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Background to MLwiN 
 
MLwiN is a statistical software package designed to fit multilevel models and 
developed at the Institute of Education. It is the latest in a line of multilevel modelling 
packages developed over the last 15 years and forerunners include ML2, ML3 and 
MLN. It is produced by a team of academics at the Institute under the leadership of 
Professor Harvey Goldstein. It is sold for a small fee and currently has a user 
community of around 3,000 users worldwide, primarily academic researchers in the 
social and medical sciences.  
 
The project team consists of 3 research officers: Jon Rasbash who is the package’s 
main programmer, Min Yang who is in charge of user support and William Browne 
who is the programmer of the MCMC options in the package. There are also two 
lecturers at the Institute, Fiona Steele and Ian Plewis who are associated with the 
project and a group of project fellows from other institutions around the UK. 
 
MLwiN has different aims and attracts a different user base from WinBUGS. It 
consists of a user-friendly Windows interface (written in Visual Basic) on top of fast 
estimation engines (written in C++). It is designed to fit particular classes of statistical 
model and so is less ambitious than WinBUGS, which attempts to fit almost all 
statistical models. However more attention is given to creating fast algorithms for the 
particular classes of models that MLwiN can fit and more documentation is provided.  
 
MLwiN allows the user to perform both frequentist and Bayesian analysis of 
multilevel and other models. The frequentist analyses are performed using least 
squares based methods such as IGLS (Goldstein 1986) and RIGLS whilst the 
Bayesian analyses use both Gibbs sampling and Metropolis Hastings sampling 
depending on the problem. Users specify their models via an equation based interface 
and running the analysis involves simply clicking on a start button.  
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MLwiN to WinBUGS interface 
 
A new ‘development’ release of MLwiN is due out early next year and contains many 
new MCMC features. In particular the new version will contain the ability to convert 
any model set up in MLwiN into WinBUGS code that can be run using WinBUGS 
version 1.3. Models available include: 
 

�� Normal response linear and multilevel models. 
�� Multilevel logistic and probit regression models. 
�� Multilevel Poisson regression models. 
�� Measurement error models. 
�� Cross-classified and multiple membership models. 
�� Spatial CAR models. 
�� Multivariate normal response models. 
�� Multilevel factor analysis models. 

 
The new release of MLwiN will coincide with the release of a detailed manual 
‘MCMC Estimation in MLwiN’ by W.J. Browne (2002) and the remainder of this 
poster is an adaptation of a chapter on the WinBUGS interface taken from this book. 
 
The MCMC features in MLwiN are fairly new and we currently fit only models of 
particular types although we are constantly extending the number of models that can 
be fitted. If, however, a user wishes to fit a model that cannot be currently fitted, for 
example fitting an alternative distribution for the school level random effects, there 
are three main options. Firstly wait for a later version of MLwiN that will fit their 
model; secondly write their own code to fit their model; or thirdly try an alternative 
software package, for example WinBUGS. 
 
WinBUGS (Spiegelhalter et al., 2000, freely available from http://www.mrc-
bsu.cam.ac.uk/bugs) in its earlier guise of BUGS was one of the first Bayesian 
software packages and is a more general purpose Bayesian estimation engine than the 
MCMC engine in MLwiN.  
 
They work on a different philosophy of fitting models that can be represented by 
directed acyclic graphs (DAGs). BUGS has a compiled language which allows the 
user to specify their model through statements of two types: logical and distributional 
which between them describe the structure of the DAG and hence the model. Then 
BUGS compiles this user code and constructs an MCMC estimation engine for the 
user’s model that can be run to give chains of estimates in a similar way to the 
MLwiN engine. 
 
We will firstly consider a normal response variance components model and show how 
to fit this model in WinBUGS. We will then go on to consider a model that MLwiN 
cannot fit which has t-distributed residuals at the school level. It should be noted at 
this point that most multilevel models are large and so cannot be run using the 
educational version of WinBUGS and so you will need to have the release version of 
WinBUGS. Note that you will need to update from the educational version of 
WinBUGS to run the multilevel models listed here. 
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Variance Components models in WinBUGS 
 
We will consider here an educational dataset where our response is a (normalized) 
total exam score at age 16 for 4059 children in 65 schools in the UK. We have set up 
a variance components model with one explanatory variable which is a standardized 
(London) reading test taken by all the children at age 11 and acts as an intake ability 
indicator. The model was run using the IGLS (MLE) method in MLwiN. 
On convergence we get the following estimates: 
 

