

Design of a Bluetooth Enabled Android Application for a
Microcontroller Driven Robot

by

Vito M. Guardi

An Engineering Project Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the degree of

MASTER OF ENGINEERING

Major Subject: Mechanical Engineering

Approved:

Ernesto Gutierrez-Miravete, Project Adviser

Rensselaer Polytechnic Institute
Hartford, CT

May, 2014

© Copyright 2014

by

Vito M. Guardi

All Rights Reserved

i

CONTENTS

Design of a Bluetooth Enabled Android Application for a Microcontroller Driven Robot i

LIST OF TABLES .. iii

LIST OF ACCRONYMS ... iv

LIST OF FIGURES ... v

ACKNOWLEDGMENT ... vii

ABSTRACT ... viii

1. INTRODUCTION/BACKGROUND .. 1

1.1 Background .. 1

1.2 Prior Work .. 1

1.3 Objective .. 4

2. METHODOLOGY/IMPLEMENTATION ... 5

2.1 Component and Software Selection ... 5

2.1.1 Selecting a Mobile Operating System and a Mobile Device 5

2.1.2 Selecting a Microcontroller and Robotic Platform 9

2.1.3 Setting up the Development Environment, Android & Propeller 13

2.2 Communication Protocol and Control Logic Design 15

2.2.1 Development of a Communication Protocol .. 15

2.2.2 Implementing and Demonstrating the Communication Protocol......... 17

3. RESULTS AND DISCUSSION .. 26

4. CONCLUSIONS ... 28

5. REFERENCES .. 29

6. APPENDICES ... 31

6.1 Table of the first 128 Characters of the ASCII Code 31

6.2 Android Device User Interface Screen Captures ... 33

6.3 XML Code for Android User Interface and Context Menus 37

6.3.1 Main User Interface XML Code .. 37

 ii

6.3.2 Discovered and Connected Bluetooth Device List 38

6.3.3 Display Format of Device Names .. 39

6.3.4 XML Code for Options Menu .. 39

6.3.5 String Constants Referenced in the User Interface 40

6.3.6 Android Manifest File .. 40

6.4 Java Source Code for Android Device ... 41

6.4.1 Main Activity Java Code .. 41

6.4.2 Bluetooth Data Transfer Service .. 47

6.4.3 Device List Activity ... 52

6.4.4 Data Resolver Service .. 56

6.5 ActivityBot Propeller .Spin Source Code .. 56

6.5.1 RN-42 Bluetooth Module Configuration .Spin Source Code 56

6.5.2 RN-42 Bluetooth Module Verification .Spin Source Code 60

6.5.3 ActivityBot .Spin Source Code Implemented on the Propeller
Microcontroller .. 64

6.5.4 FullDuplexSerial4port.Spin Library .. 71

6.5.5 DataIO4port.Spin Library .. 108

 iii

LIST OF TABLES

Table 1 - List of Android API Levels and Corresponding Code Names [6] 7

Table 2 - Correlation between Index, its Meaning on the Android Device and the Robot

 ... 17

Table 3 - Correlation between Numerical Value, its Physical Implementation on the

Android Application and the Robotic Platform for Parameters A & B 18

Table 4 - First 128 Characters of the ASCII code ... 31

 iv

LIST OF ACCRONYMS

CTS – Clear to send

RTS – Request to send

API – Application programming interface

RC – Radio controlled

SDK – Software development kit

IDE – Integrated development environment

MAC – Media Access Control

 v

LIST OF FIGURES

Figure 1 - Rover Revolution Available from Brookstone [2] .. 2

Figure 2 - Parallax RN-42 Bluetooth Demo [3] .. 3

Figure 3 - MicroTronics Technologies Mobile Control Robot [4] 3

Figure 4 – World Wide Mobile OS Market Share [5] ... 6

Figure 5 - Relative Number of Devices by Platform Number / API level / Code Name [8]

 ... 8

Figure 6 – Mobile Platform, Samsung Galaxy Note II Running Android 4.3 Ice Cream

Sandwich .. 9

Figure 7 - ActivityBot Robot Kit [9] ... 10

Figure 8 - Propeller Activity Board [10] ... 11

Figure 9 - RN-42 Bluetooth Adapter [11] ... 12

Figure 10 - Assembled Robotic Platform with Bluetooth Adapter 12

Figure 11 - System Wiring Diagram for the Robotic Platform and Bluetooth Adapter .. 13

Figure 12 - Android Environment and Eclipse IDE with Code Snippet from BlueTest3

Application .. 14

Figure 13 - Spin IDE with Code Snippet from the PBAA_v0.7.spin Program 15

Figure 14 - Example Message per the Communication Protocol 16

Figure 15 - Level 0 System Block Diagram .. 19

Figure 16 - Android User Interface for Controlling the Robotic Platform 20

Figure 17 - Android User Interface Code Snippet ... 21

Figure 18 - Level 1 Block Diagram Android Process for Connecting to a Remote

Bluetooth Device ... 22

Figure 19 - Level 1 Block Diagram for Reading User Input and Transmitting to a

Remote Device ... 23

Figure 20 - Level 1 Block Diagram of the Propeller Microcontroller and the Interaction

between Cogs ... 24

Figure 21 - BlueTest 3 Application Launched from the Application Menu 33

Figure 22 - User Menu within the Application .. 33

Figure 23 - List of Bluetooth Devices Found for Pairing .. 34

Figure 24 - Screen Prior to Selecting Start, Slider Bars Disabled 34

 vi

Figure 25 - Screen after Selecting Start, Slider Bars Enabled ... 35

Figure 26 - Screen Requesting the User to Enable Bluetooth on the Device 35

Figure 27 - Alerting the User of Successfully Enabling Bluetooth 36

Figure 28 - Alerting the User, Bluetooth Failed to Initialize ... 36

Figure 29 - Example of User Input .. 37

 vii

ACKNOWLEDGMENT

To my parents who have taught me the importance and value of education and to my

loving wife whose support has kept me going when I might have otherwise quit.

 viii

ABSTRACT

The objective of this paper is to show that it is possible to create a single Android

application capable of working with a number of electronic devices typically used within

the hobby and armature robotics field, without the devices creator having to know

anything about developing an Android application. To do this, a standard

communication protocol must be established between Android powered devices and

other electronic devices. To limit the scope of this task, this paper considers

communication between an electronic device powered by a typical microcontroller and

an Android 4.0 (Jelly Bean) or later powered device. Additionally communication

between the two devices takes place over Bluetooth communication channels V2.1 or

later.

1

1. INTRODUCTION/BACKGROUND

1.1 Background

All communications between devices require that the devices agree on the format of the

data. The set of rules defining said format is called a protocol [1]. Communication

protocols are almost everywhere we look from computers to televisions to basic mp3

players. They can even be compared to social mannerisms in today’s culture. Take the

activity of answering a phone, when someone answers the phone they say “Hello” or

some other equivalent greeting. This first phrase lets the person on the other end of the

phone know that its their turn to speak and that the person they have called is ready to

receive information. This can be equated to flow control within a communication

protocol which is used to let one device know that another device is ready for some

communication or data transfer to occur.

If a product developer wishes to make an electronic device that allows the end user

to control said electronic device from their smart phone or tablet, since there is currently

no industry standard open source communication protocol applicable to this scenario,

they would be forced to develop their own basic protocol. They would not only have to

develop the software on the electronic device side but they would also have to design a

custom application for the end users cell phone or tablet. As a basic example consider, a

company which designs keyboards for computers. There is a standard communication

protocol and standard human interface driver for all modern USB keyboards. This allows

the keyboard manufacture to develop and produce a keyboard without requiring them to

write custom software for the computer

1.2 Prior Work

Much work has been done amongst the amateur robotic community to develop platforms

that are controlled by mobile devices as shown in [3] and [4]. Additionally several

companies offer small robotic devices that can be controlled by mobile devices typically

from the Android of Apple operating systems. These systems come with proprietary

software for both the robot and the mobile device that is specifically designed to control

only the device sold by the manufacture. Figure 1, the Rover Revolution available from

 2

Brookstone, is one such example which allows the end user to remotely operate the

device from an application on an Apple or Android device. This device also has

advanced capabilities that allow the user to remotely control the vehicle while also

streaming video from an onboard camera. Due to the high bandwidth requirements to

support streaming video the device utilizes WIFI instead of Bluetooth or other lower

frequency RF communication protocols. [2] Note that this software nor the

communication protocol is distributed as open source software for others to modify, or

implement in their own projects and applications.

Figure 1 - Rover Revolution Available from Brookstone [2]

Parallax a popular supplier of microcontrollers and other components commonly

used by armature robotic developers, offers tutorials and educational material for many

of their products. In one such tutorial, shown in Figure 2, Parallax demonstrates the

ability to send commands to a Propeller microcontroller remotely from a PC via a

Bluetooth Serial Port Profile. [3] Additionally the example provides open source

software for the microcontroller, mainly programs that were already available as

published open source library’s tied together with a single custom application. The

example utilizes an RN-42 Bluetooth adapter and the user sends commands to the

microcontroller via a serial terminal like HyperTerminal or in the case of the example

the Parallax Serial Terminal. This example will be used a starting point for my work on

the microcontroller side of the task. While this application demonstrates the ability to

send data over a Bluetooth connection it has essentially used the Bluetooth connection to

replace the wired connection with the computer. User input is no different than if the

 3

computer was directly wired to the computer and no generic communication protocol is

established.

Figure 2 - Parallax RN-42 Bluetooth Demo [3]

An alternative approach to controlling a robot via a cell phone was demonstrated by

MicroTronics Technologies [4] the device is shown in Figure 3. In this application a call

is placed from a user’s cell phone to a cell phone mounted on the remote platform. The

platform mounted cell is connected to the microcontroller through a decoding module

which interprets the tones of the numeric keys being pressed through the headphone

jack. Commands are sent by pressing one of the numeric key on the operator’s cell

phone, frequencies are transmitted over the cell network / towers, received on the

platform mounted cell and interpreted by the microcontroller as commands. The benefits

of this set up is that it requires no additional software to be installed on the cellphone, as

it utilizes existing functionality built in to make phone calls.

Figure 3 - MicroTronics Technologies Mobile Control Robot [4]

 4

The downside is that the system is limited to only 12 unique codes correlating to the 12

keys on / frequencies created by a phone (10 Numeric keys 0 through 9, the pound key

and the asterisk key) and only one command can be sent at a time. Another difference is

that the signals are sent over a cellphone network, so the range is only limited by the size

of the cell network, however the devices will only work where cell service exists and are

dependent on a network outside the users control. The Bluetooth connection I have

proposed does have a limited range which is many times smaller than that of a modern

cell network. However, it is not subject to the infrastructure requirements of a cell

network, i.e. it will operate where cell coverage is not provided. Additionally the

Bluetooth network is completely in the users control and can be optimized to meet the

requirements of the application.

1.3 Objective

I have developed a communication protocol that meets the prescribe definition of a

communication protocol as discussed earlier. Additionally I have implemented said

communication protocol and demonstrate its use in the communication between an

Android powered mobile device and a robotic platform over a Bluetooth connection.

Finally I have shown that the communication protocol and its application /

implementation produce a responsive user experience that is on par with existing radio

controlled robotic platforms.

 5

2. METHODOLOGY/IMPLEMENTATION

Developing a communication protocol for use between typical electronic devices and

mobile devices such as tablets and cell phones requires that the foundation and principles

/ rules i.e. the protocol, should be transferable across any platform. However due to the

number of mobile platforms available (Windows, iOS, Blackberry, Android), the

number of data transfer methods (Bluetooth, Peer to Peer Wi-Fi, Internet, Cell Network)

and the number or electronic devices it would be an extensive task to

demonstrate/implement the communication protocol across all of the available

platforms. It would also be a trivial task in that, relatively no unique work would be

required. For the most part it would be a task of translating the code from one language

to another. Instead I plan to demonstrate a communication protocol and the

communication between an android device and a microcontroller over Bluetooth using

only open source hardware and software. This will allow me to develop the

communication protocol in a cost effective manner while still remaining flexible so that

it can be expanded to other operating systems and devices as need dictates.

2.1 Component and Software Selection

To develop and implement a communication protocol between a mobile device and

another electronic device several pieces of both software and hardware are required. On

the mobile device side both an IDE (Integrated Development Environment) and SDK

(Software Development Kit) are required for programming the electronic device.

Additionally a physical device will be required for implementation / testing. On the

Electronic device side an IDE and SDK are required for programming the

microcontroller as well a physical microcontroller and robotic platform for

implementation/testing. Additionally since Bluetooth will be used for data transfer

between the devices, a Bluetooth module that is compatible with the selected

microcontroller is required.

2.1.1 Selecting a Mobile Operating System and a Mobile Device

There are many choices to pick from when it comes to selecting a mobile platform /

operating system to demonstrate communication via Bluetooth with a microcontroller.

 6

The leading operating systems include Google’s Android, Apple’s IOS, Windows

Mobile, and Blackberry all of which offer products of similar technological

implementations. That is all of these devices are available with similar processing

power, memory (RAM and ROM), screen size, screen resolution, touch screen

capability, battery life, Bluetooth, Wi-Fi, GPS and cell network capabilities. With no

limiting factors on the selection of an OS from an available / required hardware

standpoint, the decision came down to two factors, the market share or number of

devices in service for the operating system and the ability to provide an open source

solution. Googles Android OS is known for its open source developer friendly

environment and as of May 2012 it has surpassed Apple IOS in terms of market share in

mobile devices, Figure 4. As of the end of 2013 Android represents over 43% of the

market compared to Apple its closest competitor which has just over 20% of the market.

Figure 4 – World Wide Mobile OS Market Share [5]

With the Android OS selected as the operating system of choice for development,

the next question that arises is which variant or platform version will be targeted for the

application development. Platform versions in Android are tracked by API level, and to

most they are known by their clever nick-names like Gingerbread, Ice-Cream Sandwich

 7

or Kit-Kat. Google has made a pattern out of naming their new platform versions after

desserts or snacks in alphabetical order. Table 1 contains a list of the current API levels,

Android version numbers and platform code names from version 1.0 or “Base” to their

latest version Android 4.4 / API 19 or “Kit Kat”. API levels are analogous to the

different versions of Windows operating system like XP, Vista, Windows 7 or Windows

8. Each new API brings in various software and hardware support updates like the ability

to support a GPS module or the ability to support multi-point touch screen displays.

Table 1 - List of Android API Levels and Corresponding Code Names [6]

Android applications designed for and that utilize features available only in later

versions of Android will not be capable of running on earlier version or API levels of the

operating system. Therefore the selection of a platform will mean that all devices

running an older version of Android will be incompatible, reducing the number of

 8

devices capable of running the application. Since our application will require Bluetooth

functionality we can eliminate any platform versions that did not support Bluetooth. The

Bluetooth Adapter Class [7] was first incorporated into Android 2.0, API level 5 AKA

Eclair, which sets the minimum API level that will be able to support our needs.

Additionally Android publishes statistics on a monthly basis that tells us the relative

number of devices that run a given platform version [8].

Figure 5 - Relative Number of Devices by Platform Number / API level / Code Name [8]

Based on Figure 5 as of April 2014 approximately 81% of Android devices run Android

4.0 (API 15) or later. Since we want to maintain a similar user experience and style to

what the majority of users are currently used to experiencing, and selecting an older

android version as the target version may make the application appear older and outdated

compared to newer applications Android 4.0 (API15) “Ice Cream Sandwich” will be

selected as the target Android platform. Ultimately this means that the application

developed will not be capable of running on 19% of Android devices currently in use,

however this number will continue to decrease as these devices older are phased out and

users upgrade to newer devices.

With a target mobile operating system selected the next choice is selecting a

mobile device that utilizes the selected operating system. Fortunately I currently own

two mobile device that uses the Android operating system, a cellphone and a tablet. Both

devices run Android Ice Cream Sandwich or later operating systems, and while the tablet

may boast higher performance / processing power I have selected the cell phone Figure 6

 9

as the test platform. The reason for this selection was due to the form factor of the

device, the 10” tablet was difficult to hold with two hands and still use my thumbs to

control the device, however the smaller 5” cell phone fit nicely within my hands similar

to a game controller or an R/C car controller. Additionally a 7” or 8” tablet would also

likely work just as well, and ultimately it’s a matter of personal taste.

Figure 6 – Mobile Platform, Samsung Galaxy Note II Running Android 4.3 Ice Cream Sandwich

2.1.2 Selecting a Microcontroller and Robotic Platform

The robotic platform could take many forms for one to demonstrate control of it. It could

be as simple as just a microcontroller with an output to a monitor / terminal showing the

change in variables being controlled. However this method of implementation would not

provide a good feel for the speed and responsiveness of the control of the robot. To

better perceive / judge these qualities I decided it would be best to implement a robotic

platform capable of movement. This would provide a platform that could be compared to

the responsiveness found and expected by users of existing “Radio” controlled robotic

platforms. I selected the ActivityBot Robot Kit, Figure 7 (as shown with optional

Propeller Activity Board Attached) manufactured by Parallax. The ActivityBot Kit

provides a platform that is capable of movement as provided by the two wheels

connected directly to continuous rotation servos. Since it only has two wheels a third

sliding post is provided for stability. It also changes direction using skid steering, that is

to turn left the right wheel must be rotating faster than the left wheel. It is also capable of

turning in place by rotating the wheels in opposite directions. Additionally the

 10

ActivityBot is compatible with a number of microcontroller boards produced by

Parallax.

