) to process the eviction event queue. So

when the queue size is full, it will create a backlog and cause out-of-memory exceptions to

happen unless the eviction timer catches up. To address this problem, in addition to increase

the VM heap size, you can also reduce the wakeUpInterval so the timer thread processes

the queue more frequently.

12

Chapter 4.

13

Cache Loaders

4.1. What is a cache loader?

A cache loader is the connection of JBoss Cache to a (persistent) data store. The cache

loader is called by JBoss Cache to fetch data from a store when that data is not in the cache,

and when modifications are made to data in the cache the Cache Loader is called to store

those modifications back to the store.

In conjunction with eviction policies, JBoss Cache with a cache loader allows a user to

maintain a bounded cache for a large backend datastore. Frequently used data is fetched

from the datastore into the cache, and the least used data is evicted, in order to provide fast

access to frequently accessed data. This is all configured through XML, and the programmer

doesn't have to take care of loading and eviction.

JBoss Cache currently ships with several cache loader implementations, including:

• org.jboss.cache.loader.FileCacheLoader : this implementation uses the file system

to store and retrieve data. JBoss Cache nodes are mapped to directories, subnodes to

subdirectories etc. Attributes of a node are mapped to a data file inside the directory.

• org.jboss.cache.loader.jdbm.JdbmCacheLoader : this implementation is based on

JDBM [http://jdbm.sourceforge.net/], an open source file-based transactional persistence

engine.

• org.jboss.cache.loader.bdbje.BdbjeCacheLoader : this implementation is based

on the Oracle's Berkeley DB Java Edition database, a fast and efficient transactional

database. It uses a single file for the entire store. Note that if you use the Berkeley DB

cache loader with JBoss Cache and wish to ship your product, you will have to acquire a

commercial license from Oracle [http://www.sleepycat.com/jeforjbosscache].

• org.jboss.cache.loader.JDBCCacheLoader : this implementation uses the relational

database as the persistent storage.

• And more. See the chapter on cache loaders in the Users' Guide for more details.

4.2. Is the FileCacheLoader recommended for production use?

No, it is not. The FileCacheLoader has some severe limitations which restrict its use in a

production environment, or if used in such an environment, it should be used with due care

and sufficient understanding of these limitations.

• Due to the way the FileCacheLoader represents a tree structure on disk (directories and

files) traversal is inefficient for deep trees.

http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/
http://www.sleepycat.com/jeforjbosscache
http://www.sleepycat.com/jeforjbosscache

Chapter 4. Cache Loaders

14

• Usage on shared filesystems like NFS, Windows shares, etc. should be avoided as these

do not implement proper file locking and can cause data corruption.

• Usage with an isolation level of NONE can cause corrupt writes as multiple threads attempt

to write to the same file.

• File systems are inherently not transactional, so when attempting to use your cache in a

transactional context, failures when writing to the file (which happens during the commit

phase) cannot be recovered.

As a rule of thumb, it is recommended that the FileCacheLoader not be used in a highly

concurrent, transactional or stressful environment, and its use is restricted to testing.

4.3. Can writing to cache loaders be asynchronous?

Yes. Set the async attrobute to true. See the JBoss Cache Users' Guide for a more detailed

discussion. By default though, all cache loader writes are synchronous and will block.

4.4. Can I write my own cache loader ?

Yes. A cache loader is a class implementing org.jboss.cache.loader.CacheLoader or

extending org.jboss.cache.loader.AbstractCacheLoader . It is configured via the XML

file (see JBoss Cache Users' Guide).

4.5. Does a cache loader have to use a persistent store ?

No, a cache loader could for example fetch (and possibly store) its data from a webdav-

capable webserver. Another example is a caching proxy server, which fetches contents

from the web. Note that an implementation of CacheLoader may not implement the 'store'

functionality in this case, but just the 'load' functionality.

4.6. Do I have to pay to use Oracle's Berkeley DB CacheLoader?

Not if you use it only for personal use. As soon as you distribute your product with

BdbjeCacheLoader, you have to purchase a commercial license from Oracle. See details at

http://www.sleepycat.com/jeforjbosscache [http://www.sleepycat.com/jeforjbosscache] .

4.7. Are there any tools available to monitor the Berkeley DB instance?

Yes. Oracle ships a JMX-based monitoring tool, called JEMonitor [http://www.oracle.com/

technology/documentation/berkeley-db/je/java/com/sleepycat/je/jmx/JEMonitor.html] which

can be downloaded from the Oracle website.

4.8. When tuning my Berkeley DB instance, where should I put my je.properties file?

je.properties should reside in your Berkeley DB home directory. This is the directory you

pass in to the BDBJECacheLoader's location configuration property.

4.9. Can I use more than one cache loader?

http://www.sleepycat.com/jeforjbosscache
http://www.sleepycat.com/jeforjbosscache
http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/je/jmx/JEMonitor.html
http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/je/jmx/JEMonitor.html
http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/je/jmx/JEMonitor.html

15

Yes. Within the CacheLoaderConfiguration XML element (see Users' Guide chapter on

cache loaders) you can describe several cache loaders. The impact is that the cache will

look at all of the cache loaders in the order they've been configured, until it finds a valid,

non-null element of data. When performing writes, all cache loaders are written to (except if

the ignoreModifications element has been set to true for a specific cache loader.

4.10. Can I migrate a JDBCacheLoader or FileCacheLoader based cache store containing data

formatted with JBoss Cache 1.x.x to JBoss Cache 2.0 format?

Yes. See "Transforming Cache Loaders" section within the "Cache Loaders" section located

in the JBoss Cache Users' Guide.

4.11. Is the TCPDelegatingCacheLoader resilient to TCPCacheServer restarts?

As of JBoss Cache 2.1.0, the answer is yes. See the Users' Guide for details on how to

configure and tune your retries and wait period for reestablishing the TCP connection.

Prior to that, restarting the TCPCacheServer would also mean restarting your application

that uses the cache.

16

Chapter 5.

17

Troubleshooting

5.1. I am having problems getting JBoss Cache to work, where can I get information on

troubleshooting?

Troubleshooting section can be found in the following wiki link [http://www.jboss.org/

community/docs/DOC-10288] .

http://www.jboss.org/community/docs/DOC-10288
http://www.jboss.org/community/docs/DOC-10288
http://www.jboss.org/community/docs/DOC-10288

18

	Frequently Asked Questions about JBoss Cache
	Table of Contents
	Chapter 1. General Information
	Chapter 2. JBoss Cache - Core
	Chapter 3. Eviction Policies
	Chapter 4. Cache Loaders
	Chapter 5. Troubleshooting