 
 
We could now fit this model using MCMC in MLwiN but here we will consider 
instead using WinBUGS. To get to the BUGS options in MLwiN we need to do the 
following  

 
Click on the Estimation Control button  
Select the MCMC tab 
Click on the Advanced MCMC Options button 

 
 
 
 

 
This will bring up the Advanced MCMC Options screen that shows the possible 
MCMC samplers available in MLwiN and looks as follows: 
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From this screen we can bring up the BUGS options by pressing on its button and the 
following screen appears: 
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From this screen we can save the BUGS code for the currently set up model or read in 
the output files that contain parameter traces from BUGS for use in MLwiN (see 
later). For now we will save our current model in BUGS format so  
 

 
 

 

Click on the large button at the top of the screen. 

This will bring up a file save window similar to those for inputting and saving 
worksheets. For now we will save the file in the default directory as tutorial.bug. This 
will create a file that contains the BUGS model definition, initial values and data. For 
users of classic BUGS who are used to having three separate files, in WinBUGS the 
file tutorial.bug contains the information from these three files with dividing 
comment lines between them. 
 
For background information on using WinBUGS it is strongly suggested that the user 
reads some of the user manual and examples documentation that comes with the 
package, in particular to become familiar with the WinBUGS notation. For now to fit 
our model in WinBUGS, we must start the WinBUGS program and read in the file 
tutorial.bug (from the directory it was saved in) as a text file. Note that you will have 
to change the Files of type box to ‘All files (*.*)’ to see the file tutorial.bug. Having 
read in the file a window headed tutorial.bug will appear containing the information 
needed by BUGS for this model.  
 
As mentioned earlier the WinBUGS code is split into 3 sections and we will consider 
these here in turn. Firstly a model definition is required and this consists of a 
description of the structure of the current problem. The code for our simple variance 
components problem is as follows: 
 
# WINBUGS code generated from MLwiN program 
 
#----MODEL Definition---------------- 
 
model 
{ 
# Level 1 definition 
for(i in 1:N) { 
normexam[i] ~ dnorm(mu[i],tau) 
mu[i]<- beta[1] * cons[i]   
+ beta[2] * standlrt[i]  
+ u2[school[i]] * cons[i]  
} 
# Higher level definitions 
for (j in 1:n2) { 
u2[j] ~ dnorm(0,tau.u2) 
} 
# Priors for fixed effects 
for (k in 1:2) { beta[k] ~ dflat() } 
# Priors for random terms 
tau ~ dgamma(0.001,0.001) 
sigma2 <- 1/tau 
tau.u2 ~ dgamma(0.001,0.001) 
sigma2.u2 <- 1/tau.u2 
} 
 
WinBUGS is a more general modelling package and so there is no standard order to 
the model description although when the code is generated from MLwiN it will 
generally have a similar structure. We firstly define the relationship between the 
response (in this example normexam) and the fixed and random predictor variables.  
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Note that the column names from MLwiN are used as the variable names in 
WinBUGS. WinBUGS does have some differences in what it allows as a variable 
name so if the WinBUGS code will not work it may be that some of your variable 
names are illegal, for example a column name like ‘1995’ will be interpreted as a 
number in WinBUGS so it is worth renaming such columns in MLwiN. 
 
So we see here that our response is normally distributed and that we have two fixed 
effects, beta[1] and beta[2] (always defined as beta by the code generator) and one set 
of random effects, u2 (always defined as u# where # is the level/classification 
indicator). Note that in WinBUGS the fixed effects, beta, and all other vectors always 
start with index 1 and not 0 so that there will probably not be direct correspondence 
between the MLwiN and WinBUGS indexing. Next the code defines the random 
effects u2 as being Normally distributed before finally giving the priors for the fixed 
effects and the variances. 
 
WinBUGS has two types of relationship: distributional relationships that are 
described by the ~ symbol and deterministic relationships that are described by the <- 
symbol which is also used in the S-plus package. Note that the normal distribution 
definition in WinBUGS, dnorm has two parameters that are the mean and the 
precision (NOT the variance), hence the deterministic relationship used to calculated 
the variance. The prior distributions are identical to those used in the MCMC options 
in MLwiN. 
 