Figure 7 - ActivityBot Robot Kit [9]

When selecting a microcontroller for this project I considered a number of factors to

help make my decision. Factors considered included startup cost, open source IDE,

compatibility with existing add-ons / robotic platforms, the availability of documentation

and the architecture / processing power of the microcontroller. I found that there were

two microcontroller platforms at the forefront of the hobby / armature robotics

community, the Arduino platform and the Parallax Propeller platform. Both platforms

compared equally across many aspects as both offered products with a 32-bit processor,

both offer free open source IDE’s, both are in the same price range, both offer a large

number of add-ons / compatible robotic platforms and both have a large online support

community. I did however find two differences that for my application were the deciding

factor in selecting the Propeller Activity Board from Parallax Figure 8 over a similar

board from Arduino. The Propeller microcontroller has a unique architecture unlike

many others including the Arduino, while most contain a single processor or cog the

Propeller contains 8 independent 32-bit processors.

 11

Figure 8 - Propeller Activity Board [10]

This allows for a consolidated package that can perform multiple time sensitive tasks

without issues or delays. This translates into the ability to constantly monitor the

incoming Bluetooth communication channel, while simultaneously updating and sending

the time sensitive pulse commands required to control the servo motors driving the

platform. To do this with an Arduino a second motor controller board would be required

to off load the time sensitive pulse commands from the main microcontroller. The

second reason for selecting the Parallax Propeller platform / Propeller Activity Board for

this project was a matter of convenience and available documentation / product support.

From a compatibility standpoint by selecting a robotic platform and microcontroller both

from the same manufacturer, compatibility was guaranteed. Additionally Parallax

offered supporting documentation for the use of the Propeller Activity Board with the

ActivityBot which can be found on the product’s web page [9].

 The same methodology of selecting components from the same vendor, Parallax

in this case, was also leveraged when selecting a Bluetooth adapter for use on the

project. The RN-42 Bluetooth adapter Figure 9 manufactured by Parallax [11] provided

Bluetooth 2.1/2.0/1.2/1.1 communication support to the project. The RN-42 Bluetooth

adapter provides a standard pin breakout connector which can easily be connected to the

breadboard on the Parallax Activity Board and wired to its I/O pins. Additionally it can

be set to operate off of and controlled by 3.3V which aligns with the 3.3V powered

Propeller microcontroller.

 12

Figure 9 - RN-42 Bluetooth Adapter [11]

The RN-42 module communicates with the Propeller microcontroller via asynchronous

serial interface with RTS/CTS flow control at a user programmed baud rate which was

set to 9600 bps for compatibility with the microcontroller. Further support information

and examples of use with the Propeller microcontroller can be found on the product’s

web page [11].

The fully assembled Robotic Platform is shown in Figure 10,

Figure 10 - Assembled Robotic Platform with Bluetooth Adapter

while the system wiring schematic is shown in Figure 11.

 13

Figure 11 - System Wiring Diagram for the Robotic Platform and Bluetooth Adapter

2.1.3 Setting up the Development Environment, Android & Propeller

Providing a full description of how to download, install, and configure the Android and

Propeller development environments is outside the scope of this project. However below

is a brief description of the software required as well as links to web pages that will go

into full detail on the subject.

Google has a website [12] completely devoted to Android Developers, this site

provides developers with free training modules, full library support of the Android APIs

(Application Programming Interfaces) and instructions on how to download and install

the latest Android development environment also called the Android SDK (Software

Development Kit) [13]. The kit includes the Eclipse IDE (Integrated Development

Environment) the ADT (Android Developer Tools) plugin and other required items. A

full list of system and software requirements is available on the webpage as well. Java is

the foundation or base of the Android programming language with specific libraries

added for the increased or specific functionality of Android powered devices. The

 14

Android development environment and Eclipse IDE is shown in Figure 12 with a code

snippet from the BlueTest3 application.

Figure 12 - Android Environment and Eclipse IDE with Code Snippet from BlueTest3 Application

Parallax [14] also provides an abundant amount of support information for the

Propeller microcontroller. Additionally the software and drivers required to set up the

Propeller development environment can be found on the company’s main web page [15].

One downside to the Propeller microcontroller is that the language used to program it, is

specific to the microcontroller, and is known as Spin, shown in Figure 13 with a code

snippet. However in recent months Parallax has launched a new complier for the

Propeller microcontroller that utilizes the C programming language, information about

this compiler can also be found on the company’s webpage [16]. I have chosen to use the

Spin language for this project as at the time of writing this paper there are more support

libraries and examples written for the Spin language and compiler than its C based

counterparts.

 15

Figure 13 - Spin IDE with Code Snippet from the PBAA_v0.7.spin Program

2.2 Communication Protocol and Control Logic Design

In the next section I will elaborate on the communication protocol designed and created

for implementation between the mobile operating system and the robotic platform.

Additionally I will describe at a high level, the control logic implemented on both the

Android device and the Propeller controlled robotic platform.

2.2.1 Development of a Communication Protocol

In its most basic form the communication protocols purpose is to serve as a common

language that can be interpreted by any device design to accept the language and rules of

the communication protocol. A device receiving a message per the communication

protocol would not care how the message was generated or by what type of device the

message was generated from. Additionally, the device generating the message would not

care what type of device the message is going to. This is because compatibility between

the two devices is guaranteed based on following the rules of the protocol.

To suit the needs of this project while remaining general enough that its

implementation could be widely accepted I set out to create as basic a communication

protocol as possible. This was in an attempt to make the requirements imposed on

 16

devices as basic as possible in order to capture as many devices as possible. The rules of

the protocol are as follows:

1. The device should parse all messages and transmit them a single byte of data at

a time.

2. The data must be transmitted as 8-bit ASCII (American Standard Code for

Information Interchange) characters.

3. The first character must be an Alpha and is the Index that represents the

parameter the following data will be relative to.

4. The characters following the index, i.e. the second and so forth bytes must be

numeric as the expectation is they will be converted to and stored as a single

number. This number can contain up to 10 characters and its numeric value must

not exceed 2,147,483,647. This value may be positive or negative.

5. The last character of the message must be an “!” (Exclamation Point). This acts

as a stop byte and lets the program know that the message is complete.

An example of a message written to the rules of the communication can be seen in

Figure 14. Note that the example message shown “X123!” is displayed in its symbol

format per the ASCII code. A conversion chart between the Symbol, Decimal, and

Binary formats for the first 128 ASCII characters is included in Appendix 6.1.

Figure 14 - Example Message per the Communication Protocol

 17

As an example “X123!” broken down and converted to binary format would be

displayed as “1011000110001110000110011100001”. This communication protocol

establishes the ability to send up to 52 unique parameters (includes upper and lower case

alphas) with assigned values up to 10 characters long. The reason for the 10 character

2,147,483,647 numeric value limitation is due to the 32 bit architecture of the Propeller

microcontroller. The value 2,147,483,647 which can be represented in binary as

“1111111111111111111111111111111” is the largest value that can be stored in a

single variable or register of a 32 bit microcontroller.

2.2.2 Implementing and Demonstrating the Communication Protocol

To demonstrate the applicability of the protocol designed, I implemented its use on the

communication between a mobile operating system, Android, and a robotic platform, the

Parallax ActivityBot over Bluetooth. In the actual implementation of the communication

protocol an additional level of detail is required. As noted earlier the first character

transmitted in the message represents the Index or parameter of the data being

transferred. In practical terms it is a label for the data so that when the data is received

the receiving device knows how to handle it. To properly use the index I must establish

the index values required and assign them their respective functions. Due to the simple

nature of the robotic platform selected all that is needed to control its movement is a

value to control its speed and a value for its direction. This will also be true for almost

all wheeled robotic platforms. Indexes and their corresponding incarnations on the

Android device and ActivityBot are listed in Table 2.

Table 2 - Correlation between Index, its Meaning on the Android Device and the Robot

 Furthermore, to properly implement the communication protocol, limits and

boundaries of the parameters being transmitted must be defined and correlated in terms

of numeric value, their physical appearance on the user interface and their expected

effect on the robotic platform. Table 3 contains the numeric value boundaries and their

correlation to the Android application and the Robotic platform. Note that the values are

Index Android Correlation Robotic Platform Correlation

A Vertical Slider Position Speed

B Horizontal Slider Position Direction

 18

to a degree arbitrary, as the important item is consistency in their meaning between the

Android application and the robot. The values selected and their correlations were

chosen based in that they appeared convenient and logical. As shown below in Table 3

the numeric value 100 represent full speed forward on the robotic platform and on the

android application it represents the vertical slider in its topmost position. The

parameters are arbitrary in the sense that the numeric value 150 representing full speed

forward could be implemented with little to no effect on the results.

Table 3 - Correlation between Numerical Value, its Physical Implementation on the Android

Application and the Robotic Platform for Parameters A & B

 Additionally, before we can dive into the implementation of the protocol on the

Android and robotic platforms, it is important to create a roadmap or high level system

block diagram describing the flow of input form the user to the eventual signals that will

be sent to the motors on the robotic platform. The block diagram governing the entire

system can be seen in Figure 15. This diagram shows which tasks will be the

responsibility of the Android device and which operations the robotic platform will be

responsible for. Additional block diagrams showing in greater detail the operations on

the individual devices as well as their interaction are included in later sections of this

report.

Android Correlation Robotic Platform Correlation Android Correlation Robotic Platform Correlation

100 Slider in topmost position Full speed forward Slider in rightmost position Full turn right

50 Slider in central position Neutral Slider in center position Neutral

0 Slider in bottommost position Full speed reverse Slider in leftmost position Full turn left

Parameter A
Numeric Value

Parameter B

 19

Figure 15 - Level 0 System Block Diagram

2.2.2.1 Implementation of the Communication Protocol on the Android Device

To implement the communication protocol on the Android powered mobile device one

must first create an Android application. In addition to the behind the scenes code that

runs the Android application, which is responsible for taking the users input and

converting it into what will eventually become messages sent via the communication

protocol, a large part of the Android application development is the user interface. To

create the user interface for controlling a wheeled robotic platform I decided to mimic as

closely as possible a standard remote that would be used to control a RC car Figure 16.

A vertical scrolling bar will be used to control the speed of the robot, while a similar

horizontal scrolling bar will be used to control the direction of the robot.

 20

Figure 16 - Android User Interface for Controlling the Robotic Platform

In addition to the controls of the robotic platform the GUI (Graphical User

Interface) needs to provide the user with a method to search for and connect to other

discoverable Bluetooth enabled devices. This was implemented utilizing the menu

button (one of the three standard buttons on all android devices), upon selecting the

menu button the user is presented with the option to search for and connect to remote

Bluetooth devices. After which the user is presented with the Names and MAC

Addresses of devices found. See Appendix 6.2 for screen captures of the various screens

a user sees when interacting with the android application. In addition to the movement of

the sliding bars, the values of the sliders are displayed in the top left corner of the

application, this was done to provide the user with additional visual feedback and helps

to verify that the user input is being understood by the Android application, this was also

very helpful in the development and debugging of the application. This feature could be

removed in a final production version of the application and is not critical to the

functionality of the application. Finally, the user interface and its various sub menus and

screens is written in the XML language / format. Figure 17 is a Code Snippet of the

XML code written to display two text views and a button on the user interface. The

XML code used to generate the Android User interface can be found in Appendix 6.3

XML Code for Android User Interface and Context Menus.

 21

Figure 17 - Android User Interface Code Snippet

In addition to the user Interface the behind the scenes control logic written in

Java for the Android application has an even larger role to play. This is where all of the

activity takes place to support the user interface, interpret user input, manage the

Bluetooth connection / data transmissions, and last but certainly not least to implement

mistake proofing features like ensuring the Bluetooth device is enabled before starting

the application. Figure 18 is a block diagram that represents the process for connecting

to a remote discoverable Bluetooth enabled device from the Android device. Note that

the application ensures that Bluetooth is enabled on the mobile device, requesting user

input when required or else the application is terminated. Note also that it is possible to

write an application that will on its own enable Bluetooth communication without

notifying or requesting permission from the user. However this is generally frowned

upon by the Android development community as well as most application users as there

is an implicit trust among users that one would not have written an application that may

harm their device or act in any malicious manner. When applications start to modify the

state of the device without first requesting permission that trust can be lost very quickly

and is not likely to be regained. Java source code supporting the Android application can

be found in Appendix 6.4. Additionally, screen captures of the user interface showing

 22

the automated prompts as well as the other screens the user will see during the Bluetooth

connection process can be seen in Appendix 6.2 Android Device User Interface Screen

Captures.

Figure 18 - Level 1 Block Diagram Android Process for Connecting to a Remote Bluetooth Device

In addition to detecting and connecting to a remote Bluetooth device the Android

application is also responsible for obtaining the user’s input through the user interface

and converting the gestures and motions of the user’s hand on the touch screen into input

for controlling the robotic platform. Ultimately, the application takes the user’s input,

constructs messages that fit the established communication protocol and then transmits

them over the Bluetooth connection. A block diagram of the process implemented can be

seen in Figure 19. Note that at this point a successful connection with a remote device

has already been established. Also note that this process is repeated as to continuously

monitor user input and transfer data to the remote device. It is also worth noting that data

transmission is triggered by user input, if user input is not received or remains

unchanged over a period of time, data is not transmitted. Keep in mind that this is just

one method for implementing the communication protocol, another approach could have

been to transmit updated values of the sliders at a fixed time interval independent of

whether the input had changed. The Java source code associated with the block diagram

 23

from Figure 19 can be found in Appendix 6.3.6. Likewise relevant screen captures of the

user interface can be found in Appendix 6.2.

Figure 19 - Level 1 Block Diagram for Reading User Input and Transmitting to a Remote Device

2.2.2.2 Implementation of the Communication Protocol on the Robotic Platform

The task of implementing the communication protocol on the robotic platform

and Propeller microcontroller is similar to that of its implementation on the Android

device. However, there is one key difference that simplifies to some degree the task on

the robotic platform, no user interface is required. While instead of interfacing with a

user and obtaining input, the Propeller microcontroller is tasked with reading input per

the communication protocol and outputting signals to drive the platforms motors.

To establish communication between the Bluetooth module and the Propeller

microcontroller as well as setting the module in the correct mode for accepting

connection attempts, the module must first be configured. This is done via the

asynchronous serial interface with RTS/CTS flow control which can be established

between the Propeller and the Bluetooth module. Supporting documentation and the

products user manual go into sufficient detail on how to set up and configure the

Bluetooth module based on the desired application, both are available on the product’s

 24

webpage [11]. Additionally the Propeller .Spin code used to configure and then verify

the state of the Bluetooth adapter can be found in Appendix sections 6.5.1 and 6.5.2.

The task of implementing the communication protocol on the ActivityBot robotic

platform utilizes the multiple cores of the Propeller microcontroller. Since the

communication protocol does not specify when or how frequent data will be transmitted

and received, the robotic platform must be ready and capable of receiving a message at

any time. For example on a single processor microcontroller, if a message was received

while the microcontroller was processing a piece of data that was received earlier or

outputting a pulse command to one of the servo motors the incoming message could be

missed. However, since the Propeller microcontroller is capable of preforming multiple

tasks simultaneously by utilizing its 8 processors or cogs, it can have one processor that

is solely devoted to listening for incoming data, helping to ensure a message is not

missed. This can be done while other cogs work to interpret the data received and

generate the pulse commands require to run the platforms motors.

Figure 20 - Level 1 Block Diagram of the Propeller Microcontroller and the Interaction between

Cogs

A block diagram of the processes executed on each cog as well as the interaction

between cogs and the shared global memory can be seen in Figure 20. Additionally the

 25

.Spin source code implemented on the Propeller microcontroller can be found in

Appendix 6.5.3 with supporting libraries in appendix sections 6.5.4 and 6.5.5.

 26

3. RESULTS AND DISCUSSION

To determine if the attempt to create and implement a communication protocol between

a mobile device and a robotic platform was successful I determined it was best to

implement the device on physical hardware. This would provide means of comparison

between existing radio controlled robotic platforms, even something as simple as an RC

car would serve as an acceptable analog for comparison.

Along the way I uncovered several unforeseen challenges that did create good

learning opportunities, some directly relevant to my work and others not as much. One

such example was the use of the Easy Bluetooth Module which was offered by Parallax

for some period of time. The most notable difference between the Easy Bluetooth

Module and the RN-42 Bluetooth Adapter was the lack of RTS/CTS flow control for the

asynchronous serial interface between the Bluetooth module and the microcontroller.

While initially I did not believe this would be an issue, I was unable to write an

application that was able to maintain a good connection. The adapter and the Propeller

were constantly getting out of sync causing slow transfer rates and data loss. This issue

was especially challenging to debug as it was difficult to determine if the issue was with

the data being transmitted over Bluetooth or if it was the sync between the module and

the Propeller. However, I am now confident that the lack of flow control was the source

of the problem as all sync issues were resolved with the implementation of the RN-42

module with no major changes to the structure of the Propeller code. It is also worth

noting that the Easy Bluetooth module is now discontinued, however Parallax does still

offer support for the product on their web page.

As an additional means for measuring success I set a bench mark for the minimum

number of data transfers or parameter updates that needed to be able to occur per second.

This was in an attempt to quantify the responsiveness of the platform and the

implementation of the communication protocol. Additionally, it would help flush out if

the protocol had any inherent attributes that were not conducive to rapid data transfer. I

initially had set out to show that the given parameters could be updated 4 times per

second, this should ensure that the robotic platform would be responsive and react to

user input without a significant visual delay. With some simple testing I observed that

the configuration was capable of preforming over 20 updates per second. The capability

 27

for this high refresh rate meant that the robotic platform would be able to react to the

users input with virtually no visual delay, on par with existing R/C solutions and

products currently on the market.

A video of the application and robotic platform in action has been uploaded to You

Tube [16].

 28

4. CONCLUSIONS

The intent of this project was to demonstrate the possibility to create a communication

protocol that could be implemented over Bluetooth between a mobile device and a

robotic platform. The intent being that if the robotic platform was designed to receive

messages per the protocol, it could be implemented without creating a unique application

on the mobile device for each robotic platform.

I have shown in my creation of an Android application that outputs messages per the

communication protocol and development of a robotic platform that accepts messages

per the communication protocol and response with the appropriate actions that it is

possible to implement such a communication protocol. However, there is still further

work to be done, as I have thus far only defined two parameters in the communication

protocol, speed and direction or A and B. While these two parameters are sufficient for a

simple two wheeled robot they would not be sufficient for control of say a helicopter

which would require at least 4 parameters for control over roll, pitch, yaw, and elevation.

I can envision a protocol that takes advantage of the full 52 upper and lower case

characters for all sorts of different parameters and for all sorts of different robotic

platforms. Additionally, the protocol can also be utilized to transmit data from the

robotic platform back to the Android application possible using upper versus lower case

letters to distinguish the difference of in the direction of flow of the data.

 29

5. REFERENCES

[1] Definition of a communication protocol

http://www.webopedia.com/TERM/C/communications_protocol.html

[2] Rover Revolution™ App-Controlled Wireless Spy Vehicle

http://www.brookstone.com/rover-revolution-wireless-spy-vehicle

[3] Parallax RN-42 Bluetooth to PC demo

http://learn.parallax.com/project/rn-42-bluetooth-pc-demo

[4] MicroTronics Technologies Mobile Controlled Robot

http://www.projectsof8051.com/mobile-controlled-robot/

[5] Mobile Operating System World Wide Market Share – International Business Times

http://www.ibtimes.com/android-vs-ios-whats-most-popular-mobile-operating-system-

your-country-1464892

[6] Android platform names, API levels, and Code names

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html

[7] Bluetooth Adapter Class

http://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html

[8] Relative number of devices running a given Android version or API level

http://developer.android.com/about/dashboards/index.html

[9] ActivityBot Robot Kit manufactured by Parallax

http://www.parallax.com/product/32500

[10] Propeller Activity Board Manufactured by Parallax

http://www.parallax.com/product/32910

[11] RN-42 Bluetooth Adapter manufactured by parallax

http://www.parallax.com/product/30086

[12] Android Developers Website

http://developer.android.com/index.html

[13] Android SDK download link

http://developer.android.com/sdk/index.html

[14] Parallax Main Webpage

http://www.parallax.com/

 30

[15] Propeller software and driver download

http://www.parallax.com/downloads/propeller-tool-software

[16] You Tube video of application and robotic platform in action

http://youtu.be/ytDogEmw2ZQ

 31

6. APPENDICES

6.1 Table of the first 128 Characters of the ASCII Code

Table 4 - First 128 Characters of the ASCII code

Decimal BIN Symbol Description Decimal BIN Symbol Description

0 0 NUL Null char 64 1000000 @ At symbol

1 1 SOH Start of Heading 65 1000001 A Uppercase A

2 10 STX Start of Text 66 1000010 B Uppercase B

3 11 ETX End of Text 67 1000011 C Uppercase C

4 100 EOT End of Transmission 68 1000100 D Uppercase D

5 101 ENQ Enquiry 69 1000101 E Uppercase E

6 110 ACK Acknowledgment 70 1000110 F Uppercase F

7 111 BEL Bell 71 1000111 G Uppercase G

8 1000 BS Back Space 72 1001000 H Uppercase H

9 1001 HT Horizontal Tab 73 1001001 I Uppercase I

10 1010 LF Line Feed 74 1001010 J Uppercase J

11 1011 VT Vertical Tab 75 1001011 K Uppercase K

12 1100 FF Form Feed 76 1001100 L Uppercase L

13 1101 CR Carriage Return 77 1001101 M Uppercase M

14 1110 SO Shift Out / X-On 78 1001110 N Uppercase N

15 1111 SI Shift In / X-Off 79 1001111 O Uppercase O

16 10000 DLE Data Line Escape 80 1010000 P Uppercase P

17 10001 DC1 Device Control 1 (oft. XON) 81 1010001 Q Uppercase Q

18 10010 DC2 Device Control 2 82 1010010 R Uppercase R

19 10011 DC3 Device Control 3 (oft. XOFF) 83 1010011 S Uppercase S

20 10100 DC4 Device Control 4 84 1010100 T Uppercase T

21 10101 NAK Negative Acknowledgement 85 1010101 U Uppercase U

22 10110 SYN Synchronous Idle 86 1010110 V Uppercase V

23 10111 ETB End of Transmit Block 87 1010111 W Uppercase W

24 11000 CAN Cancel 88 1011000 X Uppercase X

25 11001 EM End of Medium 89 1011001 Y Uppercase Y

26 11010 SUB Substitute 90 1011010 Z Uppercase Z

27 11011 ESC Escape 91 1011011 [Opening bracket

28 11100 FS File Separator 92 1011100 \ Backslash

29 11101 GS Group Separator 93 1011101] Closing bracket

30 11110 RS Record Separator 94 1011110 ^ Caret - circumflex

31 11111 US Unit Separator 95 1011111 _ Underscore

32 100000 Space 96 1100000 ` Grave accent

33 100001 ! Exclamation mark 97 1100001 a Lowercase a

34 100010 " Double quotes (or speech marks) 98 1100010 b Lowercase b

35 100011 # Number 99 1100011 c Lowercase c

 32

36 100100 $ Dollar 100 1100100 d Lowercase d

37 100101 % Percent 101 1100101 e Lowercase e

38 100110 & Ampersand 102 1100110 f Lowercase f

39 100111 ' Single quote 103 1100111 g Lowercase g

40 101000 (Open parenthesis (or open bracket) 104 1101000 h Lowercase h

41 101001) Close parenthesis (or close bracket) 105 1101001 i Lowercase i

42 101010 * Asterisk 106 1101010 j Lowercase j

43 101011 + Plus 107 1101011 k Lowercase k

44 101100 , Comma 108 1101100 l Lowercase l

45 101101 - Hyphen 109 1101101 m Lowercase m

46 101110 . Period, dot or full stop 110 1101110 n Lowercase n

47 101111 / Slash or divide 111 1101111 o Lowercase o

48 110000 0 Zero 112 1110000 p Lowercase p

49 110001 1 One 113 1110001 q Lowercase q

50 110010 2 Two 114 1110010 r Lowercase r

51 110011 3 Three 115 1110011 s Lowercase s

52 110100 4 Four 116 1110100 t Lowercase t

53 110101 5 Five 117 1110101 u Lowercase u

54 110110 6 Six 118 1110110 v Lowercase v

55 110111 7 Seven 119 1110111 w Lowercase w

56 111000 8 Eight 120 1111000 x Lowercase x

57 111001 9 Nine 121 1111001 y Lowercase y

58 111010 : Colon 122 1111010 z Lowercase z

59 111011 ; Semicolon 123 1111011 { Opening brace

60 111100 < Less than (or open angled bracket) 124 1111100 | Vertical bar

61 111101 = Equals 125 1111101 } Closing brace

62 111110 >
Greater than (or close angled

bracket)
126 1111110 ~

Equivalency sign -
tilde

63 111111 ? Question mark 127 1111111 Delete

 33

6.2 Android Device User Interface Screen Captures

Figure 21 - BlueTest 3 Application Launched from the Application Menu

Figure 22 - User Menu within the Application

 34

Figure 23 - List of Bluetooth Devices Found for Pairing

Figure 24 - Screen Prior to Selecting Start, Slider Bars Disabled

 35

Figure 25 - Screen after Selecting Start, Slider Bars Enabled

Figure 26 - Screen Requesting the User to Enable Bluetooth on the Device

 36

Figure 27 - Alerting the User of Successfully Enabling Bluetooth

Figure 28 - Alerting the User, Bluetooth Failed to Initialize

 37

Figure 29 - Example of User Input

6.3 XML Code for Android User Interface and Context Menus

6.3.1 Main User Interface XML Code

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 tools:context=".MainActivity"
 android:orientation="horizontal" >

 <TextView android:id="@+id/txtOut"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <Button
 android:id="@+id/btn_Send"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:text="Start" />

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true"
 android:text="V:" />

 38

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/txtOut"
 android:text="H:" />

 <TextView
 android:id="@+id/vTextView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/hTextView"
 android:layout_toRightOf="@+id/textView2"
 android:text="50" />

 <TextView
 android:id="@+id/hTextView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/textView2"
 android:layout_alignBottom="@+id/textView2"
 android:layout_alignLeft="@+id/vTextView"
 android:text="50" />

 <SeekBar
 android:id="@+id/vSeekBar1"
 android:layout_width="250dip"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_centerVertical="true"
 android:rotation="270" />

 <SeekBar
 android:id="@+id/hSeekBar1"
 android:layout_width="250dip"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_alignTop="@+id/vSeekBar1" />

6.3.2 Discovered and Connected Bluetooth Device List

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <TextView android:id="@+id/title_paired_devices"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/title_paired_devices"
 android:visibility="gone"
 android:background="#666"
 android:textColor="#fff"

 39

 android:paddingLeft="5dip" />

 <ListView android:id="@+id/paired_devices_list"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stackFromBottom="true"
 android:layout_weight="1"/>

 <TextView android:id="@+id/title_new_devices"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/title_new_devices"
 android:visibility="gone"
 android:background="#666"
 android:textColor="#fff"
 android:paddingLeft="5dip" />

 <ListView android:id="@+id/new_device_list"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:stackFromBottom="true"
 android:layout_weight="1" />

 <Button android:id="@+id/btn_scan"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/btn_scan" />

</LinearLayout>

6.3.3 Display Format of Device Names

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textSize="18sp"
 android:padding="5dip" />

6.3.4 XML Code for Options Menu

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >
 <item android:id="@+id/scan_and_connect"
 android:icon="@android:drawable/ic_menu_search"
 android:title="@string/scan_and_connect" />
 <item android:id="@+id/discoverable"
 android:icon="@android:drawable/ic_menu_mylocation"
 android:title="@string/discoverable"/>
</menu> <?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >
 <item android:id="@+id/scan_and_connect"
 android:icon="@android:drawable/ic_menu_search"
 android:title="@string/scan_and_connect" />

 40

 <item android:id="@+id/discoverable"
 android:icon="@android:drawable/ic_menu_mylocation"
 android:title="@string/discoverable"/>
</menu>

6.3.5 String Constants Referenced in the User Interface

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string name="app_name">BlueTest3</string>
 <string name="scan_and_connect">Scan and Connect</string>
 <string name="discoverable">Make device discoverable</string>
 <string name="title_paired_devices">Paired Devices</string>
 <string name="title_new_devices">New Devices</string>
 <string name="btn_scan">Scan for Devices</string>
 <string name="scanning">Scanning for devices</string>
 <string name="none_paired">No devices have been paired</string>
 <string name="select_device">Select a device to connect
to</string>
 <string name="none_found">No devices found</string>

</resources>

6.3.6 Android Manifest File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.dynamicsolutions.bluetest3"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="9"
 android:targetSdkVersion="17" />
 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission
android:name="android.permission.BLUETOOTH_ADMIN"/>

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.dynamicsolutions.bluetest3.MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DeviceListActivity"

 41

 android:label="@string/select_device"/>
 </application>

</manifest>

6.4 Java Source Code for Android Device

6.4.1 Main Activity Java Code

package com.dynamicsolutions.bluetest3;

import android.os.Bundle;
import android.os.Handler;
import android.os.Message;
import android.util.Log;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.SeekBar;
import android.widget.TextView;
import android.widget.Toast;
import android.widget.SeekBar.OnSeekBarChangeListener;
import android.app.Activity;
import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.content.Intent;
import java.util.Timer;
import java.util.TimerTask;

public class MainActivity extends Activity {

 //Declare variables and constants

 //Declare buttons
 Button btnSend;

 // Declare Seek Bars
 SeekBar hSeek;
 SeekBar vSeek;
 TextView hText;
 TextView vText;

 //Timer declarations
 static final int UPDATE_INTERVAL = 250;
 private Timer timer = new Timer();
 int i;

 // The local Bluetooth Adapter
 private BluetoothAdapter mBluetoothAdapter = null;

 42

 // Intent request codes
 private static final int REQUEST_ENABLE_BT = 1;
 private static final int REQUEST_CONNECT_DEVICE = 2;

 // Message types sent form the BluetoothDataTransferService
handler
 public static final int MESSAGE_READ = 2;
 public static final int MESSAGE_TOAST = 5;

 // Key names received from the BluetoothDataTransferService
handler
 public static final String TOAST = "toast";

 //public static String EXTRA_DEVICE_ADDRESS = "device_address";

 // Member of object for the data transfer service
 private BluetoothDataTransferService mDataService = null;

 //Member of object for the data resolver service
 private DataResolverService mResolverService = null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Get the default bluetooth adapter
 mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

 // Check to see if bluetooth is supported and if not alert
the user
 if (mBluetoothAdapter == null)
 {
 Toast.makeText(this, "Bluetooth is not supported on
this device", Toast.LENGTH_LONG).show();
 finish();
 return;
 }

 mResolverService = new DataResolverService(this, mHandler);

 //---Send Button

 btnSend = (Button) findViewById(R.id.btn_Send);
 hText = (TextView) findViewById(R.id.hTextView);
 hSeek = (SeekBar) findViewById(R.id.hSeekBar1);
 vText = (TextView) findViewById(R.id.vTextView);
 vSeek = (SeekBar) findViewById(R.id.vSeekBar1);

 hSeek.setProgress(50);
 hSeek.setEnabled(false);
 vSeek.setProgress(50);
 vSeek.setEnabled(false);

 43

 hSeek.setOnSeekBarChangeListener(new
OnSeekBarChangeListener() {

 @Override
 public void onStopTrackingTouch(SeekBar seekBar) {

 hSeek.setProgress(50);

 }

 @Override
 public void onStartTrackingTouch(SeekBar seekBar) {
 // TODO Auto-generated method stub

 }

 @Override
 public void onProgressChanged(SeekBar seekBar, int
progress,
 boolean fromUser) {

 String stringH = Integer.toString(progress);
 hText.setText(stringH);
 String messageB = "B";
 String messageF = "!";
 byte[] sendB = messageB.getBytes();
 mDataService.write(sendB);
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 Log.d("OutputService", "Output B Complete");
 byte[] sendH = stringH.getBytes();
 mDataService.write(sendH);
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 Log.d("OutputService", "Output H Complete");
 byte[] sendF = messageF.getBytes();
 mDataService.write(sendF);
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 Log.d("OutputService", "Output F Complete");

 }
 });

 44

 vSeek.setOnSeekBarChangeListener(new
OnSeekBarChangeListener() {

 @Override
 public void onStopTrackingTouch(SeekBar seekBar) {
 vSeek.setProgress(50);

 }

 @Override
 public void onStartTrackingTouch(SeekBar seekBar) {
 // TODO Auto-generated method stub

 }

 @Override
 public void onProgressChanged(SeekBar seekBar, int
progress,
 boolean fromUser) {
 String stringV = Integer.toString(progress);
 vText.setText(stringV);
 String messageA = "A";
 String messageF = "!";
 byte[] sendA = messageA.getBytes();
 mDataService.write(sendA);
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 Log.d("OutputService", "Output A Complete");
 byte[] sendV = stringV.getBytes();
 mDataService.write(sendV);
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 Log.d("OutputService", "Output V Complete");
 byte[] sendF = messageF.getBytes();
 mDataService.write(sendF);
 try {
 Thread.sleep(1);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 Log.d("OutputService", "Output F Complete");

 }
 });

 btnSend.setOnClickListener(new OnClickListener()
 {

 45

 public void onClick(View arg0) {
 vSeek.setEnabled(true);
 hSeek.setEnabled(true);

 }
 });

 } // End of onCreate

 @Override
 public void onStart() {
 super.onStart();

 // If bluetooth is not enabled request that it is enabled
 if(!mBluetoothAdapter.isEnabled()){
 Intent enableBTIntent = new
Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(enableBTIntent,
REQUEST_ENABLE_BT);
 }

 } // End of onStart

 @Override
 public synchronized void onResume() {
 super.onResume();

 } // End of on resume

 @Override
 public void onDestroy() {
 super.onDestroy();
 if (timer != null){
 timer.cancel();
 }// End of if
 }// End of on destroy

 @Override
 public void onActivityResult(int requestCode, int resultCode,
Intent data) {
 switch (requestCode){
 case REQUEST_CONNECT_DEVICE:
 //When DeviceListActivity returns with a device to
connect to if results ok, then launch connectDevice
 if(resultCode == Activity.RESULT_OK) {
 connectDevice(data);
 }
 break;
 case REQUEST_ENABLE_BT:
 if(resultCode == Activity.RESULT_OK){
 // Bluetooth is now enabled, notify the user