Before running a model in WinBUGS we first need to read in the particular elements 
of the model using the Specification window available from the Model menu. After 
selecting the window containing the model by clicking on it, clicking on the check 
model button should give the message ‘model is syntactically correct’ at the bottom 
of the screen. Next we need to load in the data for the model. Due to the fact that the 
data is generally the largest part of the file generated by MLwiN it is included after 
the initial values. For the tutorial.bug example the data section begins as follows: 
 
#----Data File---------------------------------- 
 
list(N= 4059, n2 = 65,  
school = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2, 
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 
2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3, 
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 
…. 
 
Again BUGS borrows its notation from S-plus using the convention c(..) to represent 
a vector of observations. Here we see the first two constants, N and n2 that define the 
number of level 1 units and level 2 units followed by a list of the school identifier for 
each observation. To load the data into BUGS we need to highlight the list identifier 
at the start of the data list and click on the load data button in the specification 
window. If this is successful the message ‘data loaded’ will appear at the bottom of 
the screen. Next we have to combine the data and model definition by clicking on the 
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compile button. Again if this operation is successful a message appears at the bottom 
of the screen, this time stating that ‘model compiled’. 
 
Finally as BUGS uses MCMC methods all unknown parameters will need starting 
values. These are included in the initial values part of the file that for our example is 
as follows: 
 
#----Initial values file---------------------------- 
 
list(beta= c(0.002391,0.563371), 
u2 = c( 0.373760,0.502043,0.503888,0.018131,0.240431,0.541395,0.379001,-0.026173,-0.135181,-0.337021, 
0.179300,-0.061863,-0.149648,-0.165593,-0.182923,-0.409983,-0.172781,-0.084464,-0.011510,0.214462, 
0.244016,-0.435732,-0.489244,0.209408,-0.230472,-0.023543,0.023121,-0.610002,0.240626,0.158475, 
0.033280,-0.006457,0.029589,-0.137882,0.128634,-0.181341,-0.189077,-0.153068,0.130317,-0.234439, 
0.211543,0.092819,-0.089927,-0.247556,-0.109729,-0.352728,-0.042628,-0.045058,0.042845,-0.302413, 
-0.051373,0.381929,0.723313,-0.547252,0.503474,0.009972,0.031894,0.138115,-0.658368,0.225656, 
-0.039551,-0.054029,0.535641,0.087691,-0.165765), 
tau= 1.767625, 
tau.u2= 10.854517) 
 
This gives the estimates from the IGLS run for the fixed effects and precisions, and an 
MLwiN RESI command for the initial values for u2 that are exactly what the MCMC 
routine in MLwiN uses as starting values. To use these values in WinBUGS we need 
to highlight the list identifier at the start of the initial values and click on the load 
inits button on the specification window. This will then give the final message ‘initial 
values loaded; model initialized’. Note that WinBUGS will generate starting values 
for any parameters that have not explicitly been given starting values but here we 
have given all parameters starting values. Note that using the IGLS estimates as 
starting values is generally more efficient than allowing WinBUGS to choose its own. 
 
We are now ready to run the Gibbs sampler in the WinBUGS package. Before we 
start the estimation engine we have to tell WinBUGS which parameters we wish to 
monitor. We will choose the same parameters as MLwiN uses. From the Inference 
menu select the Samples options and a window will appear that allows the user to 
specify which parameters to monitor. In this window we will firstly select the fixed 
effects by typing beta in the node box. Note that when a correctly typed parameter is 
input the set button will become enabled. We will also want to use a burnin of 500 
iterations so we will also modify the beg value from 1 to 501. After this press the set 
button and the parameter will be set for monitoring. We now need to repeat this 
procedure with the two variance parameters sigma2 and sigma2.u2. 
 