 46

 Toast.makeText(this, "Bluetooth Enabled",
Toast.LENGTH_SHORT).show();
 }
 else
 {
 //The user chose not to enable bluetooth or
there was an error
 Toast.makeText(this, "Bluetooth failed to
initialize, exiting!", Toast.LENGTH_SHORT).show();
 finish();
 }
 } // end request code switch
 }// end on activity result

 // Creates an option menu for when the user presses the menu key
 @Override
 public boolean onCreateOptionsMenu(Menu menu){
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.option_menu, menu);
 return true;
 } // End of onCreateOptionsMenu

 @Override
 public boolean onOptionsItemSelected(MenuItem item){
 Intent serverIntent = null;
 switch (item.getItemId()) {
 case R.id.scan_and_connect:
 //Launch the device list activity to see existing,
find new, and select a device to connect to
 serverIntent = new Intent(this,
DeviceListActivity.class);
 startActivityForResult(serverIntent,
REQUEST_CONNECT_DEVICE);
 return true;
 case R.id.discoverable:
 //Enable bluetooth device discovery
 Toast.makeText(getBaseContext(), "Discover",
Toast.LENGTH_SHORT).show();
 return true;
 } // end switch
 return false;
 }// end of onOptionsItemSelected

 private void connectDevice(Intent data) {
 //Initialize the BluetoothDataTransferService to perform
bluetooth connections
 mDataService = new BluetoothDataTransferService(this,
mHandler);
 //Get the MAC Address
 String address =
data.getExtras().getString(DeviceListActivity.EXTRA_DEVICE_ADDRESS);
 //Get the bluetooth Device object
 BluetoothDevice device =
mBluetoothAdapter.getRemoteDevice(address);

 47

 // Attempt to connect to the device
 Toast.makeText(getBaseContext(), "Attempting to connect to
" + address, Toast.LENGTH_SHORT).show();
 mDataService.connect(device);
 }

 //The Handler that gets information back from the
BluetoothDataTransferService
 private final Handler mHandler = new Handler(){
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case MESSAGE_TOAST:
 Toast.makeText(getBaseContext(),
msg.getData().getString(TOAST), Toast.LENGTH_SHORT).show();
 break;
 case MESSAGE_READ:

 resolveData(msgFull);

 break;
 }// End of switch
 }// End of handleMessage
 };//End of mHandler

 private void resolveData(String inputString){
 String message = "ABCDE!";

 String test = mResolverService.SortInputData(inputString);

 Toast.makeText(getBaseContext(), test,
Toast.LENGTH_SHORT).show();

 TextView txtOut = (TextView) findViewById(R.id.txtOut);
 txtOut.setText(test);

 byte[] send = message.getBytes();
 mDataService.write(send);

 //}//End if
 }

}// end main

6.4.2 Bluetooth Data Transfer Service

package com.dynamicsolutions.bluetest3;

import java.io.IOException;
import java.io.InputStream;

 48

import java.io.OutputStream;
import java.nio.charset.Charset;
import java.util.UUID;

import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.bluetooth.BluetoothSocket;
import android.content.Context;
import android.os.Build;
import android.os.Handler;
import android.util.Log;
import android.widget.Toast;

public class BluetoothDataTransferService {

 // Member Fields
 private ConnectThread mConnectThread;
 private final BluetoothAdapter mAdapter;
 private final Handler mHandler;
 private ConnectedThread mConnectedThread;

 // UUID for this application - MY_UUID is the secure UUID from
the google bluetooth chat example
 private static final UUID MY_UUID =
 UUID.fromString("00001101-0000-1000-8000-
00805f9b34fb");
 //UUID.fromString("fa87c0d0-afac-11de-8a39-
0800200c9a66");

 public BluetoothDataTransferService(Context context,Handler
handler) {
 mAdapter = BluetoothAdapter.getDefaultAdapter();
 mHandler = handler;
 }

 public synchronized void connect(BluetoothDevice device){
 // Start the tread to connect with the given device
 mConnectThread = new ConnectThread(device);
 mConnectThread.start();

 }

 private class ConnectThread extends Thread {
 private final BluetoothSocket mmSocket;
 private final BluetoothDevice mmDevice;
 private String mSocketType = "Secure";

 public ConnectThread(BluetoothDevice device) {
 mmDevice = device;
 BluetoothSocket tmp = null;

 49

 // Get a bluetoothSocket for a connection with the
given BluetoothDevice
 try {
 tmp =
device.createRfcommSocketToServiceRecord(MY_UUID);
 }//End try
 catch (IOException e) {

 }//End Catch
 mmSocket = tmp;
 }//End of ConnectThread - public method

 public void run() {
 setName("ConnectThread" + mSocketType);

 //Always cancel discovery because it will slow down
the connection
 mAdapter.cancelDiscovery();

 //Make a connection to the bluetooth socket
 try{
 //This is a blocking call and will only return
on a successful connection or an exception
 mmSocket.connect();
 }//End try
 catch (IOException e){
 //Close the socket
 try{
 mmSocket.close();
 }//End try
 catch (IOException E2){

 }//End catch
 connectionFailed();
 return;
 }//End catch

 // Reset the ConnectThread because we're done
 synchronized (BluetoothDataTransferService.this) {
 mConnectThread = null;
 }

 // Start the connected thread
 connected(mmSocket, mmDevice, mSocketType);

 }//End run

 public void cancel() {
 try {
 mmSocket.close();
 } catch (IOException e) {

 }
 }//End of cancel

 }//End of ConnectThread - private class

 50

 public void write(byte[] out) {
 // Create temporary object
 ConnectedThread r;
 //Synchronize a copy of the connected thread
 synchronized (this) {
 // should check for a connected thread here first
 // need to add code....
 r = mConnectedThread;
 }// End of synchronized
 //Perform the write unsynchronized
 r.write(out);
 Log.d("Data Transfer", "Sent");

 }// End of write

 private void connectionFailed(){

 }//End of connection failed

 public synchronized void connected(BluetoothSocket socket,
BluetoothDevice device, final String socketType) {
 //Start the thread to manage the connection and perfor
transmission
 mConnectedThread = new ConnectedThread(socket, socketType);
 mConnectedThread.start();

 }//End of connected

 private class ConnectedThread extends Thread {
 private final BluetoothSocket mmSocket;
 private final InputStream mmInStream;
 private final OutputStream mmOutStream;

 public ConnectedThread(BluetoothSocket socket, String
socketType) {
 mmSocket = socket;
 InputStream tmpIn = null;
 OutputStream tmpOut = null;

 // Get the bluetooth socket input and output streams
 try {
 tmpIn = socket.getInputStream();
 tmpOut = socket.getOutputStream();
 }// End of try
 catch (IOException e) {
 //Log.e(TAG,"temp sockets not created", e);
 }// End of Catch

 mmInStream = tmpIn;
 mmOutStream = tmpOut;
 }

 public void run() {
 byte[] buffer = new byte[1024];

 51

 int bytes;
 String end = "!";
 StringBuilder curMsg = new StringBuilder();

 //Keep listening to the input stream while connected
 while(true) {
 try{

 while (-1 != (bytes =
mmInStream.read(buffer))) {
 curMsg.append(new String(buffer, 0,
bytes, Charset.forName("UTF-8")));
 String fullMessage =
curMsg.toString();

 mHandler.obtainMessage(MainActivity.MESSAGE_READ,
fullMessage).sendToTarget();
 curMsg.delete(0, bytes);
 }

 }//End of try
 catch (IOException e) {
 //connectionLost();
 break;
 }//End of Catch
 }// End of while
 }//End of run

 public void cancel() {
 try {
 mmSocket.close();
 }//end of try
 catch (IOException e) {
 // TODO: handle exception
 }//End of cancel
 }//End of cancel

 /**
 * Write to the connected OutStream.
 * @param buffer The bytes to write
 */
 public void write(byte[] buffer) {
 String good = new String(buffer,
Charset.forName("ISO-8859-1"));
 buffer = good.getBytes(Charset.forName(("ISO-8859-
1")));
 try {
 mmOutStream.write(buffer);

 }// end of try
 catch (IOException e){

 }// end of catch

 52

 }// End of write
 }//End of ConnectedThread

}// End of BluetoothData

6.4.3 Device List Activity

package com.dynamicsolutions.bluetest3;

import java.util.Set;

import android.app.Activity;
import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.view.Window;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;

public class DeviceListActivity extends Activity {

 private BluetoothAdapter mBtAdapter;
 private ArrayAdapter<String> mPairedDevicesArrayAdapter;
 private ArrayAdapter<String> mNewDevicesArrayAdapter;

 //Return Intent extras
 public static String EXTRA_DEVICE_ADDRESS = "device_address";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //Set up the display window

 requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS);
 setContentView(R.layout.device_list);

 //Set results as canceled in case the user backs out
 setResult(Activity.RESULT_CANCELED);

 // Initialize the button to perform device discovery
 Button btnScan = (Button) findViewById(R.id.btn_scan);
 btnScan.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

 53

 discoverDevices();
 v.setVisibility(View.GONE);
 }

 }); // End of setOnClickListener

 //Initialize the array adapters. One for the paired devices
and one for the newly discovered devices
 mPairedDevicesArrayAdapter = new ArrayAdapter<String>(this,
R.layout.device_name);
 mNewDevicesArrayAdapter = new ArrayAdapter<String>(this,
R.layout.device_name);

 // Find and set up the list view for paired devices
 ListView lstPairedDevices = (ListView)
findViewById(R.id.paired_devices_list);
 lstPairedDevices.setAdapter(mPairedDevicesArrayAdapter);

 lstPairedDevices.setOnItemClickListener(mDeviceSelectedListener);

 // Find and set up list view for new devices
 ListView lstNewDevices = (ListView)
findViewById(R.id.new_device_list);
 lstNewDevices.setAdapter(mNewDevicesArrayAdapter);

 lstNewDevices.setOnItemClickListener(mDeviceSelectedListener);

 // Register for broadcasts when a device is found
 IntentFilter filter = new
IntentFilter(BluetoothDevice.ACTION_FOUND);
 this.registerReceiver(mReceiver, filter);

 //Register for broadcasts when discovery has finished
 filter = new
IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);
 this.registerReceiver(mReceiver, filter);

 // Get the local bluetooth adapter
 mBtAdapter = BluetoothAdapter.getDefaultAdapter();

 // Get a set of currently paired devices
 Set<BluetoothDevice> pairedDevices =
mBtAdapter.getBondedDevices();

 // If there are paired devices add them to the Array
Adapter
 if (pairedDevices.size() >0) {

 findViewById(R.id.title_paired_devices).setVisibility(View.VISIBL
E);
 for (BluetoothDevice device : pairedDevices){
 mPairedDevicesArrayAdapter.add(device.getName()
+ "\n" + device.getAddress());
 } //End for
 } //End of if
 else {

 54

 String noDevices =
getResources().getText(R.string.none_paired).toString();
 mPairedDevicesArrayAdapter.add(noDevices);
 } // End else

 } // End of OnCreate

 protected void onDestroy() {
 super.onDestroy();

 //Make sure we are not still discovering devices
 mBtAdapter.cancelDiscovery();

 //Unregister broadcast listeners
 this.unregisterReceiver(mReceiver);

 }//End of on destroy

 // Starts device discovery with the bluetooth adapter
 private void discoverDevices() {
 // indicate scanning in the title
 setProgressBarIndeterminateVisibility(true);
 setTitle(R.string.scanning);

 // Turn on the subtitle for new devices

 findViewById(R.id.title_new_devices).setVisibility(View.VISIBLE);

 //If we are already discovering stop it
 if (mBtAdapter.isDiscovering()) {
 mBtAdapter.cancelDiscovery();
 } // end if

 // Request discovery from Bluetooth Adapter
 mBtAdapter.startDiscovery();

 }// end of discoverDevices

 // The on click listener for all of the devices in the ListViews
 private OnItemClickListener mDeviceSelectedListener = new
OnItemClickListener(){
 public void onItemClick(AdapterView<?> av, View v, int
arg2, long arg3) {
 // Cancel discovery if it is still active
 mBtAdapter.cancelDiscovery();

 //Get the MAC address, which is the last 17
characters in the View
 String info = ((TextView) v).getText().toString();
 String address = info.substring(info.length() - 17);

 //create the result Intent and include the MAC
address
 Intent intent = new Intent();
 intent.putExtra(EXTRA_DEVICE_ADDRESS, address);

 55

 Toast.makeText(getBaseContext(), address.toString(),
Toast.LENGTH_SHORT).show();

 //Set the results and finish the activity
 setResult(Activity.RESULT_OK, intent);
 finish();

 }// End of on item click
 };// End mDeviceSelectedListener

 //The Broadcast Receiver for when devices are found and discovery
is finished
 private final BroadcastReceiver mReceiver = new
BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();

 //When discovery finds a device
 if (BluetoothDevice.ACTION_FOUND.equals(action)) {
 // Get the Bluetooth Device from the Intent
 BluetoothDevice device =
intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
 //If its already paired skip is since its
already been listed
 if (device.getBondState() !=
BluetoothDevice.BOND_BONDED) {

 mNewDevicesArrayAdapter.add(device.getName() + "\n" +
device.getAddress());
 }//End if
 }// End if
 else if
(BluetoothAdapter.ACTION_DISCOVERY_FINISHED.equals(action)) {
 setProgressBarIndeterminateVisibility(false);
 setTitle(R.string.select_device);
 if (mNewDevicesArrayAdapter.getCount() == 0) {
 String noDevices =
getResources().getText(R.string.none_found).toString();
 mNewDevicesArrayAdapter.add(noDevices);
 }//End if
 }// End else if

 }// End onRecieve
 };//End Broadcast Receiver

} // End of DeviceListActivity Class

 56

6.4.4 Data Resolver Service

package com.dynamicsolutions.bluetest3;

import android.content.Context;
import android.os.Handler;

public class DataResolverService {

 //Member Fields
 private final Handler mHandler;
 private StringBuilder masterString = new StringBuilder();
 private String end = "!";

 public DataResolverService(Context context, Handler handler) {
 mHandler = handler;

 }

 public String SortInputData(String inputString) {
 String completeSegment;
 masterString.append(inputString);

 String temp = masterString.toString();

 int endIdX = masterString.indexOf(end);

 if (-1 != endIdX) {
 completeSegment = masterString.substring(0, endIdX);
 masterString.delete(0, endIdX+1);

 return completeSegment;

 }
 else
 {
 return "Working";
 }

 }

} //End of DataResolver

6.5 ActivityBot Propeller .Spin Source Code

6.5.1 RN-42 Bluetooth Module Configuration .Spin Source Code

'' File: PBAA_v0.2.spin

'' PBAA = Propeller Bluetooth and Android

'' v0.2 = This application programs the RN-42 to communicate with a 9600 Baud rate

 57

'' It also demonstrates how to enter command mode and also how to exit it.

'' The program also demonstrates how to record the responses received after issuing

commands.