It should be noted that it is possible in WinBUGS to get dynamic traces of the 
parameters like those in the trajectories window in MLwiN via the sample window. 
If we either type beta again in the node box or use the scroll button at the side of the 
box to select beta you will see that now all the buttons become enabled. Clicking the 
trace button will give 2 empty trace plots for beta[1] (as shown below) and beta[2] 
which will become dynamic when we start updating. Similar traces can be brought up 
for the two variance parameters.  
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beta[1]

iteration

    0.0

    0.5

    1.0

 
 
We are now ready to set the estimation engine running and this is done via the 
Update window found in the Model menu. We need to specify the number of updates 
(including the burn-in) and so we will replace the 1000 here with 5500 as is used in 
MLwiN. As in MLwiN you can also specify how often to refresh the screen, whether 
to use thinning and, if WinBUGS needs to use Metropolis Hastings sampling, whether 
to adapt. There is also the option to use a technique called over-relaxation that 
improves the mixing of the MCMC chains but takes longer per iteration. The current 
version of WinBUGS (1.3) will choose the MCMC routines it uses for you depending 
on the form of the conditional distribution (see section 1.3 of the WinBUGS manual 
for details). 
 
Now that we have set the number of iterations press the update button to start the 
sampler. After a few minutes (depending on the speed of your processor and how 
many traces you are viewing) the update counter will reach 5500 and the sampling 
will be finished. WinBUGS has the nice feature that it will give you a message at the 
bottom of the screen, for example ‘updates took 88s’, stating how long the sampling 
took which is useful for comparing model run times etc. Generally WinBUGS is 
slower for models that can also be run in MLwiN but as we will see later it has greater 
flexibility in the models it can fit and sometimes the MCMC methods it uses are more 
efficient than the Metropolis Hastings methods used in MLwiN for binomial and 
Poisson response models. 
 
Once the sampling has finished we can now look at the estimates, plots and other 
information again via the sample window. To get summary information, select beta in 
the node box and click on the stats button. A node statistics window will appear 
giving the following 
 
  node  mean  sd  MC error 2.5% median 97.5% start sample 
 beta[1] 0.002979 0.03995 0.002516 -0.07465 0.004435 0.07912 501 5000 
 beta[2] 0.5634 0.01264 1.997E-4 0.5388 0.5636 0.5882 501 5000 
 
These results are similar to those obtained from MLwiN, which is reassuring, and we 
can also get similar results for the other parameters as shown below. 
 
  node  mean  sd  MC error 2.5% median 97.5% start sample 
 sigma2.u2 0.09662 0.02019 3.256E-4 0.06415 0.09446 0.1426 501 5000 
  node  mean  sd  MC error 2.5% median 97.5% start sample 
 sigma2 0.5661 0.0127 1.653E-4 0.5416 0.5662 0.5905 501 5000 
 
We can also get trace plots and kernel density plots via the history and density 
buttons respectively. Below we see the trace plot for the parameter beta[2] 
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beta[2]

iteration
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    0.5
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and the kernel plot. 
 

beta[2] sample: 5000

    0.5   0.525   0.575     0.6

    0.0
   10.0
   20.0
   30.0
   40.0

 
Currently WinBUGS does not allow the smoothing parameter to be changed for the 
kernel plots so that they look rather crude but this will be changed in later versions. 
 
WinBUGS currently produces limited summary statistics and plots itself. Historically 
the plots and MCMC diagnostics were provided via a suite of S-plus functions called 
CODA (Best et al. 1995), and WinBUGS also has the option to produce the input files 
that CODA requires. MLwiN can also use these files to input the parameter chains 
from WinBUGS into columns in MLwiN.  
 
Here we will only consider the fixed parameter vector beta so select this parameter in 
the node box and press the coda button on the sample window. This will produce two 
windows that are labelled ‘CODA index’ which contains the variable names and 
‘CODA for chain 1’ which contains the values for the parameter chains. We will now 
save these files as text files by clicking on the respective windows and then choosing 
Save As from the File menu. We will need to save the files in plain text (*.txt) format. 
We will store the ‘CODA index’ file as beta.ind and the ‘CODA for chain 1’ file as 
beta.out in the same directory as tutorial.bug. Note that these are the extensions that 
the classic BUGS used for these files but, as we have selected the plain text format, 
WinBUGS will add an additional .txt to each filename and so the files are actually 
saved as beta.ind.txt and beta.out.txt.   
 