'' New to Version 0.2

CON

 _xinfreq = 5_000_000

 _clkmode = xtal1 + pll16x

 'Bluetooth Constants

 DEBUG = 0 ' Debug port sends results to Parallax Serial

Terminal

 A_PORT = 1 ' Bluetooth Module

 A_RESET = 0 ' To RST pin on RN-42 Bluetooth Module

 A_TX = 1 ' To RX pin on RN-42 Bluetooth Module

 A_RX = 2 ' To TX pin on RN-42 Bluetooth Module

 A_CTS = 3 ' To RTS pin on RN-42 Bluetooth Module

 A_RTS = 4 ' To CTS pin on RN-42 Bluetooth Module

 BAUD = 9600 ' Baud Rate 9600 bps

VAR

 long tLow, tHigh, T, dt, stack[700], cntr, inByte, inString, ctr, testStr[15], milis, char

 word cntMin

 byte i, inByteArr[25], bufferSize

 58

OBJ

 fds : "FullDuplexSerial4port"

 dio : "dataIO4port"

 {

 pst: "Parallax Serial Terminal V1.0" 'Create the Parallax Serial Terminal

Object for the LCD Screen & Bluetooth module

 'Need to use pst file in this folder as it has been modified to use Pin 1 & 12 for serial

comm

 }

PUB Main

 milis := clkfreq / 1_000

 dira[26..27] := %11 'Set Pin 26 & 27 to output

 outa[26..27] := %00 'Set pin 26 & 27 to low

 dira[A_TX] := 1

 outa[A_TX] := 1

 Pause(100)

 outa[A_TX] := 0

 fds.Init

 fds.AddPort(A_PORT, A_RX, A_TX, A_CTS, A_RTS, 0, %000000, BAUD)

 fds.AddPort(DEBUG, 31, 30, -1, -1, 0, %000000, BAUD) ' Debug to the terminal

screen

 fds.Start

 59

 fds.str(DEBUG, String("Program Started")) 'Outputs "Program Started" to the

terminal screen

 Pause(2000) 'UART startup delay

 fds.str(A_PORT, String("$$$")) 'Sends "$$$" to the RN-42 to enter

command mode

 ctr := 0 'This block of code reads in characters until "13" is

found

 inByteArr[ctr] := fds.rx(A_PORT) '"13" represents the Carraige Return

which is sent at the end of

 fds.tx(DEBUG, inByteArr[ctr]) 'every message from the RN-42 Unit

 repeat until inByteArr[ctr] == 13 'If successfull "CMD" is returned

 ctr++

 inByteArr[ctr] := fds.rx(A_PORT)

 fds.tx(DEBUG, inByteArr[ctr])

 Pause(1200) 'Pause for 1.2 seconds, the "$$$" message will

be ignored if

 'additional messages are sent within 1 second of the

"$$$"

 fds.str(A_PORT, String("SU,96")) 'Set up message that sets the

programmed serial baud rate to 9600

 fds.tx(A_PORT, 13) 'If successfull "AOK" is returned

 fds.tx(A_PORT, 10)

 ctr := 0

 60

 inByteArr[ctr] := fds.rx(A_PORT)

 fds.tx(DEBUG, inByteArr[ctr])

 repeat until inByteArr[ctr] == 13

 ctr++

 inByteArr[ctr] := fds.rx(A_PORT)

 fds.tx(DEBUG, inByteArr[ctr])

 fds.str(A_PORT, String("---")) 'Message sent "---" that tells the RN-42 to

Exit command mode

 fds.tx(A_PORT, 13) 'If successfull "END" is returned

 fds.tx(A_PORT, 10)

 ctr := 0

 inByteArr[ctr] := fds.rx(A_PORT)

 fds.tx(DEBUG, inByteArr[ctr])

 repeat until inByteArr[ctr] == 13

 ctr++

 inByteArr[ctr] := fds.rx(A_PORT)

 fds.tx(DEBUG, inByteArr[ctr])

6.5.2 RN-42 Bluetooth Module Verification .Spin Source Code

'' File: PBAA_v0.3.spin

'' PBAA = Propeller Bluetooth and Android

'' v0.3 = Test the use of get commands on the RN-42 Bluetooth Module

'' Assumption is that the module is set to 9600 Baud rate

CON

 _xinfreq = 5_000_000

 _clkmode = xtal1 + pll16x

 61

 'Bluetooth Constants

 DEBUG = 0 ' Debug port sends results to Parallax Serial

Terminal

 A_PORT = 1 ' Bluetooth Module

 A_RESET = 0 ' To RST pin on RN-42 Bluetooth Module

 A_TX = 1 ' To RX pin on RN-42 Bluetooth Module

 A_RX = 2 ' To TX pin on RN-42 Bluetooth Module

 A_CTS = 3 ' To RTS pin on RN-42 Bluetooth Module

 A_RTS = 4 ' To CTS pin on RN-42 Bluetooth Module

 BAUD = 9600 ' Baud Rate 9600 bps

VAR

 long tLow, tHigh, T, dt, stack[700], cntr, inByte, inString, ctr, testStr[15], milis, char

 word cntMin

 byte i, inByteArr[300], bufferSize

OBJ

 fds : "FullDuplexSerial4port"

 dio : "dataIO4port"

 {

 pst: "Parallax Serial Terminal V1.0" 'Create the Parallax Serial Terminal

Object for the LCD Screen & Bluetooth module

 'Need to use pst file in this folder as it has been modified to use Pin 1 & 12 for serial

comm

 62

 }

PUB Main

 milis := clkfreq / 1_000

 dira[26..27] := %11 'Set Pin 26 & 27 to output

 outa[26..27] := %00 'Set pin 26 & 27 to low

 dira[A_TX] := 1

 outa[A_TX] := 1

 Pause(100)

 outa[A_TX] := 0

 fds.Init

 fds.AddPort(A_PORT, A_RX, A_TX, A_CTS, A_RTS, 0, %000000, BAUD)

 fds.AddPort(DEBUG, 31, 30, -1, -1, 0, %000000, BAUD) ' Debug to the terminal

screen

 fds.Start

 fds.str(DEBUG, String("Program Started")) 'Outputs "Program Started" to the

terminal screen

 fds.tx(DEBUG, 13)

 Pause(2000) 'UART startup delay

fds.str(A_PORT, String("$$$")) 'Sends "$$$" to the RN-42 to enter

command mode

 63

 ctr := 0 'This block of code reads in characters until "13" is

found

 inByteArr[ctr] := fds.rx(A_PORT) '"13" represents the Carraige Return

which is sent at the end of

 fds.tx(DEBUG, inByteArr[ctr]) 'every message from the RN-42 Unit

 repeat until inByteArr[ctr] == 13 'If successfull "CMD" is returned

 ctr++

 inByteArr[ctr] := fds.rx(A_PORT)

 fds.tx(DEBUG, inByteArr[ctr])

 Pause(1200) 'Pause for 1.2 seconds, the "$$$" message will

be ignored if

 'additional messages are sent within 1 second of the

"$$$"

 fds.str(A_PORT, String("D"))

 fds.tx(A_PORT, 13)

 fds.tx(A_PORT, 10)

 repeat 11

 ctr := 0

 inByteArr[ctr] := fds.rx(A_PORT)

 fds.tx(DEBUG, inByteArr[ctr])

 repeat until inByteArr[ctr] == 13

 ctr++

 inByteArr[ctr] := fds.rx(A_PORT)

 fds.tx(DEBUG, inByteArr[ctr])

 64

 fds.str(A_PORT, String("---")) 'Message sent "---" that tells the RN-42 to

Exit command mode

 fds.tx(A_PORT, 13) 'If successfull "END" is returned

 fds.tx(A_PORT, 10)

 ctr := 0

 inByteArr[ctr] := fds.rx(A_PORT)

 fds.tx(DEBUG, inByteArr[ctr])

 repeat until inByteArr[ctr] == 13

 ctr++

 inByteArr[ctr] := fds.rx(A_PORT)

 fds.tx(DEBUG, inByteArr[ctr])

6.5.3 ActivityBot .Spin Source Code Implemented on the Propeller
Microcontroller

'' File: PBAA_v0.7.spin

'' PBAA = Propellar Bluetooth and Android

'' v0.7 = Working control of platfrom and successfull bluetooth comm

CON

 _xinfreq = 5_000_000

 _clkmode = xtal1 + pll16x

 'Bluetooth Constants

 DEBUG = 0 ' Debug port sends results to Parallax Serial

Terminal

 A_PORT = 1 ' Bluetooth Module

 A_RESET = 0 ' To RST pin on RN-42 Bluetooth Module

 A_TX = 1 ' To RX pin on RN-42 Bluetooth Module

 65

 A_RX = 2 ' To TX pin on RN-42 Bluetooth Module

 A_CTS = 3 ' To RTS pin on RN-42 Bluetooth Module

 A_RTS = 4 ' To CTS pin on RN-42 Bluetooth Module

 BAUD = 9600 ' Baud Rate 9600 bps

VAR

 long tLow, tHigh, T, dt, stack[700], cntr, inByte, inString, ctr, testStr[15], milis,

char,us, dataV, dataH, scale, rawSpeed, rawDirection, speed, lServo, rServo, direction,

range

 word cntMin

 byte i, inByteArr[300], bufferSize, cntB, temp, Index

OBJ

 fds : "FullDuplexSerial4port"

 dio : "dataIO4port"

PUB Main

 milis := clkfreq / 1_000

 dira[26..27] := %11 'Set Pin 26 & 27 to output

 outa[26..27] := %00 'Set pin 26 & 27 to low

 dira[A_TX] := 1

 outa[A_TX] := 1

 rawSpeed := 50

 rawDirection := 50

 66

 lServo := 750

 rServo := 750

 Pause(100)

 outa[A_TX] := 0

 fds.Init

 fds.AddPort(A_PORT, A_RX, A_TX, A_CTS, A_RTS, 0, %000000, BAUD)

 fds.AddPort(DEBUG, 31, 30, -1, -1, 0, %000000, BAUD) ' Debug to the terminal

screen

 fds.Start

 fds.str(DEBUG, String("Program Started")) 'Outputs "Program Started" to the

terminal screen

 fds.tx(DEBUG, 13)

 Pause(2000) 'UART startup delay

 cognew(Values, @stack[0]) 'Start a new cog to manage the servo pulses

 Pause(250)

 cognew(ServoPulse, @stack[300])

repeat

 repeat

 ctr := 0

 inByteArr[ctr] := fds.rx(A_PORT)

 until inByteArr[ctr] == "A" or inByteArr[ctr] == "B"

 if inByteArr[ctr] == "A"

 67

 repeat

 ctr++

 inByteArr[ctr] := fds.rx(A_PORT)

 until inByteArr[ctr] == "!"

 dataV := 0

 scale := 0

 repeat Index from 1 to (ctr - 1)

 scale := ctr - 1 - Index

 if scale == 2

 dataV := dataV + (inByteArr[Index] - 48) * 100

 elseif scale == 1

 dataV := dataV + (inByteArr[Index] - 48) * 10

 else

 dataV := dataV + (inByteArr[Index] - 48)

 rawSpeed := dataV

 'dio.dec(DEBUG, dataV)

 'fds.tx(DEBUG, 13)

 if inByteArr[ctr] == "B"

 repeat

 ctr++

 inByteArr[ctr] := fds.rx(A_PORT)

 until inByteArr[ctr] == "!"

 dataH := 0

 scale := 0

 repeat Index from 1 to (ctr - 1)

 scale := ctr - 1 - Index

 if scale == 2

 dataH := dataH + (inByteArr[Index] - 48) * 100

 elseif scale == 1

 dataH := dataH + (inByteArr[Index] - 48) * 10

 else

 68

 dataH := dataH + (inByteArr[Index] - 48)

 rawDirection := dataH

 'dio.dec(DEBUG, dataH)

 'fds.tx(DEBUG, 13)

PUB Values

fds.str(DEBUG, String("Values Started")) 'Outputs "Program Started" to the

terminal screen

fds.tx(DEBUG, 13)

repeat

 waitcnt(clkfreq/20 + cnt)

 if rawSpeed > 50 and rawDirection < 50 'Forward and Left

 range := 100

 speed := (range * (((rawSpeed - 50) * 100) / 50)) / 100

 direction:= (speed * (100 - (((50 - rawDirection) * 100) / 50))) / 100

 lServo := 750 + direction

 rServo := 750 - speed

 elseif rawSpeed > 50 and rawDirection > 50 'Forward and Right

 range := 100

 speed := (range * (((rawSpeed - 50) * 100) / 50)) / 100

 direction:= (speed * (100 - (((rawDirection - 50) * 100) / 50))) / 100

 lServo := 750 + speed

 rServo := 750 - direction

 elseif rawSpeed < 50 and rawDirection < 50 'Reverse and Right

 range := 100

 speed := (range * (((50 - rawSpeed) * 100) / 50)) / 100

 direction:= (speed * (100 - (((50 - rawDirection) * 100) / 50))) / 100

 lServo := 750 - direction

 rServo := 750 + speed

 elseif rawSpeed < 50 and rawDirection > 50 'Reverse and Left

 69

 range := 100

 speed := (range * (((50 - rawSpeed) * 100) / 50)) / 100

 direction:= (speed * (100 - (((rawDirection - 50) * 100) / 50))) / 100

 lServo := 750 - speed

 rServo := 750 + direction

 elseif rawDirection == 50 and rawSpeed > 50

 speed := ((rawSpeed - 50) * 2)

 lServo := 750 + speed

 rServo := 750 - speed

 elseif rawDirection == 50 and rawSpeed < 50

 speed := ((50 - rawSpeed) * 2)

 lServo := 750 - speed

 rServo := 750 + speed

 elseif rawSpeed == 50 and rawDirection > 50

 speed := ((rawDirection - 50) *2)

 lServo := 750 + speed

 rServo := 750 + speed

 elseif rawSpeed == 50 and rawDirection < 50

 speed := ((50 - rawDirection) *2)

 lServo := 750 - speed

 rServo := 750 - speed

 else

 lServo := 750

 rServo := 750

PUB ServoPulse

 fds.str(DEBUG, String("Pulse out Started")) 'Outputs "Program Started" to the

terminal screen

 70

 fds.tx(DEBUG, 13)

 us := clkfreq / 1_000_000 'define what a micro second is

 tLow := clkfreq / 50 'Duration of time between pulses (standard 20

mS or 0.020 Seconds)

 dira[14..15]~~ 'Set P14 and P15 to output

 T := cnt 'T is set to the current number of clock ticks when

line is executed

 repeat

 T += tLow

 waitcnt(T)

 PULSOUT(15, lServo)

 PULSOUT(14, rServo)

PUB PULSOUT(Pin,duration) | clkcycles

{{

 Produces an opposite pulse on the pin for the duration in 2uS increments

 Smallest value is 10 at clkfreq = 80Mhz

 Largest value is around 50 seconds at 80Mhz.

 BS2.Pulsout(500) ' 1 mS pulse

}}

 ClkCycles := (Duration * us * 2 - 1250) #> cntMin ' duration * clk cycles for 2us

 ' - inst. time, min cntMin

 dira[pin]~~ ' Set to output

 !outa[pin] ' set to opposite state

 waitcnt(clkcycles + cnt) ' wait until clk gets there

 !outa[pin]

 71

PRI Pause(ms)

 waitcnt(clkfreq / 1000 * ms + cnt) ' Convert to mS

6.5.4 FullDuplexSerial4port.Spin Library

{{ FullDuplexSerial4portPlus version 1.01

 - Tracy Allen (TTA) (c)22-Jan-2011 MIT license, see end of file for terms of use.

Extends existing terms of use.

 - Can open up to 4 independent serial ports, using only one pasm cog for all 4.

 - Supports flow control and open and inverted baud modes

 - Individually configurable tx and rx buffers for all 4 ports, any size, set in CONstants

section at compile time

 - Part of the buffer fits within the object's hub footprint, but even so the object is

restartable

 - Buffers are DAT type variables, therefore a single instance of the object can be

accessed throughout a complex project.

 - Modified from Tim Moore's pcFullDuplexSerial4fc, with further motivation and ideas

from Duane Degn's pcFullDuplexSerial4fc128

 - Changes and bug fixes include:

 - Flow control is now operational when called for, with correct polarity (bug

correction)

 - Jitter is reduced, unused ports are properly skipped over (bug correction), operation

speed is increased.

 - Stop bit on reception is now checked, and if there is a framing error, the byte is not

put in the buffer.

 - Buffer sizes are arbitrary, each port separate rx & tx up to available memory

 Changes in pasm and in Spin methods to accomodate larger buffers, major

reorganization of DAT section.

 - Added strn method for counted string, and rxHowFull method for buffer size.

 72

 - Cut out most of the format methods such as DEC and HEX, expecting those to be

their own object calling rx, tx, str and strn methods.

 See companion object DataIO4port.spin in order to maintain compatibility with

methods in the original pcFullDuplexSerial4fc.

 - 1v01

 - init method returns pointer @rxsize, for data buffers and data structure.

 - 1v00

 - documentation

 - 0v91

 - restored DEFAULTTHRESHOLD constant

 - made default buffer sizes in the DAT section rather than init

 - removed the numeric methods to their own companion object, dataIO4port.

 - 0v3

 - first public release with the jitter and flow control issues fixed, and large buffers.

 Links:

 Development of this version:

 --- http://forums.parallax.com/showthread.php?137349-yet-another-variant-

fullDuplexSerial4portplus

 Tim Moore's original pcFullDuplexSerial4fc and updates to allow flow control:

http://forums.parallaxinc.com/forums/default.aspx?f=25&p=1&m=273291#m276667

 --- http://obex.parallax.com/objects/340/ 7/24/08 version

 --- http://forums.parallaxinc.com/forums/default.aspx?f=25&p=1&m=349173

8/14/08 update, flow polarity correction, not in obex

 Duane Degn's thread, larger 128 or 512 byte buffers and reusing buffer space,

discussion of issues

 --- http://forums.parallax.com/showthread.php?129714-Tim-Moore-s-

pcFullDuplexSerial4FC-with-larger-%28512-byte%29-rx-buffer

 Juergen Buchmueller, 2 port trimmed down version

 73

 --- http://forums.parallax.com/showthread.php?128184-Serial-Objects-for-SPIN-

Programming&p=967075&viewfull=1#post967075

 Serial Mirror, single port but same idea regarding buffers in the DATa space

 --- http://forums.parallax.com/showthread.php?94311-SerialMirror-A-

FullDuplexSerial-enhancement

 --- http://obex.parallax.com/objects/189/

 Re baud rates attainable, hiccups:

http://forums.parallaxinc.com/forums/default.aspx?f=25&p=1&m=282923#m282978

 --- http://forums.parallaxinc.com/forums/default.aspx?f=25&p=1&m=334784

 --- http://forums.parallax.com/showthread.php?120868-FullDuplexSerial-hiccups

 Jitter, discussions of jitter in different Prop serial programs, PhiPi's development of

PBnJ full duplex:

 --- http://forums.parallax.com/showthread.php?129776-Anybody-aware-of-high-

accuracy-(0.7-or-less)-serial-full-duplex-driver

 --- http://forums.parallax.com/showthread.php?136431-Serial-objects-question

 Humanoido's catalog of serial port objects

 --- http://forums.parallax.com/showthread.php?128184-Serial-Objects-for-SPIN-

Programming

Tim Moore's release notes follow... Also note by Duane Degn.

Not all these comments apply to FullDuplexSerial4port.