Now back in MLwiN if you want to input the beta traces return to the BUGS options 
window that we used earlier (available from the MCMC advanced options window). 
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Here we will need to modify the .out and .in file fields to beta.out.txt and beta.ind.txt 
respectively. Note that if you did not put these files in the current directory you will 
have to include their full path names in the respective boxes. The window should then 
look as above. Pressing the Input data button will now load the chains into columns 
c300 and c301. To confirm this bring up the Names window from the Data 
Manipulation window and scroll down to c300 and you will see the following 
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We can now use the MLwiN MCMC diagnostics on the BUGS output, for example 
for the slope parameter:  
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Select the Column Diagnostics window from the Basic Statistics window.  
Select the column labelled beta[2] 
he window should then look as follows: 

ote that this parameter is the fixed effect for the slope that is labelled β1 in MLwiN. 
licking on Apply will give the following diagnostics screen, which is very similar to 

hat given by the MLwiN MCMC sampler in earlier chapters. 

 

e can repeat all of the above procedures for the intercept parameter and the two 
ariances and we will see that we get similar results for all four parameters with both 
LwiN and WinBUGS: 

MLwiN WinBUGS 
0 (intercept) 0.005(0.042) 0.002 (0.040) 
1 (slope) 0.563 (0.012) 0.563 (0.013) 
2

u (between schools variance) 0.097 (0.021) 0.097 (0.020) 
2

e (residual variance) 0.566 (0.013) 0.566 (0.013) 
ime for 5,500 iterations 21 seconds 81 seconds 
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So why have a WinBUGS interface ? 
 
The example we have just gone through will give similar results using both software 
packages and to use WinBUGS we have to move back and forth between the two 
packages. Also the estimation engine in WinBUGS is slower, so you may be asking 
yourself the above question. The interface was written originally as a testing tool to 
confirm that, when new types of models are programmed into MLwiN we get the 
same answers as WinBUGS. We recommend that while this version of the MLwiN 
software is still in development you check that both packages give similar answers.  
  
t distributed school residuals 
 
The main advantage of having a WinBUGS interface, however, is to allow models 
that have not yet been developed in MLwiN to be fitted using WinBUGS. We will 
illustrate this by considering alternative distributions for the school level residuals in 
the tutorial example we considered earlier. In the MLwiN manual (Rasbash et al. 
2000) we look at plots of residuals against normal scores to confirm that the normal 
distributional assumption is a good fit to the data. 
 
The normal distribution is a member of the t distribution family. The t distribution 
family has an additional degrees of freedom (df) parameter and the normal 
distribution is the limiting case when this parameter reaches infinity. We will here 
consider replacing the normal distribution at level 2 with a t distribution where the df 
parameter has itself got a prior distribution. For this we will use a uniform prior and 
allow the df parameter to take values in the range 1 to 200. This allows both small 
values where the distribution has very long tails and large values, which are 
indistinguishable from the normal distribution. 
 
To include this prior we will need to edit the model definition in the file tutorial.bug.  
The new version is as follows (edits in bold font) : 
 
#----MODEL Definition---------------- 
 
model 
{ 
# Level 1 definition 
for(i in 1:N) { 
normexam[i] ~ dnorm(mu[i],tau) 
mu[i]<- beta[1] * cons[i]   
+ beta[2] * standlrt[i] 
+ u2[school[i]] * cons[i]  
} 
# Higher level definitions 
for (j in 1:n2) { 
u2[j] ~ dt(0,tau.u2,df) 
} 
# Priors for fixed effects 
for (k in 1:2) { beta[k] ~ dflat() } 
# Priors for random terms 
tau ~ dgamma(0.001,0.001) 
sigma2 <- 1/tau 
tau.u2 ~ dgamma(0.001,0.001) 
sigma2.u2 <- 1/tau.u2 
df ~ dunif(2,200) 
} 
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We will also need to give a starting value for df in the initial values file and so we will 
choose (arbitrarily) df = 10.  Our initial values file then looks as follows: 
 
#----Initial values file---------------------------- 
 
list(beta= c(0.002391,0.563371), 
u2 = c( 0.373760,0.502043,0.503888,0.018131,0.240431,0.541395,0.379001,-0.026173,-0.135181,-0.337021, 
0.179300,-0.061863,-0.149648,-0.165593,-0.182923,-0.409983,-0.172781,-0.084464,-0.011510,0.214462, 
0.244016,-0.435732,-0.489244,0.209408,-0.230472,-0.023543,0.023121,-0.610002,0.240626,0.158475, 
0.033280,-0.006457,0.029589,-0.137882,0.128634,-0.181341,-0.189077,-0.153068,0.130317,-0.234439, 
0.211543,0.092819,-0.089927,-0.247556,-0.109729,-0.352728,-0.042628,-0.045058,0.042845,-0.302413, 
-0.051373,0.381929,0.723313,-0.547252,0.503474,0.009972,0.031894,0.138115,-0.658368,0.225656, 
-0.039551,-0.054029,0.535641,0.087691,-0.165765), 
tau= 1.767625, 
tau.u2= 10.854517, 
df = 10) 
 