}}

''**

''* Based on *

''* Full-Duplex Serial Driver v1.1 *

''* Author: Chip Gracey *

''* Copyright (c) 2006 Parallax, Inc. *

''* See end of file for terms of use. *

''* *

''* Tim Moore 2008 *

 74

''* Modified to support 4 serial ports *

''* It should run 1 port faster than FullDuplexSerial or run *

''* up to 4 ports *

''* Merged 64 byte rx buffer change *

''* Merged Debug_PC (Jon Williams) *

''* (TTA) cut the numeric methods, see dataIO4port.spin *

''* to maintain compatibility with pcFullDuplexSerial4fc *

''* or use other numeric methods such as "simpleNumbers" *

''* Uses DAT rather than VAR so can be used in multiple objects *

''* If you want multiple objects using this driver, you must *

''* copy the driver to a new file and make sure version long is *

''* unique in each version

''* Added txflush *

''* Optimization perf *

''* 1 port up to 750kbps *

''* 2 port up to 230kbps *

''* 3 port up to 140kbps *

''* 4 port up to 100kbps *

''* Tested 4 ports to 115Kbps with 6MHz crystal *

''* These are approx theoretical worse case you may get faster *

''* if port is active but idle *

''* Added RTS/CTS flow control *

''* *

''* There is no perf penalty supporting 4 serial ports when they *

''* are not enabled *

''* There is no perf penalty supporting CTS and RTS *

''* Enabling CTS on any port costs 4 clocks per port *

''* Enabling RTS on any port costs 32 clocks per port *

''* Main Rx+Tx loop is ~256 clocks per port (without CTS/RTS) *

''* compared with FullDuplexSerial at ~356 clocks *

''* *

 75

''* There is a cost to read/write a byte in the transmit/ *

''* receive routines. The transmit cost is greater than the *

''* receive cost so between propellors you can run at max baud *

''* rate. If receiving from another device, the sending device *

''* needs a delay between each byte once you are above ~470kbps *

''* with 1 port enabled *

''* *

''* (TTA) I have not updated the following comments. *

''* Size: *

''* Cog Initialzation code 1 x 8 + 4 x 25 *

''* Cog Receive code 4 x 30 words *

''* Cog Transmit code 4 x 26 words *

''* Spin/Cog circular buffer indexes 4 x 4 words *

''* Used in both spin and Cog and read/written in both *

''* directions *

''* Spin/Cog per port info 4 x 8 words *

''* Passed from Spin to Cog on cog initialization *

''* Spin per port info 4 x 1 byte *

''* Used by Spin *

''* Spin/Cog rx/tx buffer hub address 4 x 4 words *

''* Passed from Spin to Cog on cog initialization *

''* Spin/Cog rx/tx index hub address 4 x 4 words *

''* Passed from Spin to Cog on cog initialization *

''* Spin per port rx buffer 4 x 64 byte *

''* *

''* DWD Changed to 4 x 128 bytes *

''* Read by Spin, written by cog *

''* *

''* Cog per port rx state 4 x 4 words (overlayed on rx buffer) *

''* Used by Cog *

''* Spin per port tx buffer 4 x 16 byte *

 76

''* Written by Spin, read by Cog *

''* Cog per port tx state 4 x 4 words (overlayed on tx buffer) *

''* Used by Cog *

''* Cog constants 4 words *

''* A significant amount of space (4 x 16 words) is used for *

''* pre-calculated information: hub addresses, per port *

''* configuration. This speeds up the tx/rx routines at the cost *

''* of this space. *

''* *

''* Note: There are 8 longs remaining in the cog's memory, *

''* expect to do some work to add features :). *

''* *

''* DWD Note from Duane: Many of the longs in the cog image *

''* are only used in hub RAM. There is still lots of room *

''* in cog RAM. (TTA) agreed, thanks DWD! *

''* *

''* 7/1/08: Fixed bug of not receiving with only 1 port enabled *

''* Fixed bug of rts not working on ports 0, 2 and 3 *

''* 7/22/08: Missed a jmpret call in port 1 and 3 tx *

''* Fixed a bug in port 3 tx not increasing tx ptr *

''* 7/24/08: Added version variable to change if need multiple *

''* copies of the driver *

''* *

''**

CON

 NOMODE = %000000

 INVERTRX = %000001

 INVERTTX = %000010

 OCTX = %000100

 77

 NOECHO = %001000

 INVERTCTS = %010000

 INVERTRTS = %100000

 PINNOTUSED = -1 'tx/tx/cts/rts pin is not used

 DEFAULTTHRESHOLD = 0 ' zero defaults to 3/4 of buffer

length

 BAUD1200 = 1200

 BAUD2400 = 2400

 BAUD4800 = 4800

 BAUD9600 = 9600

 BAUD19200 = 19200

 BAUD38400 = 38400

 BAUD57600 = 57600

 BAUD115200 = 115200

' The following constants declare the sizes of the rx and tx buffers.

' Enter in the needed size in bytes for each rx and tx buffer

' These values can be any size within available memory. They do not have to be a power

of two.

' Unused buffers can be reduced to 1 byte.

 RX_SIZE0 = 200 ' receive buffer allocations

 RX_SIZE1 = 200

 RX_SIZE2 = 80

 RX_SIZE3 = 80

 TX_SIZE0 = 20 ' transmit buffer allocations

 TX_SIZE1 = 20

 TX_SIZE2 = 20

 TX_SIZE3 = 20 '

 78

 RXTX_BUFSIZE = (TX_SIZE0 + TX_SIZE1 + TX_SIZE2 + TX_SIZE3 +

RX_SIZE0 + RX_SIZE1 + RX_SIZE2 + RX_SIZE3)

 ' total buffer footprint in bytes

 ' 77 longs, 308 bytes are available for buffers within the hub

footprint of the object

 ' the final instruction in this program allocates additional buffer

space beyond that if necessary

 ' to accomodate all of the buffers.

 ' if the sum totals to 308, then the buffers exactly fit within the

object footprint.

PUB Init

''Always call init before adding ports

 Stop

 bytefill(@startfill, 0, (@endfill-@startfill)) ' initialize head/tails,port info and hub

buffer pointers

 return @rxsize ' TTA returns pointer to data structure, buffer

sizes.

PUB AddPort(port,rxpin,txpin,ctspin,rtspin,rtsthreshold,mode,baudrate)

'' Call AddPort to define each port

'' port 0-3 port index of which serial port

'' rx/tx/cts/rtspin pin number XXX#PINNOTUSED if not used

'' rtsthreshold - buffer threshold before rts is used XXX#DEFAULTTHRSHOLD

means use default

'' mode bit 0 = invert rx XXX#INVERTRX

'' mode bit 1 = invert tx XXX#INVERTTX

'' mode bit 2 = open-drain/source tx XXX#OCTX

 79

'' mode bit 3 = ignore tx echo on rx XXX#NOECHO

'' mode bit 4 = invert cts XXX#INVERTCTS

'' mode bit 5 = invert rts XXX#INVERTRTS

'' baudrate

 if cog OR (port > 3)

 abort

 if rxpin <> -1

 long[@rxmask][port] := |< rxpin

 if txpin <> -1

 long[@txmask][port] := |< txpin

 if ctspin <> -1

 long[@ctsmask][port] := |< ctspin

 if rtspin <> -1

 long[@rtsmask][port] := |< rtspin

 if (rtsthreshold > 0) AND (rtsthreshold < rxsize[port]) ' (TTA) modified for

variable buffer size

 long[@rtssize][port] := rtsthreshold

 else

 long[@rtssize][port] := rxsize[port]*3/4 'default rts threshold 3/4 of

buffer TTS ref RX_BUFSIZE

 long[@rxtx_mode][port] := mode

 if mode & INVERTRX

 byte[@rxchar][port] := $ff

 long[@bit_ticks][port] := (clkfreq / baudrate)

 long[@bit4_ticks][port] := long[@bit_ticks][port] >> 2

PUB Start : okay

'' Call start to start cog

'' Start serial driver - starts a cog

'' returns false if no cog available

''

 80

'' tx buffers will start within the object footprint, overlaying certain locations that were

initialized in spin

'' for use within the cog but are not needed by spin thereafter and are not needed for

object restart.

 txbuff_tail_ptr := txbuff_ptr := @buffers ' (TTA) all buffers are calculated as

offsets from this address.

 txbuff_tail_ptr1 := txbuff_ptr1 := txbuff_ptr + txsize 'base addresses of the

corresponding port buffer.

 txbuff_tail_ptr2 := txbuff_ptr2 := txbuff_ptr1 + txsize1

 txbuff_tail_ptr3 := txbuff_ptr3 := txbuff_ptr2 + txsize2

 rxbuff_head_ptr := rxbuff_ptr := txbuff_ptr3 + txsize3 ' rx buffers follow

immediately after the tx buffers, by size

 rxbuff_head_ptr1 := rxbuff_ptr1 := rxbuff_ptr + rxsize

 rxbuff_head_ptr2 := rxbuff_ptr2 := rxbuff_ptr1 + rxsize1

 rxbuff_head_ptr3 := rxbuff_ptr3 := rxbuff_ptr2 + rxsize2

 ' note that txbuff_ptr ... rxbuff_ptr3 are the base

addresses fixed

 ' in memory for use by both spin and pasm

 ' while txbuff_tail_ptr ... rxbuff_head_ptr3 are

dynamic addresses used only by pasm

 ' and here initialized to point to the start of the

buffers.

 ' the rx buffer #3 comes last, up through address

@endfill

 rx_head_ptr := @rx_head ' (TTA) note: addresses of the head and

tail counts are passed to the cog

 rx_head_ptr1 := @rx_head1 ' if that is confusing, take heart. These

are pointers to pointers to pointers

 rx_head_ptr2 := @rx_head2

 rx_head_ptr3 := @rx_head3

 81

 rx_tail_ptr := @rx_tail

 rx_tail_ptr1 := @rx_tail1

 rx_tail_ptr2 := @rx_tail2

 rx_tail_ptr3 := @rx_tail3

 tx_head_ptr := @tx_head

 tx_head_ptr1 := @tx_head1

 tx_head_ptr2 := @tx_head2

 tx_head_ptr3 := @tx_head3

 tx_tail_ptr := @tx_tail

 tx_tail_ptr1 := @tx_tail1

 tx_tail_ptr2 := @tx_tail2

 tx_tail_ptr3 := @tx_tail3

 okay := cog := cognew(@entry, @rx_head) + 1

PUB Stop

'' Stop serial driver - frees a cog

 if cog

 cogstop(cog~ - 1)

PUB getCogID : result

 return cog -1

PUB rxflush(port)

'' Flush receive buffer, here until empty.

 repeat while rxcheck(port) => 0

PUB rxHowFull(port) ' (TTA) added method

'' returns number of chars in rx buffer

 return ((rx_head[port] - rx_tail[port]) + rxsize[port]) // rxsize[port]

' rx_head and rx_tail are values in the range 0=< ... < RX_BUFSIZE

 82

PUB rxcheck(port) : rxbyte

'' Check if byte received (never waits)

'' returns -1 if no byte received, $00..$FF if byte

'' (TTA) simplified references

 if port > 3

 abort

 rxbyte--

 if rx_tail[port] <> rx_head[port]

 rxbyte := rxchar[port] ^ byte[rxbuff_ptr[port]+rx_tail[port]]

 rx_tail[port] := (rx_tail[port] + 1) // rxsize[port]

PUB rxtime(port,ms) : rxbyte | t

'' Wait ms milliseconds for a byte to be received

'' returns -1 if no byte received, $00..$FF if byte

 t := cnt

 repeat until (rxbyte := rxcheck(port)) => 0 or (cnt - t) / (clkfreq / 1000) > ms

PUB rx(port) : rxbyte

'' Receive byte (may wait for byte)

'' returns $00..$FF

 repeat while (rxbyte := rxcheck(port)) < 0

PUB tx(port,txbyte)

'' Send byte (may wait for room in buffer)

 if port > 3

 abort

 repeat until (tx_tail[port] <> (tx_head[port] + 1) // txsize[port])

 byte[txbuff_ptr[port]+tx_head[port]] := txbyte

 tx_head[port] := (tx_head[port] + 1) // txsize[port]

 83

 if rxtx_mode[port] & NOECHO

 rx(port)

PUB txflush(port)

 repeat until (long[@tx_tail][port] == long[@tx_head][port])

PUB str(port,stringptr)

'' Send zstring

 strn(port,stringptr,strsize(stringptr))

PUB strn(port,stringptr,nchar)

'' Send counted string

 repeat nchar

 tx(port,byte[stringptr++])

DAT

'***********************************

'* Assembly language serial driver *

'***********************************

'

 org 0

'

' Entry

'

'To maximize the speed of rx and tx processing, all the mode checks are no longer inline

'The initialization code checks the modes and modifies the rx/tx code for that mode

'e.g. the if condition for rx checking for a start bit will be inverted if mode INVERTRX

'is it, similar for other mode flags

'The code is also patched depending on whether a cts or rts pin are supplied. The normal

' routines support cts/rts processing. If the cts/rts mask is 0, then the code is patched

 84

'to remove the addtional code. This means I/O modes and CTS/RTS handling adds no

extra code

'in the rx/tx routines which not required.

'Similar with the co-routine variables. If a rx or tx pin is not configured the co-routine

'variable for the routine that handles that pin is modified so the routine is never called

'We start with port 3 and work down to ports because we will be updating the co-routine

pointers

'and the order matters. e.g. we can update txcode3 and then update rxcode3 based on

txcode3.

'(TTA): coroutine patch was not working in the way originally described. (TTA)

patched

'unused coroutines jmprets become simple jmps.

' Tim's comments about the order from 3 to 0 no longer apply.

' The following 8 locations are skipped at entry due to if_never.

' The mov instruction and the destination address are here only for syntax.

' the important thing are the source field

' primed to contain the start address of each port routine.

' When jmpret instructions are executed, the source adresses here are used for jumps

' And new source addresses will be written in the process.

entry

rxcode if_never mov rxcode,#receive ' set source fields to initial entry points

txcode if_never mov txcode,#transmit

rxcode1 if_never mov rxcode1,#receive1

txcode1 if_never mov txcode1,#transmit1

rxcode2 if_never mov rxcode2,#receive2

txcode2 if_never mov txcode2,#transmit2

rxcode3 if_never mov rxcode3,#receive3

txcode3 if_never mov txcode3,#transmit3

 85

' INITIALIZATIONS

===

===============

' port 3 initialization ---

 test rxtx_mode3,#OCTX wz 'init tx pin according to mode

 test rxtx_mode3,#INVERTTX wc

 if_z_ne_c or outa,txmask3

 if_z or dira,txmask3

 'patch tx routine depending on invert and oc

 'if invert change muxc to muxnc

 'if oc change outa to dira

 if_z_eq_c or txout3,domuxnc 'patch muxc to muxnc

 if_nz movd txout3,#dira 'change destination from outa to dira

 'patch rx wait for start bit depending on invert

 test rxtx_mode3,#INVERTRX wz 'wait for start bit on rx pin

 if_nz xor start3,doifc2ifnc 'if_c jmp to if_nc

 'patch tx routine depending on whether cts is used

 'and if it is inverted

 or ctsmask3,#0 wz 'cts pin? z not set if in use

 if_nz test rxtx_mode3,#INVERTCTS wc 'c set if inverted

 if_nz_and_c or ctsi3,doif_z_or_nc 'if_nc jmp (TTA) reversed order to

correctly invert CTS

 if_nz_and_nc or ctsi3,doif_z_or_c 'if_c jmp

 'if not cts remove the test by moving

 'the transmit entry point down 1 instruction

 'and moving the jmpret over the cts test

 'and changing co-routine entry point

 if_z mov txcts3,transmit3 'copy the jmpret over the cts test

 if_z movs ctsi3,#txcts3 'patch the jmps to transmit to txcts0

 if_z add txcode3,#1 'change co-routine entry to skip first jmpret

 'patch rx routine depending on whether rts is used

 86

 'and if it is inverted

 or rtsmask3,#0 wz

 if_nz or dira,rtsmask3 ' (TTA) rts needs to be an output

 if_nz test rxtx_mode3,#INVERTRTS wc

 if_nz_and_nc or rts3,domuxnc 'patch muxc to muxnc

 if_z mov norts3,rec3i 'patch rts code to a jmp #receive3

 if_z movs start3,#receive3 'skip all rts processing

 or txmask3,#0 wz 'if tx pin not used

 if_z movi transmit3, #%010111_000 ' patch it out entirely by making the

jmpret into a jmp (TTA)

 or rxmask3,#0 wz 'ditto for rx routine

 if_z movi receive3, #%010111_000 ' (TTA)

 ' in pcFullDuplexSerial4fc, the bypass was ostensibly

done

 ' by patching the co-routine variables,

 ' but it was commented out, and didn't work when

restored

 ' so I did it by changing the affected jmpret to jmp.

 ' Now the jitter is MUCH reduced.