This time we will monitor the same four parameters as before plus the df parameter 
which we will set in the sample window. Note that the adapting box on the update 
window is ticked because for this model, WinBUGS needs to use Metropolis-Hastings 
to update the df parameter. Note that the tick disappears when adapting has finished. 
We again run for 5000 iterations after a burnin of 500 iterations and get the following 
trace for df 
 

df

iteration
501 2000 4000

    0.0

   50.0

  100.0

  150.0

 
As can be seen this parameter does not mix that well with large autocorrelation in the 
chain.  We can see from the summary statistics below that on this small sample of 
5000 iterations we cannot reject the possibility of a heavy-tailed distribution. 
 

node  mean  sd  MC error 2.5% median 97.5% start sam le p
 df 64.29 35.78 4.19 9.757 62.94 129.5 501 5000 
                
In order to investigate the potential of starting value dependence we started three 
chains with identical parameter starting values except for df, which was set to 2,10 
and 200 respectively for the 3 runs. To do this in WinBUGS is fairly easy as on the 
specification window there is a num of chains box that we edit to 3 (immediately 
after checking the model is syntactically correct). Then we have to load the 3 sets of 
initial values but this simply involves editing the df=10 line of the initial value file 
before loading each set. We will increase the burnin to 2000 by changing the beg box 
to 2001 on the sample window when we input the parameters we wish to monitor. We 
will also increase the updates to 12000 so that we have a monitoring run of 10000 
iterations after the burnin. Pressing update, the three sets of chains will be run 
concurrently and so this will take longer. 
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df chains 1:3

iteration
2001 5000 7500 10000

    0.0

   50.0

  100.0

  150.0

  200.0

 
If we look at plots of the 3 sets we see that, although all 3 chains are heavily 
autocorrelated there is overlap suggesting that sensitivity to the starting value is not a 
problem. If we look at the summary statistics for the three chains combined we get: 
 
 

node  mean  sd  MC error 2.5% median 97.5% start sample 
 df 91.9 50.36 2.87 6.241 88.59 189.4 2001 30000 
 
This summary information suggests that a very small degrees of freedom (df) 
parameter and hence an extremely heavy tailed distribution is not feasible but that a 
value of df of less than 10 is not out of the question.  
As a sensitivity analysis we will instead try fitting a model where the degrees of 
freedom is assumed known and has value 8 which suggests a slightly long-tailed 
distribution at level 2. Seltzer (1993) gives Gibbs sampling algorithms for exactly this 
scenario of a known df parameter. 
We will need to simplify our model definition as follows: 
 
# WINBUGS code generated from MLwiN program 
 
#----MODEL Definition---------------- 
 
model 
{ 
# Level 1 definition 
for(i in 1:N) { 
normexam[i] ~ dnorm(mu[i],tau) 
mu[i]<- beta[1] * cons[i]   
+ beta[2] * standlrt[i] 
+ u2[school[i]] * cons[i]  
} 
# Higher level definitions 
for (j in 1:n2) { 
u2[j] ~ dt(0,tau.u2,df) 
} 
# Priors for fixed effects 
for (k in 1:2) { beta[k] ~ dflat() } 
# Priors for random terms 
tau ~ dgamma(0.001,0.001) 
sigma2 <- 1/tau 
tau.u2 ~ dgamma(0.001,0.001) 
sigma2.u2 <- 1/tau.u2 
df <- 8 
} 
and we will also need to remove the initial values for parameter df as it is now a 
constant. Again we will monitor beta, sigma2 and sigma2.u2. After running for 5000 
iterations after a burnin of 500 we get the following estimates: 
 
  node  mean  sd  MC error 2.5% median 97.5% start sample 
 beta[1] -0.001065 0.04125 0.002364 -0.08322 -7.714E-4 0.07792 501 5000 
 beta[2]  0.5633 0.0124 1.979E-4 0.5391 0.5636 0.5872 501 5000 
                sigma2.u2 0.07657 0.01805 4.247E-4 0.04746 0.0745 0.1171 501 5000 
 sigma2 0.5662 0.01279 1.787E-4 0.5421 0.5659 0.5916 501 5000 
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Here we see that the fixed effects and level 1 variance are little changed in terms of 
point estimate and standard errors, suggesting the analysis is robust to different level 2 
distributions. The level 2 variance parameter is not directly comparable as the 
variance of the t distribution is a function of both the sigma2.u2 and df parameters. 
In fact the variance is 8/6*0.07657 = 0.102, which is slightly higher than for the 
Normal case. 
 
Using WinBUGS on a Binary response model 
 
We will now consider a second example, this time from demography. We are 
interested in the use of contraceptives by women in Bangladesh. Our dataset consists 
of 1934 women who are grouped into 60 districts and we will consider just one 
predictor the age of the women. Multilevel binary response models are interesting in 
that we do not have conjugate priors for all parameters and the two packages use 
different approaches. MLwiN uses random walk Metropolis sampling for these 
parameters whilst WinBUGS uses adaptive rejection (AR) sampling. Our model is as 
follows: 
 

 
 
We will firstly run IGLS and set up the model for AR sampling in WinBUGS.  
 

 

 

W
f
o
m
 
 
 
 
 
 
 
 
 

 

Click on the Start button 
Click on the Estimation Control button. 
Click on the MCMC tab. 
Click on the Advanced MCMC Options button on the Estimation Control window.
Click on the Bugs Options button on the Advanced MCMC Options window. 
Click on the Save button 
Save the file as ‘bang.bug’ 
e now need to start the WinBUGS program and load the file bang.bug as a text file 
rom the directory it has been saved. Note that again we will need to change the Files 
f type box to ‘All files (*.*)’ to see the file bang.bug.  When the file is loaded the 
odel definition will look as follows: 

15



# WINBUGS code generated from MLwiN program 
 
#----MODEL Definition---------------- 
 
model 
{ 
# Level 1 definition 
for(i in 1:N) { 
use[i] ~ dbin(p[i],denom[i]) 
logit(p[i]) <- beta[1] * cons[i]   
+ beta[2] * age[i] 
+ u2[district[i]] * cons[i]  
} 
# Higher level definitions 
for (j in 1:n2) { 
u2[j] ~ dnorm(0,tau.u2) 
} 
# Priors for fixed effects 
for (k in 1:2) { beta[k] ~ dflat() } 
# Priors for random terms 
tau.u2 ~ dgamma(0.001,0.001) 
sigma2.u2 <- 1/tau.u2 
} 
 
Here we see that our response variable use is defined as Binomially distributed and 
we have the logit link function to the predictor variables. We will need to repeat the 
setting up procedure that we used for the normal response model 

 
Select the Specification window from the Model menu. 
Click on the Check Model button. 
Highlight the list identifier at the start of the data list. 
Click on the Load Data button. 
Click on the Compile button. 
Highlight the list identifier at the start of the initial values list.
Click on the Load Inits button. 

 
 
 
 
 
 
 
 
 

This will have set up our model and we can now pick our variables to store. Before 
we do this we will introduce an interesting feature of WinBUGS not mentioned in the 
first example. If we wish to find out what methods WinBUGS is using to fit the 
various components of the model we have defined we can use the Node Info tool 
available from the Info menu. 
 
If we then type our node name, for example beta into the node box on this window 
we can then hit the method button and get the following in the log window: 
 
beta[1] UpdaterDFreeARS.StdUpdater 
beta[2] UpdaterDFreeARS.StdUpdater 
 
This can be translated to mean that both the fixed effect are being updated by the 
standard AR sampler. If on the other hand we type the node name tau.u2 into the 
node box and hit the method button we will get: 
 
tau.u2 UpdaterGamma.OptUpdater 
 
This is because the precision parameter, tau.u2 is being updated using Gibbs sampling 
from a Gamma full conditional distribution. 
 