' port 2 initialization ---

 test rxtx_mode2,#OCTX wz 'init tx pin according to mode

 test rxtx_mode2,#INVERTTX wc

 if_z_ne_c or outa,txmask2

 if_z or dira,txmask2

 if_z_eq_c or txout2,domuxnc 'patch muxc to muxnc

 if_nz movd txout2,#dira 'change destination from outa to dira

 test rxtx_mode2,#INVERTRX wz 'wait for start bit on rx pin

 if_nz xor start2,doifc2ifnc 'if_c jmp to if_nc

 or ctsmask2,#0 wz

 if_nz test rxtx_mode2,#INVERTCTS wc

 87

 if_nz_and_c or ctsi2,doif_z_or_nc 'if_nc jmp (TTA) reversed order to

correctly invert CTS

 if_nz_and_nc or ctsi2,doif_z_or_c 'if_c jmp

 if_z mov txcts2,transmit2 'copy the jmpret over the cts test

 if_z movs ctsi2,#txcts2 'patch the jmps to transmit to txcts0

 if_z add txcode2,#1 'change co-routine entry to skip first jmpret

 or rtsmask2,#0 wz

 if_nz or dira,rtsmask2 ' (TTA) rts needs to be an output

 if_nz test rxtx_mode2,#INVERTRTS wc

 if_nz_and_nc or rts2,domuxnc 'patch muxc to muxnc

 if_z mov norts2,rec2i 'patch to a jmp #receive2

 if_z movs start2,#receive2 'skip all rts processing

 or txmask2,#0 wz 'if tx pin not used

 if_z movi transmit2, #%010111_000 ' patch it out entirely by making the

jmpret into a jmp (TTA)

 or rxmask2,#0 wz 'ditto for rx routine

 if_z movi receive2, #%010111_000 ' (TTA)

' port 1 initialization ---

 test rxtx_mode1,#OCTX wz 'init tx pin according to mode

 test rxtx_mode1,#INVERTTX wc

 if_z_ne_c or outa,txmask1

 if_z or dira,txmask1

 if_z_eq_c or txout1,domuxnc 'patch muxc to muxnc

 if_nz movd txout1,#dira 'change destination from outa to dira

 test rxtx_mode1,#INVERTRX wz 'wait for start bit on rx pin

 if_nz xor start1,doifc2ifnc 'if_c jmp to if_nc

 or ctsmask1,#0 wz

 if_nz test rxtx_mode1,#INVERTCTS wc

 88

 if_nz_and_c or ctsi1,doif_z_or_nc 'if_nc jmp (TTA) reversed order to

correctly invert CTS

 if_nz_and_nc or ctsi1,doif_z_or_c 'if_c jmp

 if_z mov txcts1,transmit1 'copy the jmpret over the cts test

 if_z movs ctsi1,#txcts1 'patch the jmps to transmit to txcts0

 if_z add txcode1,#1 'change co-routine entry to skip first jmpret

 'patch rx routine depending on whether rts is used

 'and if it is inverted

 or rtsmask1,#0 wz

 if_nz or dira,rtsmask1 ' (TTA) rts needs to be an output

 if_nz test rxtx_mode1,#INVERTRTS wc

 if_nz_and_nc or rts1,domuxnc 'patch muxc to muxnc

 if_z mov norts1,rec1i 'patch to a jmp #receive1

 if_z movs start1,#receive1 'skip all rts processing

 or txmask1,#0 wz 'if tx pin not used

 if_z movi transmit1, #%010111_000 ' patch it out entirely by making the

jmpret into a jmp (TTA)

 or rxmask1,#0 wz 'ditto for rx routine

 if_z movi receive1, #%010111_000 ' (TTA)

' port 0 initialization ---

 test rxtx_mode,#OCTX wz 'init tx pin according to mode

 test rxtx_mode,#INVERTTX wc

 if_z_ne_c or outa,txmask

 if_z or dira,txmask

 'patch tx routine depending on invert and oc

 'if invert change muxc to muxnc

 'if oc change out1 to dira

 if_z_eq_c or txout0,domuxnc 'patch muxc to muxnc

 if_nz movd txout0,#dira 'change destination from outa to dira

 89

 'patch rx wait for start bit depending on invert

 test rxtx_mode,#INVERTRX wz 'wait for start bit on rx pin

 if_nz xor start0,doifc2ifnc 'if_c jmp to if_nc

 'patch tx routine depending on whether cts is used

 'and if it is inverted

 or ctsmask,#0 wz 'cts pin? z not set if in use

 if_nz or dira,rtsmask ' (TTA) rts needs to be an output

 if_nz test rxtx_mode,#INVERTCTS wc 'c set if inverted

 if_nz_and_c or ctsi0,doif_z_or_nc 'if_nc jmp (TTA) reversed order to

correctly invert CTS

 if_nz_and_nc or ctsi0,doif_z_or_c 'if_c jmp

 if_z mov txcts0,transmit 'copy the jmpret over the cts test

 if_z movs ctsi0,#txcts0 'patch the jmps to transmit to txcts0

 if_z add txcode,#1 'change co-routine entry to skip first jmpret

 'patch rx routine depending on whether rts is used

 'and if it is inverted

 or rtsmask,#0 wz 'rts pin, z not set if in use

 if_nz test rxtx_mode,#INVERTRTS wc

 if_nz_and_nc or rts0,domuxnc 'patch muxc to muxnc

 if_z mov norts0,rec0i 'patch to a jmp #receive

 if_z movs start0,#receive 'skip all rts processing if not used

 or txmask,#0 wz 'if tx pin not used

 if_z movi transmit, #%010111_000 ' patch it out entirely by making the

jmpret into a jmp (TTA)

 or rxmask,#0 wz 'ditto for rx routine

 if_z movi receive, #%010111_000 ' (TTA)

'

' MAIN LOOP

===

========================

 90

' Receive0 ---

receive jmpret rxcode,txcode 'run a chunk of transmit code, then return

 'patched to a jmp if pin not used

 test rxmask,ina wc

start0 if_c jmp #norts0 'go check rts if no start bit

 ' have to check rts because other process may remove

chars

 'will be patched to jmp #receive if no rts

 mov rxbits,#9 'ready to receive byte

 mov rxcnt,bit4_ticks '1/4 bits

 add rxcnt,cnt

:bit add rxcnt,bit_ticks '1 bit period

:wait jmpret rxcode,txcode 'run a chuck of transmit code, then return

 mov t1,rxcnt 'check if bit receive period done

 sub t1,cnt

 cmps t1,#0 wc

 if_nc jmp #:wait

 test rxmask,ina wc 'receive bit on rx pin

 rcr rxdata,#1

 djnz rxbits,#:bit 'get remaining bits

 test rxtx_mode,#INVERTRX wz 'find out if rx is inverted

 if_z_ne_c jmp #receive 'abort if no stop bit (TTA) (from

serialMirror)

 jmpret rxcode,txcode 'run a chunk of transmit code, then return

 shr rxdata,#32-9 'justify and trim received byte

 91

 wrbyte rxdata,rxbuff_head_ptr'{7-22} '1wr

 add rx_head,#1

 cmpsub rx_head,rxsize ' (TTA) allows non-binary buffer size

 wrlong rx_head,rx_head_ptr '{8} '2wr

 mov rxbuff_head_ptr,rxbuff_ptr 'calculate next byte head_ptr

 add rxbuff_head_ptr,rx_head

norts0 rdlong rx_tail,rx_tail_ptr '{7-22 or 8} will be patched to jmp #r3 if no

rts

 '1rd

 mov t1,rx_head

 sub t1,rx_tail wc 'calculate number bytes in buffer, (TTA) add

wc

' and t1,#$7F 'fix wrap

 if_c add t1,rxsize ' fix wrap, (TTA) change

 cmps t1,rtssize wc 'is it more than the threshold

rts0 muxc outa,rtsmask 'set rts correctly

rec0i jmp #receive 'byte done, receive next byte

'

' Receive1 ---

'

receive1 jmpret rxcode1,txcode1 'run a chunk of transmit code, then return

 test rxmask1,ina wc

start1 if_c jmp #norts1 'go check rts if no start bit

 mov rxbits1,#9 'ready to receive byte

 mov rxcnt1,bit4_ticks1 '1/4 bits

 add rxcnt1,cnt

 92

:bit1 add rxcnt1,bit_ticks1 '1 bit period

:wait1 jmpret rxcode1,txcode1 'run a chuck of transmit code, then return

 mov t1,rxcnt1 'check if bit receive period done

 sub t1,cnt

 cmps t1,#0 wc

 if_nc jmp #:wait1

 test rxmask1,ina wc 'receive bit on rx pin

 rcr rxdata1,#1

 djnz rxbits1,#:bit1

 test rxtx_mode1,#INVERTRX wz 'find out if rx is inverted

 if_z_ne_c jmp #receive1 'abort if no stop bit (TTA) (from

serialMirror)

 jmpret rxcode1,txcode1 'run a chunk of transmit code, then return

 shr rxdata1,#32-9 'justify and trim received byte

 wrbyte rxdata1,rxbuff_head_ptr1 '7-22

 add rx_head1,#1

 cmpsub rx_head1,rxsize1 ' (TTA) allows non-binary buffer size

 wrlong rx_head1,rx_head_ptr1

 mov rxbuff_head_ptr1,rxbuff_ptr1 'calculate next byte head_ptr

 add rxbuff_head_ptr1,rx_head1

norts1 rdlong rx_tail1,rx_tail_ptr1 '7-22 or 8 will be patched to jmp #r3 if

no rts

 mov t1,rx_head1

 sub t1,rx_tail1 wc

 if_c add t1,rxsize1 ' fix wrap, (TTA) change

 93

 cmps t1,rtssize1 wc

rts1 muxc outa,rtsmask1

rec1i jmp #receive1 'byte done, receive next byte

'

' Receive2 ---

'

receive2 jmpret rxcode2,txcode2 'run a chunk of transmit code, then return

 test rxmask2,ina wc

start2 if_c jmp #norts2 'go check rts if no start bit

 mov rxbits2,#9 'ready to receive byte

 mov rxcnt2,bit4_ticks2 '1/4 bits

 add rxcnt2,cnt

:bit2 add rxcnt2,bit_ticks2 '1 bit period

:wait2 jmpret rxcode2,txcode2 'run a chuck of transmit code, then return

 mov t1,rxcnt2 'check if bit receive period done

 sub t1,cnt

 cmps t1,#0 wc

 if_nc jmp #:wait2

 test rxmask2,ina wc 'receive bit on rx pin

 rcr rxdata2,#1

 djnz rxbits2,#:bit2

 test rxtx_mode2,#INVERTRX wz 'find out if rx is inverted

 if_z_ne_c jmp #receive2 'abort if no stop bit (TTA) (from

serialMirror)

 94

 jmpret rxcode2,txcode2 'run a chunk of transmit code, then return

 shr rxdata2,#32-9 'justify and trim received byte

 wrbyte rxdata2,rxbuff_head_ptr2 '7-22

 add rx_head2,#1

 cmpsub rx_head2,rxsize2 ' ' (TTA) allows non-binary buffer size

 wrlong rx_head2,rx_head_ptr2

 mov rxbuff_head_ptr2,rxbuff_ptr2 'calculate next byte head_ptr

 add rxbuff_head_ptr2,rx_head2

norts2 rdlong rx_tail2,rx_tail_ptr2 '7-22 or 8 will be patched to jmp #r3 if

no rts

 mov t1,rx_head2

 sub t1,rx_tail2 wc

 if_c add t1,rxsize2 ' fix wrap, (TTA) change

 cmps t1,rtssize2 wc

rts2 muxc outa,rtsmask2

rec2i jmp #receive2 'byte done, receive next byte

'

' Receive3 ---

'

receive3 jmpret rxcode3,txcode3 'run a chunk of transmit code, then return

 test rxmask3,ina wc

start3 if_c jmp #norts3 'go check rts if no start bit

 mov rxbits3,#9 'ready to receive byte

 mov rxcnt3,bit4_ticks3 '1/4 bits

 add rxcnt3,cnt

 95

:bit3 add rxcnt3,bit_ticks3 '1 bit period

:wait3 jmpret rxcode3,txcode3 'run a chuck of transmit code, then return

 mov t1,rxcnt3 'check if bit receive period done

 sub t1,cnt

 cmps t1,#0 wc

 if_nc jmp #:wait3

 test rxmask3,ina wc 'receive bit on rx pin

 rcr rxdata3,#1

 djnz rxbits3,#:bit3

 test rxtx_mode3,#INVERTRX wz 'find out if rx is inverted

 if_z_ne_c jmp #receive3 'abort if no stop bit (TTA) (from

serialMirror)

 jmpret rxcode3,txcode3 'run a chunk of transmit code, then return

 shr rxdata3,#32-9 'justify and trim received byte

 wrbyte rxdata3,rxbuff_head_ptr3 '7-22

 add rx_head3,#1

 cmpsub rx_head3,rxsize3 ' (TTA) allows non-binary buffer size

 wrlong rx_head3,rx_head_ptr3 '8

 mov rxbuff_head_ptr3,rxbuff_ptr3 'calculate next byte head_ptr

 add rxbuff_head_ptr3,rx_head3

norts3 rdlong rx_tail3,rx_tail_ptr3 '7-22 or 8, may be patched to jmp #r3 if

no rts

 mov t1,rx_head3

 sub t1,rx_tail3 wc

 if_c add t1,rxsize3 ' fix wrap, (TTA) change

 cmps t1,rtssize3 wc 'is buffer more that 3/4 full?

 96

rts3 muxc outa,rtsmask3

rec3i jmp #receive3 'byte done, receive next byte

'

' TRANSMIT

===

========================

'

transmit jmpret txcode,rxcode1 'run a chunk of receive code, then return

 'patched to a jmp if pin not used

txcts0 test ctsmask,ina wc 'if flow-controlled dont send

 rdlong t1,tx_head_ptr '{7-22} - head[0]

 cmp t1,tx_tail wz 'tail[0]

ctsi0 if_z jmp #transmit 'may be patched to if_z_or_c or if_z_or_nc

 rdbyte txdata,txbuff_tail_ptr '{8}

 add tx_tail,#1

 cmpsub tx_tail,txsize wz ' (TTA) for individually sized buffers, will

zero at rollover

 wrlong tx_tail,tx_tail_ptr '{8}

 if_z mov txbuff_tail_ptr,txbuff_ptr 'reset tail_ptr if we wrapped

 if_nz add txbuff_tail_ptr,#1 'otherwise add 1

 jmpret txcode,rxcode1

 shl txdata,#2

 or txdata,txbitor 'ready byte to transmit

 mov txbits,#11

 mov txcnt,cnt

 97

txbit shr txdata,#1 wc

txout0 muxc outa,txmask 'maybe patched to muxnc dira,txmask

 add txcnt,bit_ticks 'ready next cnt

:wait jmpret txcode,rxcode1 'run a chunk of receive code, then return

 mov t1,txcnt 'check if bit transmit period done

 sub t1,cnt

 cmps t1,#0 wc

 if_nc jmp #:wait

 djnz txbits,#txbit 'another bit to transmit?

txjmp0 jmp ctsi0 'byte done, transmit next byte

'

' Transmit1 ---

'

transmit1 jmpret txcode1,rxcode2 'run a chunk of receive code, then return

txcts1 test ctsmask1,ina wc 'if flow-controlled dont send

 rdlong t1,tx_head_ptr1

 cmp t1,tx_tail1 wz

ctsi1 if_z jmp #transmit1 'may be patched to if_z_or_c or if_z_or_nc

 rdbyte txdata1,txbuff_tail_ptr1

 add tx_tail1,#1

 cmpsub tx_tail1,txsize1 wz ' (TTA) for individually sized buffers,

will zero at rollover

 wrlong tx_tail1,tx_tail_ptr1

 if_z mov txbuff_tail_ptr1,txbuff_ptr1 'reset tail_ptr if we wrapped

 if_nz add txbuff_tail_ptr1,#1 'otherwise add 1

 98

 jmpret txcode1,rxcode2 'run a chunk of receive code, then return

 shl txdata1,#2

 or txdata1,txbitor 'ready byte to transmit

 mov txbits1,#11

 mov txcnt1,cnt

txbit1 shr txdata1,#1 wc

txout1 muxc outa,txmask1 'maybe patched to muxnc dira,txmask

 add txcnt1,bit_ticks1 'ready next cnt

:wait1 jmpret txcode1,rxcode2 'run a chunk of receive code, then return

 mov t1,txcnt1 'check if bit transmit period done

 sub t1,cnt

 cmps t1,#0 wc

 if_nc jmp #:wait1

 djnz txbits1,#txbit1 'another bit to transmit?

txjmp1 jmp ctsi1 'byte done, transmit next byte

'

' Transmit2 ---

'

transmit2 jmpret txcode2,rxcode3 'run a chunk of receive code, then return

txcts2 test ctsmask2,ina wc 'if flow-controlled dont send

 rdlong t1,tx_head_ptr2

 cmp t1,tx_tail2 wz

ctsi2 if_z jmp #transmit2 'may be patched to if_z_or_c or if_z_or_nc

 rdbyte txdata2,txbuff_tail_ptr2

 99

 add tx_tail2,#1

 cmpsub tx_tail2,txsize2 wz ' (TTA) for individually sized buffers,

will zero at rollover

 wrlong tx_tail2,tx_tail_ptr2

 if_z mov txbuff_tail_ptr2,txbuff_ptr2 'reset tail_ptr if we wrapped

 if_nz add txbuff_tail_ptr2,#1 'otherwise add 1

 jmpret txcode2,rxcode3

 shl txdata2,#2

 or txdata2,txbitor 'ready byte to transmit

 mov txbits2,#11

 mov txcnt2,cnt

txbit2 shr txdata2,#1 wc

txout2 muxc outa,txmask2 'maybe patched to muxnc dira,txmask

 add txcnt2,bit_ticks2 'ready next cnt

:wait2 jmpret txcode2,rxcode3 'run a chunk of receive code, then return

 mov t1,txcnt2 'check if bit transmit period done

 sub t1,cnt

 cmps t1,#0 wc

 if_nc jmp #:wait2

 djnz txbits2,#txbit2 'another bit to transmit?

txjmp2 jmp ctsi2 'byte done, transmit next byte

'

' Transmit3 ---

'

transmit3 jmpret txcode3,rxcode 'run a chunk of receive code, then return

 100

txcts3 test ctsmask3,ina wc 'if flow-controlled dont send

 rdlong t1,tx_head_ptr3

 cmp t1,tx_tail3 wz

ctsi3 if_z jmp #transmit3 'may be patched to if_z_or_c or if_z_or_nc

 rdbyte txdata3,txbuff_tail_ptr3

 add tx_tail3,#1

 cmpsub tx_tail3,txsize3 wz ' (TTA) for individually sized buffers,

will zero at rollover

 wrlong tx_tail3,tx_tail_ptr3

 if_z mov txbuff_tail_ptr3,txbuff_ptr3 'reset tail_ptr if we wrapped

 if_nz add txbuff_tail_ptr3,#1 'otherwise add 1

 jmpret txcode3,rxcode

 shl txdata3,#2

 or txdata3,txbitor 'ready byte to transmit

 mov txbits3,#11

 mov txcnt3,cnt

txbit3 shr txdata3,#1 wc

txout3 muxc outa,txmask3 'maybe patched to muxnc dira,txmask

 add txcnt3,bit_ticks3 'ready next cnt

:wait3 jmpret txcode3,rxcode 'run a chunk of receive code, then return

 mov t1,txcnt3 'check if bit transmit period done

 sub t1,cnt

 cmps t1,#0 wc

 if_nc jmp #:wait3

 101

 djnz txbits3,#txbit3 'another bit to transmit?

txjmp3 jmp ctsi3 'byte done, transmit next byte

'

'The following are constants used by pasm for patching the code, depending on options

required

doifc2ifnc long $003c0000 'patch condition if_c to if_nc using xor

doif_z_or_c long $00380000 'patch condition if_z to if_z_or_c using or

doif_z_or_nc long $002c0000 'patch condition if_z to if_z_or_nc using

or

domuxnc long $04000000 'patch muxc to muxnc using or

txbitor long $0401 'bits to or for transmitting, adding start and stop

bits

' Buffer sizes initialized from CONstants and used by both spin and pasm

rxsize long RX_SIZE0 ' (TTA) size of the rx and tx buffers is

available to pasm and spin

rxsize1 long RX_SIZE1 ' these values are transfered from the

declared CONstants

rxsize2 long RX_SIZE2 ' at startup, individually configurable

rxsize3 long RX_SIZE3

txsize long TX_SIZE0

txsize1 long TX_SIZE1

txsize2 long TX_SIZE2

txsize3 long TX_SIZE3

' Object memory from here to the end is zeroed in the init/stop method ---------------'

' Some locations within the next set of values, after being initialized to zero, are then

filled with alternative options

 102

' That are accessed from both spin and pasm

' Dont Change the order of these initialized variables within port groups of 4 without

modifying

' the code to match - both spin and assembler

startfill

rxchar byte 0 ' used by spin rxcheck, for inversion of received data

rxchar1 byte 0

rxchar2 byte 0

rxchar3 byte 0

cog long 0 'cog flag/id

rxtx_mode long 0 ' mode setting from values passed in by addport

rxtx_mode1 long 0 '

rxtx_mode2 long 0

rxtx_mode3 long 0

rx_head long 0 ' rx head pointer, from 0 to size of rx buffer, used in

spin and pasm

rx_head1 long 0 ' data is enqueued to this offset above base,

rxbuff_ptr

rx_head2 long 0

rx_head3 long 0

rx_tail long 0 ' rx tail pointer, ditto, zero to size of rx buffer

rx_tail1 long 0 ' data is dequeued from this offset above base,

rxbuff_ptr

rx_tail2 long 0

rx_tail3 long 0

tx_head long 0 ' tx head pointer, , from 0 to size of tx buffer, used in

spin and pasm

tx_head1 long 0 ' data is enqueued to this offset above base,

txbuff_ptr

tx_head2 long 0

 103

tx_head3 long 0

tx_tail long 0 ' tx tail pointer, ditto, zero to size of rx buffer

tx_tail1 long 0 ' data is transmitted from this offset above base,

txbuff_ptr

tx_tail2 long 0

tx_tail3 long 0

rxbuff_ptr long 0 ' These are the base hub addresses of the receive

buffers

rxbuff_ptr1 long 0 ' initialized in spin, referenced in pasm and spin

rxbuff_ptr2 long 0 ' these buffers and sizes are individually configurable

rxbuff_ptr3 long 0

txbuff_ptr long 0 ' These are the base hub addresses of the transmit

buffers

txbuff_ptr1 long 0

txbuff_ptr2 long 0

txbuff_ptr3 long 0

' Start of HUB overlay --

' Some locations within the next set of values, after being init'd to zero, are then filled

from spin with options

' That are transferred to and accessed by the pasm cog once started, but no longer needed

in spin.

' Therefore, tx and rx buffers start here and overlays the hub footprint of these variables.

' tx_buffers come first, 0,1,2,3, then rx buffers 0,1,2,3 by offset from "buffers"

overlay

buffers

txdata long 0

txbits long 0

txcnt long 0

txdata1 long 0

txbits1 long 0

 104

txcnt1 long 0

txdata2 long 0

txbits2 long 0

txcnt2 long 0

txdata3 long 0

txbits3 long 0

txcnt3 long 0

rxdata long 0

rxbits long 0

rxcnt long 0

rxdata1 long 0

rxbits1 long 0

rxcnt1 long 0

rxdata2 long 0

rxbits2 long 0

rxcnt2 long 0

rxdata3 long 0

rxbits3 long 0

rxcnt3 long 0

t1 long 0 ' this is a temporary variable used by pasm

rxmask long 0 ' a single bit set, a mask for the pin used for receive,

zero if port not used for receive

rxmask1 long 0

rxmask2 long 0

rxmask3 long 0

txmask long 0 ' a single bit set, a mask for the pin used for transmit,

zero if port not used for transmit

txmask1 long 0

txmask2 long 0

txmask3 long 0

 105

ctsmask long 0 ' a single bit set, a mask for the pin used for cts input,

zero if port not using cts

ctsmask1 long 0

ctsmask2 long 0

ctsmask3 long 0

rtsmask long 0 ' a single bit set, a mask for the pin used for rts output,

zero if port not using rts

rtsmask1 long 0

rtsmask2 long 0

rtsmask3 long 0

bit4_ticks long 0 ' bit ticks for start bit, 1/4 of standard bit

bit4_ticks1 long 0

bit4_ticks2 long 0

bit4_ticks3 long 0

bit_ticks long 0 ' clock ticks per bit

bit_ticks1 long 0

bit_ticks2 long 0

bit_ticks3 long 0

rtssize long 0 ' threshold in count of bytes above which will assert rts

to stop flow

rtssize1 long 0

rtssize2 long 0

rtssize3 long 0

rxbuff_head_ptr long 0 ' Hub address of data received, base plus offset

rxbuff_head_ptr1 long 0 ' pasm writes WRBYTE to hub at this address,

initialized in spin to base address

rxbuff_head_ptr2 long 0

rxbuff_head_ptr3 long 0

txbuff_tail_ptr long 0 ' Hub address of data tranmitted, base plus offset

txbuff_tail_ptr1 long 0 ' pasm reads RDBYTE from hub at this address,

initialized in spin to base address

 106

txbuff_tail_ptr2 long 0

txbuff_tail_ptr3 long 0

rx_head_ptr long 0 ' pointer to the hub address of where the head and

tail offset pointers are stored

rx_head_ptr1 long 0 ' these pointers are initialized in spin but then used

only by pasm

rx_head_ptr2 long 0 ' the pasm cog has to know where in the hub to

find those offsets.

rx_head_ptr3 long 0

rx_tail_ptr long 0

rx_tail_ptr1 long 0

rx_tail_ptr2 long 0

rx_tail_ptr3 long 0

tx_head_ptr long 0

tx_head_ptr1 long 0

tx_head_ptr2 long 0

tx_head_ptr3 long 0

tx_tail_ptr long 0

tx_tail_ptr1 long 0

tx_tail_ptr2 long 0

tx_tail_ptr3 long 0

 '' ----------- End of the object memory zeroed from startfill to endfill in the init/stop

method ------

endfill

 FIT

'' The above is all of the necessary code that must fit in the cog

'' The following are extra bytes if necessary to provide the required rx and tx buffers.

'' the number required is computed from the aggregate buffer size declared, minus the

above initialized but recycled variables.

 107

extra byte 0 [RXTX_BUFSIZE - (RXTX_BUFSIZE <# (@extra -

@overlay))]

{{

┌───

──

───────────────────────────┐

│ TERMS OF USE: MIT License

│

├───

──

───────────────────────────┤

│Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation │

│files (the "Software"), to deal in the Software without restriction, including without

limitation the rights to use, copy, │

│modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and

to permit persons to whom the Software│

│is furnished to do so, subject to the following conditions:

│

│ │

│The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.│

│ │

│THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE │

│WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

OR │

 108

│COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

│

│ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR

THE USE OR OTHER DEALINGS IN THE SOFTWARE. │

└───

──

───────────────────────────┘

6.5.5 DataIO4port.Spin Library

''**

''* DataIO4port version 1.0 1/22/2012 *

''* Author: Tracy Allen *

''* Copyright (c), EME Systems and others under MIT licence *

''* See end of file for terms of use. *

''* adapted from pcFullDuplexSerial4fc by Tim Moore 2008 *

''* Merged Debug_PC (Jon Williams) *

''* Merged Parallax Serial Terminal numeric input (Jeff Martin, *

''* Andy Lindsay, Chip Gracey) *

''* *

''* Release Notes: *

''* These are methods for string and numeric output and input *

''* using fullDuplexSerial4port, my adaptation of Tim Moore's *

''* pcFullDuplexSerial4fc. In the original these were included *

''* in the main program, but here I have broken them off as pass- *

''* through routines, and added string and numeric input methods. *

''* These methods are called with reference to a port as defined *

''* when FullDuplexSerial4port is initialized. *

''* *

''* If you do want to merge these methods back into the main *

''* object, simply remove all the "uarts." object references *

 109

''* *

''* I made these separate, because for my own work I often use a *

''* completely different set of string & numeric i/o methods. *

''* *

''**

CON

 FF = 12 ' form feed

 CR = 13 ' carriage return

 NL = 13

 MAXSTR_LENGTH = 32 ' this limits the size of a binary string

that can be entered

VAR

 byte str_buffer[MAXSTR_LENGTH+1] 'String buffer for numerical

string input only

 ' This is in VAR space. If multiple cogs will be

inputing numerical data

 ' simultaneously, it is necessary to delare another

instance so that

 ' the buffers do not clash! That applies to numerical

parsing only.

OBJ

 uarts : "FullDuplexSerial4port"

PUB str(port,stringptr)

 110

'' Send string

 repeat strsize(stringptr)

 uarts.tx(port,byte[stringptr++])

PUB strln(port,strAddr)

'' Print a zero-terminated string

 str(port,strAddr)

 uarts.tx(port,CR)

PUB dec(port,value) | i

'' Print a decimal number

 decl(port,value,10,0)

PUB decf(port,value, width) | i

'' Prints signed decimal value in space-padded, fixed-width field

 decl(port,value,width,1)

PUB decx(port,value, digits) | i

'' Prints zero-padded, signed-decimal string

'' -- if value is negative, field width is digits+1

 decl(port,value,digits,2)

PUB decl(port,value,digits,flag) | i, x

 digits := 1 #> digits <# 10

 x := value == NEGX 'Check for max negative

 if value < 0

 value := ||(value+x) 'If negative, make positive;

adjust for max negative

 uarts.tx(port,"-")

 i := 1_000_000_000

 111

 if flag & 3

 if digits < 10 ' less than 10 digits?

 repeat (10 - digits) ' yes, adjust divisor

 i /= 10

 repeat digits

 if value => i

 uarts.tx(port,value / i + "0")

 value //= i

 result~~

 elseif (i == 1) OR result OR (flag & 2)

 uarts.tx(port,"0")

 elseif flag & 1

 uarts.tx(port," ")

 i /= 10

PUB decDp(port,value,places) | divisor ' prints out a fixed point number with a decimal

point, places

 divisor := 1

 repeat places

 divisor := divisor * 10

 dec(port,value/divisor)

 uarts.tx(port,".")

 decx(port,||value//divisor,places)

PUB hex(port,value, digits)

'' Print a hexadecimal number

 value <<= (8 - digits) << 2

 repeat digits

 uarts.tx(port,lookupz((value <-= 4) & $F : "0".."9", "A".."F"))

 112

PUB ihex(port,value, digits)

'' Print an indicated hexadecimal number

 uarts.tx(port,"$")

 hex(port,value,digits)

PUB bin(port,value, digits)

'' Print a binary number

 value <<= 32 - digits

 repeat digits

 uarts.tx(port,(value <-= 1) & 1 + "0")

PUB padchar(port,count, txbyte)

 repeat count

 uarts.tx(port,txbyte)

PUB ibin(port,value, digits)

'' Print an indicated binary number

 uarts.tx(port,"%")

 bin(port,value,digits)

PUB putc(port,txbyte)

'' Send a byte to the terminal

 uarts.tx(port,txbyte)

PUB newline(port)

 putc(port,CR)

PUB cls(port)

 putc(port,FF)

PUB getc(port)

 113

'' Get a character

'' -- will not block if nothing in uart buffer

 return uarts.rxcheck(port)

' return rx

con

{the following added from PST primarily for data input}

PUB StrIn(port,stringptr)

{{TTA from PST.

Receive a string (carriage return terminated) and stores it (zero terminated) starting at

stringptr.

Waits until full string received.

 Parameter:

 stringptr - pointer to memory in which to store received string characters.

 Memory reserved must be large enough for all string characters plus a zero

terminator.}}

 StrInMax(port, stringptr, -1)

PUB StrInMax(port, stringptr, maxcount) | char, ticks

{{from PST, modified

Receive a string of characters (either carriage return terminated or maxcount in length)

and stores it (zero terminated)

starting at stringptr. Waits until either full string received or maxcount characters

received.

 Parameters:

 stringptr - pointer to memory in which to store received string characters.

 Memory reserved must be large enough for all string characters plus a zero

terminator (maxcount + 1).

 maxcount - maximum length of string to receive, or -1 for unlimited.}}

 114

 maxcount <#= MAXSTR_LENGTH

 repeat maxcount 'While maxcount not reached

 if (byte[stringptr++] := uarts.rx(0)) == NL 'Get chars until NL

 quit

 byte[stringptr+(byte[stringptr-1] == NL)]~ 'Zero terminate string;

overwrite NL or append 0 char

PUB StrInB(port, stringptr, seconds) | char, ticks

 ticks := clkfreq*seconds+cnt

 repeat MAXSTR_LENGTH

 repeat

 char := uarts.rxcheck(port)

 until char > -1

 case char

 32..126 : byte[stringptr++] := char ' encompasses all numeric chars in dec and hex

 8, 127 :stringptr--

 13 : quit

 if ticks -= cnt < 0

 quit

 byte[stringptr]~

PUB DecIn(port) : value

{{PST.

Receive carriage return terminated string of characters representing a decimal value.

 Returns: the corresponding decimal value.}}

 StrInMax(port, @str_buffer, MAXSTR_LENGTH)

 value := StrToBase(@str_buffer, 10)

 115

PUB HexIn(port) : value

{{from PST.

Receive carriage return terminated string of characters representing a hexadecimal value.

 Returns: the corresponding hexadecimal value.}}

 StrInMax(port, @str_buffer, MAXSTR_LENGTH)

 value := StrToBase(@str_buffer, 16)

PUB BinIn(port) : value

{{from PST.

Receive carriage return terminated string of characters representing a binary value.

 Returns: the corresponding binary value. Note that the constant MAXSTR_LENGTH

limits the # of digits}}

 StrInMax(port, @str_buffer, MAXSTR_LENGTH)

 value := StrToBase(@str_buffer, 2)

PRI StrToBase(stringptr, base) : value | chr, index

{from PST.

Converts a zero terminated string representation of a number to a value in the designated

base.

Ignores all non-digit characters (except negative (-) when base is decimal (10)).}

 value := index := 0

 repeat until ((chr := byte[stringptr][index++]) == 0)

 chr := -15 + --chr & %11011111 + 39*(chr > 56) 'Make "0"-

"9","A"-"F","a"-"f" be 0 - 15, others out of range

 if (chr > -1) and (chr < base) 'Accumulate valid values

into result; ignore others

 value := value * base + chr

 116

 if (base == 10) and (byte[stringptr] == "-") 'If decimal, address

negative sign; ignore otherwise

 value := - value

DAT

'***********************************

'* Assembly language serial driver *

'***********************************

{{

┌───

──

───────────────────────────┐

│ TERMS OF USE: MIT License

│

├───

──

───────────────────────────┤

│Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation │

│files (the "Software"), to deal in the Software without restriction, including without

limitation the rights to use, copy, │

│modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and

to permit persons to whom the Software│

│is furnished to do so, subject to the following conditions:

│

│ │

│The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.│

│ │

 117

│THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE │

│WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

OR │

│COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

│

│ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR

THE USE OR OTHER DEALINGS IN THE SOFTWARE. │

└───

──

───────────────────────────┘

}}