So we now need to tell WinBUGS which parameters we wish to store. 
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Select the Samples window from the Inference menu.
Change the beg value to 501. 
Type beta in the node box. 
Click on the Set button. 
Type sigma2.u2 in the node box. 
Click on the Set button. 
 
e have now set up the burnin of 500 iterations and the parameters we wish to store 

o run the updates we need to use the update window 
 
 
 
 

Select the Update window from the Model menu. 
Change the updates value to 5500. 
Click on the update button. 
 
e now need to wait a few minutes for WinBUGS to run. On a Pentium 733Mhz 
achine the updates take 194 seconds. In order to measure the efficiency of the 

ampler we will import the chains back into MLwiN and look at the effective sample 
ize (ESS) measure. To do this we need to do the following: 

 

 

 

 
 
 
 
 
 
 
 
 

h

Select the Samples window. 
Select beta from the node pull-down list. 
Click on the Coda button. 
Click on the window labeled ‘Coda Index’. 
Choose Save As from the File menu and choose ‘plain text (*.txt)’ format.
Save file as ‘beta.ind’. 
Click on the window labeled ‘Coda for chain 1’. 
Choose Save As from the File menu and choose ‘plain text (*.txt)’ format.
Save file as ‘beta.out’. 
 
aving saved the two files for the fixed effects we can return to MLwiN and use the 
UGS Options window we used earlier to input the data. 

 
Change Input .out file to ‘beta.out.txt’ 
Change Input .ind file to ‘beta.ind.txt’ 
Click on Input Data button. 

 
 
 
 
 

his will store beta[1] in column c300 and beta[2] in column c301 and rename the 
olumns accordingly. We can now look at the diagnostics for the two parameters via 
e Column diagnostics window: 
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Select the Column diagnostics window from the Basic Statistics menu. 
Select ‘beta[1]’ from the Column pull-down list. 
Click on the Apply button. 



The diagnostics will then appear as shown below. Here we see that the effective 
sample size for β1 is 876 for this sample of size 5,000 due to the autocorrelation in the 
chain. We can repeat this procedure for β2 and also we can save the chains for σ2

u and 
find its effective sample size. The information for all these parameters will be 
summarized in the table at the end of this section. 
 

 
 
We can now run the same model using Metropolis sampling in MLwiN. The model 
should currently be set up and MCMC should already be selected and so all we need 
to do is start the estimation. MLwiN does not by default time estimation but we can 
set this by enabling the Smileys option. The Smileys option gives the user a ‘smiley 
face’ on the screen that shows when the program is performing an operation or not 
and as a side effect the timer is enabled. 
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Select Close All Windows from the Windows menu.
Select Smileys from the Options menu. 
Click on the Start button. 
 
 

hen the estimation finishes a message box will appear saying how long the 
stimation took (in hours,minutes and seconds). For this example the estimation took 
2 seconds on a 733MHz Pentium. Click on the OK button to remove this window. 
e can now get Effective sample sizes and other information from the MCMC 

iagnostics window. 
 

 

 
 
 

Select Trajectories from the Model Menu. 
Click in the β1 chain box. 
Select Yes to the Calculate MCMC Diagnostics? box.
 
 

he diagnostics for β1 using Metropolis sampling will then be displayed as shown 
elow. Here we have higher autocorrelation and so we see that the effective sample 
ize is only 185. 
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The results from the two methods can be seen in the following table. The worst 
mixing parameter is the intercept (β1) and to get an effective sample size of 5000 will 
take 18+(5000/876)*176= 17 minutes 3 seconds using AR sampling while Metropolis 
will take 7+(5000/185)*35 = 15 minutes 53 seconds. This means that even though the 
AR sampling produces a less correlated chain, Metropolis is sufficiently quicker to 
give an effective sample of 5,000 in (slightly) less time. Note that Metropolis here has 
a long burn-in due the adapting method. 
 
Parameter AR ESS (AR) Metropolis ESS(Metro.) 
β1 -0.544 (0.091) 876 -0.540 (0.089) 185 
β2 0.009 (0.005) 4658 0.009 (0.005) 1209 
σ2

u 0.273 (0.091) 1050 0.273 (0.092) 433 
Time 194s(18+176) 42s(7+35)  
 
So we see that here it appears that Metropolis sampling in MLwiN is (marginally) 
better for this random effects logistic regression model. Browne and Draper (2000) 
showed similar results for a couple of random effects logistic regression models. It is 
however not guaranteed that this will be true for all models. Multilevel Poisson 
models, which can also be fitted using either method, seem to give highly correlated 
chains using Metropolis and they may be models that it makes more sense to fit using 
AR sampling in WinBUGS.  
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